-
胶东是我国最重要的黄金基地,已探明中型及以上金矿床100余处(图1),累计探明金储量5000余吨,占全国探明金储量的约三分之一(宋明春等,2018a),由于其独特的成矿特征和成因机制而被许多研究者称为胶东型金矿床或克拉通破坏型金矿床(Li Shengrong et al., 2014;Yang Liqiang et al., 2014b;Zhu Rixiang et al., 2015, 2021;Li Lin et al., 2015, 2022;Song Mingchun et al., 2015b;宋明春等, 2015a)。玲珑金矿是我国开采历史最悠久的矿床,最早可上溯至唐代,史料记载始于宋朝,清朝末叶开始较大规模开发,建国以来已累计生产黄金超过100t。玲珑金矿田以石英脉型金矿而闻名,是玲珑式石英脉型金矿的命名地。近年来,在该矿田东部发现了大规模的破碎带蚀变岩型金矿床,目前该矿田累计探明金资源储量近1000t,其中破碎带蚀变岩型金矿床的资源储量近600t。该区勘查、研究程度很高,前人对矿床特征、成矿地质条件、控矿构造、成矿规律、成矿时代、矿床成因进行了全面研究,对矿田控矿因素、成矿时间、流体包裹体特征、稳定同位素特征、成矿阶段、矿化蚀变特征等基本达成一致的认识(李士先等,2007;宋明春等, 2010; 吕古贤等,2013;Deng Jun et al., 2015;张丕建等,2015;宋英昕等,2017;刘国栋等,2017; 李杰等,2021a)。然而,对成矿地质体、矿床成因等的认识尚有较多分歧,如前人分别提出了金矿床是与玲珑型花岗岩、郭家岭型花岗岩或伟德山型花岗岩有关的岩浆热液型矿床(Wang Lianggen et al., 1998;李士先等,2007;罗贤冬等,2014;Song Mingchun et al., 2014;宋明春等,2015a)及造山型金矿、太平洋板块俯冲成矿、克拉通破坏型金矿等认识(Zhou Taihe et al., 2000;Goldfarb et al., 2001;Zhu Rixiang et al., 2015;Deng Jun et al., 2019, 2020a)。尤其是,虽然近年来深部找矿取得了重大成果,但对深部成矿特征、矿体空间产出规律以及深-浅部矿体(矿床)的相互关系尚缺乏系统的认识。另外,玲珑金矿田是胶东地区唯一的大规模蚀变岩型金矿与石英脉型金矿床共存的区域,为研究二者成生联系提供了难得的机遇。本文在分析玲珑金矿田金矿找矿成果的基础上,详细研究了以往探明的浅部矿区和近年勘探的深部矿区主要金矿体的关系和空间分布,分析了深部金矿体的主要特征,探讨了石英脉型金矿与蚀变岩型金矿的关系、断裂控矿机制和成矿模式。本文的研究对于深入认识胶东型金矿的成矿规律、形成机制以及指导深部找矿具有重要意义。
-
图1 胶东地区区域地质及金矿床分布图(据宋明春等,2020a修改)
-
Fig.1 Regional geological sketch map and distribution of gold deposits in the Jiaodong Peninsula (modified after Song Mingchun et al., 2020a)
-
1 —第四系;2—白垩纪火山-沉积岩系;3—古元古代和新元古代变质地层;4—新元古代含榴辉岩的花岗质片麻岩;5—新太古代花岗-绿岩带;6—白垩纪崂山型花岗岩;7—白垩纪伟德山型花岗岩;8—白垩纪郭家岭型花岗岩;9—侏罗纪花岗岩类;10—三叠纪花岗岩类;11—整合/不整合地质界线;12—断层;13—浅部金矿床位置(符号大小依次代表资源储量≥100 t的超大型金矿床、20 t≤资源储量<100 t的大型金矿床、5 t≤资源储量<20 t的中型金矿床和资源储量<5 t的小型金矿床);14—深部金矿床位置(符号大小含义同图例13);15—蚀变岩型/石英脉型/蚀变角砾岩型金矿;16—巨型和超巨型金矿床;ME1—胶西北成矿小区;ME2—栖-蓬-福成矿小区;ME3—牟-乳成矿小区;F1—三山岛断裂;F2—焦家断裂;F3—招平断裂;F4—西林-陡崖断裂;F5—金牛山断裂
-
1 —Quaternary; 2—Cretaceous; 3—Paleoproterozoic and Neoproterozoic; 4—Neoproterozoic granitic gneiss with eclogite; 5—Archean granite-greenstone belt; 6—Cretaceous Laoshan granite; 7—Cretaceous Weideshan granite; 8—Cretaceous Guojialing granite; 9—Jurassic granite; 10—Triassic granite; 11—conformity/unconformity; 12—fault; 13—shallow gold deposits (the symbols from large to small represent superlarge, large, medium and small gold deposits with Au≥100 t, 20 t≤Au<100 t, 5 t≤Au<20 t and Au <5 t, respectively); 14—deep gold deposits (the symbols have the same meaning as legend 13); 15—gold deposit of altered rock style/quartz vein style/altered breccia style; 16—giant and super giant gold deposits; ME1—northwestern Jiaodong Peninsula gold mineralization concentrated area; ME2—Qipengfu gold mineralization concentrated area; ME3—Muru gold mineralization concentrated area; F1—Sanshandao fault; F2—Jiaojia fault; F3—Zhaoping fault; F4—Xilin-Douya fault; F5—Jinniushan fault
-
1 成矿地质背景
-
1.1 区域地质概况
-
玲珑金矿田地理位置位于胶东半岛西北部(胶西北),构造单元属华北克拉通东南缘的胶北隆起西部。其南邻胶莱盆地,东为威海隆起。胶莱盆地为中生代陆相盆地,主要由白垩纪火山-沉积岩系组成;威海隆起属大别-苏鲁超高压变质带的东北段,主要由新元古代花岗质片麻岩组成,其内包有较多三叠纪超高压变质的榴辉岩,另有大面积分布的中生代花岗岩类侵入体(图1)。胶西北主要由前寒武纪变质岩系和中生代侵入岩组成,沿西北部滨海和河流有第四系松散沉积物分布。前寒武纪变质岩系主要是新太古代花岗-绿岩带(由TTG质花岗片麻岩和零星分布的地层残片组成)及古元古代和新元古代变质地层。中生代侵入岩主要有侏罗纪玲珑型花岗岩、栾家河型花岗岩、文登型花岗岩和白垩纪郭家岭型花岗岩、伟德山型花岗岩、崂山型花岗岩,白垩纪酸性和中基性脉岩也较发育。少量出露的白垩系为陆相火山-沉积地层,由中—酸性火山岩和砂岩、砾岩组成。
-
区域断裂构造发育,主要呈NE—NNE走向,少量近EW和NW—NNW走向者。招平断裂(招远-平度断裂)、焦家断裂、三山岛断裂3条NNE向主干断裂控制了胶西北地区绝大部分金矿分布,构成了胶西北金矿控矿断裂构造系统,三者均大致沿早前寒武纪变质岩系(上盘)与中生代花岗岩(下盘)的接触边界发育。玲珑金矿田的控矿断裂——招平断裂是胶东西北部出露规模最大的控矿断裂,断裂全长120km,宽150~200m,倾向南东—东,倾角30°~70°。断裂平面上呈走向不断变化的波状展布,在断裂南端平度城北宋戈庄附近为NNE走向,向北至南墅以北转为NE向,经招远城后再转为NEE东向,延至龙口市颜家沟一带尖灭。断裂北段在招远城北的玲珑金矿田东部分为2支,分别称为九曲蒋家断裂和破头青断裂。
-
1.2 玲珑金矿田概况
-
玲珑金矿田位于招远城区东北的九曲、玲珑一带,招平断裂北段(图2),面积约60km2。传统称谓的玲珑金矿田主要指以玲珑金矿床为代表的周边多个石英脉型金矿床分布区域,鉴于近年在该矿田东侧探明的蚀变岩型金矿床与石英脉型金矿床毗邻,而且二者受同一构造系统控制、具有明显的成因联系,本文将其统称为玲珑金矿田。矿田范围内主要地质单元有侏罗纪玲珑型花岗岩(图3a)、栾家河型花岗岩和早前寒武纪变质岩(图3b),中—基性和酸性脉岩分布较广泛。在玲珑金矿田的东北侧有大面积的含闪长质包体的郭家岭型花岗岩(郭家岭岩体)和伟德山型花岗岩(艾山岩体)出露(图3c)。控矿的破头青断裂和九曲蒋家断裂(图3d)主要沿玲珑型花岗岩与栾家河型花岗岩的接触界面分布,玲珑断裂为对成矿起破坏作用的矿后断裂。破头青断裂分为东、西二段,其西段系招平断裂分叉前的部分,走向为50°~70°,倾向南东,倾角约40°,长8000m,宽33~82m,局部宽达300m,工程控制最大斜深3725m尚未尖灭,垂深2310m;破头青断裂东段为招平断裂分叉后的东南支,倾向南东,倾角28°~45°,平均33°,长5500m,宽10~330m,局部宽近500m,工程控制最大倾斜深3958m,最大垂深2086m。九曲蒋家断裂为招平断裂分叉后的北西支,走向为33°,倾向南东,倾角23°~60°,长6100m,宽40~80m,局部宽近400m,已控制倾斜深4993m,最大垂深2827m。
-
玲珑矿田的石英脉型金矿化区由700余条大致平行的含金石英脉及含金蚀变岩脉组成(二者均简称为矿脉),已探求资源储量的矿脉有40余条。矿脉均赋存于招平断裂下盘的次级断裂裂隙中,赋矿围岩均为玲珑型花岗岩,矿脉附近有较多闪长岩、闪长玢岩、煌斑岩和花岗斑岩脉。含金石英脉及含金蚀变岩脉集中分布,构成脉群。如:其中的九曲矿段,主要由4、7、8、9、11、12、22和24号脉组成,9号脉为主矿脉,主要为石英脉,走向50°左右,倾向NW,倾角70°~80°;双顶矿段主要由31、32、33、39、212和213号脉组成,平均走向60°,倾向NW,局部SE,倾角60°~80°;玲珑-大开头矿段,由108、98、107、71、95、96和97号矿脉组成的玲珑西山矿区,矿脉走向50°~75°,倾向NW,平均倾角55°左右,由51、45、46、76、77、68和43号脉组成的玲珑东山矿区,矿脉走向30°~50°,倾向SE为主,倾角50°~80°;欧家夼矿段主要由81~84、88、89、91~93等矿脉组成,规模较小,走向65°~75°,倾向N,倾角50°~80°。
-
图2 玲珑金矿田地质图(a)和剖面图(b)
-
Fig.2 Geological map (a) and profile (b) of the Linglong gold field
-
1 —第四系;2—栾家河型花岗岩;3—玲珑型花岗岩;4—早前寒武纪变质岩系;5—闪长岩脉;6—闪长玢岩脉;7—煌斑岩脉;8—断裂;9—岩脉、矿脉及断裂产状;10—蚀变断裂破碎带;11—石英脉型金矿体及编号;12—石英脉-蚀变岩复合金矿体;13—蚀变岩型金矿体;14—台上-水旺庄金矿床主矿体水平投影范围
-
1 —Quaternary; 2—Luanjiahe granite; 3—Linglong granite; 4—Early Precambrian metamorphic rock series; 5—diorite dyke; 6—diorite porphyrite vein; 7—lamprophyre vein; 8—faults; 9—occurrence of dikes, orebodies and faults; 10—altered fracture zone; 11—quartz vein type gold ore body and its number; 12—quartz vein type and altered rock type composite gold ore body; 13—altered rock type gold ore body; 14—horizontal projection range of main ore body of Taishang-Shuiwangzhuang gold deposit
-
以往玲珑金矿田的找矿工作重点部署在抗风化能力强及凸出正地形的石英脉上。21世纪以来,地质工作者打破常规找矿思维,在沿沟谷负地形分布且被第四系严重覆盖的招平断裂带北段及其深部延伸部位开展找矿实践,在破头青断裂和九曲蒋家断裂带中陆续提交了水旺庄、栾家河、东风深部、台上深部、破头青深部、岭南等大型—特大型蚀变岩型金矿床勘查报告,累计探明深部金资源储量近600t,显著超过了以往探明的石英脉型金资源储量,改变了该矿田的矿床类型格局。大型蚀变岩型矿体均赋存于破头青断裂和九曲蒋家断裂带中,位于断裂主裂面下盘破碎带中,一般由沿断裂主裂面发育的断层泥为矿体的顶板,上盘为碎裂岩、栾家河型花岗岩和早前寒武纪变质岩,矿体的下盘一般为玲珑型花岗岩。
-
图3 玲珑金矿田主要赋矿围岩和控矿断裂照片
-
Fig.3 Photos of the main ore-host rocks and ore controlling faults in Linglong gold field
-
(a)—玲珑型花岗岩(钻孔岩芯);(b)—伟德山型花岗岩及其中的闪长质包体(艾山岩体); (c)—早前寒武纪变质岩(英云闪长质片麻岩,钻孔岩芯);(d)—九曲蒋家断裂主断面(九曲蒋家村北)
-
(a)—Linglong granite; (b)—Weideshan granite and its dioritic enclaves (Aishan pluton); (c)—Early Precambrian metamorphic rock series: tonalite gneiss; (d)—main fault surface of Jiuqujiangjia fault
-
2 矿床特征
-
2.1 石英脉型金矿床
-
以往将玲珑金矿田划分为7个矿段,分别是玲珑-大开头矿段、108脉、九曲矿段、双顶矿段、欧家夼矿段、台上-破头青矿段和东风矿段,累计探明金资源量近400t。鉴于台上-破头青矿段和东风矿段主要为蚀变岩型矿化,108脉位于玲珑开采区内。因此,本文将玲珑金矿田的石英脉型矿床分为4个矿段,即玲珑-大开头矿段、九曲矿段、双顶矿段和欧家夼矿段,其中九曲矿段和玲珑-大开头矿段是矿床的主体,双顶矿段和欧家夼矿段的矿体规模较小。
-
2.1.1 矿体特征
-
矿体由单一石英脉或脉群组成,矿体形态较简单,局部有分支现象,沿倾向尖灭端往往由单一石英脉变成网脉。矿体规模大者长逾千米,最宽达40m,多数长数十米至数百米。按含金石英脉特征将其划分为4类:① 稳定厚脉型含金石英脉,长80~800m,宽2~6m,脉体稳定而连续,局部有分支,含矿率高,是矿田内主要工业矿脉;② 稳定薄脉型含金石英脉,长在80m以上,厚度小于1m,此类脉一般较稳定,但含矿率低,矿体中部有时出现贫矿体;③ 透镜状含金石英脉,长一般在40m以内,最大不超过80m,厚一般3~4m,个别达6m以上,小透镜体宽仅0.5m左右,透镜状含金石英脉长宽比为20∶1~5∶1,以10∶1居多数,沿走向尖灭迅速,倾向相对稳定,含矿率高,往往是金矿化富集地段;④ 似透镜状含金石英脉,透镜体由若干个平行的小石英脉组成,其中有一条为主干,两侧有若干副脉构成透镜体,主脉与副脉在两端汇合,整个透镜体长20~40m,最大60m,宽4~6m,沿走向尖灭迅速,沿倾向往往与厚脉型和薄脉型汇合,含矿率较高。
-
玲珑-大开头矿段,主要由两个似帚状脉群展布于玲珑断裂东西两侧。矿体呈脉状、透镜状、扁豆状、囊状、串珠状、不规则状等。单个矿体规模一般较小,长20~60m,个别达80~320m,但50°~60 °方向的一组矿体规模较大(如51号脉、52号脉、55号脉),长在1500~2060m之间。延伸一般30~80m,最大延伸达580m。厚一般0.2~2.0m,多数为1m左右。108脉是该矿段中规模最大的一条矿体,矿体长3900m,厚0.2~10m,控制斜深614m,主体产状320°~350°∠55°~71°。矿体沿走向及倾向呈舒缓波状弯曲,常出现分支复合,厚度变化较大,矿体主要由含金石英脉、含金黄铁矿石英脉及部分含金黄铁绢英岩组成。
-
九曲矿段,矿段内长度>100m的矿脉有42条,其中具工业价值的18条。矿脉呈NE—SW向的狭长带状延伸,大致以5号脉为界将全部矿脉分为2个脉系:北侧脉系以9号脉为主干,由5、7、8、9、9支、22和23号脉组成;南侧脉系以4号脉为主干,由4、6、13、14、16、17、20、26和4支号脉组成。4号脉长约970m,控制延深>495m,走向40°~45°,倾向由上部的NW(倾角70°左右),向下渐转直立,再转向SE(倾角80°左右)。矿脉沿走向、倾向均具舒缓波状和膨缩变化,在206m标高以上为石英脉型矿化,其下以蚀变岩为主。9号脉长约1055m,延深438m,走向50°~60°,倾向NW,倾角50°~88°,产状较稳定。浅部矿化类型为石英脉型,206m标高以下以蚀变岩为主。
-
2.1.2 矿石特征
-
工业矿体多由含金石英脉(图4a)、含金黄铁矿石英脉组成,部分含金蚀变岩。矿石矿物主要有银金矿、自然金、黄铁矿、黄铜矿,其次为磁黄铁矿、闪锌矿、方铅矿、磁铁矿、镜铁矿,少量自然铜、自然银、斜方辉铅铋矿、白铁矿、斑铜矿、辉钼矿、赤铁矿;次生矿物有褐铁矿、蓝铜矿。脉石矿物以石英、绢云母为主,其次为方解石、斜长石,少量绿泥石、绿帘石、萤石等。其中黄铁矿、黄铜矿、磁黄铁矿是主要的载金矿物,随深度的增加,金属硫化物含量逐渐减少,石英、方解石等非金属矿物含量逐渐增加。
-
矿石结构主要为晶粒状结构、碎裂结构、残余结构,次为交代熔蚀结构、包含结构、填隙结构、乳滴结构等。矿石构造以致密块状构造及浸染状构造为主;次为条带状构造、网脉状构造、角砾状构造及蜂窝状构造等。
-
图4 玲珑金矿田石英脉型矿石(a,玲珑采区-50m中段) 和蚀变岩型矿石(b,钻孔岩芯)
-
Fig.4 Quartz vein type (a,-50m middle section of Linglong mine) and altered rock type (b, drilling core) gold ore in Linglong gold field
-
矿石有益组分为金,伴生有益组分为银、铜、硫,有害组分为铅、锌、砷等,其他稀散元素有镓、铍、钛、钒等,含量极微。矿体中金品位变化大,最高达620.81g/t,品位变化系数100%~200%,属有用组分变化不均匀—极不均匀型。矿体中Ag平均品位为8.02g/t,S为7.84%,Cu为0.15%,Pb为0.06%,Zn为0.04%,As为0.006%。
-
2.1.3 金矿物特征
-
含金矿物有3种,即银金矿、自然金和自然银,其中所占比例分别为:73.71%、25.82%和0.47%。矿石中金、银矿物以粒状(占56.83%)为主,不规则状(占33.64%)次之,片状(占7.29%)和柱状(占2.24%)少量。金成色700~900,平均769.24。金、银矿物颗粒以细粒(0.5 μm~0.2mm)、微粒(<0.5 μm)为主,分别占88.58%、9.19%;少量粗粒金(>0.2mm,占2.23%)。
-
金银矿物主要有3种赋存形式:沿矿物裂隙分布,沿各种矿物晶隙分布,呈包体状分布于黄铁矿、黄铜矿、石英和闪锌矿晶体中,以裂隙金为主。随着深度的增加,金银矿物粒度有变细的趋势。金、银矿物主要与金属硫化物紧密伴生,尤以黄铜矿、细粒集合体状黄铁矿含金、银最富,立方体状黄铁矿金、银含量最低。
-
2.1.4 矿化阶段
-
按照矿物共生组合及其相互关系,将矿化分为如下4个阶段:① 钾化-绢云岩化阶段:见于脉体两侧,主要矿物为钾长石、绢云母和石英,石英呈乳白色,他形、粗粒(1.5~2mm),表面干净、透明度好,是成矿前阶段;② 石英-黄铁矿阶段,石英呈烟灰色,金属矿物主要为黄铁矿,含很少的黄铜矿、磁黄铁矿、银金矿和自然金等;③ 金-多金属硫化物阶段,为金、银矿物及硫化物的主要生成期,主要金属矿物包括黄铁矿、黄铜矿、方铅矿、闪锌矿、斑铜矿、磁黄铁矿、自然金、金银矿等; ④ 碳酸盐阶段,主要生成方解石等碳酸盐矿物,少量石英、绿泥石。
-
2.2 蚀变岩型金矿床(台上-水旺庄巨型金矿床)
-
大型蚀变岩型金矿床均沿招平断裂下盘分布,以往分别由不同勘查单位在不同时期对不同区段进行勘查,并分别提交了资源储量报告,因此将各个勘查区块分别称为不同的矿床。以往探获金资源量的勘查区主要包括台上、岭南、栾家河、东风171号脉、水旺庄、李家庄、东风等,近年来通过深部找矿发现,前人作为独立矿床勘查、研究的各矿区主要矿体向深部相互连接或上下叠合,实际上为同一矿床。这一矿床深部找矿探获的金资源量累计近600t,是一个罕见的巨型金矿床,其规模仅次于超过千吨的三山岛超巨型金矿床和焦家超巨型金矿床,位居国内第三。
-
2.2.1 矿体特征
-
根据台上-水旺庄巨型金矿床的矿体分布特征,将其划分为玲南、李家庄-东风、栾家河、李家庄和水旺庄5个矿段,以往勘查工作共圈定金矿体536个,将各矿段的矿体进行重新连接后,圈出Ⅰ-1、Ⅰ-2和Ⅰ-3号3个主要矿体, 另外有2个次要矿体,其余皆为有限工程控制的小矿体。
-
Ⅰ-1号主矿体由154个钻孔控制。分布于+150~-1500m标高范围内,埋深10~1706m。已控制最大走向长800m,最大倾斜深2192m(图5、图6)。矿体赋存于破头青断裂西段主裂面下的黄铁绢英岩化碎裂岩带及黄铁绢英岩化花岗质碎裂岩带内。矿体呈似层状,具分支复合、膨胀夹缩、尖灭再现等特点, 沿走向和倾向呈舒缓波状延伸。矿体产状与破头青断裂主裂面基本一致,走向50°~80°,平均走向70°,倾向SE,倾角一般25°~50°,平均倾角约40°。矿体平均厚度22.50m,厚度变化系数72.63%,属厚度变化稳定型矿体。矿石平均品位3.71g/t,品位变化系数为120.56%,属有用组分分布较均匀型矿体。
-
Ⅰ-2号矿体是矿床最大的矿体,由269个钻孔控制。分布于+80~-2173m标高范围内,埋深44~2333m。控制最大走向长4750m,最大倾斜深2430m。主要赋存于九曲蒋家断裂主裂面下的黄铁绢英岩化碎裂岩带及黄铁绢英岩化花岗质碎裂岩带内。矿体呈似层状,具分支复合、膨胀夹缩、尖灭再现等特点,沿走向和倾向呈舒缓波状延伸。矿体产状与主裂面基本一致,平均走向20°,倾向SE,倾角一般15°~35°(图5、图6)。矿体平均厚度11.50m,厚度变化系数104.94%,属厚度变化较稳定型矿体。矿石平均品位3.15g/t,品位变化系数为102.14%,属有用组分分布较均匀型矿体。
-
Ⅰ-3号矿体由12个钻孔控制,分布于-2024~-2229m标高范围内,埋深2260~2477m。控制最大走向长673m,最大倾斜深472m。主要赋存于主裂面下的黄铁绢英岩化碎裂岩带及黄铁绢英岩化花岗质碎裂岩带内。矿体呈脉状,具分支复合、膨胀夹缩等特点,沿走向和倾向呈舒缓波状延伸。矿体产状与主裂面基本一致,走向54°,倾向SE,倾角一般10°~40°,平均倾角约26°(图5、图6)。矿体平均厚度12.64m,厚度变化系数118.12%,属厚度变化较稳定型矿体。矿石平均7.24g/t。品位变化系数为173.59%,属有用组分分布不均匀型矿体。
-
图5 台上-水旺庄金矿床联合剖面图
-
Fig.5 Combined section of exploration lines in Taishang-Shuiwangzhuang gold deposit
-
图6 台上-水旺庄金矿床主要矿体水平投影 (a)和纵投影(b)图
-
Fig.6 Horizontal (a) and vertical projections (b) of main ore bodies in Taishang-Shuiwangzhuang gold deposit
-
分别制作矿体的品位、厚度及品位×厚度等值线图(图7)。可以看出,矿体在走向和倾向上均表现出分段富集的特征。沿走向方向,第一富集段为Ⅰ-1号矿体,第二富集段位于Ⅰ-2号矿体的左侧部分,第三富集段为Ⅰ-2号矿体的右侧部分。沿倾向方向,第一矿化富集带分布于地表约-600m标高,平均垂高600~800m,其内矿体走向长4060m、倾斜深800m,赋矿段断裂平均倾角约39°;第二矿化富集带分布于-800~-1500m标高之间,平均垂高600~800m,其内矿体走向长6370m、倾斜深1200m,赋矿段断裂平均倾角约34°;第三矿化富集带分布于-1600m以下,已发现矿体走向长2200m、倾斜深500m,赋矿段断裂平均倾角约26°。矿化富集区之间的无矿/弱矿间一般为100~200m宽,第二矿化富集区的矿体规模大于第一矿化富集区,第三矿化富集区工程尚未完全控制,其深部仍有很大的找矿潜力。
-
2.2.2 矿石特征
-
矿床的矿石自然类型以原生矿石为主,仅台上矿段分布少量氧化矿石,其埋深下限不超过10m,原生矿石包括三种类型:细粒浸染状黄铁绢英岩化碎裂岩型,浸染状、细脉状、网脉状黄铁绢英岩化花岗质碎裂岩型(图4b)和细脉状黄铁绢英岩化花岗岩型,以前两者为主,占总量的95%±。矿石中S平均含量为2.26%,工业类型属低硫型金矿石。
-
矿石结构主要为晶粒状结构,次为压碎结构、填隙结构、包含结构及乳浊状结构等。矿石构造主要有细脉浸染状构造、浸染状构造、细脉或网脉状构造,次为斑点状构造、团块状构造。
-
矿石的金属矿物主要有自然金属和金属硫化物,自然金属以银金矿为主,次为自然金、自然银;金属硫化物以黄铁矿为主,黄铜矿、方铅矿、闪锌矿次之,少量磁黄铁矿等;非金属矿物主要有石英、绢云母、长石等(表1)。矿石中有益组分以金为主,伴生有益组分为银、硫,银平品位均7.47g/t。其他元素Cu、Pb、Zn含量较低,伴生有害组分As含量低(表2)。由矿床浅部向深部,Ag、S含量呈降低趋势,金、银比值呈增大趋势(表2)。
-
2.2.3 金矿物特征
-
金矿物赋存状态有裂隙金、晶隙金及包体金三种,以晶隙金(56.11%)为主,次为包体金(34.87%),裂隙金少量(9.02%)(图8)。晶隙金中以黄铁矿晶隙和石英晶隙最多,包体金主要在-1500m标高以下明显增多。金矿物以银金矿(59%)为主,次为自然金(40%)。金成色508~955,平均770,主要集中于600~900之间。金矿物粒度以细粒及微细粒为主,形态以粒状为主。分别统计浅部第一富集区、中部第二富集区和深部第三富集区的金矿物特征发现,由浅部至深部金矿物成色增大(图8a)、微粒和细粒金略有增多(图8b)、片状金趋于减少(图8c)、晶隙和裂隙金明显减少(图8d)。
-
图7 台上-水旺庄金矿床垂向厚度(a)、品位(b)和品位×厚度(c)等值线图
-
Fig.7 Contour map of vertical thickness (a), grade (b) and grade×thickness (c) of the Taishang-Shuiwangzhuang gold deposit
-
2.2.4 矿化阶段
-
根据宏观、微观观察的矿物组合、结构构造及热液脉体相互穿切关系,划分为四个成矿阶段。第Ⅰ阶段:黄铁矿-石英阶段,主要共生矿物为石英及黄铁矿,石英呈白色,黄铁矿呈粗粒状,多构成黄铁矿石英脉;第Ⅱ阶段:金-石英-黄铁矿阶段,主要矿物共生组合为黄铁矿、石英等,含有少量绢云母、自然金、银金矿,矿物组合呈细脉状、网脉状和细脉浸染状分布于破碎蚀变带中;第Ⅲ阶段:金-石英-多金属硫化物阶段,为多金属硫化物的主要生成期,有大量金、银矿物的形成,金属硫化物以黄铁矿为主,少量黄铜矿、方铅矿和闪锌矿;第Ⅳ阶段:石英-碳酸盐阶段,为碳酸盐矿物的生成期,并有石英、绢云母及少量黄铁矿生成,基本不形成金矿化,矿物组合一般呈脉状穿插叠加在前几个成矿阶段矿脉中。第Ⅱ、Ⅲ阶段为金矿主要成矿阶段。
-
图8 台上-水旺庄金矿床金矿物特征统计直方图
-
Fig.8 Statistical histogram of gold mineral characteristics in Taishang-Shuiwangzhuang gold deposit
-
(a)—金矿物成色柱状图;(b)—金矿物粒度柱状图;(c)—金矿物形态柱状图;(d)—金矿物赋存状态柱状图
-
(a)—A histogram of fineness of the gold; (b)—a histogram of grainsize of the gold; (c)—a histogram of forms of the gold; (d)—a histogram of occurrence of the gold
-
2.3 矿体空间分布
-
随着勘查工作的进行,对玲珑金矿田矿体空间分布的认识不断发生变化。早期的地质工作者普遍认为玲珑金矿田是由若干独立的石英脉组成,单矿体一般规模不大,向深部延伸不远(李士先等,2007)。20世纪末,在玲珑金矿田的东侧发现了破碎带蚀变岩型金矿,其后由不同勘查单位在不同时期完成了不同区域的勘查工作,各勘查区域的地质资料相互保密,因此长期以来地质工作者一直将多个区域的破碎带蚀变岩型金矿作为多个大型和中型矿床进行勘查和研究(李士先等,2007;张丕建等,2015)。近年来的深部找矿对破碎带蚀变岩型金矿控制的埋深已达近2500m,并且已施工了2个超过3000m深度的钻孔,使得玲珑金矿田成为胶东勘查深度最大的区域之一。深部找矿成果结合以往勘查成果,为我们深入认识该矿田的矿体空间分布奠定了基础。
-
2.3.1 巨型金矿床
-
如上所述,以往通常认为玲珑金矿田是多个破碎带蚀变岩型金矿床和多个石英脉型金矿床的聚集区域,实际上前人对这一矿田中蚀变岩型金矿床规模和范围的理解是值得探讨的。通过对深部钻探资料的全面研究发现:台上—水旺庄一带的蚀变岩型金矿体均受同一条断裂带——招平断裂的分支断裂控制,浅部矿段矿体沿断裂走向呈线型依次排列,深部矿段与对应的浅部矿段矿体沿断裂倾向连续或断续分布(图6);各矿段矿体赋存于同一条矿化蚀变带中,即各矿段间矿化蚀变带是连续分布的,矿化蚀变带构成了各矿段矿体联系的纽带。在水旺庄矿段完成的3000.58m深度的钻孔及相应的34勘探线揭示了矿化蚀变带的连续性及矿体的相互关系(图9)。3000.58m深孔揭露的岩性组成主要为:0~10m为奥长花岗岩,10~1940m为绢英岩化花岗岩,1940~2300m为绢英岩化花岗质碎裂岩,2300~2810m为绢英岩化花岗岩,2810~2900m为绢英岩化花岗质碎裂岩,2900~3000m为细粒二长花岗岩。于-2000m深度揭露到破头青断裂蚀变破碎带,见到近50m的连续金矿化显示;于-2700m深度附近揭露到九曲蒋家断裂碎裂岩带,断裂破碎带岩芯长156m,主要由绢英岩化花岗岩、绢英岩化花岗质碎裂岩组成,有1个样品见矿。剖面显示破头青断裂控制的矿体与九曲蒋家断裂控制的矿体呈上下叠覆关系,浅部的小矿体则受断裂下盘次级裂隙控制。沿断裂走向方向,以往命名的玲南矿段Ⅰ-2号矿体与东风矿段171-1矿体在55~148号勘查线可以连为一体;171-1号矿体与水旺庄矿②号矿体在80~120号勘查线可以连为一体。矿体和矿化蚀变带的空间分布表明,台上-水旺庄矿区各矿段矿体具有明显的连续性和完整性,实际是一个连续分布的巨型矿床,这一矿床累计探明资源储量近600t。
-
巨型或世界级金矿床的概念尚有不同认识,Groves et al.(2016)将资源储量大于100t(>3moz)的金矿床称为世界级金矿床,将资源储量大于250t(>7.5moz)的金矿床称为巨型金矿床;Singer (1995)将全球前10%矿床中单个矿床最低储量作为巨型矿床的界限,将前1%矿床中单个矿床最低储量作为超巨型矿床的界限。巨型金矿床是全球金矿勘探和研究的重要目标。台上-水旺庄金矿床的资源量规模显然已经达到国际上普遍认可巨型金矿床规模。目前胶东地区已探明焦家和三山岛二个资源量大于1000t的金矿床(宋明春等,2019),我们将这二个矿床称为超巨型金矿床(Song Mingchun et al., 2021a)。根据胶东型金矿的具体情况,结合国际上对金矿规模的研究进展,本文认为资源量≥500t的金矿可以划为巨型金矿床,资源量≥1000t的金矿可以划为超巨型金矿床。这样的话,胶东地区目前已有2个超巨型金矿床和1个巨型金矿床,3个矿床间的直线距离在15~30km之间。如此近的距离连续出现3个巨型和超巨型金矿床是世界罕见的。
-
2.3.2 蚀变岩型矿体在大型断裂中的赋存位置
-
玲珑金矿田矿床受断裂构造控制,前人对断裂控矿规律进行了较多研究,提出了断裂产状控制矿体的侧伏和斜列、平行断裂组合控矿、“入”字形构造控矿、雁列斜列组合控矿、不规则错列和网状断层裂隙控矿、共轭断裂裂隙控矿、斜接或反接断裂控矿、构造透镜体控矿、蚀变叶理构造控矿等控矿规律(吕古贤等,2013),以及E—W走向基底构造带与NNE—NE浅表断裂交汇部位有利于大型—超大型金矿床产出等认识(Deng Jun et al.,2019;王偲瑞等,2020)。由于以往对金矿的勘查深度较浅,前人主要研究了平面上的断裂控矿规律。随着深部勘查成果的逐渐丰富及深部勘查的需要,断裂纵深方向的控矿规律研究越来越重要。近年来的研究发现,大型蚀变岩型金矿常常赋存于断裂倾角变化部位,构成阶梯赋矿特征(Song Mingchun et al.,2012);对招平断裂中段大尹格庄金矿床的三维形态分析表明,金矿体主要赋存于20°~40°范围的断裂坡度段(Mao Xiancheng et al.,2019)。
-
深部勘查工作和本文的研究表明,控矿的九曲蒋家断裂和破头青断裂总体上呈浅部倾角陡、向深部渐趋变缓的铲式特征。如前所述,在目前钻探工程控制范围内,浅部第一矿化富集区断裂倾角约39°,中部第二矿化富集区断裂倾角约34°,深部第三矿化富集区断裂倾角约26°。断裂沿走向的倾向和倾角也有明显变化。总的看,台上-水旺庄巨型金矿床的控矿断裂是总体缓倾、产状不断变化的波状断裂,与控矿的三山岛和焦家断裂具有相似的产状变化特征(Song Mingchun et al.,2012, 2021a)。为了准确分析断裂产状变化与金矿体赋存位置的关系,我们在基于钻孔资料构建的台上-水旺庄巨型金矿床三维模型中,提取控矿断裂面进行断裂倾角变化率计算。根据计算结果,按自然间断点分级法将断裂面表面变化分为9个等级,分别为0.00~0.54、0.54~1.48、1.48~2.62、2.62~3.96、3.96~5.50、5.50~7.18、7.18~9.39、9.39~12.47、12.47~17.10(图10)。总体看,断裂表面平缓,起伏不大,倾角变化率主要集中在0~0.54范围内。将矿体品位×厚度等值线与构造表面变化率值进行叠加发现,矿体的分布与断裂倾角变化较大的区域大体一致,而且等值线密集的矿化富集区与断裂倾角变化较大的区域吻合良好,表现为断裂倾角变化率越大矿体越富集(图10)。
-
图9 水旺庄矿段34勘探线剖面图
-
Fig.9 Geological section of the No.34exploration line in the Shuiwangzhuang ore block
-
图10 台上-水旺庄金矿床控矿断裂倾角变化率图
-
Fig.10 Variation rate of dip angle of ore controlling fault in Taishang-Shuiwangzhuang gold deposit
-
在图10中矿体品位×厚度等值线的最北部矿化富集区,沿断裂倾斜方向的剖面由浅部至深部每间隔20m提取断裂倾角和矿体品位×厚度值,制作断裂倾角变化和矿体品位×厚度值变化关系图(图11)。可以看出,断裂倾角和矿化富集程度(由品位×厚度指示)均有明显变化,在-440~-520m标高,断裂面由陡急速变缓,坡度值由43.38°降为34.21°,最大坡度差9.17°。该段见矿效果一般,为相对弱矿段。在-520~-1360m标高,坡度值26.73°~36.41°,平均30.14°,为构造相对平缓段,见矿效果较好,为矿化富集区范围,矿体品位×厚度值为22.95m×g/t~115.92m×g/t,平均71.99m×g/t。剩余部分,断裂面有明显变陡趋势,为无矿段(图11)。可见,断裂倾角曲线与品位×厚度曲线呈负相关,断裂倾角由陡变缓及较缓倾角位置矿化富集程度高,断裂倾角差值变化越大矿化富集程度越高。
-
胶东破碎带蚀变岩型金矿床的矿体常常赋存于断裂倾角变化部位构成阶梯成矿模式,这一模式已成为深部找矿的重要依据。即:通过精细地球物理探测推断解释赋矿断裂深部的产状变化,据此预测深部赋矿位置(Song Mingchun et al.,2021a)。阶梯成矿的原因应与断裂倾角变化影响的流体压力变化有关。水/岩反应、流体不混溶以及流体混合被认为是引发金沉淀的主要因素(Zhang Liang et al., 2020),而产生流体不混溶的内在原因是压力波动(Yang Liqiang et al., 2014b)。当成矿流体遇到断裂倾角剧烈变化部位时,压力波动增大,产生流体不混融,有利于流体卸载和金质沉淀。在断裂陡倾段,流体由深部向浅部迁移,应力差大,流体运动速度快,不易沉淀成矿,当流体流经断裂陡、缓转折段并向缓倾段迁移时,压力骤然降低,并且流体转为近水平运动,流速变缓,产生流体不混溶,造成流体卸载、金质沉淀。因此,成矿主要发生于断裂倾角变化及相对缓倾角段。
-
图11 台上-水旺庄金矿床断裂倾角变化与矿体品位×厚度值变化关系图
-
Fig.11 Diagram of variation of fault dip angle versus grade× thickness in Taishang-Shuiwangzhuang gold deposit
-
2.4 矿床地球化学
-
2.4.1 流体包裹体
-
前人已对玲珑金矿田的成矿流体进行过较多研究,整体认为成矿流体属于中—高温、低盐度、还原条件H2O-CO2-NaCl±CH4流体体系(表3)(范宏瑞等,2005;张祖青等,2007;王磊,2010;李洪奎等,2012;Yang Liqiang et al., 2016;Guo Linnan et al., 2020;李杰等,2021a)。包裹体普遍较小(以3~10 μm为主),主要可分为纯CO2包裹体、CO2-H2O两相包裹体和纯H2O包裹体3种类型,也见有含NaCl或其他子矿物的多相流体包裹体。石英脉型矿石和蚀变岩型矿石的流体包裹体特征总体相似但略有差异,相比而言,蚀变岩型矿石的流体包裹体类型较为单一,成矿期流体盐度含量变化相对较大且盐度最低值低于石英脉型矿石,温度变化也较大且低温值低于石英脉型金矿,指示了二者成矿机制的差异。
-
2.4.2 碳氢氧同位素
-
玲珑金矿田石英流体包裹体中成矿流体的δD主要介于-93‰~-54‰之间,δ18O主要介于1.4‰~9.89‰之间(表4)。在δD-δ18O关系图(图12)中,H-O同位素组成投点位于岩浆水、变质水及两者与大气降水线之间。石英脉型矿石与蚀变岩型矿石的H-O同位素组成基本一致,但蚀变岩型矿石δD和δ18O变化范围均小于石英脉型矿石,石英脉型矿石在δD-δ18O关系图解中投点位置更接近于岩浆水,蚀变岩型金矿更偏向于大气降水。石英脉型矿石成矿晚期阶段的方解石C-O同位素数据表明,δ13C值分布在-6.4‰~-3.4‰之间(表4),位于三山岛金矿田蚀变岩型矿石成矿晚期阶段碳酸盐的δ13C值变化范围内(Song Mingchun et al., 2021a)。δ13C值与火成岩/岩浆系统(-3‰~-30‰)和地幔(-5‰~-7‰)(Hoefs,1997)碳储库值接近,表明流体中的碳来源于岩浆系统或者地幔。
-
图12 玲珑金矿田成矿流体δD-δ18O关系图 (数据来源同表4;底图据Taylor, 1974; Sheppard, 1986)
-
Fig.12 δD-δ18O diagram of ore-forming fluids from Linglong gold field (data source is the same as table4; after Taylor, 1974; Sheppard, 1986)
-
2.4.3 硫同位素
-
目前,对胶东型金矿硫来源的认识还存在较大争议。有人认为硫源主要继承了赋矿围岩的硫同位素特征,初始来源于胶东早前寒武纪变质杂岩,最终来源于晚中生代花岗岩类(李士先等,2007;杨立强等,2014a);也有人认为胶东金矿高的硫同位素组成与扬子克拉通新元古代高硫沉积地层俯冲到华北克拉通岩石圈地幔有关(Deng Jun et al., 2020a),或认为34S可能来源于板块俯冲过程中的脱挥发分作用(Feng Kai et al., 2020);还有研究认为硫来源以幔源岩浆硫为主,并混染了壳源硫(李杰等,2020, 2021a, 2022)。
-
玲珑金矿田矿石的δ34S值范围为2.9‰~9.8‰(图13),其中石英脉型矿石的δ34S范围为2.9‰~9.8‰,平均值7.3‰,蚀变岩型矿石的δ34S范围为5.9‰~8.5‰,平均值7.2‰。二者的δ34S平均值大致相当,但石英脉型金矿的δ34S值范围明显较宽,而且δ34S的低值部分比蚀变岩型矿石显著偏低。对赋矿围岩的硫同位素组成研究表明,新太古代TTG岩系的δ34S值最低且变化范围小,为1.0‰~3.0‰;新太古代胶东岩群的δ34S值变化范围大,为0~15.4‰,平均5.0‰;古元古代荆山群和粉子山群是δ34S值最高的围岩类型,为8.2‰~13.6‰;晚中生代花岗岩类的δ34S值为3.8‰~16.0‰;中基性脉岩的δ34S值为5.3‰~10.8‰(图13)。金矿床的δ34S值明显低于原岩为海相沉积的荆山群和粉子山群而高于陆壳重熔形成的TTG,与胶东岩群和晚中生代岩浆岩的δ34S值范围有较多重叠。石英脉型矿石的δ34S范围较宽,与中基性脉岩的变化范围接近,蚀变岩型矿石的δ34S值相对集中,与郭家岭花岗岩、玲珑花岗岩和基性脉岩很接近。这说明金矿化与围岩具有一定的成生联系,石英脉型金矿中的低δ34S特征指示可能有深部幔源流体加入,而蚀变岩型金矿的S同位素特征更多的则是受流体与围岩间水-岩相互作用影响的结果(图13)。
-
图13 玲珑金矿田典型金矿床和主要赋矿围岩硫同位素组成
-
Fig.13 Diagram showing sulfur isotopic compositions of typical gold deposits and their country rocks in Linglong gold field, Jiaodong Peniansula
-
数据来源:水旺庄蚀变岩型金矿据李杰等(2021a);台上蚀变岩型和石英脉型金矿据Yang Liqiang et al.(2016);玲珑石英脉型金矿据侯明兰等(2006),王磊(2010),林祖苇(2019),程韩宇(2019);中基性脉岩据黄德业(1994);TTG岩系和粉子山群据林祖苇(2019);荆山群据张竹如等(1999);胶东岩群据林祖苇(2019),裘有守(1992),张潮(2014),田杰鹏(2020),黄德业(1994),王义文等(2002);玲珑花岗岩据毛景文等(2005);郭家岭花岗岩据张潮(2014);昆嵛山花岗岩据安家桐(1988),张时淦(1990)
-
Data sources: Shuiwangzhuan gold deposit from Li Jie et al.(2021a); Taishang gold deposit from Yang Liqiang et al.(2016); Linglong gold deposit from Hou Minglan et al.(2006), Wang Lei (2010), Lin Zuwei (2019), Cheng Hanyu (2019); intermediate-basic dikes from Huang Deye (1994); TTG rocks and Fenzishan Group from Lin Zuwei (2019); Jingshan Group from Zhang Zhuru et al.(1999); Jiaodong Group from Lin Zuwei (2019), Qiu Youshou (1992), Zhang Chao (2014), Tian Jiepeng (2020), Huang Deye (1994), Wang Yiwen et al.(2002); Linglong granites from Mao Jingwen et al.(2005); Guojialing granites from Zhangchao (2014); Kunyushan granites from An Jiatong (1988), Zhang Shigan (1990)
-
2.4.4 铅同位素
-
玲珑金矿田硫化物的铅同位素组成较为稳定(表5),206Pb/204Pb值的变化范围为17.142~17.523,平均值为17.319;207Pb/204Pb值的变化范围为15.406~15.594,平均值为15.301;208Pb/204Pb值的变化范围为37.607~38.271,平均值为37.364。石英脉型矿石与蚀变岩型矿石铅同位素组成总体一致,但蚀变岩型矿石的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值更加稳定,变化范围相对较小。铅同位素的源区特征值μ值(238U/204Pb)变化范围(9.230~9.590)相对较为集中,平均值为9.397,高于正常铅的μ值(8.686~9.238),也高于地幔铅的μ值(7.3~8.0),与地壳铅的μ值(9.58)接近,说明成矿物质来源是相对稳定的。矿石的μ 值与中基性脉岩(μ值为9~9.4,平均值为9.2)、郭家岭型花岗岩(μ值为9.2~9.86,平均值为9.40)、玲珑型花岗岩(μ 值为8.52~9.51,平均值为9.18)和胶东岩群(μ 值为8.7~9.4,平均值为9.1)的μ值都比较接近(马广刚,2011),更接近于中基性脉岩和郭家岭型花岗岩。
-
在Zartman et al.(1981)构造环境判别图解中(图14),样品落入下地壳范围内,并与胶东金矿床铅的投点范围一致,均显示下地壳铅特征。总的看,铅源主要来自于下地壳。
-
3 讨论
-
3.1 成矿时代
-
由于金矿床中缺乏直接用于测定金成矿时代的蚀变矿物,因此关于胶东型金矿成矿时代以往有较多争议。早期的研究者曾分别认为胶东金矿形成于太古宙和元古宙。后来出现多期成矿说,即认为太古宙、元古宙和中生代都是重要的成矿期(李士先等,2007),也有研究者认为存在150Ma、120~110Ma和110~100Ma三期成矿事件(丁正江等,2015)。近年来,研究者对胶东型金矿进行了较多同位素年龄测试(Yang Jinhui et al., 2000;Li Jianwei et al.2003, 2006;Li Qiuli et al., 2008;Yang Liqiang et al., 2014b, 2017;Cai Yachun et al., 2018;薛建玲等,2019;Yuan Zhongzheng et al., 2019;Deng Jun et al., 2020b;Sai Shengxun et al., 2020;Zhang Liang et al., 2020)。众多的高精度蚀变矿物(白云母/绢云母)40Ar/39Ar测年、热液矿物(独居石)原位U-Pb定年、单颗粒黄铁矿Rb-Sr测年数据表明,金主成矿期的成矿年龄主要集中在120±2Ma这一短暂的地质时期之内。新的测试结果也显示,胶东东部牟乳地区的少量石英脉型金矿的成矿时代可能比大规模胶东型金矿时间晚约5Ma(Deng Jun et al., 2020b)。
-
注:μ(源区特征值)=238U/206Pb;△γ=[(207Pb/204Pb)/15.33-1]×1000;△β=[(206Pb/204Pb)/37.4-1]×1000。
-
图14 玲珑金矿田矿石铅同位素构造环境判别图 (数据来源同表5,底图据Zartman et al., 1981)
-
Fig.14 Discrimination diagram of lead isotope tectonic environment of the Linglong gold field (data source is the same as Table5; modified after Zartman et al., 1981)
-
研究者对玲珑金矿田的矿床成矿时代也进行了较多测试。2000年之前的数据大多采用蚀变矿物(绢云母/水白云母)或流体包裹体的Rb-Sr法和K-Ar法测得,年龄数据变化范围较大(71.86±9.6~126.5±5.7Ma)(骆万成等,1987;张振海等,1993;吕古贤等,1993;李华芹,1994),导致对成矿时代的认识出现较多争议。有研究者用SHRIMP锆石U-Pb法测试了玲珑金矿床中成矿后的长英质斑岩脉,年龄为120±2Ma,玲珑金矿田附近成矿前的郭家岭花岗岩的同位素年龄为126±2Ma,提出金矿化被严格限定于126~120Ma之间(Wang Lianggen et al., 1998)。2000年以来,在玲珑金矿田中测试的矿石全岩Rb-Sr等时线年龄为125.5±6.7Ma(王宗永等,2016),单颗粒黄铁矿Rb-Sr等时线年龄为121.6±8.1Ma、122.0±11~123.0±4.2Ma和120.6±0.9Ma(杨进辉等,2000;Yang Jinhui et al.,2001;Li Qiuli et al., 2008),热液独居石LA-ICPMS/SHRIMP U-Pb年龄为121.4±1.8Ma、119.1±1.4Ma和120.0±4.6Ma(林祖苇,2019;Deng Jun et al., 2020b)。
-
显然,2000年之前测试的年龄其方法比较落后、精度不高,已不适用于确定金的成矿时代。虽然通过与金矿化有关的岩浆活动可以限定金的成矿年龄,但是大量测试发现与金成矿有关的脉岩中的锆石比较复杂,绝大部分是岩浆捕获的早期围岩锆石,很难找到或确定能够代表脉岩形成时代的锆石。2000年以来测试的同位素年龄的精度都比较高,但金矿石中成岩和成矿期的成分混杂,全岩Rb-Sr年龄难以代表成矿年龄;而金矿石中的黄铁矿有多个形成世代,其年龄数据也难以保证能够代表成矿年龄。目前,热液独居石的年龄是被研究者认可的能够反映金成矿时代(Deng Jun et al., 2020b)的年龄,而且从胶东地区已发表的热液独居石的年龄看其测试结果高度一致(Ma Weidong et al., 2017; Yang Kuifeng et al., 2018; Feng Kai et al., 2020;Deng Jun et al., 2020b),也说明了这种方法的可靠性。在玲珑金矿床中获得的3个样品的热液独居石LA-ICPMS U-Pb年龄为121.4±1.8~119.1±1.4Ma,与胶东地区绝大部分金矿床的热液独居石年龄一致。因此,本文认为玲珑金矿田的石英脉型和蚀变岩型金矿化集中发生于120±2Ma,不存在多期成矿或长时期矿化问题。
-
3.2 蚀变岩型金矿与石英脉型金矿的关系
-
蚀变岩型金矿和石英脉型金矿是地质工作者在生产实践中确立的两种矿床工业类型,也是胶东型金矿的两种基本矿化类型。随着勘查和研究成果的不断丰富,对二者关系的认识不断深化。如:对成矿时代和矿床成因的认识,早期有研究者认为蚀变岩型金矿和石英脉型金矿是多期、多种成因类型、受不同断裂系统控制的(杨忠芳等,1998;沈远超等,2001;张连昌等,2002a, 2002b;宋明春等,2018a;Deng Jun et al.,2020b);对矿化类型的空间分布,早期研究者的主要观点是 “上有石英脉,下有蚀变岩”(朱奉三,1980;范永香,1984;王燕等,1988;刘连登等,1989;石玉臣等,2005),也有人认为二者主要是水平分带关系(李金祥等,1999;王劲草等,2003;吕古贤等,2013)。目前的主流认识是,二者属于同一成矿期、同一成因、同一成矿物质来源、同一构造系统,由于构造条件( 性质、规模、强度等) 和成矿作用形式( 扩散、滲透、交代或充填) 不同而产生了不同的矿化型式(张丕建等,2015;宋明春等,2018a, 2022a;Deng Jun et al.,2020b)。二者的成矿特征明显不同,但成因机制有密切的内在联系。
-
根据本文的矿床特征描述,蚀变岩型金矿与石英脉型的矿体特征及赋矿位置明显不同,蚀变岩型金矿矿体倾角缓、规模大,矿石平均品位低,矿体赋存于较大规模、较缓倾角的断裂破碎带中;二者矿石矿物及金矿物特征也有明显差异,石英脉型矿石中金属硫化物含量明显增多,平均S含量是蚀变岩型矿石的3倍多,金矿物的赋存状态以包体金为主,金矿物粒度以细粒金居多;而蚀变岩型矿石中金矿物的赋存状态以晶隙金为主,金矿物粒度以微粒者为主。这说明蚀变岩型金矿与石英脉型金矿成矿的物理化学条件是有差异的。对蚀变岩型和石英脉型金矿矿床地球化学特征比较表明,二者的流体包裹体、稳定同位素等特征总体一致,指示二者有统一的流体和物质来源。二者的地球化学特征也有一定差异,蚀变岩型金矿的成矿期流体包裹体类型相对较为单一,盐度和温度偏低;石英脉型金矿的H-O同位素特征更接近于岩浆水,蚀变岩型金矿偏向于大气降水;石英脉型矿石具有与新太古代变质岩系相似的S同位素组成特征,蚀变岩型矿石具有与晚中生代花岗岩类和基性脉岩一致的S同位素特征(宋明春等,2013)。另外,石英脉型金矿主成矿期石英中存在CO2-H2O包裹体和两相H2O溶液包裹体共存现象,二者的均一温度分布一致,蚀变脉型金矿主成矿期石英中流体包裹体的存在形式较为单一,多为CO2-H2O包裹体(Wen Bojie et al., 2015)。这暗示二者的成矿机制不同,石英脉型金矿金的沉淀机制为成矿流体的相分离,成矿流体和物质来源保留了较多源区特征;而蚀变岩型金矿的成矿则主要受流体与围岩间的水岩相互作用影响,同位素特征受围岩的影响比较明显。
-
在空间分布上,蚀变岩型金矿与石英脉型金矿大部分是各自独立的矿床或矿体,但二者又存在在同一矿脉中复合产出的情况。在石英脉型矿体的边部和头部、尾部尖灭处都常见有蚀变岩出现,在大型蚀变岩型矿体的下盘则常见有石英脉型矿体。在本文研究的玲珑金矿田中,沿九曲蒋家和破头青断裂主断裂带产出的均为蚀变岩型金矿体,而在断裂下盘玲珑型花岗岩中的众多矿脉中,既有蚀变岩型矿化,也有石英脉为主的矿化,其中108号脉群、51-45号脉群和9号脉群以石英脉型金矿化为主,48-10号脉群为石英脉型与蚀变岩型的过渡类型金矿化。靠近主干断裂以蚀变岩型矿脉为主,远离主干断裂以石英脉型矿脉为主。在由蚀变岩和石英脉共同组成的矿脉中,石英脉一般呈细脉-网脉状密集分布,其周边为蚀变岩,石英脉的宽度一般不足1m(正常石英脉型金矿的脉宽大于1m至数十米),这种类型金矿的存在指示蚀变岩和石英脉是有成因联系的(张丕建等,2015)。玲珑金矿田剖面图(图2b)中,清楚地反映了蚀变岩型和石英脉型金矿体的空间分布,在主断裂中赋存蚀变岩型金矿、主断裂下盘则为石英脉型金矿。对招平断裂活动性质的研究表明,其是一条具拆离断层性质的大型张扭性断层,其下盘被石英脉充填的断裂、裂隙是与主断层配套的张裂构造(吕古贤等,2013;张丕建等,2015)。这说明,金矿化类型的空间分布与其所处的构造位置有关,碎裂岩发育的主断裂控制蚀变岩型金矿,主断裂下盘次级张裂隙控制石英脉型金矿。可见,蚀变岩型与石英脉型金矿的空间位置不存在垂向上的上、下关系,而是构造位置和构造性质的反映。二者是同一构造系统中,不同构造位置或构造性质区段、不同流体与构造配合方式的产物。前者是在碎裂岩发育的断裂中,流体较缓慢渗流、流体耗散大于补给、水岩相互作用的产物;后者是在碎裂岩不发育的引张裂隙中,流体快速涌流、流体补给大于耗散、流体相分离的产物。
-
3.3 矿床成因和成矿过程
-
包括玲珑金矿田在内的胶东金矿床的成因一直是地质工作者研究的重点,早期地质工作者将胶东金矿作为绿岩带型金矿(杨敏之等,1996;沈保丰等,1997),其后长期被认为是与晚中生代花岗岩类侵入岩有关的岩浆热液金矿床(李士先等,2007)。20世纪初以来,部分研究者将胶东金矿归为造山型金矿(Zhou Taihe et al.,2000;Goldfarb et al., 2001;Qiu Yumin et al., 2002;陈衍景等,2004)。近年来一些学者认为,胶东金矿的成矿环境、成岩成矿时代、矿化蚀变特征等与经典的造山型金矿不同,分别称之为胶东型金矿、伸展型金矿和克拉通破坏型金矿(翟明国等,2004;Li Lin et al., 2015;Zhu Rixiang et al., 2015; Song Mingchun et al., 2021b)。
-
玲珑金矿田矿石的H-O同位素组成分布范围较大,大部分投点于岩浆水与大气降水线之间(图12),指示了多源流体混合特点。δ13C值(-6.4‰~-3.4‰)与火成岩/岩浆系统(-3‰~-30‰)和地幔(-5‰~-7‰)碳储库的δ13C值接近。岩浆流体可能来自于壳幔相互作用过程中的流体系统,胶东金矿成矿时有大量基性脉岩、幔源闪长岩、壳幔混合花岗岩(如伟德山型花岗岩)和双峰式火山岩(青山群)等岩浆活动,指示了强烈的壳幔相互作用,这一过程造成地幔流体与壳源流体混合形成了统一的成矿流体库。矿床以富含δ34S为特征,δ34S值与相关地质体有较大范围的重叠,表明他们的硫同位素具有继承关系(杨立强等, 2014a),指示壳源物质对硫的来源有重要贡献。铅同位素组成变化范围较小,其源区特征值μ高于地幔值,与地壳铅的μ值接近,在构造环境判别图解中(图14),样品落入下地壳范围内,显示下地壳铅特征。综合这些同位素特征分析,成矿物质主要来自于下地壳,有少量幔源组分贡献。矿石的主体同位素特征与直接赋矿围岩一致,鉴于赋矿的玲珑和郭家岭型花岗岩主要由早前寒武纪变质岩部分熔融产生,推断成矿物质主要源于胶东变质基底,即源自中生代活化再造的早前寒武纪增生变质杂岩(杨立强等, 2014a)。
-
前人研究指出(Yang Liqiang et al., 2014b),胶东金矿床形成于太平洋板块俯冲的弧后伸展环境,对应中国东部岩石圈大规模减薄、华北克拉通破坏和大陆裂谷作用高峰期,既不同于典型造山型金矿的碰撞造山带、俯冲增生楔和陆内造山带环境,也区别于与侵入岩有关的金矿床的汇聚板块内侧环境。综合上述玲珑金矿田的成矿特征及前人的研究成果,我们认为胶东金矿是热隆-伸展成因。由于晚中生代强烈的壳幔相互作用,引起大量岩浆活动,并产生广泛的流体活动,流体萃取下地壳中的成矿物质形成统一的成矿流体库,伴随地壳伸展和岩浆快速隆升,成矿流体到达中上地壳的拆离断层系统沉淀成矿。
-
玲珑金矿田的赋矿地质体是玲珑岩体,矿田内有较多基性、中基性和酸性脉岩,在矿田东北部分布有郭家岭岩体和艾山岩体。这些岩浆岩均形成于晚中生代,与金矿床在时间和空间上紧密伴生。玲珑岩体是形成于160~150Ma的陆壳重熔型花岗岩,地球化学性质具埃达克岩特征;郭家岭岩体是于130~125Ma由壳幔混合岩浆经历结晶分异形成的花岗岩,也具埃达克岩地球化学特征;艾山岩体的同位素年龄是125~114Ma (Goss et al., 2010;Song Mingchun et al., 2020b),为以壳源为主的壳幔混合源花岗岩,具弧花岗岩地球化学性质;闪长岩脉的K-Ar同位素年龄为132.5~122.6Ma(Yang Jinhui et al., 2004),花岗斑岩的SHRIMP U-Pb年龄为120Ma(Wang Lianggen et al., 1998)。早期基性脉岩具有典型岛弧地球化学特征,岩浆源于被富流体的熔体交代改造了的古老富集岩石圈地幔的部分熔融,晚期基性脉岩具有洋岛玄武岩地球化学特征,可能源于岩石圈地幔的部分熔融(Ma Liang et al., 2014; Deng Jun et al., 2019)。岩浆活动与金矿化在时间和空间上的相关性,暗示了成岩、成矿的构造背景、过程和成因是有机联系的。
-
晚侏罗世时胶东地区大范围陆壳重熔,产生了玲珑型花岗岩。这种花岗岩被认为是挤压构造环境或弱伸展环境下(Yang Liqiang et al., 2018)地壳增厚深熔作用的产物(王德滋等,2002),与华北-扬子板块后碰撞挤压和古太平洋板块或伊泽奈崎板块向亚洲大陆俯冲产生的地壳增厚作用(张岳桥等,2007)有关。白垩纪,由于古太平洋板块俯冲、后撤,古老的华北克拉通遭到破坏,岩石圈及地壳强烈减薄(Zhu Rixiang et al., 2011),在华北克拉通东部和胶东地区发生大规模岩浆活动和伸展构造作用,构成了热隆-伸展构造系统(宋明春等,2018b, 2022b;Song Mingchun et al., 2021b;Li Jie et al., 2021b)。这一时期,胶东地区地壳快速隆升。已有研究表明,玲珑岩体的侵位深度为10~15km(张华锋等,2006),郭家岭岩体侵位深度为13km左右(豆敬兆等,2015),而艾山岩体侵位深度小于3.5km(张华锋等,2006)。这表明,艾山岩体侵位时玲珑岩体和郭家岭型岩体发生了强烈抬升剥蚀,玲珑型花岗岩从其侵位的155Ma左右到艾山岩体定位的115Ma左右的40Ma间,隆升剥蚀最小达7km;郭家岭岩体在约10Ma内,隆升剥蚀量达10km左右(豆敬兆等,2015);而110Ma前至今,地壳隆升剥蚀量最大4km(豆敬兆等,2015)。另外,对胶东焦家超巨型金矿床的研究表明,在约120Ma成矿后,矿体上覆岩层剥蚀总厚度为5.2±1.2km(Zhang Qibin et al., 2022; 张琪彬等,2022)。可见,胶东地区在120Ma左右发生了强烈的地壳隆升。早白垩世大规模的壳幔混合源岩浆活动,既为成矿流体活动提供了热动力条件,又提供了流体运移通道和部分流体来源;而岩浆快速隆升, 对浅部围岩产生了强大顶托作用,导致早先形成的玲珑型花岗岩中产生大量张裂构造,沿玲珑型花岗岩与早前寒武纪变质岩系界面等构造薄弱面则产生拆离断层,为成矿流体聚集、成矿提供了有利空间。在主拆离断层带中,成矿流体沿着疏松的碎裂岩间隙缓慢流动,通过水岩相互作用形成蚀变岩型金矿;在主拆离断层下盘,成矿流体在泵吸作用下充填到裂隙中形成石英脉型金矿。在主拆离断层中,当成矿流体由深部向浅部流经断层面倾角陡、缓剧烈转折部位时,流体受到的压力显著降低,金质在断裂倾角较缓部位卸载成矿(图15)。
-
图15 玲珑金矿田成矿模式图
-
Fig.15 Metallogenic model of Linglong gold field
-
4 结论
-
(1)玲珑金矿田的矿化类型主要为石英脉型和蚀变岩型。蚀变岩型矿床受总体缓倾斜的主断裂控制,石英脉型矿床赋存于主断裂下盘的陡倾张裂隙中,以往认为的多个蚀变岩型矿床实际是同一个金资源量接近600t的巨型金矿床。
-
(2)受主断裂控制的台上-水旺庄巨型金矿床的矿体在走向和倾向上均表现出分段富集的特征,在垂向2500m范围内形成3个矿化富集带。控制矿床产出的断裂呈现产状不断变化的波状特征,矿化富集区主要赋存于断裂产状变化部位。断裂沿倾向的倾角变化引起成矿的流体压力波动,造成了金矿体的阶梯式成矿模式。
-
(3)石英脉型金矿与蚀变岩型金矿的矿体特征、赋矿位置、矿石矿物及金矿物特征有明显差异。矿床同位素特征总体一致,但H-O同位素、S同位素和流体包裹体特征略有差异。表明他们是同一构造系统中,不同构造位置或构造性质区段、不同流体与构造配合方式的产物,不存在垂向上的上、下关系。
-
(4)早白垩世岩石圈地幔上涌、克拉通破坏在胶东地区产生大规模壳幔混合源岩浆活动,为成矿流体活动提供了热动力条件、运移通道和部分流体来源;岩浆快速隆升引发地壳浅部产生拆离断层和相关张裂构造,为流体聚集、成矿提供了有利空间,在断裂倾角陡、缓剧烈转折并变缓部位,流体压力波动增大,金质卸载成矿。
-
致谢:今年是程裕淇先生诞辰110周年,先生生前非常关心山东省的地质工作,多次到山东考察和指导,笔者(宋明春)有幸陪同先生考察过苏鲁超高压变质带并在先生的指导下编制了大别-苏鲁造山带(苏鲁地区)地质图(1∶500 000),终生受益,谨以此文表示对先生的崇敬和缅怀!感谢杨立强教授和杨志明研究员审阅本文并给予了宝贵的意见和建议。感谢万渝生研究员的邀稿。
-
参考文献
-
An Jiatong, Yu Dongbin, Shen Kun, Zhao Zhigao, Zhang Qicheng. 1988. Study on ore controlling conditions of gold deposits in Mouping Rushan area, Shandong Province. Collection of Regional Metallogenic Conditions of Main Types of Gold Deposits in China (Jiaodong area). Beijing: Geological Publishing House (in Chinese).
-
Cai Yachun, Fan Hongrui, Santosh M, Hu Fangfang, Yang Kuifeng, Li Xianhua. 2018. Decratonic gold mineralization: evidence from the Shangzhuang gold deposit, eastern North China Craton. Gondwana Research, 54: 1~22.
-
Chen Guangyuan, Sun Daisheng, Zhou Xunruo, Shao Wei, Gong Runtan, Shao Yue. 1993. Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorite in Jiaodong. Wuhan: China University of Geosciences Press, 1~230 (in Chinese).
-
Chen Yanjin, Franco Pirajno, Lai Yong, Li Chao. 2004. Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 20(4): 907~922 (in Chinese with English abstract).
-
Cheng Hanyu. 2019. Comparative study on geochemical characteristics of the Linglong and Jiaojia gold deposit in Jiaodong. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Deng Jun, Liu Xuefei, Wang Qingfei, Pan Ruiguang. 2015. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews, 65: 674~686.
-
Deng Jun, Yang Liqiang, Li Ruihong, Groves D I, Santosh M, Wang Zhongliang, Sai Shengxun, Wang Sirui. 2019. Regional structural control on the distribution of world-class gold deposits: an overview from the giant Jiaodong gold province, China. Geological Journal, 54: 378~391.
-
Deng Jun, Yang Liqiang, Groves D I, Zhang Liang, Qiu Kunfeng, Wang Qingfei. 2020a. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth Science Reviews, 208: 103274.
-
Deng Jun, Qiu Kunfeng, Wang Qingfei, Goldfarb R J, Yang Liqiang, Zi Jianwei, Geng Jianzhen, Ma Yao. 2020b. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China. Economic Geology, 115(3): 671~685.
-
Ding Zhengjiang, Sun Fengyue, Liu Fulai, Liu Jianhui, Peng Qiming, Ji Pan, Li Bile, Zhang Pijian. 2015. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrologica Sinica, 31(10): 3045~3080 (in Chinese with English abstract).
-
Dou Jingzhao, Fu Shun, Zhang Huafeng. 2015. Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula: implication for crustal uplift and exhumation. Acta Petrologica Sinica, 31(8): 2325~2335 (in Chinese with English abstract).
-
Du Xinjun. 1988. Study on the technological mineralogy of the ores from the -145 level gold deposit of altered-rock type in Xincheng, Laizhou City. Shandong Land and Resources, (2): 69~79 (in Chinese with English abstract).
-
Fan Hongrui, Hu Fangfang, Yang Jinhui, Shen Kun, Zhai Mingguo. 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern ShandongProvince. Acta Petrologica Sinica, 21(5): 1371~1328 (in Chinese with English abstract).
-
Fang Yongxiang. 1984. A preliminary discussion on the main ways to geological predict of mineral areas of endogenic metallic deposits. Earth Science, 9(4): 107~116 (in Chinese with English abstract).
-
Feng Kai, Fan Hongrui, Groves D I, Yang Kuifeng, Hu Fangfang, Liu Xuan, Cai Yachun. 2020. Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang orogenic deposit, Jiaodong, China. Mineral Deposita, 55: 293~308.
-
Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews, 18: 1~75.
-
Goss S, Wilde S, Wu Fuyuan, Yang Jinhui. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrene, Shandong Province, North China Craton. Lithos, 120: 309~326.
-
Groves D I, Goldfarb R J, Santosh M. 2016. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geoscience Frontiers, 7: 303~314.
-
Guo Linnan, Deng Jun, Yang Liqiang, Wang Zhongliang, Wang Sirui, Wei Yuji, Chen Binghan. 2020. Gold deposition and resource potential of the Linglong gold deposit, Jiaodong Peninsula: geochemical comparison of ore fluids. Ore Geology Reviews, 120: 103434.
-
Hoefs J. 1997. Stable Isotope Geochemistry (4th Edition). Berlin: Springer Verlag, 1~20.
-
Hou Minglan, Jiang Shaoyong, Jiang Yaohui, Ling Hongfei. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shangdong Province. Acta Petrologica Sinica, 22(10): 2525~2533 (in Chinese with English abstract).
-
Huang Deye. 1994. Sulfur isotope studies of the metallogenic series of gold deposits in Jiaodong (eastern Shandong) area. Mineral Deposits, 13(1): 75~87 (in Chinese with English abstract).
-
Li Hongkui, Yu Xuefeng, Shen Kun, Cheng Wei, Yu Leiheng. 2012. Study on characteristics of fluid inclusions in Linglong quartz vein type gold deposit. Shandong Land and Resources, 28(11): 1~9 (in Chinese with English abstract).
-
Li Huaqin. 1994. Rb-Sr isochron dating of quartz fluid inclusions in Jiaodong gold deposit. In: Ouyang Ziyuan, ed. New Progress in Mineralogy, Petrology and Geochemistry in China. Lanzhou: Lanzhou University Press (in Chinese).
-
Li Jianwei, Vasconcelos P M, Zhang Jun, Zhou Meifu. 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of Geology, 111(6): 741~751.
-
Li Jianwei, Vasconcelos P, Zhou Meifu, Zhao Xinfu, Ma Changqian. 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting. Economic Geology, 101(5): 1023~1038.
-
Li Jie, Song Mingchun, Liang Jinlong, Jiang Mengyao, Li Shiyong, Ding Zhengjiang, Su Fei. 2020. Source of ore-forming fluids of the Jiaojia deeply-seated gold deposit: evidences from trace elements and sulfur-helium-argon isotopes of pyrite. Acta Petrologica Sinica, 36(1): 297~313 (in Chinese with English abstract)
-
Li Jie, Zhang Lipeng, Song Mingchun, Liang Jinlong, Li Shiyong, Song Yingxin, Bao Zhongyi, Ding Zhengjiang. 2021a. The formation mechanism of the Shuiwangzhuang gold deposit in the Jiaodong Peninsula: constraints from S-H-O isotopes and fluid inclusions. Earth Science, 46(5): 1569~1584 (in Chinese with English abstract).
-
Li Jie, Li Congying, Song Mingchun, Liang Jinlong, Zhang Lipeng, Song Yingxin. 2021b. Mineralization of the Shangjiazhuang Mo deposit in the Jiaodong Peninsula, China: constraints from S-H-O isotopes and fluid inclusions. Solid Earth Sciences, 6(4): 370~384.
-
Li Jie, An Mengying, Song Mingchun, Wang Meiyun, Ding Zhengjiang, Bao Zhongyi, Wang Shanshan. 2022. Sulfur isotopic composition and its source of Jiaodong gold deposit. Geological Bulletin of China, 44(6): 993~1009 (in Chinese with English abstract).
-
Li Jinxiang, Guo Tai, Lü Guxian. 1999. Discussion on gold minralization type and its relation with tectonic in northwestern Jiadong. Geology and Resources, 8(2): 87~91 (in Chinese with English abstract).
-
Li Lin, Santosh M, Li Shengrong. 2015. The ‘Jiaodong type’ gold deposits: characteristics, origin and prospecting. Ore Geology Reviews, 65: 589~611.
-
Li Lin, Li Chao, Li Qing, Yuan Mawen, Zhang Juquan, Li Shengrong, Santosh M, Shen Junfeng, Zhang Huafeng. 2022. Indicators of decratonic gold mineralization in the North China Craton. Earth-Science Reviews, https: //doi. org/10. 1016/j. earscirev. 2022. 103995.
-
Li Qiuli, Chen Fukun, Yang Jinhui, Fan Hongrui. 2008. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China. Ore Geology Reviews, 34(3): 263~270.
-
Li Shengrong, Santosh M. 2014. Metallogeny and craton destruction: records from the North China Craton. Ore Geology Reviews, 56: 376~414.
-
Li Shixian, Liu Changchun, An Yuhong, Wang Weicong, Huang Tailing, Yang Chenghai. 2007. Geology of Gold Deposits in Shandong Peninsula. Beijing: Geological Publishing House, 59~324 (in Chinese).
-
Li Zhaolong, Yang Minzhi. 1993. Geology and Geochemistry of Jiaodong Gold Deposit. Tianjin: Tianjin Science and Technology Press (in Chinese with English abstract).
-
Li Zhaolong, Zhang Lianying, Xiao Xiumei, Fan Binghong. 1990. Geological and geochemical characteristics and genesis of Majiayao gold ore deposit, Shandong Province. Contributions to Geology and Mineral Resources Research, 5(3): 36~48 (in Chinese with English abstract).
-
Liu Guodong, Wen Guijun, Liu Caijie, Bao Zhongyi, Sun Zhongquan, Fan Jiameng, Li Shan, Yan Chunming, Guo Zhifeng. 2017. Discovery, characteristics and prospecting direction of Shuiwangzhuang deep Super-large gold deposit in the northern section of Zhaoping fault. Gold Science and Technology, 25(3): 38~45 (in Chinese with English abstract).
-
Liu Liandeng, Yao Fengliang. 1989. Remelted magnetite granites and the assocoatted gold deposits in the northwest part of the Jiaodong Peninsula. Journal of Changchun University of Earth Science, (3): 241~251 (in Chinese with English abstract).
-
Lü Guxian, Kong Qingcun. 1993. Geology of Linglong-Jiaojia Type Gold Deposit in Jiaodong. Beijing: Science Press (in Chinese).
-
Lü Guxian, Wu Jichun, Cui Shuxue. 2013. Geology of Linglong Gold Field in Shandong Peninsula. Beijing: Geological Publishing House. 257~448 (in Chinese).
-
Luo Wancheng, Wu Qinsheng. 1987. Determination of metallogenic age of Jiaodong gold deposit by altered minerals. Science Bulletin, 32 (16): 1245~1248 (in Chinese with English abstract).
-
Luo Xiandong, Yang Xiaoyong, Duan Liuan, Sun Weidong. 2014. Geochemical and geochronological study of the gold-related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874~1888 (in Chinese with English abstract).
-
Ma Guanggang. 2011. Genetic mineralogy and deep prospects of Linglong gold deposit in Zhaoyuan, east ShandongProvince. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Ma Liang, Jiang Shaoyong, Hou Minglan, Dai Baozhang, Jiang Yaohui, Yang Tao, Zhao Kuidong, Pu Wei, Zhu Zhiyong, Xu Bin. 2014. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: implication for lithospheric evolution of the eastern North China Craton. Gondwana Research, 25: 859~872.
-
Ma Weidong, Fan Hongrui, Liu Xuan, Franco Pirajno, Hu Fangfang, Yang Kuifeng, Yang Yueheng, Xue Wengang, Jiang Peng. 2017. Geochronological framework of the Xiadian gold deposit in the Jiaodong province, China: implications for the timing of gold mineralization. Ore Geology Reviews, 86: 196~211.
-
Mao Jingwen, He Ying, Ding Tiping. 2002. Mantle fluids involved in metallogenesis of Jiaodong (East Shandong) gold district: evidence of C, O and H isotopes. Mineral Deposits, 21(2): 121~128 (in Chinese with English abstract).
-
Mao Jingwen, Li Houmin, Wang Yitian, Zhang Changqing, Wang Ruiting. 2005. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong Peninsula: evidences from D-O-C-S isotopes. Acta Geologica Sinica, 79(6): 839~857 (in Chinese with English abstract).
-
Mao Xiancheng, Ren Jia, Liu Zhankun, Chen Jin, Tang Lei, Deng Hao, Bayless R C, Yang Bin, Wang Mijun, Liu Chunming. 2019. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, eastern China: a case study of the Dayingezhuang deposit. Journal of Geochemical Exploration, 203: 27~44.
-
Qiu Youshou. 1988. Metallogenic Conditions of Gold Ore District in Zhaoyuan-Yexian Area, Shandong Province. Shenyang: Liaoning Science and Technology Press (in Chinese).
-
Qiu Youshou. 1992. A preliminary view in minerogenetic characteristics and problems of endogenetic gold deposits in metamorphic rocks areas of China. Geology and Resources, 4: 252~262 (in Chinese with English abstract).
-
Qiu Yumin, Groves D I, McNaughton N J, Wang Lianggen, Zhou Taihe. 2002. Nature, age and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China Craton, China. Mineralium Deposita, 37(3/4): 283~305.
-
Shen Baofeng, Mao Debao, Li Junjian. 1997. Type and geological character of Chinese greenstone belts gold deposits. Progress in Precambrian Research, 20(4): 1~12 (in Chinese with English abstract).
-
Shen Yuanchao, Li Houmin, Liu Tiebing, Zhang Lianchang, Li Guangming. 2001. Types of gold mineralization of Jiaojia type’s gold deposit in Jiaodong district, Shandong Province, and their importance of studying. Geology and Exploration, 37(1): 48~51 (in Chinese with English abstract).
-
Sheppard S M F. 1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy, 16(1): 165~183.
-
Shi Yuchen, Liu Changchun, Yang Chenghai, Wang Fang, Li Aaimin. 2005. Distribution relation and genesis of alterted and quartz-vein gold deposits in East Shandong. Shandong Land and Resources, 21(8): 18~21 (in Chinese with English abstract).
-
Singer D A. 1995. World class base and precious metal deposits: a quantitative analysis. Economic Geology, 90: 88~104.
-
Song Mingchun, Cui Shuxue, Zhou Mingling, Jiang Hongli, Yuang Wenhua, Wei Xufeng, Lü Guxian. 2010. The deep oversize gold deposit in the Jiaojia field, Shandong Province and its enlightenment for the Jiaojia gold type. Acta Geologica Sinica, 84(9): 1349~1358 (in Chinese with English abstract).
-
Song Mingchun, Yi Pihou, Xu Junxiang, Cui Shuxue, Shen Kun, Jiang Hongli, Yuan Wenhua, Wang Huajiang. 2012. A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula, China. Science China Earth Science, 55(6): 940~948.
-
Song Mingchun, Song Yingxin, Shen Kun, Jiang Hongli, Li Shiyong. 2013. Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field, Shandong Peninsula, China. Geochimica, 42(3): 274~289 (in Chinese with English abstract).
-
Song Mingchun, Deng Jun, Yi Pihou, Yang Liqiang, Cui Shunxue, Xu Junxiang, Zhou Mingling, Huang Tailing, Song Guozheng, Song Yingxin. 2014. The kiloton class Jiaojia gold deposit in eastern Shandong Province and its genesis. Acta Geologica Sinica (English Edition), 88(3): 801~824.
-
Song Mingchun, Zhang Junjin, Zhang Pijian, Yang Liqiang, Liu Dianhao, Ding Zhengjiang, Song Yingxin. 2015a. Discovery and tectonic-magmatic background of super-large gold deposit in offshore of northern Sanshandao, Shandong Peninsula, China. Acta Geologica Sinica, 89(2): 365~383 (in Chinese with English abstract).
-
Song Mingchun, Li Sanzhong, Santosh M, Zhao Shujuan, Yu Shan, Yi Pihou, Cui Shuxue, Lü Guxian, Xu Junxiang, Song Yingxin, Zhou Mingling. 2015b. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, eastern North China Craton. Ore Geology Reviews, 65: 612~625.
-
Song Mingchun, Song Yingxin, Ding Zhengjiang, Li Shiyong. 2018a. Jiaodong gold deposits: essential characteristics and major controversy. Gold Science and Technology, 26(4): 406~422 (in Chinese with English abstract).
-
Song Mingchun, Li Jie, Li Shiyong, Ding Zhengjiang, Tan Xianfeng, Zhang Zhaolu, Wang Shijin. 2018b. Late Mesozoic thermal upwelling-extension structure and its dynamics back ground in eastern Shandong Province. Journal of Jilin University (Earth Science Edition), 48(4): 941~964 (in Chinese with English abstract).
-
Song Mingchun, Song Yingxin, Ding Zhengjiang, Wei Xufeng, Sun Shaoli, Song Guozheng, Zhang Junjin, Zhang Pijian, Wang Yongguo. 2019. The Discovery of the Jiaojia and the Sanshandao giant gold deposits in Jiaodong Peninsula and discussion on the relevant issues. Geotectonica et Metallogenia, 43(1): 92~110 (in Chinese with English abstract).
-
Song Mingchun, Lin Shaoyi, Yang Liqiang, Song Yingxin, Ding Zhengjiang, Li Jie, Li Shiyong, Zhou Mingling. 2020a. Metallogenic model of Jiaodong Peninsula gold deposits. Mineral Deposits, 39(2): 215~236 (in Chinese with English abstract).
-
Song Mingchun, Zhou Jianbo, Song Yingxin, Wang Bin, Li Shiyong, Li Jie, Wang Shanshan. 2020b. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China. Geological Journal, 55: 5703~5724.
-
Song Mingchun, Ding Zhengjiang, Zhang Junjin, Song Yingxin, Bo Junwei, Wang Yuqun, Liu Hongbo, Li Shiyong, Li Jie, Li Ruixiang, Wang Bin, Liu Xiangdong, Zhang Liangliang, Dong Leilei, Li Jian, He Chunyan. 2021a. Geology and mineralization of the Sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: a review. China Geology, 4: 686~719.
-
Song Mingchun, Li Jie, Yu Xuefeng, Song Yingxin, Ding Zhengjiang, Li Shiyong. 2021b. Metallogeniccharacteristics and tectonic setting of the Jiaodong gold deposit, China. Solid Earth Sciences, 6(4): 385~405.
-
Song Mingchun, Zhou Mingling, Bao Zhongyi, Wen Guijun, Li Shiyong, Fan Jiameng, Yang Zhenliang, He Chunyan, Gao Meixia, Wang Hongjun, Wang Yongqing, Li Ruixiang. 2021c. 3D metallogenic prediction of deep gold deposits for Jiaodong Peninsula and its huge resource potential. Metal Mine, https: //kns. cnki. net/kcms/detail/34. 1055. TD. 20210908. 1752. 006. html (in Chinese with English abstract).
-
Song Mingchun, Yang Liqiang, Fan Hongrui, Yu Xuefeng, Ding Zhengjiang, Zhang Yongwen, Qiu Kunfeng, Li Jie, Zhang Liang, Wang Bin, Li Shiyong. 2022a. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geological Bulletin of China, 41(6): 903~935 (in Chinese with English abstract).
-
Song Mingchun, Ding Zhengjiang, Liu Xiangdong, Li Shiyong, Li Jian, Dong Leilei, Wei Xufeng, Bao Zhongyi, Wang Bin, Zhang Qibin, Zhang Liangliang, Liu Hongbo, He Chunyan. 2022b. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geologica Sinica, 96(5): 1774~1802 (in Chinese with English abstract).
-
Song Yingxin, Song Mingchun, Ding Zhengjiang, Wei Xufeng, Xu Shaohui, Li Jie, Tan Xianfeng, Li Shiyong, Zhang Zhaolu, Jiao Xiumei, Hu Hong, Cao Jia. 2017. Major advances on deep prospecting in Jiaodong gold ore cluster and its metallogenic characteristics. Gold Science and Technology, 25(3): 4~18 (in Chinese with English abstract).
-
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69: 843~883.
-
Tian Jiepeng. 2020. The Mesozoic gold polymetallic regional metallogeny in Qipengfu ore concentration area, Jiaodong Peninsula. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Wang Bingcheng. 1986. Petrochemical and geochemical characteristics of the Linglong granite. Shandong Land and Resources, 2(1): 54~73 (in Chinese with English abstract).
-
Wang Dezi, Zhou Xinmin. 2002. Origin of Late Mesozoic Granitic Volcanic Intrusive Complexes in Southeast China and Crustal Evolution. Beijing: Science Press, 1~295 (in Chinese).
-
Wang Jincao, Xia Bin, Tang Jingru. 2003. Recognition on some key geological problems of Linglong-Jiaojia ore-concentrated district in Shandong Province. Geotectonica et Metallogenia, 27(2): 147~151 (in Chinese with English abstract).
-
Wang Lei. 2010. Characteristics of fluid inclusion and isotope in Linglong gold mine, Shandong, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Wang Lianggen, Qiu Yumin, McNaugmton N J, Groves D I, Luo Zhenkuan, Huang Jiazhan, Miao Laicheng, Liu Yankui. 1998. Constraints on crust evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13: 275~291.
-
Wang Sirui, Yang Liqiang, Cheng Hao, Li Dapeng, Shan Wei, Yuan Jianjiang. 2020. Effect of basement structure on the spatial distribution of gold deposits: structure stress transfer modeling of Jiaojia fault. Acta Petrologica Sinica, 36(5): 1529~1546 (in Chinese with English abstract).
-
Wang Yan, Lu Zuoxiang. 1988. The zoning of gold deposit of Jiaojia type in Zhao-Ye metallogenic belt, Shandong Province. Earth Science, 13(2): 137~146 (in Chinese with English abstract).
-
Wang Yiwen, Zhu Fengsan, Gong Runtan. 2002. Tectonic isotope geochemistry--further study on sulfur isotope of Jiaodong gold concentration area. Gold, 23(4): 1~16 (in Chinese with English abstract).
-
Wang Zongyong, Lü Guxian, Wu Jichun, Zhang Xunyu, Liu Weimin, Zhang Yingchun, Yang Guibin, Fan Xiao, Huo Qinglong, Xu Yaqing, Zhu Suizhou. 2016. Rb-Sr isotopic geochronology and geological implications of Dongfeng gold deposit in Jiaodong area. Geological Review, 62(S11): 347~348 (in Chinese with English abstract).
-
Wen Bojie, Fan Hongrui, Santosh M, Hu Fangfang, Pirajno F, Yang Kuifeng. 2015. Genesis of two different types of gold mineralization in the Linglong gold field, China: constrains from geology, fluid inclusions and stable isotope. Ore Geology Reviews, 65(3): 643~658.
-
Xue Jianling, Pang Zhenshan, Li Shengrong, Chen Hui, Sun Wenyan, Tao Wen, Yao Lei, Zhang Yunqiang. 2019. The genesis of Denggezhuag gold deposit in Jiaodong: constraints from multigeological chronology and isotope system. Acta Petrologica Sinica, 35(5): 1532~1550 (in Chinese with English abstract).
-
Yang Jinhui, Zhou Xinhua. 2000. Rb-Sr isochron age and metallogenic age of Linglong gold ore and gold bearing mineral in Jiaodong area. Science Bulletin, 15(14): 1547~1553 (in Chinese with English abstract).
-
Yang Jinhui, Zhou Xinhua. 2001. Rb-Sr, Sm-Nd and Pb isotope systematics of pyrite: implications for the age and genesis of lode gold deposits. Geology, 29: 711~714.
-
Yang Jinhui, Chung Sunlin, Zhai Mingguo, Zhou Xinhua. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for veinplus-peridotite melting in the lithospheric mantle. Lithos, 73: 145~160.
-
Yang Kuifeng, Jiang Peng, Fan Hongrui, Zuo Yabin, Yang Yueheng. 2018. Tectonic transition from a compressional to extensional metallogenic environment at 120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. Journal of Asian Earth Sciences, 160: 408~425.
-
Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014a. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447~2467 (in Chinese with English abstract).
-
Yang Liqiang, Deng Jun, Goldfarb R J, Zhang Jing, Gao Bangfei, Wang Zhongliang. 2014b. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: new implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469~1483.
-
Yang Liqiang, Deng Jun, Guo Linnan, Wang Zhongliang, Li Xiuzhang, Li Jinglian. 2016. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, 72: 585~602.
-
Yang Liqiang, Guo Linnan, Wang Zhongliang, Zhao Rongxin, Song Mingchun, Zheng Xiaoli. 2017. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, 88: 491~510.
-
Yang Liqiang, Dilek Y, Wang Zhongliang, Weinberg R F, Liu Yue. 2018. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton. Geological Magazine, 155(5): 1040~1062.
-
Yang Minzhi, Lü Guxian. 1996. The Geochemical Characteristic of Gold Deposits in Jiaodong Greenstone Belt. Beijing: Geological Publishing House (in Chinese).
-
Yang Zhongfang, Xu Jingkui, Zhao Lunshan, Wu Yuebin, Shen Yongli. 1991. Geochemiacl studies of hydrogen and oxygen isotopes and ore-forming fluid compositions of fluid inclusions in quartz from two types of gold deposits in Jiaodong. Acta Mineralogica Sinica, 11(4): 363~369 (in Chinese with English abstract).
-
Yang Zhongfang, Xu Jiangkui, Zhao Lunshan. 1998. Regional Crustal Evolution and Geochemistry of Gold Mineralization in Eastern Shandong. Beijing: Geological Publishing House (in Chinese).
-
Yuan Zhongzheng, Li Zhanke, Zhao Xinfu, Sun Huashan, Qiu Huaning, Li Jianwei. 2019. New constraints on the genesis of the giant Dayingezhuang gold (silver) deposit in the Jiaodong district, North China Craton. Ore Geology Reviews, 112: 103038.
-
Zartman R E, Doe B R. 1981. Plumbotectonics—the model. Tectonophysics, 75(1-2): 135~162.
-
Zhai Mingguo, Fan Hongrui, Yang Jinhui, Miao Laicheng. 2004. Large-scale cluster of gold deposits in east Shandong: anorogenic metallogenesis. Earth Science Frontiers, 11(1): 85~98 (in Chinese with English abstract).
-
Zhang Chao, Liu Yu, Liu Xiangdong, Feng Jianqiu, Huang Tao, Zhang Qing, Wang Xudong. 2014. Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit, Northwest Jiaodong, China. Acta Petrologica Sinica, 30(9): 2495~2506 (in Chinese with English abstract).
-
Zhang Huafeng, Li Shengrong, Zhai Mingguo, Guo Jinghui. 2006. Crust uplift and its implications in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 22(2): 285~295 (in Chinese with English abstract).
-
Zhang Lianchang, Zeng Qingdong, Shen Yuanchao, Liu Tiebing. 2002a. Geological features and structure analysis on Hongbu gold deposit, northwestern Jiaodong. Geology and Exploration, 38(3): 18~22 (in Chinese with English abstract).
-
Zhang Lianchang, Shen Yuanchao, Liu Tiebing, Zeng Qingdong, Li Guangming, Li Houmin. 2002b. Ar-Ar and Rb-Sr isochron ages and metallogenic ages of gold deposits in the northern margin of Jiaolai basin, Shandong Province. Science in China (Series D), 32(9): 727~734 (in Chinese with English abstract).
-
Zhang Liang, Weinberg R F, Yang Liqiang, Groves D I, Sai Shengxun, Matchan E, Phillips D, Kohn B P, Miggins D P, Liu Yue, Deng Jun. 2020. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: a focused event at 120±2 Ma during cooling of pregold granite intrusions. Economic Geology, 115(2): 415~441.
-
Zhang Ligang, Chen Zhensheng, Liu Jingxiu, Yu Guixiang, Wang Bingcheng, Xu Jinfang, Zheng Wenshen. 1994. Water-rock exchange in the Jiaojia type gold deposit: a study of hydrogen and oxygen isotopic compositions of ore-formation fluids. Mineral Deposits, 13(3): 193~200 (in Chinese with English abstract).
-
Zhang Pijian, Song Mingchun, Liu Dianhao, Ding Zhengjiang, Hu Peiqiang, Yang Guofu, Wang Haibo. 2015. Features of deep seated gold deposit of No. 171 lode and controlled ore by structures in Linglong gold field, Shandong Peninsula. Mineral Deposits, 34(5): 855~873 (in Chinese with English abstract).
-
Zhang Qibin, Song Mingchun, Ding Zhengjiang, Guo Meili, Zhou Mingling, Dai Changguo, Huo Guang, Zhang Peng. 2022. Exhumation history and preservation of the Jiaojia giant gold deposit, Jiaodong Peninsula. Science China Earth Sciences, 65(6): 1161~1177.
-
Zhang Shigan. 1990. The genesis and principal characteristics of the gold deposits in Jinniushan mineralized beltm Shandong. Bulletin of Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 21: 68~81 (in Chinese with English abstract).
-
Zhang Yueqiao, Dong Shuwen, Zhao Yue, Zhang Tian. 2007. Jurassic tectonics of North China: a synthetic view. Acta Geologica Sinica, 81(11): 1462~1480 (in Chinese with English abstract).
-
Zhang Zhenhai, Zhang Jingxin, Ye Suzhi. 1993. Study and determination of Rb-Sr isochron dating on gold mineralization alteration zone in Zhaoyuan-Yexian gold mineralized belt, eastern Shandong. Geology and Resources, (1): 26~34 (in Chinese with English abstract).
-
Zhang Zhuru, Chen Shizhen. 1999. Superlarge gold deposit exploration perspective in Jiaolai basin of Jiaodong gold metallogenetic domain. Geochimica, 28(3): 203~212 (in Chinese with English abstract).
-
Zhang Zuqing, Lai Yong, Chen Yanjing. 2007. Fluid inclusion study of the Linglong gold deposit, Shandong Province, China. Acta Petrologica Sinica, 23(9): 2207~2216 (in Chinese with English abstract).
-
Zhou Fengying, Li Zhaolin. 1991. A study on inclusions in minerals of Taishang gold deposit, easten Shandong Province. Acta Mineralogica Sinica, 11(4): 403~412 (in Chinese with English abstract).
-
Zhou Taihe, Lü Guxian. 2000. Tectonics, granitoids and Mesozoic gold deposits in East Shandong, China. Ore Geology Reviews, 16(1/2): 71~90.
-
Zhou Xinhua, Yang Jinhui, Zhang Lianchang. 2002. The formation of Jiaodong super large gold deposit and the deep lithospheric process of North China continent in Mesozoic. Science in China (Series D), 32 (S): 11~20 (in Chinese with English abstract).
-
Zhu Fengsan. 1980. Preliminary study on mineralization of migmatized hydrothermal gold deposits--a case study of gold deposits in Zhaoye area. Geology and Exploration, 16(7): 1~9 (in Chinese).
-
Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Science, 54: 583~592 (in Chinese with English abstract).
-
Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China Earth Sciences, 58(9): 1523~1537.
-
Zhu Rixiang, Sun Weidong. 2021. The big mantle wedge and decratonic gold deposits. Science China Earth Sciences, 64(9): 1451~1462.
-
安家桐, 于东斌, 沈昆, 赵志高, 张起诚. 1988. 山东牟平—乳山地区金矿控矿条件的研究. 中国金矿主要类型区域成矿条件文集(胶东地区). 北京: 地质出版社.
-
陈光远, 孙岱生, 周珣若, 邵伟, 宫润潭, 邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化. 武汉: 中国地质大学出版社, 1~230.
-
陈衍景, Franco P, 赖勇, 李超. 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907~922.
-
程韩宇. 2019. 胶东玲珑金矿和焦家金矿地球化学特征对比研究. 北京: 中国地质大学(北京)硕士学位论文.
-
丁正江, 孙丰月, 刘福来, 刘建辉, 彭齐鸣, 纪攀, 李碧乐, 张丕建. 2015. 胶东中生代动力学演化及主要金属矿床成矿系列. 岩石学报, 31(10): 3045~3080.
-
豆敬兆, 付顺, 张华锋. 2015. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀. 岩石学报, 31(8): 2325~2335.
-
杜心君. 1988. 莱州新城蚀变岩型金矿-145米中段选矿工艺矿物学研究. 山东地质, (2): 69~79.
-
范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317~1328.
-
范永香. 1984. 初论内生金属矿床矿区地质预测的主要途径. 地球科学, 9(4): 107~116.
-
侯明兰, 蒋少涌, 姜耀辉, 凌洪飞. 2006. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究. 岩石学报, 22(10): 2525~2533.
-
黄德业. 1994. 胶东金矿成矿系列硫同位素研究. 矿床地质, 13(1): 75~87.
-
李洪奎, 于学峰, 沈昆, 程伟, 于雷亨, 2012. 胶东玲珑矿田石英脉型金矿床中流体包裹体特征研究. 山东国土资源, 28(11): 1~9.
-
李华芹. 1994. 胶东金矿床石英流体包裹体Rb-Sr等时线年龄测定. 见: 欧阳自远主编. 中国矿物学岩石学地球化学研究新进展. 兰州: 兰州大学出版社.
-
李杰, 宋明春, 梁金龙, 姜梦瑶, 李世勇, 丁正江, 苏菲. 2020. 焦家深部金矿床成矿流体来源: 来自黄铁矿微量元素及S-He-Ar同位素的约束. 岩石学报, 36(1): 297~313.
-
李杰, 张丽鹏, 宋明春, 梁金龙, 李世勇, 宋英昕, 鲍中义, 丁正江. 2021a. 胶东水旺庄金矿床成矿机制: 来自S-H-O同位素和流体包裹体的制约. 地球科学, 46(5): 1569~1584.
-
李杰, 安梦莹, 宋明春, 王美云, 丁正江, 鲍中义, 王珊珊. 2022. 胶东金矿硫同位素组成特征及其来源. 地质通报, 44(6): 993~1009.
-
李金祥, 郭涛, 吕古贤. 1999. 试论胶东西北部金矿化类型及其与构造关系. 贵金属地质, 8(2): 87~91.
-
李士先, 刘长春, 安郁宏, 王为聪, 黄太岭, 杨承海. 2007. 胶东金矿地质. 北京: 地质出版社, 59~324.
-
李兆龙, 杨敏之. 1993. 胶东金矿床地质地球化学. 天津: 天津科学技术出版社.
-
李兆龙, 张连营, 肖秀梅, 樊秉鸿. 1990. 胶东马家窑金矿地质地球化学特征及矿床成因. 地质找矿论丛, 5(3): 36~48.
-
刘国栋, 温桂军, 刘彩杰, 鲍中义, 孙忠全, 范家盟, 李山, 闫春明, 郭志峰. 2017. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向. 黄金科学技术, 25(3): 38~45.
-
刘连登, 姚凤良. 1989. 胶东西北部重熔型磁铁矿花岗岩与金矿. 长春地质学院学报, (3): 241~251.
-
罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874~1888.
-
骆万成, 吴勤生. 1987. 应用蚀变矿物测定胶东金矿的成矿年龄. 科学通报, 32(16): 1245~1248.
-
吕古贤, 孔庆存. 1993. 胶东玲珑-焦家式金矿地质. 北京: 科学出版社.
-
吕古贤, 武际春, 崔书学. 2013. 胶东玲珑金矿田地质. 北京: 地质出版社, 257~448.
-
马广刚. 2011. 胶东玲珑金矿成因矿物学与深部远景研究. 中国地质大学 (北京)硕士学位论文.
-
毛景文, 赫英, 丁悌平. 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据. 矿床地质, 21(2): 121~128.
-
毛景文, 李厚民, 王义天, 张长青, 王瑞廷. 2005. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据. 地质学报, 79(6): 839~857.
-
裘有守. 1988. 山东招远—掖县地区金矿区城成矿条件. 沈阳: 辽宁科学技术出版社.
-
裘有守. 1992. 我国变质岩区内生金矿成矿特征及尚待解决的问题之刍见. 贵金属地质, 4: 252~262.
-
沈保丰, 毛德宝, 李俊建. 1997. 中国绿岩带型金矿床类型和地质特征. 前寒武纪研究进展, 20(4): 1~12.
-
沈远超, 李厚民, 刘铁兵, 张连昌, 李光明. 2001. 胶西北焦家式金矿化类型及其研究意义. 地质与勘探, 37(1): 48~51.
-
石玉臣, 刘长春, 杨承海, 王芳, 李爱民. 2005. 胶东地区蚀变岩型与石英脉型金矿的空间分布关系及形成机制. 山东国土资源, 21(8): 18~21.
-
宋明春, 崔书学, 周明岭, 姜洪利, 袁文花, 魏绪峰, 吕古贤. 2010. 山东省焦家矿区深部超大型金矿床及其对"焦家式"金矿的启示. 地质学报, 84(9): 1349~1358.
-
宋明春, 宋英昕, 沈昆, 姜洪利, 李世勇. 2013. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论. 地球化学, 42(3): 274~289.
-
宋明春, 张军进, 张丕建, 杨立强, 刘殿浩, 丁正江, 宋英昕. 2015a. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景. 地质学报, 89(2): 365~383.
-
宋明春, 宋英昕, 丁正江, 李世勇. 2018a. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406~422.
-
宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 2018b. 鲁东晚中生代热隆—伸展构造及其动力学背景. 吉林大学学报(地球科学版), 48(4): 941~964.
-
宋明春, 宋英昕, 丁正江, 魏绪峰, 孙绍立, 宋国政, 张军进, 张丕建, 王永国. 2019. 胶东焦家和三山岛巨型金矿床的发现及有关问题讨论. 大地构造与成矿学, 43(1): 92~110.
-
宋明春, 林少一, 杨立强, 宋英昕, 丁正江, 李杰, 李世勇, 周明岭. 2020a. 胶东金矿成矿模式. 矿床地质, 39(2): 215~236.
-
宋明春, 周明岭, 鲍中义, 温桂军, 李世勇, 范家盟, 杨真亮, 贺春艳, 高美霞, 王洪军, 王永庆, 李瑞翔. 2021c. 胶东深部金矿三维成矿预测及巨大的资源潜力. 金属矿山, https: //kns. cnki. net/kcms/detail/34. 1055. TD. 20210908. 1752. 006. html.
-
宋明春, 杨立强, 范宏瑞, 于学峰, 丁正江, 张永文, 邱昆峰, 李杰, 张良, 王斌, 李世勇. 2022a. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展. 地质通报, 41(6): 903~935.
-
宋明春, 丁正江, 刘向东, 李世勇, 李健, 董磊磊, 魏绪峰, 鲍中义, 王斌, 张琪彬, 张亮亮, 刘洪波, 贺春艳. 2022b. 胶东型金矿床控矿构造及成矿模式. 地质学报, 96(5): 1774~1802.
-
宋英昕, 宋明春, 丁正江, 魏绪峰, 徐韶辉, 李杰, 谭现峰, 李世勇, 张照录, 焦秀美, 胡弘, 曹佳. 2017. 胶东金矿集区深部找矿重要进展及成矿特征. 黄金科学技术, 25(3): 4~18.
-
田杰鹏. 2020. 胶东栖蓬福矿集区中生代金多金属矿区域成矿作用. 中国地质大学(北京)博士学位论文.
-
汪劲草, 夏斌, 汤静如. 2003. 对玲珑-焦家矿集区几个关键地质问题的认识. 大地构造与成矿学, 27(2): 147~151.
-
王炳成. 1986. 玲珑花岗岩的岩石化学与地球化学特征. 山东地质, 2(1): 54~73.
-
王德滋, 周新民. 2002. 中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化. 北京: 科学出版社, 1~295.
-
王磊. 2010. 山东玲珑金矿流体包裹体及同位素特征研究. 中国地质大学 (北京) 硕士学位论文.
-
王偲瑞, 杨立强, 成浩, 李大鹏, 单伟, 袁建江. 2020. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟. 岩石学报, 36(5): 1529~1546.
-
王燕, 卢作祥. 1988. 山东焦掖金矿带焦家式金矿的矿床分带. 地球科学, 13(2): 137~146.
-
王义文, 朱奉三, 宫润谭. 2002. 构造同位素地球化学——胶东金矿集中区硫同位素再研究. 黄金, 23(4): 1~16.
-
王宗永, 吕古贤, 武际春, 张迅与, 刘维民, 张迎春, 杨桂彬, 范潇, 霍庆龙, 许亚青, 朱随洲. 2016. 胶东地区玲珑金矿田东风矿床Rb-Sr同位素年龄及其地质意义. 地质论评, 62(S11): 347~348.
-
薛建玲, 庞振山, 李胜荣, 陈辉, 孙文燕, 陶文, 姚磊, 张运强. 2019. 胶东邓格庄金矿床成因: 地质年代学和同位素体系制约. 岩石学报, 35(5): 1532~1550.
-
杨进辉, 周新华. 2000. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代. 科学通报, 15(14): 1547~1553.
-
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014a. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447~2467.
-
杨敏之, 吕古贤. 1996. 胶东绿岩带金矿地质地球化学. 北京: 地质出版社.
-
杨忠芳. 1998. 胶东区域地壳演化与金成矿作用地球化学. 北京: 地质出版社.
-
杨忠芳, 徐景奎, 赵伦山, 吴悦斌, 沈镛立. 1991. 胶东两大成因系列金矿石英包裹体氢氧同位素及成矿流体组分地球化学研究. 矿物学报, 11(4): 363~369.
-
杨忠芳, 徐景奎, 赵伦山. 1998. 胶东区域地壳演化与金成矿作用地球化学. 北京: 地质出版社.
-
翟明国, 范宏瑞, 杨进辉, 苗来成. 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85~98.
-
张潮, 刘育, 刘向东, 冯建秋, 黄涛, 张庆, 王旭东. 2014. 胶西北新城金矿床硫同位素地球化学. 岩石学报, 30(9): 2495~2506.
-
张华锋, 李胜荣, 翟明国, 郭敬辉. 2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报, 22(2): 285~295.
-
张理刚, 陈振胜, 刘敬秀, 于桂香, 王炳成, 徐金方, 郑文深. 1994. 焦家式金矿水-岩交换作用—成矿流体氢氧同位素组成研究. 矿床地质, 13 (3): 193~200.
-
张连昌, 曾庆栋, 沈远超, 刘铁兵. 2002a. 胶西北红布金矿地质特征及构造解析. 地质与勘探, 38(3): 18~22.
-
张连昌, 沈远超, 刘铁兵, 曾庆栋, 李光明, 李厚民. 2002b. 山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代. 中国科学(D辑), 32(9): 727~734.
-
张丕建, 宋明春, 刘殿浩, 丁正江, 胡培强, 杨国福, 王海波. 2015. 胶东玲珑金矿田171号脉深部金矿床特征及构造控矿作用. 矿床地质, 34(5): 855~873.
-
张琪彬, 宋明春, 丁正江, 郭美丽, 周明岭, 戴长国, 霍光, 张朋. 2022. 胶东焦家巨型金矿床的剥露历史与保存. 中国科学: 地球科学, 52(7): 1391~1408.
-
张时淦. 1990. 山东金牛山成矿带金矿床基本特征及成因探讨. 中国地质科学院沈阳地质矿产研究所所刊, 21: 68~81.
-
张岳桥, 董树文, 赵越, 张田. 2007. 华北侏罗纪大地构造: 综评与新认识. 地质学报, 81(11): 1462~1480.
-
张振海, 张景鑫, 叶素芝. 1993. 胶东招-掖金矿带金矿化蚀变带Rb-Sr等时线的研究及测定. 贵金属地质, (1) : 26~34.
-
张竹如, 陈世桢. 1999. 胶东金成矿域胶莱盆地中超大型金矿床找矿远景. 地球化学, 28(3): 203~212.
-
张祖青, 赖勇, 陈衍景. 2007. 山东玲珑金矿流体包裹体地球化学特征. 岩石学报, 23(9): 2207~2216.
-
周凤英, 李兆麟. 1991. 胶东台上金矿床矿物中包裹体研究. 矿物学报, (4): 403~412.
-
朱奉三. 1980. 混合岩化热液型金矿床成矿作用初步研究——以招掖地区的金矿床为例. 地质与勘探, 16(7): 1~9.
-
摘要
位于华北克拉通东南缘的胶东地区深部找矿取得重大突破,已成为全球第三大金成矿区。玲珑金矿田是胶东石英脉型金矿的典型产地,也是我国最早勘查开发金矿的地区之一,近年来在该区深部探明的蚀变岩型金矿资源量已超过以往探明的石英脉型金矿。但对深部矿体的空间分布以及石英脉型与蚀变岩型金矿的关系还缺乏系统的认识。本文较详细分析了玲珑金矿田的矿床特征及深部变化,综述了矿床地球化学特征和成矿时代的研究成果,探讨了断裂与成矿的关系、石英脉型金矿与蚀变岩型金矿的关系和矿床成因机制。研究发现,蚀变岩型金矿受总体缓倾斜的主断裂控制,石英脉型金矿赋存于主断裂下盘的陡倾张裂隙中。以往认为的多个蚀变岩型矿床实际是同一个金资源量近600 t的巨型金矿床,矿床在垂向2500 m范围内形成3个矿化富集带。其Ⅰ-2号主矿体埋深44~2333 m,控制最大走向长4750 m,最大倾斜深2430 m,矿体平均厚度11.50 m,矿石平均品位3.15 g/t。综合前人研究结果认为:金矿化发生于约120 Ma。成矿流体为中—高温、低盐度、还原条件H2O-CO2-NaCl±CH4体系热液,H-O同位素组成大部分投点于岩浆水与大气降水线之间,矿石的S、Pb同位素特征与赋矿围岩相似,成矿物质主要来自于下地壳,有少量幔源组分贡献。研究发现,大型蚀变岩型金矿体主要赋存于断裂倾角变化部位构成阶梯成矿模式,其原因是断裂倾角变化引起流体压力波动造成金质沉淀;石英脉型和蚀变岩型金矿的矿体特征有明显区别,后者矿体倾角缓、规模大,矿石平均品位低,矿石中金属硫化物含量少(平均S含量约是前者的1/3),金矿物粒度细,金矿物的赋存状态以晶隙金为主(前者主要为包体金);二者的地球化学特征略有差异,后者成矿期的流体包裹体类型较为单一、盐度和温度相对较低,石英脉型矿石的H-O同位素投点位置更接近于岩浆水,蚀变岩型金矿偏向于大气降水,石英脉型矿石的S同位素特征与胶东岩群相似,而蚀变岩型矿石的S同位素特征与晚中生代岩浆岩更接近。这些差异说明,石英脉型和蚀变岩型金矿是同一成矿事件不同成矿方式和不同构造位置的产物。综合分析认为,胶东地区的大规模壳幔混合源岩浆活动,为成矿流体活动提供了热动力条件、运移通道和部分流体来源;岩浆快速隆升引发地壳浅部产生拆离断层和相关张裂构造,为流体聚集、成矿提供了有利空间。
Abstract
The Jiaodong area, located in the southeast margin of the North China Craton, has made a major breakthrough in deep prospecting and has become the third largest goldore cluster in the world. The Linglong gold field is the main producing area of typical quartz vein type gold deposits, and it is also one of the earliest areas to explore and develop gold deposits in China. In recent years, the resources of altered rock type gold deposits in the depth have exceeded that of quartz vein type gold deposits. However, there is still a lack of systematic understanding of the spatial distribution of deep ore bodies and the relationship between quartz vein type and altered rock type gold deposits. In this paper, the geological characteristics of the deposit and changes of the orebodies in the depth of the Linglong gold deposit are analyzed in detail, the research results of geochemical characteristics and metallogenic age are summarized, and the relationship between faults and mineralization, the relationship between quartz vein type and altered rock type gold deposit and metallogenic mechanism are discussed. It is found that the altered rock type gold deposit is controlled by the overall gently inclined main fault, and the quartz vein type gold deposit occurs in the steep extensional fracture in the footwall of the main fault. Several altered rock type deposits constitute a giant gold deposit with gold resources of nearly 600 tons. The deposit forms three mineralization enrichment zones within 2500 m vertically. The depth of I-2 main ore body is between -44 m and -2333 m, the maximum strike length is 4750 m, the maximum dip depth is 2430 m, the average thickness of the ore body is 11.50 m, and the average grade of the ore is 3.15 g/t. Based on the previous research results, it is considered that the gold mineralization occurred at ca. 120 Ma. The ore-forming fluid is the hydrothermal solution of H2O-CO2-NaCl±CH4 system under medium-high temperature, low salinity and reduction conditions. Most of the H-O isotopic composition is cast between themagmatic water and the meteoric water line. The S and Pb isotopic characteristics of the ore are similar to those of the host rock. The ore-forming material mainly comes from the lower crust with a small amount of mantle derived components. It is found that the large altered rock type gold ore bodies mainly occur in the parts with the change of fault dip angle, forming a stepped metallogenic model. The reason is that the change of fault dip angle causes the fluctuation of fluid pressure and gold precipitation. The ore body characteristics of quartz vein type and altered rock type gold deposits are obviously different. The latter has slow dip angle, large scale, low grade, and low content of sulfide in the ore, fine particle size of gold minerals, and the occurrence gold minerals is mainly interstitial gold. The geochemical characteristics of the two types are slightly different. The fluid inclusions in the altered rock type are relatively single, and the salinity and temperature are relatively low. The H-O isotopic composition of quartz vein type ore is closer to magmatic water, and the altered rock type ore is inclined to meteoric water. The S isotopic composition of quartz vein type ores is similar to that of Jiaodong rock group, while the S isotopic composition of altered rock type ores is closer to that of Late Mesozoic Magmatic Rocks. These differences show that quartz vein type and altered rock type gold deposits are the products of the same metallogenic event, with different metallogenic methods and different structural positions. The comprehensive analysis shows that the large-scale crust mantle mixed source magmatism in Jiaodong area provides thermodynamic conditions, migration channels and some fluid sources for the activity of ore-forming fluids. The rapid uplift of magma caused detachment faults and related extensional structures in the shallow crust, which provided a favorable space for fluid accumulation and mineralization.