en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱坤贺,女,1996年生。博士研究生,地质资源与地质工程专业。E-mail:1293682238@qq.com。

通讯作者:

王凯兴,男,1985年生。副教授,矿产普查与勘探专业。E-mail:xy2gmo02@ecut.edu.cn。

参考文献
Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimics Acta, 57: 683~684.
参考文献
Bodnar R J, Reynolds T J, Kuehn C A. 1985. Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology, 2: 73~97.
参考文献
Chen Luming. 1990. Discussion on the origin of uranium deposit NO. 504. Uranium Geology, 6(3): 135~145 (in Chinese with English abstract).
参考文献
Chen Nengsong, Sun Min, Wang Qinyan, Zhao Guochun, Chen Qiang, Shu Guiming. 2007. Electron microprobe chemical age of monazite in Kunzhong belt of East Kunlun orogenic belt: Records of multi-stage tectonic metamorphic events. Science Bulletin, (11): 1297~1306 (in Chinese with English abstract).
参考文献
Chen Nengsong, Sun Min, Wang Qinyan, Zhang Kexin, Wan Yusheng, Chen Haihong. 2008. U-Pb dating of zircon from the Central Zone of the East Kunlun orogen and its implications for tectonic evolution. Chinese Science: Earth Science English Edition, 51(7): 929~938.
参考文献
Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao, Zhang Hui. 2007. Diagnostic fuid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9): 2085~2108 (in Chinese with English abstract).
参考文献
Chi Guoxiang, Lu Huanzhang. 2008. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrologica Sinica, 24(9): 1945~1953 (in Chinese with English abstract).
参考文献
Chi Guoxiang, Larryn W D, Lu Huanzhang, Lai Jianqing, Chu Haixia. 2021. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals, 11(7): 1~23.
参考文献
Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.
参考文献
Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Zhao Yang, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.
参考文献
Du Yuliang, Jia Qunzi, Han Shengfu. 2012. Mesozoic tectono-magmatic-mineralization and coppergold polymetallic ore prospecting research in East Kunlun metallogenic belt in Qinghai. Northwestern Geology, 45(4): 69~75 (in Chinese with English abstract).
参考文献
Fayek M, Horita J, Ripley E M. 2011. The oxygen isotopic composition of uranium minerals: A review. Ore Geology Reviews, 41(1): 1~21.
参考文献
Feng Chengyou, Zhang Dequan, Wang Fuchun, She Hongquan, Li Daxin, Wang Yan. 2004. Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geoscientica Sinica, 25(4): 415~422 (in Chinese with English abstract).
参考文献
Friedman I, O'Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry, 12.
参考文献
Gao Yongbao, Li Kan, Qian Bing, Li Wenyuan, He Shuyue, Zhang Damin, Wang Shengming. 2018. The metallogenic chronology of kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re-Os and phlogopite Ar-Ar ages. Geotectonics and Metallogeny, 42(1): 96~107 (in Chinese with English abstract).
参考文献
Guo Xianzheng, Wang Hongjun, Xu Rongke, Zhang Youye, Jia Qunzi, Chen Xin, Cai Pengjie. 2017. Zircon U-Pb dating of eclogite from Tieshiguan, North Qaidam and its geological significance. Bulletin of Mineral and Rock Geochemistry, 36(6): 995~1006 (in Chinese with English abstract).
参考文献
He Shuyue, Li Yulong, Chen Jing, Xu Qinglin, Wang Yadong, Bai Zonghai, Shu Shulan. 2017. Characteristics of ore-forming fluid and metallogenic mechanism of Halongxiuma porphyry molybdenum deposit in the eastern part of East Kunlun. Mineralogy and Petrology, 37(3): 22~30 (in Chinese with English abstract).
参考文献
Hoefs J. 2015. Stable isotope geochemistry. Chemical Geology, 211: 47~69.
参考文献
Hong Shujiong, Yuan Wanming, Yuan Erjun. 2020. Characteristics of the fluid inclusion in hydrothermal deposit of the East Kunlun. China Mining Magazine, 29(S2): 241~244 (in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesisin South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.
参考文献
Hu Ruizhong, Burnard P G, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Zhao Junhong. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86~95.
参考文献
Lei Yongliang, Dai Jiawen, Bai Qiang, Wang Kaixing, Sun Liqiang, Liu Xiaodong, Yu Chida, He Shiwei. 2021. Genesis and implications of peraluminous A-type rhyolite in the Haidewula area, East Kunlun orogen. Acta Petrologica Sinica, 37(7): 1964~1982 (in Chinese with English abstract).
参考文献
Li Ruibao, Pei Xianzhi, Li Zuochen, Chen Youxin, Liu Chengjun, Pei Lei, Xu Tong, Liu Zhanqing, We Bo. 2015. Geological and geochemical features of delisitannan basalts and their petrogenesis in Buqingshan Tectonic Mélange Belt, southern margin of East Kunlun orogen. Earth Science, 40(7): 1148~1162 (in Chinese with English abstract).
参考文献
Li Wenliang, Xia Rui, Qing Min, Li Chao, Zhang Dong, Sun Hao, Lu Yingchuan, Liu Peng, Zhou Aobo. 2014. Re-Os molybdenite ages of the Shenduolong skarn Mo-Pb-Zn deposit and geodynamic framework, Qinghai Province. Rock and Mineral Analysis, 33(6): 900~907(in Chinese with English abstract).
参考文献
Li Yanqiang, Duan Jianhua, Dai Jiawen, Wang Kaixing. 2021. Geochemical characteristics of host rocks and uranium mineralization in Haidewula area, Qinghai. Uranium Geology, 37(4): 643~652 (in Chinese with English abstract).
参考文献
Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead-zinc ore deposit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).
参考文献
Liu Bin, Duan Guangxian. 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25wt%) and their applications. Acta Mineralogical Sinica, 7(4): 345~352 (in Chinese with English abstract).
参考文献
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~487 (in Chinese with English abstract).
参考文献
Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 3: 403~414(in Chinese with English abstract).
参考文献
Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the Luz area, Guanajuato Mining District, Mexico. Ore Geology Reviews, 89: 143~170.
参考文献
Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineralogical Society of American, 12.
参考文献
Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Zhiqin, Yang Jingsui. 2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, 22(4): 1037~1057.
参考文献
Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, 12~17.
参考文献
Shao Jielian. 1988. Gold Prospecting Mineralogy. Wuhan: China University of Geosciences Press, 1~158 (in Chinese with English abstract).
参考文献
Simmons S F, White N C, John D A. 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 485~522.
参考文献
Sun Liqiang, Wang Kaixing, Dai Jiawen, Liu Xiaodong, Liu Wenheng, Yu Chida, Lei Yongliang, Chen Yaoxin, Lin Junjie. 2022. Petrogenesis of the Haidewula diabase, Eastern Kunlun orogenic belt, and its geological implication. Earth Science, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html (in Chinese with English abstract).
参考文献
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69: 843~883.
参考文献
Taylor H P J, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31: 407~430.
参考文献
Timofeev A, Migdisov A A, Williams-Jones A E, Roback R, Nelson A T, Xu Hongwu. 2018. Uranium transport in acidic brines under reducing conditions. Nature Communications, 9: 1469~1476.
参考文献
Xiong Fuhao, Ma Changqian, Zhang Jiayang, Liu Bin, Jiang Hongan. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogeny, northern Tibetan Plateau. Journal of the Geological Society, 171: 847~863.
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).
参考文献
Yang Zenghai, Wang Jianping, Liu Jiajun, Wang Shouguang, Wang Qingyi, Kang Shuguang. 2012. Characteristics and its geological significance of fluid inclusions of the Wurinitu W-Mo deposit in Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268~1278 (in Chinese with English abstract).
参考文献
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.
参考文献
Yu Miao, Feng Chengyou, Liu Hongchuan, Li Dingwu, Zhao Yiming, Li Daxin, Liu Jiannan, Wang Hui, Zhang Minghui. 2015. 40Ar-39Ar geochronology of the Galingelarge skarn iron deposit in Qinghai Province and geological significance. Journal of Geology, 89(3): 510~521 (in Chinese with English abstract).
参考文献
Zhang Jindai, Li Ziying, Cai Yuqi, Guo Qingyin, Li Youliang, Han Changqing. 2012. The main advance and achievements in the potential evaluation of uranium resource in China. Uranium Geology, 28(6): 321~326 (in Chinese with English abstract).
参考文献
Zhang Ligang. 1989. The Application of the Stable Isotopeto Geology: The Hydrothermal Mineralization of Metal Activation and It's Prospecting. Xi'an: Shaanxi Science and Technology Press, 1~267 (in Chinese with English abstract).
参考文献
Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry. Beijing: Science Press, 1~316 (in Chinese with English abstract).
参考文献
Zhu Kunhe, Dai Jiawen, Wang Kaixing, Liu Xiaodong, Yu Chida, Lei Yongliang, Sun Liqiang, He Shiwei. 2022. Elemental and isotopic characteristics of pitchblende of the Haidewula uranium deposit, East Kunlun orogen and its geological significance. Earth Science, 47(8): 2940~2950 (in Chinese with English abstract).
参考文献
陈露明. 1990. 504铀矿床成因探讨. 铀矿地质, 6(3): 135~145.
参考文献
陈能松, 孙敏, 王勤燕, 赵国春, 陈强, 舒桂明. 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, (11): 1297~1306.
参考文献
陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085~2108.
参考文献
池国祥, 卢焕章. 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945~1953.
参考文献
杜玉良, 贾群子, 韩生福. 2012. 青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究. 西北地质, 45(4): 69~75.
参考文献
丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4): 415~422.
参考文献
高永宝, 李侃, 钱兵, 李文渊, 何书跃, 张大民, 王生明. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束. 大地构造与成矿学, 42(1): 96~107.
参考文献
国显正, 王红军, 许荣科, 郑有业, 贾群子, 陈鑫, 蔡鹏捷. 2017. 柴北缘铁石观榴辉岩锆石U-Pb定年及其地质意义. 矿物岩石地球化学通报, 36(6): 995~1006.
参考文献
何书跃, 李玉龙, 陈静, 许庆林, 王亚栋, 白宗海, 舒树兰. 2017. 东昆仑东段哈陇休玛斑岩型钼矿成矿流体特征及成矿机制探讨. 矿物岩石, 37(3): 22~30.
参考文献
洪树炯, 袁万明, 袁二军. 2020. 东昆仑热液矿床的流体包裹体特征. 中国矿业, 29(S2): 241~244.
参考文献
雷勇亮, 戴佳文, 白强, 王凯兴, 孙立强, 刘晓东, 余驰达, 何世伟. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7): 1964~1982.
参考文献
李瑞保, 裴先治, 李佐臣, 陈有炘, 刘成军, 裴磊, 徐通, 刘战庆, 魏博. 2015. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因. 地球科学, 40(7): 1148~1162.
参考文献
李文良, 夏锐, 卿敏, 李超, 张栋, 孙昊, 路英川, 刘鹏, 周奥博. 2014. 应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景. 岩矿测试, 33(6): 900~907.
参考文献
李彦强, 段建华, 戴佳文, 王凯兴. 2021. 青海海德乌拉地区火山岩型铀矿含矿主岩地球化学及铀矿化特征研究. 铀矿地质, 37(4): 643~652.
参考文献
李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1847~1866.
参考文献
刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345~352.
参考文献
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~487.
参考文献
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, (3): 403~414.
参考文献
邵洁涟. 1988. 金矿找矿矿物学. 武汉: 中国地质大学出版社, 1~158.
参考文献
孙立强, 王凯兴, 戴佳文, 刘晓东, 刘文恒, 余驰达, 雷勇亮, 陈耀新, 林俊杰. 2022. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html.
参考文献
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.
参考文献
杨增海, 王建平, 刘家军, 王守光, 王清义, 康书光. 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学(中国地质大学学报), 37(6): 1268~1278.
参考文献
于淼, 丰成友, 刘洪川, 李定武, 赵一鸣, 李大新, 刘建楠, 王辉, 张明辉. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义. 地质学报, 89(3): 510~521.
参考文献
张金带, 李子颖, 蔡煜琦, 郭庆银, 李友良, 韩长青. 2012. 全国铀矿资源潜力评价工作进展与主要成果. 铀矿地质, 28(6): 321~326.
参考文献
张理刚. 1989. 稳定同位素在地质科学中的应用: 金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 1~267.
参考文献
郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社, 1~316.
参考文献
朱坤贺, 戴佳文, 王凯兴, 刘晓东, 余驰达, 雷勇亮, 孙立强, 何世伟. 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因. 地球科学, 47(8): 2940~2950.
目录contents

    摘要

    东昆仑造山带海德乌拉铀矿床是近些年西北地区最新探明的与火山岩有关的独立铀矿床,该矿床的发现为东昆仑造山带探寻热液型铀矿床提供了指示意义。本文选择与海德乌拉铀矿成矿期相关的透明矿物(粉红色方解石、紫黑色萤石及石英)作为研究对象,系统地开展C-H-O同位素和流体包裹体研究,查明该矿床成矿流体的来源与性质,并探讨矿床成因。研究结果表明,海德乌拉铀矿床成矿期石英中主要为H2O气液两相包裹体,少见CO2-H2O两相包裹体;在粉红色方解石脉、紫黑色萤石脉中流体包裹体均含H2O气液两相包裹体,在粉红色方解石脉中偶见纯液相包裹体,均未见到纯气相及含固相包裹体。成矿期粉红色方解石、紫黑色萤石及石英中包裹体均一温度范围分别为133~187℃(均值163℃)、127~204℃(均值169℃)、183~287℃(均值219℃),盐度范围分别为1.40%~7.02%NaCleq(均值3.65%NaCleq)、0.53%~3.06%NaCleq(均值1.26%NaCleq)、7.17%~17.26%NaCleq(均值为11.46%NaCleq)。流体包裹体气相成分以H2O为主,另含少量CO2等。C-H-O同位素实验数据表明,流体中δ13CFluid-V-PDB、δDFluid-V-SMOW、δ18OFluid-V-SMOW值的变化范围分别为-1.59‰~-1.00‰、-71‰~-63‰、0.03‰~3.72‰,表明成矿流体并非单一来源,可能为大气降水与岩浆水混合来源。此外,沥青铀矿的沉淀主要是由于流体与围岩的相互反应所引起的物理化学条件变化加上流体沸腾/CO2去气,最终导致了沥青铀矿等成矿物质发生大规模的卸载与沉淀。

    Abstract

    The Haidewula uranium deposit in the East Kunlun orogenic belt is a newly discovered independent uranium deposit related to volcanic rocks in Northwest China. The discovery of the deposit provides an indication for the exploration of hydrothermal uranium deposits in the East Kunlun orogenic belt. in this paper, the transparent minerals (pink calcite, purple black fluorite and quartz) related to the ore-forming period of the deposit are selected as the research objects. A systematic study of the C-H-O isotopes and fluid inclusions are carried out to find out the source and nature of the ore-forming fluid, and to explore the genesis of the deposit. The results show that the quartz of the ore forming period of the Haidewula uranium deposit is mainly composed of H2O gas-liquid two-phase inclusions, with few CO2-H2O two-phase inclusions; fluid inclusions in calcite vein and fluorite vein contain H2O gas-liquid two-phase inclusions. Pure liquid phase inclusions are occasionally seen, but pure gas phase and solid phase inclusions are not seen in calcite veins. The homogenization temperature range of inclusions in calcite, fluorite and quartz during mineralization is from 133℃ to 187℃ (mean 163℃), from 127℃ to 204℃ (mean 169℃), and from 183℃ to 287℃ (mean 219℃) respectively, and the salinity range is from 1.40% NaCleq to 7.02% NaCleq (mean 3.65% NaCleq), from 0.53% NaCleq to 3.06% NaCleq (mean 1.26% NaCleq), from 7.17% NaCleq to 17.26% NaCleq (mean 11.46% NaCleq). The gas phase composition of fluid inclusions is mainly H2O, and a small amount of CO2. The experimental data of C-H-O isotope show that the variation ranges of δ13CFluid-V-PDB, δDFluid-V-SMOW, δ18OFluid-v-smow values are from -1.59‰ to -1.00‰, from -71‰ to -63‰, from 0.03‰ to 3.72‰ respectively, indicating that the ore-forming fluid is not a single source, and may be a mixed source of atmospheric precipitation and magmatic water. In addition, the precipitation of pitchblende is mainly due to the changes in physical and chemical conditions caused by the interaction between fluid and hosted-rock, as well as fluid boiling/CO2 degassing, leading to large-scale unloading and precipitation of the pitchblende and other uranium minerals.

  • 东昆仑造山带是古特提斯北侧活动陆缘重要的组成部分,自早寒武世以来该地区经历了与古生代原特提斯洋、晚古生代—中生代的古特提斯洋构造域有关的两次大规模岩浆构造活动(莫宣学等,2007Chen Nengsong et al.,2008李瑞保等,2015),并形成了古生代和中生代的一系列金属矿产资源,如造山型金矿、斑岩-矽卡岩型铁-铜多金属矿等(李文良等,2014于淼等,2015何书跃等,2017高永宝等,2018)。然而,对于东昆仑地区火山岩型铀矿床的报道较为罕见。海德乌拉地区位于东昆仑造山带东段,近些年勘查结果显示,该地区发育了我国西北首个与火山岩有关的独立铀矿床(雷勇亮等,2021)。因此,该矿床的发现意味着我国广袤的西北地区具有发育热液铀矿床的潜力,具有重要的找矿及科研意义。

  • 由于发现时间尚短,海德乌拉铀矿床研究程度较低。前人已对该矿床的岩性特征、铀矿化特征及成岩时代开展过相关研究(雷勇亮等,2021李彦强等,2021朱坤贺等,2022孙立强等,2022)。研究表明,海德乌拉铀矿床的酸性火山岩成岩年龄为426 Ma(雷勇亮等,2021),侵入的辉绿岩成岩年龄为238 Ma(孙立强等,2022)及成矿年龄为235 Ma(朱坤贺等,2022)。然而,对于该矿床的成矿流体特征仍不够明确。因此,本文选择海德乌拉铀矿床中与成矿期相关的透明矿物(粉红色方解石、紫黑色萤石及石英)作为研究对象,开展流体包裹体岩相学、显微测温、激光拉曼光谱测试和C-H-O同位素组成工作,旨在研究成矿流体的性质,探讨成矿流体来源,进一步明确该矿床成因,同时寄望能给东昆仑造山带构造演化与铀成矿作用提供新的理论依据。

  • 1 区域地质背景

  • 昆仑造山带位于青藏高原北缘,是中国大陆巨型构造带-中央造山带的重要组成部分(许志琴等,2006)。昆仑造山带西部与帕米尔高原衔接,东部与秦岭造山带接壤(Dong Yunpeng et al.,2018)。昆仑造山带不仅记录了新生代青藏高原的隆起 (Yin and Harrison,2000),而且保留了塔里木、柴达木和祁漫塔格板块之间俯冲、碰撞及古特提斯洋闭合的信息(Roger et al.,2003)。以中生代—新生代的阿尔金走滑断裂带为界,昆仑造山带可分为东、西两段。东昆仑造山带记录了柴达木板块和祁漫塔格板块之间的俯冲增生造山事件(Dong Yunpeng et al.,2018)。以昆中缝合带、昆南缝合带为界,东昆仑造山带自北向南可以分为:昆北、昆中、昆南和巴颜喀拉地体(图1a)。东昆仑造山带内发育元古宙、显生宙地层,并且该套地层较为齐全(杜玉良等,2012)。地层由老到新分别为:古元古界金水口岩群片麻岩、片岩及大理岩等中高级变质岩系,中—新元古界万宝沟群和冰沟群碎屑岩、火山岩及碳酸盐岩等浅变质岩系,寒武系—奥陶系滩间山群变碎屑岩、变质火山岩夹生物碎屑岩等浅变质岩系,奥陶系—志留系纳赤台群火山岩及火山碎屑岩、泥盆系牦牛山组火山碎屑岩组合,三叠系鄂拉山组中酸性火山岩、新生代红色碎屑岩等。东昆仑造山带内岩浆侵入作用较强烈,主要包括早古生代、晚古生代—中生代侵入岩及奥陶纪—志留纪火山岩(国显正等,2017)。

  • 图1 东昆仑造山带构造简图(a,据Dong Yunpeng et al.,2018)和海德乌拉地区地质简图(b,据雷勇亮等,2021

  • Fig.1 Simplified tectonic map of the East Kunlun orogenic belt (a, after Dong Yunpeng et al., 2018) and simplified geological map of the Haidewula uranium deposit (b, after Lei Yongliang et al., 2021)

  • 2 矿床地质特征

  • 海德乌拉地区位于青海省都兰县境内,地处我国秦祁昆铀成矿域祁连-昆仑铀成矿省祁漫塔格铀成矿远景带的东部(张金带等,2012),大地构造位置处于东昆仑造山带东段(图1a)。海德乌拉火山盆地呈扁长形,东西延伸30 km,南北最长延伸7 km(图1b)。盆地北侧与中—新元古界呈断层接触,南侧发育有大量新近纪、第四纪的红色碎屑沉积物。盆地内发育多次喷发火山旋回作用,岩性以中—酸性火山岩(粗安岩、粗面岩、流纹岩)为主,并夹有少量红色碎屑砂岩、粉砂岩,被三叠纪辉绿岩(238 Ma;孙立强等,2022)和花岗斑岩侵入。该套火山岩形成于志留纪罗德洛世,其中流纹岩具有与华南火山岩型铀矿床赋矿流纹岩类似的A型岩浆岩地球化学特征(雷勇亮等,2021)。目前,该矿床已圈定12条铀矿化带,长100~1300 m,宽50~200 m,矿化带受北东—北东东走向、倾向南东的断裂构造及次级裂隙所控制(图2)。平均铀品位为0.038%~1.310%,单样最高铀品位为10.1%(李彦强等,2021)。铀矿体形态复杂,多呈透镜状,少数呈细脉状;铀矿体主要赋存于火山岩的岩性界面、隐爆角砾岩及其裂隙中(图3a)。铀矿石主要呈紫黑色、猪肝红和杂色(图3b、d、e)。海德乌拉铀矿床发育有强烈的围岩蚀变,主要包括黄铁矿化、钾长石化、紫黑色萤石化、赤铁矿化、粉红色方解石化、硅化、白色方解石化和伊利石化等(图3b~e)。矿石矿物主要包括沥青铀矿,此外含少量的次生铀矿物(钙铀云母及硅钙铀矿)。成矿伴生金属矿物主要为赤铁矿,次之为黄铁矿、黄铜矿和铅锌矿等,脉石矿物主要有石英、萤石、方解石等。

  • 根据矿脉之间的穿切关系,矿石的结构构造与矿物共生组合的特征,海德乌拉铀矿床成矿期可划分为成矿期前、成矿期与成矿期后(图4;朱坤贺等,2022)。成矿期前(Ⅰ)矿物组合为黄铁矿+钾长石±石英。黄铁矿呈浸染状充填在岩石裂隙中,多为自形—半自形粒状,表现为淡黄白色,单体粒径多为0.3 mm左右,其内发育较多裂纹;含少量石英,为暗灰色微晶状,该阶段不含铀。成矿期(Ⅱ)为沥青铀矿+赤铁矿+紫黑色萤石+粉红色方解石±石英。沥青铀矿以胶状、细小脉状产在火山角砾岩、蚀变火山岩裂隙及黄铁矿裂隙中;赤铁矿多呈浸染状、粉末状充填于岩石裂隙内;紫黑色萤石多呈粒状、团块状分布于铀矿石裂隙内部,并在矿石中可见到萤石脉;粉红色方解石常以脉状产出,其与铀矿化有密切关系;石英为灰色微晶体。成矿期后(Ⅲ)为白色方解石+伊利石。

  • 图2 海德乌拉地区Ⅱ号带16号勘探线剖面图 (据李彦强等,2021

  • Fig.2 Schematic profile of exploration line No.16 of uranium ore belt No.Ⅱ in Haidewula area (after Li Yanqiang et al., 2021)

  • 3 样品采集与测试方法

  • 3.1 流体包裹体显微测温

  • 本次研究的样品主要采自海德乌拉地区Ⅱ号带钻孔内(图2)。本文进行流体包裹体显微测温研究的主要对象是与沥青铀矿密切相关的粉红色方解石、紫黑色萤石及石英中的原生气液两相包裹体,流体包裹体岩相学的观察及显微测温实验均在东华理工大学核资源与环境国家重点实验室完成。采集并挑选合适的样品后依据均一法、冷冻法的样品制备方法进行切片,制备成双面抛光、厚度为0.3 mm左右的包裹体样品薄片进行岩相学观察,而后对包裹体片中有代表性的且利于测试的包裹体进行测温分析。在进行流体包裹体显微测温实验时,共选取9件样品。测温采用仪器是LinkamTHME600型冷热台,其测温范围在-196~600℃之间,在-196~0℃、0~30℃、30~300℃和300~600℃温度区间内的测试精度分别为±0.1℃、±0.2℃、±1℃和±2℃。

  • 图3 海德乌拉铀矿床的矿石手标本特征

  • Fig.3 Ore characteristics of the Haidewula uranium deposit

  • (a)—隐爆角砾岩型矿石;(b)—呈浸染状的成矿期前(Ⅰ)黄铁矿化及成矿期(Ⅱ)赤铁矿化矿石;(c)—成矿期(Ⅱ)呈脉状的粉红色方解石化-紫黑色萤石化矿石;(d)—成矿期(Ⅱ)紫黑色萤石化及粉红色方解石化矿石;(e)—成矿期(Ⅱ)硅化及成矿期后(Ⅲ)白色方解石化矿石

  • (a) —cryptoexplosive breccia-type ores; (b) —disseminated pre-metallogenic period (Ⅰ) pyritization and metallogenic period (II) hematitization ores; (c) —metallogenic period (Ⅱ) vein pink calcite and purple black fluoritization ores; (d) —metallogenic period (Ⅱ) purple black fluoritization and pink calcitization ores; (e) —mineralization period (Ⅱ) silicification and post-mineralization period (Ⅲ) white calcite ores

  • 图4 海德乌拉铀矿床主要矿物生成顺序 (据朱坤贺等,2022

  • Fig.4 Mineral paragenesis of the Haidewula uranium deposit (after Zhu Kunhe et al., 2022)

  • 采用均一法测温:选择靶区中相界限及腔壁清晰的较大的包裹体进行测试,对包裹体先快速降温至完全冻结,再以0.5℃/min的速度缓慢升温至-56℃,以观测方解石包裹体内是否含有CO2、CH4等挥发成分,然后以0.5℃/min的速度缓慢升温,在接近相变温度时将升温速率降低为0.1℃/min,以获得更加准确的流体包裹体的冰点和均一温度。整个实验过程中升温速率控制在0.2~3℃/min,测试过程中使用FLUIDING公司的人工合成流体包裹体标样对仪器进行温度标定。冷冻台线性回归方程为Tcor=0.9687Tdet-0.0927。其中,Tdet为实测温度(℃),Tcor为校正温度(℃)。校正前后温度相差不大,测试结果可靠。

  • 包裹体的盐度根据NaCl-H2O体系盐度-冰点关系表得出(Bodnar,1993)。包裹体的密度根据刘斌和段光贤(1987)公式来计算,该公式精度为±0.004 g/cm3,适用范围:均一温度不大于500℃,盐度不高于30%NaCleq

  • 3.2 激光拉曼光谱测试

  • 本次流体包裹体气相成分测试是在东华理工大学核资源与环境国家重点实验室完成,仪器是英国RENISHAW公司制造的inVia系列激光拉曼光谱仪,其具有高灵敏度、高自动化的特点,激光激发波长为532 nm,激光器为YAG晶体倍频固体激光器,激光功率为20 mW,空间分辨率为2 μm,光谱分辨率为1 cm-1,采用50倍长焦物镜,采用莱卡显微镜获得样品表面的显微图片。扫描波数范围为100~4200 cm-1,单点采集时间为4 s,累积4次。测试对象为方解石、萤石、石英中流体包裹体气液相成分。

  • 3.3 C-H-O同位素测试

  • 挑选15件与沥青铀矿密切相关的粉红色方解石作为C-H-O同位素分析对象,其中包括H同位素5件。C-O同位素及H同位素分析测试在中国科学院矿床地球化学国家重点实验室完成。C-O同位素分析测试:对于所选样品进行钻孔取样、称重,并将粉末样品转移到12 mL的样品瓶中,使用Gashbench II设备用氦气冲洗样品8 min,再将磷酸手动添加到冲洗后的样品中,以产生分析用的CO2。样品在72℃下反应至少4 h,然后使用与Gashbench II设备连接的MAT-253气源同位素比质谱仪测量。分析结果采用V-PDB标准表示,测试精度为±2‰。为便于比较,氧同位素采用平衡方程δ18OV-SMOW=1.03086δ18OV-PDB+30.86(Friedman and O'Neil,1977),最终以V-SMOW标准表示。H同位素分析测试:首先将挑好的40目的方解石样品通过低温(100~120℃)烘烤,去除矿物中吸附水和次生流体包裹体,剩余的流体包裹体中的水用于测试水的氢同位素,测试仪器为MAT-253气体同位素质谱计,检测方法和依据为DZ/T0184.19—1997《水中氢同位素锌还原法测定》,δD的实验结果以维也纳标准平均海水(V-SMOW)为标准给出,分析精度优于1‰。

  • 4 分析结果

  • 4.1 流体包裹体岩相学特征

  • 本文按照卢焕章等(2004)流体包裹体物理状态进行分类,对粉红色方解石、紫黑色萤石及石英中流体包裹体的分布、形态和相态特征详细观察,镜下可见流体包裹体在微裂隙或者蚀坑中多呈带状、线状分布,形态多为规则状。成矿期阶段捕获了大量的流体包裹体,依据成因分类准则可以将其分为以下三种类型(卢焕章等,2004):① 呈随机孤立分布或群簇状分布于单颗粒矿物(粉红色方解石、紫黑色萤石)内部的原生包裹体,此类包裹体通常沿方解石解理方向和萤石环带有序排列(图5a、b);② 沿切穿相邻矿物颗粒的微裂隙分布的次生包裹体(图5b),此类包裹体通常分布较分散;③ 沿单颗粒矿物内部愈合的微裂隙或蚀坑分布的假次生包裹体(图5c)。若根据Roedder(1984)提出的流体包裹体在室温条件下的相态分类准则及冷冻回温过程中的相态变化,可将这些流体包裹体划分为富液相两相水溶液包裹体(WL型)、富气相两相水溶液包裹体(WV型)、含CO2气液两相水溶液包裹体(C型)、纯液相单相包裹体(W型),未见到纯气相以及固相多相包裹体。

  • WL型:室温下由液相水(LH2O)和气相水(VH2O)组成(图5f、g),气泡较小,无色透明,气相体积多数在8%~15%之间;其形态多呈椭圆状、似圆状、长块状或不规则状。WL型包裹体在粉红色方解石、石英、紫黑色萤石中广泛分布,大小在2~15 μm之间,多数在3~5 μm之间,石英、紫黑色萤石中个别包裹体大于10 μm;气相比值普遍较低(多数范围为12%~18%),个别可达25%;加热时气相部分均一到液态。该类包裹体在三种矿物(粉红色方解石、紫黑色萤石及石英)中均可见到,是本区最主要的包裹体类型。

  • WV型:室温下由液相水(LH2O)和气相水(VH2O)组成(图5d),气泡较大,颜色略微暗沉,气液比大于50%(多数范围为50%~70%);形态呈四边形、椭圆、不规则形;大小范围为3~6 μm,多数均一至液相。该类型包裹体数量极少,分布比较有限,仅在石英中有发现。

  • C型:该类型包裹体室温下表现为两相,是由气相CO2VCO2)和液相水(LH2O)组成(图5e),气泡较小,气液比值一般在15%~20%之间,多呈椭圆形,大小在5~7 μm之间,大部分均一到液相,数量较少,多出现于石英矿物中。

  • W型:室温下由液相水(LH2O)组成(图5h、i),无气泡,包裹体腔体边界线较明显,液相呈无色透明;其形态多为椭圆形;大小多在3~6 μm之间。该类型包裹体仅在方解石矿物中发现,含量较少且无序分布。

  • 4.2 流体包裹体的均一温度和盐度

  • 本文测温主要针对的是海德乌拉铀矿床WL型包裹体,共测温9个包体片、55组包裹体数据(共143个包裹体),可用来计算盐度的数据有73个包裹体(附表1)。据Bodnar(1993)的NaCl-H2O体系的冰点温度与盐度关系表,海德乌拉铀矿床成矿期石英、紫黑色萤石和粉红色方解石中流体包裹体的盐度区间分别为7.17%~17.26%NaCleq、0.53%~3.06%NaCleq和1.40%~7.02%NaCleq,盐度范围分布较广,其对应的峰值依次为7%~8.5%NaCleq、0.5%~1.5%NaCleq和2.5%~3.5%NaCleq(图6b、d、f);与此对应的均一温度区间分别为183~287℃(均值为219℃)、127~204℃(均值为169℃)和133~187℃(均值为163℃)(图6a、c、e),紫黑色萤石和粉红色方解石中流体包裹体的均一温度峰值均集中于150~170℃,石英中流体包裹体的均一温度峰值集中于200~220℃。

  • 图5 海德乌拉铀矿床流体包裹体显微照片

  • Fig.5 The microphotograph of fluid inclusions in the Haidewula uranium deposit

  • (a)—粉红色方解石内部的原生包裹体群;(b)—紫黑色萤石中沿着生长环带分布的原生包裹体及穿过晶体的次生包裹体;(c)—粉红色方解石中的假次生包裹体;(d)—石英中由液相水(LH2O)和气相水(VH2O)组成的WV型包裹体;(e)—石英中由液相水(LH2O)和气相CO2VCO2)组成的C型包裹体;(f)—紫黑色萤石中由液相水(LH2O)和气相水(VH2O)组成的WL型包裹体及包裹体组合(FIA);(g)—粉红色方解石中由液相水(LH2O)和气相水(VH2O)组成的WL型包裹体;(h),(i)—粉红色方解石中纯液相水(LH2O)W型包裹体

  • (a) —primary inclusion group in pink calcite; (b) —the primary inclusions distributed along the growth ring and the secondary inclusions passing through the crystal in fluorite; (c) —pseudo-secondary inclusions in pink calcite; (d) —WV type inclusions composed of liquid phase water (LH2O) and gas phase water (VH2O) in quartz; (e) —C type inclusions composed of liquid phase water (LH2O) and gas phase CO2 (VCO2) in quartz; (f) —WL type inclusions composed of liquid phase water (LH2O) and gas phase water (VH2O) in fluorite; (g) —WL type inclusions composed of liquid phase water (LH2O) and gas phase water (VH2O) in pink calcite; (h) , (i) —W type inclusions composed of pure liquid water in pink calcite

  • 4.3 成矿流体密度、压力和深度

  • 流体包裹体群的均一温度可以近似地看作捕获温度(卢焕章等,2004),故流体包裹体的均一温度可以近似代表成矿温度。通过对流体包裹体均一温度和盐度的相关数据的分析处理,采用盐水溶液包裹体的密度计算经验公式计算流体密度(刘斌和段光贤,1987):

  • D=A+BT+CT2
    (1)
  • 式中,D为流体密度(g/cm3);T为流体包裹体的均一温度(℃);ABC为无量纲参数,可采用经验公式计算(W为盐度,%NaCleq):

  • A=A0+A1W+A2W2B=B0+B1W+B2W2C=C0+C1W+C2W2
    (2)
  • 图6 海德乌拉铀矿床流体包裹体均一温度、盐度直方图

  • Fig.6 Histograms of total homogenization temperatures and salinities of fluid inclusions of the Haidewula uranium deposit

  • (a)、(b)—20HD52-1A、20HD52-1B、20HD52-1C石英中的包裹体均一温度、盐度直方图;(c)、(d)—20HD52-1、20HD52-2、20HD52-3紫黑色萤石中的包裹体均一温度、盐度直方图;(e)、(f)—20HD84-2A、20HD84-2B、20HD84-2C粉红色方解石中的包裹体均一温度、盐度直方图

  • (a) , (b) —histogram of homogenization temperature and salinity of inclusions in 20HD52-1A, 20HD52-1B, 20HD52-1C quartz; (c) , (d) —homogenization temperature and salinity histogram of inclusions in 20HD52-1, 20HD52-2, 20HD52-3 fluorite; (e) , (f) —histogram of homogenization temperature and salinity of inclusions in 20HD84-2A, 20HD84-2B, 20HD84-2C calcite

  • 在均一温度T≤500℃、盐度W≤30%时,(2)式中各参数取值如下:A0=0.993531,A1=8.72147×10-3A2=-2.43975×10-5; B0=7.11652×10-5B1=-5.2208×10-5B2=1.26656×10-6; C0=-3.4997×10-6C1=2.12124×10-7C2=-4.523×10-9

  • 将所得的流体包裹体均一温度、盐度数据带入公式(2),可求得海德乌拉铀矿床的NaCl-H2O体系气液两相包裹体的密度。海德乌拉铀矿床成矿期石英、紫黑色萤石及粉红色方解石中流体密度分别为0.73~1.01 g/cm3(均值为0.89 g/cm3)、0.87~0.95 g/cm3(均值为0.91 g/cm3)和0.88~0.96 g/cm3(均值为0.93 g/cm3)(附表1),密度曲线呈现出抛物线趋势,其流体密度主要集中于0.80~0.95 g/cm3之间(图7),表明该矿床成矿流体为中等密度的流体。

  • 将流体包裹体的均一温度、盐度带入邵洁涟(1988)提出的流体压力的计算式:

  • P=P0×T/T0P0=219+2620WT0=374+920W
    (3)
  • 式中,T0为初始温度(℃);P为成矿压力(MPa);P0为初始压力(MPa)。

  • 图7 海德乌拉铀矿床流体包裹体密度直方图

  • Fig.7 The histogram of densities of fluid inclusions of the Haidewula uranium deposit

  • 计算可得海德乌拉铀矿床的成矿流体压力值,其成矿期石英、紫黑色萤石及粉红色方解石中包裹体估算的成矿压力分别为11.84~29.24 MPa(均值为18.77 MPa)、7.43~15.21 MPa(均值为10.40 MPa)和7.79~15.65 MPa(均值为11.71 MPa)(附表1),由此可知,该矿床形成于低压环境下。

  • 成矿深度在研究矿床成因、判断找矿潜力方面具有重要的依据(杨增海等,2012)。将流体包裹体的均一温度、盐度带入邵洁涟(1988)提出的成矿深度的计算公式:

  • H=P/300×105
    (4)
  • 其中,H为成矿深度(km);P为成矿压力(即流体压力,MPa)。

  • 将数据带入公式(4)可得海德乌拉铀矿床成矿期石英、紫黑色萤石及粉红色方解石中包裹体估算的成矿深度分别为0.39~0.97 km(均值为0.63 km)、0.25~0.51 km(均值为0.35 km)和0.21~0.52 km(均值为0.39 km)。因此,该矿床的成矿深度范围为0.21~0.97 km,这表明其形成深度较浅。

  • 4.4 流体包裹体激光拉曼光谱分析

  • 激光拉曼光谱仪是一种非破坏性地测定物质成分的微观分析仪器,可以快速对单个包裹体进行定性分析。本次实验针对海德乌拉铀矿床典型包裹体气液相成分进行了测试。测试对象是石英、紫黑色萤石及粉红色方解石中流体包裹体的气液相成分。测试结果表明,成矿期三种矿物内包裹体液相成分均以H2O为主,但由于紫黑色萤石的荧光效应过强及粉红色方解石内包裹体太小,二者的气相成分仅测试出H2O。另外,对石英(20HD52系列)中流体包裹体激光拉曼光谱图分析表明,气体成分以H2O为主,并含少量CO2(特征峰值为1383 cm-1)(图8)。

  • 4.5 C-H-O同位素

  • 本文针对粉红色方解石做了C-H-O同位素测试,其结果见表1。测试结果表明,粉红色方解石矿物的δ13CCal-V-PDB、δDCal-V-SMOW、δ18OCal-V-PDB值分别为-1.41‰~-0.81‰、-70.6‰~-63.3‰、-19.13‰~-15.56‰;平均值依次为-1.15‰、-67.24‰、-17.64‰。根据成矿期流体包裹体的均一温度中间值(T)及方解石与水的同位素分馏平衡方程103lnα方解石-水=4.01×106/T2-4.66×103/T+1.71(郑永飞等,2000)和103lnα方解石- CO2 =2.988×106/T2-7.6663×103/T+2.4612(Friedman and O'Neil,1977),计算得出成矿流体的δ13CFluid-V-PDB、δDFluid-V-SMOW、δ18OFluid-V-SMOW值分别为-1.59‰~-1.00‰、-71‰~-63‰、0.03‰~3.72‰。

  • 图8 海德乌拉铀矿床流体包裹体激光拉曼光谱图

  • Fig.8 Raman spectra of fluid inclusions from the Haidewula uranium deposit

  • (a)—20HD52-1A中的流体包裹体及对应的激光拉曼光谱图;(b)—20HD52-1C中的流体包裹体及对应的激光拉曼光谱图

  • (a) —fluid inclusions in 20HD52-1A and corresponding laser Raman spectra; (b) —fluid inclusions in 20HD52-1C and corresponding laser Raman spectra

  • 表1 海德乌拉铀矿床粉红色方解石矿物及矿化流体的δ13C、δD和δ18O值

  • Table1 The δ13C, δD and δ18O values of calcite minerals and ore-forming fluids in Haidewula uranium deposit

  • 注:测试样品均为方解石;δ18OFluid-V-SMOW值根据郑永飞等(2000)提出的氧同位素分馏方程计算得出:103lnαCal·H2O =4.01×106/T24.66×103/T+1.71;δ13CFluid-V-PDB值根据Friedman and O'Neil(1977)提出的碳同位素分馏方程计算得出:103lnαCal·CO2 =2.988×106/T2-7.6663×103/T+2.4612;公式中T代表成矿期方解石包裹体的绝对温度。

  • 5 讨论

  • 5.1 成矿流体性质

  • 流体包裹体岩相学特征和显微测温结果表明,海德乌拉铀矿床成矿期捕获的包裹体类型为WL型和少量WV型、C型流体包裹体。其中,成矿期石英中流体包裹体的均一温度、盐度、密度依次为183~287℃、7.17%~17.26%NaCleq、0.73~1.01 g/cm3;成矿期紫黑色萤石中流体包裹体的均一温度、盐度、密度依次为127~204℃、0.53%~3.06%NaCleq、0.87~0.95 g/cm3;成矿期粉红色方解石中流体包裹体的均一温度、盐度、密度依次为133~187℃、1.40%~7.02%NaCleq、0.88~0.96 g/cm3(附表1)。此外,结合海德乌拉铀矿床成矿年龄为235 Ma(朱坤贺等,2022),表明该地区成矿流体为同一期次的热液流体作用的结果。成矿期三种矿物内包裹体的均一温度均低于300℃,这表明成矿流体温度属于中低温热液范围;由盐度直方图(图6b、d、f)可知,流体包裹体盐度明显低于20%NaCleq,这表明海德乌拉铀矿床成矿流体盐度较低。在此基础上,结合成矿压力、密度与成矿深度数据,综合判断海德乌拉铀矿床流体具有中低温、低盐度、中等密度、浅成、低压的特征。此外,结合前人对浅成低温热液型矿床的定义:均一温度介于50~200℃之间、盐度低于12.85%NaCleq并与陆相火山岩相关或产于陆相火山岩内的矿床(丰成友等,2004陈衍景等,2007洪树炯等,2020),海德乌拉铀矿床内包裹体的均一温度和盐度的测试结果与之相符。因此,笔者认为海德乌拉矿床属于浅成低温热液型铀矿床,成矿流体具有中低温、低盐度和低密度的特征。

  • 5.2 成矿流体来源

  • 关于海德乌拉铀矿床流体的δ13CFluid-V-PDB、δDFluid-V-SMOW和δ18OFluid-V-SMOW值分别为-1.59‰~-1.00‰、-71‰~-63‰和0.03‰~3.72‰。在δDFluid-V-SMOW18OFluid-V-SMOW图中(图9a),成矿流体数据点落于岩浆水与大气降水之间,这种现象可能与岩浆水和大气降水之间所发生的氢氧同位素平衡交换反应有关(李永胜等,2021)。因此,海德乌拉铀矿床的流体来源可能为大气降水与岩浆水的混合。此外,在δ13CV-PDB18OV-SMOW同位素图中(图9b),其数据点分布均比较集中,其成矿流体数据点均落在火成岩相碳酸盐岩左侧并且偏向火成岩相碳酸盐岩区域,这表明海德乌拉铀矿床形成过程中流体中的碳是由火成岩相碳酸盐岩提供,反映出深源热液的特点。结合本区发育有三叠纪侵入岩辉绿岩(238 Ma;孙立强等,2022),推测成矿流体中的深部岩浆水可能与辉绿岩岩浆作用有关。

  • 综上所述,根据C-O同位素及H-O同位素分析结果,笔者认为海德乌拉铀矿床流体来源为大气降水与深部岩浆热液的混合。

  • 5.3 成矿作用分析

  • 对于大多数热液型铀矿床,被广泛接受的铀成矿机制是U以铀酰络合物(UO2+2)的形式迁移,并以U4+矿物的形式沉淀(Romberger,1984; Cuney,2009)。然而,Timofeev et al.(2018)的实验研究表明U可以在还原性岩浆流体中以UCl04的形式迁移,其沉淀可能是由于温度降低导致U-Cl络合物失稳引起的。如前所述,海德乌拉铀矿床形成过程中有大气降水参与,这表明U是以U6+矿物形式进行迁移。因此,海德乌拉铀矿床的矿化机制可能主要是由较活泼的U6+转化为稳定的U4+陈露明(1990)研究认为热液型铀矿床中铀的碳酸盐络合离子为[UO2(CO33]4-和[UO2(CO32]2-。一般而言,铀沉淀的机制主要有吸附作用、还原作用、流体混合、水-岩交换反应等作用(Fayek et al.,2011),其中尤以水-岩相互作用为重要途径。流体与主岩相互作用时,热液的温度、pH和氧逸度将发生改变,碳酸铀酰络合物的溶解度也将随之而变,进而导致UO2沉淀。在大多数热液型铀矿床中,赤铁矿化和碳酸盐化通常被认为是铀矿化的有利迹象。在海德乌拉铀矿床中,部分沥青铀矿颗粒分布于黄铁矿周围,其中少部分黄铁矿被氧化为赤铁矿,除此之外,还有部分沥青铀矿脉与粉色方解石相邻。以上所有特征表明,水-岩相互作用可能是海德乌拉铀矿形成的关键。

  • 图9 海德乌拉铀矿床成矿流体δDFluid-V-SMOW18OFluid-V-SMOW关系图(a)及海德乌拉铀矿床 δ13CV-PDB18OV-SMOW同位素关系图(b)

  • Fig.9 Diagrams of δDFluid-V-SMOW vs.δ18OFluid-V-SMOW (a) , δ13CV-PDB vs.δ18OV-SMOW from the Haidewula uranium deposit (b)

  • 原始岩浆水和变质水据Taylor(1974),雨水线据张理刚(1989);火成岩相碳酸盐岩据Taylor et al.(1967),海相碳酸盐岩和沉积有机物据Hoefs(2015)

  • Primitive magmatic water and metamorphic water are quoted from Taylor (1974) , the rain line is quoted from Zhang Ligang (1989) ; the range of the igneous carbonateis quoted fromTaylor et al. (1967) , marine carbonate and sedimentary organic matter carbonare quoted from Hoefs (2015)

  • 此外,一些沥青铀矿脉穿插于主岩的构造裂隙中,其与碳酸盐化、赤铁矿化不相关。因此,铀沉淀亦可能通过另一种机制发生。笔者认为,流体沸腾/CO2去气也可能导致海德乌拉矿床中沥青铀矿沉淀,这在许多热液铀矿床(Hu Ruizhong et al.,20082009)和贵金属矿床(Simmons et al.,2005Moncada et al.,2017)中很常见。海德乌拉矿床中存在流体沸腾/CO2去气迹象,其成矿期石英中共存的原生富液相和富气相两种流体包裹体为流体沸腾的存在提供了有利证据(Bodnar et al.,1985)。在海德乌拉地区铀矿床中,隐爆角砾岩的出现进一步证明了该铀矿中曾存在流体沸腾迹象,其亦是压力骤减的常见证据(Moncada et al.,2017)。因此,由于压力的释放及CO2等挥发分的大量逸失,碳酸铀酰络离子([UO2(CO3)]4-)的分解被认为是海德乌拉沥青铀矿沉淀的另一个关键因素,其也被认为是华南一些热液型铀矿床成因的重要因素(Hu Ruizhong et al.,20082009Chi Guoxiang et al.,2021)。

  • 海德乌拉地区火山岩为中志留世(426 Ma;雷勇亮等,2021)的A型中性—酸性火山岩组合,铀成矿时代为235 Ma(朱坤贺等,2022),该成矿时代与海德乌拉火山盆地内发育的辉绿岩年龄(238 Ma;孙立强等,2022)较为一致。已有研究表明,海德乌拉流纹岩形成于原特提斯洋闭合后引发的后碰撞伸展环境(雷勇亮等,2021)。中三叠世的辉绿岩与铀矿几乎同步形成,表明该地区成矿作用受地壳伸展所控制,地壳伸展的发生可能是由布青山-阿尼玛卿洋俯冲所导致(陈能松等,2007Xiong Fuhao et al.,2014孙立强等,2022)。地壳伸展导致辉绿岩发生侵位,伴随幔源富CO2流体不断向上运移,随着低温的大气降水不断参与其中,最终形成高氧逸度的热液流体。热液流体发生循环并将海德乌拉火山岩中的U再活化,生成以[UO2(CO33]4-和[UO2(CO32]2-为主的U主要配位体,碳酸铀酰络离子不断富集并形成富U的成矿流体。富U流体与主岩相互作用引起热液的物理化学条件变化加上流体沸腾/CO2去气,最终导致沥青铀矿等成矿物质发生大规模的卸载与沉淀。

  • 6 结论

  • (1)海德乌拉铀矿床包裹体类型主要是气液两相的水溶液包裹体,另有微量的纯液相包裹体及CO2包裹体,未见到纯气相及子矿物三相包裹体。

  • (2)流体包裹体的测温数据显示,海德乌拉铀矿床成矿流体具有中低温、低盐度和中等密度的特征,其来源为大气降水与岩浆期后热液混合。

  • (3)海德乌拉铀矿床沥青铀矿沉淀的机制主要为富U流体与主岩相互作用引起热液的物理化学条件变化加上流体沸腾/CO2去气,最终导致沥青铀矿等成矿物质发生大规模的卸载与沉淀。

  • 致谢:本次研究的样品处理与实验测试得到了东华理工大学核资源与环境国家重点实验室张明记老师、张笑天老师和万建军老师的指导与帮助,在完成C-H-O同位素分析测试中得到了中国科学院矿床地球化学国家重点实验室的谷静老师的帮助,在修改过程中得到两位匿名审稿老师和责任编辑的帮助,在此一并表示感谢。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202402090?st=article_issue

  • 参考文献

    • Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimics Acta, 57: 683~684.

    • Bodnar R J, Reynolds T J, Kuehn C A. 1985. Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology, 2: 73~97.

    • Chen Luming. 1990. Discussion on the origin of uranium deposit NO. 504. Uranium Geology, 6(3): 135~145 (in Chinese with English abstract).

    • Chen Nengsong, Sun Min, Wang Qinyan, Zhao Guochun, Chen Qiang, Shu Guiming. 2007. Electron microprobe chemical age of monazite in Kunzhong belt of East Kunlun orogenic belt: Records of multi-stage tectonic metamorphic events. Science Bulletin, (11): 1297~1306 (in Chinese with English abstract).

    • Chen Nengsong, Sun Min, Wang Qinyan, Zhang Kexin, Wan Yusheng, Chen Haihong. 2008. U-Pb dating of zircon from the Central Zone of the East Kunlun orogen and its implications for tectonic evolution. Chinese Science: Earth Science English Edition, 51(7): 929~938.

    • Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao, Zhang Hui. 2007. Diagnostic fuid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9): 2085~2108 (in Chinese with English abstract).

    • Chi Guoxiang, Lu Huanzhang. 2008. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrologica Sinica, 24(9): 1945~1953 (in Chinese with English abstract).

    • Chi Guoxiang, Larryn W D, Lu Huanzhang, Lai Jianqing, Chu Haixia. 2021. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals, 11(7): 1~23.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Zhao Yang, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Du Yuliang, Jia Qunzi, Han Shengfu. 2012. Mesozoic tectono-magmatic-mineralization and coppergold polymetallic ore prospecting research in East Kunlun metallogenic belt in Qinghai. Northwestern Geology, 45(4): 69~75 (in Chinese with English abstract).

    • Fayek M, Horita J, Ripley E M. 2011. The oxygen isotopic composition of uranium minerals: A review. Ore Geology Reviews, 41(1): 1~21.

    • Feng Chengyou, Zhang Dequan, Wang Fuchun, She Hongquan, Li Daxin, Wang Yan. 2004. Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geoscientica Sinica, 25(4): 415~422 (in Chinese with English abstract).

    • Friedman I, O'Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry, 12.

    • Gao Yongbao, Li Kan, Qian Bing, Li Wenyuan, He Shuyue, Zhang Damin, Wang Shengming. 2018. The metallogenic chronology of kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re-Os and phlogopite Ar-Ar ages. Geotectonics and Metallogeny, 42(1): 96~107 (in Chinese with English abstract).

    • Guo Xianzheng, Wang Hongjun, Xu Rongke, Zhang Youye, Jia Qunzi, Chen Xin, Cai Pengjie. 2017. Zircon U-Pb dating of eclogite from Tieshiguan, North Qaidam and its geological significance. Bulletin of Mineral and Rock Geochemistry, 36(6): 995~1006 (in Chinese with English abstract).

    • He Shuyue, Li Yulong, Chen Jing, Xu Qinglin, Wang Yadong, Bai Zonghai, Shu Shulan. 2017. Characteristics of ore-forming fluid and metallogenic mechanism of Halongxiuma porphyry molybdenum deposit in the eastern part of East Kunlun. Mineralogy and Petrology, 37(3): 22~30 (in Chinese with English abstract).

    • Hoefs J. 2015. Stable isotope geochemistry. Chemical Geology, 211: 47~69.

    • Hong Shujiong, Yuan Wanming, Yuan Erjun. 2020. Characteristics of the fluid inclusion in hydrothermal deposit of the East Kunlun. China Mining Magazine, 29(S2): 241~244 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesisin South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.

    • Hu Ruizhong, Burnard P G, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Zhao Junhong. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86~95.

    • Lei Yongliang, Dai Jiawen, Bai Qiang, Wang Kaixing, Sun Liqiang, Liu Xiaodong, Yu Chida, He Shiwei. 2021. Genesis and implications of peraluminous A-type rhyolite in the Haidewula area, East Kunlun orogen. Acta Petrologica Sinica, 37(7): 1964~1982 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Chen Youxin, Liu Chengjun, Pei Lei, Xu Tong, Liu Zhanqing, We Bo. 2015. Geological and geochemical features of delisitannan basalts and their petrogenesis in Buqingshan Tectonic Mélange Belt, southern margin of East Kunlun orogen. Earth Science, 40(7): 1148~1162 (in Chinese with English abstract).

    • Li Wenliang, Xia Rui, Qing Min, Li Chao, Zhang Dong, Sun Hao, Lu Yingchuan, Liu Peng, Zhou Aobo. 2014. Re-Os molybdenite ages of the Shenduolong skarn Mo-Pb-Zn deposit and geodynamic framework, Qinghai Province. Rock and Mineral Analysis, 33(6): 900~907(in Chinese with English abstract).

    • Li Yanqiang, Duan Jianhua, Dai Jiawen, Wang Kaixing. 2021. Geochemical characteristics of host rocks and uranium mineralization in Haidewula area, Qinghai. Uranium Geology, 37(4): 643~652 (in Chinese with English abstract).

    • Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead-zinc ore deposit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).

    • Liu Bin, Duan Guangxian. 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25wt%) and their applications. Acta Mineralogical Sinica, 7(4): 345~352 (in Chinese with English abstract).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~487 (in Chinese with English abstract).

    • Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 3: 403~414(in Chinese with English abstract).

    • Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the Luz area, Guanajuato Mining District, Mexico. Ore Geology Reviews, 89: 143~170.

    • Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineralogical Society of American, 12.

    • Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Zhiqin, Yang Jingsui. 2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, 22(4): 1037~1057.

    • Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, 12~17.

    • Shao Jielian. 1988. Gold Prospecting Mineralogy. Wuhan: China University of Geosciences Press, 1~158 (in Chinese with English abstract).

    • Simmons S F, White N C, John D A. 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 485~522.

    • Sun Liqiang, Wang Kaixing, Dai Jiawen, Liu Xiaodong, Liu Wenheng, Yu Chida, Lei Yongliang, Chen Yaoxin, Lin Junjie. 2022. Petrogenesis of the Haidewula diabase, Eastern Kunlun orogenic belt, and its geological implication. Earth Science, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html (in Chinese with English abstract).

    • Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69: 843~883.

    • Taylor H P J, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31: 407~430.

    • Timofeev A, Migdisov A A, Williams-Jones A E, Roback R, Nelson A T, Xu Hongwu. 2018. Uranium transport in acidic brines under reducing conditions. Nature Communications, 9: 1469~1476.

    • Xiong Fuhao, Ma Changqian, Zhang Jiayang, Liu Bin, Jiang Hongan. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogeny, northern Tibetan Plateau. Journal of the Geological Society, 171: 847~863.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Yang Zenghai, Wang Jianping, Liu Jiajun, Wang Shouguang, Wang Qingyi, Kang Shuguang. 2012. Characteristics and its geological significance of fluid inclusions of the Wurinitu W-Mo deposit in Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268~1278 (in Chinese with English abstract).

    • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu Miao, Feng Chengyou, Liu Hongchuan, Li Dingwu, Zhao Yiming, Li Daxin, Liu Jiannan, Wang Hui, Zhang Minghui. 2015. 40Ar-39Ar geochronology of the Galingelarge skarn iron deposit in Qinghai Province and geological significance. Journal of Geology, 89(3): 510~521 (in Chinese with English abstract).

    • Zhang Jindai, Li Ziying, Cai Yuqi, Guo Qingyin, Li Youliang, Han Changqing. 2012. The main advance and achievements in the potential evaluation of uranium resource in China. Uranium Geology, 28(6): 321~326 (in Chinese with English abstract).

    • Zhang Ligang. 1989. The Application of the Stable Isotopeto Geology: The Hydrothermal Mineralization of Metal Activation and It's Prospecting. Xi'an: Shaanxi Science and Technology Press, 1~267 (in Chinese with English abstract).

    • Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry. Beijing: Science Press, 1~316 (in Chinese with English abstract).

    • Zhu Kunhe, Dai Jiawen, Wang Kaixing, Liu Xiaodong, Yu Chida, Lei Yongliang, Sun Liqiang, He Shiwei. 2022. Elemental and isotopic characteristics of pitchblende of the Haidewula uranium deposit, East Kunlun orogen and its geological significance. Earth Science, 47(8): 2940~2950 (in Chinese with English abstract).

    • 陈露明. 1990. 504铀矿床成因探讨. 铀矿地质, 6(3): 135~145.

    • 陈能松, 孙敏, 王勤燕, 赵国春, 陈强, 舒桂明. 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, (11): 1297~1306.

    • 陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085~2108.

    • 池国祥, 卢焕章. 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945~1953.

    • 杜玉良, 贾群子, 韩生福. 2012. 青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究. 西北地质, 45(4): 69~75.

    • 丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4): 415~422.

    • 高永宝, 李侃, 钱兵, 李文渊, 何书跃, 张大民, 王生明. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束. 大地构造与成矿学, 42(1): 96~107.

    • 国显正, 王红军, 许荣科, 郑有业, 贾群子, 陈鑫, 蔡鹏捷. 2017. 柴北缘铁石观榴辉岩锆石U-Pb定年及其地质意义. 矿物岩石地球化学通报, 36(6): 995~1006.

    • 何书跃, 李玉龙, 陈静, 许庆林, 王亚栋, 白宗海, 舒树兰. 2017. 东昆仑东段哈陇休玛斑岩型钼矿成矿流体特征及成矿机制探讨. 矿物岩石, 37(3): 22~30.

    • 洪树炯, 袁万明, 袁二军. 2020. 东昆仑热液矿床的流体包裹体特征. 中国矿业, 29(S2): 241~244.

    • 雷勇亮, 戴佳文, 白强, 王凯兴, 孙立强, 刘晓东, 余驰达, 何世伟. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7): 1964~1982.

    • 李瑞保, 裴先治, 李佐臣, 陈有炘, 刘成军, 裴磊, 徐通, 刘战庆, 魏博. 2015. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因. 地球科学, 40(7): 1148~1162.

    • 李文良, 夏锐, 卿敏, 李超, 张栋, 孙昊, 路英川, 刘鹏, 周奥博. 2014. 应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景. 岩矿测试, 33(6): 900~907.

    • 李彦强, 段建华, 戴佳文, 王凯兴. 2021. 青海海德乌拉地区火山岩型铀矿含矿主岩地球化学及铀矿化特征研究. 铀矿地质, 37(4): 643~652.

    • 李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1847~1866.

    • 刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345~352.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~487.

    • 莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, (3): 403~414.

    • 邵洁涟. 1988. 金矿找矿矿物学. 武汉: 中国地质大学出版社, 1~158.

    • 孙立强, 王凯兴, 戴佳文, 刘晓东, 刘文恒, 余驰达, 雷勇亮, 陈耀新, 林俊杰. 2022. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 杨增海, 王建平, 刘家军, 王守光, 王清义, 康书光. 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学(中国地质大学学报), 37(6): 1268~1278.

    • 于淼, 丰成友, 刘洪川, 李定武, 赵一鸣, 李大新, 刘建楠, 王辉, 张明辉. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义. 地质学报, 89(3): 510~521.

    • 张金带, 李子颖, 蔡煜琦, 郭庆银, 李友良, 韩长青. 2012. 全国铀矿资源潜力评价工作进展与主要成果. 铀矿地质, 28(6): 321~326.

    • 张理刚. 1989. 稳定同位素在地质科学中的应用: 金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 1~267.

    • 郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社, 1~316.

    • 朱坤贺, 戴佳文, 王凯兴, 刘晓东, 余驰达, 雷勇亮, 孙立强, 何世伟. 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因. 地球科学, 47(8): 2940~2950.

  • 参考文献

    • Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimics Acta, 57: 683~684.

    • Bodnar R J, Reynolds T J, Kuehn C A. 1985. Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology, 2: 73~97.

    • Chen Luming. 1990. Discussion on the origin of uranium deposit NO. 504. Uranium Geology, 6(3): 135~145 (in Chinese with English abstract).

    • Chen Nengsong, Sun Min, Wang Qinyan, Zhao Guochun, Chen Qiang, Shu Guiming. 2007. Electron microprobe chemical age of monazite in Kunzhong belt of East Kunlun orogenic belt: Records of multi-stage tectonic metamorphic events. Science Bulletin, (11): 1297~1306 (in Chinese with English abstract).

    • Chen Nengsong, Sun Min, Wang Qinyan, Zhang Kexin, Wan Yusheng, Chen Haihong. 2008. U-Pb dating of zircon from the Central Zone of the East Kunlun orogen and its implications for tectonic evolution. Chinese Science: Earth Science English Edition, 51(7): 929~938.

    • Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao, Zhang Hui. 2007. Diagnostic fuid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9): 2085~2108 (in Chinese with English abstract).

    • Chi Guoxiang, Lu Huanzhang. 2008. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrologica Sinica, 24(9): 1945~1953 (in Chinese with English abstract).

    • Chi Guoxiang, Larryn W D, Lu Huanzhang, Lai Jianqing, Chu Haixia. 2021. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals, 11(7): 1~23.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Zhao Yang, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Du Yuliang, Jia Qunzi, Han Shengfu. 2012. Mesozoic tectono-magmatic-mineralization and coppergold polymetallic ore prospecting research in East Kunlun metallogenic belt in Qinghai. Northwestern Geology, 45(4): 69~75 (in Chinese with English abstract).

    • Fayek M, Horita J, Ripley E M. 2011. The oxygen isotopic composition of uranium minerals: A review. Ore Geology Reviews, 41(1): 1~21.

    • Feng Chengyou, Zhang Dequan, Wang Fuchun, She Hongquan, Li Daxin, Wang Yan. 2004. Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geoscientica Sinica, 25(4): 415~422 (in Chinese with English abstract).

    • Friedman I, O'Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry, 12.

    • Gao Yongbao, Li Kan, Qian Bing, Li Wenyuan, He Shuyue, Zhang Damin, Wang Shengming. 2018. The metallogenic chronology of kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re-Os and phlogopite Ar-Ar ages. Geotectonics and Metallogeny, 42(1): 96~107 (in Chinese with English abstract).

    • Guo Xianzheng, Wang Hongjun, Xu Rongke, Zhang Youye, Jia Qunzi, Chen Xin, Cai Pengjie. 2017. Zircon U-Pb dating of eclogite from Tieshiguan, North Qaidam and its geological significance. Bulletin of Mineral and Rock Geochemistry, 36(6): 995~1006 (in Chinese with English abstract).

    • He Shuyue, Li Yulong, Chen Jing, Xu Qinglin, Wang Yadong, Bai Zonghai, Shu Shulan. 2017. Characteristics of ore-forming fluid and metallogenic mechanism of Halongxiuma porphyry molybdenum deposit in the eastern part of East Kunlun. Mineralogy and Petrology, 37(3): 22~30 (in Chinese with English abstract).

    • Hoefs J. 2015. Stable isotope geochemistry. Chemical Geology, 211: 47~69.

    • Hong Shujiong, Yuan Wanming, Yuan Erjun. 2020. Characteristics of the fluid inclusion in hydrothermal deposit of the East Kunlun. China Mining Magazine, 29(S2): 241~244 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesisin South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.

    • Hu Ruizhong, Burnard P G, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Zhao Junhong. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86~95.

    • Lei Yongliang, Dai Jiawen, Bai Qiang, Wang Kaixing, Sun Liqiang, Liu Xiaodong, Yu Chida, He Shiwei. 2021. Genesis and implications of peraluminous A-type rhyolite in the Haidewula area, East Kunlun orogen. Acta Petrologica Sinica, 37(7): 1964~1982 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Chen Youxin, Liu Chengjun, Pei Lei, Xu Tong, Liu Zhanqing, We Bo. 2015. Geological and geochemical features of delisitannan basalts and their petrogenesis in Buqingshan Tectonic Mélange Belt, southern margin of East Kunlun orogen. Earth Science, 40(7): 1148~1162 (in Chinese with English abstract).

    • Li Wenliang, Xia Rui, Qing Min, Li Chao, Zhang Dong, Sun Hao, Lu Yingchuan, Liu Peng, Zhou Aobo. 2014. Re-Os molybdenite ages of the Shenduolong skarn Mo-Pb-Zn deposit and geodynamic framework, Qinghai Province. Rock and Mineral Analysis, 33(6): 900~907(in Chinese with English abstract).

    • Li Yanqiang, Duan Jianhua, Dai Jiawen, Wang Kaixing. 2021. Geochemical characteristics of host rocks and uranium mineralization in Haidewula area, Qinghai. Uranium Geology, 37(4): 643~652 (in Chinese with English abstract).

    • Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead-zinc ore deposit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).

    • Liu Bin, Duan Guangxian. 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25wt%) and their applications. Acta Mineralogical Sinica, 7(4): 345~352 (in Chinese with English abstract).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~487 (in Chinese with English abstract).

    • Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 3: 403~414(in Chinese with English abstract).

    • Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the Luz area, Guanajuato Mining District, Mexico. Ore Geology Reviews, 89: 143~170.

    • Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineralogical Society of American, 12.

    • Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Zhiqin, Yang Jingsui. 2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, 22(4): 1037~1057.

    • Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, 12~17.

    • Shao Jielian. 1988. Gold Prospecting Mineralogy. Wuhan: China University of Geosciences Press, 1~158 (in Chinese with English abstract).

    • Simmons S F, White N C, John D A. 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 485~522.

    • Sun Liqiang, Wang Kaixing, Dai Jiawen, Liu Xiaodong, Liu Wenheng, Yu Chida, Lei Yongliang, Chen Yaoxin, Lin Junjie. 2022. Petrogenesis of the Haidewula diabase, Eastern Kunlun orogenic belt, and its geological implication. Earth Science, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html (in Chinese with English abstract).

    • Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69: 843~883.

    • Taylor H P J, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31: 407~430.

    • Timofeev A, Migdisov A A, Williams-Jones A E, Roback R, Nelson A T, Xu Hongwu. 2018. Uranium transport in acidic brines under reducing conditions. Nature Communications, 9: 1469~1476.

    • Xiong Fuhao, Ma Changqian, Zhang Jiayang, Liu Bin, Jiang Hongan. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogeny, northern Tibetan Plateau. Journal of the Geological Society, 171: 847~863.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Yang Zenghai, Wang Jianping, Liu Jiajun, Wang Shouguang, Wang Qingyi, Kang Shuguang. 2012. Characteristics and its geological significance of fluid inclusions of the Wurinitu W-Mo deposit in Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268~1278 (in Chinese with English abstract).

    • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu Miao, Feng Chengyou, Liu Hongchuan, Li Dingwu, Zhao Yiming, Li Daxin, Liu Jiannan, Wang Hui, Zhang Minghui. 2015. 40Ar-39Ar geochronology of the Galingelarge skarn iron deposit in Qinghai Province and geological significance. Journal of Geology, 89(3): 510~521 (in Chinese with English abstract).

    • Zhang Jindai, Li Ziying, Cai Yuqi, Guo Qingyin, Li Youliang, Han Changqing. 2012. The main advance and achievements in the potential evaluation of uranium resource in China. Uranium Geology, 28(6): 321~326 (in Chinese with English abstract).

    • Zhang Ligang. 1989. The Application of the Stable Isotopeto Geology: The Hydrothermal Mineralization of Metal Activation and It's Prospecting. Xi'an: Shaanxi Science and Technology Press, 1~267 (in Chinese with English abstract).

    • Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry. Beijing: Science Press, 1~316 (in Chinese with English abstract).

    • Zhu Kunhe, Dai Jiawen, Wang Kaixing, Liu Xiaodong, Yu Chida, Lei Yongliang, Sun Liqiang, He Shiwei. 2022. Elemental and isotopic characteristics of pitchblende of the Haidewula uranium deposit, East Kunlun orogen and its geological significance. Earth Science, 47(8): 2940~2950 (in Chinese with English abstract).

    • 陈露明. 1990. 504铀矿床成因探讨. 铀矿地质, 6(3): 135~145.

    • 陈能松, 孙敏, 王勤燕, 赵国春, 陈强, 舒桂明. 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, (11): 1297~1306.

    • 陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085~2108.

    • 池国祥, 卢焕章. 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945~1953.

    • 杜玉良, 贾群子, 韩生福. 2012. 青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究. 西北地质, 45(4): 69~75.

    • 丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4): 415~422.

    • 高永宝, 李侃, 钱兵, 李文渊, 何书跃, 张大民, 王生明. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束. 大地构造与成矿学, 42(1): 96~107.

    • 国显正, 王红军, 许荣科, 郑有业, 贾群子, 陈鑫, 蔡鹏捷. 2017. 柴北缘铁石观榴辉岩锆石U-Pb定年及其地质意义. 矿物岩石地球化学通报, 36(6): 995~1006.

    • 何书跃, 李玉龙, 陈静, 许庆林, 王亚栋, 白宗海, 舒树兰. 2017. 东昆仑东段哈陇休玛斑岩型钼矿成矿流体特征及成矿机制探讨. 矿物岩石, 37(3): 22~30.

    • 洪树炯, 袁万明, 袁二军. 2020. 东昆仑热液矿床的流体包裹体特征. 中国矿业, 29(S2): 241~244.

    • 雷勇亮, 戴佳文, 白强, 王凯兴, 孙立强, 刘晓东, 余驰达, 何世伟. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7): 1964~1982.

    • 李瑞保, 裴先治, 李佐臣, 陈有炘, 刘成军, 裴磊, 徐通, 刘战庆, 魏博. 2015. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因. 地球科学, 40(7): 1148~1162.

    • 李文良, 夏锐, 卿敏, 李超, 张栋, 孙昊, 路英川, 刘鹏, 周奥博. 2014. 应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景. 岩矿测试, 33(6): 900~907.

    • 李彦强, 段建华, 戴佳文, 王凯兴. 2021. 青海海德乌拉地区火山岩型铀矿含矿主岩地球化学及铀矿化特征研究. 铀矿地质, 37(4): 643~652.

    • 李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1847~1866.

    • 刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345~352.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~487.

    • 莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, (3): 403~414.

    • 邵洁涟. 1988. 金矿找矿矿物学. 武汉: 中国地质大学出版社, 1~158.

    • 孙立强, 王凯兴, 戴佳文, 刘晓东, 刘文恒, 余驰达, 雷勇亮, 陈耀新, 林俊杰. 2022. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, https: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1634. 034. html.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 杨增海, 王建平, 刘家军, 王守光, 王清义, 康书光. 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学(中国地质大学学报), 37(6): 1268~1278.

    • 于淼, 丰成友, 刘洪川, 李定武, 赵一鸣, 李大新, 刘建楠, 王辉, 张明辉. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义. 地质学报, 89(3): 510~521.

    • 张金带, 李子颖, 蔡煜琦, 郭庆银, 李友良, 韩长青. 2012. 全国铀矿资源潜力评价工作进展与主要成果. 铀矿地质, 28(6): 321~326.

    • 张理刚. 1989. 稳定同位素在地质科学中的应用: 金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 1~267.

    • 郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社, 1~316.

    • 朱坤贺, 戴佳文, 王凯兴, 刘晓东, 余驰达, 雷勇亮, 孙立强, 何世伟. 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因. 地球科学, 47(8): 2940~2950.