en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

罗晓容,男,1959年生。研究员,主要从事油气运聚成藏动力学定量研究与应用。E-mail:luoxr@mail.iggcas.ac.cn。

参考文献
Bai Guoping, Cao Binfeng. 2014. Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil & Gas Geology, 35(1): 19~25 (in Chinese with English abstract).
参考文献
Baur F, Scheirer A H, Peters K E. 2018. Past, present, and future of basin and petroleum system modeling. AAPG Bulletin, 102(4): 549~561.
参考文献
Bi Yanbin, Gao Shanlin, Zhu Yunhui, Pang Wen, Yang Qiulai, Chen Jihua. 2011. Hydrocarbon accumulation patterns of Moxizhuang oilfield, the Junggar basin. Oil & Gas Geology, 32(3): 318~326 (in Chinese with English abstract).
参考文献
Bloch S, Lander, R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.
参考文献
Breyer J A, Euze T. 2021. Carrier beds as reservoirs. AAPG Bulletin, 105: 1745~1749.
参考文献
Cao B F, Luo X R, Zhang L K, Sui F G, Lin H X, Lei Y H. 2017. Diagenetic evolution of deep sandstones and multiple-stage oil entrapment: A case study from the Lower Jurassic Sangonghe Formation in the Fukang sag, central Junggar basin (NW China). Journal of Petroleum Science and Engineering, 152: 136~155.
参考文献
Cao B F, Luo X R, Zhang L K, Lei Y H, Zhou J S. 2020. Petrofacies prediction and 3-D geological model in tight gas sandstone reservoirs by integration of well logs and geostatistical modeling. Marine and Petroleum Geology, 114: 104202.
参考文献
Dai Jinxing. 2003. Enhance the studies on natural gas geology and find more large gas fields in China. Natural Gas Geosciance, 14(1): 3~14 (in Chinese with English abstract).
参考文献
Deng Yunhua. 2012. Practical effect of the “transfer station” model for oil-gas migration in rift basin: A case study on the tertiary in the Bohai oil province. Acta Petrolei Sinica, 33(1): 18~24 (in Chinese with English abstract).
参考文献
Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.
参考文献
He Zhiliang, Jin Xiaohui, Wo Yujin, Li Huili, Bai Zhenrui, Jiao Cunli, Zhang Zhongpei. 2016. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China. China Petroleum Exploration, 21(1): 3~14 (in Chinese with English abstract).
参考文献
Hu Caizhi, Zhang Likuan, Luo Xiaorong, Zhao Hong, Yang Bin, Cao Binfeng, Lei Yuhong, Cheng Ming, Li Chao. 2015. Diagenesis and porosity evolution of the low-porosity and low-permeability sandstones: Evidence from the Lower Jurassic Sangonghe Formation in Moxizhuang area, central Junggar basin. Natural Gas Geosciance, 26(12): 2253~2266 (in Chinese with English abstract).
参考文献
Hu Caizhi, Luo Xiaorong, Zhang Likuan, Qiu Guiqiang, Lei Yuhong, Cheng Ming. 2017. Differential diagenesis and hydrocarbon charge process of the 9th Member of Yanchang Formation in the central and western Ordos basin. Acta Geologica Sinica, 91(5): 1141~1157 (in Chinese with English abstract).
参考文献
Jia Chengzao, Gu Jiayu, Zhang Guangya. 2002. Geological constraints of giant and medium-sized gas fields in Kuqa depression. Chinese Science Bulletin, 47(S1): 47~55 (in Chinese with English abstract).
参考文献
Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).
参考文献
Kang Yuzhu. 2004. Re-discussion on exploration potential of Paleozoic in Tarim basin: 20th anniversary of significant discovery in Shacan 2 well. Oil & Gas Geology, 25(5): 479~483 (in Chinese with English abstract).
参考文献
Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2022. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).
参考文献
Li Feng, Jiang Zhenxue, Li Zuo, Liu Jianliang, Wang Ying, Luo Xiao. 2016. Fluid inclusion characteristics and hydrocarbon charge history of Dibei gas reservoir in the Kuqa depression. Journal of Central South University (Science and Technology), 47(2): 515~523 (in Chinese with English abstract).
参考文献
Li Jianzhong, Tao Xiaowan, Bai Bin, Huang Shipeng, Jiang Qingchun, Zhao Zhenyu, Chen Yanyan, Ma Debo, Zhang Liping, Li Ningxi, Song Wei. 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Petroleum Exploration and Development, 48(1): 52~67 (in Chinese with English abstract).
参考文献
Li Yang, Xue Zaojie, Cheng Zhe, Jiang Haijun, Wang Ruyue. 2020. Progress and development directions of deep oil and gas exploration and development in China. China Petroleum Exploration, 25(1): 45~57 (in Chinese with English abstract).
参考文献
Li Zhong, Chen Jingshan, Guan Ping. 2006. Scientific problems and frontiers of sedimentary diagenesis research in oil-gas-bearing basins. Acta Petrologica Sinica, 22(8): 2113~2122 (in Chinese with English abstract).
参考文献
Lin Huixi, Zeng Zhiping, Gong Yajun, Shen Yang, Jiang Bo. 2013. Process analysis of hydrocarbon charging and adjustment in central area of Junggar basin. Fault-block Oil & Gas Field, 20(3): 316~320 (in Chinese with English abstract).
参考文献
Luo Jinglan, Luo Xiaorong, Bai Yubin, Luo Chunyan, Bai Xuejian, Li Xiangjun, Li Chi. 2016. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs—A case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos basin. Journal of Earth Sciences and Environment, 38(1): 79~92 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Zhang Likuan, Fu Xiaofei, Pang Hong, Zhou Bo, Wang Zhaoming. 2016a. Advances in dynamics of petroleum migration and accumulation in deep basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876~889 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Zhang Likuan, Lei Yuhong, Hu Caizhi, Shi Hui, Cao Binfeng. 2016b. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones. China Petroleum Exploration, 21(1): 28~36 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity in clastic carrier beds and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).
参考文献
Luo X R. 2011. Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration. AAPG Bulletin, 95(6): 881~898.
参考文献
Luo X R, Hu C Z, Xiao Z Y, Zhao J, Zhang B S, Yang W, Zhao H, Zhao F Y, Lei Y H, Zhang L K. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.
参考文献
Luo X R, Zhang L K, Lei Y H, Yang W. 2020. Petroleum migration and accumulation: Modeling and applications. AAPG Bulletin, 104: 2247~2265.
参考文献
Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2011. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Science Frontiers, 18(4): 181~192 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Li Maowen, Cai Xunyu, Xu Xuhui, Hu Dongfeng, Qu Shouli, Li Gensheng, He Dengfa, Xiao Xianming, Zeng Yijin, Rao Ying, Ma Xiaoxiao. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~672+683 (in Chinese with English abstract).
参考文献
Morad S, Al-ramadan K, Ketzer J M, De Ros L F. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94(8): 1267~1309.
参考文献
Pang Xiongqi. 2010. Key challenges and research methods of petroleum exploration in the deep of superimposed basins in western China. Oil & Gas Geology, 31(5): 517~541 (in Chinese with English abstract).
参考文献
Pang Xiongqi, Luo Xiaorong, Jiang Zhenxue, Lin Changsong, Zhang Shuichang, Zhong Ningning, Li Zhong. 2007. Advancements and problems on hydrocarbon accumulation research of complicated superimposed basins in western China. Advances in Earth Science, 22(9): 879~887 (in Chinese with English abstract).
参考文献
Pang Xiongqi, Zhou Xinyuan, Yan Shenghua, Wang Zhaoming, Yang Haijun, Jiang Fujie, Shen Weibin, Gao Shuai. 2012. Research advances and direction of hydrocarbon accumulation in the superimposed basins, China: Take the Tarim basin as an example. Petroleum Exploration and Development, 39(6): 649~656 (in Chinese with English abstract).
参考文献
Pettijohn F J, Potter P E, Siever R. 1972. Sand and Sandstone. Berlin: Springer-Verlag.
参考文献
Pranter M J, Sommer N K. 2011. Static connectivity of fluvial sandstones in a lower coastal-plain setting: An example from the Upper Cretaceous lower Williams Fork Formation, Piceance basin, Colorado. AAPG Bulletin, 95(6): 899~923.
参考文献
Qi Y K, Lin H X, Zhang F S, Zhu X X, Hu H W, Zhou B, Wei Q. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 6665237, https: //doi. org/10. 1155/2021/6665237.
参考文献
Shi H, Luo X R, Lei G L, Zhang L Q, Zhang L K, Lei Y H. 2017a. Diagenesis and fluid flow variability of structural heterogeneity units in tight sandstone carrier beds of Dibei, eastern Kuqa depression. Geofluids, 2017: 1~15.
参考文献
Shi H, Luo X R, Li X, Liu N G, Qi Y K, Fang T, Zhang L K, Lei Y H. 2017b. Effects of mix-wet porous mediums on gas flowing and one mechanism for gas migration. Journal of Petroleum Science & Engineering, 152: 60~66.
参考文献
Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen. 2008. Exploration and Practice for theory of unsteady-state hydrocarbon accumulation. Marine Origin Petroleum Geology, 13(3): 11~16 (in Chinese with English abstract).
参考文献
Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen, Lian Zhanggui. 2009. Unsteady reservoir in Hadson oilfield, Tarim basin. Petroleum Exploration and Development, 36(1): 62~67 (in Chinese with English abstract).
参考文献
Sun Longde, Fang Chaoliang, Li Feng, Zhu Rukai, Zhang Yunhui, Jia Aailin, Gao Xingjun, Su Ling. 2015. Innovations and challenges of sedimentology in oil and gas exploration and development. Petroleum Exploration and Development, 42(2): 129~136 (in Chinese with English abstract).
参考文献
Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).
参考文献
Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).
参考文献
Wang Zhaoming. 2014. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression, Tarim basin. Natural Gas Geoscience, 25(2): 153~166 (in Chinese with English abstract).
参考文献
Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiaozeng. 2021. Impact of chlorites on the wettability of tight oil sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos basin, China. Science China Earth Sciences, 64(6): 951~961.
参考文献
Weber K J. 1986. How heterogeneity affects oil recovery. In: Lake L W, Carroll Jr H B, eds. Reservoir Characterization. Orlando: Academic Press, 487~544.
参考文献
Wong T F, Baud P. 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44: 25~53.
参考文献
Xu Chunchun, Zou Weihong, Yang Yueming, Duan Yong, Shen Yang, Luo Bin, Ni Chao, Fu Xiaodong, Zhang Jianyong. 2017. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China. Natural Gas Geosciance, 28(8): 1139~1153 (in Chinese with English abstract).
参考文献
Xu Hanlin, Jiang Tongwen, Gu Qiaoyuan, Niu Yujie, Zhang Qiucha. 2008. Probe into hydrocarbon accumulations in the Hadson oilfield, Tarim basin. Journal of Southwest Petroleum University (Science &Technology Edition), 30(5): 17~20 (in Chinese with English abstract).
参考文献
Xu Honglong, Liu Jian, Gong Liuping, Qiao Cheng, Zhu Baozhu, Yu Mengnan. 2015. The mechanism of differential distribution of the water oil contact in block 438 of Shuanghe oilfield. Marine Geology Frontiers, 31(7): 42~46 (in Chinese with English abstract).
参考文献
Xu Xiaotong, Zhang Likuan, Ye Mingze, Zhang Liqiang, Xiu Jinlei, Zeng Zhiping, Cao Binfeng, Li Chao, Lei Yuhong, Cheng Ming, Hu Caizhi. 2021. Different diagenesis of deep sandstone reservoir and its relationship with reservoir property: Case study of Jurassic in Zhengshacun area, central Junggar basin. Natural Gas Geoscience, 32(7): 1022~1036 (in Chinese with English abstract).
参考文献
Xue Yongan, Wang Deying, Wang Feilong, Tang Guomin. 2021. Formation conditions and exploration potential of condensate and light oil reservoirs in Bohai Sea. Acta Petrolei Sinica, 42(12): 1581~1591 (in Chinese with English abstract).
参考文献
Yang Haijun, Zhang Ronghu, Yang Xianzhang, Wang Ke, Wang Junpeng, Tang Yangang, Zhou Lu. 2018. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tights and stone reservoir: A case study of Keshen gasfield, Kuqa depression, Tarim basin. Natural Gas Geoscience, 29(7): 942~950 (in Chinese with English abstract).
参考文献
Yuan Yusong, Hu Wenxuan, Chen Shuping, Wang Guojian. 2019. The main controlling factors and evaluation ideas of ultra-deep oil and gas preservation. Marine Origin Petroleum Geology, 24(4): 47~56 (in Chinese with English abstract).
参考文献
Zhai Xiaoxian, Gu Yi, Qian Yixiong, Jia Cunshan, Wang Jie, Lin Jun. 2007. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim basin. Petroleum Geology & Experiment, 29 (4): 329~333 (in Chinese with English abstract).
参考文献
Zhang Baoshou, Yang Haijun, Zhang Nai, Zhao Qing. 2019. Hydrocarbon inclusion characteristics of Jurassic Ahe Formation and analysis on petroleum. Xinjiang Petroleum Geology, 40(1): 41~47 (in Chinese with English abstract).
参考文献
Zhang Hui, Chen Yong, Wang Xuejun, Lin Huixi, Wang Miao, Ren Xincheng. 2021. A geochemical characteristics of solid bitumen in the Jurassic Sangonghe Formation in the central Junggar basin and its implications for hydrocarbon accumulation process. Petroleum Geology & Experiment, 43(6): 1054~1063 (in Chinese with English abstract).
参考文献
Zhang L K, Luo X R, Ye M Z, Zhang B S, Wei H X, Cao B F, Xu X T, Liu Z D, Lei Y H, Li C. 2021. Small-scale diagenetic heterogeneity effects on reservoir quality of deep sandstones: A case study from the Lower Jurassic Ahe Formation, eastern Kuqa depression. Geofluids, 6626652, https: //doi. org/10. 1155/2021/6626652.
参考文献
Zhang Likuan, Luo Xiaorong, Liao Qianjin, Yuan Shuqin, Su Junqing, Xiao Dunqing, Wang Zhaoming, Yu Changhua. 2007. Quantitative evaluation of fault sealing property with fault connectivity probabilistic method. Oil & Gas Geology, 28(2): 181~190 (in Chinese with English abstract).
参考文献
Zhang Shanwen, Wang Yongshi, Peng Chuansheng, Shi Dishi. 2008. Application of fault-fracture mesh petroleum plays in exploration. Acta Petrolei Sinica, 29(6): 791~796 (in Chinese with English abstract).
参考文献
Zhang Shanwen, Lin Huixi, Shen Yang. 2013. Analysis on meshwork-carpet pool-forming mechanism of Chepaizi uplift and enlightenment on petroleum exploration of Junggar basin. Geological Review, 59(3): 490~500 (in Chinese with English abstract).
参考文献
Zhang Tao, Yan Xiangbin. 2007. A discussion on main factors controlling deep carbonate reservoirs in the Tarim basin. Oil & Gas Geology, 28(6): 745~754 (in Chinese with English abstract).
参考文献
Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).
参考文献
Zhang Zhenyu, Zhang Likuan, Luo Xiaorong, Cao Binfeng, Lin Huixi, Zeng Zhiping, Qin Feng, He Wenjun, Li Cao, Lei Yuhong. 2019. Diagenesis of sandstone and its implications for reservoir quality evaluation in the deep Xishanyao Formation in the central Junggar basin. Natural Gas Geoscience, 30(5): 686~700 (in Chinese with English abstract).
参考文献
Zhao Mengjun, Lu Shuangfang, Wang Tingdong, Li Jian. 2002. Geochemical characteristics and formation process of natural gas in Kela 2 gasfield. Chinese Science Bulletin, 47(S1): 113~119 (in Chinese with English abstract).
参考文献
Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. A characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Zhang Guangya, Wang Hongjun. 2005. New achievements of petroleum geology theory and its significances on expanding oil and gas exploration field. Acta Petrolei Sinica, 26(1): 1~7 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Hu Suyun, Liu Wei, Wang Tongshan, Li Yongxin. 2014. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion. Natural Gas Industry, 34(4): 1~9 (in Chinese with English abstract).
参考文献
Zhao W Z, Zhang S C, Zhang B, He K, Wang X M. 2017. New insight into the kinetics of deep liquid hydrocarbon cracking and its significance. Geofluids, 6340986, https: //doi. org/10. 1155/2017/6340986.
参考文献
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Jiang Wenya, Xiao Dunqing, Han Wenzhong, Shi Zhannan. 2018. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay basin. Petroleum Exploration & Development, 45(6): 1092~1102 (in Chinese with English abstract).
参考文献
Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Reservoir features and formation mechanism of highquality clastic reservoir in deep strata in China. Science China: Earth Sciences, 38(S1): 11~18 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Sun Chonghao, Zhao Bin, Li Tingting, Chen Zhiyong, Yang Haijun, Gao Lianhua, Huang Jinhua. 2020. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7000 m. Natural Gas Industry, 31(5): 587~601 (in Chinese with English abstract).
参考文献
Zou Zhiwen, Si Chunsong, Yang Mengyun. 2010. Origin and distribution of interbeds and the influence on oil-water layer: An example from Mosuowan area in the hinterland of Junggar basin. Lithological Reservoirs, 22(3): 66~70 (in Chinese with English abstract).
参考文献
白国平, 曹斌风. 2014. 全球深层油气藏及其分布规律. 石油与天然气地质, 35(1): 19~25.
参考文献
毕研斌, 高山林, 朱允辉, 庞雯, 杨秋来, 陈继华. 2011. 准噶尔盆地莫西庄油田成藏模式. 石油与天然气地质, 32(3): 318~326.
参考文献
戴金星. 2003. 加强天然气地学研究勘探更多大气田. 天然气地球科学, 14(1): 3~14.
参考文献
邓运华. 2012. 裂谷盆地油气运移“中转站”模式的实践效果——以渤海油区第三系为例. 石油学报, 33(1): 18~24.
参考文献
何治亮, 金晓辉, 沃玉进, 李慧莉, 白振瑞, 焦存礼, 张仲培. 2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域. 中国石油勘探, 21(1): 3~14.
参考文献
胡才志, 张立宽, 罗晓容, 赵洪, 杨彬, 曹斌风, 雷裕红, 程明, 李超. 2015. 准噶尔盆地腹部莫西庄地区三工河组低孔渗砂岩储层成岩与孔隙演化研究. 天然气地球科学, 26(12): 2254~2266.
参考文献
胡才志, 罗晓容, 张立宽, 邱桂强, 雷裕红, 程明. 2017. 鄂尔多斯盆地中西部长9储层差异化成岩与烃类充注过程研究. 地质学报, 91(5): 1141~1157.
参考文献
贾承造, 顾家裕, 张光亚. 2002. 库车拗陷大中型气田形成的地质条件. 科学通报, 47(增刊1): 49~55.
参考文献
贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.
参考文献
康玉柱. 2004. 再论塔里木盆地古生代油气勘探潜力——纪念沙参2井油气重大突破20 周年. 石油与天然气地质, 25(5) : 479~483.
参考文献
Krayushkin V A. 2009. 深成油气田. 任俞(译) . 新疆石油地质, 30(1): 136~141.
参考文献
匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2022. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.
参考文献
李峰, 姜振学, 李卓, 刘建良, 王赢, 罗枭. 2016. 库车坳陷迪北气藏流体包裹体特征及油气充注历史. 中南大学学报(自然科学版), 47(2): 515~523.
参考文献
李建忠, 陶小晚, 白斌, 黄士鹏, 江青春, 赵振宇, 陈燕燕, 马德波, 张立平, 李宁熙, 宋微. 2021. 中国海相超深层油气地质条件、成藏演化及有利勘探方向. 石油勘探与开发, 48(1): 52~67.
参考文献
李阳, 薛兆杰, 程喆, 蒋海军, 王濡岳. 2020. 中国深层油气勘探开发进展与发展方向. 中国石油勘探, 25(1): 45~57.
参考文献
李忠, 陈景山, 关平. 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113~2122.
参考文献
林会喜, 曾治平, 宫亚军, 沈扬, 江波. 2013. 准噶尔盆地中部油气充注与调整过程分析. 断块油气藏, 20(3): 316~320.
参考文献
罗静兰, 罗晓容, 白玉彬, 罗春燕, 白雪见, 李向军, 李弛. 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响——以鄂尔多斯盆地西南部长7 致密浊积砂岩储层为例. 地球科学与环境学报, 38(1) : 79~92.
参考文献
罗晓容, 张立宽, 付晓飞, 庞宏, 周波, 王兆明. 2016a. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876~889.
参考文献
罗晓容, 张立宽, 雷裕红, 胡才志, 施辉, 曹斌风. 2016b. 储层结构非均质性及其在深层油气成藏中的意义. 中国石油勘探, 21(1): 28~36.
参考文献
罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风. 2020. 碎屑岩输导层非均质性与油气运聚成藏. 石油学报, 41(3): 253~272.
参考文献
马永生, 蔡勋育, 赵培荣. 2011. 深层—超深层碳酸盐岩油气储集层形成机理综述. 地学前缘, 18(4): 181~192.
参考文献
马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹, 马晓潇. 2020. 中国海相深层—超深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~672, 683.
参考文献
庞雄奇. 2010. 中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义. 石油与天然气地质, 31(5): 517~534.
参考文献
庞雄奇, 罗晓容, 姜振学, 林畅松, 张水昌, 钟宁宁, 李忠. 2007. 中国西部复杂叠合盆地油气成藏研究进展与问题. 地球科学进展, 22 (9): 879~887.
参考文献
庞雄奇, 周新源, 鄢盛华, 王招明, 杨海军, 姜福杰, 沈卫兵, 高帅. 2012. 中国叠合盆地油气成藏研究进展与发展方向——以塔里木盆地为例. 石油勘探与开发, 39(6): 649~656.
参考文献
孙龙德, 江同文, 徐汉林, 单家增. 2008. 非稳态成藏理论探索与实践. 海相油气地质, 13(3): 11~16.
参考文献
孙龙德, 江同文, 徐汉林, 单家增, 练章贵. 2009. 塔里木盆地哈得逊油田非稳态油藏. 石油勘探与开发, 36(1): 62~67.
参考文献
孙龙德, 方朝亮, 李峰, 朱如凯, 张云辉, 袁选俊, 贾爱林, 高兴军, 苏玲. 2015. 油气勘探开发中的沉积学创新与挑战. 石油勘探与开发, 42(2) : 129~136.
参考文献
唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.
参考文献
田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.
参考文献
王招明.2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153~166.
参考文献
王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.
参考文献
徐春春, 邹伟宏, 杨跃明, 段勇, 沈扬, 罗冰, 倪超, 付小东, 张建勇. 2017. 中国陆上深层油气资源勘探开发现状及展望. 天然气地球科学, 28(8): 1139~1153.
参考文献
徐汉林, 江同文, 顾乔元, 牛玉杰, 张秋茶. 2008. 塔里木盆地哈得逊油田成藏研究探讨. 西南石油大学学报 (自然科学版), 30(5): 17~21.
参考文献
徐小童, 张立宽, 冶明泽, 张立强, 修金磊, 曾治平, 曹斌风, 李超, 雷裕红, 程明, 胡才志. 2021. 深层砂岩储层成岩作用差异性及与储层质量的关系——以准噶尔盆地中部征沙村地区为例. 天然气地球科学, 32(7): 1022~1036.
参考文献
许宏龙, 刘建, 龚刘凭, 乔诚, 朱宝柱, 余梦南. 2015. 双河油田438块构造油藏油水界面差异分布的主导因素. 海洋地质前沿, 31(7): 42~46.
参考文献
薛永安, 王德英, 王飞龙, 唐国民. 2021. 渤海海域凝析油气藏、轻质油藏形成条件与勘探潜力. 石油学报, 42(12): 1581~1591.
参考文献
杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 2018. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例. 天然气地球科学, 29(7): 942~950.
参考文献
袁玉松, 胡文瑄, 陈书平, 王国建. 2019. 超深层油气保存主控因素及评价思路. 海相油气地质, 24(4): 47~56.
参考文献
翟晓先, 顾忆, 钱一雄, 贾存善, 王杰, 蔺军. 2007. 塔里木盆地塔深1 井寒武系油气地球化学特征. 石油实验地质, 29 (4): 329~333.
参考文献
张宝收, 杨海军, 张鼐, 赵青. 2019. 迪北气藏侏罗系阿合组烃包裹体特征及成藏分析. 新疆石油地质, 40(1): 41~47.
参考文献
张辉, 陈勇, 王学军, 林会喜, 王淼, 任新成. 2021. 准噶尔盆地中部侏罗系三工河组储层沥青地球化学特征及其对油气成藏过程的指示. 石油实验地质, 43(6): 1054~1063.
参考文献
张立强, 严一鸣, 罗晓容, 王振彪, 张海祖. 2018. 库车坳陷依奇克里克地区下侏罗统阿合组致密砂岩储层的成岩差异性特征研究. 地学前缘, 25(2): 170~178.
参考文献
张善文, 王永诗, 彭传圣, 石砥石. 2008. 网毯式油气成藏体系在勘探中的应用. 石油学报, 29(6): 791~796.
参考文献
张善文, 林会喜, 沈扬. 2013. 准噶尔盆地车排子凸起新近系“网毯式”成藏机制剖析及其对盆地油气勘探的启示. 地质论评, 59(3): 490~500.
参考文献
张涛, 闫相宾. 2007. 塔里木盆地深层碳酸盐岩储层主控因素探讨. 石油与天然气地质, 28(6): 745~754.
参考文献
张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例. 石油学报, 42(4): 466~480.
参考文献
张振宇, 张立宽, 罗晓容, 曹斌风, 林会喜, 曾治平, 秦峰, 贺文君, 李超, 雷裕红. 2019. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示. 天然气地质学科, 30(5): 686~700.
参考文献
赵孟军, 卢双舫, 王庭栋, 李剑. 2002. 克拉2气田天然气地球化学特征与成藏过程. 科学通报, 47(ZK): 109~115.
参考文献
赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.
参考文献
赵文智, 张光亚, 王红军. 2005. 石油地质理论新进展及其在拓展勘探领域中的意义. 石油学报, 26(1): 1~7.
参考文献
赵文智, 胡素云, 刘伟, 王桐山, 李永新. 2014. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景. 天然气工业, 34(4): 1~9.
参考文献
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 姜文亚, 肖敦清, 韩文中, 时战楠. 2018. 断陷盆地洼槽聚油理论的发展与勘探实践——以渤海湾盆地沧东凹陷古近系孔店组为例. 石油勘探与开发, 45(6): 1092~1102.
参考文献
钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D)辑, 35(S1): 11~18.
参考文献
朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.
参考文献
朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 2020. 7000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587~601.
参考文献
邹志文, 斯春松, 杨梦云. 2010. 隔夹层成因、分布及其对油水分布的影响——以准噶尔盆地腹部莫索湾莫北地区为例. 岩性油气藏, 22(3): 66~70.
目录contents

    摘要

    深层—超深层地质条件下,储层的孔渗物性特征和流体动力连通关系决定了油气在储层中的流动状态,这也就决定了油气运移的动力条件和聚集成藏的机理与过程。本文基于对深层—超深层碎屑岩储层结构非均质性的研究,认识深层—超深层油气运聚成藏机制和过程,总结油气多期复合成藏模式,探索深层—超深层油气分布规律。碎屑岩储层普遍存在强烈的非均质性,受到沉积结构构造及成岩作用控制,表现出空间结构性特征,在埋藏至深层—超深层的过程中经历了差异性的成岩演化和油气充注。结构非均质性储层中的油气总体向上倾方向运移,受储层中砂体分布、隔夹层结构以及连通方式的影响,油气运移路径的分布极不均匀,在储层中任何部位都可能聚集,并可能继续运移到有利圈闭中富集。在深埋过程中,多期多幕的构造变动促使深层—超深层储层中已聚集的油气向着上倾方向运移调整,或沿着断裂向上运移调整至中—深层与之相关的有效储层中运移、聚集。深层—超深层勘探具有更为广泛的目标选择,洼陷区和斜坡区都可能成为有利勘探区域。现实的深层—超深层油气勘探新领域包括:构造高点油气藏向供源方向的拓展,深层—超深层烃源由断裂调整至中深层—超深层的次生油气聚集,深层—超深层与油气源相关的斜坡带以及深层—超深层生烃洼陷优质烃源岩层内部及相邻的有效储层。

    Abstract

    Under deep-ultra-deep geological conditions, the porosity and permeability physical properties and fluid dynamic connectivity of reservoir rocks determine the flow state of oil and gas in the reservoir, which also determines the dynamic conditions of oil and gas migration, the mechanism and process of reservoir formation. This study has investigated architectural heterogeneity of deep-ultradeep clastic reservoirs. Based on the new understanding, this study has examined hydrocarbon accumulation mechanism and process in deep-ultradeep basins, has proposed multistage composite accumulation mode, and explored deep-ultradeep hydrocarbon distribution laws. Deep clastic reservoirs have commonly strong architectural heterogeneity, that is characterized by regular rock facies stacking determined by the depositional structure. In deep burial process, the different rock facies in the reservoirs experienced contrasting diagenetic evolutions and hydrocarbon charge. In carrier beds with architectural heterogeneity, oil and gas generally migrate upwards. Affected by the distribution of sand bodies, tight interlayer structures, and connectivity modes, the migration pathways become very complicated and hydrocarbon can accumulate anywhere in the reservoir bed during migration. In deep burial process, multistage tectonic activities forced already accumulated hydrocarbons to migrate and adjust in the updip direction, or to migrate up through opening faults to be leaked into faulted-related effective reservoirs to accumulate. Deep-ultradeep exploration has a wide range of targets, as both subsags and slopes, may become favorable exploration areas. Practical target areas in deep-ultradeep exploration include extension belt toward sources from hydrocarbon accumulations in structural highs, secondary accumulations formed by migration of deep-ultradeep hydrocarbons up faults into shallower reservoirs, deep-ultradeep hydrocarbon source-related slope belts, and effective reservoir areas within or near the deep-ultradeep source rocks.

  • 我国西部盆地4500 m以深、东部盆地3500 m以深为深层,6000 m以深的领域统称为超深层(赵文智等,2014贾承造和庞雄奇,2015李阳等,2020)。近年来,随着盆地深层—超深层油气勘探不断取得重大突破,深层油气资源已成为我国重要的油气勘探拓展领域,在油气资源结构中所占的比重逐年攀升(康玉柱,2004Krayushkin,2009白国平和曹斌风,2014徐春春等,2017; 田军等,2021)。勘探发现表明,深层—超深层条件下油气形成和调整作用十分活跃,目前的勘探并未达到深度极限(朱光有和张水昌,2009何治亮等,2016Zhao et al.,2017马永生等,2020);盆地深层—超深层的油气性质、相态及运聚散机理和过程与中浅层具有明显差别(戴金星,2003翟晓先等,2007),但油气成藏的地质条件并不一定如想象的那样苛刻(罗晓容等,2016a);盆地深层—超深层的盖层条件趋于变好(Wong and Baud,2012;袁玉松等,2019李建忠等,2021),甚至深层低渗储层其本身就构成了良好的封闭条件,使得已聚集的油气在后期遇到强烈构造变动时不易散失(罗晓容等,2016b)。这些成果和认识坚定了盆地深层—超深层油气勘探的信心。

  • 盆地深层—超深层处于高温高压环境,曾经历了复杂而漫长的演化历史,其对应的温压场演变、有机质成烃与相态变化、储层成岩过程和油气充注历史、油气运移聚集动力学条件及机理等甚为复杂(庞雄奇,2010贾承造和庞雄奇,2015)。深层—超深层含油气储层普遍经历了多期油气充注,成岩和油气充注过程交替进行,相互影响与作用,导致储层/输导层物性变化过程复杂(马永生等,2011Luo et al.,2015罗晓容等,2016bCao et al.,2017Shi et al.,2017b)。叠合盆地深层—超深层油气藏往往具有多期成藏、多期调整/改造及复合成藏的特征,在盆地演化晚期定型,但又不同程度地保留了早期油气藏及其分布特征,以至于深层—超深层油气分布规律复杂多变,预测十分困难,对于传统油气勘探理论和方法提出了巨大的挑战(庞雄奇等,2007何治亮等,2016马永生等,2020)。

  • 在深层—超深层流体性质和相态变化的条件下,储层的孔渗物性特征和流体动力连通关系决定了油气在储层中的流动状态,这也就决定了油气运移的动力条件、成藏的机理与过程(罗晓容等,2016a)。储层孔渗随深度增加趋向变低(Ehrenberg and Nadeau,2005;庞雄奇等,2012)。但勘探实践发现在深层—超深层条件下储层仍可保存或形成良好物性条件,储层是否含有油气似与深度无关(张涛和闫相宾,2007;王昭明,2014;朱光有等,2020张兴文等,2021);深层—超深层有效储层发育的原因或是在深层—超深层条件下仍然保留了部分原生孔隙,或者形成了次生的溶孔和裂缝等(胡才志等,2015Cao et al.,2017; Shi et al.,2017a; 杨海军等,2018),表现出强烈的非均质特征,油气往往聚集在储层中物性相对较好的部分(孙龙德等,2015贾承造和庞雄奇,2015Luo et al.,2015)。研究发现,在具有结构非均质性的储层中,油气的运移、聚集与传统认识相差很大,从油气源到圈闭,在储层的不同部位,特别是原先认为不可能有油气聚集的部位,如洼陷区或斜坡区,均能够形成大量的油气聚集(罗晓容等,2020Breyer and Euze,2021)。

  • 因而,对于深层—超深层条件下有效储层及与之相关的油气运聚输导体系的认识就构成了深层—超深层油气成藏研究的核心内容(贾承造和庞雄奇,2015罗晓容等,2016b)。而在盆地演化过程中,目前处于深层—超深层的碎屑岩层系中油气运移、聚集和富集的机理、过程及影响因素,不同时期聚集的油气发生调整、改造、重新运移、聚集的过程和方式,深层—超深层油气富集规律等则是深层—超深层油气成藏研究必须回答的问题。

  • 本文基于对深层—超深层碎屑岩储层结构非均质性的研究,认识深层—超深层油气运聚成藏机制和过程,总结深层—超深层油气多期复合成藏模式,探索深层—超深层油气分布规律。

  • 1 深层—超深层储层非均质性与有效性

  • 碎屑岩储层普遍存在非均质性,受其所处的大地构造背景、古地温、沉积环境及埋藏成岩过程等多种因素控制(Bloch et al.,2002李忠等,2006钟大康等,2008)。已发现的油气往往聚集在深层—超深层储层中物性相对较好的部分(Luo et al.,2015罗晓容等,2016b),因而对深层—超深层储层有效性及其与非均质性关系的认识是深层—超深层油气成藏研究的重要环节(贾承造和庞雄奇,2015罗晓容等,2016b)。

  • 对于深层—超深层油气储层含油气性及其与岩石孔渗关系的分析发现,盆地深层—超深层低渗储层含油气性和物性普遍具有强烈的非均质性特征。图1展示了我国西部盆地典型深层—超深层碎屑岩储层岩石物性(孔隙度)与深度的关系,表明碎屑岩储层物性非均质性强烈;随深度增加物性整体降低的趋势明显,但即使埋藏至8000 m以深,仍存在物性相对较好的储集岩石。

  • 碎屑岩储层非均质性具有结构性特征,其基本结构受沉积构造控制,表现为岩石矿物组成、结构构造以及流体渗透能力等的明显差异(Pettijohn et al.,1972Weber,1986Pranter and Sommer, 2011罗晓容等,2016b2020)。如图2所示,在同一套含油砂岩复合体中,不同岩石相的矿物组分、粒径、物性和孔隙结构等均有所差异(图2)。依据岩石学组构、成岩方式、孔隙结构特征的差异,可将碎屑岩储层中砂岩(包括砂岩、含砾砂岩)划分为贫塑性颗粒砂岩、富塑性颗粒砂岩及含钙质胶结砂岩三种岩石相(Morad et al.,2010; 罗晓容等,2016bCao et al.,2017张立强等,2018张振宇等,2019),其物性特征大相径庭(图2)。对于深层—超深层含油储层,贫塑性颗粒砂岩相又可分为含油砂岩相和含水砂岩相,前者多期原油充注,而后者虽然与前者相伴,经历了相似的沉积、埋藏和成岩过程,但却未曾发生过油充注(图2)。

  • 在厘定烃类充注地质年代的基础上,将烃类充注作为时间标记,重新认识了不同类型岩石相的成岩演化过程,分别建立了不同类型岩石相差异化成岩—油气充注时间序列(图3)。发现贫塑性颗粒砂岩中流体-岩石反应活跃,普遍发生了多期流体活动和溶蚀、胶结作用,而富塑性颗粒砂岩和钙质胶结砂岩早期致密化,后期流体活动和成岩作用微弱(罗静兰等,2016; Cao et al.,20172020; Shi et al.,2017a胡才志等,2017; Zhang et al.,2021徐小童等,2021)。

  • 图1 典型深层—超深层碎屑岩储层物性随深度的变化

  • Fig.1 Typical variation of porosity with depth in clastic rock reservoirs in deep-ultradeep basins

  • (a)—准噶尔盆地腹部侏罗系;(b)—塔里木盆地库车坳陷克深地区白垩系

  • (a) —Jurassic in the hinterland of Junggar basin; (b) —Cretaceous in Keshen area, Kuqa depression, Tarim basin

  • 图2 准噶尔盆地腹部侏罗系含油储层非均质性与岩石学特征

  • Fig.2 Heterogeneity characteristics and corresponding petrological observations of a Jurassic oil-bearing reservoir in the hinterland of Junggar basin

  • (a)—深层—超深层含油储层岩芯及含油性观察;(b)—依据岩石学特征和含油气性划分岩石相

  • (a) —observation of core and oil-bearing property of the deep oil-bearing reservoir; (b) —lithofacies classified according to petrological characteristics and petroliferous properties

  • 对不同岩石相古物性演化恢复发现,富塑性颗粒砂岩和钙质胶结砂岩均在成岩作用早期就已达到致密状态(孔隙度小于10%)。结合野外观察,可认定为储层中的隔夹层(罗晓容等,2020)。而在隔夹层之间,在早期发生过油充注的贫塑性颗粒砂岩中,烃类的充注可反复发生。含油岩石中镜下可见多期沥青共存,或在多期成岩胶结物中见到含油气包裹体(罗静兰等,2016Shi et al.,2017aCao et al.,2017张振宇等,2019)。图4为塔里木盆地库车坳陷迪北—吐东地区下侏罗统阿合组砂岩储层岩石中包裹体镜下观察结果。黄色荧光石油包裹体主要沿石英颗粒内愈合缝发育,少量在石英加大边内;蓝白色荧光石油包裹体主要沿石英颗粒内愈合缝和切穿石英颗粒的愈合缝发育,在石英加大边和碳酸盐矿物中也可见到。通过伴生盐水包裹体的均一温度计算得到烃包裹体捕获时的埋藏深度,结合埋藏史,确定研究区至少发生两期液态烃充注(张宝收等,2019),分别为新近纪康村沉积早—中期(17~10 Ma)和康村沉积晚期—库车组沉积中期(10~5 Ma)。

  • 不同地区不同沉积相帯的储层在岩石学、沉积结构构造等方面差异明显,但对于每个沉积微相而言,这样的岩石相类型划分均是适用的(Cao et al.,2017; 张振宇等,2019Zhang et al.,2021)。深埋过程中,碎屑岩储层的结构非均质性特征决定了其成岩作用的差异性,而成岩作用的差异性又可进一步增加储层的非均质性(罗静兰等,2016Shi et al.,2017a; Cao et al.,2017)。在中国西部盆地深层—超深层,储层结构非均质性所表现出的储集物性差异性大都得到了继承,加之早期原油充注有效地改造了含油砂岩的润湿性,使得储层在整体趋于致密的条件下仍然对油气运聚有效(Luo et al.,2015; 罗晓容等,2016b张立强等,2018)。

  • 2 结构非均质性储层中的油气运移和聚集

  • 传统的石油地质学研究认为,盆地尺度的储层非均质性不会改变油气流体势的作用方向,在油气运聚成藏研究中储层可视为均质介质,储层就是输导层。近年来的研究表明,即便在宏观上均质的储层内,油气运移路径的形态及其内部运移量分布都可能非常的不均匀,储层本身的非均质性将影响到油气运移路径的形态特征和油气聚集的方式(Luo et al.,2011)。那么对具有结构非均质性的储层/输导层而言,油气在其中的运移和聚集又会受到什么样的影响?

  • 利用一个三维的油气运聚模型模拟分析了结构非均质储层中的油气运移特征和聚集方式。所建立的结构非均质储层三维地质模型长5000 m、宽3000 m、厚50 m;模型中砂体随机填充,砂体形态近椭圆体,长宽厚均服从平均分布:长250~350 m,宽150~250 m,厚0.9~3 m。在每个单元砂体顶部发育10%~20%的细粒沉积,以模拟砂体中的隔夹层,在油气运移过程中起到阻碍油气向上运移的作用(图5、图6)。烃源岩位于储层右侧底面之下,面积占整个储层底面的四分之一。

  • 图3 准噶尔盆地腹部侏罗系储层不同岩石相中的差异成岩序列及其反映的流体活动过程

  • Fig.3 Differential diagenetic sequences and corresponding fluid activity processes in different lithofacies of the Jurassic reservoirs in the hinterland of Junggar basin

  • 图4 库车坳陷东部迪北—吐东地区阿合组含油砂岩中包裹体荧光特征

  • Fig.4 Fluorescence characteristics of inclusions in the oil-bearing sandstones of Ahe Formation in Dibei-Tudong area, eastern Kuqa depression

  • (a)—TD2井,3980 m,荧光,微裂缝中的黄色荧光、蓝色荧光液态烃包裹体、黑色气态烃包裹体及盐水包裹体;(b)—YN2井,4842.6 m,荧光,微裂缝中的蓝色荧光液态烃包裹体及盐水包裹体;(c)—TD2井,3980 m,荧光,石英加大边中的黄色荧光液态烃包裹体及盐水包裹体;(d)—DB102井,5055 m,荧光,方解石中的蓝色荧光液态烃包裹体及盐水包裹体;黄色箭头指示黄色荧光包裹体,蓝色箭头指示蓝色荧光包裹体,黑色箭头指示盐水包裹体

  • (a) —well TD2, 3980 m, fluorescence observation, yellow fluorescence, blue fluorescence liquid hydrocarbon inclusions, black gaseous hydrocarbon inclusions and brine inclusions in microfractures; (b) —well YN2, 4842.6 m, fluorescence observation, blue fluorescence liquid hydrocarbon inclusions and brine inclusions in microfractures; (c) —well TD2, 3980 m, fluorescence observation, yellow fluorescence liquid hydrocarbon inclusions and brine inclusions in quartz enlarged edges; (d) —well DB102, 5055 m, fluorescence observation, blue fluorescence liquid hydrocarbon inclusions and brine inclusions in calcite cements; yellow arrows indicate yellow fluorescent inclusions, blue arrows indicate blue fluorescent inclusions, and black arrows indicates saline inclusions

  • 在储层模型中,砂体的孔隙度介于10%~30%,按照正态分布随机分布,泥岩的孔隙度介于1.0%~5.0%,平均分布。渗透率的对数与孔隙度呈线性关系。假设砂体的临界饱和度10%~30%,聚集饱和度75%~95%,泥岩相的临界饱和度为5%~10%,聚集饱和度为40%~50%。按照正态分布随机生成到每个计算网格中,砂体的平均Bond数(浮力与毛细管力之比)为1.0×10-2,泥岩平均Bond数分布为1.0×10-4。在砂体之间及内部设随机开启的裂缝以模拟储层内部所发生的流体连通性,正是这些裂缝的开启使得储层变为输导层(罗晓容等,2020),开启裂缝对应的Bond数为1.0。

  • 图5 三维储层地质模型及其中沉积砂体分布

  • Fig.5 A 3D geological model of a carrier bed and distribution of sedimentary sand bodies in it

  • 图中浅绿色者为砂体,深绿色为泥质沉积

  • In the figure, the light green presents sand bodies, and the dark green presents muddy deposits

  • 油气运移聚集的模拟结果如图7所示。在三维的结构非均质储层模型中,油气在烃源岩区内运移的路径非常复杂,很容易在一些砂岩体中聚集起来,成为小型的油气藏。而在烃源岩区之外的斜坡上,运移路径也十分复杂,油气在运移路径附近的砂岩体中聚集。相较于烃源岩区内,斜坡上运移路径数目较少,聚集的油气藏的数目也相对较少,但面积相对较大。当运移油气量足够大、运移时间足够长,输导层中运移的油气最后都在位于高点的背斜圈闭中汇集,形成背斜油气藏。

  • 图6 三维输导层地质模型中岩石相分布

  • Fig.6 The sections present the distribution of petrophysical facies in the 3D geological model of carrier bed

  • (a)—Y=350 m垂直截面;(b)—Y=1300 m垂直截面;(c)—X=1600 m垂直截面;蓝色为泥质岩,天青色为有效砂岩体,红色为隔夹层

  • (a) —Y=350 m vertical section; (b) —Y=1300 m vertical section, (c) —X=1600 m vertical section; blue presents mudstones, azure presents efficient sandstone bodies, and red presents interlayers

  • 模拟结果显示(图7),结构非均质性储层模型中油气的运移路径特征和聚集方式与传统认为的宏观均质性储层模型中的完全不同(罗晓容等,2020),特别是在烃源岩分布的凹陷区和相邻的斜坡区,运移路径分散,甜点式聚集、范围广泛。但这并不完全与传统石油地质理论相悖,位于高点的圈闭仍是油气运移、聚集和调整的指向,条件适合则仍可能是油气富集的位置。

  • 近十多年来,随着勘探的不断深入,斜坡部位甚至凹陷中心也时常发现重要的油气聚集(赵文智等,2005赵贤正等,2018Breyer and Euze,2021)。对于属于非常规的致密砂岩油气,主要的勘探目标也不再局限于圈闭或者高点,所观察到的油气水关系复杂的现象越来越普遍(孙龙德等,2009邹志文等,2010许宏龙等,2015罗晓容等,2016b)。对盆地凹陷和斜坡位置的含油储层岩芯观察,油并不完全占据整个储集体,而是含油和非含油砂岩岩石相间分布(图2)。这些不含油的砂岩中有一部分为致密的夹层,但大部分为物性相对较好的砂岩,即在同样成藏条件下,物性较好的储集岩石中也不一定含油(罗晓容等,2020)。

  • 图7 三维结构非均质输导层模型中油气运移路径与聚集状态

  • Fig.7 Oil migration pathways and accumulation state in the 3-D architecturally heterogeneous carrier bed model

  • 图中运移路径颜色显示了路径中的含油饱和度(见图c右边的标尺)

  • The color of the migration pathways in the diagrams shows the oil saturation in the pathways (see the color scale bar on the right of diagram (c) )

  • 3 深层—超深层油气多期运聚成藏过程模式

  • 盆地深层—超深层经历了多期盆地演化过程的叠加复合和改造,地质条件复杂,高温高压,流体相态变化大,油气分布复杂。因而认识深层—超深层油气运聚成藏的机理和过程就必须从结构非均质储层/输导层中油气的运移、聚集过程,以及其中储层经历的成岩变化的角度进行梳理和分析。

  • 储层在埋藏较浅阶段经历了早期成岩作用,砂岩体间的泥质岩层和砂岩体内富塑性骨架颗粒的砂岩层最易在压实作用下失去相当部分的孔隙空间,并逐渐变得低渗,对于在浮力作用下运移的油气而言足以构成有效的阻隔层(图3)。另外,砂岩体不同级别的构型界面上形成胶结程度很高的钙质结核致密隔夹层。这样,在第一次油气运聚成藏之前,储层内形成了由泥岩隔层、富塑性颗粒砂岩夹层、钙质胶结砂岩夹层构成的结构性隔夹层网格及其间孔渗良好的砂岩储集体(图8)。

  • 在结构性非均质储层中,第一期油气主要在浮力作用下沿着储层中渗透性较高的连通砂岩体或穿过泥岩隔层的开启断裂裂缝等通道运移(罗晓容等,2020)。由于具有空间结构的隔层对流体的作用,运移路径很不规则,且随时形成局部的聚集。在每个含油砂岩体内部油运移聚集的方式也呈现为明显的非均质性,砂岩体内部的夹层对油的运移起到了阻隔作用,只有在夹层分布不连续或存在断开夹层的微观通道的地方油得以运移,并在砂岩体内动力平衡的位置聚集起来,而其他的部分砂岩仍然含水(图9a)。当运移继续发生时,运移的油可同时选择多个通道,在烃源岩分布的洼陷内以及在斜坡上形成分布较广的运移范围和单个规模小但数量众多的局部聚集(图9a)。

  • 第一期运聚成藏之后,输导层经历了后期的埋藏、成岩过程。一般而言,隔夹层因为早已致密,不再发生重要成岩作用;含油砂岩体中一部分油散失了(图9b),含水砂岩和含油砂岩中都发生化学成岩作用,砂岩的孔隙物性随成岩和埋藏深度不断降低。由于含油砂岩中残余油的存在,成岩作用受到一定的阻碍,物性总是相对于含水砂岩要好(罗静兰等,2016Shi et al.,2017a; Cao et al.,2017)。另外,早期原油的充注,使得原先位于运移路径上和局部油聚集空间的砂岩中岩石颗粒表面润湿性发生反转,变为更加亲油的混合润湿状态(Shi et al.,2017b; Qi et al.,2021)。

  • 随深埋过程继续,油运聚成藏作用再次发生,油再次进入该储层(图9c),这时曾经含油的砂岩物性较好,且前期原油将一部分颗粒表面改造为亲油性,大大降低了油运移充注的阻力,因而进入输导层的油优先在这些砂岩中运移、聚集(王忠楠,2021)。而含水砂岩物性演化变得相对较差,又一直保持亲水润湿性,即便位于油气运移的指向上,油也难以进入。

  • 图8 结构非均质性碎屑岩输导层模型

  • Fig.8 An architectural heterogeneous clastic rock carrier bed model

  • 图9 深层—超深层碎屑岩输导层中多期油气运聚成藏模式

  • Fig.9 Multi-stage oil and gas migration and accumulation modes in the deep and ultra-deep clastic rock carrier bed model

  • (a)—早期原油充注,沉积相、流体势控制原油运聚;(b)—深埋过程中成岩作用继续,大部分已聚集的原油散失,砂岩逐渐致密化;(c)—深埋过程中成岩与原油充注交替:砂岩储层逐渐致密;(d)—晚期低渗成藏,天然气在含油砂岩中运移成藏

  • (a) —early stage of oil migration and accumulation controlled by sedimentary facies and fluid potential; (b) —diagenesis continues during burial process, most of the accumulated crude oil is lost, and sandstones are gradually densified; (c) —the stages where diagenesis, oil migration and accumulation occurred alternately in the process of deep burying, sandstone reservoirs became gradually further densified; (d) —late stage of low-permeability reservoirs formation, where gas migrated and accumulated in oil-bearing sandstones

  • 随着盆地沉降,油气成藏系统深埋至深层—超深层的过程中,储层内这样的成岩作用和油气充注、运移、聚集过程可能多次发生,但无论发生多少期次,输导层总体的孔渗物性不断降低,原先第一期油气运聚成藏时没有发生过油充注的含水砂岩中油气进入的难度越来越大,以后基本上不会有油气的进入,而早期发生过油充注的砂岩中成岩作用受到阻碍、部分骨架颗粒表面呈亲油性,在后期的油气运聚成藏过程中始终有效。

  • 当该成藏系统埋藏至一定的深度,烃源岩中天然气形成、排出,进入储层的天然气也优先在第一次原油运移时被油所占据的运移路径和相关油聚集的空间中发生运移(图9d)。这一方面是因为早期原油及残留油的存在,阻碍了后期成岩作用,使得早期油充注的岩石中物性相对较好;另外,经原油改造而具有混合润湿性特征的岩石对于天然气来说是憎水的,因而有利于降低天然气运移过程中的阻力(Shi et al.,2017b)。因此可以观察到在早期含油的储层中天然气饱和度高、产量高的现象。另一方面,天然气的运移相态和动力与油运移的不完全一样,天然气可以溶于水的方式发生运移,也可以通过扩散方式运移。因而天然气可以进入那些早期没有发生过原油充注的含水砂岩中运移甚至聚集。但这些天然气运移方式的效率没有以游离态运移天然气的高,因而在这些砂岩体中天然气的饱和度往往较低(Shi et al.,2017a)。

  • 在上述考虑了深层—超深层储层/输导层多层次结构非均质性的成岩演化—油气运聚过程模式中,幕式开启的断裂裂缝是造成有效储集体间连通的重要条件(罗晓容等,2016,2020; 杨海军等,2018)。每期每次油气运移都只发生在物性相对较好的有效储集体中,因而深层—超深层储层中油气运移并不需要极端的流体动力条件;通过多个运聚成藏过程的时空组合即可合理地解释和描述深层—超深层油气运聚成藏的机制和油气分布规律(Luo et al.,2020)。

  • 在深层—超深层具有结构非均质性的储层中,油气运移聚集都往往只能占据部分有效储集空间,形成不同层次的油气聚集单元,构成了不同级别的甜点分布。各个级别的甜点都是相对孤立的,但在平面上观察,输导层中这些甜点可以相互叠覆,形成连片的油气分布。当因构造形变、岩性变化和地层遮挡等条件形成了尺度大于储层内部砂岩体或砂岩体组合的圈闭,则油气将趋向于向着位于高点位置的圈闭调整,由于油藏调整的时间往往远较运移的时间长,因而在圈闭中各级甜点的密度逐渐增大,油气逐步富集。

  • 4 深层—超深层油气运聚成藏复合模式

  • 对于储层/输导层结构非均质性及其对晚期油气运移、聚集、调整的过程控制作用等的理解,带来了对油气生成、油气运移聚集,运移路径特征以及聚集范围的空间分布等一系列新的认识,也将改变人们对油气资源分布的传统认识。

  • 深层—超深层在埋藏过程中受到各种不同类型的构造活动的影响和作用,油气的生成、排出、运移、聚集和调整随时随刻发生,经长期的运聚散交替累加叠置,形成复杂的复合含油气系统。在我国西部各大盆地的深层—超深层都发育优质的烃源岩层(朱光有和张水昌,2009何治亮等,2016Zhao et al.,2017马永生等,2020),这些烃源岩层中的油气首先向其相邻和内部的储集体中运移和聚集。随着埋深过程中储层/输导层致密化作用的不断进行,储层中小的聚集单元本身构成了良好的封闭条件和保存能力。这些油气聚集大都分布在深层—超深层甚至更深层—超深层位,埋藏深度大,一部分可富集在深层—超深层圈闭中形成大型油气藏,而大部分以甜点方式赋存,大面积分布,连片叠置。这样的油气分布一般不会因储层形变倾覆等破坏作用而导致油气聚集的散失,断裂和裂缝形成则是油气聚集遭受破坏、发生再次运移聚集的主要原因(罗晓容等,2020)。综合上述对我国盆地深层—超深层勘探成果和理论新认识,我们建立了深层—超深层“源导共控,近源优先,低位广布,高点富集”的油气复合成藏新模式(图10)。这种深层—超深层油气成藏组合模式在我国中西部叠合盆地深层—超深层广泛存在,反映了盆地深层—超深层历经了多期构造变形、复合、叠加,油气生排运聚散的过程反复发生,油气多期调整、多期运聚,具有普遍意义。

  • 深层—超深层储层中油气运移聚集调整的总的方向是向储层延伸的上倾方向,当储层向着盆地边部可以连续延伸,运移和聚集油气可能逐渐调整到埋藏深度相对比较浅的位置。当深大断裂穿过已经发生过油气运聚的深层—超深层储层,其中广泛分布的油气聚集则有更多的机会在这些断层活动的短暂时间内快速进入断层带中开启部分,之后随着断层的活动而不断向上运移,在断层上端埋藏深度相对较浅的各类储集体中聚集或进一步运移、调整,形成不同形式的油气聚集(赵孟军等,2002林会喜等,2013张辉等,2021唐勇等,2022匡立春等,2022)。这些与深层—超深层发生过油气聚集的储层以不同的输导方式连通的、埋藏深度相对较浅的部位长期成为油气运移聚集调整的指向,在深层—超深层烃源岩供烃量足、油气运移调整时间足够长的条件下,这些部位往往就是油气富集区。但若在深层—超深层烃源岩层内部或附近没有可以聚集油气的有效储层,则这些断层通道的形成及其相关中浅层圈闭的存在均无意义,几不可能形成与该烃源岩层相关的规模油气聚集(张善文等,20082013; 邓云华,2012;薛永安等,2021)。

  • 图10 深层—超深层油气“源导共控,近源优先,低位广布,高点富集”的成藏模式

  • Fig.10 Oil and gas reservoir forming mode of deep-ultradeep: Source rocks and carrier system controlled jointly the hydrocarbon resource distribution in deep basin, reservoir units near the source rocks are preferred to be charged, hydrocarbon accumulate widely in depression and slopes, and may be enriched in traps lying at structural high points

  • 库车坳陷是塔里木盆地已被证实的富含油气区,是我国碎屑岩层系深层—超深层勘探发现的典型(王昭明,2014)。库车坳陷在晚二叠世之前的古生界褶皱基底上形成,历经了晚二叠世—早三叠世前陆盆地、侏罗纪—古近纪伸展坳陷盆地和新近纪—第四纪再生前陆盆地等演化阶段(贾承造等,2002)。通过对坳陷中部北起克拉2气田、经克深气田再到秋里塔格含油气构造带、直到坳陷南边牙哈地区的油气发现解剖分析,参考迪北—依南地区侏罗系的油气发现和成藏过程,可以建立以三叠系—侏罗系下伏烃源岩层供源的多期运聚成藏过程叠加模式(图11)。

  • 新近纪伊始(~23 Ma),三叠系烃源岩进入第一次生排烃高峰,较低成熟度油在源储压差的驱动下,向上覆侏罗系储层中充注(张宝收等,2019),并以生烃凹陷为中心,向上倾方向的盆地南部运移(图11a)。在具有结构非均质性的侏罗系阿合组储层中,油气分布广泛,在储层的任何部位都可能聚集,但以分散的小规模聚集为主,连片叠置。随着地层持续的埋藏,成岩作用导致储层物性逐渐变差,烃源岩成熟度逐渐升高。在构造运动的作用下地层发生挤压变形、逆冲断裂形成以及先存断裂的生长和再活动。当烃源岩进入生排烃高峰,所形成的高熟油在源储压差的驱动下向邻近储层充注。曾经历过早期低熟油充注的岩石因颗粒表面润湿性改变构成了优势运移通道。此时地层依旧保持着北低南高的形态特征,高熟轻质油仍可向上倾方向运移,并因油气密度差异聚集作用而不同程度地将早期聚集的低熟原油推向上倾方向更高的位置(图11b)。在此阶段,除了侏罗系储层内的运移和聚集,北部单斜带、中秋和牙哈等地区还形成了开启断裂,沟通了三叠系—侏罗系与上覆地层。侏罗系阿合组储层中的早期低熟原油可沿断裂向白垩系巴什基奇克组储层调整运移,运移到白垩系储层中的油气也可继续向上倾方向发生侧向运移(赵孟军等,2002)。在喜马拉雅构造运动晚期,受天山造山带向南的构造推挤,在坳陷内形成了一系列的逆冲推覆构造,多条断层沟通三叠系—侏罗系。这时持续埋藏作用造成储层物性致密化程度增大,原先聚集的油气散失,三叠系和侏罗系烃源岩成熟度快速增大,达到裂解阶段,生成大量天然气。天然气向邻近的侏罗系阿合组储层中运移、聚集(李峰等,2016张宝收等,2019),储层中原先残留的低成熟度油和轻质油因油气密度差异聚集作用被推向远离生烃中心的方向(图11c)。此时许多断裂成为烃源断裂,侏罗系储层中聚集的天然气沿着断裂向上发生运移,进入白垩系巴什基奇克组储层中形成天然气藏。

  • 库车坳陷发生的“下聚上调”的复合油气成藏过程,是多个单期、单源油气运聚单元的有序叠合过程,其间不同阶段生成的油气不断混合、排替、改造,导致现今各个构造上油气相态多样、油气水关系复杂,但总体上形成了“内环干气、中环凝析油气、外环油”的油气分布规律(赵孟军等,2015)。

  • 5 深层—超深层勘探新领域

  • 先前人们在勘探中通过寻找圈闭来判断油气藏的存在。新近的研究认为,与优质烃源灶相邻的有效储层无论其位于什么位置,都有可能形成油气聚集。在这样的优质烃源岩层+有效储层组合的控制下,位于其上倾方向上的各种圈闭,往往是油气运移、调整的汇集指向。然而,其是否能够含有油气或含多少,取决于烃源供油气量的多少。如果供烃量有限,油气在结构非均质输导层内运移过程中,可能在不同位置形成众多小型聚集,而不能够最终达到位于高点的圈闭,这也是当前世界范围内油气勘探成功率相对较低的原因之一(Baur et al.,2018)。

  • 对油气储层非均质性和油气运聚特征的新认识表明(图10),位于构造高点的圈闭中的油气藏只是油气聚集过程中形成的一些特例,如果获得勘探发现,则其生产成效较高。但这样的油气藏数目相对较少,除部分构造油气藏外,大部分岩性地层油气藏比较隐蔽,勘探的风险较大。因而深层—超深层油气勘探的新领域还应该更多地向着那些按照传统油气地质理论不会考虑或考虑较少的方向去探索。

  • 图11 库车坳陷深层—超深层油气下聚上调的复合成藏过程模式

  • Fig.11 Compound migration-accumulation process model in deep and ultra-deep area in Kuqa depression, where happened hydrocarbon accumulation in ultra-deep reservoirs, upward readjustment and migration in carrier system, and charging in deep traps

  • 通过对储层结构非均质性以及相应的油气运聚模式的新认识,结合对我国西部深层—超深层成盆、成烃、成储、成藏以及油气勘探实践的新的理论认识,提出深层—超深层油气勘探的新领域。这些新领域与当前深层—超深层油气勘探发现和开发成果密切相关,而且对于其中油气分布的规律已有一定的认识基础,因而可以立足于当前深层—超深层的油气发现,由浅及深,根据勘探开发过程技术的能力和风险逐步推进。

  • 5.1 已发现位于构造高点的油气藏向着供源方向拓展

  • 在位于构造高点的油气藏的油气供源方向上,离开油气—水界面向下倾方向拓展,储层含油气饱和度可能变化较大,但油气聚集分布广、含油气厚度大,总量仍很可观。一些钻探落空的高点圈闭,如果能够在油气供源的下倾方向发现油气显示,尽管量较小,按照传统认识不能认为是油气聚集,但表明了油气可以运移到该位置,并有可能在储层中以众多小型聚集的甜点方式赋存。

  • 这类油气聚集的典型实例为哈得逊东河砂岩油气藏(孙龙德等,2008)。在发现哈得4背斜构造圈闭油藏后向着北部下倾方向滚动勘探可以遇到较好的原油储量,而向南则没有发现。在不断向北滚动勘探的过程中常常遇到含油储层变薄、含油饱和度降低的情况,但继续向北仍然钻遇了厚度较大且含油饱和度较高的含油储层。目前的哈得逊油田是不断向北拓展的结果,油藏的特点是油水界面严重倾斜、含油饱和度变化大、油层厚度各井不一,钙质胶结隔夹层网状分布,造成储层流体流动不畅。研究认为,目前哈得逊油藏的形成是从北部乡3井区古油藏向哈得113井—哈得4井方向调整运移和聚集的结果(徐汉林等,2008)。在考虑东河砂岩储层具有结构非均质性的条件下建立储层模型,模拟分析了原油从北部乡3井区古油藏向哈得113井—哈得4井方向调整运移和聚集的过程(Luo et al.,2015)。结果表明,由于储层结构非均质性的存在,造成了油气的运移路径分布范围广,局部聚集,含油饱和度变化大的特征(图12),从流体动力学角度揭示了该油田在储层物性良好的背景下油水界面大幅度倾斜的机理和过程(Luo et al.,2015)。

  • 在已发现位于构造高点的油气藏向着供源方向的拓展方面,勘探方向的可预测性因地而异。具体到不同的盆地,须从研究区深层—超深层油气形成、聚集和保存的角度,认识已发现含油气圈闭中油气的供源方向和模式,向油气供源方向逐步推进。

  • 5.2 下聚上调式复合成藏过程模式控制下的中深层调整型油气聚集

  • 目前的研究发现,我国西部三大盆地在超深层的古老层系往往发育优质烃源岩层,如塔里木盆地寒武系玉尔吐斯组、震旦系至南华系,四川盆地震旦系和寒武系等。与这些超深层烃源岩层相关的有效储层中大都形成了大面积分布的甜点式油气聚集。这些油气聚集的埋藏深度很大,聚集程度则逊于圈闭中的油气藏,因而一般不是目前油气勘探的主力目标。当这些超深层油气聚集通过开启断层与上覆中—深层储层沟通,形成垂直运移通道,原先在超深层储层中聚集的油气将可能漏失,进入开启断裂裂缝或断裂带,并向上运移到中—深层,可沿断裂形成一系列断层类型油气藏,或者侧向运移至更远,形成大面积分布的断层相关岩性油气聚集。

  • 对这些领域进行认识和评判的一个重要前提是在超深层优质烃源岩层内部及上下发育有效的储层,具备形成近源油气聚集的运聚条件和大范围的油气汇集面积。因为断裂直接从烃源岩层中可接受的排烃范围有限,运移量很小。如果没有与优质烃源岩关系密切的深层—超深层储层中油气的运聚,中—深层与断裂相关的储层中也不会存在调整上来的油气。

  • 图12 塔北地区东河砂岩储层中乡3井古油藏向哈得逊油田调整—重新成藏过程的模拟结果

  • Fig.12 Simulation results of the adjustment and reservoir-forming process from the ancient reservoir of well Xiang 3 in Donghe sandstone bed in Hudson oilfield, Tabei area

  • (a)—早白垩世,乡3井古油藏开始调整,乡3井区黑底范围为古油藏位置;(b)—中新世,油气继续调整,形成哈得113古油藏,运移聚集范围宽广,路径上聚集和残余油分布复杂;(c)—古油藏调整继续运移,形成现今的哈得逊油藏,在运移路径上残留油分布广泛,局部仍有不同程度的聚集;图中等值线给出了不同时期东河砂岩储层顶界构造起伏,浅绿色箭头给出了油气运移调整的方向;储层模型中具有结构非均质性(Luo et al.,2015

  • (a) —in the Early Cretaceous, the ancient oil reservoir of well Xiang 3 began to adjust, and the black range around the well Xiang 3 illustrates the location of the ancient oil reservoir; (b) —in the Miocene, oil and gas continued to adjust, forming Hade 113 ancient oil reservoir, with wide migration pathways and complex residual oil distribution on the pathways; (c) —the adjustment of the ancient oil reservoir continues, migrating and forming the current Hudson oil reservoir, the residual oil is widely distributed in the migration pathways that may be regarded as different degrees of accumulations; the contour lines in the diagrams show the structural topography of the top surface of the Donghe sandstone reservoir in different periods, and the green arrow shows the direction of oil and gas migration and adjustment; the sandstone bed possesses architectural heterogeneity in the reservoir model (Luo et al., 2015)

  • 这类新领域主要包括准噶尔盆地腹部侏罗系,塔里木盆地台盆区石炭系—志留系,及库车坳陷白垩系。

  • 5.3 深层斜坡带

  • 深层斜坡带分布很广,在一些盆地中的深层斜坡带钻遇了油气,但都未能发现大型油气田,一般认为不是当前深层勘探的方向。然而斜坡带埋藏深度相比烃源岩层凹陷要小一些,虽然储层中单个油气聚集体积较小,但数量多、分布较为广泛,连片叠置。只要油气供源清楚,供源量大,油气聚集总量远超圈闭中聚集的量,勘探钻遇率也非常大,应该成为今后深层油气勘探的重要新领域。但由于其富集程度和聚集方式与传统认识的圈闭中的不同,往往即便勘探中钻遇了也很难确定和勾绘出聚集方式和范围。而且在开发过程中会遇到产量不稳定、单井产量低、成本高等一系列问题,呈现出所谓的“井井见油,井井不流”的现象。这需要通过勘探、开发和工程紧密地结合,一体化的方式来进行油气的勘探和开发,提高油气生产实效。

  • 这类油气聚集的代表性勘探实例是莫西庄油田,它位于准噶尔盆地腹部1区块东北部,东侧紧邻莫北油田(林会喜等,2013)。主要目的层为侏罗系三工河组二段,目前已上报探明地质储量3000多万吨,控制地质储量近800×104 t。莫西庄地区构造为一个自北东向南西倾伏的斜坡带,油藏的精细解剖表明,含油储层具有非常复杂的油水关系,油水层之间被隔夹层或薄泥岩层所分隔(毕研斌等,2011)。区内部分井试采产能明显不足,反映出岩性油藏的特点。实际上是多个独立小油藏交错叠加,其间存在隔夹层,总体表现为油层、干层、水层频繁互层的高含水油藏。

  • 这类新领域包括库车坳陷三叠系湖盆范围之外的斜坡、侏罗系湖沼沉积之外的斜坡,塔里木盆地台盆区志留系及上覆各层系,准噶尔盆地各坳陷二叠系湖盆之外的斜坡,柴达木盆地一里坪坳陷侏罗系湖盆的斜坡,赛什腾凹陷深层斜坡等等。

  • 5.4 深层—超深层生烃洼陷内优质烃源岩层内部及上下有效储集层

  • 深层—超深层的生烃洼陷中心一般不是当前勘探的目标,主要原因是按照传统的石油地质学理论,虽然可能会存在丰富的油气聚集,但都属于非常规的油气,在深层—超深层条件下难以开发动用。但如果这样的油气富集层位因后期的抬升剥蚀,深度变浅,则有望成为重要的油气勘探开发领域。

  • 对鄂尔多斯盆地陇东地区长73段湖相页岩层系中致密砂岩储层研究发现,即便普遍认为其曾被埋藏至深层—超深层,砂岩的平均孔隙度为8.3%、平均渗透率为0.14×10-3 μm2,但储层物性的非均质性强,孔隙度最大值达17.93%,渗透率最大值达31.11×10-3μm2。在这样的储层中油气分布不均一,形成大小不一、油气饱和度变化极大的多个级别的甜点。

  • 因此,深层—超深层生烃凹陷中与优质烃源岩相关的储层中有利于油气的充注和聚集,储层结构非均质性对于油气的分布与聚集程度具有重要的影响。在整体致密的条件下,物性相对较好的有效储集体提供了油气聚集的空间,构成了不同尺度的甜点,相互间存在一定程度的分隔。随着油气勘探开发及工程技术的提高,只要认识到位、技术先进、方法得当,位于深层生烃凹陷的油层和超深层的气层都可能实现开发效益,是今后值得关注的勘探新领域。

  • 这类新领域包括准噶尔盆地玛湖深层—超深层二叠系优质烃源岩层分布区,昌吉坳陷侏罗系煤系烃源岩层和二叠系优质烃源岩层分布区及吉木萨尔坳陷二叠系芦草沟组湖相页岩层系,也包括鄂尔多斯盆地南部的上古生界天然气聚集区和鄂尔多斯盆地中生界延长组下组合等。

  • 6 结论

  • (1)碎屑岩储层普遍存在强烈的非均质性,这种非均质性受到沉积结构构造及成岩作用控制,表现出一定的空间结构性。尽管不同盆地不同区块、不同沉积相带砂岩岩石学组分和沉积结构差异性明显,但都可以划分为三类岩石相:富塑性颗粒砂岩、钙质胶结砂岩及贫塑性颗粒砂岩,其成岩演化、岩石与有机-无机流体相互作用关系差异很大。贫塑性颗粒砂岩可进一步分为含油气砂岩或含水砂岩,构成了深层—超深层储层中有效性的储集岩体,而其他两类则表现为不同层级的隔夹层。

  • (2)在结构非均质输导层中,油气的运移、聚集与传统认识相差很大。结构非均质性输导层中的油气总体向上倾方向运移,受储层中砂体分布和连通方式以及一些隔夹层结构影响,油气运移的路径分布极不均匀,并且在输导层中任何部位都可能聚集。位于凹陷和斜坡部位的输导层中单个油气量较小,但数量众多,分布范围很广,油气水分布复杂、没有统一的油水或气水界面。处于上倾方向的圈闭仍然是油气运移的最终指向和有利目标,但油气要运移至圈闭、形成油气藏则需要有足够的油气运移量和运移调整时间。

  • (3)新的油气运聚和成藏过程的认识带来许多启示,勘探应该具有更为广泛的目标选择,洼陷区和斜坡区都可能成为有利勘探区域。在盆地演化过程中,深层—超深层优质烃源岩层生成的油气首先向其内部和相邻的储层中运移聚集,多期多幕的构造变动促使深层—超深层储层中已聚集的油气向着连续储层的上倾方向运移调整,或沿着断裂中的开启部分向上运移调整至中—深层与断层相关的有效储层中运移、聚集。

  • (4)未来现实的深层—超深层油气勘探新领域包括:构造高点油气藏向供源方向的拓展、深层—超深层烃源由断裂调整至中深层—超深层的次生油气聚集、深层—超深层与油气源相关的斜坡带以及深层—超深层生烃洼陷优质烃源岩层内部及相邻的有效储集层。

  • 参考文献

    • Bai Guoping, Cao Binfeng. 2014. Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil & Gas Geology, 35(1): 19~25 (in Chinese with English abstract).

    • Baur F, Scheirer A H, Peters K E. 2018. Past, present, and future of basin and petroleum system modeling. AAPG Bulletin, 102(4): 549~561.

    • Bi Yanbin, Gao Shanlin, Zhu Yunhui, Pang Wen, Yang Qiulai, Chen Jihua. 2011. Hydrocarbon accumulation patterns of Moxizhuang oilfield, the Junggar basin. Oil & Gas Geology, 32(3): 318~326 (in Chinese with English abstract).

    • Bloch S, Lander, R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.

    • Breyer J A, Euze T. 2021. Carrier beds as reservoirs. AAPG Bulletin, 105: 1745~1749.

    • Cao B F, Luo X R, Zhang L K, Sui F G, Lin H X, Lei Y H. 2017. Diagenetic evolution of deep sandstones and multiple-stage oil entrapment: A case study from the Lower Jurassic Sangonghe Formation in the Fukang sag, central Junggar basin (NW China). Journal of Petroleum Science and Engineering, 152: 136~155.

    • Cao B F, Luo X R, Zhang L K, Lei Y H, Zhou J S. 2020. Petrofacies prediction and 3-D geological model in tight gas sandstone reservoirs by integration of well logs and geostatistical modeling. Marine and Petroleum Geology, 114: 104202.

    • Dai Jinxing. 2003. Enhance the studies on natural gas geology and find more large gas fields in China. Natural Gas Geosciance, 14(1): 3~14 (in Chinese with English abstract).

    • Deng Yunhua. 2012. Practical effect of the “transfer station” model for oil-gas migration in rift basin: A case study on the tertiary in the Bohai oil province. Acta Petrolei Sinica, 33(1): 18~24 (in Chinese with English abstract).

    • Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.

    • He Zhiliang, Jin Xiaohui, Wo Yujin, Li Huili, Bai Zhenrui, Jiao Cunli, Zhang Zhongpei. 2016. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China. China Petroleum Exploration, 21(1): 3~14 (in Chinese with English abstract).

    • Hu Caizhi, Zhang Likuan, Luo Xiaorong, Zhao Hong, Yang Bin, Cao Binfeng, Lei Yuhong, Cheng Ming, Li Chao. 2015. Diagenesis and porosity evolution of the low-porosity and low-permeability sandstones: Evidence from the Lower Jurassic Sangonghe Formation in Moxizhuang area, central Junggar basin. Natural Gas Geosciance, 26(12): 2253~2266 (in Chinese with English abstract).

    • Hu Caizhi, Luo Xiaorong, Zhang Likuan, Qiu Guiqiang, Lei Yuhong, Cheng Ming. 2017. Differential diagenesis and hydrocarbon charge process of the 9th Member of Yanchang Formation in the central and western Ordos basin. Acta Geologica Sinica, 91(5): 1141~1157 (in Chinese with English abstract).

    • Jia Chengzao, Gu Jiayu, Zhang Guangya. 2002. Geological constraints of giant and medium-sized gas fields in Kuqa depression. Chinese Science Bulletin, 47(S1): 47~55 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).

    • Kang Yuzhu. 2004. Re-discussion on exploration potential of Paleozoic in Tarim basin: 20th anniversary of significant discovery in Shacan 2 well. Oil & Gas Geology, 25(5): 479~483 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2022. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).

    • Li Feng, Jiang Zhenxue, Li Zuo, Liu Jianliang, Wang Ying, Luo Xiao. 2016. Fluid inclusion characteristics and hydrocarbon charge history of Dibei gas reservoir in the Kuqa depression. Journal of Central South University (Science and Technology), 47(2): 515~523 (in Chinese with English abstract).

    • Li Jianzhong, Tao Xiaowan, Bai Bin, Huang Shipeng, Jiang Qingchun, Zhao Zhenyu, Chen Yanyan, Ma Debo, Zhang Liping, Li Ningxi, Song Wei. 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Petroleum Exploration and Development, 48(1): 52~67 (in Chinese with English abstract).

    • Li Yang, Xue Zaojie, Cheng Zhe, Jiang Haijun, Wang Ruyue. 2020. Progress and development directions of deep oil and gas exploration and development in China. China Petroleum Exploration, 25(1): 45~57 (in Chinese with English abstract).

    • Li Zhong, Chen Jingshan, Guan Ping. 2006. Scientific problems and frontiers of sedimentary diagenesis research in oil-gas-bearing basins. Acta Petrologica Sinica, 22(8): 2113~2122 (in Chinese with English abstract).

    • Lin Huixi, Zeng Zhiping, Gong Yajun, Shen Yang, Jiang Bo. 2013. Process analysis of hydrocarbon charging and adjustment in central area of Junggar basin. Fault-block Oil & Gas Field, 20(3): 316~320 (in Chinese with English abstract).

    • Luo Jinglan, Luo Xiaorong, Bai Yubin, Luo Chunyan, Bai Xuejian, Li Xiangjun, Li Chi. 2016. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs—A case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos basin. Journal of Earth Sciences and Environment, 38(1): 79~92 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Fu Xiaofei, Pang Hong, Zhou Bo, Wang Zhaoming. 2016a. Advances in dynamics of petroleum migration and accumulation in deep basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876~889 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Lei Yuhong, Hu Caizhi, Shi Hui, Cao Binfeng. 2016b. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones. China Petroleum Exploration, 21(1): 28~36 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity in clastic carrier beds and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).

    • Luo X R. 2011. Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration. AAPG Bulletin, 95(6): 881~898.

    • Luo X R, Hu C Z, Xiao Z Y, Zhao J, Zhang B S, Yang W, Zhao H, Zhao F Y, Lei Y H, Zhang L K. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.

    • Luo X R, Zhang L K, Lei Y H, Yang W. 2020. Petroleum migration and accumulation: Modeling and applications. AAPG Bulletin, 104: 2247~2265.

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2011. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Science Frontiers, 18(4): 181~192 (in Chinese with English abstract).

    • Ma Yongsheng, Li Maowen, Cai Xunyu, Xu Xuhui, Hu Dongfeng, Qu Shouli, Li Gensheng, He Dengfa, Xiao Xianming, Zeng Yijin, Rao Ying, Ma Xiaoxiao. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~672+683 (in Chinese with English abstract).

    • Morad S, Al-ramadan K, Ketzer J M, De Ros L F. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94(8): 1267~1309.

    • Pang Xiongqi. 2010. Key challenges and research methods of petroleum exploration in the deep of superimposed basins in western China. Oil & Gas Geology, 31(5): 517~541 (in Chinese with English abstract).

    • Pang Xiongqi, Luo Xiaorong, Jiang Zhenxue, Lin Changsong, Zhang Shuichang, Zhong Ningning, Li Zhong. 2007. Advancements and problems on hydrocarbon accumulation research of complicated superimposed basins in western China. Advances in Earth Science, 22(9): 879~887 (in Chinese with English abstract).

    • Pang Xiongqi, Zhou Xinyuan, Yan Shenghua, Wang Zhaoming, Yang Haijun, Jiang Fujie, Shen Weibin, Gao Shuai. 2012. Research advances and direction of hydrocarbon accumulation in the superimposed basins, China: Take the Tarim basin as an example. Petroleum Exploration and Development, 39(6): 649~656 (in Chinese with English abstract).

    • Pettijohn F J, Potter P E, Siever R. 1972. Sand and Sandstone. Berlin: Springer-Verlag.

    • Pranter M J, Sommer N K. 2011. Static connectivity of fluvial sandstones in a lower coastal-plain setting: An example from the Upper Cretaceous lower Williams Fork Formation, Piceance basin, Colorado. AAPG Bulletin, 95(6): 899~923.

    • Qi Y K, Lin H X, Zhang F S, Zhu X X, Hu H W, Zhou B, Wei Q. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 6665237, https: //doi. org/10. 1155/2021/6665237.

    • Shi H, Luo X R, Lei G L, Zhang L Q, Zhang L K, Lei Y H. 2017a. Diagenesis and fluid flow variability of structural heterogeneity units in tight sandstone carrier beds of Dibei, eastern Kuqa depression. Geofluids, 2017: 1~15.

    • Shi H, Luo X R, Li X, Liu N G, Qi Y K, Fang T, Zhang L K, Lei Y H. 2017b. Effects of mix-wet porous mediums on gas flowing and one mechanism for gas migration. Journal of Petroleum Science & Engineering, 152: 60~66.

    • Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen. 2008. Exploration and Practice for theory of unsteady-state hydrocarbon accumulation. Marine Origin Petroleum Geology, 13(3): 11~16 (in Chinese with English abstract).

    • Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen, Lian Zhanggui. 2009. Unsteady reservoir in Hadson oilfield, Tarim basin. Petroleum Exploration and Development, 36(1): 62~67 (in Chinese with English abstract).

    • Sun Longde, Fang Chaoliang, Li Feng, Zhu Rukai, Zhang Yunhui, Jia Aailin, Gao Xingjun, Su Ling. 2015. Innovations and challenges of sedimentology in oil and gas exploration and development. Petroleum Exploration and Development, 42(2): 129~136 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).

    • Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).

    • Wang Zhaoming. 2014. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression, Tarim basin. Natural Gas Geoscience, 25(2): 153~166 (in Chinese with English abstract).

    • Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiaozeng. 2021. Impact of chlorites on the wettability of tight oil sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos basin, China. Science China Earth Sciences, 64(6): 951~961.

    • Weber K J. 1986. How heterogeneity affects oil recovery. In: Lake L W, Carroll Jr H B, eds. Reservoir Characterization. Orlando: Academic Press, 487~544.

    • Wong T F, Baud P. 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44: 25~53.

    • Xu Chunchun, Zou Weihong, Yang Yueming, Duan Yong, Shen Yang, Luo Bin, Ni Chao, Fu Xiaodong, Zhang Jianyong. 2017. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China. Natural Gas Geosciance, 28(8): 1139~1153 (in Chinese with English abstract).

    • Xu Hanlin, Jiang Tongwen, Gu Qiaoyuan, Niu Yujie, Zhang Qiucha. 2008. Probe into hydrocarbon accumulations in the Hadson oilfield, Tarim basin. Journal of Southwest Petroleum University (Science &Technology Edition), 30(5): 17~20 (in Chinese with English abstract).

    • Xu Honglong, Liu Jian, Gong Liuping, Qiao Cheng, Zhu Baozhu, Yu Mengnan. 2015. The mechanism of differential distribution of the water oil contact in block 438 of Shuanghe oilfield. Marine Geology Frontiers, 31(7): 42~46 (in Chinese with English abstract).

    • Xu Xiaotong, Zhang Likuan, Ye Mingze, Zhang Liqiang, Xiu Jinlei, Zeng Zhiping, Cao Binfeng, Li Chao, Lei Yuhong, Cheng Ming, Hu Caizhi. 2021. Different diagenesis of deep sandstone reservoir and its relationship with reservoir property: Case study of Jurassic in Zhengshacun area, central Junggar basin. Natural Gas Geoscience, 32(7): 1022~1036 (in Chinese with English abstract).

    • Xue Yongan, Wang Deying, Wang Feilong, Tang Guomin. 2021. Formation conditions and exploration potential of condensate and light oil reservoirs in Bohai Sea. Acta Petrolei Sinica, 42(12): 1581~1591 (in Chinese with English abstract).

    • Yang Haijun, Zhang Ronghu, Yang Xianzhang, Wang Ke, Wang Junpeng, Tang Yangang, Zhou Lu. 2018. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tights and stone reservoir: A case study of Keshen gasfield, Kuqa depression, Tarim basin. Natural Gas Geoscience, 29(7): 942~950 (in Chinese with English abstract).

    • Yuan Yusong, Hu Wenxuan, Chen Shuping, Wang Guojian. 2019. The main controlling factors and evaluation ideas of ultra-deep oil and gas preservation. Marine Origin Petroleum Geology, 24(4): 47~56 (in Chinese with English abstract).

    • Zhai Xiaoxian, Gu Yi, Qian Yixiong, Jia Cunshan, Wang Jie, Lin Jun. 2007. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim basin. Petroleum Geology & Experiment, 29 (4): 329~333 (in Chinese with English abstract).

    • Zhang Baoshou, Yang Haijun, Zhang Nai, Zhao Qing. 2019. Hydrocarbon inclusion characteristics of Jurassic Ahe Formation and analysis on petroleum. Xinjiang Petroleum Geology, 40(1): 41~47 (in Chinese with English abstract).

    • Zhang Hui, Chen Yong, Wang Xuejun, Lin Huixi, Wang Miao, Ren Xincheng. 2021. A geochemical characteristics of solid bitumen in the Jurassic Sangonghe Formation in the central Junggar basin and its implications for hydrocarbon accumulation process. Petroleum Geology & Experiment, 43(6): 1054~1063 (in Chinese with English abstract).

    • Zhang L K, Luo X R, Ye M Z, Zhang B S, Wei H X, Cao B F, Xu X T, Liu Z D, Lei Y H, Li C. 2021. Small-scale diagenetic heterogeneity effects on reservoir quality of deep sandstones: A case study from the Lower Jurassic Ahe Formation, eastern Kuqa depression. Geofluids, 6626652, https: //doi. org/10. 1155/2021/6626652.

    • Zhang Likuan, Luo Xiaorong, Liao Qianjin, Yuan Shuqin, Su Junqing, Xiao Dunqing, Wang Zhaoming, Yu Changhua. 2007. Quantitative evaluation of fault sealing property with fault connectivity probabilistic method. Oil & Gas Geology, 28(2): 181~190 (in Chinese with English abstract).

    • Zhang Shanwen, Wang Yongshi, Peng Chuansheng, Shi Dishi. 2008. Application of fault-fracture mesh petroleum plays in exploration. Acta Petrolei Sinica, 29(6): 791~796 (in Chinese with English abstract).

    • Zhang Shanwen, Lin Huixi, Shen Yang. 2013. Analysis on meshwork-carpet pool-forming mechanism of Chepaizi uplift and enlightenment on petroleum exploration of Junggar basin. Geological Review, 59(3): 490~500 (in Chinese with English abstract).

    • Zhang Tao, Yan Xiangbin. 2007. A discussion on main factors controlling deep carbonate reservoirs in the Tarim basin. Oil & Gas Geology, 28(6): 745~754 (in Chinese with English abstract).

    • Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).

    • Zhang Zhenyu, Zhang Likuan, Luo Xiaorong, Cao Binfeng, Lin Huixi, Zeng Zhiping, Qin Feng, He Wenjun, Li Cao, Lei Yuhong. 2019. Diagenesis of sandstone and its implications for reservoir quality evaluation in the deep Xishanyao Formation in the central Junggar basin. Natural Gas Geoscience, 30(5): 686~700 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Shuangfang, Wang Tingdong, Li Jian. 2002. Geochemical characteristics and formation process of natural gas in Kela 2 gasfield. Chinese Science Bulletin, 47(S1): 113~119 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. A characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).

    • Zhao Wenzhi, Zhang Guangya, Wang Hongjun. 2005. New achievements of petroleum geology theory and its significances on expanding oil and gas exploration field. Acta Petrolei Sinica, 26(1): 1~7 (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Liu Wei, Wang Tongshan, Li Yongxin. 2014. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion. Natural Gas Industry, 34(4): 1~9 (in Chinese with English abstract).

    • Zhao W Z, Zhang S C, Zhang B, He K, Wang X M. 2017. New insight into the kinetics of deep liquid hydrocarbon cracking and its significance. Geofluids, 6340986, https: //doi. org/10. 1155/2017/6340986.

    • Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Jiang Wenya, Xiao Dunqing, Han Wenzhong, Shi Zhannan. 2018. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay basin. Petroleum Exploration & Development, 45(6): 1092~1102 (in Chinese with English abstract).

    • Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Reservoir features and formation mechanism of highquality clastic reservoir in deep strata in China. Science China: Earth Sciences, 38(S1): 11~18 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).

    • Zhu Guangyou, Sun Chonghao, Zhao Bin, Li Tingting, Chen Zhiyong, Yang Haijun, Gao Lianhua, Huang Jinhua. 2020. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7000 m. Natural Gas Industry, 31(5): 587~601 (in Chinese with English abstract).

    • Zou Zhiwen, Si Chunsong, Yang Mengyun. 2010. Origin and distribution of interbeds and the influence on oil-water layer: An example from Mosuowan area in the hinterland of Junggar basin. Lithological Reservoirs, 22(3): 66~70 (in Chinese with English abstract).

    • 白国平, 曹斌风. 2014. 全球深层油气藏及其分布规律. 石油与天然气地质, 35(1): 19~25.

    • 毕研斌, 高山林, 朱允辉, 庞雯, 杨秋来, 陈继华. 2011. 准噶尔盆地莫西庄油田成藏模式. 石油与天然气地质, 32(3): 318~326.

    • 戴金星. 2003. 加强天然气地学研究勘探更多大气田. 天然气地球科学, 14(1): 3~14.

    • 邓运华. 2012. 裂谷盆地油气运移“中转站”模式的实践效果——以渤海油区第三系为例. 石油学报, 33(1): 18~24.

    • 何治亮, 金晓辉, 沃玉进, 李慧莉, 白振瑞, 焦存礼, 张仲培. 2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域. 中国石油勘探, 21(1): 3~14.

    • 胡才志, 张立宽, 罗晓容, 赵洪, 杨彬, 曹斌风, 雷裕红, 程明, 李超. 2015. 准噶尔盆地腹部莫西庄地区三工河组低孔渗砂岩储层成岩与孔隙演化研究. 天然气地球科学, 26(12): 2254~2266.

    • 胡才志, 罗晓容, 张立宽, 邱桂强, 雷裕红, 程明. 2017. 鄂尔多斯盆地中西部长9储层差异化成岩与烃类充注过程研究. 地质学报, 91(5): 1141~1157.

    • 贾承造, 顾家裕, 张光亚. 2002. 库车拗陷大中型气田形成的地质条件. 科学通报, 47(增刊1): 49~55.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 康玉柱. 2004. 再论塔里木盆地古生代油气勘探潜力——纪念沙参2井油气重大突破20 周年. 石油与天然气地质, 25(5) : 479~483.

    • Krayushkin V A. 2009. 深成油气田. 任俞(译) . 新疆石油地质, 30(1): 136~141.

    • 匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2022. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.

    • 李峰, 姜振学, 李卓, 刘建良, 王赢, 罗枭. 2016. 库车坳陷迪北气藏流体包裹体特征及油气充注历史. 中南大学学报(自然科学版), 47(2): 515~523.

    • 李建忠, 陶小晚, 白斌, 黄士鹏, 江青春, 赵振宇, 陈燕燕, 马德波, 张立平, 李宁熙, 宋微. 2021. 中国海相超深层油气地质条件、成藏演化及有利勘探方向. 石油勘探与开发, 48(1): 52~67.

    • 李阳, 薛兆杰, 程喆, 蒋海军, 王濡岳. 2020. 中国深层油气勘探开发进展与发展方向. 中国石油勘探, 25(1): 45~57.

    • 李忠, 陈景山, 关平. 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113~2122.

    • 林会喜, 曾治平, 宫亚军, 沈扬, 江波. 2013. 准噶尔盆地中部油气充注与调整过程分析. 断块油气藏, 20(3): 316~320.

    • 罗静兰, 罗晓容, 白玉彬, 罗春燕, 白雪见, 李向军, 李弛. 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响——以鄂尔多斯盆地西南部长7 致密浊积砂岩储层为例. 地球科学与环境学报, 38(1) : 79~92.

    • 罗晓容, 张立宽, 付晓飞, 庞宏, 周波, 王兆明. 2016a. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876~889.

    • 罗晓容, 张立宽, 雷裕红, 胡才志, 施辉, 曹斌风. 2016b. 储层结构非均质性及其在深层油气成藏中的意义. 中国石油勘探, 21(1): 28~36.

    • 罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风. 2020. 碎屑岩输导层非均质性与油气运聚成藏. 石油学报, 41(3): 253~272.

    • 马永生, 蔡勋育, 赵培荣. 2011. 深层—超深层碳酸盐岩油气储集层形成机理综述. 地学前缘, 18(4): 181~192.

    • 马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹, 马晓潇. 2020. 中国海相深层—超深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~672, 683.

    • 庞雄奇. 2010. 中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义. 石油与天然气地质, 31(5): 517~534.

    • 庞雄奇, 罗晓容, 姜振学, 林畅松, 张水昌, 钟宁宁, 李忠. 2007. 中国西部复杂叠合盆地油气成藏研究进展与问题. 地球科学进展, 22 (9): 879~887.

    • 庞雄奇, 周新源, 鄢盛华, 王招明, 杨海军, 姜福杰, 沈卫兵, 高帅. 2012. 中国叠合盆地油气成藏研究进展与发展方向——以塔里木盆地为例. 石油勘探与开发, 39(6): 649~656.

    • 孙龙德, 江同文, 徐汉林, 单家增. 2008. 非稳态成藏理论探索与实践. 海相油气地质, 13(3): 11~16.

    • 孙龙德, 江同文, 徐汉林, 单家增, 练章贵. 2009. 塔里木盆地哈得逊油田非稳态油藏. 石油勘探与开发, 36(1): 62~67.

    • 孙龙德, 方朝亮, 李峰, 朱如凯, 张云辉, 袁选俊, 贾爱林, 高兴军, 苏玲. 2015. 油气勘探开发中的沉积学创新与挑战. 石油勘探与开发, 42(2) : 129~136.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.

    • 王招明.2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153~166.

    • 王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.

    • 徐春春, 邹伟宏, 杨跃明, 段勇, 沈扬, 罗冰, 倪超, 付小东, 张建勇. 2017. 中国陆上深层油气资源勘探开发现状及展望. 天然气地球科学, 28(8): 1139~1153.

    • 徐汉林, 江同文, 顾乔元, 牛玉杰, 张秋茶. 2008. 塔里木盆地哈得逊油田成藏研究探讨. 西南石油大学学报 (自然科学版), 30(5): 17~21.

    • 徐小童, 张立宽, 冶明泽, 张立强, 修金磊, 曾治平, 曹斌风, 李超, 雷裕红, 程明, 胡才志. 2021. 深层砂岩储层成岩作用差异性及与储层质量的关系——以准噶尔盆地中部征沙村地区为例. 天然气地球科学, 32(7): 1022~1036.

    • 许宏龙, 刘建, 龚刘凭, 乔诚, 朱宝柱, 余梦南. 2015. 双河油田438块构造油藏油水界面差异分布的主导因素. 海洋地质前沿, 31(7): 42~46.

    • 薛永安, 王德英, 王飞龙, 唐国民. 2021. 渤海海域凝析油气藏、轻质油藏形成条件与勘探潜力. 石油学报, 42(12): 1581~1591.

    • 杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 2018. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例. 天然气地球科学, 29(7): 942~950.

    • 袁玉松, 胡文瑄, 陈书平, 王国建. 2019. 超深层油气保存主控因素及评价思路. 海相油气地质, 24(4): 47~56.

    • 翟晓先, 顾忆, 钱一雄, 贾存善, 王杰, 蔺军. 2007. 塔里木盆地塔深1 井寒武系油气地球化学特征. 石油实验地质, 29 (4): 329~333.

    • 张宝收, 杨海军, 张鼐, 赵青. 2019. 迪北气藏侏罗系阿合组烃包裹体特征及成藏分析. 新疆石油地质, 40(1): 41~47.

    • 张辉, 陈勇, 王学军, 林会喜, 王淼, 任新成. 2021. 准噶尔盆地中部侏罗系三工河组储层沥青地球化学特征及其对油气成藏过程的指示. 石油实验地质, 43(6): 1054~1063.

    • 张立强, 严一鸣, 罗晓容, 王振彪, 张海祖. 2018. 库车坳陷依奇克里克地区下侏罗统阿合组致密砂岩储层的成岩差异性特征研究. 地学前缘, 25(2): 170~178.

    • 张善文, 王永诗, 彭传圣, 石砥石. 2008. 网毯式油气成藏体系在勘探中的应用. 石油学报, 29(6): 791~796.

    • 张善文, 林会喜, 沈扬. 2013. 准噶尔盆地车排子凸起新近系“网毯式”成藏机制剖析及其对盆地油气勘探的启示. 地质论评, 59(3): 490~500.

    • 张涛, 闫相宾. 2007. 塔里木盆地深层碳酸盐岩储层主控因素探讨. 石油与天然气地质, 28(6): 745~754.

    • 张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例. 石油学报, 42(4): 466~480.

    • 张振宇, 张立宽, 罗晓容, 曹斌风, 林会喜, 曾治平, 秦峰, 贺文君, 李超, 雷裕红. 2019. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示. 天然气地质学科, 30(5): 686~700.

    • 赵孟军, 卢双舫, 王庭栋, 李剑. 2002. 克拉2气田天然气地球化学特征与成藏过程. 科学通报, 47(ZK): 109~115.

    • 赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.

    • 赵文智, 张光亚, 王红军. 2005. 石油地质理论新进展及其在拓展勘探领域中的意义. 石油学报, 26(1): 1~7.

    • 赵文智, 胡素云, 刘伟, 王桐山, 李永新. 2014. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景. 天然气工业, 34(4): 1~9.

    • 赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 姜文亚, 肖敦清, 韩文中, 时战楠. 2018. 断陷盆地洼槽聚油理论的发展与勘探实践——以渤海湾盆地沧东凹陷古近系孔店组为例. 石油勘探与开发, 45(6): 1092~1102.

    • 钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D)辑, 35(S1): 11~18.

    • 朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.

    • 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 2020. 7000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587~601.

    • 邹志文, 斯春松, 杨梦云. 2010. 隔夹层成因、分布及其对油水分布的影响——以准噶尔盆地腹部莫索湾莫北地区为例. 岩性油气藏, 22(3): 66~70.

  • 参考文献

    • Bai Guoping, Cao Binfeng. 2014. Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil & Gas Geology, 35(1): 19~25 (in Chinese with English abstract).

    • Baur F, Scheirer A H, Peters K E. 2018. Past, present, and future of basin and petroleum system modeling. AAPG Bulletin, 102(4): 549~561.

    • Bi Yanbin, Gao Shanlin, Zhu Yunhui, Pang Wen, Yang Qiulai, Chen Jihua. 2011. Hydrocarbon accumulation patterns of Moxizhuang oilfield, the Junggar basin. Oil & Gas Geology, 32(3): 318~326 (in Chinese with English abstract).

    • Bloch S, Lander, R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.

    • Breyer J A, Euze T. 2021. Carrier beds as reservoirs. AAPG Bulletin, 105: 1745~1749.

    • Cao B F, Luo X R, Zhang L K, Sui F G, Lin H X, Lei Y H. 2017. Diagenetic evolution of deep sandstones and multiple-stage oil entrapment: A case study from the Lower Jurassic Sangonghe Formation in the Fukang sag, central Junggar basin (NW China). Journal of Petroleum Science and Engineering, 152: 136~155.

    • Cao B F, Luo X R, Zhang L K, Lei Y H, Zhou J S. 2020. Petrofacies prediction and 3-D geological model in tight gas sandstone reservoirs by integration of well logs and geostatistical modeling. Marine and Petroleum Geology, 114: 104202.

    • Dai Jinxing. 2003. Enhance the studies on natural gas geology and find more large gas fields in China. Natural Gas Geosciance, 14(1): 3~14 (in Chinese with English abstract).

    • Deng Yunhua. 2012. Practical effect of the “transfer station” model for oil-gas migration in rift basin: A case study on the tertiary in the Bohai oil province. Acta Petrolei Sinica, 33(1): 18~24 (in Chinese with English abstract).

    • Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.

    • He Zhiliang, Jin Xiaohui, Wo Yujin, Li Huili, Bai Zhenrui, Jiao Cunli, Zhang Zhongpei. 2016. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China. China Petroleum Exploration, 21(1): 3~14 (in Chinese with English abstract).

    • Hu Caizhi, Zhang Likuan, Luo Xiaorong, Zhao Hong, Yang Bin, Cao Binfeng, Lei Yuhong, Cheng Ming, Li Chao. 2015. Diagenesis and porosity evolution of the low-porosity and low-permeability sandstones: Evidence from the Lower Jurassic Sangonghe Formation in Moxizhuang area, central Junggar basin. Natural Gas Geosciance, 26(12): 2253~2266 (in Chinese with English abstract).

    • Hu Caizhi, Luo Xiaorong, Zhang Likuan, Qiu Guiqiang, Lei Yuhong, Cheng Ming. 2017. Differential diagenesis and hydrocarbon charge process of the 9th Member of Yanchang Formation in the central and western Ordos basin. Acta Geologica Sinica, 91(5): 1141~1157 (in Chinese with English abstract).

    • Jia Chengzao, Gu Jiayu, Zhang Guangya. 2002. Geological constraints of giant and medium-sized gas fields in Kuqa depression. Chinese Science Bulletin, 47(S1): 47~55 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).

    • Kang Yuzhu. 2004. Re-discussion on exploration potential of Paleozoic in Tarim basin: 20th anniversary of significant discovery in Shacan 2 well. Oil & Gas Geology, 25(5): 479~483 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2022. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).

    • Li Feng, Jiang Zhenxue, Li Zuo, Liu Jianliang, Wang Ying, Luo Xiao. 2016. Fluid inclusion characteristics and hydrocarbon charge history of Dibei gas reservoir in the Kuqa depression. Journal of Central South University (Science and Technology), 47(2): 515~523 (in Chinese with English abstract).

    • Li Jianzhong, Tao Xiaowan, Bai Bin, Huang Shipeng, Jiang Qingchun, Zhao Zhenyu, Chen Yanyan, Ma Debo, Zhang Liping, Li Ningxi, Song Wei. 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Petroleum Exploration and Development, 48(1): 52~67 (in Chinese with English abstract).

    • Li Yang, Xue Zaojie, Cheng Zhe, Jiang Haijun, Wang Ruyue. 2020. Progress and development directions of deep oil and gas exploration and development in China. China Petroleum Exploration, 25(1): 45~57 (in Chinese with English abstract).

    • Li Zhong, Chen Jingshan, Guan Ping. 2006. Scientific problems and frontiers of sedimentary diagenesis research in oil-gas-bearing basins. Acta Petrologica Sinica, 22(8): 2113~2122 (in Chinese with English abstract).

    • Lin Huixi, Zeng Zhiping, Gong Yajun, Shen Yang, Jiang Bo. 2013. Process analysis of hydrocarbon charging and adjustment in central area of Junggar basin. Fault-block Oil & Gas Field, 20(3): 316~320 (in Chinese with English abstract).

    • Luo Jinglan, Luo Xiaorong, Bai Yubin, Luo Chunyan, Bai Xuejian, Li Xiangjun, Li Chi. 2016. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs—A case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos basin. Journal of Earth Sciences and Environment, 38(1): 79~92 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Fu Xiaofei, Pang Hong, Zhou Bo, Wang Zhaoming. 2016a. Advances in dynamics of petroleum migration and accumulation in deep basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876~889 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Lei Yuhong, Hu Caizhi, Shi Hui, Cao Binfeng. 2016b. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones. China Petroleum Exploration, 21(1): 28~36 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity in clastic carrier beds and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).

    • Luo X R. 2011. Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration. AAPG Bulletin, 95(6): 881~898.

    • Luo X R, Hu C Z, Xiao Z Y, Zhao J, Zhang B S, Yang W, Zhao H, Zhao F Y, Lei Y H, Zhang L K. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.

    • Luo X R, Zhang L K, Lei Y H, Yang W. 2020. Petroleum migration and accumulation: Modeling and applications. AAPG Bulletin, 104: 2247~2265.

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2011. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Science Frontiers, 18(4): 181~192 (in Chinese with English abstract).

    • Ma Yongsheng, Li Maowen, Cai Xunyu, Xu Xuhui, Hu Dongfeng, Qu Shouli, Li Gensheng, He Dengfa, Xiao Xianming, Zeng Yijin, Rao Ying, Ma Xiaoxiao. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~672+683 (in Chinese with English abstract).

    • Morad S, Al-ramadan K, Ketzer J M, De Ros L F. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94(8): 1267~1309.

    • Pang Xiongqi. 2010. Key challenges and research methods of petroleum exploration in the deep of superimposed basins in western China. Oil & Gas Geology, 31(5): 517~541 (in Chinese with English abstract).

    • Pang Xiongqi, Luo Xiaorong, Jiang Zhenxue, Lin Changsong, Zhang Shuichang, Zhong Ningning, Li Zhong. 2007. Advancements and problems on hydrocarbon accumulation research of complicated superimposed basins in western China. Advances in Earth Science, 22(9): 879~887 (in Chinese with English abstract).

    • Pang Xiongqi, Zhou Xinyuan, Yan Shenghua, Wang Zhaoming, Yang Haijun, Jiang Fujie, Shen Weibin, Gao Shuai. 2012. Research advances and direction of hydrocarbon accumulation in the superimposed basins, China: Take the Tarim basin as an example. Petroleum Exploration and Development, 39(6): 649~656 (in Chinese with English abstract).

    • Pettijohn F J, Potter P E, Siever R. 1972. Sand and Sandstone. Berlin: Springer-Verlag.

    • Pranter M J, Sommer N K. 2011. Static connectivity of fluvial sandstones in a lower coastal-plain setting: An example from the Upper Cretaceous lower Williams Fork Formation, Piceance basin, Colorado. AAPG Bulletin, 95(6): 899~923.

    • Qi Y K, Lin H X, Zhang F S, Zhu X X, Hu H W, Zhou B, Wei Q. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 6665237, https: //doi. org/10. 1155/2021/6665237.

    • Shi H, Luo X R, Lei G L, Zhang L Q, Zhang L K, Lei Y H. 2017a. Diagenesis and fluid flow variability of structural heterogeneity units in tight sandstone carrier beds of Dibei, eastern Kuqa depression. Geofluids, 2017: 1~15.

    • Shi H, Luo X R, Li X, Liu N G, Qi Y K, Fang T, Zhang L K, Lei Y H. 2017b. Effects of mix-wet porous mediums on gas flowing and one mechanism for gas migration. Journal of Petroleum Science & Engineering, 152: 60~66.

    • Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen. 2008. Exploration and Practice for theory of unsteady-state hydrocarbon accumulation. Marine Origin Petroleum Geology, 13(3): 11~16 (in Chinese with English abstract).

    • Sun Longde, Jiang Tongwen, Xu Hanlin, Shan Jiazhen, Lian Zhanggui. 2009. Unsteady reservoir in Hadson oilfield, Tarim basin. Petroleum Exploration and Development, 36(1): 62~67 (in Chinese with English abstract).

    • Sun Longde, Fang Chaoliang, Li Feng, Zhu Rukai, Zhang Yunhui, Jia Aailin, Gao Xingjun, Su Ling. 2015. Innovations and challenges of sedimentology in oil and gas exploration and development. Petroleum Exploration and Development, 42(2): 129~136 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).

    • Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).

    • Wang Zhaoming. 2014. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression, Tarim basin. Natural Gas Geoscience, 25(2): 153~166 (in Chinese with English abstract).

    • Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiaozeng. 2021. Impact of chlorites on the wettability of tight oil sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos basin, China. Science China Earth Sciences, 64(6): 951~961.

    • Weber K J. 1986. How heterogeneity affects oil recovery. In: Lake L W, Carroll Jr H B, eds. Reservoir Characterization. Orlando: Academic Press, 487~544.

    • Wong T F, Baud P. 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44: 25~53.

    • Xu Chunchun, Zou Weihong, Yang Yueming, Duan Yong, Shen Yang, Luo Bin, Ni Chao, Fu Xiaodong, Zhang Jianyong. 2017. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China. Natural Gas Geosciance, 28(8): 1139~1153 (in Chinese with English abstract).

    • Xu Hanlin, Jiang Tongwen, Gu Qiaoyuan, Niu Yujie, Zhang Qiucha. 2008. Probe into hydrocarbon accumulations in the Hadson oilfield, Tarim basin. Journal of Southwest Petroleum University (Science &Technology Edition), 30(5): 17~20 (in Chinese with English abstract).

    • Xu Honglong, Liu Jian, Gong Liuping, Qiao Cheng, Zhu Baozhu, Yu Mengnan. 2015. The mechanism of differential distribution of the water oil contact in block 438 of Shuanghe oilfield. Marine Geology Frontiers, 31(7): 42~46 (in Chinese with English abstract).

    • Xu Xiaotong, Zhang Likuan, Ye Mingze, Zhang Liqiang, Xiu Jinlei, Zeng Zhiping, Cao Binfeng, Li Chao, Lei Yuhong, Cheng Ming, Hu Caizhi. 2021. Different diagenesis of deep sandstone reservoir and its relationship with reservoir property: Case study of Jurassic in Zhengshacun area, central Junggar basin. Natural Gas Geoscience, 32(7): 1022~1036 (in Chinese with English abstract).

    • Xue Yongan, Wang Deying, Wang Feilong, Tang Guomin. 2021. Formation conditions and exploration potential of condensate and light oil reservoirs in Bohai Sea. Acta Petrolei Sinica, 42(12): 1581~1591 (in Chinese with English abstract).

    • Yang Haijun, Zhang Ronghu, Yang Xianzhang, Wang Ke, Wang Junpeng, Tang Yangang, Zhou Lu. 2018. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tights and stone reservoir: A case study of Keshen gasfield, Kuqa depression, Tarim basin. Natural Gas Geoscience, 29(7): 942~950 (in Chinese with English abstract).

    • Yuan Yusong, Hu Wenxuan, Chen Shuping, Wang Guojian. 2019. The main controlling factors and evaluation ideas of ultra-deep oil and gas preservation. Marine Origin Petroleum Geology, 24(4): 47~56 (in Chinese with English abstract).

    • Zhai Xiaoxian, Gu Yi, Qian Yixiong, Jia Cunshan, Wang Jie, Lin Jun. 2007. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim basin. Petroleum Geology & Experiment, 29 (4): 329~333 (in Chinese with English abstract).

    • Zhang Baoshou, Yang Haijun, Zhang Nai, Zhao Qing. 2019. Hydrocarbon inclusion characteristics of Jurassic Ahe Formation and analysis on petroleum. Xinjiang Petroleum Geology, 40(1): 41~47 (in Chinese with English abstract).

    • Zhang Hui, Chen Yong, Wang Xuejun, Lin Huixi, Wang Miao, Ren Xincheng. 2021. A geochemical characteristics of solid bitumen in the Jurassic Sangonghe Formation in the central Junggar basin and its implications for hydrocarbon accumulation process. Petroleum Geology & Experiment, 43(6): 1054~1063 (in Chinese with English abstract).

    • Zhang L K, Luo X R, Ye M Z, Zhang B S, Wei H X, Cao B F, Xu X T, Liu Z D, Lei Y H, Li C. 2021. Small-scale diagenetic heterogeneity effects on reservoir quality of deep sandstones: A case study from the Lower Jurassic Ahe Formation, eastern Kuqa depression. Geofluids, 6626652, https: //doi. org/10. 1155/2021/6626652.

    • Zhang Likuan, Luo Xiaorong, Liao Qianjin, Yuan Shuqin, Su Junqing, Xiao Dunqing, Wang Zhaoming, Yu Changhua. 2007. Quantitative evaluation of fault sealing property with fault connectivity probabilistic method. Oil & Gas Geology, 28(2): 181~190 (in Chinese with English abstract).

    • Zhang Shanwen, Wang Yongshi, Peng Chuansheng, Shi Dishi. 2008. Application of fault-fracture mesh petroleum plays in exploration. Acta Petrolei Sinica, 29(6): 791~796 (in Chinese with English abstract).

    • Zhang Shanwen, Lin Huixi, Shen Yang. 2013. Analysis on meshwork-carpet pool-forming mechanism of Chepaizi uplift and enlightenment on petroleum exploration of Junggar basin. Geological Review, 59(3): 490~500 (in Chinese with English abstract).

    • Zhang Tao, Yan Xiangbin. 2007. A discussion on main factors controlling deep carbonate reservoirs in the Tarim basin. Oil & Gas Geology, 28(6): 745~754 (in Chinese with English abstract).

    • Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).

    • Zhang Zhenyu, Zhang Likuan, Luo Xiaorong, Cao Binfeng, Lin Huixi, Zeng Zhiping, Qin Feng, He Wenjun, Li Cao, Lei Yuhong. 2019. Diagenesis of sandstone and its implications for reservoir quality evaluation in the deep Xishanyao Formation in the central Junggar basin. Natural Gas Geoscience, 30(5): 686~700 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Shuangfang, Wang Tingdong, Li Jian. 2002. Geochemical characteristics and formation process of natural gas in Kela 2 gasfield. Chinese Science Bulletin, 47(S1): 113~119 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. A characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).

    • Zhao Wenzhi, Zhang Guangya, Wang Hongjun. 2005. New achievements of petroleum geology theory and its significances on expanding oil and gas exploration field. Acta Petrolei Sinica, 26(1): 1~7 (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Liu Wei, Wang Tongshan, Li Yongxin. 2014. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion. Natural Gas Industry, 34(4): 1~9 (in Chinese with English abstract).

    • Zhao W Z, Zhang S C, Zhang B, He K, Wang X M. 2017. New insight into the kinetics of deep liquid hydrocarbon cracking and its significance. Geofluids, 6340986, https: //doi. org/10. 1155/2017/6340986.

    • Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Jiang Wenya, Xiao Dunqing, Han Wenzhong, Shi Zhannan. 2018. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay basin. Petroleum Exploration & Development, 45(6): 1092~1102 (in Chinese with English abstract).

    • Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Reservoir features and formation mechanism of highquality clastic reservoir in deep strata in China. Science China: Earth Sciences, 38(S1): 11~18 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).

    • Zhu Guangyou, Sun Chonghao, Zhao Bin, Li Tingting, Chen Zhiyong, Yang Haijun, Gao Lianhua, Huang Jinhua. 2020. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7000 m. Natural Gas Industry, 31(5): 587~601 (in Chinese with English abstract).

    • Zou Zhiwen, Si Chunsong, Yang Mengyun. 2010. Origin and distribution of interbeds and the influence on oil-water layer: An example from Mosuowan area in the hinterland of Junggar basin. Lithological Reservoirs, 22(3): 66~70 (in Chinese with English abstract).

    • 白国平, 曹斌风. 2014. 全球深层油气藏及其分布规律. 石油与天然气地质, 35(1): 19~25.

    • 毕研斌, 高山林, 朱允辉, 庞雯, 杨秋来, 陈继华. 2011. 准噶尔盆地莫西庄油田成藏模式. 石油与天然气地质, 32(3): 318~326.

    • 戴金星. 2003. 加强天然气地学研究勘探更多大气田. 天然气地球科学, 14(1): 3~14.

    • 邓运华. 2012. 裂谷盆地油气运移“中转站”模式的实践效果——以渤海油区第三系为例. 石油学报, 33(1): 18~24.

    • 何治亮, 金晓辉, 沃玉进, 李慧莉, 白振瑞, 焦存礼, 张仲培. 2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域. 中国石油勘探, 21(1): 3~14.

    • 胡才志, 张立宽, 罗晓容, 赵洪, 杨彬, 曹斌风, 雷裕红, 程明, 李超. 2015. 准噶尔盆地腹部莫西庄地区三工河组低孔渗砂岩储层成岩与孔隙演化研究. 天然气地球科学, 26(12): 2254~2266.

    • 胡才志, 罗晓容, 张立宽, 邱桂强, 雷裕红, 程明. 2017. 鄂尔多斯盆地中西部长9储层差异化成岩与烃类充注过程研究. 地质学报, 91(5): 1141~1157.

    • 贾承造, 顾家裕, 张光亚. 2002. 库车拗陷大中型气田形成的地质条件. 科学通报, 47(增刊1): 49~55.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 康玉柱. 2004. 再论塔里木盆地古生代油气勘探潜力——纪念沙参2井油气重大突破20 周年. 石油与天然气地质, 25(5) : 479~483.

    • Krayushkin V A. 2009. 深成油气田. 任俞(译) . 新疆石油地质, 30(1): 136~141.

    • 匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2022. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.

    • 李峰, 姜振学, 李卓, 刘建良, 王赢, 罗枭. 2016. 库车坳陷迪北气藏流体包裹体特征及油气充注历史. 中南大学学报(自然科学版), 47(2): 515~523.

    • 李建忠, 陶小晚, 白斌, 黄士鹏, 江青春, 赵振宇, 陈燕燕, 马德波, 张立平, 李宁熙, 宋微. 2021. 中国海相超深层油气地质条件、成藏演化及有利勘探方向. 石油勘探与开发, 48(1): 52~67.

    • 李阳, 薛兆杰, 程喆, 蒋海军, 王濡岳. 2020. 中国深层油气勘探开发进展与发展方向. 中国石油勘探, 25(1): 45~57.

    • 李忠, 陈景山, 关平. 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113~2122.

    • 林会喜, 曾治平, 宫亚军, 沈扬, 江波. 2013. 准噶尔盆地中部油气充注与调整过程分析. 断块油气藏, 20(3): 316~320.

    • 罗静兰, 罗晓容, 白玉彬, 罗春燕, 白雪见, 李向军, 李弛. 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响——以鄂尔多斯盆地西南部长7 致密浊积砂岩储层为例. 地球科学与环境学报, 38(1) : 79~92.

    • 罗晓容, 张立宽, 付晓飞, 庞宏, 周波, 王兆明. 2016a. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876~889.

    • 罗晓容, 张立宽, 雷裕红, 胡才志, 施辉, 曹斌风. 2016b. 储层结构非均质性及其在深层油气成藏中的意义. 中国石油勘探, 21(1): 28~36.

    • 罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风. 2020. 碎屑岩输导层非均质性与油气运聚成藏. 石油学报, 41(3): 253~272.

    • 马永生, 蔡勋育, 赵培荣. 2011. 深层—超深层碳酸盐岩油气储集层形成机理综述. 地学前缘, 18(4): 181~192.

    • 马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹, 马晓潇. 2020. 中国海相深层—超深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~672, 683.

    • 庞雄奇. 2010. 中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义. 石油与天然气地质, 31(5): 517~534.

    • 庞雄奇, 罗晓容, 姜振学, 林畅松, 张水昌, 钟宁宁, 李忠. 2007. 中国西部复杂叠合盆地油气成藏研究进展与问题. 地球科学进展, 22 (9): 879~887.

    • 庞雄奇, 周新源, 鄢盛华, 王招明, 杨海军, 姜福杰, 沈卫兵, 高帅. 2012. 中国叠合盆地油气成藏研究进展与发展方向——以塔里木盆地为例. 石油勘探与开发, 39(6): 649~656.

    • 孙龙德, 江同文, 徐汉林, 单家增. 2008. 非稳态成藏理论探索与实践. 海相油气地质, 13(3): 11~16.

    • 孙龙德, 江同文, 徐汉林, 单家增, 练章贵. 2009. 塔里木盆地哈得逊油田非稳态油藏. 石油勘探与开发, 36(1): 62~67.

    • 孙龙德, 方朝亮, 李峰, 朱如凯, 张云辉, 袁选俊, 贾爱林, 高兴军, 苏玲. 2015. 油气勘探开发中的沉积学创新与挑战. 石油勘探与开发, 42(2) : 129~136.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.

    • 王招明.2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153~166.

    • 王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.

    • 徐春春, 邹伟宏, 杨跃明, 段勇, 沈扬, 罗冰, 倪超, 付小东, 张建勇. 2017. 中国陆上深层油气资源勘探开发现状及展望. 天然气地球科学, 28(8): 1139~1153.

    • 徐汉林, 江同文, 顾乔元, 牛玉杰, 张秋茶. 2008. 塔里木盆地哈得逊油田成藏研究探讨. 西南石油大学学报 (自然科学版), 30(5): 17~21.

    • 徐小童, 张立宽, 冶明泽, 张立强, 修金磊, 曾治平, 曹斌风, 李超, 雷裕红, 程明, 胡才志. 2021. 深层砂岩储层成岩作用差异性及与储层质量的关系——以准噶尔盆地中部征沙村地区为例. 天然气地球科学, 32(7): 1022~1036.

    • 许宏龙, 刘建, 龚刘凭, 乔诚, 朱宝柱, 余梦南. 2015. 双河油田438块构造油藏油水界面差异分布的主导因素. 海洋地质前沿, 31(7): 42~46.

    • 薛永安, 王德英, 王飞龙, 唐国民. 2021. 渤海海域凝析油气藏、轻质油藏形成条件与勘探潜力. 石油学报, 42(12): 1581~1591.

    • 杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 2018. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例. 天然气地球科学, 29(7): 942~950.

    • 袁玉松, 胡文瑄, 陈书平, 王国建. 2019. 超深层油气保存主控因素及评价思路. 海相油气地质, 24(4): 47~56.

    • 翟晓先, 顾忆, 钱一雄, 贾存善, 王杰, 蔺军. 2007. 塔里木盆地塔深1 井寒武系油气地球化学特征. 石油实验地质, 29 (4): 329~333.

    • 张宝收, 杨海军, 张鼐, 赵青. 2019. 迪北气藏侏罗系阿合组烃包裹体特征及成藏分析. 新疆石油地质, 40(1): 41~47.

    • 张辉, 陈勇, 王学军, 林会喜, 王淼, 任新成. 2021. 准噶尔盆地中部侏罗系三工河组储层沥青地球化学特征及其对油气成藏过程的指示. 石油实验地质, 43(6): 1054~1063.

    • 张立强, 严一鸣, 罗晓容, 王振彪, 张海祖. 2018. 库车坳陷依奇克里克地区下侏罗统阿合组致密砂岩储层的成岩差异性特征研究. 地学前缘, 25(2): 170~178.

    • 张善文, 王永诗, 彭传圣, 石砥石. 2008. 网毯式油气成藏体系在勘探中的应用. 石油学报, 29(6): 791~796.

    • 张善文, 林会喜, 沈扬. 2013. 准噶尔盆地车排子凸起新近系“网毯式”成藏机制剖析及其对盆地油气勘探的启示. 地质论评, 59(3): 490~500.

    • 张涛, 闫相宾. 2007. 塔里木盆地深层碳酸盐岩储层主控因素探讨. 石油与天然气地质, 28(6): 745~754.

    • 张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例. 石油学报, 42(4): 466~480.

    • 张振宇, 张立宽, 罗晓容, 曹斌风, 林会喜, 曾治平, 秦峰, 贺文君, 李超, 雷裕红. 2019. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示. 天然气地质学科, 30(5): 686~700.

    • 赵孟军, 卢双舫, 王庭栋, 李剑. 2002. 克拉2气田天然气地球化学特征与成藏过程. 科学通报, 47(ZK): 109~115.

    • 赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.

    • 赵文智, 张光亚, 王红军. 2005. 石油地质理论新进展及其在拓展勘探领域中的意义. 石油学报, 26(1): 1~7.

    • 赵文智, 胡素云, 刘伟, 王桐山, 李永新. 2014. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景. 天然气工业, 34(4): 1~9.

    • 赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 姜文亚, 肖敦清, 韩文中, 时战楠. 2018. 断陷盆地洼槽聚油理论的发展与勘探实践——以渤海湾盆地沧东凹陷古近系孔店组为例. 石油勘探与开发, 45(6): 1092~1102.

    • 钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D)辑, 35(S1): 11~18.

    • 朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.

    • 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 2020. 7000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587~601.

    • 邹志文, 斯春松, 杨梦云. 2010. 隔夹层成因、分布及其对油水分布的影响——以准噶尔盆地腹部莫索湾莫北地区为例. 岩性油气藏, 22(3): 66~70.