-
浅成中低温热液型矿床是近年来在有色、贵金属找矿方面取得重要进展的一类矿床,也是当今国际矿床学界研究的热点之一(祁进平等,2005; Baumgartner et al.,2008; 唐菊兴等,2014; Wang Le et al.,2019; Hui Kaixuan et al.,2021a,2021b)。银作为该类矿床中的有用组分或伴生组分,在矿石中赋存形式多样(吴冠斌等,2014; 权晓莹等,2019; 康明等,2020)。银矿物种类繁多(回凯旋等,2021; Swinkels et al.,2021),与贱金属硫化物之间存在着密切共(伴)生关系(李占珂等,2010; Wang Minfang et al.,2017)。因此,对银的赋存状态、运移方式和沉淀富集机制展开研究,有助于深入理解浅成中低温热液型矿床的成矿作用和成矿机理(Koodziejczyk et al.,2016; 李壮等,2017; Zhang He et al.,2018; 丁奎首等,2019)。
-
大兴安岭西坡发育着多个浅成热液型Pb-Zn-Ag多金属矿床,如甲乌拉、额仁陶勒盖、查干布拉根、东珺、下护林、二道河子、得耳布尔和比利亚谷等(祁进平等,2005; Zhai Degao et al.,2013; Li Tiegang et al.,2016; 梁小龙等,2020)。据报道本世纪初该区域已探明银储量大于1.4万t(陈志广等,2006),具有可观的银金属量,因此,深入揭示该类矿床银的赋存状态和富集规律,不仅具有重要的理论意义,同时具有一定的经济价值。前人对额仁陶勒盖银多金属矿床研究揭示,银多以(显微)包体的形式存在于硫化物(如方铅矿、黄铜矿、闪锌矿)和脉石矿物(如锰氧化物、石英等)中,少量以离子吸附状态存在(吕志成等,1998,2000);叶吉文(2013)和张中俭等(2017)对东珺矿床开展银的赋存状态、分布特征研究和成矿温度估算。但是,总体来看目前对银在浅成热液型铅锌银多金属矿床中的赋存状态、富集规律和成矿机理研究还处于起步阶段。
-
二道河子矿床是该区代表性浅成热液型铅锌矿床之一,目前有关矿床地质特征、构造格架、成岩成矿时代、成矿流体特征及矿床成因等方面已有大量研究(李进文等,2011; Yan Jia et al.,2015; 李兴等,2016; 刘艳荣等,2019; Xu Zhitao et al.,2020a,2020b),获得许多重要成矿信息,但对该矿床中银的赋存状态及富集机制研究仍缺乏深入细致地分析与阐述。因此,本文以二道河子铅锌银矿床为研究对象,结合前人研究成果与本次野外地质调研、显微镜观察和电子探针微区分析技术,力图查明二道河子矿床中含银矿物的种类和分布规律,探讨银的赋存状态,结合成矿流体的研究资料,分析银的迁移形式和沉淀机制,丰富区内同类矿床成矿理论,为浅成中低温热液型矿床中银的有效利用和综合回收提供理论依据。
-
1 区域地质背景
-
二道河子Pb-Zn-Ag矿床位于大兴安岭西坡、额尔古纳地块与兴安地块的交汇部位(图1a),产在NE向得耳布干深大断裂北西侧,得耳布干成矿带中段(图1b)。区域地质研究表明,该区自古生代以来,先后受到古亚洲洋、蒙古-鄂霍茨克洋及古太平洋三大构造的共同影响,为一复合构造-岩浆-成矿区(带)(许文良等,2013; 江思宏等,2018),强烈的构造-岩浆活动形成了丰富的Cu-Pb-Zn-Au-Ag-Mo等多金属矿床资源(朱群等,2001)。区域内出露地层以中生界侏罗系和白垩系为主,少量新元古界变质岩系、古生界火山岩、碎屑岩和碳酸盐岩及新近系沉积地层;其中侏罗系岩性为中基性-酸性火山岩、中酸性火山碎屑岩及少量沉积岩;白垩系岩性为中基性火山岩、中酸性火山碎屑岩及沉积岩(杨郧城等,2015)。区域构造以NE向得耳布干深大断裂和附近的NW向断裂为主(图1 b),它们不仅控制了区内岩浆岩和成矿带的分布,还控制了部分铅锌矿体的产状。研究区侵入岩发育,主要侵入时代为加里东期、海西期、印支期和燕山期,其中燕山期侵入岩与区内铅锌银铜等多金属矿化关系密切(赵岩等,2018)。
-
2 矿床地质特征
-
矿区内出露地层简单,主要为侏罗系中统塔木兰沟组,该地层为一套中性火山熔岩-火山碎屑岩建造,岩性包括晶屑凝灰岩、晶屑岩屑凝灰岩、沉凝灰岩、凝灰角砾岩和安山岩。构造主要为NE向得耳布干深大断裂及一系列NW—NNW向、NE向和SN向次级断裂。NE向得耳布干断裂位于矿区东南部,为主要的导矿构造;NW—NNW向次级断裂在矿区内构成三条断裂破碎带(FⅠ、FⅡ、FⅢ),是本区的控矿构造;NE向和SN向断裂通常破坏矿体(图2)。矿区侵入岩不发育,仅见少量燕山晚期闪长玢岩,按产状可分为两组,其中NW向岩脉沿断裂构造侵位于晶屑岩屑凝灰岩内、或凝灰岩和安山岩的岩性界面处,局部可见硫化物矿化;NE向岩脉截断或切穿矿体,但对矿体破坏不大(李兴等,2016)。
-
矿区共有三条矿体(Ⅰ、Ⅱ、Ⅲ),分别受三条蚀变破碎带控制(图2),矿体主要赋存于塔木兰沟组晶屑岩屑凝灰岩和安山岩的NW—NNW向断裂破碎带内或岩性界面处,多呈脉状、透镜状或不规则状产出,局部具分枝复合、膨胀狭缩等现象。矿体走向262°~347°,走向长度50~250 m,倾向NE,局部反倾,倾角多为50°~80°,个别矿体近直立,倾向延伸40~550 m,已探明铅锌资源量47.53万t,Ag资源量249.82 t。目前在Ⅰ号矿带圈定矿体11条,呈矿体多、规模小、品位低的特征;Ⅱ号矿带共28条矿体,主要矿体规模中等—偏小,品位中等;Ⅲ号矿带共57条矿体,主要呈矿体多、规模中等、品位高的特点,该矿带资源量占全矿床总资源量的56%以上,为二道河子矿区的主成矿带(戚新世,2015)。
-
矿石主要金属矿物为方铅矿、闪锌矿、黄铁矿、黄铜矿,次为磁黄铁矿、黝铜矿、硫锑铜银矿、辉锑铅银矿、深红银矿和辉银矿等;非金属矿物有石英、绢云母、绿泥石和方解石等。金属矿物在岩石中多呈稀疏浸染-浸染状(图3a)分布,局部分布致密呈块状(图3b),此外,它们还常常和石英、方解石等脉石矿物一起呈脉状(图3c、d)、网脉状和条带状(图3e)穿插交代早期矿化或围岩,局部构造强烈部位,还可见角砾状构造(图3f)和团块状构造。矿石结构以自形、半自形—他形粒状结构和交代结构(图3g~j)为主,如早期形成的黄铁矿以立方体或五角二十面体产出(图3g),内部发育环带(图3h),中晚期黄铁矿以半自形—他形粒状分布在岩石中(图3i-j),裂隙或边缘被闪锌矿和方铅矿充填交代,形成交代残余结构(图3i、j)和脉状结构(图3k)。包含结构和乳滴状结构在矿石中也较为普遍,如银矿物以细粒状被包含在方铅矿中(图3l),黄铜矿和磁黄铁矿呈乳滴状被包含在闪锌矿中(图3m)。受应力作用影响,部分矿物内可见揉皱结构(图3n)和碎裂结构(图3o)。围岩蚀变有硅化、绢云母化、绿泥石化和碳酸盐化等,其中前三种蚀变与矿化关系密切。
-
图1 二道河子铅锌银矿床大地构造位置图(a)和区域地质图(b)(修改自段明新等,2014)
-
Fig.1 Tectonic map (a) and regional geological map (b) of the Erdaohezi Pb-Zn-Ag deposit (modified from Duan Mingxin et al., 2014)
-
1 —下白垩统白音高老组;2—上侏罗统满克头鄂博组;3—中侏罗统塔木兰沟组;4—燕山期花岗闪长岩;5—燕山期流纹斑岩;6—燕山期石英斑岩;7—海西期花岗闪长岩;8—地质界线;9—断层;10—铅锌银矿床;F1—牡丹江断裂;F2—敦化-密山断裂;F3—伊通-依兰断裂;F4—西拉木伦-长春断裂;F5—贺根山-黑河断裂;F6—塔源-喜桂图断裂
-
1 —Baiyingaolao Formation of Lower Cretaceous; 2—Manketouebo Formation of Upper Jurassic; 3—Tamulangou Formation of middle Jurassic; 4—granodiorite of Yanshan; 5—rhyolite porphyry of Yanshan; 6—quartz porphyry of Yanshan; 7—granodiorite of Variscan; 8—geological boundary; 9—fault; 10—Pb-Zn-Ag deposit; F1—Mudanjiang fault; F2—Dunhua-Mishan fault; F3—Yintong-Yilan fault; F4—Xilamulun-Changchun fault; F5—Hegenshan-Heihe fault; F6—Tayuan-Xiguitu fault
-
图2 二道河子铅锌银矿床矿区地质图(修改自李兴等,2016)
-
Fig.2 Geological map of the Erdaohezi Pb-Zn-Ag deposit (modified from Li Xing et al., 2016)
-
1 —第四系;2—塔木兰沟组安山岩;3—塔木兰沟组晶屑岩屑凝灰岩;4—塔木兰沟组凝灰岩;5—地质界线;6—不整合地质界线;7—断层及编号;8—断裂破碎带及编号;9—矿化带及编号;10—矿体
-
1 —Quaternary; 2—andesite of the Tamulangou Formation; 3—rhyolitic crystal-lithic tuffstone of the Tamulangou Formation; 4—tuffstone of the Tamulangou Formation; 5—geological boundary; 6—unconformable geological boundary; 7—fault and number; 8—damage zone and number; 9—mineralized zone and number; 10—ore body
-
3 成矿期及成矿阶段
-
通过野外和室内观察,根据矿物组合和矿石结构构造等特征,将二道河子矿床的成矿作用分为热液期和表生期。其中表生期表现为菱铁矿、菱锰矿、褐铁矿、白铅矿、铜蓝等金属氧化物在矿脉浅部或地表露头局部富集,矿化规模较小。热液期作为主成矿期,可进一步划分为四个成矿阶段(表1),概述如下。
-
第I阶段:石英-黄铁矿阶段,矿物组合为石英-黄铁矿,自形细粒状黄铁矿多呈星点状不均匀分布在围岩中(图3a),或呈他形粒状被晚期硫化物包裹或交代。
-
第II阶段:石英-多金属硫化物阶段,该阶段为银矿化的阶段之一,以发育多种金属硫化物(如闪锌矿、方铅矿、黄铜矿、黄铁矿和磁黄铁矿等)为特征,硫化物主要以脉状、角砾状、浸染状或块状分布在围岩和石英脉中(图3b~f),特征矿物组合为闪锌矿-方铅矿-黄铁矿-黄铜矿-银矿物-石英。
-
图3 二道河子矿床矿石的矿物组成和结构构造
-
Fig.3 Mineral compositions and structures of the sulfide ores from the Erdaohezi deposit
-
(a)—浸染状矿石,I阶段浸染状黄铁矿分布在凝灰岩中;(b)—块状矿石,II阶段硫化物致密均匀分布;(c)—脉状矿石,III阶段方铅矿矿脉穿插II阶段硫化物;(d)—脉状矿石,IV阶段黄铁矿脉穿插II阶段硫化物;(e)—条带状矿石,II阶段硫化物呈条带状穿插交代I阶段黄铁矿化凝灰岩;(f)—角砾状矿石,II阶段硫化物角砾被石英胶结;(g)—自形粒状结构;(h)—环带结构;(i)—半自形-他形粒状结构和交代残余结构;(j)—半自形-他形粒状结构、交代残余结构和乳滴状结构;(k)—脉状结构;(l)—包含结构;(m)—乳滴状结构;(n)—揉皱结构;(o)—碎裂结构;g~o为反射光(单偏光);Sul—硫化物;Py—黄铁矿;Sp—闪锌矿;Gn—方铅矿;Cp—黄铜矿;Po—磁黄铁矿;Pol—硫锑铜银矿;Q—石英
-
(a) —disseminated ore, disseminated pyrite from stage I occurred in tuffstone; (b) —massive ore, stage II sulfide distributing uniformly and compactly; (c) —vein ore, stage III galena filling in the fractures of stage II sulfide; (d) —vein ore, stage IV pyrite vein crosscutting stage II sulfides; (e) —banded ore, stage II sulfides bands crosscutting stage I pyritized tuffstone; (f) —brecciated ore, stage II sulfide breccia cemented by quartz; (g) —euhedral granular texture; (h) —corona texture; (i) —subhedral-anhedral granular texture, replacing texture; (j) —subhedral-anhedral granular texture, replacing remnant texture and exsolution texture; (k) —vein texture; (l) —inclusion texture; (m) —exsolution texture; (n) —corrugation texture; (o) —cataclastic texture; these photos (g-o) were taken under reflected light. Sul—sulfide; Py—pyrite; Sp—sphalerite; Gn—galena; Cp—chalcopyrite; Po—pyrrhotite; Pol—polybasite; Q—quartz
-
第III阶段:石英-闪锌矿-方铅矿-银矿物阶段,该阶段以粗晶闪锌矿和方铅矿的大量沉淀为标志,二者多呈脉状产出(图3c),主要矿物组合为闪锌矿-方铅矿-黄铜矿-银矿物-石英,该阶段是银矿物的主要形成阶段。
-
第IV阶段:石英-方解石-黄铁矿阶段,该阶段是热液成矿作用的最后阶段,仅有少量黄铁矿形成(图3d),表现为大量方解石和石英一起呈脉状,或是呈晶簇状沉淀在各种开放空间内,可见该阶段的石英-方解石-黄铁矿脉穿插交代其他成矿阶段。
-
4 矿石矿物学特征
-
本次研究样品采自二道河子矿床Ⅲ号矿带的610中段和730中段,具体采样位置及样品描述见表2。样品制备成厚度约70~100 μm的探针片,在偏、反光显微镜下对探针片进行详细的矿相学观察,了解样品的矿物组成、结构构造和共生关系等,然后对其表面进行喷碳处理,并在长安大学西部矿产资源与地质工程教育部重点实验室进行背散射照相和电子探针矿物成分分析,所用仪器为JEOL JXA-8100型电子探针仪,实验条件为加速电压20 kV,电流10 nA,束斑直径~1 μm,检测限0.01%,所有测试数据均进行了ZAF校正。
-
结合室内矿相学研究、电子探针背散射观察及矿物主量成分分析结果(表3、附表1),对热液期不同成矿阶段金属矿物的矿物学和矿物地球化学进行总结分析,由于本研究中黝铜矿系列矿物的银含量明显较其他硫化物高得多,因此将黝铜矿系列矿物划入银矿物。
-
4.1 金属硫化物矿物特征
-
二道河子铅锌银矿床中贱金属硫化物是该矿床的主要矿石矿物:黄铁矿、黄铜矿、闪锌矿和方铅矿,其矿物学特征分别描述如下:
-
(1)黄铁矿:在矿石中分布较广,主要形成于热液期的第I、II和IV阶段,背散射图像中黄铁矿较黄铜矿略暗,呈自形、半自形、他形粒状产在硫化物脉或脉石矿物中,常被其它硫化物沿裂隙或边缘交代溶蚀。电子探针分析结果表明, I、II、IV阶段内黄铁矿的Fe和S含量平均值分别为46.86%、46.80%、46.82%和52.79%、52.56%、52.65%,Ag含量最高值和平均值分别为0.19%、0.21%、0.17%和0.07%、0.08%、0.06%,含银率分别为68%、49%和66.67%。各阶段黄铁矿的银含量变化不大,Fe与Ag的元素含量无相关关系(图4a)。根据电子探针分析结果的平均值计算其化学式为Fe1.02S2。
-
(2)黄铜矿:黄铜矿在成矿II和III阶段均有分布,黄铜矿的背散射图像亮度中等,介于闪锌矿和黄铁矿之间,多呈乳滴状分布于闪锌矿中,或呈他形粒状集合体或细脉状穿插交代闪锌矿和方铅矿等。其电子探针分析结果为:成矿II和III阶段中黄铜矿的Cu、Fe、S元素含量平均值分别为33.06%和34.34%、29.73%和30.18%、34.81%和34.56%,Ag含量最高值、平均值和含银率分别为0.55%和0.16%、0.16%和0.08%、86%和71%。与III阶段相比, II阶段黄铜矿略富集银,各成矿阶段中Fe、Cu与Ag的元素含量相关性不明显(图4b、c)。根据电子探针分析结果计算出黄铜矿平均化学式为Cu0.97Fe0.99S2。
-
(3)闪锌矿:作为主要的矿石矿物之一,闪锌矿在成矿II和III阶段内分布广泛,闪锌矿的背散射图像亮度中等,较黄铁矿和黄铜矿略亮,但较方铅矿暗,可见半自形—他形粒状结构、环带结构,其多交代溶蚀黄铁矿,并被方铅矿和含银矿物穿插和交代。闪锌矿内部多包含乳滴状黄铜矿和磁黄铁矿,银矿物包裹体在闪锌矿中的含量与其内所含乳滴状黄铜矿的多少成正比。电子探针分析结果表明, II和III阶段闪锌矿的Zn、Fe、S元素含量平均值分别为57.78%和65.08%、8.62%和2.24%、33.55%和33.11%,Ag含量的最高值、平均值和含银率分别为0.14%和0.39%、0.04%和0.09%、40%和83%。III阶段闪锌矿的含银率较高,但平均值和II阶段闪锌矿差别不大,元素相关图解(图4d~f)表明Fe、Zn、Cu与Ag之间无明显相关性。根据分析结果计算,闪锌矿的平均化学式为(Zn0.92Fe0.08)1.00S。
-
注:n为测试点数,“-”低于检测限。
-
图4 二道河子矿床硫化物的元素含量相关图解
-
Fig.4 Bivariate plots of elemental abundances in sulfides from the Erdaohezi deposit
-
(4)方铅矿:方铅矿主要在II、III成矿阶段内产出,方铅矿的背散射图像较其他硫化物和银矿物明亮,多呈他形粒状、尖角状或脉状集合体穿插、交代闪锌矿和黄铁矿。电子探针分析结果显示,II和III阶段内方铅矿的Pb、S含量平均值分别为86.19%和86.79%、13.20%和13.14%, Ag元素含量的最高值、平均值和含银率分别为0.60%和0.12%、0.38%和0.07%、56%和14%。II阶段中方铅矿明显较富银,且Ag与Pb、Bi元素含量有一定相关性(图4g、h)。根据分析结果计算,方铅矿的平均化学式为Pb1.02S。
-
图5 二道河子矿床中主要银矿物的组成和产状
-
Fig.5 Compositions and attitudes of the silver minerals in the Erdaohezi deposit
-
(a)—银黝铜矿和硫锑铜银矿呈不规则状包体分布在闪锌矿中,硫锑铜银矿交代银黝铜矿;(b)—含银黝铜矿和硫锑铜银矿呈共结边结构,分布在黄铜矿中;(c)—含银黝铜矿分布在方铅矿和黄铁矿的颗粒间隙;(d)—含银黝铜矿分布在石英和闪锌矿的颗粒间隙;(e)—深红银矿呈不规则状包体分布在闪锌矿中;(f)—硫锑铜银矿呈浑圆状包体分布在方铅矿中;(g)—硫锑铜银矿分布在黄铜矿的颗粒间隙;(h)—脉状硫锑铜银矿穿插交代方铅矿;(i)—不规则状辉银矿交代方铅矿;(a~i)均为背散射照片;Py—黄铁矿;Sp—闪锌矿;Gn—方铅矿;Cp—黄铜矿;Frei—银黝铜矿;Ag-Ttr—含银黝铜矿;Pyr—深红银矿;Pol—硫锑铜银矿;Arg—辉银矿;Q—石英
-
(a) —irregular-shaped freibergite and polybasite enclosed within sphalerite, showing the replacement between them; (b) —intergrowth of argentotetrahedrite and polybasite enclosed within chalcopyrite; (c) —argentotetrahedrite occurred between galena and pyrite; (d) —argentotetrahedrite occurred between sphalerite and quartz; (e) —irregular-shaped pyrargyrite enclosed within sphalerite; (f) —polybasite distributed as round inclusions in galena; (g) —polybasite distributed along the side of chalcopyrite; (h) —polybasite vein crosscutting galena; (i) —galena replaced by irregular-shaped argentite; these photos (a~i) were taken under backscattering; Py—pyrite; Sp—sphalerite; Gn—galena; Cp—chalcopyrite; Frei—freibergite; Ag-Ttr—argentotetrahedrite; Pyr—pyrargyrite; Pol—polybasite; Arg—argentite; Q—quartz
-
4.2 主要银矿物特征
-
本次研究识别出黝铜矿系列、辉锑铅银矿、深红银矿、硫锑铜银矿和辉银矿,矿物学特征如下。
-
(1)黝铜矿系列:二道河子矿床中黝铜矿系列(Cu,Ag)10(Fe,Zn)2Sb4S13矿物均含有一定量的银,是该区主要的一类银矿物,它们的背散射图像较方铅矿和硫锑铜银矿暗,但比闪锌矿、黄铜矿和黄铁矿略亮,矿物粒度1~10 μm,大多以浑圆状或不规则状显微包体的形式分散或定向分布在II阶段硫化物中(图5a、b),少数分布在硫化物和石英的颗粒间隙(图5c、d),与黄铜矿、闪锌矿的关系较为密切,推测在II阶段形成。电子探针分析结果显示该矿物的主要组成元素和对应含量为Ag (1.05%~32.30%)、Cu(15.18%~40.95%)、Sb(11.31%~23.75%)、S(20.42%~27.93%)、As(0.54%~11.92%)及少量Zn(3.21%~8.97%)和Fe(0.71%~8.33%)。根据各元素含量,计算出黝铜矿的平均化学式为(Ag2.36Cu7.64)10.18(Cu0.18Fe0.90Zn1.76)2.66(Sb2.84As0.70)3.54S13。沿用Riley(1974)所提出的法则,根据化学和分子式组成对黝铜矿矿物系列进行了分类:Ag含量>23%, Ag>Cu的为银黝铜矿;Ag含量<23%,Cu>Ag≥1.0的为含银黝铜矿,Cu>Ag<1.0的为黝铜矿,Cu>Ag<1.0且As>Sb的为砷黝铜矿,Cu>Ag≥1.0且As>Sb的为含银砷黝铜矿(黄典豪,2000; Molo et al.,2008; Wang Minfang et al.,2017)。结合电子探针分析结果,本区黝铜矿系列矿物可细分为砷黝铜矿、黝铜矿、含银黝铜矿和银黝铜矿(附表1),黝铜矿的Ag-Cu-(Fe+Zn+Cd+Pb)三角图显示(图6),相对于其他元素,Cu含量最高,Ag和Cu的变化范围较Fe+Zn+Cd+Pb大。元素相关图(图7)中Ag-Cu、As-Sb具明显的负相关,Zn-Fe和Cd-Pb相关性较弱,Cu-Cd、Cu-Fe、Cu-Zn和Cu-Pb的相关性不明显,揭示黝铜矿中Ag+和Cu+、As3+和Sb3+之间可形成完全类质同象,Zn2+和Fe2+、Pb2+和Cd2+之间为部分类质同象,尽管Cu和Fe、Zn、Pb、Cd等元素的相关性不明显,但Zn2+、Fe2+、Pb2+和Cd2+常置换晶格中的Cu2+,且它们对Cu2+的置换总量基本不变(图6)。矿床从深部到浅部,黝铜矿均有分布,其化学成分显示出由富Cu、As向富Ag、Sb变化的趋势(图7a、b)。
-
(2)辉锑铅银矿:辉锑铅银矿(Ag3Pb2Sb3S8)在矿区比较少见,仅在矿床上部730中段的II阶段闪锌矿内偶有发现。辉锑铅银矿的背散射图像亮度介于方铅矿和闪锌矿之间,多呈不规则包体分布于闪锌矿内,形成时间比闪锌矿略晚,推测于II阶段形成。电子探针分析结果显示,其主量元素为Ag(30.40%~31.90%)、S(21.18%~21.67%)、Sb(30.14%~31.34%)、Pb(10.67%~12.34%)和Zn(3.68%~4.35%),另外矿物中还含有微量Cd、Fe、Cu及As等元素。根据各元素含量,计算出辉锑铅银矿的矿物晶体化学式为Ag3.46(Pb0.67Zn0.74)1.40(Sb3.02As0.08)3.10S8。
-
图6 二道河子矿床黝铜矿系列矿物的Ag-Cu (Fe+Zn+Cd+Pb)三角关系图解
-
Fig.6 Ag-Cu- (Fe+Zn+Cd+Pb) triangular diagram of tetrahedrite series minerals from the Erdaohezi deposit
-
(3)深红银矿:深红银矿(Ag3SbS3)在矿区含量较少,但两个中段均有发现。深红银矿的背散射图像较闪锌矿和黝铜矿亮,但比方铅矿暗,常以不规则状包体的形式分布在II阶段硫化物内(图5e),或沿硫化物裂隙分布,与闪锌矿关系尤为密切,推测在II阶段形成。电子探针分析结果显示,深红银矿主要由Ag、S、Sb和少量As和Zn组成。Ag含量在59.89%~61.71%之间,平均值为60.71%,S含量为17.33%~18.25%,平均值为17.64%,Sb含量为10.44%~17.90%,平均值为15.42%,As含量为0.24%~6.03%,平均值为2.19%,Zn含量在3.91%~4.09%之间,平均值为3.99%。根据各元素含量,计算出深红银矿的平均化学式为(Ag3.07Zn0.33)3.40(Sb0.69As0.16)0.85S3。
-
(4)硫锑铜银矿:硫锑铜银矿属于硫锑铜银矿—硫砷铜银矿完全类质同象系列中的端员组成矿物,矿物化学式为(Ag,Cu)16(Sb,As)2S11。此矿物是本研究区内主要含银矿物之一,其背散射图像较黝铜矿、黄铜矿和闪锌矿亮,但较方铅矿暗。硫锑铜银矿主要有两种分布形式,一种和黝铜矿一起呈浑圆状、不规则状包体随机或定向分布于II阶段的硫化物内(图5a、b、f)或颗粒间隙中(图5g),常交代黝铜矿(图5a)或与黝铜矿呈共结边结构(图5b),推测于II阶段形成;另一种硫锑铜银矿的粒度较大,多呈集合体状或脉状分布在III阶段粗晶方铅矿和闪锌矿脉的边缘或裂隙内,和方铅矿尤为密切(图5h),推测于III阶段形成。电子探针分析结果显示硫锑铜银矿的主要元素为Ag、Cu、Sb和S,其中Ag元素含量在64.14%~73.67%之间,平均69.00%;Sb元素含量为2.07%~8.82%,平均6.23%;Cu元素含量为2.65%~9.36%,平均6.82%;S元素含量为12.27%~16.80%,平均15.36%;此外,矿物中还含有少量As,元素含量在0.17%~5.37%之间,平均值为1.62%。根据各元素含量,计算出硫锑铜银矿的平均化学式为(Ag14.77Cu2.44)17.21(Sb1.19As0.49)1.68S11。硫锑铜银矿中各元素相关图(图8a、b)中Ag-Cu和As-Sb具有很好的相关性,表明Ag主要替代Cu、As替代Sb进入到硫锑铜银矿中。此外,硫锑铜银矿在矿体不同深度均有出现,但主要分布在上部,且具有上部富Ag和Sb,下部富Cu和As的特征(图8a、b)。
-
图7 二道河子矿床黝铜矿系列矿物的元素含量相关图解
-
Fig.7 Bivariate plots of elemental abundances in tetrahedrite series minerals from the Erdaohezi deposit
-
(5)辉银矿:辉银矿(Ag2S)是矿区仅次于硫锑铜银矿的独立银矿物,多分布在矿床上部。辉银矿的背散射图较闪锌矿和硫锑铜银矿亮,但比方铅矿暗,常呈集合体状或脉状穿插交代III阶段粗晶方铅矿和闪锌矿脉(图5i),或呈尖角状交代硫锑铜银矿,与方铅矿最为密切,主要在III阶段形成。电子探针分析结果表明,辉银矿的主要元素为Ag和S,另外还有微量Zn。Ag元素含量在80.94%~84.97%之间,平均83.62%;S元素含量在11.10%~14.11%之间,平均12.84%;Zn元素含量为2.45%~3.77%,平均2.78%。根据各元素含量计算出辉银矿的矿物晶体化学式为(Ag1.95Zn0.11)2.06S。
-
图8 二道河子矿床硫锑铜银矿的元素含量相关图解
-
Fig.8 Bivariate plots of elemental abundances in polybasite from the Erdaohezi deposit
-
上述有关贱金属矿石矿物和贵金属银矿物的微区鉴定和电子探针分析结果表明,它们在矿物种类和时空上有明显的规律性,即:
-
(1)空间关系上,黝铜矿和硫锑铜银矿具有在矿体下部富Cu、As元素,上部富Ag、Sb元素,以及富银矿物(如辉银矿和硫锑铜银矿)在矿体上部更富集、颗粒更大等特征。黝铜矿和硫锑铜银矿在沉淀时能从成矿流体中大量捕获银离子,因此它们含银多少能反映出成矿流体的银离子浓度和矿石中银的品位(王国富,2008; 王小春等,2000),这与野外观察的浅部矿体Ag品位较高,而深部Ag品位有变低趋势的现象是一致的❶。银矿物在矿体垂向上的变化特征,揭示成矿流体自下而上运移,下部流体富含Cu和As,上部流体相对富集Ag和Sb。
-
(2)时间关系上,银矿物有两次富集。粒度较小的包体状银矿物多分布在II阶段黄铜矿和闪锌矿等硫化物内或颗粒间隙,它们主要形成于第II成矿阶段,形成时间较同阶段硫化物同时或略晚;颗粒较大的富银矿物通常呈集合体状或脉状分布在III阶段方铅矿(闪锌矿)脉的裂隙和边缘,应主要形成于第III成矿阶段,形成时间较同阶段的方铅矿和闪锌矿略晚。Ag含量从低到高的变化对应银矿物的沉淀晶出顺序:黝铜矿系列矿物—辉锑铅银矿—深红银矿—硫锑铜银矿—辉银矿,晚期流体中Ag元素含量增高。
-
(3)贱金属矿石矿物中,黄铜矿的平均Ag元素含量及含银率均较高;闪锌矿和黄铁矿的含银率次之,但平均Ag元素含量较低;方铅矿的平均Ag元素含量中等,但Ag元素变化较大,含银率最低; II阶段黄铜矿和方铅矿的Ag元素较III阶段略高。
-
5 讨论
-
5.1 银的赋存状态
-
前人研究表明,银的赋存形式多样,王静纯等(1996)将其划分了四类:独立银矿物、类质同象银、离子吸附银和非晶态银,其中非晶态银非常少见,离子吸附银多赋存在地表露头或氧化带中。在赋存状态方面,将其分为独立银矿物、晶格银和次显微包体银三类(李壮等,2017)。而依据矿物在显微尺度上的大小,可划分为可见银(>1 μm)和不可见银(<1 μm),可见银又细分为独立银矿物(>10 μm)和显微包体银(1~10 μm),晶格银和次显微包体银(<1 μm)则为不可见银(Yi Yan et al.,2017; 康明等,2020),晶格银即类质同像银,次显微包体银则多包含在同银矿化密切相关的硫化物内(Sharp et al.,1993)。本文主要依照矿物显微尺度将银的赋存状态分为可见银和不可见银。
-
可见银:二道河子矿床的独立银矿物主要为硫锑铜银矿,少量为辉银矿,它们自形程度较差,粒度普遍为10~200 μm,主要以裂隙银、部分以粒间银的形式充填在粗晶方铅矿的裂隙和边缘,偶见与粗晶闪锌矿共生(图5h、i);显微包体银主要为黝铜矿系列矿物和硫锑铜银矿,其次为深红银矿和少量辉锑铅银矿等,它们大小不一,粒径一般不大于10 μm,形状为浑圆状或不规则状,主要被包裹在硫化物(主要为闪锌矿和黄铜矿,次为方铅矿和黄铁矿)内部和裂隙中(图5a、b、e、f),少量分布在硫化物和石英的颗粒间隙(图5c、d、g)。
-
不可见银:显微镜和扫描电镜观察发现,黄铁矿、闪锌矿、黄铜矿和方铅矿等硫化物内常发育一些显微包体银,但有时在显微尺度上(<1 μm)未能观察到银矿物包体的部位,它们的电子探针结果(表3)却显示有银的富集,这说明二道河子矿床的硫化物中存在有不可见(<1 μm)的银。硫化物元素相关图解(图8a~f)显示闪锌矿、黄铜矿和黄铁矿中Ag与其它元素之间相关性不明显,推测这些硫化物晶格中Ag元素含量不高(Grant et al.,2015; Yi Yan et al.,2017),结合闪锌矿和黄铜矿中含有大量显微包体银等特征,闪锌矿和黄铜矿中的不可见银可能主要以次显微包体银的形式存在;黄铁矿中不可见银的赋存特征可能与闪锌矿、黄铜矿一样;方铅矿中Pb-Ag元素具负相关性,Bi-Ag具正相关性(图8g、h),这可能与 Bi++Ag+=Pb2+有关(Foord et al.,1989),即Ag在替换Pb时,由Bi同时替换Pb作补偿(权晓莹等,2019)。
-
5.2 银的迁移形式和沉淀机制
-
大量实验表明,金属离子在不同的热液流体中以不同的络合物形式运移(Stefánsson et al.,2003; Simon et al.,2008; 李敏同等,2018),如在高温高氧逸度偏酸性条件下,Pb2+、Zn2+、Cu2+、Ag+等金属离子主要以氯络合物形式运移(Seward,1976; Ruaya et al.,1986);而在中低温偏碱性的环境中,则多以硫氢络合物形式运移(Gammons et al.,1989; Hayashi et al.,1990; Stefánsson et al.,2003)。引起金属元素迁移、沉淀的机制包括温度、压力的降低,流体混合或沸腾,水-岩反应及相态变化等(Ramboz et al.,1982; Chi Guoxiang et al.,2011),成矿模拟研究表明流体沸腾和混合是热液系统中导致矿石和脉石矿物沉淀的最有效过程,此外流体冷却、冷地下水的混入或与围岩发生反应也是至关重要的因素(Hedenquist,1991; Yuan Maowen et al.,2019)。
-
二道河子矿床闪锌矿和共生石英的流体包裹体研究显示,在成矿早期阶段,成矿流体为中高温、中低盐度、富含CO2的CO2-H2O-NaCl体系(刘艳荣等,2019),处于弱还原性环境。因此,推测在成矿早期阶段(石英-黄铁矿阶段),成矿热液中大量金属元素(Pb、Zn、Ag、Cu和Fe元素等)主要以氯络合物形式向上运移。流体包裹体特征显示成矿早期发生了流体沸腾作用(刘艳荣等,2019),这导致流体压力快速降低、温度降低,CO2气体大量释放,流体pH增大且氧逸度降低,成矿流体中Pb2+、Zn2+、Cu2+、Ag+、Fe2+等金属离子的氯络合物发生解体,而与HS-结合呈硫氢络合物的形式继续运移。
-
随着成矿热液继续向上运移进入断裂、裂隙等构造通道时,流体压力及温度进一步降低,硫氢络合物不稳定而开始解离并发生沉淀富集,形成II阶段黄铁矿、闪锌矿、黄铜矿和方铅矿等贱金属硫化物。在相同的环境中Ag(HS)-2溶解度偏大(尚林波等,2003),因此银继续以硫氢络合物的形式存在于热液中,但随着该阶段硫化物的大量结晶,成矿热液中S2-急剧减少,促使水解反应HS-=S2-+H+向右进行,热液的pH值减小,且温度持续降低,银的硫氢络合物发生局部解体,分解出的Ag+浓度增大,将与热液中的Cu+、Sb3+、Pb2+、S2-等离子结合直接沉淀,形成粒度较小的黝铜矿、硫锑铜银矿、辉锑铅银矿和深红银矿等银矿物,极少量Ag+进入方铅矿的晶格形成晶格银。由于银矿物的形成时间一般较同阶段硫化物同时或略晚,故常沿贱金属硫化物的孔隙、裂隙或边缘充填沉淀,从而被包裹在硫化物内或分布在它们的颗粒间隙构成显微(次显微)包体银。
-
此后富含Ag、Sb元素的成矿热液继续向上运移,随着压力、温度的降低(成矿温度降至180~240℃)和大气降水的参与(刘艳荣等,2019; Xu Zhitao et al.,2020a),矿液中的Pb2+、Zn2+、Ag+、Sb3+等浓度增高,流体的物理化学条件发生变化, III阶段粗晶闪锌矿和方铅矿大量晶出。温度降低及硫化物结晶促使成矿热液中残余的Ag(HS)-2络合物进一步发生解体,当流体中Ag+浓度逐步达到饱和,其与溶液内剩余的Cu+、Sb3+、S2-等离子结合,形成粒度较大的硫锑铜银矿等独立银矿物。最终Ag(HS)-2络合物进一步解体直至完全解离(2Ag(HS)-2=Ag2S+H2S+2HS-,Gammons et al.,1989),或解离出的Ag+与流体中剩余的少量H2S发生作用(2Ag++H2S=Ag2S+2H+,尚林波等,2003),形成辉银矿。该阶段形成的银矿物颗粒普遍较大,较少呈显微(次显微)包体银或晶格银赋存在硫化物中,因此该阶段黄铜矿和方铅矿的银元素含量较II阶段偏低。
-
6 结论
-
二道河子矿床的热液期为主成矿期,其可划分为四个成矿阶段,依次为石英-黄铁矿阶段(I)、石英-多金属硫化物阶段(II)、石英-闪锌矿-方铅矿-银矿物阶段(III)和石英-方解石-黄铁矿阶段(IV),银矿化主要集中在第II、III阶段,得出银的赋存状态、富集规律和沉淀机制如下:
-
(1)银主要以可见银的形式存在,少部分为不可见银。其中可见银有显微包体银和独立银矿物两种形式,不可见银由次显微包体银和晶格银组成。显微(次显微)包体银通常以浑圆状或不规则状分布在II阶段的硫化物内或硫化物和石英的颗粒间隙;独立银矿物主要呈脉状或集合体状分布于III阶段的粗粒方铅矿(闪锌矿)脉的裂隙和边缘;晶格银含量很少,主要赋存于方铅矿中。
-
(2)银矿物具有下部富Cu、As,上部富Ag、Sb,以及富银矿物在矿体上部更富集、颗粒更大的特征;粒度较小的显微(次显微)包体银多在第II阶段形成,形成时间较第II阶段硫化物同时或略晚,颗粒较大、银含量更高的独立银矿物主要在第III阶段形成,形成时间较第III阶段方铅矿和闪锌矿略晚。
-
(3)成矿溶液中的Pb、Zn、Ag、Cu和Fe等金属元素在早期以氯络合物的形式搬运,此后流体发生沸腾作用,则以硫氢络合物形式为主。随着成矿热液温度、压力的降低和大气降水的加入,二道河子矿床的成矿流体自矿体下部向上部运移,共经历了两次银的富集沉淀过程,晚期流体更富银。
-
本文对二道河子矿床中银的富集规律、赋存形式等特征进行研究,为矿石选冶性能分析和银的有效回收利用提供了重要参考和理论依据。
-
致谢:感谢野外工作期间,根河市森鑫矿业开发有限责任公司杨开鹏董事长、张金仁高工、党顺安工程师、李卫建工程师及其他同行对我们的帮助;感谢匿名审稿人对本文提出的建设性修改意见。
-
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202310090?st=article_issue
-
注释
-
❶ 西北有色地质勘查局七一二总队.2012. 内蒙古自治区根河市三道桥铅锌矿床地质勘探报告,1~137.
-
参考文献
-
Baumgartner R, Fontboté L, Vennemann T. 2008. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3): 493~537.
-
Chen Zhiguang, Zhang Lianchang, Wan Bo. 2006. Geological setting and metallogenic prognosis of the De'erbugan polymetallic belt in the Da Hinggan Mountains. Mineral Deposits, 25(S1): 11~14 (in Chinese).
-
Chi Guoxiang, Xue Chunji. 2011. An overview of hydrodynamic studies of mineralization. Geoscience Frontiers, 2(3): 423~438.
-
Ding Kuishou, Guo Jinghui, Liu Binguang, Han Xiuling, Yang Saihong. 2019. The important significance of mineralization concerning sulfosalt minerals in Xiasai deposit. Acta Geologica Sinica, 93(1): 215~226 (in Chinese with English abstract).
-
Duan Mingxin, Ren Yunsheng, Hou Zhaoshuo, Sun Deyou, Sun Zhenming, Qin Chaojian. 2014. Ore-forming fluid and ore genesis of the Biliya valley lead-zinc (silver) deposit in Erguna region, Inner Mongolia. Journal of Mineralogy and petrology, 34(2): 60~67 (in Chinese with English abstract).
-
Foord E E, Shawe D R. 1989. The Pb-Bi-Ag-Cu-Hg chemistry of galena and some associated sulfosalts: A review and some new data from Colorado, California and Pennsylvania. Canadian Mineralogist, 27: 363~382.
-
Gammons C H, Barnes H. 1989. The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300℃. Geochimica et Cosmochimica Acta, 53(2): 279~290.
-
Grant H L J, Layton-Matthews D, Peter J M. 2015. Distribution and controls on silver mineralization in the Hackett River Main Zone, Nunavut, Canada: An Ag- and Pb-enriched Archean volcanogenic massive sulfide deposit. Economic Geology, 110(4): 943~982.
-
Hayashi K, Sugaki A, Kitakaze A. 1990. Solubility of sphalerite in aqueous sulfide solutions at temperatures between 25 and 240℃. Geochimica et Cosmochimica Acta, 54(3): 715~725.
-
Hedenquist J W. 1991. Boiling and dilution in the shallow portion of theWaiotapu geothermal system, New Zealand. Geochimica et Cosmochimica Acta, 55(10): 2753~2765.
-
Huang Dianhao. 2000. Characteristics of silver sulphosalt minerals of the tetrahedrite group in silver polymetallic deposits and their significance. Acta Petrologica et Mineralogica, 19(1): 78~87 (in Chinese with English abstract).
-
Hui Kaixuan, Qin Kezhang, Li Zhenzhen, Wang Fangyue, Gao Shen, Han Ri, Kan Jing, Zhao Junxing, Li Guangming. 2021a. The linkage between the Jiawula-Chaganbulagen Ag-Pb-Zn and adjacent porphyry Mo-Cu mineralization, Inner Mongolia, Northeast China. Ore Geology Reviews, 134: 104153.
-
Hui Kaixuan, Qin Kezhang, Han Ri, Zhao Junxing, Wang Le, Gao Shen, Zhang Xiana. 2021b. Magmatic-hydrothermal silver deposits, argentiferous provinces and the main controlling factors of formation. Acta Petrologica Sinica, 37(8): 2502~2520 (in Chinese with English abstract).
-
Jiang Sihong, Zhng Lili, Liu Yifei, Liu Chunhua, Kang Huan, Wang Fengxiang. 2018. Metallogeny of Xing-Meng orogenic belt and some related problems. Mineral deposits, 37(4): 671~711 (in Chinese with English abstract).
-
Kang Ming, Yue Changcheng. 2020. Metallogenic process in Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China: Constraints from occurrence of silver. Acta Petrologica Sinica, 36(11): 3363~3379 (in Chinese with English abstract).
-
Kołodziejczyk J, Prsek J, Asllani B, Maliqi F. 2016. The paragenesis of silver minerals in the Pb-Zn Stan Terg deposit, Kosovo: An example of precious metal epithermal mineralization. Geology, Geophysics & Environment, 42(1): 19~29.
-
Li Jinwen, Liang Yuwei, Wang Xiangyang, Zhang Bin, Yang Yuncheng, She Hongquan, Guo Zhijun. 2011. The origin of the Erdaohezi lead-zinc deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 41(6): 1745~1754, 1783 (in Chinese with English abstract).
-
Li Mintong, Chen Xiaodong, Xu Yuanping, Xie Wanhong, Zhou Hongbing, Sun Chongbo, Liu Hong. 2018. Characteristics of silver minerals of Nagengkangqieergou silver deposit in eastern Kunlun orogenic belt and a brief analysis of the precipitation mechanism of ore-forming elements. Geological Review, 64(3): 723~736 (in Chinese with English abstract).
-
Li Tiegang, Wu Guang, Liu Jun, Wang Guorui, Hu Yanqing, Zhang Yunfu, Luo Dafeng, Mao Zhihao, Xu Bei. 2016. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China. Lithos, 261: 340~355.
-
Li Xing, Liu Yunhua, Guan Qiangbing, Liu Fangjie, Li Huan, Shang Zhihu. 2016. Tectonic ore-controlling and prospecting direction of Erdaohezi Pb-Zn deposit in Inner Mongolia. Journal of Earth Sciences and Environment, 38(6): 791~802 (in Chinese with English abstract).
-
Li Zhanke, Li Jianwei, Chen Lei, Zhang Suxin, Zheng Shu. 2010. Occurrence of silver in the Shagou Ag-Pb-Zn deposit, Luoning County, Henan Province: Implications for mechanism of silver enrichment. Earth Science, 35(4): 621~636 (in Chinese with English abstract).
-
Li Zhuang, Lang Xinghai, Ding Shuai, Li Haifeng, Yang Zongyao, Shi Shuo, Wang Liqiang, Li Yuhai. 2017. A study of the modes of occurrence of silver in the Sinongduo epithermal Ag-Pb-Zn deposit, Tibet. Acta Geoscientica Sinica, 38(5): 687~701 (in Chinese with English abstract).
-
Liang Xiaolong, Sun Jinggui, Qiu Dianming, Xu Zhitao, Gu Xiaoli, Ren Zening. 2020. Genesis of Biliya valley Ag-Pb-Zn polymetallic deposit on western slope of Great Xing'an Range. Journal of Jilin University (Earth Science Edition), 50(3): 781~799 (in Chinese with English abstract).
-
Liu Yanrong, Li Fang, Liu Yunhua, Liu Minwu. 2019. Infrared microthermometry of fluid inclusions in the Erdaohezi Pb-Zn-Ag polymetallic deposit, Inner Mongolia. Geotectonica et Metallogenia, 43(5): 953~966 (in Chinese with English abstract).
-
Lü Zhicheng, Sun Guosheng, Hao Libo, Zhang Dongli. 1998. The mineralogical and geochemical characteristics of silver-bearing minerals and silver minerals of the Erentaolegai silver deposit in Inner Mongolia. Gold, 8(19): 3~7 (in Chinese with English abstract).
-
Lü Zhicheng, Zhang Paiping, Liu Congqiang, Liu Jiajun. Duan Guozheng, Hao Libo. 2000. Mineralogical characteristics of silver minerals in E'rentaolegai silver deposit. Geology Geochemistry, 28(3): 41~47 (in Chinese with English abstract).
-
Moëlo Y, Makovicky E, Mozgova N N, Jambor J L, Cook N, Pring A, Paar W, Nickel E H, Graeser S, Karup-Møller S, Balic-Žunic T, Mumme W G, Vurro F, Topa D, Bindi L, Bente K, Shimizu M. 2008. Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA Commission on ore mineralogy. European Journal of Mineralogy, 20(1): 7~46.
-
Qi Jinping, Chen Yanjing, Pirajno F. 2005. Geological characteristics and tectonic setting of the epithermal deposits in the northeast China. Journal of Mineralogy andPetrology, 25(2): 47~59 (in Chinese with English abstract).
-
Qi Xinshi. 2015. Geological characteristics and metallogenesis of Erdaohezi Pb-Zn deposit, Inner Mongolia. Master degree thesis of Chang'an University (in Chinese with English abstract).
-
Quan Xiaoying, Liu Chunhua, Sun Hongjun, Wang Fengxiang. 2019. Metallic mineralogy study and the enrichment mechanism of silver in the Shuangjianzishan Pb-Zn-Ag deposit in Inner Mongolia, China. Acta Geologica Sinica, 93(9): 2308~2329 (in Chinese with English abstract).
-
Ramboz C, Pichavant M, Weisbrod A. 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1-2): 29~48.
-
Riley J F. 1974. The tetrahedrite-freibergite series, with reference to the Mount Isa Pb-Zn-Ag orebody. Mineralium Deposita, 9(1): 117~124.
-
Ruaya J R, Seward T M. 1986. The stability of chlorozinc (Ⅱ) complexes in hydrothermal solutions up to 350℃. Geochimica et Cosmochimica Acta, 50(5): 651~661.
-
Seward T M. 1976. The stability of chloride complexes of silver in hydrothermal solutions up to 350℃. Geochimica et Cosmochimica Acta, 40(11): 1329~1341.
-
Shang Linbo, Fan Wenling, Deng Hailin. 2003. An experimental study on paragenesis and separation of silver, lead and zinc in hydrothermal solutions. Acta Mineralogica Sinica, 23(1): 31~36 (in Chinese with English abstract).
-
Sharp T G, Buseck P R. 1993. The distribution of Ag and Sb ingalena: Inclusions versus solid solution. American Mineralogist, 78(1-2): 85~95
-
Simon A C, Pettke T, Candela P A, Piccoli P M. 2008. The partitioning behavior of silver in a vapor-brine-rhyolite melt assemblage. Geochimica et Cosmochimica Acta, 72(6): 1638~1659.
-
Stefánsson A, Seward T M. 2003. Experimental determination of the stability and stoichiometry of sulphide complexes of silver (I) in hydrothermal solutions to 400℃. Geochimica et Cosmochimica Acta, 67(7): 1395~1413.
-
Swinkels L J, Burisch M, Rossberg C M, Oelze M, Gutzmer J, Frenzel M. 2021. Gold and silver deportment in sulfide ores - A case study of the Freiberg epithermal Ag-Pb-Zn district, Germany. Minerals Engineering, 174: 107235.
-
Tang Juxing, Sun Xingguo, Ding Shuai, Wang Qin, Wang Yiyun, Yang Chao, Chen Hongqi, Li Yanbo, Li Yubin, Wei Lujie, Zhang Zhi, Song Junlong, Yang Huanhuan, Duan Jilin, Gao Ke, Fang Xiang, Tan Jiangyun. 2014. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(1): 6~10 (in Chinese with English abstract).
-
Wang Guofu. 2008. Typomorphic characteristics of silver-tetrahedrite in middle and low temperature hydrothermal Pb-Zn-Ag (Au) deposits. Heilongjiang Science and Technology Information, 24: 38 (in Chinese).
-
Wang Jingchun, Jian Xiaozhong. 1996. On occurrence of silver. Geological Exploration for Non-ferrous Metals, 5(2): 89~93 (in Chinese with English abstract).
-
Wang Le, Qin Kezhang, Song Guoxue, Li Guangming. 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434~456.
-
Wang Minfang, Zhang Xubo, Guo Xiaonan, Pi Daohui, Yang Meijun. 2017. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China. Mineralogy and Petrology, 112(1): 85~103.
-
Wang Xiaochun, Zhang Zheru. 2000. On typomorphic composition features of tetrahedrite in gold deposits of Western Sichuan. Acta Petrologica et Mineralogical. 19(2): 160~166 (in Chinese with English abstract).
-
Wu Guanbin, Liu Jianming, Zeng Qingdong, Liu Mingtao, Sun Huashan, Yin Zhanwen, Yin Xiao. 2014. Occurrences of silver in the Shuangjianzishan Pb-Zn-Ag deposit and its implications for mineral processing. Earth Science Frontiers, 21(5): 105~115 (in Chinese with English abstract).
-
Xu Wenliang, Wang Feng, PeiFuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339~353 (in Chinese with English abstract).
-
Xu Zhitao, Liu Yang, Sun Jinggui, Liang Xiaolong, Xu Zhikai. 2020a. Nature and ore formation of the Erdaohezi Pb-Zn deposit in the Great Xing'an Range, NE China. Ore Geology Reviews, 119: 103385.
-
Xu Zhitao, Sun Jinggui, Liang Xiaolong, Xu Zhikai, Chu Xiaolei. 2020b. Geochronology, geochemistry, and Pb-Hf isotopic composition of mineralization-related magmatic rocks in the Erdaohezi Pb-Zn polymetallic deposit, Great Xing'an Range, northeast China. Minerals, 10(3): 274.
-
Yan Jia, Sun Jinggui, Zhao Shifeng, Ming Zhu. 2015. LA-ICP-MS zircon U-Pb age of rhyolitic lithic-crystal tuffs in Erdaohezi lead-zinc deposit, Inner Mongolia. Global Geology, 18(4): 213~220.
-
Yang Yuncheng, Guo Wanjun, WangYajun, She Hongquan, Li Jinwen, Zhang Bin. 2015. Rb-Sr dating of sphalerites from Dongjun Pb-Zn-Ag deposit, Inner Mongolia and its geological significance. Earth Science Frontiers, 22(3): 348~356 (in Chinese with English abstract).
-
Ye Jiwen. 2013. Study on ore minerals characteristics and gold-silver occurrence in Dongjun Pb-Zn-Ag deposit, Inner Mongolia, China. Master degree thesis of Northeastern University (in Chinese with English abstract).
-
Yi Yan, Pi Daohui, Jiang Shaoyong. 2017. Occurrence, source and enrichment mechanism of silver in black shale-hosted Baiguoyuan Ag-V ore deposit, Hubei Province, China. Journal of Geochemical Exploration, 183: 79~87.
-
Yuan Maowen, Li Lin, Li Shengrong, Li Chenglu, Santosh M, Alam M, Bao Xibo. 2019. Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis. Ore Geology Reviews, 113: 103074.
-
Zhai Degao, Liu Jiajun, Wang Jianping, YaoMeijuan, Wu Shenghua, Fu Chao, Liu Zhenjiang, Wang Shouguang, Li Yuxi. 2013. Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Review, 55(2): 204~224.
-
Zhang He, Cai Yuanfeng, Zhang Yang, Ni Pei, Li Suning, Ding Junying, Pan Yuguan, Bao Tan. 2018. Mineralogical characteristics of silver minerals from the Dongyang gold deposit, China: Implications for the evolution of epithermal metallogenesis. Journal of Geochemical Exploration, 195: 143~156.
-
Zhang Zhongjian, Yang Tianyao, Yang Saihong, Chen Li, Mao Qian, Ma Yuguang, He Wantong, Ding Kuishou. 2017. Sulfosalt minerals of Ag and Pb-Bi-Cu, and its directing significance for minerogenic temperature in Dongjun Pb-Zn-Ag deposit of Erguna district, Inner Mongolia, China. Acta Petrologica Sinica, 33(6): 1827~1840 (in Chinese with English abstract).
-
Zhao Yan, Lü Junchao, Zhang Peng, Zhang Debao, Shen Xin, Bi Zhongwei. 2018. Characteristics of ore-forming fluids in the De'rbur Pb-Zn-Ag deposit in the NW Da Hinggan Mountains and its significance. Acta Geologica Sinica, 92(1): 142~153 (in Chinese with English abstract).
-
Zhu Qun, Wu Guang, Zhang Jiongfei, Shao Jun, Zhu Hongchen. 2001. Research on metallogenic regionalization and exploration technology of Derbugan metallogenic belt. Chinese Geology, 28(5): 19~27 (in Chinese).
-
陈志广, 张连昌, 万博. 2006. 大兴安岭得尔布干多金属成矿带地质背景与成矿预测. 矿床地质, 25(S1): 11~14.
-
丁奎首, 郭敬辉, 刘秉光, 韩秀伶, 杨赛红. 2019. 夏塞银矿床中硫盐矿物成矿作用的重要意义. 地质学报, 93(1): 215~226.
-
段明新, 任云生, 侯召硕, 孙德有, 孙振明, 秦朝建. 2014. 内蒙古额尔古纳地区比利亚谷铅锌(银)矿床成矿流体特征与矿床成因. 矿物岩石, 34(2): 60~67.
-
黄典豪. 2000. 银多金属矿床中黝铜矿族银硫盐矿物的特征及其意义. 岩石矿物学杂志, 19(1): 78~87.
-
回凯旋, 秦克章, 韩日, 赵俊兴, 王乐, 高燊, 张夏楠. 2021. 岩浆热液型银矿床、银矿省及形成的控制因素. 岩石学报, 37(8): 2502~2520.
-
江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671~711.
-
康明, 岳长成. 2020. 内蒙古西山湾羊场银多金属矿床银的赋存形式及成矿机理. 岩石学报, 36(11): 3363~3379.
-
李进文, 梁玉伟, 王向阳, 张斌, 杨郧城, 佘宏全, 郭志军. 2011. 内蒙古二道河子铅锌矿成因研究. 吉林大学学报(地球科学版), 41(6): 1745~1754, 1783.
-
李敏同, 陈晓东, 许远平, 谢万洪, 周洪兵, 孙崇波, 刘宏. 2018. 东昆仑那更康切尔沟银矿床银矿物特征及成矿元素沉淀机制浅析. 地质论评, 64(3): 723~736.
-
李兴, 刘云华, 关强兵, 刘方杰, 李欢, 尚志辉. 2016. 内蒙古二道河子铅锌矿床构造控矿作用及找矿方向. 地球科学与环境学报, 38(6): 791~802.
-
李占轲, 李建威, 陈蕾, 张素新, 郑曙. 2010. 河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理. 地球科学, 35(4): 621~636.
-
李壮, 郎兴海, 丁帅, 李海峰, 杨宗耀, 施硕, 王立强, 李于海. 2017. 西藏斯弄多浅成低温热液型银铅锌矿床银的赋存状态研究. 地球学报, 38(5): 687~701.
-
梁小龙, 孙景贵, 邱殿明, 徐智涛, 谷小丽, 任泽宁. 2020. 大兴安岭西坡比利亚谷银铅锌多金属矿床成因. 吉林大学学报(地球科学版), 50(3): 781~799.
-
刘艳荣, 李芳, 刘云华, 刘民武. 2019. 内蒙古二道河子铅锌银多金属矿床流体包裹体红外显微测温研究. 大地构造与成矿学, 43(5): 953~966.
-
吕志成, 孙国胜, 郝立波, 张东丽. 1998. 内蒙古额仁陶勒盖银矿床主要载银矿物和银矿物的矿物学地球化学特征. 黄金, 8(19): 3~7.
-
吕志成, 张培萍, 刘丛强, 刘家军, 段国正, 郝立波. 2000. 额仁陶勒盖银矿床银矿物的矿物学特征及形成条件. 地质地球化学, 28(3): 41~47.
-
祁进平, 陈衍景, Pirajno F. 2005. 东北地区浅成低温热液矿床的地质特征和构造背景. 矿物岩石, 25(2): 47~59.
-
戚新世. 2015. 内蒙古二道河子铅锌矿矿床地质特征与矿床成因. 长安大学硕士学位论文.
-
权晓莹, 刘春花, 孙洪军, 王丰翔. 2019. 内蒙双尖子山Pb-Zn-Ag矿床金属矿物学研究与银的富集机理. 地质学报, 93(9): 2308~2329.
-
尚林波, 樊文苓, 邓海琳. 2003. 热液中银、铅、锌共生分异的实验研究. 矿物学报, 23(1): 31~36.
-
唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高珂, 方向, 谭江云. 2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6~10.
-
王国富. 2008. 中低温热液铅锌银(金)矿床中银黝铜矿的标型特征. 黑龙江科技信息, 24: 38.
-
王静纯, 简晓忠. 1996. 银的赋存特征研究. 有色金属矿产与勘查, 5(2): 89~93.
-
王小春, 张哲儒. 2000. 论川西地区金矿中黝铜矿的成分标型特征. 岩石矿物学杂志, 19(2): 160~166.
-
吴冠斌, 刘建明, 曾庆栋, 刘铭涛, 孙华山, 尹占文, 尹潇. 2014. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义. 地学前缘, 21(5): 105~115.
-
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339~353.
-
杨郧城, 郭万军, 王亚君, 佘宏全, 李进文, 张斌. 2015. 内蒙古东珺铅锌银矿床闪锌矿Rb-Sr定年及其地质意义. 地学前缘, 22(3): 348~356.
-
叶吉文. 2013. 内蒙古东珺铅锌银矿矿石矿物特征和金银赋存状态研究. 东北大学硕士学位论文.
-
张中俭, 杨天瑶, 杨赛红, 陈莉, 毛骞, 马玉光, 何万通, 丁奎首. 2017. 内蒙古东珺铅锌银矿床Ag和 Pb-Bi-Cu硫盐矿物学研究及其对成矿温度的指示意义. 岩石学报, 33(6): 1827~1840.
-
赵岩, 吕骏超, 张朋, 张德宝, 沈鑫, 毕中伟. 2018. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义. 地质学报, 92(1): 142~153.
-
朱群, 武广, 张炯飞, 邵军, 祝洪臣. 2001. 得尔布干成矿带成矿区划与勘查技术研究进展. 中国地质, 28(5): 19~27.
-
摘要
二道河子铅锌银多金属矿床是一个中型浅成热液矿床,它产于大兴安岭西坡得耳布干成矿带中段的晚中生代“双峰式”火山岩区。根椐野外矿脉的穿插关系和室内矿相学研究,将热液成矿期划分为四个成矿阶段,即:石英-黄铁矿阶段(I)、石英-多金属硫化物阶段(II)、石英-闪锌矿-方铅矿-银矿物阶段(III)和石英-方解石-黄铁矿阶段(IV)。采用显微镜和电子探针(EPMA)微区技术对矿床中的硫化物和银矿物进行分析,结果表明,银的存在形式主要为可见银(>1 μm),其次为不可见银(<1 μm)。可见银主要以显微包体银和独立银矿物的形式存在,而不可见银主要呈次显微包体银和晶格银;显微(次显微)银常以浑圆状或不规则状分布在硫化物内部或硫化物和石英颗粒间隙,独立银矿物呈脉状或集合体状主要分布于方铅矿(偶见闪锌矿)脉的裂隙和边缘,晶格银赋存在方铅矿中,含量极少。结合前人研究成果,认为成矿早期(石英-黄铁矿阶段)成矿热液中的金属元素(如Ag、Cu、Fe、Pb和Zn元素等)以氯络合物形式运移,伴随着流体不混溶/沸腾作用,硫氢络合物成为主要的迁移形式。随着温度、压力的降低和大气降水的参与,成矿流体自下而上运移,并先后经历了两次银的沉淀富集,分别是:II阶段硫氢络合物解体分解后的Ag+与热液中的Cu+、Sb3+、Pb2+、S2-等结合形成显微(次显微)包体银;III阶段热液中的Ag(HS)-2直接分解或解离出Ag+与溶液中的Cu+、Sb3+和S2-等离子结合形成独立银矿物(如辉银矿和硫锑铜银矿)。
Abstract
The Erdaohezi Pb-Zn-Ag polymetallic deposit, one of the largest and most representative deposits, is located in the central part of the Derbugan metallogenic belt. The hydrothermal mineralization process is subdivided into four mineralization stages: quartz-pyrite stage (I); quartz-sulfides polymetallic stage (II); quartz-sphalerite-galena-silver minerals polymetallic stage (III); and quartz-calcite-pyrite stage (IV). Microscope observation and electron probe microanalysis (EPMA) analysis suggest that the occurrence of silver in this deposit is mainly visible silver (>1 μm), followed by invisible silver (<1 μm). Visible silver is mainly microencapsulated silver and independent silver minerals, and invisible silver is mainly super-microencapsulated silver and isomorphic silver. Microencapsulated (super-microencapsulated) silver occurs usually as round or irregular inclusions within sulfides or between sulfides and quartzes. Independent silver minerals are mainly distributed as veinlets or aggregates in microfractures or edges of galena (sphalerite) veins. A very small amount of isomorphic silver exists in the crystal lattices of sulfides. The metal ions in the ore-forming hydrothermal fluids, such as Ag, Cu, Fe, Pb and Zn, are transported as chlorine complex ions in the early mineralization stage (quartz-pyrite stage), and as HS- complex ions after fluid boiling. With decreasing temperature and pressure of the fluids and mixing of meteoric water, the ore-forming fluid has migrated upward and experienced two silver enrichment processes: Ag+ released from HS- complex is coprecipitated with Cu+, Sb3+, Pb2+ and S2- to form microencapsulated (super-microencapsulated) silver in stage II; then the instability of Ag(HS)-2 leads to the complete disintegration of silver from its HS- complex and combination with Cu+, Sb3+ and S2- to form independent silver minerals (such as argentite and polybasite) in stage III.