-
页岩油是21世纪全球石油的战略性接替资源,重要性越来越高(邹才能等,2020),国外以海相层系为主,国内以陆相层系为主(赵文智等,2020; 马永生等,2022; 胡素云等,2022),目前已在准噶尔盆地二叠系、鄂尔多斯盆地三叠系、松辽盆地白垩系、渤海湾盆地古近系等层系中取得了重大突破(付金华等,2019; 蒲秀刚等,2019; 王广昀等,2020)。其中,以准噶尔盆地二叠系和渤海湾盆地古近系为代表的咸化湖盆页岩油因岩性混杂,微—纳米孔隙结构复杂而使得甜点发育规律和分布预测极其困难,是页岩油研究中的关键科学问题,已有的海相页岩油成藏地质理论不能很好指导。
-
众多学者应用场发射扫描电镜、氮气吸附、高压压汞、核磁共振等方法对此展开了研究(胡钦红等,2017; 王民等,2018; 徐文明等,2020; 慕尚超等,2021),发现孔隙组成异常复杂,发育微—纳米级粒间孔、晶间孔、有机质孔、溶蚀孔、黏土矿物层间孔、晶内孔、微裂缝等,规律不易掌握(田同辉等,2017; 曾宏斌等,2021; 张世铭等,2021)。关于这些孔隙形成机制的认识未形成统一,如在渤海湾盆地东营凹陷沙河街组页岩的研究提出孔隙发育受热演化程度、岩相、地层压力、裂缝发育程度控制(刘惠民等,2019),而沧东凹陷孔店组页岩的孔隙发育则受机械压实、有机质生烃、黏土矿物转化等因素综合影响(张盼盼等,2021)。在三塘湖盆地芦草沟组,提出页岩储层形成受间歇性火山喷发、溶蚀作用及微缝、微断裂改造控制(陈旋等,2019)。江汉盆地潜江组页岩的研究突出了准同生期白云石化作用及油气充注对晶间孔隙保存的积极作用(沈均均等,2021)。柴达木盆地下干柴沟组页岩油储层受沉积岩相、成岩期纹层缝和构造改造控制(刘占国等,2021)。由此可见,陆相咸化湖盆页岩油储层储集空间多样,整体受到了沉积、成岩、有机质生烃、构造作用等多种因素影响,规律性认识还需进一步研究。
-
准噶尔盆地芦草沟组发育国内外著名的咸化湖盆页岩油,前人对甜点段沉积特征、岩性、物性及含油性等开展了研究,为页岩油有效开发提供了支撑(高阳等,2016; 靳军等,2018; 高阳等,2020; 张记刚等,2022),但对孔隙类型、孔隙成因的认识仍存在争议,如有研究认为芦草沟组甜点体的储集空间主要为溶蚀粒间(内)孔、裂缝(王然等,2020),也有研究认为储集空间以粒间溶孔与晶间微孔为主,其次为剩余粒间孔、偶见少量裂缝(闫林等,2017; 许琳等,2019; 彭寿昌等,2021)。以上问题导致对甜点段储层的成储机制及分布规律尚未形成明确认识,为开展陆相页岩油甜点孔隙特征与成因研究提供了良好对象。
-
有鉴于此,本文首先研究吉木萨尔凹陷芦草沟组甜点段的孔隙类型、孔隙分布等特征,在此基础上从沉积-成岩-生排烃角度综合分析甜点孔隙的成因机制,以期丰富发展陆相页岩油甜点孔隙特征与成因机制的理论认识,为页岩油资源预测、评价和高效开发提供科学依据。
-
1 地质背景
-
准噶尔盆地吉木萨尔凹陷是位于盆地东部二级构造单元东部隆起上的一个次级凹陷(图1a),南、西、北存在向凹陷的逆冲断裂,东与古西凸起呈过渡关系,现今具有典型箕状构造特征(图1b)。吉木萨尔凹陷二叠系芦草沟组厚度为25~300 m(平均约200 m),埋深800~4500 m(平均约3570 m)。芦草沟组主体为咸化湖-三角洲相沉积,沉积期气候以炎热干旱条件为主(马克等,2017; 张亚奇等,2017),沉积了一套细粒混合沉积岩,岩性复杂多变,单层厚度薄,垂向变化快。以全取芯的吉174井为例,芦草沟组厚246.2 m,发育了968层54种岩性,单层厚度0.01~2.25 m,毫米级层理广泛发育。芦草沟组地层由下至上划分为芦草沟组一段(P2l1)和芦草沟组二段(P2l2),分别发育两个甜点体。上甜点体(P2l2)厚8~26 m,下甜点体(P2l1)厚12~40 m。上、下甜点段均发育于陆源碎屑供给充足时期,储层自湖盆中心向盆缘逐渐减薄直至尖灭。上甜点段优势岩性为砂屑白云岩、长石岩屑粉-细砂岩、云屑粉砂岩,下甜点段优势岩性为云质粉砂岩(图1c)。芦草沟组富有机质页岩有机碳含量(TOC)介于6.0%~30.1%,氢指数(HI)为398~814 mg/g,Tmax在424~451℃,生烃能力极好,是页岩油能够高度富集的物质基础。
-
图1 准噶尔盆地吉木萨尔凹陷构造特征及芦草沟组地层柱状图
-
Fig.1 Structural characteristics and generalized stratigraphy of the Lucaogou Formation, Jimsar sag, Junggar basin
-
(a)—研究区构造位置图;(b)—芦草沟组顶面构造图;(c)—芦草沟组地层柱状图
-
(a) —structural location of the study area; (b) —structural map of the top surface of the Lucaogou Formation; (c) —generalized stratigraphy of the Lucaogou Formation
-
2 样品与方法
-
研究样品采自吉木萨尔凹陷芦草沟组的钻井岩芯(J10025、J10024、J10016、J10022、吉174 5口井),共100块,主要为含油性较好的甜点样品。样品首先经充分洗油后进行物性、高压压汞测试。在此基础上选取典型样品,包括长石岩屑粉-细砂岩、砂屑白云岩、云屑粉砂岩、云质粉砂岩,进行氮气吸附、扫描电镜、电子探针、碳-氧同位素联测,分析甜点段的孔隙类型、分布,最后挑选代表性岩性进行成岩反演,分析孔隙的成因和演化史。
-
3 甜点段储层岩性特征
-
岩石薄片鉴定及X射线衍射分析结果显示,吉木萨尔凹陷芦草沟组岩性主体为混积岩,参与混积的组分有陆源碎屑、碳酸盐内碎屑和凝灰质碎屑等。其中,甜点段矿物成分主要包括长石、石英、碳酸盐类矿物以及黏土矿物,成分成熟度低(图2a)。石英主体为陆源碎屑沉积成因,磨圆呈次棱角状—次圆状; 长石种类主要为斜长石; 碳酸盐类矿物主要为白云石和含铁白云石; 黏土矿物含量低,在2%~6%之间,主要为伊/蒙混层矿物,混层比在70%~85%,贫高岭石(图2b)。相比而言,非甜点段以有机质和黏土矿物含量高为特点,黏土矿物含量在10%~35%,因此岩性主要为泥质粉砂岩、富有机质泥岩。
-
甜点段储层岩性依据颗粒类型、含量、粒度特征,划分为4类,分别为长石岩屑粉-细砂岩、砂屑白云岩、云屑粉砂岩和云质粉砂岩。
-
长石岩屑粉-细砂岩:碎屑颗粒以长石、石英和凝灰质碎屑为主,主粒径0.0625~0.125 mm,颗粒磨圆呈次棱角状,长石和凝灰质碎屑溶蚀强烈,大多形成铸模孔(图3a),胶结物主要为碳酸盐类矿物、自生钠长石和石英。
-
砂屑白云岩:碎屑颗粒主体为白云岩碎屑,含量80.0%~92.6%,含少量陆源长石、石英,胶结物为亮晶方解石。碎屑内白云石单晶为泥晶级,单偏光下白云岩岩屑呈黑色或黑褐色,磨圆一般呈次圆状—圆状(图3b)。部分白云岩岩屑磨圆呈棱角状,粒度达粗砂级,反映了风暴浪作用及快速沉积特征。
-
图2 准噶尔盆地吉木萨尔凹陷芦草沟组甜点段储层矿物组成特征
-
Fig.2 Mineral compositions of the sweet spots of the Lucaogou Formation, Jimsar sag, Junggar basin
-
(a)—全岩X射线衍射分析结果统计图;(b)—黏土矿物X射线衍射分析结果统计图
-
(a) —histograms showing the whole rock X-ray diffraction data; (b) —histograms showing X-ray diffraction data of clay minerals
-
图3 准噶尔盆地吉木萨尔凹陷芦草沟组甜点段储层岩石学特征
-
Fig.3 Petrological characteristics of the sweet spots of the Lucaogou Formation, Jimsar sag, Junggar basin
-
(a)—粒间溶蚀扩大孔与粒内溶孔,铸体(蓝色)薄片,含内碎屑长石岩屑粉-细砂岩,J10025井,3555.08 m;(b)—粒间孔与白云岩岩屑,铸体(蓝色)薄片,陆屑砂屑白云岩,J10025井,3533.27 m;(c)—含铁白云石(染色呈蓝色),云质粉砂岩,铸体(蓝色)薄片,J10012井,3304.29 m;(d)—黏土矿物粒间孔,氩离子抛光后场发射扫描电镜观察,J10022井,3313.99 m;(e)—钠长石晶间孔,晶体表面吸附有油,氩离子抛光后背散射扫描电镜观察,J10025井,3549.29 m;(f)—菱面体状含铁白云石晶体及晶间孔,场发射扫描电镜,云质粉砂岩,J10025井,3553.61 m;(g)—含铁白云石晶间孔,孔隙被油充填,云质粉砂岩,氩离子抛光后场发射扫描电镜观察,J179井,3342.77 m;(h)—板柱状自生钠长石,场发射扫描电镜,长石岩屑粉-细砂岩,J10025井,3555.08 m;(i)—蜂巢状黏土矿物晶间孔,黏土矿物表面吸附有油,氩离子抛光后背散射扫描电镜观察,J10022井,3477.22 m
-
(a) —intergranular dissolution enlarged pores and intragranular dissolution pores, blue casting thin section, feldspar lithic fine-grained sandstone to siltstone with intraclasts, well J10025, 3555.08 m; (b) —intergranular pores and dolomite debris, blue casting thin section, dolarenite with terrigenous clasts, well J10025, 3533.27 m; (c) —ferruginous dolomite (in blue) , dolomitic siltstone, blue casting thin section, well J10012, 3304.29 m; (d) —intergranular pores of clay minerals, FE-SEM observation after argon ion polishing, well J10022, 3313.99 m; (e) —albite intercrystalline pores, oil is adsorbed on the surface of the crystal, FE-SEM observation after argon ion polishing, well J10025, 3549.29 m; (f) —rhombohedral ferriferous dolomite and intergranular pores, FE-SEM observation, dolomitic siltstone, well J10025, 3553.61 m; (g) —intercrystalline pores of ferruginous dolomite and the pores are filled with oil, dolomitic siltstone, FE-SEM observation after argon ion polishing, well J179, 3342.77 m; (h) —lamellar authigenic albite, FE-SEM observation, feldspar lithic fine-grained sandstone to siltstone, well J10025, 3555.08 m; (i) —intergranular pores of honeycomb clay minerals, oil is adsorbed on the surface of the clay minerals, FE-SEM observation after argon ion polishing, well J10022, 3477.22 m
-
云屑粉砂岩:为典型的盆地内碎屑(白云岩岩屑)、陆源碎屑混合沉积岩性,交错层理发育,分布于滨浅湖滩坝微相。碎屑颗粒主体为陆源碎屑,白云岩碎屑含量15%~35%。碎屑磨圆具有明显差异,白云岩岩屑呈圆状,陆源碎屑为次棱角状。
-
云质粉砂岩:岩石粒度主体为粉砂级,含铁白云石发育,含量为26.4%~40.0%,分布于粉砂颗粒间(图3c)。云质粉砂岩水平层理发育,显微镜下泥质纹层和粉砂质纹层呈毫米级互层,粉砂质纹层底部冲刷面发育,为典型的三角洲前缘沉积特征。
-
4 甜点段储层孔隙类型及发育特征
-
以准噶尔盆地芦草沟组为代表的咸化湖盆页岩油储层孔隙类型多样,包括粒间溶蚀扩大孔、粒内溶孔和晶间孔等,且溶蚀孔隙发育程度较高,孔隙尺寸从纳米级—亚微米—微米级均有分布,储集空间整体具有“多成因、多尺度共存”的特点。
-
4.1 孔隙类型
-
(1)粒间溶蚀扩大孔:是由沉积成因的碎屑颗粒堆积并受到溶蚀作用改造而形成的孔隙。吉木萨尔凹陷芦草沟组粒间孔隙受粒度、颗粒形态、磨圆度、堆积方式和粒间杂基含量等因素影响,主要是陆源碎屑、碳酸盐内碎屑和凝灰质碎屑堆积形成(图3a~c)。成岩过程中由于碎屑颗粒边缘的溶蚀,多形成粒间溶蚀扩大孔(图3a)。除此之外,在泥质粉砂岩中,由于弯曲片状黏土矿物,尤其是伊/蒙混层的含量较高,常形成典型的黏土矿物粒间孔。伊/蒙混层矿物单晶或集合体长度为1~2 μm,厚度为20~30 nm,由于其长/厚比大,黏土矿物粒间孔主要呈细窄的狭缝形(图3d),孔隙长宽比介于10~30之间,直径为纳米级(1~350 nm)。
-
(2)粒内溶孔:是碎屑颗粒被酸性流体溶蚀而形成的次生孔隙,属于溶蚀孔隙的一种。吉木萨尔凹陷芦草沟组主要以长石和凝灰质的酸性溶蚀为主,伴随少量碳酸盐溶蚀。机理一方面在于芦草沟组火山物质中含有较多的易溶组分,成岩作用早期CO2溶于地下水可形成酸液,致使颗粒溶蚀,形成次生孔隙。另一方面,有机质达到成熟阶段,干酪根的脱羧作用生成有机酸、碳酸是酸性流体的另一主要来源。受酸性流体作用,芦草沟组储集层中陆源岩屑和长石、长石晶屑溶蚀作用显著。在铸体薄片下,长石碎屑和晶屑内部或边缘均不同程度受溶蚀影响形成粒间溶蚀扩大孔和粒内溶孔(图3a、c)。扫描电镜下,长石的酸性溶蚀主要沿解理进行,并有沿解理逐渐溶蚀扩大的特征。
-
(3)晶间孔:是由储层中自生矿物的结晶而形成的次生孔隙,往往是由于晶簇生长过程中晶体的不紧密堆积或晶格缺陷造成,可发育于粒间孔中,如白云石晶间孔,也可发育于粒内溶孔中,如钠长石晶间孔。吉木萨尔凹陷芦草沟组主要的晶间孔类型为钠长石晶间孔、含铁白云石晶间孔和白云石晶间孔(图3e~g)。偏光显微镜下长石碎屑的框架内,新长出许多长石小晶体,晶棱、晶面清楚(图3h),电子探针定量分析为钠长石(表1)。扫描电镜下钠长石晶间孔形态呈三角状,发育于长石、岩屑颗粒内部。自生板柱状钠长石将碱性长石及基性长石溶蚀孔分割成若干个三角形小孔,孔隙边缘平直,直径分布在350 nm~8 μm。白云石晶间孔直径分布在200 nm~3 μm,晶体边缘呈溶蚀港湾状,形成混合型孔隙。与白云石晶间孔相比,含铁白云石未发生溶蚀,晶体边缘平直。黏土矿物晶间孔由似蜂巢状伊/蒙混层矿物形成,直径为400 nm~6 μm,长宽比接近于1,呈似圆孔形(图3i),常见于溶蚀孔隙中。
-
通过铸体薄片和扫描电镜观测统计,长石岩屑粉-细砂岩、砂屑白云岩和云屑粉砂岩中,粒间孔发育较少,占比仅为4%~8%,均值6%,粒间孔主体受到溶蚀改造形成粒间溶蚀扩大孔,占比可达30%~65%,均值46%,其次为粒内溶孔,占比22%~45%,均值32%,钠长石和含铁白云石晶间孔占比12%~20%,均值16%。云质粉砂岩中,粒间孔占比仅为3%,粒间溶蚀扩大孔占比均值30%,粒内溶孔占比均值23%,含铁白云石晶间孔占比高达44%。
-
4.2 物性及孔隙分布特征
-
根据物性和高压压汞实验分析结果,长石岩屑粉-细砂岩是芦草沟组物性最好的岩性,孔隙度平均11.0%,平均毛管半径0.36 μm,最大孔喉半径1.24 μm(表2)。砂屑白云岩由于亮晶方解石胶结程度差异,孔隙度变化范围较大,在5.2%~16.6%之间,平均孔隙度7.6%,平均毛管半径0.16 μm(表2)。云屑粉砂岩平均孔隙度与长石岩屑粉-细砂岩接近,但由于粒度相对较细,平均毛管半径0.14 μm,最大孔喉半径0.48 μm(表2)。云质粉砂岩孔隙度平均8.6%,孔隙结构参数相对最差,平均毛管半径0.09 μm,最大孔喉半径0.27 μm(表2)。
-
高压压汞-氮气吸附联测结果显示(Wang Guochang et al.,2015),芦草沟组页岩油孔隙在纳米—微米级尺度均有分布。如图4所示,在长石岩屑粉-细砂岩和云屑粉砂岩中,半径大于1 μm的孔隙占主导地位,分别为57.6%和49.6%; 而在云质粉砂岩和泥质粉砂岩中,占主导地位的分别是100 nm~1 μm和小于100 nm的孔隙,占比分别为49.6%和92.9%。
-
将以上物性分析结果与铸体薄片和扫描电镜孔隙观测结果对比,发现半径大于1 μm的孔隙基本为粉砂— 细砂级颗粒形成的粒间溶蚀扩大孔、粒内溶孔; 孔隙半径在100 nm~1 μm的主要为黏土矿物晶间孔、钠长石晶间孔和含铁白云石晶间孔; 而小于100 nm的主体为黏土级碎屑颗粒形成的孔隙。从孔隙分布来看,长石岩屑粉-细砂岩最好,孔隙度平均为11.0%,大于1 μm的占比达57.6%,粒间溶蚀扩大孔和粒内溶孔发育; 云屑粉砂岩和砂屑白云岩次之,大于1 μm的为27.1%; 云质粉砂岩以含铁白云石晶间孔最为发育为特征,由于含铁白云石的强烈胶结改造,100 nm~1 μm占比达49.6%; 泥质粉砂岩物性及孔隙分布最差,以黏土级碎屑颗粒形成的孔隙为主(图4)。
-
5 甜点段储层孔隙成因及演化
-
研究区芦草沟组现今埋藏深度2500~4000 m,Ro值0.70%~0.85%(平均0.78%),个别样品可达1.30%,可能受到热液等活动影响,反映目前主体处于中成岩阶段A期(王剑等,2020)。芦草沟组储层中大量发育弱碱性—碱性环境稳定的碳酸盐矿物,依据中华人民共和国石油天然气行业标准-碎屑岩成岩阶段划分(SY/T5477—2003),指示成岩环境主体为弱碱性—碱性的咸化湖盆沉积(图5),且具有酸碱交替成岩演化特征(王剑等,2020)。甜点段储层孔隙的形成主要受到了沉积、酸性溶蚀及埋藏白云岩化3种地质因素影响,孔隙演化呈“三阶段”特征。
-
图4 准噶尔盆地芦草沟组甜点段储层孔隙分布特征
-
Fig.4 Pore distribution of the sweet spots in the Lucaogou Formation, Jimsar sag, Junggar basin
-
5.1 沉积微相及岩性
-
准噶尔盆地吉木萨尔凹陷芦草沟组为咸化湖相与三角洲相沉积(图6),岩性变化、碳-氧同位素及稀土元素变化规律均表现为两个旋回(支东明等,2019),两个咸化高峰期形成优质烃源岩。研究区芦草沟组Sr/Ba值主体>0.6,B/Ga值主体>6,反映整体盐度偏高,为咸化湖盆环境(图5)。下甜点体优势沉积微相为远砂坝、席状砂,上甜点体优势沉积微相为滩坝、云砂坪。
-
长石岩屑粉-细砂岩、砂屑白云岩和云屑粉砂岩主要沉积于滩坝相(图6)。从岩石中含有的白云岩岩屑的磨圆程度来看,弱固结(准同生—同生)的白云岩被湖浪破碎、反复淘洗,磨圆呈圆状,反映了湖浪等水动力相对较强(图3a、b)。长石岩屑粉-细砂岩、砂屑白云岩和云屑粉砂岩3类岩性发育脉状层理、交错层理,粒度相对较粗,达到粗粉砂—细砂级,整体泥质含量少,黏土矿物含量在2.0%~5.0%之间(图7a)。由于湖浪淘洗,长石、石英和白云岩碎屑等刚性颗粒含量高,原生粒间孔发育,成岩过程中储层保孔能力强,因此总体剩余粒间孔发育,孔隙度可达到15.3%~23.5%,刚性碎屑颗粒含量与孔隙度呈明显的正相关关系(图8a)。
-
图5 准噶尔盆地吉木萨尔凹陷芦草沟组古沉积环境特征
-
Fig.5 Paleo-sedimentary environment of the Lucaogou Formation, Jimsar sag, Junggar basin
-
图6 准噶尔盆地吉木萨尔凹陷芦草沟组沉积模式(据Zhang Chenjia et al.,2021修改)
-
Fig.6 Sedimentary model of the Lucaogou Formation in the Jimsar sag, Junggar basin (modified after Zhang Chenjia et al., 2021)
-
云质粉砂岩发育于三角洲前缘的远砂坝、席状砂微相,水平层理发育,是下甜点段(P2l1)的优势岩性(图7b)。云质粉砂岩整体云化较严重,孔隙度平均8.6%。由于云质改造,孔隙分布相对集中,以100 nm~1 μm的含铁白云石晶间孔为主。当云质含量小于13%时,随着云质改造强度的增加,孔隙度整体呈增大趋势(图8b),云质对于孔隙的保存具有建设性作用。
-
与之相比,半深湖相的泥质粉砂岩,水动力弱,发育块状层理,在岩石薄片中可观察到微层理构造(图7c)。黏土矿物含量高,原始孔隙度低于磨圆度相对较高的长石、石英等形成的孔隙。同时黏土矿物由于挠曲性、塑性强的特点,在成岩过程中,抵抗压实作用弱,孔隙呈狭缝状,孔隙半径为纳米级。扫描电镜下观察到由于压实作用,塑性黏土矿物被刚性的石英颗粒挤压变形,紧贴石英颗粒边缘分布(图7d)。
-
5.2 酸性流体溶蚀
-
酸性流体溶蚀是芦草沟组甜点段储层形成及改善的重要机制。芦草沟组富含菌藻类以及陆源植物碎屑等有机质。当地层温度在80~120℃时,有机质可产生大量有机酸,改变弱碱性—碱性成岩环境为酸性,由此加剧溶蚀作用发生(查明等,2017; 马克等,2019; 操应长等,2019),甜点段储层中与溶蚀有关的孔隙占比约为70%。
-
酸性条件下,长石碎屑溶蚀导致孔隙水中Al、Si浓度升高,孔隙水结晶析出的产物为石英和高岭石(式1、2)。由于芦草沟组储层孔隙水中富集K+、Na+、Ca2+离子,因此孔隙中结晶的黏土矿物为伊/蒙混层矿物,而不形成高岭石(黄思静等,2009)。如果孔隙水中富含Fe2+、Mg2+离子,则可形成绿/蒙混层矿物。扫描电镜下还观察到紧邻有机质的长石颗粒溶蚀强烈,碱性长石及基性斜长石溶蚀孔中发现有大量自生板条状钠长石晶体(图3e),这与自生钠长石在弱碱性环境下稳定及长石碎屑溶解析出钠长石作用相关(杨桂芳等,2003)。
-
图7 准噶尔盆地吉木萨尔凹陷芦草沟组沉积构造特征
-
Fig.7 Sedimentary structures of the Lucaogou Formation, Jimsar sag, Junggar basin
-
(a)—交错层理,J10025井,3537.40~3537.48 m;(b)—水平层理,J10025井,3719.70~3719.75 m;(c)—粉砂质纹层与泥质纹层,正交光(+),吉179井,3357.25 m;(d)—黏土矿物紧贴石英颗粒边缘分布,场发射扫描电镜,粉砂质泥岩,J10025井,3506.61 m
-
(a) —cross bedding, well J10025, 3537.40~3537.48 m; (b) —horizontal bedding, well J10025, 3719.70~3719.75 m; (c) —silty laminae and muddy laminae, cross-polarized light (+) , well J179, 3357.25 m; (d) —clay minerals distributed closely to the edges of quartz grains, FE-SEM observation, silty mudstone, well J10025, 3506.61 m
-
图8 准噶尔盆地吉木萨尔凹陷芦草沟组甜点段储层岩石组分与孔隙度相关性图
-
Fig.8 Correlation between rock compositions and porosity of the sweet spots in the Lucaogou Formation, Jimsar sag, Junggar basin
-
(a)—碎屑颗粒含量与孔隙度相关性图;(b)—含铁白云石含量与孔隙度相关性图
-
(a) —correlation between clastic particle content and porosity; (b) —correlation between ferruginous dolomite content and porosity
-
根据式(3),3个中长石分子溶蚀释放到孔隙水中的Na、Al、Si等离子,可形成1.4个分子的钠长石。在不考虑中长石分子和钠长石分子体积差异情况,会有1.6个长石分子大小的净孔隙产生。芦草沟组甜点段储层和烃源岩层呈薄互层状接触,烃源岩热演化形成的酸性流体可高效运移进储层中,产生大量酸性溶蚀孔隙,为后期烃类充注提供良好的储集空间。酸性流体的高效溶蚀改造及烃类的高效充注是芦草沟组甜点段物性好、含油程度高的一个关键原因。
-
5.3 埋藏白云岩化
-
埋藏白云岩化是陆相咸化湖盆页岩储层成岩演化的重要特征,对页岩油甜点形成产生影响(王兵杰等,2014)。这类白云石通常有3种物质来源,分别为沉积继承流体、热液流体及碎屑组分溶蚀(史基安等,2013; 刘伟等,2016)。准噶尔盆地吉木萨尔凹陷二叠系表现为陆源近海湖盆沉积,水体性质为半咸水—咸水,含有丰富的Ca2+、Mg2+和CO2-3,沉积过程中粒间孔隙水与沉积水体性质基本一致,白云岩化流体主要来源于沉积继承流体,在成岩演化过程中,温度的升高、耗水量的增大以及成岩体系的逐渐封闭均有利于埋藏白云石的形成。另外,芦草沟组地层富含大量有机质,演化过程中产生的有机酸和CO2会对长石、火山岩岩屑形成溶蚀,并导致地层水中Ca2+、Mg2+、Fe2+、CO2-3和HCO-3富集,碎屑颗粒溶蚀是芦草沟组白云岩化流体的另一重要来源。
-
芦草沟组白云石碳、氧同位素分析结果显示,δ13C介于1.50‰~6.00‰之间,δ18O介于13.50‰~3.50‰之间,碳、氧同位素投点多落在第Ⅰ、Ⅱ象限,δ13C基本为正值,δ18O正负值均有,以负偏为主(图9),表明沉积水体为封闭咸水—半咸水湖泊体系(Talbot,1990; 袁剑英等,2015; 苏玲等,2017)。各类岩相中,砂屑白云岩和泥晶云岩中的白云石主要形成于咸化湖盆的潮坪和滩坝环境,δ13C以正偏为主,δ18O的负偏表明流体具有较高的温度,可能与热液流体作用相关(张帅等,2020); 云质粉砂岩中的白云石以埋藏成因为主,δ13C低于砂屑白云岩和泥晶云岩,可能与酸性流体中有机来源碳的混入有关(曹自成等,2020)。
-
芦草沟组埋藏白云岩化的矿物主体为含铁白云石,自形程度高、呈菱面体状,背散射图像中表现为白色,FeO含量可达10.80%~12.82%(表1)。云化过程中Fe主要来自于还原环境中的酸性流体溶蚀,Mg主要来自于自身含有较高Ca、Mg含量的沉积继承性流体。含铁白云石的形成增加了地层的刚性强度,保护了剩余粒间孔和粒内溶孔。如图8b所示,在含铁白云石含量<13%的甜点段岩性中,孔隙度与含铁白云石含量呈正相关关系,剩余粒间孔和粒内溶孔相对发育; 当含铁白云石含量>13%时,由于含铁白云石的过度胶结,导致粒间溶蚀扩大孔、粒内溶孔大量减少,含铁白云石的晶间孔的增加量小于粒间溶蚀扩大孔、粒内溶孔的减小量,因此孔隙度与含铁白云石含量呈负相关。此外,储层埋藏白云岩化也增强了地层的脆性,有利于储层的压裂改造(王小军等,2019; 王林生等,2022)。
-
图9 准噶尔盆地吉木萨尔凹陷芦草沟组白云岩稳定碳-氧同位素交汇图
-
Fig.9 Crossplot of carbon and oxygen isotopes of dolomites in the Lucaogou Formation, Jimsar sag, Junggar basin
-
5.4 甜点段储层孔隙“三阶段”演化特征
-
研究区芦草沟组甜点段储层主要经历了压实作用—酸性溶蚀—自生钠长石、蜂巢状伊/蒙混层矿物胶结—含铁白云石胶结成岩演化序列,通过对各期次成岩作用恢复,计算孔隙面孔率,进而对孔隙演化过程进行了反演,结果表明,吉木萨尔页岩油甜点段储层孔隙演化呈明显的3个阶段(图10):① 快速压实减孔段,发生在准同生期—早成岩B阶段,孔隙度由35.6%快速下降到17.0%,孔隙类型主要为粒间孔; ② 酸性溶蚀增孔段,在中成岩A阶段早期,Ro>0.6%时,有机酸产量达到高峰,随着有机质的排酸,储层水介质条件发生改变,促使长石、碳酸盐矿物被溶解,自生钠长石和自生蜂巢状伊/蒙混层矿物从孔隙水中结晶形成,岩石孔隙度从17.0%增加到22.0%,孔隙类型除剩余粒间孔外,次生溶蚀孔隙、钠长石晶间孔、黏土矿物晶间孔发育; ③ 含铁白云石胶结减孔段,发生在中成岩A期,在沉积继承水和酸性流体溶蚀的综合作用下,早期酸性流体溶蚀碎屑颗粒产生的铁、镁离子和有机酸高温下解离出CO2溶于水形成的碳酸相互作用,形成含铁白云石胶结,孔隙度从16.0%下降到14.2%,但同时也产生了含铁白云石晶间孔,导致孔隙类型进一步丰富,并且含铁白云石的胶结提升了储层的抗压实能力,对前期形成的孔隙具有很好的保护作用,因此此时的储层形成效应是双向的。
-
图10 准噶尔盆地吉木萨尔凹陷芦草沟组甜点段储层孔隙演化特征
-
Fig.10 Pore evolution of the sweet spots of the Lucaogou Formation, Jimsar sag, Junggar basin
-
总之,吉木萨尔凹陷芦草沟组页岩油储层孔隙成因及演化特征研究表明,沉积微相是优质储层形成的基础,孔隙演化中酸性流体的溶蚀进一步提升了储层物性品质,含铁白云石的胶结使得储层减孔,但刚性增强。甜点段形成依赖于快速压实减孔、酸性溶蚀增孔和含铁白云石胶结减孔三个阶段的有利配合。
-
6 结论
-
准噶尔盆地吉木萨尔凹陷芦草沟组是典型的陆相咸化湖盆沉积,其甜点段孔隙特征与成因对咸化湖盆页岩油具有普适意义。
-
(1)页岩油甜点段储层孔隙类型丰富,发育粒间孔、溶蚀孔和晶间孔。甜点段整体贫黏土矿物,物性好,孔隙以微—纳米孔隙为主。孔隙半径大于1 μm主要为粒间溶蚀扩大孔与粒内溶孔,100 nm~1 μm为晶间孔,小于100 nm为黏土级碎屑粒间孔。
-
(2)沉积微相是甜点段储层孔隙形成的基础,滩坝相和三角洲前缘微相原始孔隙度发育,抗压实能力强,粒间孔保存好; 酸性溶蚀是次生孔隙形成的关键原因,进一步提升了储层物性品质; 含铁白云石胶结减孔,但使得储层的刚性增强,对前期形成的孔隙具有很好的保护作用。
-
(3)页岩油甜点段孔隙演化呈“三段式”,分别为快速压实减孔、酸性溶蚀增孔和含铁白云石胶结减孔,三个阶段的有利配合是形成甜点段储层的关键。
-
致谢:审稿专家的宝贵意见提升了文稿质量,诚致谢忱。
-
参考文献
-
Cao Yingchang, Zhu Ning, Zhang Shaomin, Zhang Shaomin, Xi Kelai, Xue Xiujie. 2019. Diagenesis and reserving space characteristics of tight oil reservoirs of Permian Lucaogou Formation in Jimusar sag of Junggar basin, China. Journal of Earth Sciences and Environment, 41(3): 253~266 (in Chinese with English abstract).
-
Cao Zicheng, You Donghua, Qi Lixin, Yun Lu, Hu Wenxuan, Li Zongjie, Qian Yixiong, Liu Yongli. 2020. New insights of the genesis of ultra-deep dolomite reservoirs in well TS1, Tarim basin: Evidence from in situ carbon and oxygen isotope analysis. Natural Gas Geoscience, 31(7): 915~922 (in Chinese with English abstract).
-
Chen Xuan, Liu Xiaoqi, Wang Xuechun, Ma Qiang, Liu Juntian, Gong Xin, Yang Xiaodong, Shi Jiangfeng, Bai Guojuan. 2019. Formation mechanism and distribution characteristics of Lucaogou shale oil reservoir in Sangtanghu basin. Natural Gas Geoscience, 30(8): 1180~1189 (in Chinese with English abstract).
-
Fu Jinhua, Niu Xiaobing, Dan Weidong, Feng Shengbin, Liang Xiaowei, Xin Honggang, You Yuan. 2019. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos basin. China Petroleum Exploration, 24(5): 601~614 (in Chinese with English abstract).
-
Gao Yang, Wang Yingwei, Wang Yuduo, Xie Tianshou, Liu Gang, Wang Li. 2016. Rock mechanics characteristics of Lucaogou tight oil reservoir in Jimusaer sag, Junggar basin. Xinjiang Petroleum Geology, 37(2): 158~162 (in Chinese with English abstract).
-
Gao Yang, Ye Yiping, He Jixiang, Qian Genbao, Qin Jianhua, Li Yingyan. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar basin. China Petroleum Exploration, 25(2): 133~141 (in Chinese with English abstract).
-
Hu Qinhong, Zhang Yuxiang, Meng Xianghao, Li Zheng, Xie Zhonghuai, Li Maowen. 2017. Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying sag of Bohai Bay basin, East China. Petroleum Exploration and Development, 44(5): 681~690 (in Chinese with English abstract).
-
Hu Suyun, Bai Bin, Tao Shizhen, Bian Congsheng, Zhang Tianshu, Chen Yanyan, Liang Xiaowei, Wang Lan, Zhu Rukai, Jia Jinhua, Pan Zhejun, Li Siyang, Liu Yuxi. 2022. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China. Petroleum Exploration and Development, 49(2): 224~237 (in Chinese with English abstract).
-
Huang Sijing, Huang Keke, Feng Liwen, Tong Hongpeng, Liu Lihong, Zhang Xuehua. 2009. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic, Ordos basin and Xujiahe Formation, western Sichuan depression. Geochimica, 38(5): 498~506 (in Chinese with English abstract).
-
Jin Jun, Yang Zhao, Yilihamu Eexiding, Li Lulu, Liu Ming. 2018. Nanopore characteristics and oil-bearing properties of tight oil reservoirs in Jimsar sag, Junggar basin. Earth Science, 43(5): 1594~1601 (in Chinese with English abstract).
-
Liu Huimin, Zhang Shun, Bao Youshu, Fang Zhengwei, Yao Suping, Wang Yong. 2019. Geological characteristics and effectiveness of the shale oil reservoir in Dongying sag. Oil & Gas Geology, 40(3): 512~523 (in Chinese with English abstract).
-
Liu Wei, Huang Qingyu, Wang Kun, Shi Shuyuan. 2016. Dolomization and influence on reservoir development in deep-burial stage: A case study of Lower Paleozoic in Tarim basin. Natural Gas Geoscience, 27(5): 772~779 (in Chinese with English abstract).
-
Liu Zhanguo, Zhang Yongshu, Song Guangyong, Li Senming, Long Guohui, Zhao Jian, Zhu Chao, Wang Yanqing, Gong Qingshun, Xia Zhiyuan. 2021. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam basin, NW China. Petroleum Exploration and Development, 48(1): 68~80 (in Chinese with English abstract).
-
Ma Ke, Hou Jiagen, Liu Yuming, Shi Yanqing, Yan Lin, Chen Fuli. 2017. The sedimentary model of saline lacustrine mixed sedimentation in Permian Lucaogou Formation, Jimsar sag. Acta Petrolei Sinica, 38(6): 636~648 (in Chinese with English abstract).
-
Ma Ke, Liu Yuming, Hou Jiagen, Huang Su, Yan Lin, Chen Fuli, Yang Wenze. 2019. Densification mechanism of tight reservoirs from mixed sedimentation in saline lacustrine environment: A case study of Permian Lucaogou Formation, Jimsar sag. Xinjiang Petroleum Geology, 40(3): 253~261 (in Chinese with English abstract).
-
Ma Yongsheng, Cai Xunyu, Zhao Peirong, Hu Zongquan, Liu Huimin, Gao Bo, Wang Weiqing, Li Zhiming, Zhang Zilin. 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155~171 (in Chinese with English abstract).
-
Mu Shangchao, Guo Xiaobo, Li Yu, Li Tianjun, Pan Yongshuai, Li Xiaohang. 2021. Pore structure and oil-bearing properties of mud shale reservoirs of Lucaogou Formation in Malang sag, Santanghu basin. Journal of Xi'an Shiyou University (Natural Science Edition), 36(5): 1~12 (in Chinese with English abstract).
-
Peng Shouchang, Zha Xiaojun, Lei Xianghui, Fei Fanxu, Xu Dongsheng, Gao Yang. 2021. Evolution characteristics and difference evaluation of shale oil reservoirs in the upper sweet spot interval of Lucaogou Formation in Jimusaer sag. Special Oil & Gas Reservoirs, 28(4): 30~38 (in Chinese with English abstract).
-
Pu Xiugang, Shi Zhannan, Han Wenzhong, Peng Xuemei, Zhang Wei, Zhu Bixing. 2019. Petroleum geological characteristics and hydrocarbon discovery of shale system in fine-grained sedimentary area of lacustrine basin: A case study of Kong 2 Member in Cangdong sag, Huanghua depression. Petroleum Geology and Recovery Efficiency, 26 (1): 46~58 (in Chinese with English abstract).
-
Shen Junjun, Tao Guoliang, Chen Kongquan, Li Junjun, Wang Pengwan, Li Zhiming, Jiang Qigui, Meng Jianghui. 2021. Development characteristics and formation mechanism of lacustrine dolomite reservoirs in the Paleogene inter-salt shale sequence, Qianjiang sag, Jianghan basin. Oil & Gas Geology, 42(6): 1401~1413 (in Chinese with English abstract).
-
Shi Ji'an, Zou Niuniu, Lu Xinchuan, Zhang Shuncun, Zhang Jie. 2013. Geochemical characteristics and genetic mechanism of Permian dolomitic clastic rocks in northwestern Junggar basin. Acta Sedimentologica Sinica, 31(5): 898~906 (in Chinese with English abstract).
-
Su Ling, Zhu Rukai, Cui Jingwei, Wu Songtao, Luo Zhong, Mao Zhiguo, Li Sen. 2017. Spatial-temporal distribution of lacustrine carbonate rocks in China and their carbon and oxygen isotopic characteristics. Journal of Palaeogeography, 19(6): 1063~1074 (in Chinese with English abstract).
-
Talbot M R. 1990. A review of the palaeohydrological in terpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, 80(4): 261~279.
-
Tian Tonghui, Qi Minghui, Lu Zhengyuan, Feng Mingshi, Liu Yi. 2017. Study on microscopic reservoir characteristics of shale oil from Shahejie Formation in Zhanhua sag, Bohai Bay basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 44(5): 535~542 (in Chinese with English abstract).
-
Wang Bingjie, Cai Mingjun, Lin Chunming, Zhang Xia, Cheng Yuanzhong, Qu Changwei, Zhang Ni. 2014. Characteristics and origin of lacustrine dolostone of the Paleogene Shahejie Formation in Tanggu area, Bohai Bay basin. Journal of Palaeogeography, 16(1): 65~76 (in Chinese with English abstract).
-
Wang Guangyun, Wang Fenglan, Meng Qi’ an, Gu Shefeng. 2020. Strategic significance and research direction for Gulong shale oil. Petroleum Geology & Oilfield Development in Daqing, 39(3): 8~19 (in Chinese with English abstract).
-
Wang Guochang, Ju Yiwen, Yan Zhifeng, Li Qingguang. 2015. Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan-Huaibei coalfield in China. Marine and Petroleum Geology, (62): 1~13.
-
Wang Jian, Zhou Lu, Liu Jin, Zhang Xinji, Zhang Fan, Zhang Baozhen. 2020. Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusar sag, Junggar basin, NW China. Petroleum Exploration and Development, 47(5): 1~15 (in Chinese with English abstract).
-
Wang Linsheng, Ye Yiping, Qin Jianhua, Gao Yang, Deng Yuan, Li Yingyan, Xiao Dianshi. 2022. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: A case study of the Permian Lucaogou Formation in Jimsar sag, Junggar basin. Oil & Gas Geology, 43(1): 149~160 (in Chinese with English abstract).
-
Wang Min, Guan Ying, Li Chuanming, Liu Yang, Liu Wei, Xu Jianpeng, Li Zheng, Lu Shuangfang. 2018. Qualitative description and full-pore-size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation, Jiyang depression. Oil & Gas Geology, 39(6): 1107~1119 (in Chinese with English abstract).
-
Wang Xiaojun, Liang Lixi, Zhao Long, Liu Xiangjun, Qin Zhijun, Li Wei. 2019. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar basin. Oil & Gas Geology, 40(3): 661~668 (in Chinese with English abstract).
-
Wang Ran, Chang Qiusheng, Qian Yongxin, Liu Guoliang, Wan Min, Huang Liliang. 2020. Reservoir characteristics and genesis of shale oil “sweet spots” in Lucaogou Formation, Jimsar sag, Junggar basin. Petroleum Geology & Experiment, 42(4): 604~611 (in Chinese with English abstract).
-
Xu Lin, Chang Qiusheng, Yang Chengke, Tao Qin’e, Wang Shili, Fei Liying, Xu Shilu. 2019. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer sag. Oil & Gas Geology, 40(3): 535~549 (in Chinese with English abstract).
-
Xu Wenming, Jiang Qigui, Liu Weixin, Tao Guoliang, Zhang Wentao, Qian Menhui, Cao Tingting, Bao Yunjie, Li Zhiming. 2020. Micro-pore structure in an inter-salt shale oil reservoir and the relationship with physical properties in the fourth section of the third Member of Qianjiang Formation, Qianjiang sag, Jianghan basin. Petroleum Geology & Experiment, 42(4): 565~574 (in Chinese with English abstract).
-
Yan Lin, Ran Qiquan, Ggao Yang, Chen Fuli, Wang Shaojun, Li Chongfei. 2017. Characteristics and formation mechanism of dissolved pores in tight oil reservoirs of Lucaogou Formation in Jimsar sag. Lithologic Reservoirs, 29(3): 27~33 (in Chinese with English abstract).
-
Yang Guifang, Zhuo Shengguang, Niu Ben, E Junjie. 2003. AIbitization of detrital feldspar in Cretaceous sandstones from the Songliao basin. Geological Review, 49(2): 155~161 (in Chinese with English abstract).
-
Yuan Jianying, Huang Chenggang, Cao Zhenglin, Li Zhiyong, Wan Chuangzhi, Xu Li, Pan Xing, Wu Lirong. 2015. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam basin. Geochimica, 44(3): 254~266 (in Chinese with English abstract).
-
Zeng Hongbin, Wang Furong, Luo Jing, Tao Tao, Wu Shiqiang. 2021. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang sag. Bulletin of Geological Science and Technology, 40(5): 242~252 (in Chinese with English abstract).
-
Zha Ming, Su Yang, Gao Changtao, Qu Jiangxiu, Wang Xulong, Ding Xiujian. 2017. Tight reservoir space characteristics and controlling factors: An example from Permian Lucaogou Formation in Jimsar sag, Junggar basin, northwest China. Journal of China University of Mining & Technology, 46(1): 85~95 (in Chinese with English abstract).
-
Zhang Chenjia, Cao Jian, Li Erting, Wang Yuce, Xiao Wenyao, Qin Yang. 2021. Revisiting controls on shale oil accumulation in saline lacustrine basins: The Permian Lucaogou Formation mixed rocks, Junggar basin. Geofluids, 2021: 1~25.
-
Zhang Jigang, Du Meng, Chen Chao, Qin Ming, Jia Ninghong, Lyu Weifeng, Ding Zhenhua, Xiang Yong. 2022. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar sag. Lithologic Reservoirs, 34(4): 89~102 (in Chinese with English abstract).
-
Zhang Panpan, Liu Xiaoping, Guan Ming, Sun Biao. 2021. Study on characteristics and main controlling factors of nano-pores in low-maturity shale reservoirs in Member 2 of Kongdian Formation in Cangdong sag. Special Oil & Gas Reservoirs, 28(2): 20~26 (in Chinese with English abstract).
-
Zhang Shiming, Wang Jiangong, Zhang Yongshu, Zhang Xiaojun, Zhang Tingjing, Cui Jun. 2021. Determination of petrophysical property cutoffs of lacustrine dolomite intercrystalline pore reservoir in the Xiaganchaigou Formation, western Qaidam basin. Acta Petrolei Sinica, 42(1): 45~55 (in Chinese with English abstract).
-
Zhang Shuai, Liu Yiqun, Li Hong, Jiao Xin, Zhou Dingwu. 2020. Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar basin, China. Journal of Palaeogeography (Chinese Edition), 22(1): 111~128 (in Chinese with English abstract).
-
Zhang Yaqi, Ma Shizhong, Gao Yang, Li Yingyan, Zhang Jing, Wang Li, Sun Yu, Xu Fangzhe, Li Hang. 2017. Depositional facies analysis on tight reservoir of Lucaogou Formation in Jimsar sag, Junggar basin. Acta Sedimentologica Sinica, 35(2): 358~370 (in Chinese with English abstract).
-
Zhao Wenzhi, Hu Suyun, Hou Lianhua, Yang Tao, Li Xin, Guo Bincheng, Yang Zhi. 2020. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1~10 (in Chinese with English abstract).
-
Zou Caineng, Pan Songqi, Jing Zhenhua, Gao Jinliang, Yang Zhi, Wu Songtao, Zhao Qun. 2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1~12 (in Chinese with English abstract).
-
Zhi Dongming, Tang Yong, Yang Zhifeng, Guo Xuguang, Zheng Menglin, Wan Min, Huang Liliang. 2019. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar basin. Oil & Gas Geology, 40(3): 524~534 (in Chinese with English abstract).
-
操应长, 朱宁, 张少敏, 葸克来, 薛秀杰. 2019. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组致密油储层成岩作用与储集空间特征. 地球科学与环境学报, 41(3): 253~266.
-
曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 2020. 塔里木盆地塔深1井超深层白云岩储层成因新认识: 来自原位碳氧同位素分析的证据. 天然气地球科学, 31(7): 915~922.
-
陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 2019. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征. 天然气地球科学, 30(8): 1180~1189.
-
付金华, 牛小兵, 淡卫东, 冯胜斌, 梁晓伟, 辛红刚, 尤源. 2019. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展. 中国石油勘探, 24(5): 601~614.
-
高阳, 王英伟, 王玉多, 谢天寿, 刘刚, 王黎. 2016. 吉木萨尔凹陷芦草沟组致密储集层岩石力学特征. 新疆石油地质, 37(2): 158~162.
-
高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133~141.
-
胡钦红, 张宇翔, 孟祥豪, 李政, 谢忠怀, 黎茂稳. 2017. 渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米—纳米级孔隙体系表征. 石油勘探与开发, 44(5): 681~690.
-
胡素云, 白斌, 陶士振, 卞从胜, 张天舒, 陈燕燕, 梁晓伟, 王岚, 朱如凯, 贾进华, 潘哲君, 李思洋, 刘羽汐. 2022. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征. 石油勘探与开发, 49(2): 224~237.
-
黄思静, 黄可可, 冯文立, 佟宏鹏, 刘丽红, 张雪花. 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498~506.
-
靳军, 杨召, 依力哈木·尔西丁, 李璐璐, 刘明. 2018. 准噶尔盆地吉木萨尔凹陷致密油储层纳米孔隙特征及其含油性. 地球科学, 43(5): 1594~1601.
-
刘惠民, 张顺, 包友书, 方正伟, 姚素平, 王勇. 2019. 东营凹陷页岩油储集地质特征与有效性. 石油与天然气地质, 40(3): 512~523.
-
刘伟, 黄擎宇, 王坤, 石书缘. 2016. 深埋藏阶段白云岩化作用及其对储层的影响——以塔里木盆地下古生界白云岩为例. 天然气地球科学, 27(5): 772~779.
-
刘占国, 张永庶, 宋光永, 李森明, 龙国徽, 赵健, 朱超, 王艳清, 宫清顺, 夏志远. 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68~80.
-
马克, 侯加根, 刘钰铭, 史燕青, 闫林, 陈福利. 2017. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式. 石油学报, 38(6): 636~648.
-
马克, 刘钰铭, 侯加根, 黄素, 闫林, 陈福利, 杨雯泽. 2019. 陆相咸化湖混合沉积致密储集层致密化机理——以吉木萨尔凹陷二叠系芦草沟组为例. 新疆石油地质, 40(3): 253~261.
-
马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155~171.
-
慕尚超, 郭小波, 李钰, 李天军, 潘永帅, 李晓航. 2021. 三塘湖盆地马朗凹陷芦草沟组泥页岩储层孔隙结构及含油性. 西安石油大学学报(自然科学版), 36(5): 1~12.
-
彭寿昌, 查小军, 雷祥辉, 费繁旭, 徐东升, 高阳. 2021. 吉木萨尔凹陷芦草沟组上甜点段页岩油储层演化特征及差异性评价. 特种油气藏, 28(4): 30~38.
-
蒲秀刚, 时战楠, 韩文中, 彭雪梅, 张伟, 祝必兴. 2019. 陆相湖盆细粒沉积区页岩层系石油地质特征与油气发现——以黄骅坳陷沧东凹陷孔二段为例. 油气地质与采收率, 26(1): 46~58.
-
沈均均, 陶国亮, 陈孔全, 李君军, 王鹏万, 李志明, 蒋启贵, 孟江辉. 2021. 江汉盆地潜江凹陷古近系盐间页岩层系湖相白云岩储层发育特征及形成机理. 石油与天然气地质, 42(6): 1401~1413.
-
史基安, 邹妞妞, 鲁新川, 张顺存, 张杰. 2013. 准噶尔盆地西北缘二叠系云质碎屑岩地球化学特征及成因机理研究. 沉积学报, 31(5): 898~906.
-
苏玲, 朱如凯, 崔景伟, 吴松涛, 罗忠, 毛治国, 李森. 2017. 中国湖相碳酸盐岩时空分布与碳氧同位素特征. 古地理学报, 19(6): 1063~1074.
-
田同辉, 戚明辉, 陆正元, 冯明石, 刘毅. 2017. 渤海湾盆地沾化凹陷沙河街组页岩油微观储集性. 成都理工大学学报(自然科学版), 44(5): 535~542.
-
王兵杰, 蔡明俊, 林春明, 张霞, 程远忠, 曲长伟, 张妮. 2014. 渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因. 古地理学报, 16(1): 65~76.
-
王广昀, 王凤兰, 蒙启安, 谷社峰. 2020. 古龙页岩油战略意义及攻关方向. 大庆石油地质与开发, 39(3): 8~19.
-
王剑, 周路, 刘金, 张欣吉, 张帆, 张宝真. 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组酸碱交替成岩作用特征及对页岩储集层的影响. 石油勘探与开发, 47(5): 1~15.
-
王林生, 叶义平, 覃建华, 高阳, 邓远, 李映艳, 肖佃师. 2022. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 石油与天然气地质, 43(1): 149~160.
-
王民, 关莹, 李传明, 刘洋, 刘薇, 徐健鹏, 李政, 卢双舫. 2018. 济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价. 石油与天然气地质, 39(6): 1107~1119.
-
王然, 常秋生, 钱永新, 刘国良, 万敏, 黄立良. 2020. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油“甜点体”储集特征及成因机理. 石油实验地质, 42(4): 604~611.
-
王小军, 梁利喜, 赵龙, 刘向君, 秦志军, 李玮. 2019. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 40(3): 661~668.
-
许琳, 常秋生, 杨成克, 陶亲娥, 王仕莉, 费李莹, 徐士陆. 2019. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性. 石油与天然气地质, 40(3): 535~549.
-
徐文明, 蒋启贵, 刘伟新, 陶国亮, 张文涛, 钱门辉, 曹婷婷, 鲍云杰, 李志明. 2020. 江汉盆地潜江凹陷盐间潜34油组储层微观结构特征及与物性的关系. 石油实验地质, 42(4): 565~574.
-
闫林, 冉启全, 高阳, 陈福利, 王少军, 李崇飞. 2017. 吉木萨尔凹陷芦草沟组致密油储层溶蚀孔隙特征及成因机理. 岩性油气藏, 29(3): 27~33.
-
杨桂芳, 卓胜广, 牛奔, 鄂俊杰. 2003. 松辽盆地白垩系砂岩长石碎屑的钠长石化作用. 地质论评, 49(2): 155~161.
-
袁剑英, 黄成刚, 曹正林, 李智勇, 万传治, 徐丽, 潘星, 吴丽荣. 2015. 咸化湖盆白云岩碳氧同位素特征及古环境意义: 以柴西地区始新统下干柴沟组为例. 地球化学, 44(3): 254~266.
-
曾宏斌, 王芙蓉, 罗京, 陶涛, 吴世强. 2021. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征. 地质科技通报, 40(5): 242~252.
-
查明, 苏阳, 高长海, 曲江秀, 王绪龙, 丁修建. 2017. 致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 中国矿业大学学报, 46(1): 85~95.
-
张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 2022. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征. 岩性油气藏, 34(4): 89~102.
-
张盼盼, 刘小平, 关铭, 孙彪. 2021. 沧东凹陷孔二段低熟页岩纳米孔隙特征及主控因素. 特种油气藏, 28(2): 20~26.
-
张世铭, 王建功, 张永庶, 张小军, 张婷静, 崔俊. 2021. 柴达木盆地西部地区下干柴沟组湖相白云岩晶间孔型储层物性下限的确定. 石油学报, 42(1): 45~55.
-
张帅, 柳益群, 李红, 焦鑫, 周鼎武. 2020. 准噶尔盆地东部中二叠统幔源热液沉积白云岩. 古地理学报, 22(1): 111~128.
-
张亚奇, 马世忠, 高阳, 李映艳, 张景, 王黎, 孙雨, 许方哲, 李杭. 2017. 吉木萨尔凹陷芦草沟组致密油储层沉积相分析. 沉积学报, 35(2): 358~370.
-
赵文智, 胡素云, 侯连华, 杨涛, 李欣, 郭彬程, 杨智. 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1~10.
-
支东明, 唐勇, 杨智峰, 郭旭光, 郑孟林, 万敏, 黄立良. 2019. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理. 石油与天然气地质, 40(3): 524~534.
-
邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1~12.
-
摘要
陆相咸化湖盆页岩油甜点孔隙特征与形成机制复杂,是陆相页岩油研究的关键科学问题。本文以准噶尔盆地吉木萨尔凹陷芦草沟组为例,综合应用岩石薄片观测、X射线衍射、高压压汞、氮气吸附、扫描电镜、电子探针、碳-氧同位素分析和成岩反演等方法,对此进行了研究。结果表明,以芦草沟组为例的陆相咸化湖盆页岩油甜点段矿物组成以长英质碎屑矿物和碳酸盐类矿物为主,黏土矿物含量较低,成分成熟度低,属于湖相混积岩。甜点孔隙以微—纳米孔为主,类型丰富,半径大于1 μm的孔隙主要为粒间溶蚀扩大孔与粒内溶孔,100 nm~1 μm主要为晶间孔,小于100 nm主要为黏土级碎屑颗粒粒间孔。沉积微相是控制甜点孔隙发育的关键,特别是滩坝相和三角洲前缘亚相原生孔隙发育,且抗压实能力强,粒间孔保存较好;溶蚀作用是次生孔隙形成的主要原因,进一步改善了储层物性;含铁白云石胶结总体上降低了孔隙度,但也在一定程度上增强了储层刚性,有利于部分孔隙保存。陆相咸化湖盆页岩油甜点孔隙演化呈现快速压实减孔、酸性溶蚀增孔和含铁白云石胶结减孔“三段式”特征,相互之间的匹配关系是控制孔隙发育的关键。
Abstract
The pore characteristics and formation mechanism of shale oil sweet spots in terrestrially saline lacustrine basins are very complex and remain a critical and challenging scientific issue in the study of terrestrial shale oil geology. To address this issue, taking the Lucaogou Formation in the Jimsar sag, Junggar basin as an example, this paper comprehensively applied the methods of rock thin section observation, XRD, high-pressure mercury injection, nitrogen adsorption, SEM, EPMA, carbon-oxygen isotope analysis and diagenetic inversion. Results show that the sweet spot of shale oil in saline lacustrine basins (as represented by the Lucaogou Formation in this study) is mainly composed of felsic minerals and carbonate minerals, with low content of clay minerals and low composition maturity. These point to the complex lithology of lacustrine mixed rock. The pores in sweet spots are mainly micro and nano pores of diverse types. Pores with radius greater than 1 μm are mainly enhanced inter-granular dissolution pores and intragranular dissolved pores, pores with radius between 100 nm and 1 μm are intercrystal pores, and pores with radius less than 100 nm are intergranular pores formed by clay-size particle. Sedimentary microfacies is the key to control the development of sweet spot pores, especially the primary pores in the beach-bar facies and delta front subfacies, which have strong compaction resistance and better preservation of intergranular pores. Dissolution is the main reason for the formation of secondary pores, which further improves the reservoir properties. The cementation of iron-bearing dolomite reduces the porosity on the whole, but also enhances the rigidity of reservoir to certain extent, which is conditionally conducive to the preservation of pores. The evolution of the pore structure of shale oil sweet spot in terrestrially saline lacustrine basins shows a “three-stage” characteristic, i.e., rapid compaction and pore reduction, pore improvement caused by acid fluid dissolution, and pore reduction by iron-bearing dolomite cementation. A good match between these three controls is the key to determine the pore evolution and final development.