-
拉分盆地是与走滑断层密切相关的一类盆地,其最早在1966年研究美国加利福尼亚死谷盆地时提出(Burchfiel et al.,1966),后一般指在基底走滑断层系统中释压弯曲或侧接时形成的地形凹陷(Wu et al.,2009),通常具有沉积速率快、沉降厚度大等特点(Mann et al.,1983;Basile et al.,1999),往往容易成为富油气盆地(Huang Lei et al.,2015,2017),因而广受地质学家和石油地质学家的关注。在拉分盆地研究中,相关走滑断层发育演化规律的准确刻画是研究的重点与热点(Dooley et al.,2012; Xiao Yang et al.,2017; Corti et al.,2020)。
-
前人利用物理模拟(周永胜等,2003;Wu et al.,2009; Mitra et al.,2011; Dooley et al.,2012; 任建等,2017; Wang Qian et al.,2017; Corti et al.,2020)和数值模拟(Wang Hui et al.,2017; Liu Yuan et al.,2018)两种主要的研究手段对走滑构造进行了广泛研究。物理模拟一般通过指定的刚性或塑性材料在力的作用下发生构造变形(Dooley et al.,1997,2012; Xiao Yang et al.,2017),更多强调盆地发育过程中形态变化及断裂发育位置及分布的特征(Mitra et al.,2011; Dooley et al.,2012),较难直观地精细刻画断裂发育过程,并且对不同演化阶段断裂强度无法很好地表征。常用的数值模拟方法包括连续介质法(有限元、有限差分等)和非连续介质法(离散元)(Finch et al.,2004; Wang Hui et al.,2017),相较物理模拟,数值模拟不受场地限制,实验重复性高,边界条件及材料的相关参数设置更为方便,因此近几年来在构造地质学研究中得到广泛应用(Sarfarazi et al.,2014; 周易等,2019; Li Jianghai et al.,2020; 吴航等,2020;徐雯峤等,2020)。
-
前人利用有限元数值模拟手段揭示走滑拉分盆地演化特征做了部分研究(Gölke et al.,1994; Bertoluzza et al.,1997; Petrunin et al.,2008; Li Qingsong et al.,2009; Wang Hui et al.,2017),但该方法无法对断裂发育特征和活动强度进行刻画分析。而基于离散元方法数值模拟可以对断裂的扩展方式分析更加直观,弥补上述研究方法的不足(Sarfarazi et al.,2014; Liu Yuan et al.,2018; Lin Zhuyuan et al.,2021)。离散元(discrete element method)方法由Cundall在1971年首先提出(Cundall,1971),与有限元数值模拟方法相比,该方法的优势在于基于断裂力学理论,在明确考虑物质分离的情况下,可以直接观察实验过程中破裂的扩展和聚结(Liu Yuan et al.,2018)。因此,利用离散元方法对走滑断裂发育过程和不同发育时期的强度特征可以更加精细地刻画和分析,这对拉分盆地的形成和演化过程具有重要意义,但目前为止,该方法的应用仍处于探索阶段(Egholm et al.,2007; 刘源等,2019)。
-
鉴于此,本文基于离散元数值模拟软件(PFC2D)对纯走滑拉分盆地中走滑主断层在未叠置(underlapping)、侧接(neutral)及叠置(overlapping)下的三种端元模型进行模拟和对比分析,详细对其断裂发育动态过程、局部接触力分布特征及盆地发育形态变化等进行研究,以期获得拉分盆地中主控走滑断裂发育演化规律方面的新认识。
-
1 方法与模型
-
1.1 离散元模拟基本原理
-
离散元模型方法(DEM)最早由Cundall (1971)应用于模拟半脆性节理岩块系统的破坏,由颗粒动力学方法衍生而来。该方法视地质体为离散单元,颗粒之间允许发生较大相对位移,适用于模拟沉积地层中出现的断层及断层相关褶皱等脆性变形的非连续力学行为的研究(周易等,2019;李长圣,2019)。本文基于离散元模拟软件PFC2D(particle flow code)开展实验,它允许离散颗粒产生位移和旋转,随着计算过程可以自动识别新的接触。建模中的所有颗粒运动符合牛顿运动学方程(Dean et al.,2015; Mao Zhe et al.,2022)。颗粒的力学性质由颗粒的法向刚度、切向刚度及摩擦系数等参数决定。通过设置键合参数可以将相邻颗粒键合在一起形成颗粒组合,在颗粒组合中,应力通过颗粒键传递(图1a)。当法向(剪切)接触力或力矩超过黏结的拉伸(剪切)强度极限时,它们将消失,并形成拉伸(剪切)断裂(图1b)。新形成的裂缝长度等于两颗粒接触的最小直径,裂缝产状由连通颗粒的相对位置和运动方向决定。
-
本研究采用平行黏结模型,接触黏结可视作一组弹簧(黏结点),法向刚度与切向刚度保持为常数,均匀地分布在接触面和中心接触点,在每个黏结点处有指定的抗拉、抗剪强度。
-
法向刚度和切向刚度对线性黏结模型作出了定义,提供了接触力和位移之间的线性关系。法向接触力与法向位移的关系为:
-
式中,kn表示法向刚度,Fn表示法向力大小,Unni表示颗粒之间的重叠量,取法向力与法向位移之间的割线刚度。切向接触力增量与切向位移增量之间的关系为:
-
式中,ks表示切向刚度,取切向力增量与切向位移增量之间的切线刚度。
-
这些弹簧与线性元件弹簧平行。在平行键产生后,在接触处发生的相对运动,使黏结材料内部产生力和力矩。这种力和力矩作用于两个接触块上,与胶结材料在键周围的最大正应力与剪应力有关。如果这些应力超过其相应的黏结强度,平行黏结断裂,则该处的黏结及其伴随的力、力矩和刚度都会去除。当平行黏结模型断坏后,该模型会退化为线性模型。线性平行黏结模型包括两种接触界面:第一种是无限小的线弹性界面,这种界面不可以承受张力,可以承受摩擦力,只能传递力;第二种是有具体尺寸的线弹性黏结界面,可以传递力和力矩,该模型叫平行黏结。当它黏结的时候,能抵抗扭矩并且表现为线弹性,直到力超过了强度极限,黏结模型被断坏。当它不黏结的时候,无法传递荷载(Itasca,2014)。
-
图1 颗粒接触关系(修改自Dean et al.,2015; Mao Zhe et al.,2022)
-
Fig.1 Particle contact relationship (modified after Dean et al., 2015; Mao Zhe et al., 2022)
-
(a)—接触键,法向应力和切向应力可以通过连通的颗粒组合进行传递;(b)—键的破坏,裂隙产状受连通颗粒的相对位置和运动方向控制
-
(a) —contact bond, normal stress and tangential stress can be transferred via connected particle assemblage; (b) —bond break, fracture occurrences are controlled by the relative position and movement direction of connected particles
-
1.2 数值模型的建立
-
利用PFC2D软件建立本次研究的数值模型(图2a),文中设置的模型长×宽为30 cm×20 cm,并采用光滑节理模型SJM(smooth joint model)来模拟拉分盆地中的走滑断层,模型内部颗粒在两侧墙体在一定运动速率下与断层发育相互作用形成破裂。与光滑节理两侧颗粒的黏结被光滑节理接触取代,生成一系列圆形颗粒间的微尺度滑移面,构成宏观节理,如图2b所示。相邻颗粒可以沿着节理面发生平滑的相对滑动,在接触处,生成一个与宏观关节对齐的新的键合模型,接触粒子可以重叠并通过彼此(Pierce et al.,2007),不会受到颗粒接触方位的影响。Pierce et al.(2007)首先在PFC中使用SJM来模拟岩石节理或岩石边界的剪切行为。通过SJM可以形成宏观滑动面,将删除与预定义滑动面相交的触点处的黏结,并为滑动面方向指定一个新的SJM(Zhou Jian et al.,2019)。在纯走滑模式下,前人的研究主要根据主断层几何学排列方式来展开分析(Dooley et al.,2012; van Wijk et al.,2017)(图2c),本文重点基于45°未重叠(underlapping)(图2c1)、90°侧接(neutral)(图2c2) 和135°叠置(overlapping)(图2c3)情况下利用离散元数值模拟方法(PFC2D)模拟走滑拉分盆地断裂发育过程。
-
为了更好地表达脆性地层破裂效果,观察走滑拉分盆地发育过程中断裂的发育过程,需更为直观、清晰地观测到数值模型中颗粒之间接触键的破坏形态、规模及规律等。而数值建模中,参数的调整与实际构造地质条件的匹配性还存在许多问题(Liu Zhina and Koyi,2013),因此,该模型在综合前人相关研究(Liu Yuan et al.,2018)并结合物理模拟中脆性材料的力学参数等,通过对杨氏变形模量、切向刚度、法向刚度三组主要参数的修正,进一步确定本文研究对象的离散元数值模拟的主要参数数值。
-
通过调整走滑主断层在45°未叠置(underlapping)模型的不同参数,分析发现模型结果的变形效果存在明显差异(图3)。通过对比15组不同参数下模型的变形结果,不难发现杨氏变形模量在1×108~1×109 Pa、法向刚度和切向刚度均为1×107 N/m下的模型结果更接近前人的物理模拟实验(Dooley et al.,2012; Wang Hui et al.,2017),并可清晰地观测到模型运动过程中破裂发育的规模与规律,与实际地质演化特征也更为相似。因次,基于前人设置的相关参数,并对比多组参数的调整后的模型变形结果,本文拟进行的走滑拉分盆地中断裂发育规律的二维离散元数值模拟模型参数如表1所示。
-
图2 数值模型的设置
-
Fig.2 The set up of numerical model
-
(a)—数值模型;(b)—光滑关节模型示意图(据Itasca,2014);(c)—纯走滑拉分盆地断层端元模型
-
(a) —numerical model; (b) —schematic diagram of smooth joint model (after Itasca, 2014) ; (c) —fault end-member model of pure strike-slip pull-apart basin
-
图3 不同参数设置下45°未叠置(underlapping)模型发育结果
-
Fig.3 Model result of 45° underlapping releasing bend under different conditions
-
2 模拟结果
-
针对上述的三种模型的模拟结果展开详细论述,我们通过设置固定的运行步数从而观察走滑拉分过程断裂的发育情况。其中图4中的1a~1d为走滑拉分模型断裂的演化过程,是通过PFC2D软件自动识别模型内部颗粒之间黏结关系发生破坏使得颗粒与颗粒之间失去接触,进一步形成破裂以及破裂块体。图4中的2a~2d以及图4中的3a~3d则分别表示拉伸区域分布及颗粒接触力分布,可作为识别走滑运动中断裂发育活动强度区域及主要拉伸位置。图4阶段a~阶段d是对走滑过程中不同阶段断裂发育情况作出的解释。
-
2.1 未叠置走滑断裂发育特征
-
图4展示了在右旋纯走滑45°未叠置下断层发育过程。初始阶段(位移量0.0613),两条边界断裂首先发育于断层端点(图4阶段a),并有着向对盘断层扩展的趋势,发育的断裂与主断层夹角呈35°~55°。初始拉伸区域集中在连接区内,根据接触力分布特征,该阶段主断层端点处较为活跃强烈。前人针对走滑拉分盆地的数值模拟研究也揭示,断层端点处是盆内与盆外变化过渡最为显著的地方(Wang Hui et al.,2017)。随着走滑位移量的增加(0.3627),在图4阶段b中可以观察到在走滑主断层端点新发育一条贯穿断层,与断层夹角为42°±3°,贯穿断层上同时发育有新的断裂,它们之间呈雁列式排布,与贯穿断层之间夹角约为45°,发育于贯穿断层两侧的断裂具备对称性(图4阶段b)。该阶段仍在主断层处及叠置区内发育的断裂活动响应强烈。图4阶段c中初始边界断裂之间的距离被进一步拉大(0.5934),纺锤型拉分盆地已初具规模(图4阶段c)。由于模型叠置区内部颗粒之间失去接触产生空白区,空白区可指示拉分盆地强沉降区域。阶段c在叠置区外部仍有断层发育,拉分盆地有进一步扩大的趋势。图4阶段d中盆内走滑断层两盘发育的断裂仍随着走滑位移量的增加持续活动,纺锤型盆地格局已基本形成(位移量1.5079)。
-
图4 45°未叠置(underlapping)走滑拉分盆地模型断裂演化过程
-
Fig.4 Fault evolution process of 45° underlapping model of strike-slip pull-apart basin
-
1 a~1d—走滑模拟结果;2a~2d—接触力分布;3a~3d—拉伸域分布;4a~4d—断裂发育过程解释
-
1a~1d—the simulation results of strike-slip; 2a~2d—contact force distribution; 3a~3d—tensile area distribution; 4a~4d—the interpretation of fault evolution progress
-
2.2 侧接走滑断裂发育特征
-
图5展示了在右旋纯走滑90°侧接(neutral)下断层发育过程。同样地,在初始阶段a(走滑位移量0.0489),断裂首先从主断层端点处向对盘发育,其中密集接触力位置分布集中在主断层端点处(图5阶段a)。阶段b中侧接位置的断裂相互连接对盘主断层端点,且同时在释压弯曲外部发育有新的边界断裂(图5阶段b)。这几条断裂规模较大,且角度一致(约45°),对拉分盆地演化雏形具有一定响应。随着走滑位移量的增加(0.5676),新断裂的发育使得“Z”型拉分盆地格局初具规模(图5阶段c),且其中拉伸区域逐渐靠近在新生断裂附近。断裂活跃位置与拉伸区域的变化响应明显,控制盆地格局的边界断裂部位接触力更为密集。阶段d(1.1529),断裂发育规模进一步增大,致使拉分盆地范围进一步扩大(图5d),“Z”型拉分盆地格局明显。
-
2.3 叠置走滑断裂发育特征
-
图6为135°叠置(overlapping)走滑模型下拉分盆地内部断裂发育过程。断裂发育规律和前面45°未叠置及90°侧接模型基本一致,初始断裂由两盘主断层端点发育,并向对盘发育初始边界断裂,与断层夹角呈65°±5°,拉伸区域集中在主断层叠置部位(图6阶段a)。阶段b,我们观察到在初始断裂的内部及外侧均发育了新的断裂,呈一定对称性,这些新发育的断裂与主断层的夹角略小于初始断裂与断层的夹角,呈70°±5°(图6阶段b)。叠置区内外接触力分布密集部位在新断层发育位置,拉伸区域也逐渐向外部新发育断层位置集中(图6阶段b)。随着走滑位移量的增加,内外两侧持续有新的断裂发育,它们与断层的夹角呈45°~75°,且有向内测断裂收敛的趋势特征,菱型状格局基本成形(图6阶段c)。阶段d则是在之前发育基础上,盆地格局进一步扩张(图6阶段d)。
-
图5 90°侧接(neutral)走滑拉分盆地模型断裂演化过程
-
Fig.5 Fault evolution process of 90°neutral model of strike-slip pull-apart basin
-
1 a~1d—走滑模拟结果;2a~2d—接触力分布;3a~3d—拉伸域分布;4a~4d—断裂发育过程解释
-
1a~1d—the simulation results of strike-slip; 2a~2d—contact force distribution; 3a~3d—tensile area distribution; 4a~4d—the interpretation of fault evolution progress
-
3 讨论
-
在主断层宽度保持一定的情况下,本文通过调整主断层之间的叠置程度来探讨在走滑拉分运动中断裂发育规律(图7)。从模拟结果看,三种释放端元模型下断裂的发育特征彼此也存在一些差异性。未叠置(underlapping)模型中断裂发育密集且位置集中在释压弯曲内部,盆地发育形态一般为纺锤型(图7a、b)。位于美国加利福尼亚南部的Death Valley拉分盆地(Burchfiel et al.,1966)和位于阿根廷北部安第斯山脉地区的Salinadel Fraille拉分盆地(Dooley et al.,1997)发育形态及断裂分布更接近本文未叠置走滑模型,断裂发育特征为主断层端点处向释压弯曲内部扩展形成贯穿断裂,并形成纺锤型样式拉分盆地。侧接模型中断裂与走滑主断层主要夹角为45°±10°(图7c),断裂发育位置更集中在“Z”型拉分盆地范围内。北非Khanguet Sidi Neji-Gafsa(KSG)盆地最初形成于两个叠置的陡倾Biskra断层和Alima-Orbata断层之间的局部的张扭背景下,Soumaya et al.(2020)提出KSG盆地整体发育格局中断裂及沉积盆地集中于主断层端部及释压弯曲中部,其断裂发育特征与本文90°侧接或过叠置情况下断裂发育时序早期由主断层向释压弯曲内部的过程较为吻合。叠置模型中断裂发育更为分散,覆盖且超出叠置范围,发育菱型样式拉分盆地(图7d、e)。Dead sea(死海)拉分盆地是作为走滑主断层叠置情况下典型代表,前人对其已进行了广泛研究(Basile et al.,1999; Smit et al.,2008),狭长菱型样式的拉分盆地格局与叠置范围外部发育断裂的特征与本文的模拟结果基本一致,且根据Basile et al.(1999)对死海盆地沉降中心的迁移是随着Estern边界断层的活动性向北迁移特征分析,认为沉积盆地的迁移方向与活动断层活动方向具有一致性。该阶段可认为叠置模型下走滑拉分盆地的演化后期,即断裂向释压弯曲外部扩展的阶段。
-
图6 135°叠置(overlapping)走滑拉分盆地模型断裂演化过程
-
Fig.6 Fault evolution process of 135° overlapping model of strike-slip pull-apart basin
-
1 a~1d—走滑模拟结果;2a~2d—接触力分布;3a~3d—拉伸域分布;4a~4d—断裂发育过程解释
-
1a~1d—the simulation results of strike-slip; 2a~2d—contact force distribution; 3a~3d—tensile area distribution; 4a~4d—the interpretation of fault evolution progress
-
不难发现拉分盆地中断裂的发育在形态以及规模上虽不尽相同,但整体发育规律却具有一致性(图8)。走滑拉分模型中初始断裂均由两盘端点处发育并向对盘收敛的趋势发育(Corti et al.,2020),且随着主断层叠置范围越大,发育的断裂与主走滑断层之间角度越大,断裂分布范围随着主断层叠置范围增加而增大。从拉分盆地中断裂发育空间时序特征来看,模拟结果均显示,走滑拉分盆地中断裂的发育首先由主断层端点处向释压弯曲内部扩展,再向释压弯曲外部发育的过程。这一断层扩展演化规律在前人研究中则较少系统提及,受研究方法的限制,仅有少数研究记录了此演化过程的某一阶段。例如,van Wijk et al.(2017)提到在主断层端点处的断裂扩展和应力场的区域进一步控制着拉分盆地的打开,Bertoluzza et al.(1997)在对张扭走滑有限元模拟研究中发现拉伸区域一般由主断层处向释压弯曲内部迁移的规律特征。断裂由主断层端点处向释压弯曲内部扩展的过程在Rahe et al.(1998)针对40°未叠置的物理模拟实验中有所体现,其断裂发育位置及样式与本文未叠置端元模型结果相近(图4);Mitra et al.(2011)也在物理模拟实验中观察到释压弯曲外部断裂发育的特征,但并未做过多解释。总之,通过一些参数的调整及数值模拟软件的应用,走滑拉分模型中断裂新的发育扩展规律被发现,即断裂发育由主断层端点处向释压弯曲内部发育,再向外部扩展发育的一般特征。
-
图7 走滑拉分盆地数值模拟模型断裂扩展及盆地发育过程比较
-
Fig.7 Comparison of fault propagation and basin development process in numerical simulation model of strike-slip pull-apart basin
-
(a)—30°未叠置;(b)—45°未叠置;(c)—90°侧接;(d)—135°叠置;(e)—150°叠置
-
(a) —30° underlapping; (b) —45° underlapping; (c) —90° netural; (d) —135° overlapping; (e) —150° overlapping
-
图8 三种走滑拉分断层端元模型断裂发育结果对比(物理模拟结果来自于Dooley et al.,2012)
-
Fig.8 Comparison of fault development results of three endmember models of strike-slip pull-apart (the modelling results after Dooley et al., 2012)
-
沉降中心的迁移与盆地的伸展作用密切相关,且沉降中心主要受活动强烈的断裂控制(林玉祥等,2016)。PFC2D软件中一些应用参数(伸展接触及接触分布力等)的调用,证实了走滑断裂的活动位置对拉伸区域起到重要控制作用。初始断裂由主断层端点处向释压弯曲内部扩展,走滑沉积中心会形成在走滑主断层端部或邻近部位(van Wijk et al.,2017);当走滑主断层端部周围的应力场不相互作用时,断层活动向释压弯曲部位扩展,盆地沉降也随之迁移,正如Bertoluzza et al.(1997)在对张扭走滑有限元模拟研究中发现,拉伸区域一般由主断层处向释压弯曲内部迁移的规律特征。以上,拉分盆地沉积中心的迁移与本文模拟结果中断裂的发育规律或具有一定耦合性。
-
前人认为拉分盆地不同样式形态代表不同演化阶段,Liu Yuan et al.(2018)认为一定程度的走滑位移距离下,纺锤型拉分盆地也会演化成为菱型样式盆地,这一结论与van Wijk et al. (2017)认为菱型样式盆地比纺锤型拉分盆地更为成熟的观点接近。但在本文模拟结果中,在不同叠置程度下的主断层经历同样的走滑拉分量后形成了不同样式的拉分盆地。因此,不能单一根据拉分盆地样式去判断盆地演化阶段。通过本文模拟实验得到的走滑拉分模型中断裂发育的不同阶段特征,再根据断裂分布范围及发育规模等对拉分盆地演化阶段及沉降中心位置的分析可能具有更重要的意义。
-
4 结论
-
本文利用离散元数值模拟软件PFC2D模拟了走滑主断层在未叠置(underlapping)、侧接(neutral)以及叠置(overlapping)三种情况下断裂发育过程,得到了以下认识:
-
(1)走滑主断层在不同叠置情况下拉分盆地形态存在差异性,且拉分盆地面积随着主断层叠置范围的增加而增大。主断层未叠置情况下,断裂发育密集且位置集中在释压弯曲内部,盆地发育形态一般为纺锤型;主断层侧接情况下,断裂发育位置更集中在“Z”型拉分盆地范围内;主断层叠置情况下断裂发育更为分散,覆盖且超出叠置范围,发育菱型样式拉分盆地。
-
(2) 走滑主断层在不同叠置情况下断裂扩展规律具有统一性:断裂发育经历了由主断层端点处向释压弯曲内部扩展,再向释压弯曲外部扩展发育的过程。
-
(3) 断裂的发育位置及强度控制着拉分盆地伸展区域,根据断裂分布范围及发育特征判断拉分盆地所处演化阶段及沉降中心位置具有一定指导意义。
-
参考文献
-
Basile C, Brun J P. 1999. Transtensional faulting patterns ranging from pull-apart basins to transform continental margins: An experimental investigation. Journal of Structural Geology, 21(1): 23~37.
-
Bertoluzza L, Perotti C R. 1997. A finite-element model of the stress field in strike-slip basins: Implications for the Permian tectonics of the Southern Alps (Italy). Tectonophysics, 280(1~2): 185~197.
-
Burchfiel B C, Stewart J H. 1966. “Pull-apart” origin of the central segment of Death Valley, California. Geological Society of America Bulletin, 77(4): 439~442.
-
Corti G, Nencini R, Skyttä P. 2020. Modelling the influence of pre-existing brittle fabrics on the development and architecture pull-apart basins. Journal of Structural Geology, 131: 103937.
-
Cundall P A, Strack O D L. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(1): 47~65.
-
Cundall P A. 1971. A computer model for simulating progressive large scale movements in blocky rock systems. Proceedings of the International Symposium Rock Fracture, 8: 129~136.
-
Dean S, Morgan J, Brandenburg J P. 2015. Influence of mobile shale on thrust faults: Insights from discrete element simulations influence of mobile shale on thrust faults. AAPG Bulletin, 99(3): 403~432.
-
Dooley T, Mcclay K R. 1997. Analog modeling of pull-apart basins. AAPG Bulletin, 81(11): 1804~1826.
-
Dooley T P, Schreurs G. 2012. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574: 1~71.
-
Egholm D L, Sandiford M, Clausen O R, Nielsen S B. 2007. A new strategy for discrete element numerical models: 2. Sandbox applications. Journal of Geophysical Research: Solid Earth, 112(B5): B05204.
-
Finch E, Hardy S, Gawthorpe R. 2004. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4): 467~488.
-
Gölke M, Cloetingh S, Fuchs K. 1994. Finite-element modeling of pull-apart basin formation. Tectonophysics, 240(1-4): 45~57.
-
Huang Lei, Liu Chiyang, Kusky T M. 2015. Cenozoic evolution of the Tan-Lu fault zone (East China)-constraints from seismic data. Gondwana Research, 28(3): 1079~1095.
-
Huang Lei, Liu Chiyang. 2017. Three types of flower structures in a divergent-wrench fault zone. Journal of Geophysical Research: Solid Earth, 122(12): 10478~10497.
-
Itasca Consulting Group, Inc. 2014. ParticleFlow Code, Ver. 5. 0. Minneapolis: Itasca.
-
Li Changsheng. 2019. Quantitative analysis and simulation of structural deformation in the fold and thrust belt based on discrete element method. Doctoral dissertation of Nanjing University (in Chinese with English abstract).
-
Li Jianghai, ZhangYu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).
-
Li Qingsong, Liu Mian, Zhang Huai. 2009. A3-D viscoelastoplastic model for simulating long-term slip on non-planar faults. Geophysical Journal International, 176(1): 293~306.
-
Lin Yuxiang, Zhao Chengjin, Shu Yong, Zheng Huiming, Zhu Chuanzhen, Wu Yuchen, Li Jia. 2016. Migration characteristics and geodynamic mechanism of depocenter and subsiding center of Dongying sag. Journal of Shandong University of Science and Technology (Natural Science), 36(6): 1~9 (in Chinese with English abstract).
-
Lin Zhuyuan, Wang Yishu, Tang Chaosheng, Cheng Qing, Zeng Hao, Liu Chun, Shi Bin. 2021. Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions. Computers and Geotechnics, 130: 103931.
-
Liu Yuan, Konietzky H. 2018. Particle-based modeling of pull-apart basin development. Tectonics, 37(1): 343~358 (in Chinese with English abstract).
-
Liu Yuan, Konietzky H. 2019. Particle-based modeling of crack propagation during pull-apart basin development. Journal of Geomechanics, 25(5): 840~852.
-
Liu Zhina, Koyi H A. 2013. The impact of a weak horizon on kinematics and internal deformation of a failure mass using discrete element method. Tectonophysics, 586: 95~111.
-
Mann P, Hempton M R, Bradley D C, Burke K. 1983. Development of pull-apart basins. The Journal of Geology, 91(5): 529~554.
-
Mao Zhe, Zeng Lianbo, Liu Guangdi, Liu Guoping, He Tian, Dong Shanqun, Lyu Wenya, Ostadhassan M. 2022. Controls of fault-bend fold on natural fractures: Insight from discrete element simulation and outcrops in the southern margin of the Junggar basin, western China. Marine and Petroleum Geology, 138: 105541.
-
Mitra S, Paul D. 2011. Structural geometry and evolution of releasing and restraining bends: Insights from laser—scanned experimental models. AAPG Bulletin, 95(7): 1147~1180.
-
Petrunin A G, Sobolev S V. 2008. Three-dimensional numerical models of the evolution of pull-apart basins. Physics of the Earth and Planetary Interiors, 171(1-4): 387~399.
-
Pierce M, Cundall P, Potyondy D, Mas Ivars D. 2007. A synthetic rock mass model for jointed rock. In: Paper Presented at the Rock Mechanics: Meeting Society's Challenges and Demands, 1st Canada—Vancouver: U. S. Rock Mechanics Symposium.
-
Rahe B, David A F, Alan P M. 1998. Physical analog modeling of pull-apart basin evolution. Tectonophysics, 285(1-2): 21~40.
-
Ren Jian, Guan Dayong, Chen Xingpeng, Liu Pengbo. 2017. Analogue modeling of structural deformation in releasing stepovers of strike-slip faults and its significance. Geotectonica et Metallogenia, 41(3): 455~465 (in Chinese with English abstract).
-
Sarfarazi V, Ghazvinian A, Schubert W, Blumel M, Nejati H R. 2014. Numerical simulation of the process of fracture of echelon rock joints. Rock Mechanics and Rock Engineering, 47(4): 1355~1371.
-
Smit J, Brun J P, Cloetingh S, Ben Avraham Z. 2008. Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea basin. Tectonics, 27(6): 6018.
-
Soumaya A, Kadri A, Ayed N B, Kim Y S, Dooley T P, Rajabi M, Braham A. 2020. Deformation styles related to intraplate strike-slip fault systems of the Saharan-Tunisian southern Atlas (North Africa): New kinematic models. Journal of Structural Geology, 140: 104175.
-
van Wijk J, Axen G, Abera R. 2017. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California. Tectonophysics, 719: 37~50.
-
Wang Hui, Liu Mian, Ye Jiyang, Cao Jianling, Jing Yan. 2017. Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results. Tectonophysics, 721: 211~226.
-
Wang Qian, Li Sanzhong, Guo Lingli, Suo Yanhui, Dai Liming. 2017. Analogue modelling and mechanism of tectonic inversion of the Xihu Sag, East China Sea Shelf basin. Journal of Asian Earth Sciences, 139: 129~141.
-
Wu Hang, Qiu Nansheng, Feng Qianqian, Chang Jian, Jiang Kai, Zhang Yinglin, Wu Shixiang. 2020. Reconstruction of tectonic uplift process with thermo-kinematic method. Chinese Journal of Geophysics, 63(6): 2329~2344 (in Chinese with English abstract).
-
Wu J E, McClay K, Whitehouse P, Dooley T. 2009. 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology, 26(8): 1608~1623.
-
Xiao Yang, Wu Guanghui, Lei Yongliang, Chen Tingting. 2017. Analogue modeling of through-going process and development pattern of strike-slip fault zone, Petroleum Exploration and Development, 44(3): 368~376.
-
Xu Wenqiao, Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng, Yang Gengxiong, Li Gang. 2020. Numerical simulation of different subsalt structural features and their evolution in the eastern and western segments of the Kuqa depression. Acta Geological Sinica, 94(6): 1740~1751 (in Chinese with English abstract).
-
Zhou Jian, Lan Hengxing, Zhang Luqing, Yang Duoxing, Song Jie, Wang Song. 2019. Novel grain based model for simulation of brittle failure of Alxa porphyritic granite. Engineering Geology, 251: 100~114.
-
Zhou Yi, Yu Fusheng, Liu Zhina. 2019. Superimposed extensional deformation of different layers: Insights from two dimensional discrete element modeling. Geotectonica et Metallogenia, 43(2): 213~225 (in Chinese with English abstract).
-
Zhou Yongsheng, Li Jianguo, Wang Shengzu. 2003. Physical experimentas on strike-slip fault and pull-apart basin. Journal of Geomechanics, (1): 1~13 (in Chinese with English abstract).
-
李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.
-
李长圣. 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟. 南京大学博士学位论文.
-
林玉祥, 赵承锦, 舒永, 郑慧铭, 朱传真, 吴玉琛, 李佳. 2016. 东营凹陷沉积—沉降中心迁移特征与机制研究. 山东科技大学学报(自然科学版), 35(6): 1~9.
-
刘源, Konietzky H. 2019. 基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究. 地质力学学报, 25(5): 840~852.
-
任健, 官大勇, 陈兴鹏, 刘朋波. 2017. 走滑断裂叠置拉张区构造变形的物理模拟及启示. 大地构造与成矿学, 41(3): 455~465.
-
吴航, 邱楠生, 冯乾乾, 常健, 姜凯, 张应鳞, 吴世祥. 2020. 利用热运动学方法恢复构造隆升过程的探索. 地球物理学报, 63(6): 2329~2344.
-
徐雯峤, 汪伟, 尹宏伟, 贾东, 李长圣, 杨庚兄, 李刚. 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740~1751.
-
周易, 于福生, 刘志娜. 2019. 分层伸展叠加变形二维离散元模拟. 大地构造与成矿学, 43(2): 213~225.
-
周永胜, 李建国, 王绳祖. 2003. 用物理模拟实验研究走滑断裂和拉分盆地. 地质力学学报, (1): 1~13.
-
摘要
走滑断裂带的发育演化过程与拉分盆地的形成演化有着密切的关系,主断层不同叠置范围下所发育的次级断裂及拉分盆地具不同的规模及形态。前人多利用物理模拟对走滑拉分盆地演化过程及断裂发育特征进行研究,缺乏对盆地演化过程中断裂变形特征分析及主断层不同叠置程度下断裂演变规律的探讨。本文基于离散元计算软件PFC2D,模拟了拉分盆地演化过程中走滑主断层在未叠置(underlapping)、侧接(neutral)、叠置(overlapping)三种情况下断裂的几何形态变化特征及其平面演变规律。结果表明拉分盆地断裂发育经历了从走滑主断层端点处向释压弯曲内部发育、再向外部扩展的过程,且无论走滑主断层叠置程度如何,该规律均有较好体现。此外,断裂发育位置与拉伸区域叠合度高,表明断裂的发育规律对拉分盆地的沉降中心迁移或具有重要指示意义。
Abstract
The development and evolution of strike-slip fault zone is closely related to the formation and evolution of pull-apart basin. The secondary faults and pull-apart basins developed under different overlapping ranges of the main faults have different scales and shapes. Previous studies have mostly used physical simulation to study the evolution process and fault development characteristics of strike slip pull-apart basins. There is a lack of analysis of fault deformation characteristics during the evolution of basins and the discussion on the law of fault evolution under different degrees of overlap of main faults. Based on the discrete element simulation software PFC2D, this paper simulates the development and plane evolution law of faults in the pull-apart basin under three conditions: underlapping, neutral and overlaping. The results show that the fault development of the pull-apart basin experienced a process that faults development from the ends of the strike-slip main faults to the internal releasing bend and then expend to the exterior ,and regardless of the degree of superposition of strike-slip main faults, the law is well reflected. In addition, the high degree of overlap between the fault development position and the stretching area indicates that the development law of the fault is of great significance to the migration of the depocenter of the pull-apart basin.