en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

降珂楠,男,1997年生。硕士研究生,岩石学、矿床学、矿物学专业。E-mail:jiangkenan20@mails.ucas.ac.cn。

通讯作者:

骆金诚,男,1986年生。副研究员,从事矿床地球化学研究。E-mail:luojincheng@mail.gyig.ac.cn。

参考文献
Arevalo J R, Mc Donough W F. 2008. Tungsten geochemistry and implications for understandingthe earth's interior. Earth and Planetary Science Letters, 272(3): 656~665.
参考文献
Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.
参考文献
Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372: 452~454.
参考文献
Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon andmelt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95: 196~212.
参考文献
Cao Mingjian, Qin Kezhang, Li Guangming, Noreen J E, Brent I A M, Li Jinxiang, Zhao Junming. 2017. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, central Lhasa subterrane, Tibet. Mineralium Deposita, 53(3): 1~11.
参考文献
Chabiron A, Cuney M, Poty B. 2003. Possible uranium sources for the largest uranium district associated with volcanism: The Streltsovka caldera (Transbaikalia, Russia). Mineralium Deposita, 38: 127~140.
参考文献
Chelle-Michou C, Chiaradia M, Ovtcharova M. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198: 129~140.
参考文献
Chen Huayong, Wu Chao. 2020. Metallogenic mechanism and main challenges of porphyry copper system in subduction zone. Chinese Science: Earth Science, 50(7): 865~886 (in Chinese with English abstract).
参考文献
Chen Zhengle, Wang Yong, Zhou Yonggui. 2013. Zircon SHRIMP dating of Xiangshan volcanic-intrusive complex and its geological significance. China Geology, 40(1): 217~231 (in Chinese with English abstract).
参考文献
Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust. Geology, 34(8): 633~636.
参考文献
Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44: 3~9.
参考文献
Cuney M, Friedrich M. 1987. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenies. Bulletin de Mineralogie, 110: 235~247.
参考文献
Dilles J H, Kent A J R, Wooden J L, Tosdal R M, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1): 241~251.
参考文献
Dong Pengsheng, Dong Guochen, Sun Zhuanrong, Li Huawei, Tang Jiahui, Zhu Hongyun. 2020. Late Triassic porphyries in the Zhongdian Arc, eastern Tibet: Origin and implications for Cu mineralization. Geological Magazine, 157(2): 275~288.
参考文献
Dou Xiaoping, Shi Yanhua, Wu Zanhua. 2015. Research on structural ore-controlling regularity of Xiangshan uranium ore field in Jiangxi Province. Geology and Exploration, 51(5): 879~887.
参考文献
Duan Yun, Zhao Lianze, Fan Honghai, Wang Dezi. 2001. REE-geochemistry of Mesozoic volcanic intrusive complex and dark inclusions in Xiangshan District, Jiangxi Province. Geological Journal of China Universities, 7(1): 92~98 (in Chinese with English abstract).
参考文献
Eugster H P, Wones D R. 1962. Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3: 82~125.
参考文献
Fan Honghai, Ling Hongfei, Wang Dezi, Shen Weizhou, Liu Changshi, Jiang Yaohui. 2001. Ore-forming material sources for Xiangshan uranium ore-field in Jiangxi Province: Evidence from Nd-Sr-Pb isotopes. Geological Journal of China Universities, 7(2): 139~144 (in Chinese with English abstract).
参考文献
Fan Honghai, Ling Hongfei, Wang Dezi, Liu Changshi, Shen Weizhou, Jiang Yaohui. 2003. Study on metallogenetic mechanism of Xiangshan uranium ore-field. Uranium Geology, 19(4): 208~213 (in Chinese with English abstract).
参考文献
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contributions to Mineralogy and Petrology, 154(4): 429~437.
参考文献
Friedrich M, Cuney M, Poty B. 1987. Uranium geochemistry in peraluminous leucogranites. Uranium, (3): 353~385.
参考文献
Gao Xue, Yang Liqiang, Meng Jianyin, Zhang Lejun. 2017. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, northwest Yunnan, China. Ore Geology Reviews, 91: 945~962.
参考文献
Gu Huangling. 2017. Relationship between Yanshanian magmatism and Cu (Mo) Au mineralization in Guichi ore concentration area, Middle and lower reaches of Yangtze River. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Hanchar M, Clive R, Jinesh C. 2001. Problems associated with the determination of rare earth elements of a “gem” quality zircon by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 25(3): 229~237.
参考文献
Han Li, Huang Xiaolong, Li Jie, He Pengli, Yao Junming. 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China. Acta Petrologica Sinica, 32(3): 746~758 (in Chinese with English abstract).
参考文献
Harrison T M, Watson E B. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.
参考文献
Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020. Further discussion on porphyry Cu-Mo-Au deposit formation in mainland China Earth Science Frontiers, 27(2): 20~44.
参考文献
Hu Gongren, Zhang Bangtong, Wang Xiangyun. 1998. Mineralogy, petrology characteristic and isotopic geochemistry of the Proterozoic amphibolite in Xiangshan, central Jiangxi. Geochemistry, (3): 217~229(in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenies in South China. Mineral Deposits, 26(2): 139~152(in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchang, Liu Shun, Qi Hongwei. 2008. Uranium metallogenies in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103: 583~598.
参考文献
Hu Zhishu, Li Ye, Cai Minghai, Shao Zhuzhu, Zhang Han, Liu Jiaxing, Wei Shaocheng. 2019. Wall rock alteration and ore-forming fluid characteristics of Xiangshan uranium ore field. Mineral Exploration, 10(8): 1852~1862(in Chinese with English abstract).
参考文献
Huang Lanchun, Jiang Shaoyong. 2013. Geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4323~4335 (in Chinese with English abstract).
参考文献
Idris A M. 2019. Between-bottle homogeneity test of new certified reference materials employing wavelength dispersive X-ray fluorescence spectrometry. BMC Chemistry, 20(1): 13~23.
参考文献
Kong Dexin, Xu Jifeng, Chen Jianlin. 2016. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system: Implications for Late Triassic metallo-genesis within the Yidun terrane, southeastern Tibetan Plateau. Chemical Geology, 441: 148~161.
参考文献
Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42: 547~569.
参考文献
Li Shoukui, Liu Xuelong, Lu Yingxiang, Zhang Shitao, Liu Sihan, Chen Jianhang, Li Zhenhuan, Yu Haijun, Zhang Chuanyu. 2021. Indication of zircon oxygen fugacity to the differential metallogenic controlling factors of porphyry deposits in Zhongdian ore concentration area in the southern section of Yidun island arc. Geoscience, 47(4): 1435~1458 (in Chinese with English abstract).
参考文献
Li Shuang, Sun Saijun, Yang Xiaoyong, Sun Weidong. 2013. Petrological geochemistry and chronology of ore-bearing intrusion in Wuxi porphyry gold deposit, in south Anhui Province. Geotectonica et Metallogenia, 39(1): 153~166 (in Chinese with English abstract).
参考文献
Li Wenchang, Zeng Pusheng. 2007. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. Journal of Chengdu University of Technology, 34(4): 436~446 (in Chinese with English abstract).
参考文献
Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2): 282~292 (in Chinese with English abstract).
参考文献
Li Xianhua, Tang Guoqiang, Gong Bing, Yang Yueheng, Hou Kejun, Hu Zhaochu, Li Qiuli, Liu Yu, Li Wuxian. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647~4654.
参考文献
Li Xiaofei, Wang Guo, Mao Wei, Wang Chunzeng, Xiao Rong, Wang Mou. 2015. Fluid inclusions, muscovite Ar-Ar age, and fluorite trace elements at the Baiyanghe volcanic Be-U-Mo deposit, Xinjiang, Northwest China: Implication for its genesis. Ore Geology Reviews, 64: 387~399.
参考文献
Ling Hongfei. 2011. Origin of hydrothermal fluids of granite-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 194~206(in Chinese with English abstract).
参考文献
Liu Bin, Chen Weifeng, Fang Qichun, Mao Yufeng, Tang Xiangsheng, Yan Yongjie, Wei Xing, Ling Hongfei. 2019. Characteristics of ore-forming fluid in Xiangshan uranium ore field: Geochemical evidence from trace and rare earth elements. Acta Petrologica Sinica, 35(9): 2774~2786(in Chinese with English abstract).
参考文献
Liu Xuelong, Li Wenchang, Yang Fucheng. 2017. Zircon U-Pb age, Hf isotope composition and tectonic significance of the two-stage magmatism in the Huwa Mo-W-Cu deposit, Gezan Island, Yunnan Province. Acta Geologica Sinica, 91(4): 849~863(in Chinese with English abstract).
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallization on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.
参考文献
Lu Yongjun, Loucks R R, Fiorentini M. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. In: Society of Economic Geologist Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, 329~347.
参考文献
Ludwig K R. 1988. Isoplot for MS-DOS, a plotting and regression program for radiogenic isotope data for IBM-PC compatible computers, Version. USGS Open-File Report, 557~588.
参考文献
Ma Ying, Jiang Shaoyong, Hartwig E F, Duan Ruichun, Zhu Lüyun, Chen Runsheng. 2022. Ageand fluid source of the sub-volcanic Zhaiping Ag-Pb-Zn deposit in the eastern Cathaysia Block (Fujian Province, southeastern China). Mineralium Deposita, 19(3-4): 351~383.
参考文献
Pan Dapeng, Wang Di, Wang Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits. Geology in China, 44(1): 118~135 (in Chinese with English abstract).
参考文献
Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51(3): 507~513.
参考文献
Qiu Junting. 2018. Research on the wide domain problem of zircon magma oxygen fugacity calculation. Doctoral dissertation of China University of Geosciences (Beijing).
参考文献
Robert R L, Marco L F, Gonzalo J H. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, (30): 1~29.
参考文献
Seedorff E, Diles J H, Proffett J M. 2005. Porphyry deposits: Characteristics and hypogene features. Economic Geology, 100th Anniversary Volume: 251~298.
参考文献
Shen Ping, Hattori K, Pan Hongdi. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the central Asian orogenic belt. Economic Geology, 110(7): 1861~1878.
参考文献
Shen Weizhou, Chen Fanrong, Liu Changshi, Wang Dezi. 1992. Isotopic geochemical characteristics and source materials of two types of volcano-intrusive complex in Jiangxi Province. Acta Petrologica Sinica, 8(2): 177~184 (in Chinese with English abstract).
参考文献
Sláma J, Kosler J, Condon D J. 2008. PleSovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.
参考文献
Su Qiangwei, Mao Jingwen, Song Shiwei, Wang Xunjun. 2021. Zircon U-Pb ages, Hf isotope and trace element characteristics of ore-related intrusions in Yongping Cu-W deposit, Jiangxi and their geological significance. Mineral Deposits, 40(6): 1199~1213 (in Chinese with English abstract).
参考文献
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society London Special Publications, (42): 528~548.
参考文献
Sun Zhanxue. 2004. Geochemical evidence of uranium source in Xiangshan uranium ore field. Journal of Mineralogy, 24 (1): 19~24.
参考文献
Taylor R J M, Clark C, Harley S L, Kylander-Clark A R C, Hacker B R, Kinny P D. 2017. Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 35(7): 759~775.
参考文献
Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magma. Geochimica et Cosmochimica Acta, 97: 70~87.
参考文献
Turner S, Wilde S, Wörner G. 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the hadean. Nature Communications, 11(1): 1241.
参考文献
Wang Dezi, Liu Changshi, Shen Weizhou, Chen Fanrong. 1994. S-type volcanic complex and mineralization in South China, Jiangxi Province. Journal of Nanjing University (Natural Sciences Edition), 30(2): 322~333 (in Chinese with English abstract).
参考文献
Wang Qiang, Zhao Zhenhua, Jian Ping, Xu Jifeng, Bao Zhiwei, Ma Jinlong. 2004. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries. Acta Petrologica Sinica, 20(2): 315~324 (in Chinese with English abstract).
参考文献
Wang Xinsong, Hu Ruizhong, Bi Xianwu. 2014. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202~219.
参考文献
Wang Yongjian, Nie Jiangtao, Lin Jinrong, Wang Hongzuo. 2022. Geochronology and geochemistry of the felsic-intermediate dikes from Xiangshan uranium ore field, South China: Implications for petrogenesis, tectonic setting and uranium mineralization. Mineralogy and Petrology, 116(4): 287~310.
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy & Petrology, 151(4): 412~415.
参考文献
Wood B J, Blundy J D. 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology, 129(2-3): 166~181.
参考文献
Xia Linqi, Xia Zuchun, Zhang Cheng, Clochiatti R, Dardel J, Joron J L. 1992. Geochemistry of Mesozoic Uranium-bearing Volcanic Complexes in Xiangshan. Beijing: Geological Publishing House, 1~97.
参考文献
Xiang Xinkui, Wang Peng, Sun Deming, Zhong Bo. 2013. Re-Os isotopic age ofmolybdenite from the Shimensi tungsten polymetallic deposit in northern Jiangxi Province and its geological implications. Geological Bulletin of China, 32(11): 1824~1831(in Chinese with English abstract).
参考文献
Xin Hongbo, Qu Xiaoming. 2008. Relative oxidation state of ore-bearing intrusions in the Gangdese porphyry copper belt, Tibet: Constraints from zircon Ce(IV)/Ce(III) ratios. Mineralogical Journal, 28(2): 152~160(in Chinese with English abstract).
参考文献
Xu Leiluo, Bi Xianwu, Chen Youwei, Qi Youqiang. 2012. Zircon Ce4+/Ce3+ ratios of the Tongchang intrusions in Jinping Country, Yunnan Province: Implications for mineralization. Acta Mineralogica Sinica, 74(9): 74~82 (in Chinese with English abstract).
参考文献
Yang Shuiyuan. 2013. The genetic mechanism and dynamic background of magmatic rocks in uranium-bearing volcanic basins in the Gan-Hang tectonic belt, South China. Doctoral dissertation of Nanjing University.
参考文献
Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2011. Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1-2): 21~48.
参考文献
Yang Shuiyuan, Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Fan Honghai. 2012. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of the rhyolite porphyry from the Zhoujiashan deposit in Xiangshan uranium ore field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915~3928 (in Chinese with English abstract).
参考文献
Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2013. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411~1426.
参考文献
Yu Yifan, Fei Guangchun, Li Youguo. 2016. Oxygen fugacity characteristics and metallogenic significance of rock mass in Lannitang porphyry copper deposit, Zhongdian island arc, Yunnan. Mineral Rocks, 36(1): 28~36 (in Chinese with English abstract).
参考文献
Zhang Chenjiang, Wang Guo, Chen Fenxiong. 2012. Preliminary study on differentiation characteristics of U-beryllium-Mo symbiosis in Baiyanghe deposit, Xinjiang Province. Mineral Deposit Geology, 31(10): 237~238 (in Chinese with English abstract).
参考文献
Zhang Hong, Sun Weidong, Yang Xiaoyong. 2011. Chronology and metallogenic mechanism of the Shapinggou superlarge porphyry molybdenum deposit in the Dabie orogenic belt. Geological Journal, 85(12): 2039~2059(in Chinese with English abstract).
参考文献
Zhang Jingbo, An Fang. 2018. Summarization of research methods for the oxidation state of ore-forming porphyry magma in porphyry copper deposits. Deposit Geology, 37(5): 1052~1064(in Chinese with English abstract).
参考文献
Zhang Wei, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82~96.
参考文献
Zhang Xiangfei, Li Wenchang, Yin Guanghou. 2017. Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo Mining District, NW Yunnan, China: Constraints by geochronology, oxygen fugacity and geochemistry. Acta Petrologica Sinica, 33(7): 2018~2036 (in Chinese with English abstract).
参考文献
Zou Xinyu, Qin Kezhang, Han Xinlei, Li Guangming, Noreen J E, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.
参考文献
陈华勇, 吴超. 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865~886.
参考文献
陈正乐, 王永, 周永贵. 2013. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义. 中国地质, 40(1): 217~231.
参考文献
窦小平, 时燕华, 吴赞华. 2015. 江西相山铀矿田构造控矿规律研究. 地质与勘探, 51(5): 879~887.
参考文献
段芸, 赵连泽, 范洪海, 王德滋. 2001. 江西相山火山-侵入杂岩及其包体稀土元素地球化学. 高校地质学报, 7(1): 92~98.
参考文献
范洪海, 凌洪飞, 王德滋, 沈渭洲, 刘昌实, 姜耀辉. 2001. 江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据. 高校地质学报, 7(2): 139~144.
参考文献
范洪海, 凌洪飞, 王德滋, 刘昌实, 沈渭洲, 姜耀辉. 2003. 相山铀矿田成矿机理研究. 铀矿地质, 19(4): 208~213.
参考文献
范洪海, 王德滋, 沈渭洲, 刘昌实, 汪相, 凌洪飞. 2005. 江西相山火山-侵入杂岩及中基性脉岩形成时代研究. 地质论评, 51(1): 86~91.
参考文献
古黄玲. 2017. 长江中下游贵池矿集区燕山期岩浆作用与铜(钼)金成矿关系研究. 中国科学技术大学博士学位论文.
参考文献
韩丽, 黄小龙, 李洁, 贺鹏丽, 姚军明. 2016. 江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示. 岩石学报, 32(3): 746~758.
参考文献
胡恭任, 章邦桐, 王湘云. 1998. 赣中相山元古宙斜长角闪岩的矿物学、岩石学特征及同位素地球化学研究. 地球化学, (3): 217~229.
参考文献
胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.
参考文献
胡志戍, 李晔, 蔡明海, 邵主助, 张含, 刘嘉兴, 韦绍成. 2019. 相山铀矿田围岩蚀变及成矿流体特征. 矿产勘查, 10(8): 1852~1862.
参考文献
黄兰椿, 蒋少涌. 2013. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究. 岩石学报, 29(12): 4323~4335.
参考文献
李守奎, 刘学龙, 卢映祥, 张世涛, 刘思晗, 陈建航, 李振焕, 余海军, 张传昱. 2021. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435~1458.
参考文献
李双, 孙赛军, 杨晓勇. 2013. 皖南乌溪斑岩型金矿床赋矿侵入岩体的岩石地球化学及年代学研究. 大地构造与成矿学, 39(1): 153~166.
参考文献
李文昌, 曾普胜. 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436~446.
参考文献
李文昌, 余海军, 尹光侯, 曹晓明, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282~292.
参考文献
凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.
参考文献
刘斌, 陈卫锋, 方启春, 毛玉锋, 唐湘生, 严永杰, 魏星, 凌洪飞. 2019. 相山铀矿田成矿流体特征: 来自微量、稀土元素地球化学证据, 35(9): 2774~2786.
参考文献
刘学龙, 李文昌, 杨富成. 2017. 云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义. 地质学报, 91(4): 849~863.
参考文献
潘大鹏, 王迪, 王孝磊. 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义. 中国地质, 44(1): 118~135.
参考文献
邱骏挺. 2018. 锆石岩浆氧逸度计算的宽域问题研究. 中国地质大学(北京)博士学位论文.
参考文献
沈渭洲, 陈繁荣, 刘昌实, 王德滋. 1992. 江西两类火山侵入杂岩的同位素地球化学特征和物质来源. 岩石学报, 8(2): 177~184.
参考文献
苏蔷薇, 毛景文, 宋世伟, 王训军. 2021. 江西永平Cu-W矿床成矿岩体的锆石U-Pb年龄、Hf同位素、微量元素特征及其意义. 矿床地质, 40(6): 1199~1213.
参考文献
孙占学. 2004. 相山铀矿田铀源的地球化学证据. 矿物学报, 24(1): 19~24.
参考文献
王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1994. 华南S型火山杂岩与成矿. 南京大学学报(自然科学版), 30(2): 322~333.
参考文献
王强, 赵振华, 简平, 许继峰, 包志伟, 马金龙. 2004. 德兴花岗闪长斑岩SHRIMP 锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315~324.
参考文献
夏林圻, 夏祖春, 张诚, Clochiatti R, Dardel J, Joron J L. 1992. 相山中生代含铀火山杂岩岩石地球化学. 北京: 地质出版社, 1~97.
参考文献
项新葵, 王朋, 孙德明, 钟波. 2013. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义, 地质通报, 32(11): 1824~1831.
参考文献
辛洪波, 曲晓明. 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石 Ce(IV)/Ce(III)比值的约束. 矿物学报, 28(2): 152~160.
参考文献
胥磊落, 毕献武, 陈佑纬, 齐有强. 2012. 云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义. 矿物学报, 74(9): 74~82.
参考文献
杨水源, 2013. 华南赣杭构造带含铀火山盆地岩浆岩的成因机制及动力学背景. 南京大学博士学位论文.
参考文献
俞一凡, 费光春, 李佑国. 2016. 云南中甸岛弧烂泥塘斑岩铜矿床岩体氧逸度特征及成矿意义. 矿物岩石, 36(1): 28~36.
参考文献
张成江, 王果, 陈奋雄. 2012. 新疆白杨河矿床铀-铍-钼共生分异特征初探. 矿床地质, 31(10): 237~238.
参考文献
张红, 孙卫东, 杨晓勇. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039~2059.
参考文献
张京渤, 安芳. 2018. 斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述. 矿床地质, 37(5): 1052~1064.
参考文献
张向飞, 李文昌, 尹光侯. 2017. 滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束. 岩石学报, 33(7): 2018~2036.
目录contents

    摘要

    我国华南广泛分布火山-侵入杂岩体,其中个别岩体中伴有火山岩型铀矿床的产出,因此如何区分含铀矿与不含铀矿岩体成为矿床学界关注的重要课题。本文以相山地区含铀火山-侵入岩以及周边不含铀矿侵入岩为例,开展锆石LA-ICP-MS U-Pb年龄和微量元素研究。结果显示含矿花岗斑岩的形成年龄为133.7±1.6 Ma(云际),含矿碎斑熔岩的形成年龄为132.8±1.5 Ma(邹家山),不含矿花岗斑岩的年龄为134.9±1.3 Ma(七琴)和133.3±1.3 Ma(桃溪),其在误差范围内基本一致。含矿与不含矿岩体的锆石Ce4+/Ce3+比值由高到低依次为:邹家山22.12~68.75(平均值为45.61),云际19.02~43.48(平均值为27.64),七琴7.99~22.03(平均值为15.63),桃溪9.70~22.40(平均值为16.19)。锆石Ti含量温度计结果显示含矿岩体锆石的结晶温度比不含矿岩体的锆石结晶温度相对更高。结合晶格应变模型和锆石Ti温度计,获得前者的绝对氧逸度亦高于后者。本研究发现相山地区含矿火山-侵入岩体中锆石的Ce4+/Ce3+比值普遍大于22,笔者提出锆石氧逸度可以作为判别火山-侵入岩体是否含矿的一个可能指标。此外,含矿与不含矿岩体中全岩铀含量的高低与氧逸度呈明显的正相关,我们推断含矿岩体具有较高的氧逸度可能指示了其岩体母岩浆相应地具有更高的铀含量。综合前人的研究资料,笔者发现含铀岩体的氧逸度明显低于斑岩型铜-钼矿,但与花岗岩型钨矿以及火山岩型银-铅-锌矿类似。因此,氧逸度的相对高低对铜-钼、钨-钼、铀及银-铅-锌赋矿岩体的差异性成矿有明显制约作用,可能还间接反映了地幔物质贡献比例的多少。

    Abstract

    Volcanic-intrusive complexes are widely distributed in South China, and some of them are accompanied by volcanic-related uranium deposits. Therefore, distinguishing between ore-bearing and ore-free rocks has become an important hot topic in the field of ore deposits. This study focuses on examining the composition of trace elements in zircon using LA-ICP-MS, determining the U-Pb ages, and analyzing the characteristics of whole-rock trace elements in both ore-bearing volcanic-intrusive rocks and ore-free intrusive rocks in the Xiangshan area of South China. The results show that the ages of ore-bearing porphyroclastic lava (Zoujiashan) and granite porphyry (Yunji) are 132.8±1.5 Ma and 133.7±1.6 Ma, respectively. Correspondingly, the ages of the ore-free Qiqin and Taoxi granite porphyry are 134.9±1.3 Ma and 133.3±1.3 Ma, respectively. Those ages of the ore-bearing and ore-free plutons are basically synchronous within the error range. The ratios of zircon Ce4+/Ce3+ in the ore-bearing and ore-free rocks range from high to low as follows: Zoujiashan 22.12~68.75 (average 45.61), Yunji 19.02~43.48 (average 27.64), Qiqin 7.99~22.03 (average 15.63), Taoxi 9.70~22.40 (average 16.19). The results obtained from the zircon Ti content thermometer suggest that the zircon crystallization temperature of the ore-bearing rocks is relatively higher than that of the ore-free rocks. Furthermore, when considering the lattice strain model and zircon Ti thermometer, it can be inferred that the absolute oxygen fugacity of the former is also higher than that of the latter. This study indicates that the Ce4+/Ce3+ ratio of zircon in the ore-bearing volcanic-intrusive rock in the Xiangshan area generally exceeds 22. Therefore, we propose that the oxygen fugacity of zircon can be used as a potential indicator to determine whether the rock shows ore-bearing characteristics. Moreover, the uranium content of the whole rock in both the ore-bearing and ore-free rocks shows a significant positive correlation with the oxygen fugacity. This suggests that the high oxygen fugacity of the ore-bearing rocks may indicate a higher uranium content in the parent magma of these rocks. Based on previous research, it is suggested that the oxygen fugacity of uranium-bearing rocks is significantly lower than that of porphyry copper-molybdenum ore deposits, but similar to that of granite-type tungsten ore and volcanic rock-type silver-lead-zinc ore. Therefore, the level of oxygen fugacity serves as an important constraint on the differential mineralization types of Cu-Mo, W-Mo, U, and Ag-Pb-Zn ore-bearing rocks, which may indirectly reflect a substantial contribution from mantle materials.

  • 锆石微量元素地球化学已被广泛应用于地球科学研究中的诸多方面,如①揭示岩浆岩的物理化学性质(结晶温度和氧化还原状态等)(Harrison et al.,2005; Watson et al.,2006; Trail et al.,2012);② 示踪岩浆源区来源及评价岩体含矿性(Shen Ping et al.,2015; Zhang Xiangfei et al.,2017);③ 反演地球早期地壳组成及演化(Turner et al.,2020)。近年来,锆石愈发广泛地应用在岩浆岩及相关矿床的研究中,尤其聚焦在斑岩型矿床方面。其中锆石(Ce/Ce*D、Ce4+/Ce3+、Ce/Nd、δEu值等参数主要用来评估岩浆的相对氧化状态(Ballard et al.,2002; Trail et al.,2012; Chelle-Michou,2014)。结合晶格应变模型和锆石Ti温度计,可以获得岩浆的绝对氧逸度(Trail et al.,2012)。

  • 锆石微量元素数据通常可用来评价岩体的含矿性和预测矿床规模,如利用Ce4+/Ce3+比值和δEu值可作为岩体含矿与否的评判标准(Ballard et al.,2002; 辛洪波等,2008; 胥磊落等,2012)。对于斑岩型矿床而言,学者普遍认为含矿岩体较不含矿岩体的锆石具有较大的Ce4+/Ce3+比值和较小的δEu值(Wang Xinsong et al.,2014)。例如,Xu Leiluo et al. (2012)提出将金沙江-红河成矿带内斑岩的高氧逸度(锆石Ce4+/Ce3+>200)特征作为该成矿带内含矿性的标志。锆石微量元素数据除了可以反映岩浆相对氧逸度的高低,还可以利用锆石Ce异常以及锆石Ti温度计计算岩浆的绝对氧逸度来评估岩体的含矿性及其成矿规模(Trail et al.,2012)。Shen Ping et al.(2015)通过对中亚造山带岩浆氧逸度与斑岩型铜矿床成矿规模的关系,提出大中型矿床氧逸度ΔNNO>2,而小型矿床则ΔNNO<2。Lu Yongjun et al.(2016)统计全球多个地区的成矿和不成矿岩浆岩的锆石微量元素数据,提出锆石的δEu、(Ce/Nd)/Y、Dy/Yb能反映其成矿潜力。基于前人这些研究可以看出,锆石微量元素及其相关的地球化学参数已广泛应用于相关岩体的含矿性评价,且为矿床规模预测提供了科学有效的地球化学指标。

  • 近年来,不同学者在利用锆石微量元素计算氧逸度时,越来越重视锆石微量数据的筛选过程,笔者总结锆石微量元素进行氧逸度计算时可能存在以下问题:① 计算锆石Ce4+/Ce3+比值时,存在单样品锆石Ce4+/Ce3+比值范围极大的不确定(Ballard et al.,2002);② 计算绝对氧逸度时,个别锆石绝对氧逸度数据不合理(FMQ+13)(Zhang Xiangfei et al.,2017);③ 前人在总结世界级斑岩铜矿床岩体的相对氧化状态时,发现赋矿岩体既可高度氧化,又或氧化程度较低(NNO+1~+5)(Zou Xinyu et al.,2019)。这些异常数据的出现可能受到以下因素的影响:① 利用锆石Ce4+/Ce3+和δEu反映氧逸度时,锆石中矿物包裹体对结果的影响(Shen Ping et al.,2015);② 锆石的Eu和Ce异常可能受到榍石和斜长石等矿物结晶分异作用的影响(Loader et al.,2017);③ 锆石Ce4+/Ce3+计算与锆石中的La含量相关,而La含量常常低于LA-ICP-MS的检测限造成其分析误差较大,从而最终影响了锆石Ce4+/Ce3+结果(Zou Xinyu et al.,2019);④ 未筛选掉继承锆石和捕获锆石也会对Ce4+/Ce3+结果产生影响(Zou Xinyu et al.,2019)。因此,以上研究表明岩体中锆石微量元素数据并非都能用来计算当时岩浆氧化还原状态,需要对锆石微量数据进行有效的筛选来避免此类“异常”锆石氧逸度计算结果的出现,从而提高数据的可信度。进而,Zou Xinyu et al.(2019)提出利用参数晶格应变模型偏离系数(δK)来筛除那些偏离晶格应变模型的锆石,以此确保应用锆石氧逸度计的有效性。此外,针对前人利用锆石微量元素计算氧逸度的局限性和较大的误差范围的问题,Robert et al.(2020)提出了一种新的锆石氧逸度计方法,该方法主要依据锆石的Ce、U和Ti的相关比值而不需要测定温度、压力和成分,结果误差范围较小,且与其他方法获得的氧逸度吻合较好。所以,基于严格的数据筛选条件,最终可以获得相对可信的锆石氧逸度,进而可有效约束赋矿母岩的物理化学条件。

  • 综上所述,锆石氧逸度的研究工作已经广泛应用于斑岩Cu-Mo-Au(胥磊落等,2012; 李双等,2013; 古黄玲等,2017; 苏蔷薇等,2021)和花岗岩相关的W-Sn矿床(Dilles et al.,2015; Zhang Wei et al.,2016; 韩丽等,2016; 潘大鹏等,2017),以及与火山岩相关Ag-Pb-Zn矿床(Ma Ying et al.,2022),这些研究工作对于限定赋矿岩体的物理化学条件具有重要意义。华南广泛分布火山-侵入杂岩体,但其中仅有零星火山-侵入杂岩体伴有铀矿床产出。因此,如何区分含铀矿与不含铀矿岩体成为矿床学界关注的重要课题。尽管火山岩型铀矿形成受多因素控制(范洪海等,2003Hu Ruizhong et al.,2008陈正乐等,2013刘斌等,2019Wang Yongjian et al.,2022),但可以看出火山岩的成岩物理化学条件是其中的关键要素之一(杨水源,2013; Wang Yongjian et al.,2022)。本文聚焦华南火山岩型铀矿相关的赋矿母岩,准确限定赋矿母岩岩浆体系的氧逸度和温压等条件,综合对比成矿与不成矿岩体氧逸度的异同,可有效约束成矿与不成矿岩体成岩物理化学条件的差异,进而为有效勘探与火山岩相关铀矿床提供科学的地球化学指标。此外,前人对于火山-侵入岩体相关的铀矿床中锆石氧逸度的研究工作十分缺乏,这严重制约了对火山-侵入岩成铀矿差异性控制机理的认识及找矿勘查部署。为深入探讨锆石氧逸度在相山地区含矿与不含矿岩体中的差异性,本文以相山地区两个含铀矿火山岩和两个不含铀矿火山岩中的锆石为研究对象。利用激光剥蚀等离子质谱(LA-ICP-MS)分析获得微量元素数据,经筛选检验,剔除“异常”锆石微量元素数据。结合全岩微量元素地球化学数据,对含矿与不含矿岩体的锆石结晶温度、相对氧逸度和绝对氧逸度进行对比研究。综合前人已有的研究成果,对比成矿与不成矿火山-侵入岩的物理化学条件,进一步约束相山地区含矿围岩的氧逸度地球化学指标,为火山岩型铀矿赋矿围岩的含矿性评价提供科学依据。

  • 1 地质背景

  • 华南地区大量发育火山-侵入杂岩体,其中相山火山-侵入杂岩体位于北东向赣杭火山岩带的最西端,由于相山火山-侵入杂岩体内发育我国规模最大的火山岩型铀矿而为国内外地质学界所瞩目。相山铀矿田位于江西省抚州市乐安县与崇仁县交界处。大地构造位置位于扬子板块和华夏板块的构造缝合线部位,矿田位于NE向赣杭火山铀成矿带与NNE向大王山-于山花岗岩型铀矿成矿带复合交接部位(图1)。

  • 相山地区的地层具有基底和盖层二元结构: 基底为中元古代—新元古代震旦纪变质岩(胡恭任等,1998),由一套中—浅变质岩组成,主要包括碳质千枚岩及少量角闪岩等。盖层为早白垩世火山盆地产物(杨水源等,2013; 陈正乐等,2013),包括打鼓顶组砂岩、粉砂岩、流纹质晶屑凝灰岩、熔结凝灰岩、流纹英安岩,鹅湖岭组凝灰质粉砂岩、细砂岩、熔结凝灰岩和碎斑熔岩,以及在火山活动晚期沿火山环状断裂侵入的次火山岩。矿区内发育断裂构造,包括EW向的基底断裂构造与NE、NW或NNW向的盖层断裂构造。基底断裂构造主要分布在矿区的北部,如EW向的芜头-沙洲断裂等;盖层断裂构造主要发育于矿区的西部,如NE向的邹家山-石洞、河元背-小陂断裂等(陈正乐等,2013; 窦小平等,2015)。铀矿床主要分布于矿区的西部(河元背、居隆庵、邹家山等)和北部(横涧、云际和沙洲等),矿区的东部和南部有部分铀矿点(图2)。

  • 2 样品描述

  • 本文所研究的样品分别采自相山铀矿集区含矿以及周边不含矿岩体(图2),分别为相山地区邹家山含矿碎斑熔岩(XS72)、云际含矿花岗斑岩(XS60),七琴不含矿花岗斑岩(XS82)、桃溪不含花岗斑岩(XS93)。

  • 云际(XS60)含矿花岗斑岩呈浅肉红色,为斑状或似斑状结构,块状构造(图3a)。斑晶成分主要为长石,石英。其中,石英呈半自形—他形,含量约20%~25%,粒径大小不一,部分颗粒边部被熔蚀呈不规则状;钾长石含量为25%~30%,自形—半自形;斜长石含量为15%~20%,半自形—他形,偶见斜长石发生蚀变;暗色矿物含量约5%~10%,黑云母斑晶呈自形半自形鳞片状,部分发育绿泥石化(图3e),常包裹磁铁矿、锆石和磷灰石等矿物。基质多为隐晶质,矿物成分与斑晶相同。

  • 邹家山(XS72)含矿碎斑熔岩呈浅灰色,斑状或似斑状结构,块状构造(图3b)。斑晶成分主要为石英和长石矿物,石英多为半自形—他形,含量约25%~30%,粒径大小不一,部分边部被熔蚀呈不规则状;斜长石20%~25%,半自形—他形;钾长石含量为15%~20%;暗色矿物主要为黑云母,大多比较新鲜,部分可见绿泥石化,含量约5%~8%。基质十分细小,为隐晶质结构。矿物成分与斑晶成分一致(图3f)。

  • 图1 赣-杭构造带地质简图(据刘斌等,2019修改)

  • Fig.1 Geological map of Gan-Hang tectonic belt (after Liu Bin et al., 2019)

  • 图2 相山铀矿田构造演化示意图(a)和剖面图(b)(据胡志戍等,2019

  • Fig.2 Structural evolution diagram (a) and sectional drawing (b) of the Xiangshan uranium ore-field, South China (after Hu Zhishu et al., 2019)

  • 1 —第四系;2—上白垩统南雄群紫红色砂砾岩;3—下白垩统鹅湖岭组碎斑熔岩;4—下白垩统打鼓顶组凝灰岩;5—上三叠统安源组砂岩;6—下石炭统华岭组砂岩;7—前震旦系变质岩;8—流纹英安斑岩;9—花岗斑岩;10—花岗岩;11—断裂;12—采样位置;A—火山环形构造;B—东、西部差异抬升—剥蚀分界线;C—邹家山-石洞断裂

  • 1 —Quaternary; 2—Upper Cretaceous Nanxiong Group purple sandy conglomerate; 3—Lower Cretaceous Ehuling Formation porphyroclastic lava; 4—Lower Cretaceous Daguding Formation tuff; 5—Upper Triassic Anyuan Formation sandstone; 6—Lower Carboniferous Hualing Formation sandstone; 7—Pre Sinian metamorphic rocks; 8—rhyolite dacite porphyry; 9—granite porphyry; 10—granite; 11—fault; 12—sampling location; A—volcanic ring structure; B—boundary of eastern and western differential uplift-denudation; C—Zoujiashan-Shidong fault

  • 七琴(XS82)不含矿花岗斑岩呈灰白色,斑状或似斑状结构,块状构造(图3c)。斑晶由半自形—他形的石英(10%~20%)、钾长石(25%~30%)、斜长石(20%~35%)。暗色铁镁质矿物较少,约2%~5%,主要为黑云母(图3g)。钾长石主要为透长石,斑晶粒度较大,可达2~3 cm。黑云母斑晶部分具绿泥石化,其中包裹有磷灰石等副矿物。基质颗粒粒径较细,主要由钾长石、斜长石以及石英组成。

  • 桃溪(XS93)不含矿花岗斑岩呈灰白色,斑状结构,块状构造,可见巨大的暗色包体(图3d)。斑晶由半自形—他形的石英(20%~30%)、钾长石(10%~15%)、斜长石(25%~30%)和黑云母(~5%)组成,斜长石斑晶主要为更-拉长石,一般粒径大于0.5 mm。黑云母斑晶均较为新鲜,云母中常见锆石和磷灰石等矿物包裹体在(图3h)。基质为隐晶质结构,矿物成分与斑晶基本一致。

  • 图3 相山及其邻区含矿与不含矿斑岩手标本照片和对应的显微照片

  • Fig.3 Photos and corresponding thin-section photomicrographs (plane-polarized light) of the Xiangshan ore-bearing granite porphyry and surrounding ore-free granite porphyry, South China

  • (a)、(e)—云际(XS60)含矿花岗斑岩标本照片及镜下照片;(b)、(f)—邹家山(XS72)含矿碎斑熔岩标本照片及镜下照片;(c)、(g)—七琴(XS82)不含矿花岗斑岩标本照片及镜下照片;(d)、(h)—桃溪(XS93)不含矿花岗斑岩标本照片及镜下照片;Q—石英;Pl—斜长石;Kfs—钾长石;Bt—黑云母;Apt—磷灰石

  • (a) , (e) —photos and thin-section photomicrographs of the Yunji bearing-ore granite porphyry (XS60) ; (b) , (f) —photos and thin-section photomicrographs of the Zoujiashan bearing-ore porphyroclastic lava (XS72) ; (c) , (g) —photos and thin-section photomicrographs of the Qiqin ore-free granite porphyry (XS82) ; (d) , (h) —photos and thin-section photomicrographs of the Taoxi ore-free granitic porphyry (XS93) ; Q—quartz; Pl—plagioclase; Kfs—K-feldspar; Bt—biotite; Apt—apatite

  • 3 分析方法

  • 本次研究的样品均较为新鲜,实验均在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。在严格避免污染的条件下,对拟测定的全岩样品进行破碎、淘洗和磁选以及重液分离,分离出锆石精样,然后在双目镜下观察所分离锆石的特征(如颜色、透明度、晶型等)。在此基础上,挑选出表面平整光洁,具不同长宽比例、不同柱锥面特征和颜色的锆石颗粒。将挑选的锆石颗粒用环氧树脂胶结,待固结后细磨至锆石颗粒核部出露,抛光成样品靶以待测试。测定前先采用装有阴极发光探头的扫描电镜对抛光后的锆石样品进行阴极发光(CL)照相,便于了解待测锆石的内部结构,并根据其特征来作为选取定年分析点位的依据。其中CL图像实验仪器为JSM-7800F型热场发射扫描电子显微镜加载MonoCL4型阴极发光谱仪采集,电压10 kV,电流10 nA。

  • 选取了内部结构完整和环带清晰的颗粒进行锆石U-Pb定年,测试锆石U-Pb定年所用仪器为Agilent 7900 ICP-MS及与之配套的GeoasPro193 nm激光剥蚀系统。所选测试点大小44 μm,频率~5 Hz,能量4~5 J/cm2。数据处理采用ICP MSDataCal11.0程序完成,U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正(Liu Yongsheng et al.,2010)。清湖锆石QH(159.5±0.2 Ma; Li Xianhua et al.,2013)和Plěsovice锆石(337.13±0.37 Ma;Sláma et al.,2008)作为年龄质控样参与分析。锆石年龄谐和图通过Isoplot 4.0软件绘制获得(Ludwig et al.,1988)。

  • 全岩微量元素使用型号为PlasmaQuant MS Elite的电感耦合等离子体质谱仪(ICP-MS)进行分析。在进行分析测试前首先将样品磨至 200目,样品处理方法如下:① 准确称取50 mg样品于聚四氟乙烯坩埚中,加入1 mL HF和1 mL HNO3,将坩埚放入钢套中密封,置于烘箱于185℃加热32 h,消解样品;② 冷却后取出坩埚,置于低温电热板上蒸干,加入1 mL HNO3继续蒸干完全,最后于坩埚中准确加入200 mg的Rh(铑)内标溶液(配好的内标溶液1 mL)、2 mL HNO3、3 mL去离子水。重新置于钢套中,于140℃加热5 h;③ 冷却后取出坩埚,摇匀。取0.4 mL溶液至15 mL离心管中,定容至10 mL,然后进行ICP-MS测定,样品测定值和推荐值的相对误差小于5%~10%,详细的分析方法见Qi Liang et al.(2000)

  • 4 锆石微量元素数据筛检

  • 由于本研究的对象为含铀矿的赋矿围岩,其中部分锆石微量元素中U含量较高,对于是否适用Robert et al.(2020)提出的锆石氧逸度计方法,还值得商榷。因此,本文主要探讨在晶格应变模型适用条件下锆石微量元素数据反映出的岩浆氧逸度高低。晶格应变模型是锆石微量元素数据计算氧逸度的理论基础(Blundy et al.,1994; Wood et al.,1997)。此模型提出,在一定P-T条件下,熔体中Zr4+的离子半径与所讨论元素离子半径的差异决定了REE3+的锆石/熔体分配系数。但实际应用中的数据常会偏离晶格应变模型。主要原因如下:① Eu和Ce 均为变价元素(Eu有Eu3+和Eu2+,Ce有Ce3+和Ce4+),不同价态的Eu和Ce导致Eu和Ce的锆石/熔体分配系数会偏离REE3+晶格应变模型(Chelle-Michou et al.,2014);② 继承锆石或捕获锆石的微量数据会影响氧逸度计算结果的准确性,因为继承锆石或捕获锆石不是同一期岩浆自然结晶的产物(邱骏挺等,2018);③ 含La包裹体的混入是La偏离晶格应变模型的主因。岩浆岩天然锆石以及晶格应变模型锆石理论La含量的统计结果表明,干净、无包裹体的锆石La≤0.1×10-6,即便含百万分之一(质量比)的独居石都将导致锆石La含量>0.1×10-6Zou Xinyu et al.,2019);④ 先于锆石结晶的富含稀土元素的矿物会引起熔体稀土元素含量的变化,这种变化会影响锆石中稀土元素组成,进而引起晶格应变模型发生偏离(Zou Xinyu et al.,2019)。综上,为了尽量避免“异常”锆石微量元素数据的产生,除在样品测试时要求测点范围内的振荡环带清晰且无裂纹和无包裹体外,还需注意年龄筛选、La含量筛选以及进行晶格应变模型偏离系数检验。

  • 4.1 锆石年龄筛选及结果

  • 为了避免氧逸度计算受继承锆石或捕获锆石数据的影响,需对锆石进行U-Pb年龄的测定。在处理数据过程中,剔除年龄偏大的继承锆石、捕获锆石等非原生锆石数据。本文所研究的样品依据上述原则进行锆石年龄筛选,获得各岩体锆石U-Pb年龄分别为:邹家山含矿碎斑熔岩(XS72)132.8±1.5 Ma(2σ,MSWD=1.7,N=23),云际含矿花岗斑岩(XS60)133.7±1.6 Ma(2σ,MSWD=1.8,N=22);七琴不含矿花岗斑岩(XS82)134.9±1.3 Ma (2σ,MSWD=1.6,N=24),桃溪不含矿花岗斑岩(XS93)133.3±1.3 Ma (2σ,MSWD=2.1,N=24)(图4)。

  • 4.2 锆石La含量筛选

  • 前人研究表明(Ce/Ce*D与锆石La含量有着极强的负相关性(Trail et al.,2012),即锆石中La含量越高,得到氧逸度结果越小,含La包体的混入会造成氧逸度的不准确。所以,筛选干净、无包裹体的“洁净锆石”的过程必不可少。本文样品依据“洁净锆石”化学标准筛选(Zou Xinyu et al.,2019),仅保留La≤0.1×10-6的锆石微量数据(附表1),以最大程度地避免无法识别的微小包裹体带来的影响。

  • 4.3 晶格应变模型偏离系数检验

  • 为了定量检验锆石结晶时熔体的微量元素组成是否等同于全岩的微量元素这一前提条件(Loader et al.,2017; Taylor et al.,2017; Zou Xinyu et al.,2019),前人基于晶格应变模型的研究,定义了晶格应变模型偏离系数“δK”,以此系数来检验全岩微量元素组成是否可视为锆石结晶时熔体的微量元素组成(Zou Xinyu et al.,2019)。晶格应变模型偏离系数方程可以表示为:

  • δK=10000×arctank1-k2/1+k1k2

  • 其中,K1直线为从Nd到Lu的线性拟合直线,K2直线为从Gd到Lu的线性拟合直线。δK≤3被定义为全岩微量元素近似等于熔体微量元素的标志(Zou Xinyu et al.,2019)。利用δK≤3对本次测试的4个样品数据(附表1)进行检验,所获δK值均小于3,表明锆石微量元素与全岩微量元素达到平衡,全岩微量元素含量可以代替熔体微量元素含量。

  • 本次研究的样品依次经过以上三步筛选检验后,仅剩69个合格的锆石微量元素数据(附表1),占总分析点(95点)的72%,剔除率高达28%。如果不剔除这些不符合晶格应变模型的“异常”锆石数据,锆石氧逸度计算结果的准确性势必偏低。

  • 5 锆石微量元素特征

  • 本次四个样品锆石微量元素配分曲线具有明显的左倾趋势(图5),球粒陨石标准化图解表明四个岩体的锆石均富集重稀土而亏损轻稀土,具有明显的正Ce异常和负Eu异常。锆石中Y/Ho比值是指示岩浆和熔体之间是否发生分异的重要参数(张红等,2011),未遭受流体作用的Y/Ho比值范围为24~34(Sun and McDonough,1989),而高的Y/Ho则暗示了锆石受流体作用的影响强烈。文中研究的4个样品Y/Ho比值介于26.9~33.3之间(表2),表明锆石未遭受热液作用。

  • 图4 相山地区含矿与不含矿岩体锆石 LA-ICP-MS U-Pb年龄谐和图(a、c、e、g)及加权年龄图(b、d、f、h)

  • Fig.4 LA-ICP-MS zircon U-Pb concordant age (a, c, e, g) and weighted mean age (b, d, f, h) diagrams of ore-bearing and ore-free rocks in Xiangshan uranium ore-field, South China

  • 5.1 相对氧逸度

  • 当岩浆处于高氧逸度状态时,结晶的锆石具有高的Ce4+/Ce3+比值和偏弱的负Eu异常;反之,当岩浆处于低氧逸度状态时,锆石则会显示低的Ce4+/Ce3+比值和强烈的Eu负异常特征(Ballard et al.,2002),故可以根据结晶锆石微量元素的相关比值判断岩体的相对氧逸度。

  • 5.1.1 锆石(Ce4+/Ce3+)氧逸度计

  • 锆石Ce4+/Ce3+比值可以估算锆石形成时的岩浆相对氧逸度(Ballard et al.,2002; 辛洪波等,2008; 张京渤等,2018)。锆石中的Ce以两种价态(Ce3+和Ce4+)取代Zr4+时,在相对氧化的状态下,以Ce4+的形式为主(Hanchar et al.,2001),即(Ce4+/Ce3+)锆石数值较高。基于以上原理,Ballard et al. (2002)提出可根据锆石的Ce4+/Ce3+比值表示岩浆的相对氧化状态。但是目前的测试手段很难直接测得不同化合价的Ce含量,只能间接计算锆石的Ce4+/Ce3+比值。具体计算过程详见Ballard et al.(2002)辛洪波等(2008)

  • 本文利用晶格应变模型(Blundy et al.,1994; Wood et al.,1997)以及微量元素八倍配位的离子半径值(辛洪波等,2008)(表1)估算了微量元素在锆石-熔体相间的分配系数(图6),经计算(附表1和附表2),(Ce4+/Ce3+锆石结果是:七琴不含矿花岗斑岩为7.99~22.03,平均值15.63;桃溪不含矿花岗斑岩为9.70~22.40,平均值16.19;云际含矿花岗斑岩为19.02~43.48,平均值27.64;邹家山含矿碎斑熔岩为22.12~68.75,平均值45.16。

  • 5.1.2 锆石(EuN/Eu*N)氧逸度计

  • Eu在自然界中也存在Eu2+和Eu3+ 2种价态,在岩浆结晶分异过程中Eu2+大量进入斜长石导致锆石中出现负Eu异常,其程度可用EuN/Eu*N(EuN/Eu*N=EuN/(SmN×GdN1/2)表示(Burnham et al.,2012)。岩浆氧逸度升高的过程中,Eu2+被氧化成Eu3+,导致锆石中Eu负异常程度降低。因此,EuN/Eu*N也可以成为判断岩浆相对氧逸度的标准之一(Trail et al.,2012),但是由于岩浆演化过程中可能同化混染含有斜长石的围岩等原因,锆石EuN/Eu*N比值变化不如Ce4+/Ce3+比值可信度高。

  • 图5 相山地区含矿与不含矿岩体(a~d)锆石稀土元素球粒陨石标准化配分曲线 (球粒陨石标准化值引自Sun and McDonough,1989

  • Fig.5 Chondrite-normalized REE diagram of zircons from ore-bearing and ore-free rocks (a~d) in the Xiangshan uranium ore-field, South China (the normalization values from Sun and McDonough, 1989)

  • 图6 相山地区含矿与不含矿岩体中微量元素在锆石-熔体相间的分配系数对三价 (a、c、e、g)和四价阳离子(b、d、f、h)的晶格应变参数的对数图解

  • Fig.6 Natural logarithm of zircon/rock distribution coefficients plotted vs. a lattice-strain parameter for trivalent (a, c, e, g) and tetravalent cations (b, d, f, h) from ore-bearing and ore-free rocks in the Xiangshan uranium ore-field, South China

  • 其中X=(ri/3+r0/6)(ri-r02;(a)、(b)—七琴不含矿花岗斑岩;(c)、(d)—桃溪不含矿花岗斑岩;(e)、(f)—云际含矿花岗斑岩;(g)、(h)—邹家山含矿碎斑熔岩

  • X= (ri/3+r0/6) (ri-r0) 2; (a) , (b) —Qiqin ore-free granite porphyry; (c) , (d) —Taoxi ore-free granitic porphyry; (e) , (f) —Yunji ore-bearing granite porphyry; (g) , (h) —Zoujiashan ore-bearing porphyroclastic lava

  • 通过上述方法计算EuN/Eu*N比值,结果显示(表2):七琴不含矿花岗斑岩EuN/Eu*N为0.03~0.25,平均值0.13;桃溪不含矿花岗斑岩EuN/Eu*N为0.07~0.28,平均值0.24;云际含矿花岗斑岩EuN/Eu*N为0.24~0.31,平均值0.14;邹家山含矿碎斑熔岩EuN/Eu*N为0.05~0.22,平均值0.11。

  • 表1 微量元素八倍配位的离子半径值(据辛洪波等,2008

  • Table1 Ionic radii of of trace elements as cationseight-fold coordination (after Xin Hongbo et al., 2008)

  • 表2 筛选后锆石微量元素计算的特征数值

  • Table2 Characteristic values of trace elements in zircon after screening

  • 续表2

  • 注:由于部分锆石 La 元素检测值低于检出限,导致 lgfO2无法计算,以“-”表示。

  • 5.1.3 Ce/Nd氧逸度计

  • Chelle-Michou et al. (2014)提出Ce/Nd比值也可作为判断锆石相对氧化状态的特征值,Ce/Nd比值越高表明岩体越氧化。本研究中Ce/Nd结果如下:七琴不含矿花岗斑岩Ce/Nd比值为1.63~16.24,平均值7.22;桃溪不含矿花岗斑岩Ce/Nd为1.88~12.73,平均值4.51;云际含矿花岗斑岩Ce/Nd为4.56~22.86,平均值9.93;邹家山含矿碎斑熔岩Ce/Nd为5.06~15.34,平均值10.33(表2)。

  • 5.2 锆石Ti温度

  • 锆石Ti温度计反映锆石的结晶温度(Ferry et al.,2007)。通过计算,七琴不含矿花岗斑岩温度为705~769℃(平均温度为736℃),桃溪不含矿花岗斑岩温度为640~716℃(平均温度为685℃);而云际含矿花岗斑岩温度为748~800℃(平均温度为771℃),邹家山含矿碎斑熔岩温度为706~767℃(平均温度为739℃)(图7,表2)。表明相山地区含矿岩体锆石结晶温度要高于不含矿岩体。

  • 5.3 绝对氧逸度

  • Ce异常与温度呈负相关,可以用以下经验方程表示(Trail et al.,2012):

  • 图7 相山地区含矿与不含矿岩体锆石结晶温度对比

  • Fig.7 Comparison of zircon crystallization temperature between ore-bearing and ore-free rocks in the Xiangshan uranium ore-field, South China

  • lnCe/Ce*CHUN= (0.1156±0.0050) ×lnfO2+ (13860±708) /T- (6.125±0.48)

  • 式中,fO2为氧逸度,T为温度,单位为K(T可通过锆石中的Ti温度计求得)。(Ce/Ce*CHUN=(Ce锆石/(La锆石×Pr锆石1/2)/(Ce球粒陨石/(La球粒陨石×Pr球粒陨石1/2)。lgfO2结果:七琴不含矿花岗斑岩为-10.9~-19.1,平均值-14.2;桃溪不含矿花岗斑岩为-15.1~-23.6,平均值-19.3;云际含矿花岗斑岩为-8.7~-16.3,平均值-12.5;邹家山含矿碎斑熔岩为-9.1~-15.5,平均值-13.2(表2)。

  • 6 讨论

  • 6.1 含矿与不含矿岩体的岩浆氧逸度特征

  • 铀在硅酸盐岩浆中具有强不相容性,难以进入硅酸盐矿物。在岩浆结晶分异晚期,铀主要以U4+进入铀矿物(晶质铀矿)或含铀副矿物(如锆石和独居石),出现在岩石中(Friedrich et al.,1987)。此时,岩浆分异出热液的氧逸度达不到六价铀稳定存在的条件(Langmuir,1978; 凌洪飞,2011),即使岩浆富铀并能分异出岩浆热液,但岩浆中的铀也难以大规模转入热液,从而很难形成岩浆热液铀矿床(Cuney,2009; 凌洪飞,2011)。事实上,绝大多数火山岩型铀矿通常被认为是在火成岩侵位后,由后期热液流体将赋矿围岩中的铀活化-迁移并富集成矿(王德滋等,1994Chabiron et al.,2003; Hu Ruizhong et al.,2008; 凌洪飞,2011; Li Xiaofei et al.,2015)。因而,赋矿火山岩常被认为是火山岩型铀矿的主要铀源岩,该观点已基本达成共识(Chabiron et al.,2003; 孙占学,2004胡瑞忠等,2007; 凌洪飞,2011; 张成江等,2012)。所以,火山岩型铀矿床属于典型的后生热液矿床,成岩成矿作用往往存在矿岩时差(Hu Ruizhong et al.,2008)。因此,限定赋矿围岩岩浆体系的氧逸度和温压等条件,可有效约束成矿与不成矿岩体成岩物理化学条件的差异,进而为有效勘探与火山岩相关铀矿床提供科学的地球化学指标。

  • 本文尝试运用Ce4+/Ce3+比值来探讨岩浆氧逸度对火山岩型铀矿赋矿围岩成矿潜力的评估。研究发现,含矿岩体具有较高的Ce4+/Ce3+和Ce/Nd比值,其中云际含矿花岗岩和邹家山含矿碎斑熔岩均具有高的Ce4+/Ce3+(Ce4+/Ce3+分别为19.02~43.48和22.12~68.75),七琴和桃溪不含矿花岗斑岩(Ce4+/Ce3+分别为7.99~22.03和 9.70~22.40)(图8)。据此,笔者提出相山地区火山-侵入岩体的氧逸度特征(Ce4+/Ce3+>22)可以作为初步判别是否成矿的指标。

  • 云际含矿花岗斑岩锆石氧逸度值lgfO2范围在-8.7-~16.3之间(平均值-12.5),主要分布在MH(磁铁矿-赤铁矿缓冲剂)与NNO(镍-镍氧化物缓冲剂)之间,极少部分在MH以上;邹家山含矿碎斑熔岩锆石氧逸度值lgfO2范围为-9.1~-15.5(平均值-10),主要分布在MH(磁铁矿-赤铁矿缓冲剂)与NNO (镍-镍氧化物缓冲剂)之间,较少落在MH以上,表明相山地区含矿岩体具有相对较高的氧逸度(图9)。在lgfO2-T图中,云际含矿花岗斑岩与采石场邹家山含矿碎斑熔岩具有相似的氧逸度条件,即相对高的氧逸度环境。七琴不含矿花岗斑岩锆石氧逸度值lgfO2范围为-10.9~-19.1(平均值-14.2),主要分布MH与FMQ(铁橄榄石-磁铁矿-石英缓冲剂)之间;桃溪不含矿花岗斑岩锆石氧逸度值lgfO2范围为-15.1~-23.6(平均值-19.3),在lgfO2-T图上主要分布NNO与IW(铁-方铁矿缓冲剂)之间。以上表明,相山地区不含矿岩体氧逸度总体低于含矿岩体的氧逸度。

  • 图8 相山地区含矿与不含矿岩体中锆石Ce4+/Ce3+ 比值与Ce/Nd比值关系图

  • Fig.8 Zircon Ce4+/Ce3+ ratio vs. Ce/Nd ratio of ore-earing and ore-free rocks in the Xiangshan uranium ore-field, South China

  • 前述研究表明,相山火山岩型铀矿床属于典型的后生热液矿床,且由后期热液流体将赋矿围岩中的铀活化-迁移并富集成矿(范洪海等,2005; Hu Ruizhong et al.,2008; 杨水源,2013; 刘斌等,2019; Wang Yongjian et al.,2022)。因而,赋矿火山岩常被认为是火山岩型铀矿的主要铀源岩(Chabiron et al.,2003; 胡瑞忠等,2007; 凌洪飞,2011; 张成江等,2012; Li Xiaofei et al.,2015)。本文研究结果显示含矿岩体相对不含矿岩体中具有更高的氧逸度,尽管锆石中铀含量的高低与岩体的氧逸度高低无明显的对应关系(图10a),但是笔者发现所研究的含矿与不含矿岩体中全岩铀含量的高低与氧逸度呈明显的正相关性(图10b)。基于此,笔者推断含矿岩体具有较高的氧逸度可能指示了岩体母岩浆具有较高的铀含量;且富铀岩体更可能成为铀源岩为后期热液流体从富铀围岩中萃取出铀进而成矿。这一推断也与前人认为相山赋矿火山岩为铀的成矿物质来源认识一致(范洪海等,2003; Chabiron et al.,2003; Hu Ruizhong et al.,2008; Li Xiaofei et al.,2015)。

  • 图9 相山地区含矿与不含矿岩体lgfO2-T (底图据 Eugster et al.,1962

  • Fig.9 lgfO2-T of ore-bearing and ore-free rocks in the Xiangshan uranium ore-field, South China (after Eugster et al., 1962)

  • MH—磁铁矿-赤铁矿缓冲剂;NNO—镍-镍氧化物缓冲剂;FMQ—铁橄榄石-磁铁矿-石英缓冲剂;WM—方铁矿-磁铁矿缓冲剂;IW—铁-方铁矿缓冲剂;QIF—铁-石英-铁橄榄石缓冲剂

  • MH—magnetite-hematite buffer; NNO—Ni-Ni oxide buffer; FMQ—fayalite-magnetite-quartz buffer; WM—wustite-magnetite buffer; IW—Fe-wustite buffer; QIF—Fe-quartz-fayalite buffer

  • 综上所述,本文所研究岩体的锆石氧逸度特征为:邹家山含矿碎斑熔岩>云际含矿花岗斑岩>七琴不含矿花岗斑岩>桃溪不含矿花岗斑岩。基于此,笔者初步推断含矿岩体相对不含矿岩体具有更高的氧逸度,锆石中的铀含量与氧逸度高低并无明显对应关系(图10a),但全岩中U含量的高低与氧逸度呈明显的正相关性(图10b)。因此,笔者提出锆石氧逸度特征(Ce4+/Ce3+>22)可以作为判断火山-侵入岩体是否具有含铀矿化的有利指标,且赋矿母岩具有较高的氧逸度特征时可能对应岩体含有较高的U含量。

  • 6.2 含铀岩体与铜-钼、钨-钼及银-铅-锌赋矿岩体的氧逸度对比

  • 岩浆氧逸度是控制斑岩矿床成矿的重要因素。目前为止,已有大量关于斑岩矿床的赋矿岩体锆石氧逸度的研究。结合前人对铜-钼、钨-钼及银-铅-锌赋矿岩体氧逸度的研究工作,本文通过对相山火山岩型铀矿与典型铜-钼、钨-钼及银-铅-锌赋矿岩体的氧逸度进行对比(图11),显示相山火山岩型铀矿床中赋矿火山岩的锆石Ce4+/Ce3+和Eu/Eu*值远低于德兴斑岩型铜矿床及普朗铜矿;与斑岩型铜矿床相比,相山赋矿火山岩相对还原。此外,相山赋矿火山岩氧逸度也低于斑岩型钼矿的赋矿岩体(如大别造山带沙坪沟钼矿),而与江西石门寺钨矿和福建火山-侵入岩相关的寨坪银-铅-锌赋矿岩体的氧逸度类似(Ballard et al.,2002; 张红等,2011; 潘大鹏等,2017; Ma Ying et al.,2022),说明相山火山岩型铀矿含矿母岩与斑岩铜-钼、钨-钼及火山岩型银-铅-锌赋矿岩体的氧逸度对比,具有相对较低的氧逸度。

  • 前人对斑岩有关的铜与钼、钨钼矿与钼矿差异性成矿的控制因素也进行了相关探讨,主要体现在源区特征和构造背景等(张红等,2011; Kong Dexin et al.,2016; 潘大鹏等,2017; Gao Xue et al.,2017; Dong Pengsheng et al.,2020; 李守奎等,2021)。德兴斑岩型铜矿成矿岩体具有较高的εNdt)值、低的TDM和极低的87Sr/86Sr比值(Wang Qiang et al.,2004),暗示了幔源物质在德兴斑岩型铜矿成矿岩体的形成中发挥了重要的作用。普朗超大型铜矿成矿斑岩锆石εHft)值为-1.03~3.75(李文昌等,2007Dong Pengsheng et al.,2020),表明地幔组分在成矿斑岩岩浆的形成中具有重要贡献。目前很多学者认为俯冲型斑岩矿床Cu主要源自于地幔(Seedorff et al.,2005Zhang Xiangfei et al.,2017; 陈华勇等,2020)。富钼共生铜的岩体,成矿物质来源以壳源物质为主并有幔源参与,如铜厂沟钼-铜矿的成矿斑岩体(李文昌等,2012; 刘学龙等,2017)。而富钼贫或无铜岩体岩浆来源单一,为壳源(俞一凡等,2016; 刘学龙等,2017)。钨作为一种不相容性极强的亲石元素,在地幔中亏损,在地壳中富集(Arevalo et al.,2008)。大湖塘富钨花岗斑岩的εNdt)值变化于-8.20~-7.45之间,εHft)值为-8.23~-2.43,两阶段的模式年龄为TDMC=1677~1312 Ma,表明花岗斑岩是早中元古代地壳物质重熔的产物(黄兰椿等,2013);石门寺含矿斑岩辉钼矿Re的含量为334.4×10-9~22600×10-9,说明成矿物质来源以地壳为主(项新葵等,2013)。李守奎等(2021)提出无论是俯冲型斑岩铜矿(如普朗)还是碰撞型斑岩(共伴生)铜矿(如铜厂沟钼-铜矿),其成矿岩体的岩浆来源均有一定比例的地幔贡献,且随着幔源贡献比例的下降,成矿元素组合发生明显变化,由“以铜为主”逐渐变化为“以钼为主”,即:铜→铜-钼→钼-铜;而较少或无幔源成分参与成矿时,即赋矿岩体的岩浆来源为壳源,矿种则主要为钨(钼)矿。结合锆石Ce4+/Ce3+与EuN/Eu*N关系图,可以看出典型斑岩型铜-钼矿的赋矿岩体具有更高的氧逸度,而钨钼矿具有相对低的氧逸度(图11)。因此,氧逸度的高低间接反映了地幔物质贡献比例的多少。

  • 图10 相山地区含矿与不含矿岩体锆石U-Ce4+/Ce3+(a)和全岩U含量对比图(b)(图例同图8)

  • Fig.10 Comparison of zircon U vs. Ce4 +/Ce3 + (a) and whole rock U content (b) between ore-bearing and ore-free rock in the Xiangshan uranium ore-field, South China (illustration with Fig.8)

  • 相山地区流纹斑岩、流纹英安岩、碎斑熔岩、花岗斑岩等全岩Sr-Nd同位素均具有较低的εNdt)值,表明相山火山-侵入杂岩主要是陆壳(基底变质岩)部分熔融的产物(沈渭洲等,1992; 段芸等,2001; 范洪海等,2001; Yang Shuiyuan et al.,2013; Wang Yongjian et al.,2022)。花岗斑岩锆石εHft)值为-10.3~-6.3,对应的TDMC模型年龄为1.8~1.6 Ga;全岩εNdt)值范围为-8.33~-7.55,对应的TDMC模型年龄为1.6~1.5 Ga(Yang Shuiyuan et al.,2011)。这表明花岗斑岩起源于古老的地壳物质重熔,无明显地幔物质的加入。近来,新报道的福建寨坪火山-侵入杂岩体相关银-铅-锌赋矿岩体(133~132 Ma),锆石εHft)值在-18.5~-8.3,全岩εNdt)值为-11.6~-10.4,表明赋矿岩体源区主要为元古代变质基底(Ma Ying et al.,2022)。综上所述,相山赋矿火山岩主要是陆壳部分熔融的产物,并无明显地幔物质的加入,而相山赋矿火山岩的氧逸度相对较低,这再次证明氧逸度的高低可能也间接反映了地幔物质贡献比例的多少。

  • 7 结论

  • (1)相山铀矿区内含矿云际花岗斑岩和邹家山碎斑熔岩年龄分别为133.7±1.6 Ma和 132.8±1.5 Ma;邻区不含矿花岗斑岩七琴和桃溪岩体的年龄分别为134.9±1.3 Ma和133.3±1.3 Ma,表明四个岩体可能为同一期次岩浆作用事件的产物。

  • (2)经过严格数据筛选,计算结果表明氧逸度高低顺序为:邹家山含矿碎斑熔岩>云际含矿花岗斑岩>七琴不含矿花岗斑岩>桃溪不含矿花岗斑岩。表明火山-侵入杂岩体的氧逸度特征(Ce4+/Ce3+>22)可以初步作为判别是否具有成铀矿潜力的一个潜在指标;赋矿母岩具有较高的氧逸度特征时可能对应岩体含有较高的U含量。

  • (3)通过对斑岩铜-钼、钨钼矿岩体以及火山岩型银-铅-锌、铀矿赋矿岩体的氧逸度以及源区物质对比,相山火山岩型铀矿含矿岩体氧逸度明显低于斑岩铜-钼、钨钼矿岩体的氧逸度,与斑岩型钨矿以及火山岩型银-铅-锌矿岩体氧逸度相似,并且氧逸度的高低可能也间接反映了地幔物质贡献的比例。

  • 图11 各矿区岩体中锆石 Ce4+/Ce3+与 EuN/Eu*N关系 (据Trail et al.,2012修改)

  • Fig.11 Relationship between zircon Ce4+/Ce3+ vs. EuN/Eu*N in rock of each mining area (modified after Trail et al., 2012)

  • 智利北部含矿斑岩集中分布区、普朗铜矿分布区、德兴铜矿分布区数据来源于李守奎等(2021);沙坪沟钼矿分布区数据来源于张红等(2011);石门寺钨矿分布区数据来源于潘大鹏等(2017);寨坪银铅锌矿分布区数据来源于Ma Ying et al.(2022)

  • The data of ore-bearing porphyryfrom the northern Chile, the Pulang and Dexing Cu ore-field from Li Shoukui et al. (2021) ; the data of the Shapinggou Mo deposit from Zhang Hong et al. (2011) ; the data of the Shimensi tungsten deposit from Pan Dapeng et al. (2017) ; the data of the Zhaiping silver-lead-zinc deposit from Ma Ying et al. (2022)

  • 致谢:野外工作得到东华理工大学张夏楠和尹硕老师等人的帮助,在此表示真诚的感谢,并感谢两位匿名审稿人以及编辑老师对文章提出的建设性修改意见!

  • 附件:本文附件(附表1、2)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202401090?st=article_issue

  • 参考文献

    • Arevalo J R, Mc Donough W F. 2008. Tungsten geochemistry and implications for understandingthe earth's interior. Earth and Planetary Science Letters, 272(3): 656~665.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372: 452~454.

    • Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon andmelt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95: 196~212.

    • Cao Mingjian, Qin Kezhang, Li Guangming, Noreen J E, Brent I A M, Li Jinxiang, Zhao Junming. 2017. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, central Lhasa subterrane, Tibet. Mineralium Deposita, 53(3): 1~11.

    • Chabiron A, Cuney M, Poty B. 2003. Possible uranium sources for the largest uranium district associated with volcanism: The Streltsovka caldera (Transbaikalia, Russia). Mineralium Deposita, 38: 127~140.

    • Chelle-Michou C, Chiaradia M, Ovtcharova M. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198: 129~140.

    • Chen Huayong, Wu Chao. 2020. Metallogenic mechanism and main challenges of porphyry copper system in subduction zone. Chinese Science: Earth Science, 50(7): 865~886 (in Chinese with English abstract).

    • Chen Zhengle, Wang Yong, Zhou Yonggui. 2013. Zircon SHRIMP dating of Xiangshan volcanic-intrusive complex and its geological significance. China Geology, 40(1): 217~231 (in Chinese with English abstract).

    • Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust. Geology, 34(8): 633~636.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44: 3~9.

    • Cuney M, Friedrich M. 1987. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenies. Bulletin de Mineralogie, 110: 235~247.

    • Dilles J H, Kent A J R, Wooden J L, Tosdal R M, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1): 241~251.

    • Dong Pengsheng, Dong Guochen, Sun Zhuanrong, Li Huawei, Tang Jiahui, Zhu Hongyun. 2020. Late Triassic porphyries in the Zhongdian Arc, eastern Tibet: Origin and implications for Cu mineralization. Geological Magazine, 157(2): 275~288.

    • Dou Xiaoping, Shi Yanhua, Wu Zanhua. 2015. Research on structural ore-controlling regularity of Xiangshan uranium ore field in Jiangxi Province. Geology and Exploration, 51(5): 879~887.

    • Duan Yun, Zhao Lianze, Fan Honghai, Wang Dezi. 2001. REE-geochemistry of Mesozoic volcanic intrusive complex and dark inclusions in Xiangshan District, Jiangxi Province. Geological Journal of China Universities, 7(1): 92~98 (in Chinese with English abstract).

    • Eugster H P, Wones D R. 1962. Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3: 82~125.

    • Fan Honghai, Ling Hongfei, Wang Dezi, Shen Weizhou, Liu Changshi, Jiang Yaohui. 2001. Ore-forming material sources for Xiangshan uranium ore-field in Jiangxi Province: Evidence from Nd-Sr-Pb isotopes. Geological Journal of China Universities, 7(2): 139~144 (in Chinese with English abstract).

    • Fan Honghai, Ling Hongfei, Wang Dezi, Liu Changshi, Shen Weizhou, Jiang Yaohui. 2003. Study on metallogenetic mechanism of Xiangshan uranium ore-field. Uranium Geology, 19(4): 208~213 (in Chinese with English abstract).

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Friedrich M, Cuney M, Poty B. 1987. Uranium geochemistry in peraluminous leucogranites. Uranium, (3): 353~385.

    • Gao Xue, Yang Liqiang, Meng Jianyin, Zhang Lejun. 2017. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, northwest Yunnan, China. Ore Geology Reviews, 91: 945~962.

    • Gu Huangling. 2017. Relationship between Yanshanian magmatism and Cu (Mo) Au mineralization in Guichi ore concentration area, Middle and lower reaches of Yangtze River. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Hanchar M, Clive R, Jinesh C. 2001. Problems associated with the determination of rare earth elements of a “gem” quality zircon by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 25(3): 229~237.

    • Han Li, Huang Xiaolong, Li Jie, He Pengli, Yao Junming. 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China. Acta Petrologica Sinica, 32(3): 746~758 (in Chinese with English abstract).

    • Harrison T M, Watson E B. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020. Further discussion on porphyry Cu-Mo-Au deposit formation in mainland China Earth Science Frontiers, 27(2): 20~44.

    • Hu Gongren, Zhang Bangtong, Wang Xiangyun. 1998. Mineralogy, petrology characteristic and isotopic geochemistry of the Proterozoic amphibolite in Xiangshan, central Jiangxi. Geochemistry, (3): 217~229(in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenies in South China. Mineral Deposits, 26(2): 139~152(in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchang, Liu Shun, Qi Hongwei. 2008. Uranium metallogenies in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103: 583~598.

    • Hu Zhishu, Li Ye, Cai Minghai, Shao Zhuzhu, Zhang Han, Liu Jiaxing, Wei Shaocheng. 2019. Wall rock alteration and ore-forming fluid characteristics of Xiangshan uranium ore field. Mineral Exploration, 10(8): 1852~1862(in Chinese with English abstract).

    • Huang Lanchun, Jiang Shaoyong. 2013. Geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4323~4335 (in Chinese with English abstract).

    • Idris A M. 2019. Between-bottle homogeneity test of new certified reference materials employing wavelength dispersive X-ray fluorescence spectrometry. BMC Chemistry, 20(1): 13~23.

    • Kong Dexin, Xu Jifeng, Chen Jianlin. 2016. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system: Implications for Late Triassic metallo-genesis within the Yidun terrane, southeastern Tibetan Plateau. Chemical Geology, 441: 148~161.

    • Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42: 547~569.

    • Li Shoukui, Liu Xuelong, Lu Yingxiang, Zhang Shitao, Liu Sihan, Chen Jianhang, Li Zhenhuan, Yu Haijun, Zhang Chuanyu. 2021. Indication of zircon oxygen fugacity to the differential metallogenic controlling factors of porphyry deposits in Zhongdian ore concentration area in the southern section of Yidun island arc. Geoscience, 47(4): 1435~1458 (in Chinese with English abstract).

    • Li Shuang, Sun Saijun, Yang Xiaoyong, Sun Weidong. 2013. Petrological geochemistry and chronology of ore-bearing intrusion in Wuxi porphyry gold deposit, in south Anhui Province. Geotectonica et Metallogenia, 39(1): 153~166 (in Chinese with English abstract).

    • Li Wenchang, Zeng Pusheng. 2007. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. Journal of Chengdu University of Technology, 34(4): 436~446 (in Chinese with English abstract).

    • Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2): 282~292 (in Chinese with English abstract).

    • Li Xianhua, Tang Guoqiang, Gong Bing, Yang Yueheng, Hou Kejun, Hu Zhaochu, Li Qiuli, Liu Yu, Li Wuxian. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647~4654.

    • Li Xiaofei, Wang Guo, Mao Wei, Wang Chunzeng, Xiao Rong, Wang Mou. 2015. Fluid inclusions, muscovite Ar-Ar age, and fluorite trace elements at the Baiyanghe volcanic Be-U-Mo deposit, Xinjiang, Northwest China: Implication for its genesis. Ore Geology Reviews, 64: 387~399.

    • Ling Hongfei. 2011. Origin of hydrothermal fluids of granite-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 194~206(in Chinese with English abstract).

    • Liu Bin, Chen Weifeng, Fang Qichun, Mao Yufeng, Tang Xiangsheng, Yan Yongjie, Wei Xing, Ling Hongfei. 2019. Characteristics of ore-forming fluid in Xiangshan uranium ore field: Geochemical evidence from trace and rare earth elements. Acta Petrologica Sinica, 35(9): 2774~2786(in Chinese with English abstract).

    • Liu Xuelong, Li Wenchang, Yang Fucheng. 2017. Zircon U-Pb age, Hf isotope composition and tectonic significance of the two-stage magmatism in the Huwa Mo-W-Cu deposit, Gezan Island, Yunnan Province. Acta Geologica Sinica, 91(4): 849~863(in Chinese with English abstract).

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallization on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.

    • Lu Yongjun, Loucks R R, Fiorentini M. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. In: Society of Economic Geologist Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, 329~347.

    • Ludwig K R. 1988. Isoplot for MS-DOS, a plotting and regression program for radiogenic isotope data for IBM-PC compatible computers, Version. USGS Open-File Report, 557~588.

    • Ma Ying, Jiang Shaoyong, Hartwig E F, Duan Ruichun, Zhu Lüyun, Chen Runsheng. 2022. Ageand fluid source of the sub-volcanic Zhaiping Ag-Pb-Zn deposit in the eastern Cathaysia Block (Fujian Province, southeastern China). Mineralium Deposita, 19(3-4): 351~383.

    • Pan Dapeng, Wang Di, Wang Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits. Geology in China, 44(1): 118~135 (in Chinese with English abstract).

    • Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51(3): 507~513.

    • Qiu Junting. 2018. Research on the wide domain problem of zircon magma oxygen fugacity calculation. Doctoral dissertation of China University of Geosciences (Beijing).

    • Robert R L, Marco L F, Gonzalo J H. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, (30): 1~29.

    • Seedorff E, Diles J H, Proffett J M. 2005. Porphyry deposits: Characteristics and hypogene features. Economic Geology, 100th Anniversary Volume: 251~298.

    • Shen Ping, Hattori K, Pan Hongdi. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the central Asian orogenic belt. Economic Geology, 110(7): 1861~1878.

    • Shen Weizhou, Chen Fanrong, Liu Changshi, Wang Dezi. 1992. Isotopic geochemical characteristics and source materials of two types of volcano-intrusive complex in Jiangxi Province. Acta Petrologica Sinica, 8(2): 177~184 (in Chinese with English abstract).

    • Sláma J, Kosler J, Condon D J. 2008. PleSovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Su Qiangwei, Mao Jingwen, Song Shiwei, Wang Xunjun. 2021. Zircon U-Pb ages, Hf isotope and trace element characteristics of ore-related intrusions in Yongping Cu-W deposit, Jiangxi and their geological significance. Mineral Deposits, 40(6): 1199~1213 (in Chinese with English abstract).

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society London Special Publications, (42): 528~548.

    • Sun Zhanxue. 2004. Geochemical evidence of uranium source in Xiangshan uranium ore field. Journal of Mineralogy, 24 (1): 19~24.

    • Taylor R J M, Clark C, Harley S L, Kylander-Clark A R C, Hacker B R, Kinny P D. 2017. Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 35(7): 759~775.

    • Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magma. Geochimica et Cosmochimica Acta, 97: 70~87.

    • Turner S, Wilde S, Wörner G. 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the hadean. Nature Communications, 11(1): 1241.

    • Wang Dezi, Liu Changshi, Shen Weizhou, Chen Fanrong. 1994. S-type volcanic complex and mineralization in South China, Jiangxi Province. Journal of Nanjing University (Natural Sciences Edition), 30(2): 322~333 (in Chinese with English abstract).

    • Wang Qiang, Zhao Zhenhua, Jian Ping, Xu Jifeng, Bao Zhiwei, Ma Jinlong. 2004. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries. Acta Petrologica Sinica, 20(2): 315~324 (in Chinese with English abstract).

    • Wang Xinsong, Hu Ruizhong, Bi Xianwu. 2014. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202~219.

    • Wang Yongjian, Nie Jiangtao, Lin Jinrong, Wang Hongzuo. 2022. Geochronology and geochemistry of the felsic-intermediate dikes from Xiangshan uranium ore field, South China: Implications for petrogenesis, tectonic setting and uranium mineralization. Mineralogy and Petrology, 116(4): 287~310.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy & Petrology, 151(4): 412~415.

    • Wood B J, Blundy J D. 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology, 129(2-3): 166~181.

    • Xia Linqi, Xia Zuchun, Zhang Cheng, Clochiatti R, Dardel J, Joron J L. 1992. Geochemistry of Mesozoic Uranium-bearing Volcanic Complexes in Xiangshan. Beijing: Geological Publishing House, 1~97.

    • Xiang Xinkui, Wang Peng, Sun Deming, Zhong Bo. 2013. Re-Os isotopic age ofmolybdenite from the Shimensi tungsten polymetallic deposit in northern Jiangxi Province and its geological implications. Geological Bulletin of China, 32(11): 1824~1831(in Chinese with English abstract).

    • Xin Hongbo, Qu Xiaoming. 2008. Relative oxidation state of ore-bearing intrusions in the Gangdese porphyry copper belt, Tibet: Constraints from zircon Ce(IV)/Ce(III) ratios. Mineralogical Journal, 28(2): 152~160(in Chinese with English abstract).

    • Xu Leiluo, Bi Xianwu, Chen Youwei, Qi Youqiang. 2012. Zircon Ce4+/Ce3+ ratios of the Tongchang intrusions in Jinping Country, Yunnan Province: Implications for mineralization. Acta Mineralogica Sinica, 74(9): 74~82 (in Chinese with English abstract).

    • Yang Shuiyuan. 2013. The genetic mechanism and dynamic background of magmatic rocks in uranium-bearing volcanic basins in the Gan-Hang tectonic belt, South China. Doctoral dissertation of Nanjing University.

    • Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2011. Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1-2): 21~48.

    • Yang Shuiyuan, Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Fan Honghai. 2012. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of the rhyolite porphyry from the Zhoujiashan deposit in Xiangshan uranium ore field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915~3928 (in Chinese with English abstract).

    • Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2013. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411~1426.

    • Yu Yifan, Fei Guangchun, Li Youguo. 2016. Oxygen fugacity characteristics and metallogenic significance of rock mass in Lannitang porphyry copper deposit, Zhongdian island arc, Yunnan. Mineral Rocks, 36(1): 28~36 (in Chinese with English abstract).

    • Zhang Chenjiang, Wang Guo, Chen Fenxiong. 2012. Preliminary study on differentiation characteristics of U-beryllium-Mo symbiosis in Baiyanghe deposit, Xinjiang Province. Mineral Deposit Geology, 31(10): 237~238 (in Chinese with English abstract).

    • Zhang Hong, Sun Weidong, Yang Xiaoyong. 2011. Chronology and metallogenic mechanism of the Shapinggou superlarge porphyry molybdenum deposit in the Dabie orogenic belt. Geological Journal, 85(12): 2039~2059(in Chinese with English abstract).

    • Zhang Jingbo, An Fang. 2018. Summarization of research methods for the oxidation state of ore-forming porphyry magma in porphyry copper deposits. Deposit Geology, 37(5): 1052~1064(in Chinese with English abstract).

    • Zhang Wei, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82~96.

    • Zhang Xiangfei, Li Wenchang, Yin Guanghou. 2017. Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo Mining District, NW Yunnan, China: Constraints by geochronology, oxygen fugacity and geochemistry. Acta Petrologica Sinica, 33(7): 2018~2036 (in Chinese with English abstract).

    • Zou Xinyu, Qin Kezhang, Han Xinlei, Li Guangming, Noreen J E, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.

    • 陈华勇, 吴超. 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865~886.

    • 陈正乐, 王永, 周永贵. 2013. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义. 中国地质, 40(1): 217~231.

    • 窦小平, 时燕华, 吴赞华. 2015. 江西相山铀矿田构造控矿规律研究. 地质与勘探, 51(5): 879~887.

    • 段芸, 赵连泽, 范洪海, 王德滋. 2001. 江西相山火山-侵入杂岩及其包体稀土元素地球化学. 高校地质学报, 7(1): 92~98.

    • 范洪海, 凌洪飞, 王德滋, 沈渭洲, 刘昌实, 姜耀辉. 2001. 江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据. 高校地质学报, 7(2): 139~144.

    • 范洪海, 凌洪飞, 王德滋, 刘昌实, 沈渭洲, 姜耀辉. 2003. 相山铀矿田成矿机理研究. 铀矿地质, 19(4): 208~213.

    • 范洪海, 王德滋, 沈渭洲, 刘昌实, 汪相, 凌洪飞. 2005. 江西相山火山-侵入杂岩及中基性脉岩形成时代研究. 地质论评, 51(1): 86~91.

    • 古黄玲. 2017. 长江中下游贵池矿集区燕山期岩浆作用与铜(钼)金成矿关系研究. 中国科学技术大学博士学位论文.

    • 韩丽, 黄小龙, 李洁, 贺鹏丽, 姚军明. 2016. 江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示. 岩石学报, 32(3): 746~758.

    • 胡恭任, 章邦桐, 王湘云. 1998. 赣中相山元古宙斜长角闪岩的矿物学、岩石学特征及同位素地球化学研究. 地球化学, (3): 217~229.

    • 胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.

    • 胡志戍, 李晔, 蔡明海, 邵主助, 张含, 刘嘉兴, 韦绍成. 2019. 相山铀矿田围岩蚀变及成矿流体特征. 矿产勘查, 10(8): 1852~1862.

    • 黄兰椿, 蒋少涌. 2013. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究. 岩石学报, 29(12): 4323~4335.

    • 李守奎, 刘学龙, 卢映祥, 张世涛, 刘思晗, 陈建航, 李振焕, 余海军, 张传昱. 2021. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435~1458.

    • 李双, 孙赛军, 杨晓勇. 2013. 皖南乌溪斑岩型金矿床赋矿侵入岩体的岩石地球化学及年代学研究. 大地构造与成矿学, 39(1): 153~166.

    • 李文昌, 曾普胜. 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436~446.

    • 李文昌, 余海军, 尹光侯, 曹晓明, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282~292.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 刘斌, 陈卫锋, 方启春, 毛玉锋, 唐湘生, 严永杰, 魏星, 凌洪飞. 2019. 相山铀矿田成矿流体特征: 来自微量、稀土元素地球化学证据, 35(9): 2774~2786.

    • 刘学龙, 李文昌, 杨富成. 2017. 云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义. 地质学报, 91(4): 849~863.

    • 潘大鹏, 王迪, 王孝磊. 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义. 中国地质, 44(1): 118~135.

    • 邱骏挺. 2018. 锆石岩浆氧逸度计算的宽域问题研究. 中国地质大学(北京)博士学位论文.

    • 沈渭洲, 陈繁荣, 刘昌实, 王德滋. 1992. 江西两类火山侵入杂岩的同位素地球化学特征和物质来源. 岩石学报, 8(2): 177~184.

    • 苏蔷薇, 毛景文, 宋世伟, 王训军. 2021. 江西永平Cu-W矿床成矿岩体的锆石U-Pb年龄、Hf同位素、微量元素特征及其意义. 矿床地质, 40(6): 1199~1213.

    • 孙占学. 2004. 相山铀矿田铀源的地球化学证据. 矿物学报, 24(1): 19~24.

    • 王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1994. 华南S型火山杂岩与成矿. 南京大学学报(自然科学版), 30(2): 322~333.

    • 王强, 赵振华, 简平, 许继峰, 包志伟, 马金龙. 2004. 德兴花岗闪长斑岩SHRIMP 锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315~324.

    • 夏林圻, 夏祖春, 张诚, Clochiatti R, Dardel J, Joron J L. 1992. 相山中生代含铀火山杂岩岩石地球化学. 北京: 地质出版社, 1~97.

    • 项新葵, 王朋, 孙德明, 钟波. 2013. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义, 地质通报, 32(11): 1824~1831.

    • 辛洪波, 曲晓明. 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石 Ce(IV)/Ce(III)比值的约束. 矿物学报, 28(2): 152~160.

    • 胥磊落, 毕献武, 陈佑纬, 齐有强. 2012. 云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义. 矿物学报, 74(9): 74~82.

    • 杨水源, 2013. 华南赣杭构造带含铀火山盆地岩浆岩的成因机制及动力学背景. 南京大学博士学位论文.

    • 俞一凡, 费光春, 李佑国. 2016. 云南中甸岛弧烂泥塘斑岩铜矿床岩体氧逸度特征及成矿意义. 矿物岩石, 36(1): 28~36.

    • 张成江, 王果, 陈奋雄. 2012. 新疆白杨河矿床铀-铍-钼共生分异特征初探. 矿床地质, 31(10): 237~238.

    • 张红, 孙卫东, 杨晓勇. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039~2059.

    • 张京渤, 安芳. 2018. 斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述. 矿床地质, 37(5): 1052~1064.

    • 张向飞, 李文昌, 尹光侯. 2017. 滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束. 岩石学报, 33(7): 2018~2036.

  • 参考文献

    • Arevalo J R, Mc Donough W F. 2008. Tungsten geochemistry and implications for understandingthe earth's interior. Earth and Planetary Science Letters, 272(3): 656~665.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372: 452~454.

    • Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon andmelt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95: 196~212.

    • Cao Mingjian, Qin Kezhang, Li Guangming, Noreen J E, Brent I A M, Li Jinxiang, Zhao Junming. 2017. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, central Lhasa subterrane, Tibet. Mineralium Deposita, 53(3): 1~11.

    • Chabiron A, Cuney M, Poty B. 2003. Possible uranium sources for the largest uranium district associated with volcanism: The Streltsovka caldera (Transbaikalia, Russia). Mineralium Deposita, 38: 127~140.

    • Chelle-Michou C, Chiaradia M, Ovtcharova M. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198: 129~140.

    • Chen Huayong, Wu Chao. 2020. Metallogenic mechanism and main challenges of porphyry copper system in subduction zone. Chinese Science: Earth Science, 50(7): 865~886 (in Chinese with English abstract).

    • Chen Zhengle, Wang Yong, Zhou Yonggui. 2013. Zircon SHRIMP dating of Xiangshan volcanic-intrusive complex and its geological significance. China Geology, 40(1): 217~231 (in Chinese with English abstract).

    • Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust. Geology, 34(8): 633~636.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44: 3~9.

    • Cuney M, Friedrich M. 1987. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenies. Bulletin de Mineralogie, 110: 235~247.

    • Dilles J H, Kent A J R, Wooden J L, Tosdal R M, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1): 241~251.

    • Dong Pengsheng, Dong Guochen, Sun Zhuanrong, Li Huawei, Tang Jiahui, Zhu Hongyun. 2020. Late Triassic porphyries in the Zhongdian Arc, eastern Tibet: Origin and implications for Cu mineralization. Geological Magazine, 157(2): 275~288.

    • Dou Xiaoping, Shi Yanhua, Wu Zanhua. 2015. Research on structural ore-controlling regularity of Xiangshan uranium ore field in Jiangxi Province. Geology and Exploration, 51(5): 879~887.

    • Duan Yun, Zhao Lianze, Fan Honghai, Wang Dezi. 2001. REE-geochemistry of Mesozoic volcanic intrusive complex and dark inclusions in Xiangshan District, Jiangxi Province. Geological Journal of China Universities, 7(1): 92~98 (in Chinese with English abstract).

    • Eugster H P, Wones D R. 1962. Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3: 82~125.

    • Fan Honghai, Ling Hongfei, Wang Dezi, Shen Weizhou, Liu Changshi, Jiang Yaohui. 2001. Ore-forming material sources for Xiangshan uranium ore-field in Jiangxi Province: Evidence from Nd-Sr-Pb isotopes. Geological Journal of China Universities, 7(2): 139~144 (in Chinese with English abstract).

    • Fan Honghai, Ling Hongfei, Wang Dezi, Liu Changshi, Shen Weizhou, Jiang Yaohui. 2003. Study on metallogenetic mechanism of Xiangshan uranium ore-field. Uranium Geology, 19(4): 208~213 (in Chinese with English abstract).

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Friedrich M, Cuney M, Poty B. 1987. Uranium geochemistry in peraluminous leucogranites. Uranium, (3): 353~385.

    • Gao Xue, Yang Liqiang, Meng Jianyin, Zhang Lejun. 2017. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, northwest Yunnan, China. Ore Geology Reviews, 91: 945~962.

    • Gu Huangling. 2017. Relationship between Yanshanian magmatism and Cu (Mo) Au mineralization in Guichi ore concentration area, Middle and lower reaches of Yangtze River. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Hanchar M, Clive R, Jinesh C. 2001. Problems associated with the determination of rare earth elements of a “gem” quality zircon by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 25(3): 229~237.

    • Han Li, Huang Xiaolong, Li Jie, He Pengli, Yao Junming. 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China. Acta Petrologica Sinica, 32(3): 746~758 (in Chinese with English abstract).

    • Harrison T M, Watson E B. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020. Further discussion on porphyry Cu-Mo-Au deposit formation in mainland China Earth Science Frontiers, 27(2): 20~44.

    • Hu Gongren, Zhang Bangtong, Wang Xiangyun. 1998. Mineralogy, petrology characteristic and isotopic geochemistry of the Proterozoic amphibolite in Xiangshan, central Jiangxi. Geochemistry, (3): 217~229(in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenies in South China. Mineral Deposits, 26(2): 139~152(in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchang, Liu Shun, Qi Hongwei. 2008. Uranium metallogenies in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103: 583~598.

    • Hu Zhishu, Li Ye, Cai Minghai, Shao Zhuzhu, Zhang Han, Liu Jiaxing, Wei Shaocheng. 2019. Wall rock alteration and ore-forming fluid characteristics of Xiangshan uranium ore field. Mineral Exploration, 10(8): 1852~1862(in Chinese with English abstract).

    • Huang Lanchun, Jiang Shaoyong. 2013. Geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4323~4335 (in Chinese with English abstract).

    • Idris A M. 2019. Between-bottle homogeneity test of new certified reference materials employing wavelength dispersive X-ray fluorescence spectrometry. BMC Chemistry, 20(1): 13~23.

    • Kong Dexin, Xu Jifeng, Chen Jianlin. 2016. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system: Implications for Late Triassic metallo-genesis within the Yidun terrane, southeastern Tibetan Plateau. Chemical Geology, 441: 148~161.

    • Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42: 547~569.

    • Li Shoukui, Liu Xuelong, Lu Yingxiang, Zhang Shitao, Liu Sihan, Chen Jianhang, Li Zhenhuan, Yu Haijun, Zhang Chuanyu. 2021. Indication of zircon oxygen fugacity to the differential metallogenic controlling factors of porphyry deposits in Zhongdian ore concentration area in the southern section of Yidun island arc. Geoscience, 47(4): 1435~1458 (in Chinese with English abstract).

    • Li Shuang, Sun Saijun, Yang Xiaoyong, Sun Weidong. 2013. Petrological geochemistry and chronology of ore-bearing intrusion in Wuxi porphyry gold deposit, in south Anhui Province. Geotectonica et Metallogenia, 39(1): 153~166 (in Chinese with English abstract).

    • Li Wenchang, Zeng Pusheng. 2007. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. Journal of Chengdu University of Technology, 34(4): 436~446 (in Chinese with English abstract).

    • Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2): 282~292 (in Chinese with English abstract).

    • Li Xianhua, Tang Guoqiang, Gong Bing, Yang Yueheng, Hou Kejun, Hu Zhaochu, Li Qiuli, Liu Yu, Li Wuxian. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647~4654.

    • Li Xiaofei, Wang Guo, Mao Wei, Wang Chunzeng, Xiao Rong, Wang Mou. 2015. Fluid inclusions, muscovite Ar-Ar age, and fluorite trace elements at the Baiyanghe volcanic Be-U-Mo deposit, Xinjiang, Northwest China: Implication for its genesis. Ore Geology Reviews, 64: 387~399.

    • Ling Hongfei. 2011. Origin of hydrothermal fluids of granite-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 194~206(in Chinese with English abstract).

    • Liu Bin, Chen Weifeng, Fang Qichun, Mao Yufeng, Tang Xiangsheng, Yan Yongjie, Wei Xing, Ling Hongfei. 2019. Characteristics of ore-forming fluid in Xiangshan uranium ore field: Geochemical evidence from trace and rare earth elements. Acta Petrologica Sinica, 35(9): 2774~2786(in Chinese with English abstract).

    • Liu Xuelong, Li Wenchang, Yang Fucheng. 2017. Zircon U-Pb age, Hf isotope composition and tectonic significance of the two-stage magmatism in the Huwa Mo-W-Cu deposit, Gezan Island, Yunnan Province. Acta Geologica Sinica, 91(4): 849~863(in Chinese with English abstract).

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallization on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.

    • Lu Yongjun, Loucks R R, Fiorentini M. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. In: Society of Economic Geologist Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, 329~347.

    • Ludwig K R. 1988. Isoplot for MS-DOS, a plotting and regression program for radiogenic isotope data for IBM-PC compatible computers, Version. USGS Open-File Report, 557~588.

    • Ma Ying, Jiang Shaoyong, Hartwig E F, Duan Ruichun, Zhu Lüyun, Chen Runsheng. 2022. Ageand fluid source of the sub-volcanic Zhaiping Ag-Pb-Zn deposit in the eastern Cathaysia Block (Fujian Province, southeastern China). Mineralium Deposita, 19(3-4): 351~383.

    • Pan Dapeng, Wang Di, Wang Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits. Geology in China, 44(1): 118~135 (in Chinese with English abstract).

    • Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51(3): 507~513.

    • Qiu Junting. 2018. Research on the wide domain problem of zircon magma oxygen fugacity calculation. Doctoral dissertation of China University of Geosciences (Beijing).

    • Robert R L, Marco L F, Gonzalo J H. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, (30): 1~29.

    • Seedorff E, Diles J H, Proffett J M. 2005. Porphyry deposits: Characteristics and hypogene features. Economic Geology, 100th Anniversary Volume: 251~298.

    • Shen Ping, Hattori K, Pan Hongdi. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the central Asian orogenic belt. Economic Geology, 110(7): 1861~1878.

    • Shen Weizhou, Chen Fanrong, Liu Changshi, Wang Dezi. 1992. Isotopic geochemical characteristics and source materials of two types of volcano-intrusive complex in Jiangxi Province. Acta Petrologica Sinica, 8(2): 177~184 (in Chinese with English abstract).

    • Sláma J, Kosler J, Condon D J. 2008. PleSovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Su Qiangwei, Mao Jingwen, Song Shiwei, Wang Xunjun. 2021. Zircon U-Pb ages, Hf isotope and trace element characteristics of ore-related intrusions in Yongping Cu-W deposit, Jiangxi and their geological significance. Mineral Deposits, 40(6): 1199~1213 (in Chinese with English abstract).

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society London Special Publications, (42): 528~548.

    • Sun Zhanxue. 2004. Geochemical evidence of uranium source in Xiangshan uranium ore field. Journal of Mineralogy, 24 (1): 19~24.

    • Taylor R J M, Clark C, Harley S L, Kylander-Clark A R C, Hacker B R, Kinny P D. 2017. Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 35(7): 759~775.

    • Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magma. Geochimica et Cosmochimica Acta, 97: 70~87.

    • Turner S, Wilde S, Wörner G. 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the hadean. Nature Communications, 11(1): 1241.

    • Wang Dezi, Liu Changshi, Shen Weizhou, Chen Fanrong. 1994. S-type volcanic complex and mineralization in South China, Jiangxi Province. Journal of Nanjing University (Natural Sciences Edition), 30(2): 322~333 (in Chinese with English abstract).

    • Wang Qiang, Zhao Zhenhua, Jian Ping, Xu Jifeng, Bao Zhiwei, Ma Jinlong. 2004. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries. Acta Petrologica Sinica, 20(2): 315~324 (in Chinese with English abstract).

    • Wang Xinsong, Hu Ruizhong, Bi Xianwu. 2014. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202~219.

    • Wang Yongjian, Nie Jiangtao, Lin Jinrong, Wang Hongzuo. 2022. Geochronology and geochemistry of the felsic-intermediate dikes from Xiangshan uranium ore field, South China: Implications for petrogenesis, tectonic setting and uranium mineralization. Mineralogy and Petrology, 116(4): 287~310.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy & Petrology, 151(4): 412~415.

    • Wood B J, Blundy J D. 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology, 129(2-3): 166~181.

    • Xia Linqi, Xia Zuchun, Zhang Cheng, Clochiatti R, Dardel J, Joron J L. 1992. Geochemistry of Mesozoic Uranium-bearing Volcanic Complexes in Xiangshan. Beijing: Geological Publishing House, 1~97.

    • Xiang Xinkui, Wang Peng, Sun Deming, Zhong Bo. 2013. Re-Os isotopic age ofmolybdenite from the Shimensi tungsten polymetallic deposit in northern Jiangxi Province and its geological implications. Geological Bulletin of China, 32(11): 1824~1831(in Chinese with English abstract).

    • Xin Hongbo, Qu Xiaoming. 2008. Relative oxidation state of ore-bearing intrusions in the Gangdese porphyry copper belt, Tibet: Constraints from zircon Ce(IV)/Ce(III) ratios. Mineralogical Journal, 28(2): 152~160(in Chinese with English abstract).

    • Xu Leiluo, Bi Xianwu, Chen Youwei, Qi Youqiang. 2012. Zircon Ce4+/Ce3+ ratios of the Tongchang intrusions in Jinping Country, Yunnan Province: Implications for mineralization. Acta Mineralogica Sinica, 74(9): 74~82 (in Chinese with English abstract).

    • Yang Shuiyuan. 2013. The genetic mechanism and dynamic background of magmatic rocks in uranium-bearing volcanic basins in the Gan-Hang tectonic belt, South China. Doctoral dissertation of Nanjing University.

    • Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2011. Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1-2): 21~48.

    • Yang Shuiyuan, Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Fan Honghai. 2012. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of the rhyolite porphyry from the Zhoujiashan deposit in Xiangshan uranium ore field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915~3928 (in Chinese with English abstract).

    • Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, Zhao Kuidong, Fan Honghai. 2013. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411~1426.

    • Yu Yifan, Fei Guangchun, Li Youguo. 2016. Oxygen fugacity characteristics and metallogenic significance of rock mass in Lannitang porphyry copper deposit, Zhongdian island arc, Yunnan. Mineral Rocks, 36(1): 28~36 (in Chinese with English abstract).

    • Zhang Chenjiang, Wang Guo, Chen Fenxiong. 2012. Preliminary study on differentiation characteristics of U-beryllium-Mo symbiosis in Baiyanghe deposit, Xinjiang Province. Mineral Deposit Geology, 31(10): 237~238 (in Chinese with English abstract).

    • Zhang Hong, Sun Weidong, Yang Xiaoyong. 2011. Chronology and metallogenic mechanism of the Shapinggou superlarge porphyry molybdenum deposit in the Dabie orogenic belt. Geological Journal, 85(12): 2039~2059(in Chinese with English abstract).

    • Zhang Jingbo, An Fang. 2018. Summarization of research methods for the oxidation state of ore-forming porphyry magma in porphyry copper deposits. Deposit Geology, 37(5): 1052~1064(in Chinese with English abstract).

    • Zhang Wei, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82~96.

    • Zhang Xiangfei, Li Wenchang, Yin Guanghou. 2017. Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo Mining District, NW Yunnan, China: Constraints by geochronology, oxygen fugacity and geochemistry. Acta Petrologica Sinica, 33(7): 2018~2036 (in Chinese with English abstract).

    • Zou Xinyu, Qin Kezhang, Han Xinlei, Li Guangming, Noreen J E, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.

    • 陈华勇, 吴超. 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865~886.

    • 陈正乐, 王永, 周永贵. 2013. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义. 中国地质, 40(1): 217~231.

    • 窦小平, 时燕华, 吴赞华. 2015. 江西相山铀矿田构造控矿规律研究. 地质与勘探, 51(5): 879~887.

    • 段芸, 赵连泽, 范洪海, 王德滋. 2001. 江西相山火山-侵入杂岩及其包体稀土元素地球化学. 高校地质学报, 7(1): 92~98.

    • 范洪海, 凌洪飞, 王德滋, 沈渭洲, 刘昌实, 姜耀辉. 2001. 江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据. 高校地质学报, 7(2): 139~144.

    • 范洪海, 凌洪飞, 王德滋, 刘昌实, 沈渭洲, 姜耀辉. 2003. 相山铀矿田成矿机理研究. 铀矿地质, 19(4): 208~213.

    • 范洪海, 王德滋, 沈渭洲, 刘昌实, 汪相, 凌洪飞. 2005. 江西相山火山-侵入杂岩及中基性脉岩形成时代研究. 地质论评, 51(1): 86~91.

    • 古黄玲. 2017. 长江中下游贵池矿集区燕山期岩浆作用与铜(钼)金成矿关系研究. 中国科学技术大学博士学位论文.

    • 韩丽, 黄小龙, 李洁, 贺鹏丽, 姚军明. 2016. 江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示. 岩石学报, 32(3): 746~758.

    • 胡恭任, 章邦桐, 王湘云. 1998. 赣中相山元古宙斜长角闪岩的矿物学、岩石学特征及同位素地球化学研究. 地球化学, (3): 217~229.

    • 胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.

    • 胡志戍, 李晔, 蔡明海, 邵主助, 张含, 刘嘉兴, 韦绍成. 2019. 相山铀矿田围岩蚀变及成矿流体特征. 矿产勘查, 10(8): 1852~1862.

    • 黄兰椿, 蒋少涌. 2013. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究. 岩石学报, 29(12): 4323~4335.

    • 李守奎, 刘学龙, 卢映祥, 张世涛, 刘思晗, 陈建航, 李振焕, 余海军, 张传昱. 2021. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435~1458.

    • 李双, 孙赛军, 杨晓勇. 2013. 皖南乌溪斑岩型金矿床赋矿侵入岩体的岩石地球化学及年代学研究. 大地构造与成矿学, 39(1): 153~166.

    • 李文昌, 曾普胜. 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436~446.

    • 李文昌, 余海军, 尹光侯, 曹晓明, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282~292.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 刘斌, 陈卫锋, 方启春, 毛玉锋, 唐湘生, 严永杰, 魏星, 凌洪飞. 2019. 相山铀矿田成矿流体特征: 来自微量、稀土元素地球化学证据, 35(9): 2774~2786.

    • 刘学龙, 李文昌, 杨富成. 2017. 云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义. 地质学报, 91(4): 849~863.

    • 潘大鹏, 王迪, 王孝磊. 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义. 中国地质, 44(1): 118~135.

    • 邱骏挺. 2018. 锆石岩浆氧逸度计算的宽域问题研究. 中国地质大学(北京)博士学位论文.

    • 沈渭洲, 陈繁荣, 刘昌实, 王德滋. 1992. 江西两类火山侵入杂岩的同位素地球化学特征和物质来源. 岩石学报, 8(2): 177~184.

    • 苏蔷薇, 毛景文, 宋世伟, 王训军. 2021. 江西永平Cu-W矿床成矿岩体的锆石U-Pb年龄、Hf同位素、微量元素特征及其意义. 矿床地质, 40(6): 1199~1213.

    • 孙占学. 2004. 相山铀矿田铀源的地球化学证据. 矿物学报, 24(1): 19~24.

    • 王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1994. 华南S型火山杂岩与成矿. 南京大学学报(自然科学版), 30(2): 322~333.

    • 王强, 赵振华, 简平, 许继峰, 包志伟, 马金龙. 2004. 德兴花岗闪长斑岩SHRIMP 锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315~324.

    • 夏林圻, 夏祖春, 张诚, Clochiatti R, Dardel J, Joron J L. 1992. 相山中生代含铀火山杂岩岩石地球化学. 北京: 地质出版社, 1~97.

    • 项新葵, 王朋, 孙德明, 钟波. 2013. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义, 地质通报, 32(11): 1824~1831.

    • 辛洪波, 曲晓明. 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石 Ce(IV)/Ce(III)比值的约束. 矿物学报, 28(2): 152~160.

    • 胥磊落, 毕献武, 陈佑纬, 齐有强. 2012. 云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义. 矿物学报, 74(9): 74~82.

    • 杨水源, 2013. 华南赣杭构造带含铀火山盆地岩浆岩的成因机制及动力学背景. 南京大学博士学位论文.

    • 俞一凡, 费光春, 李佑国. 2016. 云南中甸岛弧烂泥塘斑岩铜矿床岩体氧逸度特征及成矿意义. 矿物岩石, 36(1): 28~36.

    • 张成江, 王果, 陈奋雄. 2012. 新疆白杨河矿床铀-铍-钼共生分异特征初探. 矿床地质, 31(10): 237~238.

    • 张红, 孙卫东, 杨晓勇. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039~2059.

    • 张京渤, 安芳. 2018. 斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述. 矿床地质, 37(5): 1052~1064.

    • 张向飞, 李文昌, 尹光侯. 2017. 滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束. 岩石学报, 33(7): 2018~2036.