en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘春锋,男,1989年生。工程师,主要从事石油地质研究。E-mail:liuchf15@cnooc.com.cn。

参考文献
Aplin A C, Larter S R, Bigge M A, Macleod G, Swarbrick R E, Grunberger D. 2000. PVTX history of the North Sea's Judy oilfield. Journal of Association of Exploration Geochemists, 69-70: 641~644.
参考文献
Dai Jinxing, Ni Yuanyuan, Hu Guoyi, Huang Shipeng, Liao Fengrong, Yu Cong, Gong Deyu, Wu Wei. 2014. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China. Science China: Earth Sciences, 57: 88~103.
参考文献
Dai Jinxing, Gong Jianming. 2018. Establishment of coal-derived gas geological theory and its strategic significance to the development of natural gas industry in China. China Petroleum Exploration, 23(4): 1~10 (in Chinese with English abstract).
参考文献
Dai Jinxing, Ni Yunyan, Dong Dazhong, Qin Shengfei, Zhu Guangyou, Huang Shipeng, Yu Cong, Gong Deyu, Hong Feng, Zhang Yanling, Yan Zhengmin, Liu Quanyou, Wu Xiaoqi, Feng Ziqi. 2021. 2021-2025 is a period of great development of China's natural gas industry: Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China. Natural Gas Geoscience, 32(1): 1~16 (in Chinese with English abstract).
参考文献
He Dengfa, Ma Yongsheng, Liu Bo, Cai Xunyu, Zhang Yijie, Zhang Jian. 2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Geoscience Frontier, 26(1): 1~12 (in Chinese with English abstract).
参考文献
Jia Chengzao, Pang Xiongqi. 2015. Research progress and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).
参考文献
Jiang Fujie, Pang Xiongqi, Wu Li. 2010. Geological threshold and its gas controlling function during ming process of tight sandstone gas reservoir. Acta Petrolei Sinica, 31(1): 49~54 (in Chinese with English abstract).
参考文献
Jiang Yiming, Zou Wei, Liu Jinshui, Tang Xianjun, He Xinjian. 2020. Genetic mechanism of inversion anticline structure at the end of Miocene in Xihu sag, East China Sea: A new understanding of basement structure difference. Earth Science, 45(3): 968~979 (in Chinese with English abstract).
参考文献
Lin Liangbiao, Yu Yu, Nan Hongli, Chen Hongde, Liu Lei, Wu Dong, Wang Zhikang. 2021. Reservoir tightening process and its coupling relationship with hydrocarbon accumulation in the fourth Member of Upper Triassic Xujiahe Formation in the West Sichuan depression, Sichuan basin. Oil and Gas Geology, 42(4): 816~828 (in Chinese with English abstract).
参考文献
Liu Bin. 1987. The formation temperature and pressure are calculated by using the thermodynamic equation of symbiotic equilibrium of fluid inclusions and their main minerals. Science in China (Series B), 17(3): 81~88 (in Chinese with English abstract).
参考文献
Liu Jinshui, Li Shuxi, Qin Lanzhi, Yi Qi, Chen Xiaodong, Kang Shilong, Shen Wenchao, Shao Longyi. 2020. Hydrocarbon generation kinetics of Paleogene coal in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 41(10): 1174~1218 (in Chinese with English abstract).
参考文献
Liu Jinshui, Zhang Shuping. 2021. Natural gas migration and accumulation patterns in the central-north Xihu sag, East China Sea basin. Natural Gas Geoscience, 32(8): 1163~1176 (in Chinese with English abstract).
参考文献
Lu Shuangfang, Li Dong, Wang Yuewen, Feng Zihui, Li Jijun, Shen Jianian. 2007. Resource evaluation method for generating condensate oil and light oil from sapropelic organic matter and its application. Acta Petrolei Sinica, 28(5): 63~66, 71 (in Chinese with English abstract).
参考文献
Pan Gaofeng, Liu Zhen, Zhao Shu, Hu Zongquan, Hu Xiaodan. 2011. Quantitative simulation of sandstoneporosity evolution: A case from Yanchang Formation of the Zhenjing area, Ordos basin. Acta Petrolei Sinica, 32(2): 249~256 (in Chinese with English abstract).
参考文献
Pang Xiongqi, Zhou Xinyuan, Dong Yuexia, Jiang Zhenxue, Jiang Fujie, Fan Bojiang, Xing Enyuan, Pang Hong. 2013. Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal. Journal of China University of Petroleum (Edition of Natural Sciences), 37(5): 28~56 (in Chinese with English abstract).
参考文献
Qu Dongfang, Jiang Zhenxue, Liu Huimin, Gao Yongjin. 2012. A reconstruction method of porosity for clastic reservoir during the crucial period of hydrocarbon accumulation. Acta Petrolei Sinica, 33(3): 404~413 (in Chinese with English abstract).
参考文献
Su Ao, Chen Honghan, Wang Cunwu, Li Peijun, Zhang Hui, Xiong Wanlin, Lei Mingzhu. 2013. Genesis and maturity identification of oil and gas in the Xihu sag, East China Sea basin. Petroleum Exploration and Development, 40(5): 521~527 (in Chinese with English abstract).
参考文献
Thiéry R, Pironon J, Walgenwitz F, Montel F. 2002. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: Inferences from applied thermodynamics of oils. Marine & Petroleum Geology, 19(7): 847~859.
参考文献
Xia Lu, Liu Zhen, Zhong Xang, Dong Dong, Zhang Wei, Huo Junzhou, Yu Chunlan. 2020. Inversion of paleo-prosity of tight sandstone during post-accumulation period. Journal of China University of Mining and Technology, 49(1): 159~171 (in Chinese with English abstract).
参考文献
Xiao Xianming, Liu Dehan, Fu Jiamo. 1996. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models. Acta Sedimentologica Sinica, 14(Sup. 1): 10~17 (in Chinese with English abstract).
参考文献
Xu Chenjie, Ye Jiaren, Liu Jinshui, Cao Qiang, Sheng Yiyong, Yu Hanwen, Zhao Niubin. 2021. Key evidence of gas accumulation period in Xihu sag of the East China Seashelf basin: Gas hydrocarbon inclusion. Natural Gas Industry, 41(11): 64~73 (in Chinese with English abstract).
参考文献
Ye Jiaren, Liu Jinshui, Xu Chenjie, Cao Qiang, Sheng Yiyong, Yu Hanwen. 2020. Grading evaluation of natural gas resources in the western sub-sag of Xihu depression, East China Sea basin. Bulletin of Geological Science and Technology, 39(3): 2~9 (in Chinese with English abstract).
参考文献
Zhang Dongdong, Liu Wenhui, Wang Xiaofeng, Luo Houyong, Wang Qingtao, Li Yining, Li Fengjiao. 2021. Genetic types and characteristics of deep oil and gasplays. Oil and Gas Geology, 42(5): 1169~1180 (in Chinese with English abstract).
参考文献
Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Jun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).
参考文献
戴金星, 倪云燕, 胡国艺, 黄士鹏, 廖凤蓉, 于聪, 龚德瑜, 吴伟. 2014. 中国致密砂岩大气田的稳定碳氢同位素组成特征. 中国科学: 地球科学, 44(4): 563~578.
参考文献
戴金星, 龚剑明. 2018. 中国煤成气理论形成过程及对天然气工业发展的战略意义. 中国石油勘探, 23(4): 1~10.
参考文献
戴金星, 倪云燕, 董大忠, 秦胜飞, 朱光有, 黄士鹏, 于聪, 龚德瑜, 洪峰, 张延玲, 严增民, 刘全有, 吴小奇, 冯子齐. 2021. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议. 天然气地球科, 32(1): 2~16.
参考文献
何登发, 马永生, 刘波, 蔡勋育, 张义杰, 张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1~12.
参考文献
贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.
参考文献
姜福杰, 庞雄奇, 武丽. 2010. 致密砂岩气藏成藏过程中的地质门限及其控气机理. 石油学报, 31(1): 49~54.
参考文献
蒋一鸣, 邹玮, 刘金水, 唐贤君, 何新建. 2020. 东海西湖凹陷中新世末反转背斜构造成因机制: 来自基底结构差异的新认识. 地球科学, 45(3): 968~979.
参考文献
林良彪, 余瑜, 南红丽, 陈德洪, 刘磊, 吴冬, 王志康. 2021. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系. 石油与天然气地质, 42(4): 816~828.
参考文献
刘斌. 1987. 利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力. 中国科学B辑, 17(3): 81~88.
参考文献
刘金水, 李树霞, 秦兰芝, 易琦, 陈晓东, 康世龙, 沈文超, 邵龙义. 2020. 东海盆地西湖凹陷古近系煤的生烃动力学. 石油学报, 41(10): 1174~1218.
参考文献
刘金水, 张书平. 2021. 东海盆地西湖凹陷中北部天然气运移特征与成藏模式. 天然气地球科学, 32(8): 1163~1176.
参考文献
卢双舫, 李冬, 王跃文, 冯子辉, 李吉君, 申家年. 2007. 倾油性有机质生成轻质油的评价方法及其应用. 石油学报, 28(5): 63~66, 71.
参考文献
潘高峰, 刘震, 赵舒, 胡宗全, 胡小丹. 2011. 砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例. 石油学报, 32(2): 249~256.
参考文献
庞雄奇, 周新源, 董月霞, 姜振学, 姜福杰, 范柏江, 邢恩袁, 庞宏. 2013. 含油气盆地致密砂岩类油气藏成因机制与资源潜力. 中国石油大学学报: 自然科学版, 37(5): 28~56.
参考文献
渠冬芳, 姜振学, 刘惠民, 高永进. 2012. 关键成藏期碎屑岩储层古孔隙度恢复方法. 石油学报, 33(3): 404~413.
参考文献
苏奥, 陈红汉, 王存武, 李培军, 张晖, 熊万林, 雷明珠.2013. 东海盆地西湖凹陷油气成因及成熟度判别.石油勘探与开发, 40(5): 521~527.
参考文献
夏鲁, 刘震, 钟翔, 董冬, 张威, 霍俊洲, 于春兰. 2020. 致密砂岩成藏期后古孔隙度反演研究. 中国矿业大学学报, 49(1): 159~171.
参考文献
肖贤明, 刘德汉, 傅家谟. 1996. 我国聚煤盆地煤系烃源岩生烃评价与成烃模式. 沉积学报, 14(增刊 1): 10~17.
参考文献
徐陈杰, 叶加仁, 刘金水, 曹强, 盛溢勇, 余汉文, 赵牛斌. 2021. 东海西湖凹陷天然气成藏时期的关键证据: 气烃包裹体. 天然气工业, 41(11): 64~73.
参考文献
叶加仁, 刘金水, 徐陈杰, 曹强, 盛溢勇, 余汉文. 2020. 东海盆地西湖凹陷西次凹天然气资源分级评价. 地质科技通报, 39(3): 2~9.
参考文献
张东东, 刘文汇, 王晓锋, 罗厚勇, 王庆涛, 李忆宁, 李风娇. 2021. 深层油气藏成因类型及其特征. 石油与天然气地质, 42(5): 1169~1180.
参考文献
赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.
目录contents

    摘要

    西湖凹陷西次凹古近系花港组和平湖组深层油气资源丰富,是东海陆架盆地勘探开发新领域,受储层差异致密化影响,油气成藏机理复杂。为了厘清西次凹深层油气成藏过程,本文通过流体包裹体岩相学特征、显微测温、激光拉曼光谱、包裹体所含油气地球化学等实验分析,结合构造演化、地层埋藏史、热史等,开展了系统的储层特征、油气成藏期次、成藏过程研究。结果表明,花港组深层(>4000 m)和平湖组储层均已致密化,溶蚀孔隙是主要的储集孔隙类型;花港组和平湖组均发育两期油气包裹体,早期含油包裹体较多,晚期以天然气包裹体为主,成藏时间分别为龙井运动期和冲绳运动期,以晚期天然气成藏最为关键。包裹体中油气地球化学特征类似,反映生烃母质以高等植物生源为主,低等生物为辅,与平湖组煤系烃源岩特征一致。冲绳运动叠加平湖组生气增压是晚期天然气成藏的主要动力,此时H10段及以上储层未致密化。根据储层致密化与成藏时序匹配关系可将西次凹M构造深层油气藏类型划分为常规型、先成藏后致密型、先致密后成藏型和边成藏边致密型4种。本文成果可为研究区下一步致密砂岩气的勘探开发部署提供重要的理论依据。

    Abstract

    The deep Paleogene Huagang Formation and Pinghu Formation in the western subsag of Xihu sag are rich in oil and gas resources, making them a new field for exploration and development in the East China Sea shelf basin. However, the hydrocarbon accumulation mechanism is complicated due to the influence of differential densification of reservoirs. In order to clarify the hydrocarbon accumulation process in the deep reservoirs of the western subsag, we conducted systematic research on reservoir characteristics, hydrocarbon accumulation stages, and accumulation process. This was done through the experimental analysis of petrographic characteristics, microscopic temperature measurement, laser Raman spectroscopy, and geochemistry of the oil and gas contained in the fluid inclusions. This research was combined with an examination of structural evolution, stratigraphic burial history, and thermal history. The results of our study showed that the deep of Huagang Formation (>4000 m) and Pinghu Formation have both undergone densification, with dissolution pores being the main type of reservoir pores. Two stages of hydrocarbon inclusions were identified in both formations, with early stages dominated by oil-bearing inclusions and late stages dominated by natural gas inclusions. These findings indicate that the accumulation time corresponds to the Longjing movement and the Okinawa movement, respectively, with the late period being the most important. The geochemical characteristics of hydrocarbons contained in inclusions suggest that the hydrocarbon-generating material is mainly derived from higher plants and supplemented by lower organisms, which is consistent with the characteristics of coal-measure source rocks in the Pinghu Formation. The Okinawa movement, combined with pressurization caused by gas generation in the Pinghu Formation, served as the main driving force for gas accumulation in the late stage, particularly when the reservoirs in the H10 member and above were not densified. According to the relationship between the time sequence of reservoir densification and hydrocarbon accumulation, four types of reservoirs could be determined: conventional type, densification followed by accumulation, accumulation followed by densification and accumulation while densification. The research results provide a theoretical basis for the next step in the exploration and development of tight sandstone gas in the study area.

  • 随着经济社会的发展以及国家“碳达峰”“碳中和”的战略需要,我国对天然气资源的需求量大幅增高,勘探领域也由常规向非常规、深海、深层等领域快速发展(戴金星等,2021)。目前,国际上对深层的定义并没有统一的标准。学者根据我国含油气盆地分布及其基本地质特征和勘探实际,东部盆地以3500~4500 m界定为深层,大于4500 m为超深层;由于西部盆地地温梯度偏低,对应埋深增高,分别为4500~6000 m和大于6000 m(肖贤明等,1996; 贾承造等,2015; 何登发等,2019)。东海陆架盆地是我国近海面积最大的含油气盆地,油气资源基础雄厚,尤其西湖凹陷勘探开发成效最为显著。近年来,西湖凹陷以中深层低渗-致密气为勘探对象,在中深层非常规油气勘探方面获得了重大突破,在西部斜坡带、中央反转带建成了多个大中型气田。西次凹位于中央凹陷区,古近系花港组—平湖组含油气储层埋深普遍大于3500 m,发育低幅构造-岩性气(油)藏,属于深层油气的范畴。西次凹天然气资源丰富,总体呈现出“致密”为主,少量“低渗”以及“中浅层低渗,中深层致密”的分级分布规律(叶加仁等,2020)。由于处于凹陷区,储层成岩演化程度高、已经差异致密化,且呈现上油下气的特殊分布现象等,给下一步勘探部署造成了困惑。为此,本文以西次凹M构造为例,在综合利用钻井岩芯测试分析、测井及地震资料,系统开展储层基本特征、储层致密化与成藏时序关系、油气差异分布成因等研究,以期明确西次凹低幅构造-岩性气(油)藏主控因素,为下一步勘探部署提供服务。

  • 1 地质背景

  • 西次凹为西湖凹陷二级构造单元之一,发育多个次级构造带,是西湖凹陷深层油气勘探开发的新领域。西湖凹陷位于东海陆架盆地东北部,面积约为5.9万km2,具有“东西分带、南北分块”的构造特征,发育西部斜坡带、西次凹、中央背斜带、东次凹和东部断阶带5个次级构造单元(图1)。在西部斜坡带、中央背斜带等发现了多个大中型气田,是我国近海油气勘探的重点区域。西湖凹陷是一个新生代的叠加盆地,经历了古新世裂陷期、始新世裂陷-断陷期、渐新世—中新世全区拗陷期及上新世—第四纪区域沉降4个典型的发展阶段,先后经历了基隆运动、雁荡运动、瓯江运动等多期构造活动(图1)。次凹内以新生代碎屑沉积为主,钻井揭示至始新统平湖组上部。目前,研究区油气勘探目的层为花港组和平湖组,其中花港组自下而上分为花下段,对应砂组为H12~H6,花上段,对应砂组为H5~H1。平湖组自下而上分为平下段、平中段和平上段,其中平下段和平中段煤系烃源岩发育,平上段砂岩储层较发育。本次研究的包裹体实验样品取自H5、H7、H11和P3等主力勘探层段。

  • 2 样品与分析方法

  • 油气藏流体包裹体记录了储层中烃-水-岩流体历史及其古温度、古压力条件等重要信息,是烃类成藏过程的化石记录。本次研究采集M构造花港组(H5、H7和H11)和平湖组(P3)砂岩储层样品,针对流体饱和烃开展了岩相学特征、均一温度测试、成藏古压力恢复、油包裹体分子地球化学特征以及天然气组分和碳同位素测定等系列实验分析。实验由核工业北京地质研究院完成,实验过程符合相关行业标准,具体方法原理如下。

  • 2.1 包裹体岩相学与均一温度测试

  • 显微岩相学的研究包括各种成岩矿物的胶结/交代关系、成岩微裂隙与成岩矿物的之间的穿插关系,各期构造裂缝切割关系及构造裂缝中矿物及油气的充填特征→成岩矿物世代与流体包裹体形成期次→油气充注/固体沥青充填与GOI(含油流体包裹体丰度指标)丰度→油气充注成藏期次/成岩期次。其次还包括,同一期次流体包裹体的空间分布特征、气液比、形状及其荧光特征、烃类包裹体组合特征及其伴生盐水包裹体发育特征等。包裹体测温均一法原理是,矿物结晶时由于晶体缺陷而捕获的成矿流体成为包裹体保存在矿物中,随温度降低发生气-液分离,当加热这些矿物时,包裹体流体中的气-液相随温度增加逐渐转变为均一相,此时温度为均一温度。

  • 图1 研究区位置(a)与西湖凹陷地层划分表(b)

  • Fig.1 Location of the study area (a) and stratigraphic column of Xihu sag (b)

  • 2.2 包裹体古压力恢复

  • 国内外学者在包裹体系统分析的基础上,通过建立状态方程计算出古流体压力(Aplin et al.,2000; Thiéry et al.,2002; 刘金水等,2021)。传统方法受包裹体成分复杂和输入参数不确定性强等限制,计算的捕获压力可能存在较大误差。近年来,国内外实验研究表明,恒压条件下CH4激光拉曼位移(波数)随着温度的增加而增大,而在增压恒温条件下,CH4激光拉曼位移(波数)随着压力的增加而减小。本研究结合油气成藏温度测试结果,根据不同温度下测得纯CH4包裹体的拉曼位移等数据,再结合CH4激光拉曼波数随温度-压力的变化图版,可求取高纯甲烷包裹体的成藏古压力。实验研究中,在1个大气压下对标准气体测得激光拉曼位移数值为ν0=2917.76 cm-1

  • 2.3 包裹体油气地球化学特征分析

  • 对油气包裹体内保存的原油进行分子地球化学分析可以真实可靠地分析油气成藏过程中的油气地球化学特征,从而讨论油气来源、母源性质、成藏过程等问题。含油包裹体主要分析步骤:选取出高油GOI丰度、荧光显示强的包裹体样品,破碎至20~80目,多次加入双氧水,搅拌均匀,使双氧水与矿物颗粒充分接触,直至样品与双氧水不再发生反应,矿物颗粒表面有机质即被彻底清除;将处理过的破碎样品,在研钵中将其尽可能碾碎,用锡箔纸包好,样品前处理完成;后续开展常规的氯仿沥青抽提、族组分分离以及饱和烃色谱-质谱、芳香烃色谱-质谱分析等。含气包裹体地球化学分析步骤:选取出高气GOI丰度的包裹体样品,将其放入研磨罐内,并放入大小不等的钢球;抽真空后(罐内压力≤10 Pa),研磨罐围绕着对称轴高速旋转,可达2700 r/min,球磨仪运行10 min;钢球产生的极大冲击动量和摩擦力的组合在短时间内将各种硬度的样品研磨至200目以下;利用排液法收集研磨罐内气体,并导入色谱或质谱仪分析其气体成分及同位素组成。

  • 3 气藏基本特征

  • 3.1 油气分布特征

  • 西湖凹陷西次凹M构造带发育系列通源的正断层,是油气运移重要通道,断层与砂体、背斜组合,形成构造-岩性油气藏。花港组钻井试油、MDT测试结果揭示,H4段发育油层,H5段及以下发育气层,呈现上油下气的分布特征,H3段均为水层。H7段及以下层段储层致密,但气测显示活跃,以发育致密气层为主。从油气水关系分析,H4段油藏、H5段气藏均未充满圈闭,为底水油气藏。平湖组没有测试结果,但录井显示活跃,可能发育具有勘探开发前景的致密气层。从整体的油气分布规模看,西次凹以气藏为主,油藏规模小,这与煤系烃源岩“生气为主、生油为辅”的性质有密切关系。西湖凹陷油气成藏综合研究揭示,平湖组煤系烃源岩为主力烃源岩,花港组次之;平湖组发育煤、暗色泥岩和碳质泥岩3种岩性,主要位于平湖组中下段,沉积环境以潮汐海岸和潮控三角洲为主,煤系烃源岩分布广、厚度大(刘金水等,2020)。西次凹地区平湖组煤系烃源岩已处于高成熟演化阶段,以生成天然气为主,断层垂向沟通烃源岩与上覆储层,形成下生上储的成藏组合。

  • 3.2 储层特征

  • 3.2.1 储层岩石学特征

  • M构造花港组和平湖组储层岩石类型均主要为细—中粒长石岩屑质石英砂岩(图2)。花港组126件岩石薄片镜下观测显示,岩石矿物组成中石英含量分布在58%~73%,平均为63.1%;长石类包括钾长石和斜长石,总含量分布在10%~20%,平均为16.6%;岩屑含量为15%~24%,平均为20.3%;填隙物中泥质含量平均为1.9%,硅质平均含量为1.2%,碳酸盐胶结物含量高,但非均质性强,分布在0~26%,平均为2.5%。平湖组30件岩石薄片镜下分析显示,石英含量分布在60%~73%,平均为64.9%;长石类矿物总含量分布在12%~18%,平均为15.2%;岩屑含量为13%~23%,平均为20.0%;填隙物中泥质含量平均为2.8%,硅质平均含量为0.9%,碳酸盐胶结物含量高,平均为5.0%,明显高于花港组。全岩X射线衍射分析显示,花港组40件砂岩样品中石英含量为30.7%~81.1%,平均为66.5%;长石类矿物含量为9.2%~31.6%,平均为19.4%;碳酸盐矿物含量为0.1%~23.4%,平均为2.5%。平湖组16件砂岩样品X射线衍射分析显示,石英含量为33.1%~80.5%,平均为58.8%;长石类矿物含量为6.3%~35.4%,平均为20.9%;碳酸盐矿物含量为0.1%~7.6%,平均为2.3%。对比花港组储层薄片镜下分析,岩石矿物组成与全岩X射线衍射结果一致,而平湖组略有差异,可能是X射线衍射数据点较少的原因。对于两套储层,其岩石分选好,磨圆度以次圆—次棱和次棱—次圆为主,花港组与平湖组差异不大。

  • 图2 西湖凹陷西次凹M构造花港组— 平湖组储层岩石类型

  • Fig.2 Reservoir rock types of Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • Ⅰ—石英砂岩;Ⅱ—长石质石英砂岩;Ⅲ—岩屑质石英砂岩;Ⅳ—长石岩屑质石英砂岩;Ⅴ—长石砂岩;Ⅵ—岩屑质长石砂岩;Ⅶ—长石质岩屑砂岩

  • Ⅰ—quartz sandstone; Ⅱ—feldspathic quartz sandstone; Ⅲ—lithic quartz sandstone; Ⅳ—feldspathic detritus quartz sandstone; Ⅴ—arkose; Ⅵ—lithic arkose; Ⅶ—feldspathic detritus sandstone

  • 3.2.2 储层物性特征

  • 对M构造花港组—平湖组砂岩储层物性测试数据,删除裂缝发育的少量异常值后,孔隙度和渗透率具有良好的正相关关系,渗透率随孔隙度增高而增高(图3a)。孔隙度主要分布在6%~11%之间,渗透率主要分布在0.05×10-3~10×10-3 μm2之间,90%的砂岩样品渗透率低于1.0×10-3 μm2(图3b、c)。对于致密砂岩储层物性界限,我国学者主要从浮力的成藏动力效应划分,致密储层孔隙结构复杂、孔喉半径小,毛细管阻力大,浮力作用下不能有效充注成藏,通常界定致密储层的空气渗透率低于1.0×10-3 μm2,孔隙度低于10%(庞雄奇等,2013; 刘金水等,2020; 赵静等,2021)。据此,M构造花港组深层砂岩储层以致密储层为主,浅部有部分储层为常规储层,平湖组储层都已致密化(图3c)。

  • 3.2.3 储集空间类型

  • 岩石薄片镜下观测可见,研究区古近系砂岩储层主要发育原生粒间孔、粒间溶孔、粒内溶孔和铸模孔以及少量微裂缝(图4)。粒间残留原生孔隙是经历压实作用、胶结作用破坏之后残存的原生孔隙部分空间,孔隙边缘清晰、平整、规则(图4a),与溶蚀孔隙边缘的不规则状明显区分。残留原生孔隙面孔率随深度增高而降低,在深部降低趋势放缓,趋于压实减孔的极限。花港组、平湖组致密砂岩储层中长石、岩屑普遍发育,长石和岩屑中铝硅酸盐矿物在有机酸、CO2等酸性流体作用下发生溶蚀,形成次生溶蚀孔隙,溶蚀程度高时,整个颗粒完全被溶解,形成铸模孔,可见长石解理缝和岩屑局部溶蚀,形成粒内溶蚀孔隙(图4b、e、f),碳酸盐胶结物溶蚀作用不明显。酸性流体主要来自平湖组中下段煤系烃源岩的生烃演化过程。西次凹M构造花港组砂岩储层中溶蚀孔隙占总面孔率的70%以上,这些不同类型的次生孔隙有效弥补了原生孔隙的压实损耗,是深层致密砂岩主要的储集孔隙类型。此外,在扫描电镜下可见黏土矿物晶间孔隙,如自生高岭石晶间孔隙、自生伊利石晶间孔隙等(图4d、h)。从孔隙类型分布来看,次生溶蚀孔隙是主要的储集孔隙类型。

  • 3.2.4 储层成岩演化

  • 西次凹M构造花港组—平湖组砂岩储层经历了压实、胶结、溶解等成岩作用。构造沉积演化过程研究揭示,西次凹M构造花港组—平湖组储层主要经历了持续埋深过程,埋深普遍大于3500 m,钻井揭示的平湖组最大埋深在5000 m,现今最大埋深即为地质历史时期最大埋深。随深度增大,深层砂岩储层压实作用逐渐增强。岩石薄片镜下表现为岩石颗粒多呈点接触、线接触以及凹凸-线接触,塑性岩屑被压弯变形,充填部分原生孔隙(图4a、b)。硅质、碳酸盐、自生高岭石和伊利石是主要的胶结矿物,其中碳酸盐和伊利石含量高,充填孔隙,是储层致密化的因素之一(图4c、d、g、h)。花港组深层硅质胶结可识别出3期次生加大边,胶结物总量并不高,分布不均匀,对储层致密化作用有限。通过染色薄片鉴定,研究区碳酸盐胶结物包括早期连晶方解石、微含铁方解石、细—粉晶白云石和晚期含铁白云石等,可充填于原生孔隙和部分溶蚀孔隙,对储层致密化影响大(图4c、g);统计显示,平湖组储层中碳酸盐含量明显高于花港组。黏土矿物胶结主要有3种类型,高岭石、伊利石和绿泥石,在纵向上具有明显的分布规律。花港组上段呈书页状自生高岭石发育,分布于粒间孔隙(图4d),花港组下段花菜头状、片状绿泥石发育,呈包膜状包裹于颗粒表面或充填孔隙,但总体含量低。随着埋深继续增大,成岩作用增强,储层中自生伊利石含量开始大幅增加,以毛发状、蜂窝状产出,对储层喉道阻塞尤为严重,是渗透率降低的关键因素(图4h)。

  • 图3 西湖凹陷西次凹M构造花港组—平湖组储层孔隙度、渗透率随深度变化

  • Fig.3 Variation of porosity and permeability with depth of Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • 图4 西湖凹陷西次凹M构造花港组—平湖组砂岩储层孔隙类型及其成岩特征

  • Fig.4 Pore types and diagenesis characteristics of sandstone reservoirs in Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • (a)—M-1S井,3981.28 m,长石岩屑砂岩,发育残留原生孔隙,2×10;(b)—M-1S井,4329.40 m,H7,长石岩屑砂岩,长石溶蚀孔隙发育;(c)—M-1S井,H4,3633.00 m,长石岩屑砂岩,早期方解石胶结物,呈基底式充填;(d)—M-1S井,3792.00 m,H7,长石岩屑砂岩,书页状自生高岭石及其晶间孔隙;(e)—M-1S井,3978.58 m,H7,长石岩屑砂岩,岩屑溶蚀孔隙;(f)—M-2井,4777.00 m,长石岩屑砂岩,溶蚀作用强,形成铸模孔隙,10×20;(g)—M-2井,4688.00 m,P3,长石岩屑砂岩,晚期含铁白云石胶结强烈;(h)—M-1S井,3993.38 m,H7,长石岩屑砂岩,发丝状自生伊利石及其晶间孔隙

  • (a) —well M-1S, 3981.28 m, the feldspar lithic sandstone with residual primary pores, 2×10; (b) —well M-1S, 4329.40 m, H7, feldspar lithic sandstone with feldspar dissolution pore; (c) —well M-1S, H4, 3633.00 m, feldspar lithic sandstone with basement-filling early calcite cement; (d) —well M-1S, 3792.00 m, H7, feldspathic lithic sandstone, foliated authigenic kaolinite and its intercrystalline pores; (e) —well M-1S, 3978.58 m, H7, feldspar lithic sandstone, with lithic dissolution pores; (f) —well M-2, 4777.00 m, feldspar lithic sandstone that developed mold pores by strong dissolution, 10×20; (g) —well M-2, 4688.00 m, P3, feldspathic lithic sandstone with strong cementation of late ferrodolomite; (h) —well M-1S, 3993.38 m, H7, feldspar lithic sandstone, with filamentous authigenic illite and its intergranular pores

  • 溶解作用是古近系深层有利储层发育的重要因素,主要表现为长石、岩屑的溶蚀过程,碳酸盐胶结物溶蚀不明显。自生高岭石发育于酸性、开放的流体环境,溶蚀物质可以及时迁移形成溶蚀孔隙。因此,高岭石的发育可作为溶蚀作用强、有利储层发育的标志。研究区平湖组储层与花港组储层成岩特征差异主要体现在,平湖组压实作用明显增强,碳酸盐胶结物含量增加,自生黏土矿物类型主要为伊利石等。根据成岩作用特征,花港组储层主要处于中成岩A期,平湖组储层主要处于中成岩B期。综合上述成岩作用类型及其特征,建立了研究区砂岩储层的成岩演化序列(图5)。

  • 图5 西湖凹陷西次凹M构造花港组—平湖组储层成岩演化序列

  • Fig.5 Diagenetic sequence of Huagang and Pinghu reservoirs in the structural belt M of the western subsag in Xihu sag

  • 4 储层流体包裹体分析

  • 4.1 包裹体岩相学与均一温度特征

  • 花港组(H5、H7和H11样品)砂岩储层部分石英颗粒具典型石英次生加大特征,发育2期次的油气包裹体。第一期油气包裹体发育于砂岩石英颗粒次生加大早—中期,发育丰度低,GOI约为1%,包裹体大多在环石英颗粒加大边内侧成带分布或沿石英颗粒成岩期微裂隙分布,形状规则(图6a~c)。包裹体液态烃呈淡黄色,显示黄色、黄绿色、绿色荧光;气烃呈灰色,无荧光显示(图6d~f)。其中,液态烃包裹体约占45%,气液烃包裹体约占55%。第二期油气包裹体发育于砂岩石英颗粒次生加大期后,发育丰度较高,GOI为3%~8%,包裹体大多沿切穿石英颗粒及其加大边的成岩期后微裂隙成带分布(图6a~c)。包裹体液态烃呈淡黄色、透明无色,显示蓝色、蓝绿色、绿色荧光;气烃呈灰色,无荧光显示。其中,气液烃包裹体约占35%,呈深灰色的气体包裹体或呈淡褐色的含烃盐水包裹体约占65%(图6d~f)。总体上,第一期包裹体液态烃含量高,第二期气态烃含量高。

  • 平湖组上段(P3样品)砂岩局部粒间孔隙中含湿气及稀油沥青,显示黄色、褐黄色荧光(图6e、f)。砂岩中部分石英颗粒具典型石英次生加大和部分粒间方解石胶结物,P3砂岩样品发育2期次的油气包裹体。第一期油气包裹体发育于砂岩石英颗粒次生加大早中期,发育丰度低,GOI约为1%,包裹体大多环石英颗粒加大边内侧成带分布、沿石英颗粒成岩期微裂隙分布(图6e、f)。包裹体液烃呈淡黄色,显示黄绿色、绿色荧光;气烃呈灰色,无荧光显示。其中,液态烃包裹体约占45%,气液烃包裹体约占55%。第二期油气包裹体发育于砂岩石英颗粒次生加大期后,发育丰度极高,GOI约为15%,包裹体大多沿切穿石英颗粒及其加大边的成岩期后微裂隙成带分布,形状规则(图6e,f)。包裹体液态烃呈淡黄色、透明无色,显示蓝色、蓝绿色、绿色荧光;气烃呈灰色,无荧光显示。其中,气液烃包裹体约占35%,呈深灰色的气体包裹体或呈淡褐色的含烃盐水包裹体约占65%。

  • 从包裹体岩相学、含油气包裹体丰度等特征看,花港组和平湖组都有两期油气充注。储层含烃流体包裹体丰度(GOI)可以反映油气充注强度,分析显示,第一期包裹体GOI普遍小于3%;同一样品中第二期包裹体GOI值均高于第一期,最大值可达15%,反映第二期油气充注强度高于第一期(图7a),表明花港组和平湖组的油气充注均以第二期的天然气充注为主。同时,两期包裹体的GOI值具有由深层向浅部而逐渐降低的特征(图7a),即平湖组含油气丰度要明显高于花港组。这种油气包裹体特征具有明显的规律性,反映自平湖组向花港组油气充注的连续性。

  • 图6 西湖凹陷西次凹M构造花港组—平湖组流体包裹体特征

  • Fig.6 Characteristics of fluid inclusions of the Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • (a、b)—花港组上段砂岩沿切及石英颗粒加大边的成岩期微裂隙成带分布、呈淡黄—灰色显示黄绿色荧光的中质油包裹体(上:单偏光;下:UV激发荧光);(c)—花港组上段砂岩沿切穿石英颗粒的成岩期后微裂隙成带分布、呈淡黄—灰色显示蓝绿色荧光的轻质油气包裹体(上:单偏光;下:UV激发荧光);(d)—花港组下段砂岩沿切穿石英颗粒及其加大边的成岩期后微裂隙成带状分布、呈淡黄—灰色显示绿色荧光的轻质油包裹体(上:单偏光;下:UV激发荧光);(e、f)—平湖组上段砂岩沿切穿石英颗粒及其加大边的成岩期后微裂隙成带分布、呈灰色显示蓝色荧光的天然气湿气包裹体(上:单偏光;下:UV激发荧光)

  • (a, b) —the medium oil inclusions with yellowish-gray color and yellow-green fluorescense that zoned in the diagenetic microfissure, appearing along or cut through the enlarged edge of quartz grains in the upper Member of Huagang Formation sandstone; (c) —the light oil and gas inclusions with yellowish-gray color and blue-green fluorescense that zoned in the diagenetic microfissure, appearing along or cut through the enlarged edge of quartz grains in the upper Member of Huagang Formation sandstone; (d) —the light oil and gas inclusions with yellowish-gray color and green fluorescense that zoned in the diagenetic microfissure, appearing along or cut through the enlarged edge of quartz grains in the lower Member of Huagang Formation sandstone; (e, f) —the gas inclusions with gray color and blue fluorescense that zoned in the diagenetic microfissure, appearing along or cut through the enlarged edge of quartz grains in the upper Member of Pinghu Formation sandstone. In each set of photographs, the image above is displayed in plane-polarized light; the image below is displayed in UV-excited fluorescence

  • 油气包裹体均一温度分析显示,H5段油气包裹体伴生盐水包裹体的均一温度分布呈双峰态,前峰温度在125~130℃,后峰温度在135~140℃(图7b),反映H5段储层2期油气充注特征明显;H7段包裹体的均一温度分布随温度升高而分布增多,呈单峰态,主峰温度范围较宽,为140~150℃(图7c);H11段包裹体的均一温度分布峰值不明显(图7d);P3段包裹体的均一温度分布呈单峰态,主峰温度在140~145℃(图7e),其他温度范围均有近似比例的数据分布,这与H11段特征类似,反映两个层段储层中油气连续充注的特征。

  • 图7 西湖凹陷西次凹M构造花港组—平湖组流体包裹体特征分析

  • Fig.7 Analysis of fluid inclusion characteristics of Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • 4.2 包裹体流体古压力恢复

  • 本文选取花港组上段(H5)、下段(H11)以及平湖组上段(P3)砂岩储层石英矿物中发育的气液两相包裹体,主要对应第二期包裹体,进行拉曼测试,结果表明其气体主要成分为CH4。结合测温数据,求取花港组砂岩包裹体天然气成藏时的古压力分别为,H5段为39.4 MPa,H11段为66.2 MPa,P3段为67.5 MPa和68.9 MPa。可见,花港组底部(H11)与平湖组顶部(P3)砂体天然气成藏时的地层水古压力值近似,明显高于花港组上段(H5),反映了压力结构的差异性。结合包裹体均一温度确定的天然气成藏期对应的古埋深见后文。计算成藏古压力系数H5段约为1.15,天然气成藏时为常压流体环境;H11段约为1.78,为超压环境;P3段约为1.72和1.76,也为超压成藏环境。因此,可以初步判断西次凹地层古压力结构,H11段及以下为超压环境,其上为常压环境,油气成藏的动力环境存在显著差异。

  • 4.3 包裹体油组分地球化学特征

  • 通过对M构造花港组砂岩包裹体原油的饱和烃组分全离子流图(TIC)分析,可分为“前峰型”和“后峰型”两大类,表明包裹体内原油的母质类型存在一定差异,前者反映有一定的低等生物生源贡献,后者表明母质有更多的高等植物的输入(徐陈杰等,2021)。具体来看,花港组含油包裹体既有“后峰型”也有“前峰型”,平湖组主要为“后峰型”(图8),可能是平湖组储层近源连续接受中下段煤系烃源岩供烃,“后峰型”原油组分掩盖了“前峰型”,也可进一步推断,平湖组煤系烃源岩生物来源仍然以高等植物输入为主。在饱和烃色-质谱中,生物构型的规则甾烷分布形态也可反映生烃母质生物来源。αααC27-28-29规则甾烷分布部分为“V”型,表明包裹体内原油母质具有混源特征,既有来自高等植物的腐殖组分也有来自低等生物的腐泥组分;αααC27-28-29规则甾烷分布为反“L”型,表明腐殖组分占比高,即高等植物贡献大;两种分布形态在花港组和平湖组含油包裹体中均有分布。总体上,M构造包裹体内原油母质来源多样,与平湖组烃源岩以Ⅱ~Ⅲ型混合生源的干酪根为主的特征吻合(图9)。

  • 二萜类生物标志化合物在树脂体中十分丰富,包括二环二萜烷、三环二萜烷、四环二萜烷等,是鉴定与区分煤系烃源岩成油的重要生物标志物。研究发现西湖凹陷古近系泥岩的异海松烷/扁枝烷的比值极低而煤极高,即煤岩中富含大量的异海松烷或4β-19-降异海松烷,以裸子植物为代表;泥岩中则富含大量16β(H)-扁枝烷,以蕨类植物为代表(卢双舫等,2007; 渠冬芳等,2012; 蒋一鸣等,2020)。结合谱图分析认为,M构造以降异海松烷—异海松烷—扁枝烷“倒V”峰型为主,部分样品为“右上扬”峰型,反映原油母质生源以裸子植物和蕨类植物混合生源特征为主。这与研究区平湖组煤系烃源岩发育于潮间-潮上带的沉积环境相匹配,但也有部分烃源岩发育于潮下带(局限海),以低等水生生物为主要生源(图10)。饱和烃色谱-质谱参数可以反映原油母质成熟度,如C29甾烷ααα20S/(20S+20R)和C29甾烷αββ/(αββ+ααα)均高于0.4,表明包裹体捕获的石油均为烃源岩成熟阶段的产物。西湖凹陷目前发现的烃源岩,无论是泥岩还是煤系源岩,均为典型的腐殖型干酪根,高等植物占主要贡献,这与潮间-潮上带的沉积环境相匹配,但由地球化学特征可以得出,存在一定的腐泥型干酪根的贡献,这部分有机质可能来自于潮下带(局限海)的低等水生藻类。

  • 图8 西湖凹陷西次凹含油包裹体全离子流图峰型特征

  • Fig.8 Peak pattern characteristics of total ion chromatograms of oil-bearing inclusions from the western subsag in Xihu sag

  • (a)—M-1井,4331.90~4332.00 m,花港组下段,主峰碳数:14,Pr/Ph=1.55,Ro=0.73;(b)—M-2井,3754.00~3756.00 m,花港组上段,主峰碳数:16,Pr/Ph=2.19,Ro=0.59;(c)—M-2井,3756.00~3758.00 m,花港组上段,主峰碳数:23,Pr/Ph=1.80,Ro=0.59;(d)—M-2井,4337.00 m,花港组下段,主峰碳数:26,Pr/Ph=1.77,Ro=0.69;(e)—M-2井,4647.56 m,平湖组上段,主峰碳数:23,Pr/Ph=4.66,Ro=0.84;(f)—M-2井,4649.07 m,平湖组上段,主峰碳数:23,Pr/Ph=4.42,Ro=0.84

  • (a) —well M-1, 4331.90~4332.00 m, upper Member of Huagang Fromation, main peak carbon number: 14, Pr/Ph=1.55,Ro=0.73; (b) —well M-2, 3754.00~3756.00 m, upper Member of Huagang Fromation, main peak carbon number: 16, Pr/Ph=2.19, Ro=0.59; (c) —well M-2, 3756.00~3758.00 m, upper Member of Huagang Fromation, main peak carbon number: 23, Pr/Ph=1.80, Ro=0.59; (d) —well M-2, 4337.00 m, lower Member of Huagang Fromation, main peak carbon number: 26, Pr/Ph=1.77, Ro=0.69; (e) —well M-2, 4647.56 m, upper Member of Pinghu Fromation, main peak carbon number: 23, Pr/Ph=4.66, Ro=0.84; (f) —well M-2, 4649.07 m, upper Member of Pinghu Fromation, main peak carbon number: 23, Pr/Ph=4.42, Ro=0.84

  • 4.4 包裹体气组分地球化学特征

  • 受仪器检测下限影响,流体包裹体中烃类气体仅获取了甲烷和二氧化碳的数据。测试结果显示,其主要成分为CH4,其余烃类组分含量极少,部分样品含有一定的CO2。花港组H7段油气包裹体烃类气体的两个δ13C1测试值分别为-32.0‰和-34.9‰,H11段一个测试值为-37.0‰,平湖组P3段两个测试值分别为-35.9‰和-36.8‰。根据戴金星等(2014)提出的煤系天然气母质成熟度Ro计算公式,计算包裹体天然气和井口采集天然气样显示,前者气源母质Ro在1.3%~1.6%之间,3个气样母质Ro为1.5%、1.6%和1.7%,井口气样成熟度略高于对应层段的包裹体气样,反映天然气晚期充注成藏为主的特征。

  • 图9 西湖凹陷西次凹油气包裹体原油中甾烷C27-28-29呈“V型”样品和“反L型”样品

  • Fig.9 Sterane C27-28-29 in “V-type” and “anti-L-type” crude oil from oil-gas inclusions of the western subsag in Xihu sag

  • (a)—M-2井,4647.56 m,平湖组上段,C27-28-29呈V型;(b)—M-2井,4331.9~4332 m,花港组下段,C27-28-29呈V型;(c)—M-2井,4649.07 m,平湖组上段,C27-28-29呈V型;(d)—M-2井,3754~3756 m,花港组上段,C27-28-29呈反L型;(e)—M-2井,3756~3758 m,花港组上段,C27-28-29呈反L型;(f)—M-2井,4184.29~4187.59 m,平湖组中段,C27-28-29呈反L型

  • (a) —well M-2, 4647.56 m, upper Member of Pinghu Formation, C27-28-29: V type; (b) —well M-2, 4331.9.90~4332.00 m, lower Member of Huagang Formation, C27-28-29: V type; (c) —well M-2, 4649.07 m, upper Member of Pinghu Formation, C27-28-29: V type; (d) —well M-2, 3754.00~3756.00 m, upper Member of Huagang Formation, C27-28-29: inverse L type; (e) —well M-2, 3756.00~3758.00 m, upper Member of Huagang Formation, C27-28-29: inverse L type; (f) —well M-2, 4184.29~4187.59 m, middle Member of Pinghu Formation, C27-28-29: inverse L type

  • 5 油气成藏过程

  • 5.1 油气成藏期次

  • 流体包裹体均一温度结合研究区沉积埋藏史、热史,是判断油气充注成藏期次的常用方法。在区域地质条件研究基础上,结合钻井实测地层温度、岩芯样品镜质组反射率(Ro)等资料,通过PetroMod盆地模拟软件恢复了重点井的地层埋藏史和热史。根据流体包裹体均一温度分布特征,与热史对应关系分析了油气成藏期次。采用低成熟样品热模拟实验,系统研究西湖凹陷不同岩性烃源岩生烃性质差异及其成烃演化历史,是分别确定石油和天然气差异成藏过程的重要依据。对于H5段包裹体样品,其均一温度分布呈双峰态,前锋主要是原油伴生的盐水包裹体测温数据,后峰主要是天然气伴生的盐水包裹体测温数据。西湖凹陷平湖组煤系烃源岩演化阶段以生油为主,是低地层温度阶段成藏的主要流体;随着地层埋深加大、温度升高,烃源岩进入大量生成天然气的阶段,对应高地层温度阶段充注流体类型,这与平湖组煤系烃源岩不同相态烃类生成演化过程一致(刘斌,1987)。分析显示,H5段均一温度分布前峰在125~130℃之间,对应油的充注时间约为13 Ma,即龙井运动时期;后峰在135~140℃之间,对应天然气的充注时间约为2 Ma,即冲绳运动时期。H7段均一温度分布主峰在140~150℃之间,油气成藏时间跨度较大,主要对应冲绳运动时期(图11)。P3段均一温度分布主峰在140~145℃之间,对应龙井运动之前,次生构造圈闭尚未定型,油气不能有效聚集;天然气充注时间主要为冲绳运动时期,且前后期持续充注时间长(图11)。H11段均一温度分布峰值特征不明显,结合其他层段天然气晚期成藏特征,推测H11段天然气成藏温度高于145℃,成藏时间也应在冲绳运动期(图11)。区域构造演化特征显示,研究区古近系构造圈闭形成于龙井运动期,冲绳运动期仅有小幅度调整,影响不大。结合煤系烃源岩“早期生油、晚期生气”“全天候生烃”的特征(苏奥等,2013),可以认为,研究区龙井运动期是第一成藏期,储层以液态烃充注为主,天然气为辅;第二成藏期为冲绳运动期,以天然气晚期成藏为主,也是西次凹古近系气田形成的关键时期。

  • 图10 西湖凹陷西次凹含油包裹体m/z 123降异海松烷-异海松烷-扁枝烷“倒V”峰型和“右上扬”峰型分布

  • Fig.10 Distribution of ‘inverted V’ and ‘right-upward’ peak patterns of oil-bearing inclusions m/z 123 norisopimarane-isopimarane-mangane of the western subsag in Xihu sag

  • (a)—M-1井,3447.30~3448.38 m,花港组上段;(b)—M-2井,3756.00~3758.00 m,花港组上段;(c)—M-2井,4331.90~4332.00 m,花港组下段;(d)—M-2井,4337.00 m,花港组下段;(e)—M-2井,4649.07 m,平湖组上段;(f)—M-2井,4647.56 m,平湖组上段

  • (a) —well M-1, 3447.30~3448.38 m, upper Member of Huagang Formation; (b) —well M-2, 3756.00~3758.00 m, upper Member of Huagang Formation; (c) —well M-2, 4331.09~4332.00 m, lower Member of Huagang Formation; (d) —well M-2, 4337.00 m, lower Member of Huagang Formation; (e) —well M-2, 4649.07 m, upper Member of Pinghu Formation; (f) —well M-2, 4647.56 m, upper Member of Pinghu Formation

  • 5.2 油气成藏过程与类型

  • 综上研究可知,M构造古近系油气藏特征:花港组储层在H7及以下层段已致密化,平湖组均为致密储层,H6及以上层段储层部分致密,发育常规储层“甜点”;花港组和平湖组流体包裹体揭示的油气充注期次类似,均发育两期包裹体,早期以含油包裹体居多,晚期以天然气包裹体居多;两期油气成藏时间分别为龙井运动期和冲绳运动期,且以后者为主,是天然气成藏的关键时期; 花港组和平湖组储层包裹体中油地球化学特征类似,都以煤系高等植物生源的烃源岩为主,低等生物生源为辅,这与平湖组煤系烃源岩特征吻合; H11段及以下天然气晚期成藏时发育超压,应为下伏平湖组烃源岩生烃增压导致。储层致密化与油气充注成藏时序关系,是影响成藏过程与类型的关键。

  • 前人在储层孔隙演化恢复方面开展了大量研究工作,取得了系列成果(潘高峰等,2011; 林良彪等,2021; 张东东等,2021)。本文在研究区成岩演化、埋藏史、热史等研究基础上,借鉴前人研究方法,(半)定量恢复了主力油气分布层段储层的孔隙度演化历史,即花港组储层H11段在约2.5 Ma开始致密化,随时间推移,致密储层顶面逐渐变新,至今致密储层顶面为H7段底部,埋深4000 m;而平湖组顶部(P1~P4)储层致密化时间早于2.5 Ma(冲绳运动期)(图12c)。天然气主要成藏时期(冲绳运动期)花港组H10段以上层段储层尚未致密化,以下层段均已致密化。致密储层与常规储层的成藏差异是,前者油气在浮力作用下进入储层空间,由于油气水的密度差,可以自由分异;而致密储层中,受毛细管阻力的大幅增高制约,油气不能在浮力作用下有效充注,需要其他成藏动力,主要是地层超压(姜福杰等,2010; 戴金星等,2014; 夏鲁等,2020)。因此,龙井运动期(3~2 Ma)天然气成藏时,H10段及以上储层未致密,以下储层均已致密化。根据包裹体恢复的成藏古压力,结合天然气晚期成藏时的地层埋深可得出,H5段的古压力系数为1.1,常规储层浮力成藏;H11段和P3段的古压力系数均约为1.7,为致密储层的超压充注成藏。

  • 图11 西湖凹陷西次凹M构造花港组—平湖组油气成藏时期

  • Fig.11 Oil and gas accumulation period of Huagang and Pinghu formations in the structural belt M of the western subsag in Xihu sag

  • 天然气地球化学特征在纵向上有规律性变化,即计算的母质成熟度(Ro)高于对应层段包裹体气样,且随深度变浅,天然气母质成熟度有增高趋势(图12a)。这说明,现今储层中天然气以晚期高成熟度气体为主,包裹体中保留较多的早期成熟度相对低的天然气。埋深浅的储层中天然气成熟度高于深层,说明浅层成藏晚,以高成熟度天然气充注居多,而深层储层混合了部分早期低成熟度天然气,使得总体成熟度略低。天然气垂向运移的通道主要为通源断裂。总体上,包裹体GOI丰度(图7a)、甲烷碳同位素组成特征(图12a),都反映了深层天然气(油)充注早,但都以第二期高成熟度天然气充注为主。

  • M构造发育构造-岩性圈闭,龙井运动期是成熟油在浅层成藏的主要时期,冲绳运动叠加生气增压是晚期天然气成藏的动力,二者共同诱发的断层差异开启以及储层差异致密化控制常规-致密气的有序成藏。H7段主要为未致密储层,也不存在异常压力,主要发育常规油气藏;H8~H10段在冲绳运动期,储层尚未致密化,但现今为致密储层,油气藏类型为先成藏后致密型;H11~H12段在冲绳运动期,储层已经致密化,油气在超压驱动下进入致密储层,主要发育为先致密后成藏型(图12b~d)。P1~P4致密储层与平湖组中下段煤系烃源岩直接接触,更有利于油气的早期成藏以及晚期连续充注;龙井运动期烃源岩生油为主,且圈闭基本成型,油气可在临近的平湖组储层聚集。随着烃源岩成熟度不断增高,生气量逐渐积累,在冲绳运动期形成强超压环境,有利于天然气进入致密储层。总体上平湖组致密储层以晚期天然气超压充注成藏为主,但油气成藏过程具有连续性,因此平湖组顶部砂体成藏过程为边成藏边致密型(图12b~d)。

  • 在此基础上建立了油气成藏模式,即早油晚气、垂向差异输导断裂控制下的晚期成藏模式(图13)。成藏要素及其配置特点是,本地及附近平湖组深层烃源岩供烃,位于生烃凹陷内,油气充注动力足,在背斜背景下河道砂体形成岩性圈闭;龙井运动期,断层活动性强、输导性强,本地源岩生油为主,断层垂向输导作用下浅层有限成藏;冲绳运动期,断层活动性弱,生气增压诱导断层差异开启,晚期气垂向差异输导作用,导致天然气主要聚集在下部;成藏动力(构造活动+生烃增压)与储层差异致密化配置关系,控制常规与致密油气藏的纵向分布。

  • 图12 西湖凹陷西次凹M构造花港组—平湖组天然气地球化学特征及其成藏类型判断

  • Fig.12 Geochemical characteristics and accumulation types of natural gas in Huagang and Pinghu formations in the structure M of the western subsag in Xihu sag

  • (a)—包裹体和井口天然气计算母质Ro随深度变化;(b)—M构造花港组—平湖组油气藏剖面;(c)—花港组、平湖组顶界储层致密化时间;(d)—储层渗透率纵向变化与类型划分;①—常规油气藏发育段;②—先成藏后致密(H8~H10);③—先致密后成藏(H11~H12);④—边成藏边致密(P1~P4)

  • (a) —variation of calculated kerogen Ro of inclusions and wellhead natural gas with depth; (b) —profile of oil and gas reservoirs in Huagang and Pinghu Formation; (c) —densification time of upper member reservoirs in Huagang and Pinghu Formation; (d) —variation of reservoir permeability with depth and the type division; ①—conventional type; ②—accumulation followed by densification (H8~H10) ; ③—densification followed by accumulation (H11~H12) ; ④—accumulation while densification (P1~P4)

  • 图13 西湖凹陷西次凹M构造花港组—平湖组油气成藏模式

  • Fig.13 Oil and gas accumulation model of Huagang and Pinghu formations in the structure M of the western subsag in Xihu sag

  • 6 结论

  • (1)西湖凹陷西次凹M构造花港组和平湖组储层岩石类型相似,花港组浅部发育部分常规储层,深层(>4000 m)与平湖组均为致密储层;储集空间类型主要为原生粒间孔、粒间溶孔、粒内溶孔和铸模孔以及少量微裂缝,经历了压实、胶结、溶解等成岩作用,且平湖组储层压缩作用更强、碳酸盐胶结物含量更高。

  • (2)花港组和平湖组均发育两期油气包裹体,早期含油包裹体较多,晚期以天然气包裹体为主,成藏时间分别为龙井运动期和冲绳运动期,且以晚期天然气成藏为主;含油气包裹体特征反映生烃母质以高等植物生源为主,低等生物为辅,来自平湖组煤系烃源岩;晚期天然气成藏期,H11段以下储层发育超压,是致密储层成藏动力。

  • (3)晚期成藏时H10段及以上储层未致密化,以下储层已经致密化;根据储层致密化与成藏时序可确定油气藏类型及其纵向分布,即H7段及以上为常规油气藏,H8~H10段为先成藏后致密型,H11~H12段为先致密后成藏型,P1~P4段为边成藏边致密型。

  • 参考文献

    • Aplin A C, Larter S R, Bigge M A, Macleod G, Swarbrick R E, Grunberger D. 2000. PVTX history of the North Sea's Judy oilfield. Journal of Association of Exploration Geochemists, 69-70: 641~644.

    • Dai Jinxing, Ni Yuanyuan, Hu Guoyi, Huang Shipeng, Liao Fengrong, Yu Cong, Gong Deyu, Wu Wei. 2014. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China. Science China: Earth Sciences, 57: 88~103.

    • Dai Jinxing, Gong Jianming. 2018. Establishment of coal-derived gas geological theory and its strategic significance to the development of natural gas industry in China. China Petroleum Exploration, 23(4): 1~10 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Dong Dazhong, Qin Shengfei, Zhu Guangyou, Huang Shipeng, Yu Cong, Gong Deyu, Hong Feng, Zhang Yanling, Yan Zhengmin, Liu Quanyou, Wu Xiaoqi, Feng Ziqi. 2021. 2021-2025 is a period of great development of China's natural gas industry: Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China. Natural Gas Geoscience, 32(1): 1~16 (in Chinese with English abstract).

    • He Dengfa, Ma Yongsheng, Liu Bo, Cai Xunyu, Zhang Yijie, Zhang Jian. 2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Geoscience Frontier, 26(1): 1~12 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research progress and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).

    • Jiang Fujie, Pang Xiongqi, Wu Li. 2010. Geological threshold and its gas controlling function during ming process of tight sandstone gas reservoir. Acta Petrolei Sinica, 31(1): 49~54 (in Chinese with English abstract).

    • Jiang Yiming, Zou Wei, Liu Jinshui, Tang Xianjun, He Xinjian. 2020. Genetic mechanism of inversion anticline structure at the end of Miocene in Xihu sag, East China Sea: A new understanding of basement structure difference. Earth Science, 45(3): 968~979 (in Chinese with English abstract).

    • Lin Liangbiao, Yu Yu, Nan Hongli, Chen Hongde, Liu Lei, Wu Dong, Wang Zhikang. 2021. Reservoir tightening process and its coupling relationship with hydrocarbon accumulation in the fourth Member of Upper Triassic Xujiahe Formation in the West Sichuan depression, Sichuan basin. Oil and Gas Geology, 42(4): 816~828 (in Chinese with English abstract).

    • Liu Bin. 1987. The formation temperature and pressure are calculated by using the thermodynamic equation of symbiotic equilibrium of fluid inclusions and their main minerals. Science in China (Series B), 17(3): 81~88 (in Chinese with English abstract).

    • Liu Jinshui, Li Shuxi, Qin Lanzhi, Yi Qi, Chen Xiaodong, Kang Shilong, Shen Wenchao, Shao Longyi. 2020. Hydrocarbon generation kinetics of Paleogene coal in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 41(10): 1174~1218 (in Chinese with English abstract).

    • Liu Jinshui, Zhang Shuping. 2021. Natural gas migration and accumulation patterns in the central-north Xihu sag, East China Sea basin. Natural Gas Geoscience, 32(8): 1163~1176 (in Chinese with English abstract).

    • Lu Shuangfang, Li Dong, Wang Yuewen, Feng Zihui, Li Jijun, Shen Jianian. 2007. Resource evaluation method for generating condensate oil and light oil from sapropelic organic matter and its application. Acta Petrolei Sinica, 28(5): 63~66, 71 (in Chinese with English abstract).

    • Pan Gaofeng, Liu Zhen, Zhao Shu, Hu Zongquan, Hu Xiaodan. 2011. Quantitative simulation of sandstoneporosity evolution: A case from Yanchang Formation of the Zhenjing area, Ordos basin. Acta Petrolei Sinica, 32(2): 249~256 (in Chinese with English abstract).

    • Pang Xiongqi, Zhou Xinyuan, Dong Yuexia, Jiang Zhenxue, Jiang Fujie, Fan Bojiang, Xing Enyuan, Pang Hong. 2013. Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal. Journal of China University of Petroleum (Edition of Natural Sciences), 37(5): 28~56 (in Chinese with English abstract).

    • Qu Dongfang, Jiang Zhenxue, Liu Huimin, Gao Yongjin. 2012. A reconstruction method of porosity for clastic reservoir during the crucial period of hydrocarbon accumulation. Acta Petrolei Sinica, 33(3): 404~413 (in Chinese with English abstract).

    • Su Ao, Chen Honghan, Wang Cunwu, Li Peijun, Zhang Hui, Xiong Wanlin, Lei Mingzhu. 2013. Genesis and maturity identification of oil and gas in the Xihu sag, East China Sea basin. Petroleum Exploration and Development, 40(5): 521~527 (in Chinese with English abstract).

    • Thiéry R, Pironon J, Walgenwitz F, Montel F. 2002. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: Inferences from applied thermodynamics of oils. Marine & Petroleum Geology, 19(7): 847~859.

    • Xia Lu, Liu Zhen, Zhong Xang, Dong Dong, Zhang Wei, Huo Junzhou, Yu Chunlan. 2020. Inversion of paleo-prosity of tight sandstone during post-accumulation period. Journal of China University of Mining and Technology, 49(1): 159~171 (in Chinese with English abstract).

    • Xiao Xianming, Liu Dehan, Fu Jiamo. 1996. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models. Acta Sedimentologica Sinica, 14(Sup. 1): 10~17 (in Chinese with English abstract).

    • Xu Chenjie, Ye Jiaren, Liu Jinshui, Cao Qiang, Sheng Yiyong, Yu Hanwen, Zhao Niubin. 2021. Key evidence of gas accumulation period in Xihu sag of the East China Seashelf basin: Gas hydrocarbon inclusion. Natural Gas Industry, 41(11): 64~73 (in Chinese with English abstract).

    • Ye Jiaren, Liu Jinshui, Xu Chenjie, Cao Qiang, Sheng Yiyong, Yu Hanwen. 2020. Grading evaluation of natural gas resources in the western sub-sag of Xihu depression, East China Sea basin. Bulletin of Geological Science and Technology, 39(3): 2~9 (in Chinese with English abstract).

    • Zhang Dongdong, Liu Wenhui, Wang Xiaofeng, Luo Houyong, Wang Qingtao, Li Yining, Li Fengjiao. 2021. Genetic types and characteristics of deep oil and gasplays. Oil and Gas Geology, 42(5): 1169~1180 (in Chinese with English abstract).

    • Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Jun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).

    • 戴金星, 倪云燕, 胡国艺, 黄士鹏, 廖凤蓉, 于聪, 龚德瑜, 吴伟. 2014. 中国致密砂岩大气田的稳定碳氢同位素组成特征. 中国科学: 地球科学, 44(4): 563~578.

    • 戴金星, 龚剑明. 2018. 中国煤成气理论形成过程及对天然气工业发展的战略意义. 中国石油勘探, 23(4): 1~10.

    • 戴金星, 倪云燕, 董大忠, 秦胜飞, 朱光有, 黄士鹏, 于聪, 龚德瑜, 洪峰, 张延玲, 严增民, 刘全有, 吴小奇, 冯子齐. 2021. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议. 天然气地球科, 32(1): 2~16.

    • 何登发, 马永生, 刘波, 蔡勋育, 张义杰, 张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1~12.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 姜福杰, 庞雄奇, 武丽. 2010. 致密砂岩气藏成藏过程中的地质门限及其控气机理. 石油学报, 31(1): 49~54.

    • 蒋一鸣, 邹玮, 刘金水, 唐贤君, 何新建. 2020. 东海西湖凹陷中新世末反转背斜构造成因机制: 来自基底结构差异的新认识. 地球科学, 45(3): 968~979.

    • 林良彪, 余瑜, 南红丽, 陈德洪, 刘磊, 吴冬, 王志康. 2021. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系. 石油与天然气地质, 42(4): 816~828.

    • 刘斌. 1987. 利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力. 中国科学B辑, 17(3): 81~88.

    • 刘金水, 李树霞, 秦兰芝, 易琦, 陈晓东, 康世龙, 沈文超, 邵龙义. 2020. 东海盆地西湖凹陷古近系煤的生烃动力学. 石油学报, 41(10): 1174~1218.

    • 刘金水, 张书平. 2021. 东海盆地西湖凹陷中北部天然气运移特征与成藏模式. 天然气地球科学, 32(8): 1163~1176.

    • 卢双舫, 李冬, 王跃文, 冯子辉, 李吉君, 申家年. 2007. 倾油性有机质生成轻质油的评价方法及其应用. 石油学报, 28(5): 63~66, 71.

    • 潘高峰, 刘震, 赵舒, 胡宗全, 胡小丹. 2011. 砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例. 石油学报, 32(2): 249~256.

    • 庞雄奇, 周新源, 董月霞, 姜振学, 姜福杰, 范柏江, 邢恩袁, 庞宏. 2013. 含油气盆地致密砂岩类油气藏成因机制与资源潜力. 中国石油大学学报: 自然科学版, 37(5): 28~56.

    • 渠冬芳, 姜振学, 刘惠民, 高永进. 2012. 关键成藏期碎屑岩储层古孔隙度恢复方法. 石油学报, 33(3): 404~413.

    • 苏奥, 陈红汉, 王存武, 李培军, 张晖, 熊万林, 雷明珠.2013. 东海盆地西湖凹陷油气成因及成熟度判别.石油勘探与开发, 40(5): 521~527.

    • 夏鲁, 刘震, 钟翔, 董冬, 张威, 霍俊洲, 于春兰. 2020. 致密砂岩成藏期后古孔隙度反演研究. 中国矿业大学学报, 49(1): 159~171.

    • 肖贤明, 刘德汉, 傅家谟. 1996. 我国聚煤盆地煤系烃源岩生烃评价与成烃模式. 沉积学报, 14(增刊 1): 10~17.

    • 徐陈杰, 叶加仁, 刘金水, 曹强, 盛溢勇, 余汉文, 赵牛斌. 2021. 东海西湖凹陷天然气成藏时期的关键证据: 气烃包裹体. 天然气工业, 41(11): 64~73.

    • 叶加仁, 刘金水, 徐陈杰, 曹强, 盛溢勇, 余汉文. 2020. 东海盆地西湖凹陷西次凹天然气资源分级评价. 地质科技通报, 39(3): 2~9.

    • 张东东, 刘文汇, 王晓锋, 罗厚勇, 王庆涛, 李忆宁, 李风娇. 2021. 深层油气藏成因类型及其特征. 石油与天然气地质, 42(5): 1169~1180.

    • 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.

  • 参考文献

    • Aplin A C, Larter S R, Bigge M A, Macleod G, Swarbrick R E, Grunberger D. 2000. PVTX history of the North Sea's Judy oilfield. Journal of Association of Exploration Geochemists, 69-70: 641~644.

    • Dai Jinxing, Ni Yuanyuan, Hu Guoyi, Huang Shipeng, Liao Fengrong, Yu Cong, Gong Deyu, Wu Wei. 2014. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China. Science China: Earth Sciences, 57: 88~103.

    • Dai Jinxing, Gong Jianming. 2018. Establishment of coal-derived gas geological theory and its strategic significance to the development of natural gas industry in China. China Petroleum Exploration, 23(4): 1~10 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Dong Dazhong, Qin Shengfei, Zhu Guangyou, Huang Shipeng, Yu Cong, Gong Deyu, Hong Feng, Zhang Yanling, Yan Zhengmin, Liu Quanyou, Wu Xiaoqi, Feng Ziqi. 2021. 2021-2025 is a period of great development of China's natural gas industry: Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China. Natural Gas Geoscience, 32(1): 1~16 (in Chinese with English abstract).

    • He Dengfa, Ma Yongsheng, Liu Bo, Cai Xunyu, Zhang Yijie, Zhang Jian. 2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Geoscience Frontier, 26(1): 1~12 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research progress and main development directions of deep hydrocarbon geological theories. Acta Petrolei Sinica, 36(12): 1457~1469 (in Chinese with English abstract).

    • Jiang Fujie, Pang Xiongqi, Wu Li. 2010. Geological threshold and its gas controlling function during ming process of tight sandstone gas reservoir. Acta Petrolei Sinica, 31(1): 49~54 (in Chinese with English abstract).

    • Jiang Yiming, Zou Wei, Liu Jinshui, Tang Xianjun, He Xinjian. 2020. Genetic mechanism of inversion anticline structure at the end of Miocene in Xihu sag, East China Sea: A new understanding of basement structure difference. Earth Science, 45(3): 968~979 (in Chinese with English abstract).

    • Lin Liangbiao, Yu Yu, Nan Hongli, Chen Hongde, Liu Lei, Wu Dong, Wang Zhikang. 2021. Reservoir tightening process and its coupling relationship with hydrocarbon accumulation in the fourth Member of Upper Triassic Xujiahe Formation in the West Sichuan depression, Sichuan basin. Oil and Gas Geology, 42(4): 816~828 (in Chinese with English abstract).

    • Liu Bin. 1987. The formation temperature and pressure are calculated by using the thermodynamic equation of symbiotic equilibrium of fluid inclusions and their main minerals. Science in China (Series B), 17(3): 81~88 (in Chinese with English abstract).

    • Liu Jinshui, Li Shuxi, Qin Lanzhi, Yi Qi, Chen Xiaodong, Kang Shilong, Shen Wenchao, Shao Longyi. 2020. Hydrocarbon generation kinetics of Paleogene coal in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 41(10): 1174~1218 (in Chinese with English abstract).

    • Liu Jinshui, Zhang Shuping. 2021. Natural gas migration and accumulation patterns in the central-north Xihu sag, East China Sea basin. Natural Gas Geoscience, 32(8): 1163~1176 (in Chinese with English abstract).

    • Lu Shuangfang, Li Dong, Wang Yuewen, Feng Zihui, Li Jijun, Shen Jianian. 2007. Resource evaluation method for generating condensate oil and light oil from sapropelic organic matter and its application. Acta Petrolei Sinica, 28(5): 63~66, 71 (in Chinese with English abstract).

    • Pan Gaofeng, Liu Zhen, Zhao Shu, Hu Zongquan, Hu Xiaodan. 2011. Quantitative simulation of sandstoneporosity evolution: A case from Yanchang Formation of the Zhenjing area, Ordos basin. Acta Petrolei Sinica, 32(2): 249~256 (in Chinese with English abstract).

    • Pang Xiongqi, Zhou Xinyuan, Dong Yuexia, Jiang Zhenxue, Jiang Fujie, Fan Bojiang, Xing Enyuan, Pang Hong. 2013. Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal. Journal of China University of Petroleum (Edition of Natural Sciences), 37(5): 28~56 (in Chinese with English abstract).

    • Qu Dongfang, Jiang Zhenxue, Liu Huimin, Gao Yongjin. 2012. A reconstruction method of porosity for clastic reservoir during the crucial period of hydrocarbon accumulation. Acta Petrolei Sinica, 33(3): 404~413 (in Chinese with English abstract).

    • Su Ao, Chen Honghan, Wang Cunwu, Li Peijun, Zhang Hui, Xiong Wanlin, Lei Mingzhu. 2013. Genesis and maturity identification of oil and gas in the Xihu sag, East China Sea basin. Petroleum Exploration and Development, 40(5): 521~527 (in Chinese with English abstract).

    • Thiéry R, Pironon J, Walgenwitz F, Montel F. 2002. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: Inferences from applied thermodynamics of oils. Marine & Petroleum Geology, 19(7): 847~859.

    • Xia Lu, Liu Zhen, Zhong Xang, Dong Dong, Zhang Wei, Huo Junzhou, Yu Chunlan. 2020. Inversion of paleo-prosity of tight sandstone during post-accumulation period. Journal of China University of Mining and Technology, 49(1): 159~171 (in Chinese with English abstract).

    • Xiao Xianming, Liu Dehan, Fu Jiamo. 1996. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models. Acta Sedimentologica Sinica, 14(Sup. 1): 10~17 (in Chinese with English abstract).

    • Xu Chenjie, Ye Jiaren, Liu Jinshui, Cao Qiang, Sheng Yiyong, Yu Hanwen, Zhao Niubin. 2021. Key evidence of gas accumulation period in Xihu sag of the East China Seashelf basin: Gas hydrocarbon inclusion. Natural Gas Industry, 41(11): 64~73 (in Chinese with English abstract).

    • Ye Jiaren, Liu Jinshui, Xu Chenjie, Cao Qiang, Sheng Yiyong, Yu Hanwen. 2020. Grading evaluation of natural gas resources in the western sub-sag of Xihu depression, East China Sea basin. Bulletin of Geological Science and Technology, 39(3): 2~9 (in Chinese with English abstract).

    • Zhang Dongdong, Liu Wenhui, Wang Xiaofeng, Luo Houyong, Wang Qingtao, Li Yining, Li Fengjiao. 2021. Genetic types and characteristics of deep oil and gasplays. Oil and Gas Geology, 42(5): 1169~1180 (in Chinese with English abstract).

    • Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Jun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).

    • 戴金星, 倪云燕, 胡国艺, 黄士鹏, 廖凤蓉, 于聪, 龚德瑜, 吴伟. 2014. 中国致密砂岩大气田的稳定碳氢同位素组成特征. 中国科学: 地球科学, 44(4): 563~578.

    • 戴金星, 龚剑明. 2018. 中国煤成气理论形成过程及对天然气工业发展的战略意义. 中国石油勘探, 23(4): 1~10.

    • 戴金星, 倪云燕, 董大忠, 秦胜飞, 朱光有, 黄士鹏, 于聪, 龚德瑜, 洪峰, 张延玲, 严增民, 刘全有, 吴小奇, 冯子齐. 2021. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议. 天然气地球科, 32(1): 2~16.

    • 何登发, 马永生, 刘波, 蔡勋育, 张义杰, 张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1~12.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 姜福杰, 庞雄奇, 武丽. 2010. 致密砂岩气藏成藏过程中的地质门限及其控气机理. 石油学报, 31(1): 49~54.

    • 蒋一鸣, 邹玮, 刘金水, 唐贤君, 何新建. 2020. 东海西湖凹陷中新世末反转背斜构造成因机制: 来自基底结构差异的新认识. 地球科学, 45(3): 968~979.

    • 林良彪, 余瑜, 南红丽, 陈德洪, 刘磊, 吴冬, 王志康. 2021. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系. 石油与天然气地质, 42(4): 816~828.

    • 刘斌. 1987. 利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力. 中国科学B辑, 17(3): 81~88.

    • 刘金水, 李树霞, 秦兰芝, 易琦, 陈晓东, 康世龙, 沈文超, 邵龙义. 2020. 东海盆地西湖凹陷古近系煤的生烃动力学. 石油学报, 41(10): 1174~1218.

    • 刘金水, 张书平. 2021. 东海盆地西湖凹陷中北部天然气运移特征与成藏模式. 天然气地球科学, 32(8): 1163~1176.

    • 卢双舫, 李冬, 王跃文, 冯子辉, 李吉君, 申家年. 2007. 倾油性有机质生成轻质油的评价方法及其应用. 石油学报, 28(5): 63~66, 71.

    • 潘高峰, 刘震, 赵舒, 胡宗全, 胡小丹. 2011. 砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例. 石油学报, 32(2): 249~256.

    • 庞雄奇, 周新源, 董月霞, 姜振学, 姜福杰, 范柏江, 邢恩袁, 庞宏. 2013. 含油气盆地致密砂岩类油气藏成因机制与资源潜力. 中国石油大学学报: 自然科学版, 37(5): 28~56.

    • 渠冬芳, 姜振学, 刘惠民, 高永进. 2012. 关键成藏期碎屑岩储层古孔隙度恢复方法. 石油学报, 33(3): 404~413.

    • 苏奥, 陈红汉, 王存武, 李培军, 张晖, 熊万林, 雷明珠.2013. 东海盆地西湖凹陷油气成因及成熟度判别.石油勘探与开发, 40(5): 521~527.

    • 夏鲁, 刘震, 钟翔, 董冬, 张威, 霍俊洲, 于春兰. 2020. 致密砂岩成藏期后古孔隙度反演研究. 中国矿业大学学报, 49(1): 159~171.

    • 肖贤明, 刘德汉, 傅家谟. 1996. 我国聚煤盆地煤系烃源岩生烃评价与成烃模式. 沉积学报, 14(增刊 1): 10~17.

    • 徐陈杰, 叶加仁, 刘金水, 曹强, 盛溢勇, 余汉文, 赵牛斌. 2021. 东海西湖凹陷天然气成藏时期的关键证据: 气烃包裹体. 天然气工业, 41(11): 64~73.

    • 叶加仁, 刘金水, 徐陈杰, 曹强, 盛溢勇, 余汉文. 2020. 东海盆地西湖凹陷西次凹天然气资源分级评价. 地质科技通报, 39(3): 2~9.

    • 张东东, 刘文汇, 王晓锋, 罗厚勇, 王庆涛, 李忆宁, 李风娇. 2021. 深层油气藏成因类型及其特征. 石油与天然气地质, 42(5): 1169~1180.

    • 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.