-
地幔柱相关的大规模幔源镁铁质岩浆作用形成大火成岩省,其岩石中赋存铜镍钴-铂族硫化物矿床和钒钛-铁钴氧化物矿床等,如俄罗斯西伯利亚、美国Stillwater和Duluth 等杂岩体形成的镍铂族硫化物矿床(Ripley et al.,1998),南非Bushveld、中国峨眉山等发育镍钴硫化物矿床和钒钛-铁(钴)氧化物矿床共生的岩浆成矿系统。西伯利亚二叠纪大火成岩省仅发现Nori'sk-Talnakh铜镍钴硫化物矿床(Pirajno,2013)。Bushveld层状杂岩体厚7~9 km的Rustenburg层状堆晶岩中赋含世界上最大的三个铜镍-铂钯矿床、铬铁矿及最大的岩浆型钒钛磁铁矿床,钒钛磁铁矿主要赋存于主带和上部带,铂族硫化物矿床主要赋存于Merensky层和UG-2铬铁矿岩石中(Tegner et al.,2006; Zeh et al.,2015)。
-
峨眉山大火成岩省地幔柱岩浆作用同时形成了硫化物与氧化物两种不同类型的矿床,如攀枝花、新街、红格等大型—超大型Fe-Ti-V氧化物矿床,朱布、白马寨等铜镍铂族硫化物矿床。而新街岩体下部赋存铜镍铂族硫化物矿床、上部产出钒钛磁铁矿床(Zhu Weiguang et al.,2010)。铜镍铂族硫化物矿床有铂族富集型、铜镍铂族富集型和铜镍富集型,含矿岩体以基性—超基性岩体为主,具Nb和Ta负异常; 钒钛铁氧化物矿床大多赋存于基性岩石为主的层状岩体(红格为基性—超基性岩体),具Nb、Ta和Ti正异常,Zr和Hf负异常,PGE含量低(Zhu Weiguang et al.,2010; Tang Dongmei et al.,2013; 汤庆艳等,2015; She Yuwei et al.,2017)。
-
塔里木板块西北缘发育巴楚-阿图什岩浆钒钛磁铁矿矿床(Li Zilong et al.,2011,2012; Cao Jun et al.,2014),塔里木板块东北缘北山地区发育大量的二叠纪镁铁-超镁铁质杂岩体,产出岩浆镍钴硫化物矿床和铁钴氧化物矿床(Su Benxun et al.,2012a,2012b; Xia Mingzhe et al.,2013; Liu Yuegao et al.,2016,2017; Xue Shengchao et al.,2019,2021; Wang Yinhong et al.,2020),如坡一超大型、坡十中型、坡东小型、坡三小型、罗东小型、笔架山、红石山(穷塔格、蚕虫山)和旋涡岭等镍铜钴硫化物矿床或矿化点,以及磁海大型、小常山小型铁钴氧化物矿床,区域内镍钴富集成矿的地质条件优越(Xia Mingzhe et al.,2013; Xue Shengchao et al.,2018,2019; Ruan Banxiao et al.,2021)。镍钴硫化物矿床和铁钴氧化物矿床是否存在地幔柱岩浆作用的贡献,对认识造山带叠加地幔柱环境镍钴关键金属矿床富集成矿条件、评价成矿潜力具有重要意义。
-
坡北镁铁-超镁铁杂岩体是我国目前发现的规模最大的镁铁-超镁铁杂岩体(包括坡一、坡十、坡东等岩体),同时产出镍钴硫化物矿床和铁钴氧化物矿床,如坡一镍钴硫化物矿床、小常山-磁海铁(钴)氧化物矿床,成矿动力学背景有岛弧、后碰撞伸展、裂谷和地幔柱等环境的不同认识,稀有气体及碳同位素证明坡一岩体为地幔柱叠加板片窗构造环境岩浆作用的产物(Zhang Mingjie et al.,2017,2019),北山早二叠纪大量的镁铁-超镁铁质杂岩体中的镍钴硫化物矿床和铁钴氧化物矿床是否为同一岩浆成矿系统存在争议,本文以坡北镍钴硫化物矿床与磁海铁钴氧化物矿床进行对比研究。从岩石学、年代学、地球化学方面对比研究成矿条件。
-
1 地质背景
-
1.1 区域地质
-
塔里木板块东北缘北山裂谷是塔里木太古宙、元古宙原始陆核开裂演化发展起来的,北邻那拉提-红柳河缝合带,以红柳河-依格孜塔格断裂为界与中亚造山带相邻,南以疏勒河隐伏断裂为界与塔里木盆地和敦煌地块相连。经历了∈、O-S、C-P三次大规模的裂开与闭合,晚石炭世—早二叠世岩浆活动最为强烈,发育大量二叠纪镁铁-超镁铁质杂岩体(图1),并产出镍钴硫化物矿床和铁钴氧化物矿床(Su Benxun et al.,2012a,2012b; Liu Yuegao et al.,2016,2017; Xue Shengchao et al.,2016a,2016b,2018,2019,2021; Zhang Mingjie et al.,2017,2019)。
-
塔里木克拉通东北缘北山镁铁-超镁铁杂岩体主要产出于红柳沟地层中,围岩主要为长城系古硐井岩群和少量的下石炭统。长城系古硐井岩群为一套片岩组合,受后期岩浆构造热事件影响呈碎块状分布,主要由绿帘石阳起石片岩和黑云母石英片岩组成,同时包含少量的大理岩透镜体。下石炭统为一套浅海相陆源碎屑岩夹碳酸盐岩、火山熔岩及火山碎屑岩组合,主要由黑云母石英片岩、大理岩和火山碎屑岩等组成(姜常义等,2012)。
-
图1 塔里木克拉通东北缘北山镁铁-超镁铁质杂岩体分布地质简图(据Zhang Mingjie et al.2019; Wang Yinhong et al.2020修改,年龄数据来源见表1)
-
Fig.1 Geological map of Beishan mafic-ultramafic complexes in the northeastern margin of Tarim craton, China (modified from Zhang Mingjie et al., 2019; Wang Yinhong et al., 2020; data sources of ages are shown in Table1)
-
区内出露最古老的地层古元古界北山岩群主要由变粒岩、片麻岩、石英岩等中—深变质岩组成。坡十岩体辉长岩锆石中发现有年龄为2589~2559 Ma的继承锆石(李华芹等,2009),表明北山岩群对镁铁质岩的成岩过程具有一定的影响。
-
1.2 镁铁-超镁铁岩体地质特征
-
塔里木克拉通东北缘北山裂谷带西段大量的石炭纪—二叠纪镁铁-超镁铁杂岩体从南到北主要沿白地洼-淤泥河断裂带与红柳河-依格孜塔格断裂带产出,如白地洼-淤泥河断裂带南部的坡北岩带(罗东、中坡山、坡一、坡十、坡东和小常山等岩体)、白地洼-淤泥河断裂带与红柳河-依格孜塔格断裂带中部的红石山岩带(红石山、笔架山、穷塔格、蚕虫山和漩涡岭等岩体)和红柳河-依格孜塔格断裂带北部的磁海岩带出露在断裂带两侧(Tian Wei et al.,2010; Xu Yigang et al.,2014; Zhang Mingjie et al.,2017; Ruan Banxiao et al.,2021)(图1)。
-
坡北镁铁-超镁铁杂岩体规模巨大,出露面积200 km2,长约35 km,宽约8 km,主体为一个辉长岩体,辉长岩岩体西南部为普通辉长岩体,东北部为磁铁矿化辉长岩体。西南辉长岩体中分布着20多个同时代的镁铁-超镁铁质岩体,主要由橄榄岩、辉石岩、辉长岩和斜长岩组成,具有堆晶结构和岩浆矿物韵律层等层状岩体特征(汤庆艳等,2015)。坡一超镁铁质岩体主要岩相为纯橄岩、橄榄岩、橄榄辉石岩、辉石岩及少量的橄榄辉长岩相(Liu Yuegao et al.,2017)。坡一、坡十和坡东超镁铁质岩体主要赋存镍钴硫化物矿床; 东北部磁铁矿化辉长岩岩体产出小常山铁矿(图2a)。
-
磁海镁铁-超镁铁杂岩体由橄榄辉长岩、辉长岩和辉绿岩组成,中部为辉长岩,磁南有少量辉长岩出露(王玉往等,2018),辉长岩和辉绿岩为渐变过渡,岩体侵位深度自西向东逐渐变浅(图2b)。辉绿岩呈岩株状NNE向产出,分布范围较大。
-
1.3 镁铁-超镁铁岩体年代学
-
对北山地区镍钴硫化物矿床和铁钴氧化物矿床进行了较多的锆石U-Pb年代学研究,赋矿镁铁-超镁铁质杂岩体年龄主要分布在289~260 Ma,表1列出辉长岩锆石U-Pb年龄、角闪石40Ar-39Ar年龄及黄铁矿Re-Os年龄等年代学数据。
-
坡北岩带辉长岩锆石U-Pb年龄主要集中在284~269.9 Ma(图3,表1),辉长岩锆石U-Pb年龄从坡东、坡五、坡三、坡一、坡七到坡十岩体依次增高; 坡一和坡东苏长岩锆石U-Pb年龄(271~270 Ma)均小于坡北辉长岩年龄(284~274 Ma)。坡北东北部小常山铁钴氧化物矿床磁铁矿化辉长岩年龄与坡北硫化物矿物年龄一致,表明坡北氧化物与硫化物矿床岩浆可能为同期岩浆的产物。坡北岩带中坡北杂岩体年龄(277~273 Ma)比其余岩体较小(图3,表1),如西端罗东辉长岩锆石U-Pb年龄(284 Ma和283.8 Ma)、东边启鑫大型层状镁铁-超镁铁杂岩体橄榄辉长苏长岩年龄为286.6 Ma。
-
图2 塔里木克拉通坡北(a)(据Liu Yuegao et al.,2017修改)和磁海(b)(据Huang Xiaowen et al.,2013修改)镁铁-超镁铁质杂岩体地质图(年龄数据来源见表1)
-
Fig.2 The geological maps of mafic-ultramafic complex in the Pobei (a) (modified from Liu Yuegao et al., 2017) and Cihai (b) (modified from Huang Xiaowen et al., 2013) area in Tarim craton, China (age data sources are shown in Table1)
-
红石山岩带中笔架山、红石山、旋窝岭和罗东岩体年龄介于286~260.7 Ma,年龄跨度大,和坡北杂岩体形成的镁铁超镁铁质岩年龄一致,二者可能为同一构造环境同期岩浆活动的产物。
-
磁海镁铁岩体的年龄(286.5~263.8 Ma)与坡北镁铁-超镁铁质岩体年龄范围一致。磁海角闪辉长岩、辉绿辉长岩到粗晶辉长岩年龄依次减小,年龄跨度为294~276.1 Ma,磁南辉长岩锆石U-Pb年龄(273.0 Ma)较小。磁海含矿辉绿岩锆石U-Pb年龄有263.8 Ma和306.9 Ma,块状磁铁矿中角闪石40Ar-39Ar年龄为281.9 Ma,黄铁矿Re-Os年龄为262.3 Ma,表明磁海铁钴矿床具有多期成矿与成岩时间相近的特征。
-
图3 塔里木克拉通东北缘镁铁-超镁铁杂岩体年龄数据分布图(数据来源见表1)
-
Fig.3 The age distribution of the mafic-ultramafic complexes in the northeastern margin of Tarim craton, China (age data sources are shown in Table1)
-
磁海辉绿岩年龄(306.9~263.8 Ma)、辉长岩和玄武岩年龄(分别为279 Ma和276 Ma)与北山地区镁铁-超镁铁岩体产出年龄相同(图3,表1)。镁铁-超镁铁岩体中广泛分布大量的南北向的辉绿岩脉(Mao Jingwen et al.,2012),比镁铁-超镁铁岩体(290~270 Ma)产出时间较晚。
-
2 矿床地质
-
塔里木克拉通东北缘石炭纪晚期—二叠纪早期幔源岩浆作用形成的镁铁-超镁铁质杂岩体赋存镍钴硫化物矿床和铁钴氧化物矿床(Zhang Mingjie et al.,2017,2019),典型镍钴硫化物矿床和铁钴氧化矿床的矿床地质特征见表2。
-
坡北杂岩体西南部超镁铁质岩体中产出超大型铜镍钴硫化物矿床,以富集镍为特征。其中坡一镍钴硫化物矿床中扣除镍品位低于0.2%后的镍金属储量为130万t,铜金属储量22万t,钴金属储量6万t(Xia Mingzhe et al.,2013; Xue Shengchao et al.,2016; 王焰等,2020)。红石山镁铁-超镁铁杂岩体镍矿石储量超过200万t,伴生Co和Cu金属资源等(杨洋等,2014)。
-
坡一镍钴硫化物矿体厚大,赋存于超基性岩相的底部及边部,主要含矿岩石为橄榄岩。矿体呈似层状和透镜状(最长约1612 m)。主要矿石类型为稀疏浸染状,局部见有贯入式富矿体,品位较低。矿石矿物主要为磁黄铁矿、镍黄铁矿、黄铁矿等。坡十岩体镍钴硫化物矿体主要产于二辉(角闪)橄榄岩的中下部或底部,呈弧形或似盆状。矿石构造以浸染状为主,局部可见块状构造。坡东岩体中硫化物矿体赋存于辉长苏长岩相中。
-
小常山小型铁矿床规模较小,矿体呈透镜状、块状和脉状等,产出于辉长岩及其与大理岩的交界部位,矿石构造主要为块状、浸染状和条带状等。块状矿石中磁铁矿含量约80%,浸染状矿石分布在主矿体边缘,磁铁矿含量30%~50%; 条带状矿石主要产于近地表的大理岩中,厚约5~10 cm(Ma Jian et al.,2016; Liu Yuegao et al.,2017)。
-
注:*-相关金属储量暂无资料。
-
磁海铁钴矿床包括磁海、磁西和磁南三个岩体(图2b),主要有橄榄辉长岩、橄长岩、辉长岩和角闪辉长岩等岩相,以及玄武岩-辉绿岩等火山—潜火山喷出和超浅成岩相。铁金属储量大于130万t,钴金属储量约1万t(王焰等,2020; Wang Yinhong et al.,2020)等。磁海铁钴矿主要赋存于早期的辉绿岩、辉长岩和矽卡岩中(Zheng Jiahao et al.,2015),主要含矿岩石是辉石岩,辉长岩和辉绿岩不含磁铁矿,仅含极少量钛铁矿(陈博等,2015)。金属矿物主要为磁铁矿及微量的褐铁矿和黄铁矿,矿石结构主要为块状、浸染状和条带状,有明显的岩浆贯入现象。高品位的铁矿石普遍由磁铁矿、透闪石、绿泥石等组成,品位较低的铁矿石主要由磁铁矿、透闪石和石榴子石组成。
-
磁海辉长岩和深部辉石岩中存在铜镍硫化物矿化,岩体下部和边部发现富硫化物的贫铁矿石; 磁南辉长岩中发现独立的铜镍钴硫化物矿化体(孟庆鹏等,2014; Wang Yinhong et al.,2020)。Co(-Ni-Cu)硫化物以晚期脉体、块体等形式对铁矿石进行交代和改造(王玉往等,2018)。磁海矿床中Co含量较高,磁铁矿矿石中Co含量平均为118.5×10-6,硫化物矿石中Co最高可达928.7×10-6,矿石中镍钴独立矿物主要为红砷镍矿、辉砷钴矿和斜方砷钴矿,部分Co以类质同象形式赋存于磁黄铁矿、黄铜矿和黄铁矿中(唐萍芝等,2012)。
-
3 岩浆性质
-
3.1 岩浆性质
-
北山二叠纪镁铁-超镁铁杂岩体和磁海镁铁质岩体SiO2、Al2O3和CaO与MgO含量呈负相关,Fe2O3和MgO呈正相关(图4)。坡一和红石山等不同岩体分布于不同演化线上,呈现不同的演化趋势,坡北杂岩体橄榄石Fo值与Ni含量正相关(汤庆艳等,2015)。
-
图4 塔里木克拉通东北缘镁铁-超镁铁岩体主量元素含量图解
-
Fig.4 The diagrams of major element contents of the mafic-ultramafic complexes in the northeastern margin of Tarim craton, China
-
数据来源:唐萍芝等,2010; Song Xieyan et al.,2011; 齐天骄等,2012; Su Benxun et al.,2012a; Xia Mingzhe et al.,2013; 孟庆鹏等,2014; 薛胜超等,2015; 陈博等,2015; Liu Yuegao et al.,2017; 王玉往等,2018; Xue Shengchao et al.,2018,2019; Wang Yinhong et al.,2020
-
Data source: Tang Pingzhi et al., 2010; Song Xieyan et al., 2011; Qi Tianjiao et al., 2012; Su Benxun et al., 2012a; Xia Mingzhe et al., 2013; Meng Qingpeng et al., 2014; Chen Bo et al., 2015; Xue Shengchao et al., 2015, 2018, 2019; Liu Yuegao et al.2017; Wang Yuwang et al., 2018; Wang Yinhong et al., 2020
-
塔里木克拉通东北缘镍钴硫化物矿床和铁钴氧化物矿床相关的镁铁-超镁铁质岩体具有相似的稀土元素、微量元素配分模式,为轻稀土富集-平坦型(Ao Songjian et al.,2010; Song Xieyan et al.,2011; 姜常义等,2012; Su Benxun et al.,2013; Ma Jian et al.,2016; Tang Dongmei et al.,2017; Xue Shengchao et al.,2018)。磁海镁铁-超镁铁岩体属于钙碱性玄武岩系列(唐冬梅等,2010; 孟庆鹏等,2014; 陈博等,2015),磁海辉绿岩、辉长岩稀土、微量元素配分模式与坡北辉长岩相似(图5a、b、c),稀土呈平坦型或LREE弱富集型配分模式(图5a、c),铁氧化物矿的∑REE高于镍钴硫化物矿床,且具有明显的Eu负异常,可能发生了斜长石的分离结晶(图5a)。
-
镁铁-超镁铁杂岩体微量元素与原始地幔相比,大离子亲石元素Ba、U、Th、Pb、Sr和Pb富集,高场强元素Nb、Ta、Ti、Zr和Hf亏损,铁钴氧化物矿床更加富集不相容元素(图5b)。磁海辉长岩的微量元素U、Zr含量较高,辉绿岩体部分样品呈现Ta、Zr、Hf、Ti弱负异常(图5d)。铁钴氧化物矿床岩浆相对于镍钴硫化物矿床岩浆演化程度较高(Xue Shengchao et al.,2019; Ruan Banxiao et al.,2021)。
-
北山二叠纪有两期辉绿岩,坡东、磁海地区等铜镍硫化物与铁钴氧化物成矿同期280~270 Ma的辉绿岩稀土具有平坦的配分模式,罗东地区晚阶段266 Ma岩脉稀土配分模式具有明显的轻稀土富集。∑REE与塔里木基性岩脉相似,北山辉绿岩脉中Nb正异常、Ta负异常,Zr、Hf没有明显的负异常特征,Ti具有弱负异常(图5c、d),与塔里木基性岩脉相似(林瑶等,2014)。
-
图5 塔里木克拉通东北缘坡北(a、b)和磁海(c、d)镁铁-超镁铁质岩体稀土元素和微量元素配分模式图
-
Fig.5 Chondrite-normalized patterns of REE (a, b) and primitive mantle-normalized patterns of trace elements (c, d) for diabase and gabbro in the northeastern margin of Tarim craton
-
(a)—辉长岩稀土元素配分模式图;(b)—辉长岩微量元素配分模式图;(c)—磁海辉绿岩体与辉绿岩脉稀土元素配分模式图;(d)—磁海辉绿岩体与辉绿岩脉微量元素配分模式图。数据来源:Zhou Meifu et al.,2009; Song Xieyan et al.,2011; 孟庆鹏等,2014; Wang Yinhong et al.,2020; Zhang et al.2021; 标准化值据Sun and Mc Donough,1989
-
(a) —Chondrite normalized REE patterns of gabbro; (b) —primitive mantle normalized trace element patterns of gabbro; (c) —chondrite-normalized REE patterns of Cihai diabase and diabase dikes; (d) —primitive mantle normalized trace element patterns of Cihai diabase and diabase dikes. Data source: Zhou Meifu et al., 2009; Song Xieyan et al., 2011; Meng Qingpeng et al., 2014; Wang Yinhong et al., 2020; Zhang et al.2021. The normalization values are from Sun and McDonough (1989)
-
3.2 成矿岩浆源区
-
岩浆源区是控制岩浆主要成分和物理化学条件的关键因素,Sr-Nd同位素和锆石Lu-Hf同位素体系可保留岩浆源区信息,示踪岩浆源区。坡北镍钴硫化物矿床镁铁-超镁铁质岩体的(87Sr/86Sr)i值为0.7009~0.7094,εNd值为-4.25~+9.66,Sr-Nd同位素位于亏损地幔(DM)与OIB范围之间(姜常义等,2006,2012; Zhang Yuanyuan et al.,2011; Xia Mingzhe et al.,2013; 汤庆艳等,2015; Xue Shengchao et al.,2018,2019)。岩浆结晶最早的硅酸盐矿物橄榄石可揭示岩浆源区信息,坡北镁铁-超镁铁杂岩体橄榄石δ18O 值为6.0‰~7.2‰(Xue Shengchao et al.,2018),高于地幔值~5.3‰,表明岩浆源区是受俯冲板片的交代地幔。稀有气体及碳同位素证明存在地幔柱岩浆作用的叠加(Zhang Mingjie et al.,2017,2019),源区可能存在深部物质的贡献。
-
磁海和磁南辉长岩中单斜辉石、磷灰石和磁铁矿地球化学特征表明起源于同一个岩浆源区(Tang Dongmei et al.,2017)。铁钴氧化物矿床镁铁岩体的(87Sr/86Sr)i值为0.706~0.711,εNd(t)值为+2.7~+6.1(侯通,2014),与镍钴硫化物矿床镁铁-超镁铁岩体相似,具有相对较高的Ba/La和Sr/Nd,较低的Th/Yb,呈现高εNd(t)和低(87Sr/86Sr)i特征,表现出DM向EMII和下地壳演化的趋势,磁海全岩的εNd(t)值、稀土元素特征和锆石Hf-O同位素表明岩浆源区为俯冲板片交代的亏损地幔或软流圈地幔(Song Xieyan et al.,2011; Su Benxun et al.,2011; Mao Jingwen et al.,2015; Zheng Jiahao et al.,2015; Wang Yinhong et al.,2020)。
-
北山镁铁-超镁铁质杂岩体锆石εHf(t)值介于-0.8~+16.6之间。镍钴硫化物矿床镁铁-超镁铁质杂岩体的εHf(t)为-0.8~+16.6(姜常义等,2006; 苏本勋等,2009; Su Benxun et al.,2011; Qin Kezhang et al.,2011; Xue Shengchao et al.,2018,2019; Ruan Banxiao et al.,2021); 铁钴氧化物矿床镁铁质岩体的εHf(t)为+1.5~+18.6(孟庆鹏等,2014; Liu Yuegao et al.,2017; Wang Yinhong et al.,2020),两者具有相似的Hf同位素特征,分布在球粒陨石和亏损地幔演化线之间,岩浆源区具有亏损地幔特征(图6)。北山地区镍钴硫化物矿床和铁钴氧化物矿床赋矿镁铁-超镁铁杂岩体的εHf(t)与(176Hf/177Hf)i呈现相关性(图6a、b),相似的Hf和Sr-Nd同位素特征揭示相同的岩浆源区。东昆仑造山带夏日哈木镍钴硫化物矿床镁铁-超镁铁岩体的εHf(t)与(176Hf/177Hf)i在不同的相关线上(图6b,Li Chusi et al.,2015)。
-
3.3 成矿母岩浆
-
北山镁铁-超镁铁质杂岩体含有大量的橄长岩,具有相似的PGE配分模式,与含大量橄长岩的Duluth和Voisey's Bay岩体类似,母岩浆为高MgO的玄武质岩浆或苦橄质岩浆,源区部分熔融程度较高,岩浆规模巨大。母岩浆较高的MgO含量高于临区中亚造山带铜镍硫化物矿床母岩浆的MgO含量。高MgO的母岩浆来自洋岛型地幔源区或亏损型大陆岩石圈地幔源区中等程度的部分熔融(姜常义等,2012)。
-
图6 塔里木克拉通东北缘镁铁-超镁铁岩体εHf(t)与U-Pb年龄(a)和(176Hf/177Hf)i(b)图解
-
Fig.6 Diagrams of εHf (t) vs. U-Pb age (a) and (176Hf/177Hf) i (b) of the mafic-ultramafic complexes in the northeastern margin of Tarim craton
-
数据来源:姜常义等,2006; 苏本勋等,2009; Su Benxun et al.,2011; 孟庆鹏等,2014; Liu Yuegao et al.,2017; Xue Shengchao et al.,2018,2019; Wang Yinhong et al.,2020; Ruan Banxiao et al.,2021
-
Data source: Jiang Changyi et al., 2006; Su Benxun et al., 2009, 2011; Meng Qingpeng et al., 2014; Liu Yuegao et al., 2017; Xue Shengchao et al., 2018, 2019; Wang Yinhong et al., 2020; Ruan Banxiao et al., 2021
-
磁南和磁海有相同的岩浆源区,磁海辉绿岩、辉长辉绿岩、角闪石英正长岩及磁南辉石岩、辉长岩为同源岩浆演化的产物。磁海早二叠世发育同期的铜镍和钛铁两个系列的幔源岩浆系列,铜镍系列岩浆Cu、Ni和Co含量较高,形成铜镍钴矿化体,与矿床中Co的来源关系密切。钛铁系列中Cu、Ni含量较低而TiO2含量较高(王玉往等,2018)。
-
在岩浆演化过程中,分配系数相近的高场强元素Ta/Yb、Nb/Y、Hf/Nb和Zr/Nb比值受部分熔融和分离结晶分馏的影响小,同源喷出岩在Ta/Yb-Nb/Y、Hf/Nb-Zr/Nb图中分布在同一相关直线上(Saunders et al.,1988)。北山镁铁-超镁铁质岩体经历了结晶分异、岩浆混合及地壳混染等复杂的演化过程,其Ta/Yb-Nb/Y和Hf/Nb-Zr/Nb具有较强的相关性,分布在同一相关直线上(图7a、b),显示相同的母岩浆组成与性质。
-
岩浆分离结晶和地壳混染对幔源岩浆的Th/Yb和Nb/Yb值的影响有限(Song Xieyan et al.,2011)。流体对Ba、Sr、Pb等元素具有较强的迁移能力,对Th和REE的影响有限,因此Ba/La和Th/Yb元素的分馏可以有效鉴定俯冲流体的加入(Woodhead et al.,2001; Plank,2005)。北山镁铁-超镁铁杂岩体Ba/La比值变化大,而Th/Yb比值低且变化小,表明母岩浆中地壳混染较弱,存在俯冲板片来源的交代流体(图7c)。Th/Yb和Nb/Yb值的变化可能是分离结晶造成的(图7d)。
-
图7 塔里木克拉通东北缘镁铁-超镁铁杂岩体微量元素图解
-
Fig.7 Diagrams of trace elements in the mafic-ultramafic complex in the northeastern margin of Tarim craton
-
(a)—Hf/Nb-Zr/Nb图解(据Saunders et al.,1988);(b)—Ta/Yb-Nb/Y图解(据Saunders et al.,1988);(c)—Ba/La-Th/Yb图解(据Woodhead et al.,2001);(d)—Nb/Yb-Th/Yb图解(据Pearce and Peate.,1995)。岩体数据来源:唐萍芝等,2010; Song Xieyan et al.,2011; Su Benxun et al.,2012; 齐天骄等,2012; Xia Mingzhe et al.,2013; 孟庆鹏等,2014; 陈博等,2015; 王玉往等,2018; Xue Shengchao et al.,2018,2019; Wang Yinhong et al.,2020; 上地壳(UC):Rudnick and Gao(2003); 原始地幔(PM):McDonough and Sun(1995); OIB,N-MORB和E-MORB:Sun and McDonough(1989)
-
(a) —Hf/Nb-Zr/Nb diagram (after Saunders et al., 1988) ; (b) —Ta/Yb-Nb/Y diagram (after Saunders et al., 1988) ; (c) —Ba/La-Th/Yb diagram (after Woodhead et al., 2001) ; (d) —Nb/Yb-Th/Yb diagram (after Pearce and Peate, 1995) . Data source: Tang Pingzhi et al., 2010; Song Xieyan et al., 2011; Su Benxun et al., 2012; Qi Tianjiao et al., 2012; Xia Mingzhe et al., 2013; Meng Qingpeng et al., 2014; Chen Bo et al., 2015; Wang Yuwang et al., 2018; Xue Shengchao et al., 2018, 2019; Wang Yinhong et al., 2020; Upper crust (UC) : Rudnick and Gao (2003) ; Primitive mantle (PM) : McDonough and Sun (1995) ; OIB, N-MORB and E-MORB: Sun and McDonough (1989)
-
北山二叠纪镍钴硫化物矿床和铁钴氧化物矿床镁铁-超镁铁杂岩体的母岩浆具有相似的性质,来自于二叠纪时期的同一构造环境地幔岩浆源区的不同程度部分熔融。
-
4 成矿条件
-
4.1 成矿机制
-
北山二叠纪镍钴硫化物矿床和铁钴氧化物矿床成矿机制已分别进行了论证,不同矿床对比研究较少(汤庆艳等,2015; Liu Yuegao et al.,2017)。不同类型岩浆矿床在岩浆源区、部分熔融程度和岩浆演化等成矿机制不同,铜镍硫化物矿床为地幔橄榄岩浆源区高程度部分熔融形成的低Ti高Mg母岩浆硫化物熔离作用的产物,铁氧化物矿床是富铁岩浆源区(榴辉岩和辉石岩)低程度部分熔融产生的高Ti-Fe岩浆分离结晶形成的(Zhou Meifu et al.,2008; Zhang Zhaochong et al.,2009; Hou Tong et al.,2011,2013)。坡北镍钴硫化物矿床与磁海铁钴氧化物矿床相距较远,成矿机制可能不同。
-
坡北镍钴硫化物矿床以富集镍钴为特征,PGE含量低,Pt、Pd相对富集,具IPGE亏损型原始地幔标准化PGE配分型式(汤庆艳等,2015)。镁铁质成矿母岩浆富含铜镍钴、岩浆硫饱和-硫化物熔离是镍钴富集成矿的重要机制。坡北岩体的部分熔融程度较高,母岩浆规模巨大可聚集足量的铜镍钴成矿元素(姜常义等,2012)。
-
岩浆硫饱和主要受岩浆结晶分异、地壳物质混染、外来硫加入及温度、压力、氧逸度和FeO含量的影响(Haughton et al.,1974; Wendlandt,1982; Maverogenes and O'Hugh,1999; Li Chusi and Ripley,2009)。地壳硅铝质物质加入、氧逸度的升高(Fe2+转变为Fe3+等)、橄榄石等矿物分离结晶,使得岩浆体系中FeO含量降低和硫含量的增加,有利于岩浆硫化物的饱和。北山二叠纪镍钴硫化物矿床岩浆演化过程中经历了分离结晶作用、不同程度的地壳混染。地壳混染可能是硫化物熔离的关键因素,母岩浆在地幔源区或侵位之前经历了硫化物熔离(汤庆艳等,2015; Ma Jian et al.,2016)。
-
磁海早二叠世同期的铜镍和钛铁两个系列的幔源岩浆演化过程不同,铜镍系列岩浆同化混染作用强烈,Cu、Ni和Co含量较高,赋存有铜镍钴矿化体,与矿床中Co的来源关系密切。钛铁系列同化混染作用较弱,岩石中Cu、Ni含量较低,TiO2含量较高(王玉往等,2018)。
-
北山镍钴硫化物和铁钴氧化物矿床成矿作用共同的特征是富集钴,镁铁-超镁铁岩体中Co含量随着SiO2的升高而降低,磁海与坡东样品分布于同一趋势线(图8a); 镍钴硫化物矿床镁铁-超镁铁质岩体钴含量明显高,Ni与Co含量具有正相关关系(图8b); 铁钴氧化物矿床镁铁质岩体的钴与镍含量较低,也具有正相关关系(图8c),表明不同成矿类型镁铁质岩石中镍钴富集机制相似,岩浆硫化物矿床中硅酸盐矿物钴含量受控于硅酸盐矿物和熔体间Co的分配系数,在硫化物中受控于分配系数和R值(Gaetani and Grove,1997); 在氧化物矿床中受控于磁铁矿和钛铁矿与熔体的分配系数。
-
镍钴硫化物矿床Ni含量高的红石山样品中镍钴相关性较弱(图8b),铁钴矿床中磁铁矿矿石镍钴相关性较弱,Co-Zn呈现较强的相关性(图8d),表明块状硫化物矿石和磁铁矿中Co与Ni的富集机制不同,可能与Zn的富集机制相似(图8d)。在岩浆作用晚期Co与Ni、Zn、Fe等进人硫砷化合物,转入气成热液,受热液作用控制。
-
铁钴氧化物矿床是较深岩浆房中高程度岩浆分异作用后向上侵位形成的。如Bushveld杂岩体主带和上部带中的钒钛磁铁矿床位于偏上部,是分离结晶作用的结果(Cawthorn and McCarthy,1980; Tegner et al.,2006)。磁海岩浆演化早期磁铁矿先于钛铁矿分离结晶,磁铁矿分离结晶完后,辉长岩结晶开始阶段以结晶分异作用为主,岩浆熔离-金属硫化物结晶介于两者之间(陈博等,2015)。早期的辉长岩富含Co元素,后期的基性岩浆浅成侵入形成辉绿岩和铁矿体(王玉往等,2018)。
-
镁铁质岩浆晚期热液活动可活化富集Co(杨经绥等,1999; 王焰等,2020)。磁海后期岩浆热液活动促使辉长岩中Co的活化、迁移和富集。磁海Co(Ni-Cu)硫化物为晚期脉体(王玉往等,2018)、块体等形式,磁海磁铁矿(Co)矿体形成受控于热液作用,基性-超基性岩浆有关的热液对Fe氧化物矿石进行交代和改造,Co的成矿晚于磁铁矿,在磁铁矿成矿后(潜)火山热液活动对与磁铁矿共生的黄铁矿交代形成含钴黄铁矿和其他钴矿物,形成磁海铁钴矿床(王玉往等,2018)。
-
金属成矿机制与矿物的赋存状态相关,磁海磁铁矿石中钴主要在含黄铁矿的磁铁矿矿石中富集,并形成钴的独立矿物辉砷钴矿和斜方砷钴矿,包裹早期形成的磁铁矿,与磁黄铁矿、黄铜矿和黄铁矿共生; 而Ni富集于红砷镍矿中,常与辉砷钴矿密切共生,但Co含量明显较为富集,与后期热液Co较强迁移富集有关(王玉往等,2006; 唐萍芝等,2012; 郑佳浩等,2014)。磁海黑云母辉绿岩中,Co主要分布在黄铁矿边部,含磁铁矿矽卡岩中黄铁矿中部的Co含量较高,均反映Co主要在后期热液过程中富集(唐萍芝等,2012)。
-
图8 塔里木克拉通东北缘镁铁-超镁铁岩Co与SiO2、Ni和Zn含量图解
-
Fig.8 The diagrams of Co content vs. SiO2, Ni contents and magnetite ore Zn contents in mafic-ultramafic complexes in the northeastern margin of Tarim craton
-
(a)—镍钴硫化物-铁钴氧化物矿床镁铁-超镁铁岩Co-SiO2含量图解;(b)—硫化物矿床镁铁-超镁铁岩Co-Ni含量图解;(c)—铁钴氧化物矿床镁铁-超镁铁岩Co-Ni含量图解;(d)—磁铁矿矿石Ni和Zn与Co含量图解。数据来源:Song Xieyan et al.,2011; Su Benxun et al.,2012a; 齐天骄等,2012; Xia Mingzhe et al.,2013; 孟庆鹏等,2014; 陈博等,2015; Tang Dongmei et al.,2017; 王玉往等,2018; Xue Shengchao et al.,2018,2019; Wang Yinhong et al.,2020
-
(a) —The SiO2-Co content diagram of Ni-Co sulfide and Fe-Co oxide deposit in mafic-ultramafic complexes; (b) —the Co-Ni content diagram of magmatic sulfide deposits in mafic-ultramafic complexes; (c) —the Co-Ni content diagram of Fe-Co oxide deposit in mafic-ultramafic complexes; (d) —the Co with both Ni and Zn content diagram of magnetite ore. Data source: Song Xieyan et al., 2011; Su Benxun et al., 2012; Qi Tianjiao et al., 2012; Xia Mingzhe et al., 2013; Meng Qingpeng et al., 2014; Chen Bo et al., 2015; Tang Dongmei et al., 2017; Wang Yuwang et al., 2018; Xue Shengchao et al., 2018, 2019; Wang Yinhong et al., 2020
-
4.2 成矿条件
-
岩浆铁钴氧化物矿床和镍钴硫化物矿床分别形成于相对氧化和还原的环境中,成矿物理化学条件差异较大。在空间上共生的两类矿床多为独立的岩浆体系,成因上没有联系,但地幔柱岩浆成因的硫化物矿床与钛铁氧化物矿床可能具有成因联系,如Busheveld杂岩体(Cawthorn and McCarthy,1980)和我国峨眉山大火成岩省镁铁-超镁铁质岩体(Zhu Weiguang et al.,2010)相关矿床。坡北杂岩体中赋存的坡一镍钴硫化物矿床等及小常山铁钴氧化物矿床存在成因联系(Liu Yuegao et al.,2017),说明北山二叠纪镁铁质岩浆具有形成氧化物矿床和硫化物矿床的地质条件。一般的,岩浆硫化物和氧化物共生的矿床有两种形成方式:
-
(1)岩浆镍钴硫化物矿床和铁钴氧化物矿床是同一岩浆演化的不同阶段的产物,如高镁玄武质岩浆高度分异演化,早期形成镍钴硫化物矿床,演化后期的高氧逸度、富含流体和富Fe的岩浆形成铁钴氧化物矿床(Scoon and Mitchell,1994; 王玉往等,2006,2009; 肖庆华等,2010)。Bushveld层状杂岩体为同一母岩浆演化成矿机制,玄武质岩浆早期堆晶形成超基性岩体,主要赋存镍钴硫化物矿床,岩浆演化后期岩浆富含Fe和流体组分,形成铁钴氧化物矿床(Tegner et al.,2006; Zeh et al.,2015)。
-
(2)周期性的岩浆供给、压力变化和氧逸度变化可以形成铬铁矿和岩浆硫化物,两者以互层韵律的形式出现,硫化物多以PGE矿为主(Zhu Weiguang et al.,2010; Zhong Hong et al.,2011; She Yuwei et al.,2017)。坡北铜镍矿和磁铁矿以不同的岩体出现,因此不可能是周期性岩浆供给、压力变化和氧逸度变化引起的铜镍矿和磁铁矿共生系统。
-
坡北镁铁-超镁铁质杂岩体中坡一等镍钴硫化物矿床和小常山铁钴氧化物矿床被认为是二叠纪时期同一母岩浆演化,在深部岩浆房下部形成硫化物岩浆,上部形成Fe氧化物岩浆,然后分别侵入地壳形成的(Liu Yuegao et al.,2016,2017)。北山早二叠纪镁铁-超镁铁质岩体岩浆硫化物和铁氧化物成矿系统的形成条件可能不同。
-
氧逸度是镍钴硫化物和铁钴氧化物矿床形成的重要条件之一。氧逸度对岩浆体系硫溶解度(SCSS和SCAS)的影响不同,对氧化的镁铁质熔体(~QFM+2至QFM)具有极为显著的影响,氧逸度对还原的镁铁质熔体(≤QFM)硫溶解度的控制作用极为有限(Jugo,2009)。北山镍钴硫化物矿床的氧逸度低于铁钴氧化物矿床。镍钴硫化物矿床需要相对低的氧逸度,相对还原条件下玄武质岩浆结晶分异过程中SCSS与FeO正相关,与压力反相关(Haughton et al.,1974; Mavrogenes and O'Neill,1999)。坡一铬铁矿的Fe3+/ΣFe总体小于0.3(吴建亮等,2017); 氧逸度低可使硫化物饱和的岩浆中的硫含量降低,促进硫化物熔离。铁钴氧化物矿床具有较高的氧逸度,磁海磁铁矿的Fe3+/ΣFe大多处于0.7~1.1之间(Tang Dongmei et al.,2017)。
-
成矿岩浆中地壳混染程度是北山镍钴硫化物矿床和铁钴氧化物矿床成矿的重要条件。高程度地壳物质混染是北山二叠纪镍钴硫化物矿床硫化物熔离成矿的关键因素(Song Xieyan et al.,2011; Su Benxun et al.,2011; Mao Yajing et al.,2015; Zheng Jiahao et al.,2015; Wang Yinhong et al.,2020)。磁海母岩浆演化、上侵过程中地壳混染不明显(陈博等,2015; Wang Yinghong et al.,2020),贫Fe的岩浆快速上升至浅部或地表形成辉绿岩,然后Fe-Ti氧化物岩浆侵入到早期的辉绿岩中,形成磁海矿床(Tang Dongmei et al.,2017)。
-
成矿岩浆中水等流体含量高是北山镍钴硫化物矿床和铁钴氧化物矿床形成的条件之一。坡北镁铁-超镁铁杂岩体中普遍存在角闪石和金云母等原生含水矿物(Su Benxun et al.,2013; Zheng Jiahao et al.,2015; Liu Yuegao et al.,2017; Zhang Mingjie et al.,2019; Wang Yinhong et al.,2020),母岩浆中存在俯冲板片来源的交代流体(图7c)。挥发分中H2O含量平均达4082 mm3/g(Zhang Mingjie et al.,2017),与西伯利亚大火成岩省的Noril'sk矿床相似。
-
磁海铁矿化和镁铁质岩浆密切相关,铁钴氧化物矿床镁铁质岩浆具有富Fe、挥发分(H2O、HCl、HF)及高氧逸度和富碱质的特征,一般形成于岩浆演化晚期或演化程度相对较高的岩浆体系。岩浆加入水后,从结晶辉石转为以铬铁矿结晶为主,Bushveld岩浆中水的加入导致大量铬铁矿的结晶(Scoon and Mitchell,1994; Veksler and Hou,2020)。另一方面,磁海Co矿化与岩浆-热液作用相关(Huang Xiaowen et al.,2013)。Co主要矿物辉钴矿多产于磁黄铁矿边部,与石英共生,富钴黄铁矿主要产在团块状、自形粒状黄铁矿边部、或裂隙发育部位,证明为后期热液交代富集形成。
-
塔里木克拉通东北缘北山镁铁质岩浆作用持续时间较长,岩体年龄位于289~260.7 Ma(Xu Yigang et al.,2014),同期还发育中基性火山岩和花岗岩(Wei Xun et al.,2014),介于塔里木大火成岩省玄武岩及超镁铁质岩体年龄范围(Li Zilong et al.,2011; Cao Jun et al.,2014)。
-
4.3 动力学背景
-
北山镁铁-超镁铁质杂岩体发育的构造背景有岛弧或后碰撞伸展环境(李华芹等,2006,2009; Ao Songjian et al.,2010; Song Xieyan et al.,2011; Xue Shengchao et al.,2016a,2018,2019; Wang Yinhong et al.,2020)、裂谷(Huang Xiaowen et al.,2013)或地幔柱(Qin Kezhang et al.,2011; Su Benxun et al.,2011,2012b; 姜常义等,2012; Pirajno et al.,2013; Chen Shi et al.,2016; Liu Yuegao et al.,2016; Ma Jian et al.,2016)。磁海铁钴氧化物矿床形成构造环境可能为裂谷环境(Huang Xiaowen et al.,2013)。
-
不同构造环境中不同组成幔源岩浆的演化趋势不同,拉斑和钙碱性玄武岩浆分异系列分别遵循Fenner和Bowen趋势,洋中脊岩浆系统具贫水、低氧逸度特征,岩浆分异遵循Fenner趋势,形成富Fe-Ti的熔体。可见洋中脊环境的Fe-Ti熔体是MORB岩浆高程度分离结晶形成的,而大陆层状岩体中Fe-Ti熔体通过不混溶作用形成,需要大型岩浆房,且要求岩浆房存续时间长。大型层状岩体上部的磁铁矿矿床中磁铁矿层是岩浆演化晚期氧逸度的阶段性突然升高,经原地的岩浆结晶分异作用形成,斜长石结晶造成Fe和Ti(V)富集(Reynolds,1985)。攀枝花与Bushveld钒钛磁铁矿床是典型分离结晶作用的结果(Cawthorn and McCarthy,1980)。
-
北山镁铁-超镁铁岩体LREE不富集,Nb、Ta负异常和K、Pb正异常,与岛弧或后碰撞岩浆作用相关(Ao Songjian et al.,2010; Song Xieyan et al.,2011; Xue Shengchao et al.,2018)。全岩εNd(t)较高,初始87Sr/86Sr较低,锆石εHf(t)和 δ18O 较高,是地幔源区被俯冲板片改造和壳源物质混染的特征(Ao Songjian et al.,2010; Zhang Yuanyuan et al.,2011; Xue Shengchao et al.,2018; Wang Yinhong et al.,2020)。
-
北山镁铁-超镁铁杂岩体和塔里木盆地玄武岩年龄有共同的时间峰值(~280 Ma,图3),坡一橄榄岩的Sr、Nd、Os同位素组成位于洋岛玄武岩值范围,地壳混染程度极低(姜常义等,2012),年龄约280 Ma锆石的εHf(t)和δ18O值分布范围大(Su Benxun et al.,2011),早期镁铁-超镁铁杂岩体具有高Mg,低Ti特征,后期玄武岩具有高Ti特征,这些特征指示二叠纪地幔柱岩浆的贡献(Qin Kezhang et al.,2011; Su Benxun et al.,2011,2012)。
-
坡北地区分布两期辉绿岩脉在年龄和地球化学特征上有所不同,早期辉绿岩脉(~280 Ma)与二叠纪北山硫化物和氧化物矿床的镁铁-超镁铁杂岩体和辉绿岩相似,为平坦型稀土配分模式,Nb-Ta明显负异常和高εNd(t)值(5.5~7.5)(Xue Shengchao et al.,2016)。晚期辉绿岩脉(~266 Ma)与塔里木基性岩脉相似,呈轻稀土富集型稀土配分模式,Nb-Ta明显负异常,低εNd(t)值(-1.2~2.6)和较高的初始87Sr/86Sr比值(Xue Shengchao et al.,2016)。
-
磁南的单斜辉石矿物成分和塔里木镁铁质侵入体相似,磁南和磁海可能具相同的岩浆源区(Tang Dongmei et al.,2017)。磁海镁铁-超镁铁岩体形成于拉伸环境(唐冬梅等,2010),成岩及成矿作用与时空最近的塔里木大火成岩省密切相关,镁铁-超镁铁岩的母岩浆性质与塔里木玄武岩类似(陈博等,2015)。母岩浆在深部岩浆房经历了高程度的分异演化,分别形成富含铜镍钴的低氧逸度岩浆和富含流体和Fe、高氧逸度的岩浆(夏明哲,2009),贫Fe的岩浆富含流体快速上升至地表形成辉绿岩,Fe-Ti氧化物岩浆侵入到辉绿岩中形成铁钴氧化物矿床,富含铜镍钴的岩浆形成了镍钴硫化物矿床(Tang Dongmei et al.,2017)。
-
坡北和坡东镁铁-超镁铁杂岩体稀有气体与碳同位素组成揭示成矿岩浆起源于岩石圈地幔,存在地幔柱的贡献(Zhang Mingjie et al.,2017,2019)。因此北山二叠纪镍钴硫化物矿床和铁钴氧化物矿床应该是碰撞后拉张环境叠加地幔柱动力学背景下形成的,俯冲板片流体交代的岩石圈地幔或软流圈地幔不同程度部分熔融形成的高镁(镍钴)/铁母岩浆(Wang Yinhong et al.,2020),经历不同程度地壳混染、岩浆结晶(氧化物矿床)及硫化物熔离(硫化物矿床)演化形成的。
-
5 结论
-
塔里木克拉通东北缘镍钴硫化物矿床和铁钴氧化物矿床镁铁-超镁铁质岩体岩石学、主-微量元素、Sr-Nd-Hf同位素地球化学成矿条件对比表明:
-
(1)硫化物和氧化物矿床赋矿镁铁-超镁铁质岩体的主-微量元素位于同一演化趋势线,Sr-Nd-Hf同位素特征相似,表明岩浆源区相似,为俯冲板片流体交代的亏损岩石圈地幔-上涌软流圈地幔,母岩浆组成相似。
-
(2)硫化物矿床和氧化物矿床镁铁-超镁铁质岩石中Ni与Co正相关,基性程度高的岩石中Co含量高; 在块状硫化物与磁铁矿矿石中Co与Ni相关性弱,磁铁矿中Co和Ni具有不同的富集机制,热液钴富集作用明显。
-
(3)硫化物矿床和氧化物矿床是二叠纪地幔柱诱发软流圈上涌,被交代的亏损岩石圈地幔不同程度部分熔融形成高镁与铁母岩浆,高镁岩浆经历硫饱和-硫化物熔离富集形成镍钴硫化物矿床,高铁母岩浆分异结晶磁铁矿-叠加后期热液钴富集形成铁钴氧化物矿床。
-
致谢:本文撰写过程中邓刚、王恒、王新博在资料收集提供帮助,郑建平教授及三位匿名审稿人对论文修改提供了指导与建议,在此致以衷心的感谢。
-
参考文献
-
Ao Songjian, Xiao Wenjiao, Han Chunming, Mao Qigui, Zhang Jien. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 18(2-3): 466~478.
-
Cawthorn R G, McCarthy T S. 1980. Variations in Cr content of magnetite from the upper zone of the Bushveld complex: evidence for heterogeneity and convection currents in magma chambers. Earth and Planetary Science Letters, 46: 335~343.
-
Cao Jun, Wang Christina Yan, Xing Changming, Xu Yigang. 2014. Origin of the early Permian Wajilitag igneous complex and associated Fe-Ti oxide mineralization in the Tarim large igneous province, NW China. Journal of Asian Earth Sciences, 84(S1): 51~68.
-
Chen Bo, Qin Kezhang, Tang Dongmei, Mao Yajing, Feng Hongye, Xue Shengchao, Yao Zhuosen. 2015. Lithological, chronological andgeochemical characteristics of Cihai iron deposit, eastern Xinjiang: constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization. Acta Petrologica Sinica, 31(8): 2156~2174 (in Chinese with English abstract).
-
Chen Jiping, Liao Qunan, Luo Ting, Zhang Xionghua, Guo Dongbao, Zhu Helin, Liu Xiaoming. 2013. Zircon U-Pb geochronology and genesisstudy on the mafic complex from diabase-type iron deposit in Cihai, Beishan area. Geological Science and Technology Information, 32(4): 76~83 (in Chinese with English abstract).
-
Chen Shi, Guo Zhaojie, Qi Jiafu, Zhang Yuanyuan, Georgia Pe-Piper, David J W. 2016. Early Permianvolcano-sedimentary successions, Beishan, NW China: peperites demonstrate an evolving rift basin. Journal of Volcanology and Geothermal Research, 309: 31~44.
-
Gaetani Glenn A, Grove Timothy L. 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61(9): 1829~1846.
-
Han Chunming, Xiao Wenjiao, Zhao Guochun, Su Benxun, Ao Songjian, Zhang Jien, Wan Bo. 2013. Age and tectonic setting of magmatic sulfide Cu-Ni mineralization in the Eastern Tianshan Orogenic Belt, Xinjiang, Central Asia. Journal of Geosciences, 58(3): 233~250.
-
Hou Tong. 2014. Super-efficient enrichment mechanism of iron in the intermediate-basic magmatic system—case studies on typical iron deposits. PhD thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Huang Xiaowen, Zhou Meifu, Qi Liang, Gao Jianfeng, Wang Yuwang. 2013. Re-Os isotopic ages of pyrite and chemicalcomposition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Mineralium Deposita, 48(8): 925~946.
-
Haughton D R, Roeder P L, Skinner B J. 1974. Solubility of sulfur in mafic magmas. Economic Geology, 69(4): 451~467.
-
Jiang Changyi, Cheng Songlin, Ye Shufeng, Xia Mingzhe, Jiang Hanbing, Dai Yucai. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115~126 (in Chinese with English abstract).
-
Jiang Changyi, Guo Naxin, Xia Mingzhe, Ling Jinlan, Guo Fangfang, Deng Xiaoqin, Jiang Hanbing, Fan Yazhou. 2012. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate. Acta Petrologica Sinica, 28(7): 2209~2223 (in Chinese with English abstract).
-
Jiao Jiangang, Leng Xin, Duan Shaoshuai, Xia Mingzhe, Rui Huichao, Tan Lei. 2018. Petrogenesis and metallogenic characteristics of the Early Permian Podong Cu-Ni sulfide deposit, northeastern margin of the Tarim plate. Acta Petrologica Sinica, 34(8): 2211~2222 (in Chinese with English abstract).
-
Mavrogenes J A, O'Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide inmafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173~1180.
-
Li Chusi, Ripley E M. 2009. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Economic Geology, 104(3): 405~412.
-
Li Chusi, Zhang Zhaowei, Li Wenyuan, Wang Yalei, Sun Tao, Ripley M Edward. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai -Tibet plateau, western China. Lithos, 216: 216~217.
-
Li Huaqin, Mei Yuping, Qu Wenjun, Cai Hong, Du Guomin. 2009. SHRIMP zircon U-Pb and Re-Os dating of No. 10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance. Mineral Deposits, 28(5): 633~642 (in Chinese with English abstract).
-
Li Huaqin, Chen Fuwen, Mei Yuping, Wu Hua, Cheng Songlin, Yang Jiaquan, Dai Yucai. 2006. Isotopic ages of No. 1 intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance. Mineral Deposits, 25(4): 463~469 (in Chinese with English abstract).
-
Li Zilong, Chen Hanlin, Song Biao, Li Yinqi, Yang Shufeng, Yu Xing. 2011. Temporal evolution of the Permian large igneous province in Tarimbasin in northwestern China. Journal of Asian Earth Sciences, 42(5): 917~927.
-
Li Yinqi, Li Zilong, Chen Hanlin, Yang Shufeng, Yu Xing. 2012. Mineral characteristics and metallogenesis of the Wajilitag layered mafic-ultramafic intrusion and associated Fe-Ti-V oxide deposit in the Tarim large igneous province, northwest China. Journal of Asian Earth Sciences, 49(S1): 161~174.
-
Liu Yuegao. 2015. Diagenesis-mineralization of copper-nickel deposits and prospecting indicators in Pobei area, Xinjiang. PhD dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).
-
Liu Yuegao, Lü Xinbiao, Wu Chunming, Hu Xiaoguang, Duan Zhipeng, Deng Gang, Wang Heng, Zhu Xikui, Zeng Huadong, Wang Peng, Wang Wei, Lu Qiang. 2016. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geology Reviews, 72: 538~545.
-
Liu Yuegao, Li Wenyuan, Lü Xinbiao, Huo Yihua, Zhang Bo. 2017. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmaticevolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry. Geologica Acta, 15(1): 37~66.
-
Ma Jian, Lu Xinbiao, Liu Yanrong, Cao Xiaofeng, Liu Yuegao, Ruan Banxiao, Adam M M A. 2016. The impact of early sulfur saturation and calc-crustal contamination on ore-forming process in the Posan mafic-ultramafic complex. Journal of Asian Earth Sciences, 118: 81~94.
-
Mao Jingwen, Franco P, Zhang Zuoheng, Wan Yusheng. 2012. SHRIMP zircon U-Pb dating of alkaline dykes in Pobei area, Beishan Rift, Xinjiang Autonomous region, China: implications for tectonic setting and mantle plume events. Acta Geologica. Sinica, 86(4): 879~884.
-
Mao Yajing, Qin Kezhang, Li Chusi, Tang Dongmei. 2015. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China. Mineralium Deposita, 50(1): 65~82.
-
Mavrogenes J A, O'Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in maficmagmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173~1180.
-
Meng Qingpeng, Chai Fengmei, Li Qiang, Zheng Jiahao, Shao Fazhi, Geng Xinxia, Han Wenqing. 2014. Zircon U-Pb geochronology, Hfisotopes and the petrogenesis of mafic intrusions in the Cihai Fe (-Co) deposit, Xinjiang. Acta Petrologica Sinica, 30(1): 109~124 (in Chinese with English abstract).
-
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251~285.
-
Pirajno F. 2013. Ore deposits andmantle plumes. Springer Science and Business Media, 1~556.
-
Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46: 921~944.
-
Qi Tianjiao, Xue Chunji, Zhang Zhaochong, Wang Yinhong, Shao Fazhi. 2012. Basicigneous rock in Cihai giant iron district, Hami, Xinjiang, and its indication to the metallogenic setting. Earth Science-Journal of China University of Geosciences, 37(06): 1315~1326 (in Chinese with English abstract).
-
Qin Kezhang, Su Benxun, Sakyi P A, Tang Dongmei, Li Xianhua, SunHe, Xiao Qinghua, Liu Pingping. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.
-
Ruan Banxiao. 2017. Diagenesis and mineralization of the Hongshishan mafic-ultramafic rock belt, western Beishan, Xinjiang. PhD thesis of China University of Geosciences (Wuhan) (in Chinese with English abstract).
-
Rudnick R L, Gao S, 2003. Composition ofthe continental crust. In: Rudnick R L, ed. Treatise on Geochemistry the Crust, 3. Amsterdam: Elsevier, 1~64.
-
Ripley E M, Lambert D D, Frick L R. 1998. Re-Os, Sm-Nd, and Pb isotopic constraints on mantle and crustal contributions to magmatic sulfide mineralization in the Duluth complex. Geochimica et Cosmochimica Acta, 62(19-20): 3349~3365.
-
Ruan Banxiao, Yu Yingmin, LvXinbiao, Wu Chunming, Liu Xiao. 2020. Sulfide segregation mechanism of magmatic Ni mineralization in western Beishan region, Xinjiang, NW China: case study of the Hongshishan mafic-ultramafic complex. Ore Geology Reviews, 122: 103503.
-
Ruan Banxiao, Wei Wei, Yu Yingmin, Lv Xinbiao. 2021. Geology, geochronology, mineral chemistry and geochemistry of theHongnieshan mafic-ultramafic complex in the Beishan area, southern Central Asian Orogenic Belt, NW China: implications for petrogenesis and regional Ni mineralization. Ore Geology Reviews, 139: 101123.
-
Saunders A D, Norry M J, Tarney J. 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constrains. Journal of Petrology (Special Lithosphere Issue), 415~445.
-
Scoon R N, Mitchell A A. 1994. Discordant iron-rich ultramafic pegmatites in the Bushveld complex and their relationship to iron-richintercumulus and residual liquids. Journal of Petrology, 35(4): 881~917.
-
She Yuwei, Song Xieyan, Chen Liemeng, Yu Songyue, Zhu Xiangkun, Yi Junnian, Hu Junhao. 2017. Platinum-group element geochemistry of the layered intrusions in the Emeishan large igneous province, SW China: implications for the principal controls on magmatic sulfide immiscibility. American Journal of Science, 317(4): 483~513.
-
Song Xieyan, Xie Wei, Deng Yufeng, Crawford A J, Zheng Wenqin, Zhou Guofu, Deng Gang, Cheng Songlin, Li Jun. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian orogenic belt, Xinjiang, NW China. Lithos, 127(1-2): 128~143.
-
Su Benxun, Qin Kezhang, Sun He, Tang Dongmei, Xiao Qinghua, Cao Mingjian. 2009. Petrological and mineralogical characteristics of Hongshishan mafic-ultramafic complex in Beishan area, Xinjiang: implications for assimilation and fractional crystallization. Acta Petrologica Sinica, 25(4): 873~887 (in Chinese with English abstract).
-
Su Benxun, Qin Kezhang, Sun He, Wang Heng. 2010. Geochronological petralogical, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283~3294 (in Chinese with English abstract).
-
Su Benxun, Qin Kezhang, Sakyi P A, Liu Pingping, Tang Dongmei, Malaviarachchi S P K, Xiao Qinghua, Sun He, Dai Yucai, Hu Yan. 2011. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 41(1): 31~43.
-
Su Benxun, Qin Kezhang, Sakyi P A, Tang Dongmei, Liu Pingping, Malaviarachchi S P K, Xiao Qinghua, Sun He. 2012a. Geochronologic-petrochemical studies of the Hongshishan mafic-ultramafic intrusion, Beishan area, Xinjiang (NW China): petrogenesis and tectonic implications. International Geology Review, 54(3): 270~289.
-
Su Benxun, Qin Kezhang, Sun He, Tang Dongmei, Sakyi P A, Chu Zhuyin, Liu Pingping, Xiao Qinghua. 2012b. Subduction-induced mantle heterogeneity beneath eastern Tianshan and Beishan: insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134: 41~51.
-
Su Benxun, Qin Kezhang, Tang Dongmei, Sakyi P A, Liu Pingping, Sun He, Xiao Qinghua. 2013. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57~73.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Implications for Mantle Composition and Processes, Magmatism in Ocean Basins. Geological Society Special Publication, 42: 313~345.
-
Tang Qingyan, Ma Yansheng, Zhang Mingjie, Li Chusi, Zhu Dan, Tao Yan. 2013. The origin of Ni-Cu-PGE sulfide mineralization in the margin of the Zhubu mafic-ultramafic intrusion in the Emeishan large igneous province, SW China. Economic Geology, 108(8): 1889~1901.
-
Tang Dongmei, Qin Kezhang, Chen Bo, Mao Yajing, Guo Hu, Evans N J. 2017. Mineral chemistry and genesis of the Permian Cihai and Cinan magnetite deposits, Beishan, NW China. Ore Geology Reviews, 86: 79~99.
-
Tang Qingyan, Ma Yansheng, Zhang Mingjie, Chusi Li, Tao Yan. 2013. The origin of Ni-Cu-PGE sulfide mineralization in the margin of the Zhubu mafic-ultramafic intrusion in the Emeishan large igneous province, SW China. EconomicGeology, 108: 1889~1901.
-
Tang Qingyan, Zhang Mingjie, Li Wenyuan, Yu Ming, Zhang Zhaowei, Wang Yang. 2015. The geodynamic settings and metallogenic potentials of Permian large volume of mafic-ultramafic intrusions in the Beishan area, Xinjiang, NW China. Geology in China, 42(3): 468-482 (in Chinese with English abstract).
-
Tang Pingzhi, Wang Jingbin, Wang Yuwang, Long Lingli. 2010. Geochemical characteristics of mafic-ultramafic rocks in the Cihai ore district, Xinjiang, and their geological significance. Geochimica, 39(6): 542~552 (in Chinese with English abstract).
-
Tang Pingzhi, Wang Yuwang, Wang Jingbin, Long Lingli, Liao Zhen. 2012. Geochemical characteristics of cobalt from the Cihai ore district, Xinjiang, and their significance. Acta Mineralogica Sinica, 32(2): 379~385 (in Chinese with English abstract).
-
Tegner C, Cawthorn R G, Kruger F J. 2006. Cyclicity in the main and upper zones of the Bushveld complex, South Africa: crystallization from a zoned magma sheet. Journal of Petrology, 47: 2257~2279.
-
Tian Wei, Campbell I H, Allen C M, Guan Ping, Pan Wenqing, Chen Mimi, Yu Hongjie, Zhu Wenping. 2010. The Tarim picrate-basalt-rhyolite suite, a Permian flood basalt from Northwest China with contrasting rhyolites produced by fractional crystallization and anataxis. Contributions to Mineralogy and Petrology, 160(3): 407~425.
-
Veksler I V, Hou Tong. 2020. Experimental study on the effects of H2O upon crystallization in the Lower and critical zones of the Bushveld complex with an emphasis on chromitite formation. Contributions Mineralogy and Petrology, 175: 85.
-
Wang Yinhong, Zhang Fangfang, Li Bochao, Xue Chunji, Liu Jiajun, Zhao Yun, Zhang Wei. 2020. Geology and genesis of the Cihai mafic intrusions in Beishan Terrane, Xinjiang, Northwest China: implication for iron mineralization and tectonic setting. Ore Geology Reviews, 121: 103573.
-
Wang Yuwang, Wang Jingbin, Wang Lijuan, Long Lingli, Tang Pingzhi, Liao Zhen, Zhang Huiqiong. 2010. Petrographical and lithogeochemical characteristics of the mafic-ultramafic complex related to CuNi-VTiFe composite mineralization: taking the North Xinjiang as an example. Acta Petrologica Sinica, 26(2): 401~412 (in Chinese with English abstract).
-
Wang Yuwang, Shi Yu, Tang Pingzhi, Li Dedong, Wang Jingbin, Xie Hongjing. 2018. The Cihai Fe-Co deposit, Xinjiang: a superimposed hydrothermal mineralization of two mantle-derived magmatic series. Earth Science Frontiers, 25(2): 280~298 (in Chinese with English abstract).
-
Wang Yuwang, Wang Jingbin, Wang Lijuan, Long Lingli. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V) Ti-Fe ore district, Xinjiang. Acta Petrologica Sinica, 25(4): 888~900 (in Chinese with English abstract).
-
Wang Yuwang, Wang Jingbin, Wang Lijuan. 2006. Comparison of host rocks between two vanadic titianomagnetite deposit types from the easternTianshan Mountains. Acta Petrologica Sinica, 22(5): 1425~1436 (in Chinese with English abstract).
-
Wei Xun, Xu Yignag, Feng Yuexing, Zhao Jianxin. 2014. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China. American Journal of Science, 314(1): 314~356.
-
Wendlandt R F. 1982. Sulfide saturation of basalt and andesite melts at high-pressures and temperatures. American Mineralogist, 67(9-10): 877~885.
-
Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331~346.
-
Wu Jianliang, Lv Xinbiao, Feng Jin, Wang Heng, Deng Gang, Liu Yuegao, Yin Xianke, Zhang Wei, Liu Wen. 2017. Mineralogical characteristics of chromite from the Poyi mafic-ultramafic intrusion in Beishan, Xinjiang, and its geological significance. Geotectonica et Metallogenia, 42(2): 348~364 (in Chinese with English abstract).
-
Xia Mingzhe, Jiang Changyi, Li Chusi, Xia Zhaode. 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim Craton, NW China. Economic Geology, 108(8): 1865~1878.
-
Xia Mingzhe. 2009. The mafic-ultramafic intrusions in the Huangshan region eastern Tianshan, Xinjiang: petrogenesis and mineralization implication. PhD dissertation of Chang'an University (in Chinese with English abstract).
-
Xiao Qinghua, Qin Kezhang, Tang Dongmei, Su Benxun, Sun He, San Jinzhu, Cao Mingjian, Hui Weidong. 2010. Xiangshanxi composite Cu-Ni-Ti-Fe deposite belong to comagmatic evolution product: evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 26(2): 503~522 (in Chinese with English abstract).
-
Xu Yigang, Wei Xun, Luo Zhenyu, Liu Haiquan, Cao Jun. 2014. The early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos, 204 (S1): 20~35.
-
Xue Chunji, Ji Jinsheng, Yangqianjin. 2010. Subvolcanichy drothermal metallogeny of the Cihai iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156~164 (in Chinese with English abstract).
-
Xue Shengchao, Qin Kezhang, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2015. Compositional characteristics of pyroxenes from Permian mafic-ultramafic complexes ineastern Xinjiang, and their implications for petrogenesis and Ni-Cu mineralization. Acta Petrologica Sinica, 31(8): 2175~2192 (in Chinese with English abstract).
-
Xue Shengchao, Li Chusi, Qin Kezhang, Tang Dongmei. 2016a. A non-plume model for the Permian protracted (266-286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, Western China. Lithos, 256: 243~249.
-
Xue Shengchao, Qin Kezhang, Li Chusi, Tang Dongmei, Mao Yajing, Qi Liang, Ripley E M. 2016b. Geochronological, petrological, andgeochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim Craton, Western China. Economic Geology, 111(6): 1465~1484.
-
Xue Shengchao, Qin Kezhang, Li Chusi, Yao Zhuosen, Ripley E M. 2018. Geochronological, mineralogical and geochemical studies of sulfide mineralization in the Podong mafic-ultramafic intrusion in northern Xinjiang, western China. Ore Geology Reviews, 101: 688~699.
-
Xue Shengchao, Li Chusi, Wang Qingfei, Ripley E M, Yao Zhuosen. 2019. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfideprospect, southern Central Asian Orogenic Belt, NW China. Ore Geology Reviews, 111: 102002.
-
Xue Shengchao, Deng Jun, Wang Qingfei, Xie Wei, Wang Yanning. 2021. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: the role of reduction process in ore genesis. Geochimica et Cosmochimica Acta, 306: 210~225.
-
Zeh A, Ovtcharova M, Wilson A H, Schaltegger U. 2015. The Bushveld complex was emplaced and cooled in less than one million Years-Results of zirconology, and geotectonic implications. Earth and Planetary Science Letters, 418: 103~114.
-
Zhao Li, Zhang Zhaochong, WangFusheng, Hao Yanli, Ai Yu, Yang Tiezhang. 2006. Open-system chamber: an example from the Xinjie mafic-ultramafic layered intrusion in Panxi region, SW China. Acta Petrologica Sinica, 22(6): 1565~1578 (in Chinese with English abstract).
-
Zhang Mingjie, Tang Qingyan, Cao Chunhui, Li Wenyuan, Wang Heng, Li Zhongping, Yu Ming, Feng Pengyu. 2017. The origin of Permian Pobei ultramafic complex in the northeastern Tarim craton, western China: evidences from chemical and C-He-Ne-Ar isotopic compositions of volatiles. Chemical Geology, 469: 85~96.
-
Zhang Mingjie, Feng Pengyu, Li Tong, Li Liwu, Fu Juerong, Wang Peng, Wang Yuekun, Li Zhongping, Wang Xiaodong. 2019. The petrogenesis of the Permian Podong ultramafic intrusion in the Tarim craton, western China: constraints from C-He-Ne-Ar isotopes. Geofluids, (8): 1~14.
-
Zhang Yuanyuan, Dostal J, Zhao Zehui, Liu Chang, Guo Zhaojie. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from southern Beishan area, NW China: implications for crust-mantle interaction. Gondwana Research, 20(4): 816~830.
-
Zhang Qian, Chen Yichao, Shi Mengyan, Li Zhen, Liu Jiahui, Wu Chunming. 2021. Permian-Triassic magmatic and thermal events in the Dunhuang orogenic belt: implications for subduction records of the Paleo-Asian Ocean. International Geology Review, 1~24. DOI: 10. 1080/00206814. 2021. 1980742.
-
Zheng Jiahao, Mao Jingwen, Yang Fuquan, Liu Feng, Zhu Yongfeng. 2015. The post-collisional Cihai iron skarn deposit, eastern Tianshan, Xinjiang, China. Ore Geology Reviews, 67: 244~254.
-
Zheng Yong, Chen Jun, Pang Jiancai, Wang Junliang. 2009. Basic rock SHRIMP data and its geologic value in Heishanling region of Beishanarea, Xinjiang. Xinjiang Geology, 27(4): 320~324 (in Chinese with English abstract).
-
Zhong Hong, Qi Liang, Hu Ruizhong, Zhou Meifu, Gou Tizhong, Zhu Weiguang, Liu Bingguang, Chu Zhuyin. 2011. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochimica et Cosmochimica Acta, 75(6): 1621~1641.
-
Zhou Meifu, Zhao Junhong, Jiang Changyi, Gao Jianfeng, Wang Wei, Yang Shenghong. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarimbasin, NW China: implications for a possible Permian large igneous province. Lithos, 113(3-4): 583~594.
-
Zhu Weiguang, Zhong Hong, Hu Ruizhong, Liu Bingguang, He Defeng, Song Xieyan, Deng Hailin. 2010. Platinum-group minerals and tellurides from the PGE-bearing Xinjie layered intrusion in the Emeishan large igneous province, SW China. Mineralogy and Petrology, 98(1-4): 167~180.
-
陈博, 秦克章, 唐冬梅, 毛亚晶, 冯宏业, 薛胜超, 姚卓森. 2015. 新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征: 对成岩、成矿作用的制约. 岩石学报, 31(8): 2156~2174.
-
陈继平, 廖群安, 罗婷, 张雄华, 郭东宝, 朱和林, 柳小明. 2013. 北山磁海辉绿岩型铁矿区基性杂岩锆石U-Pb年代学及岩石成因. 地质科技情报, 32(4): 76~83.
-
侯通. 2014. 中基性岩浆系统中铁的超常富集机理——以典型铁矿为例. 中国地质大学(北京)博士学位论文.
-
姜常义, 程松林, 叶书锋, 夏明哲, 姜寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因. 岩石学报, 22(1): 115~126.
-
姜常义, 郭娜欣, 夏明哲, 凌锦兰, 郭芳放, 邓小芹, 姜寒冰, 范亚洲. 2012. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因. 岩石学报, 28(7): 2209~2223.
-
焦建刚, 冷馨, 段少帅, 夏明哲, 芮会超, 谭磊. 2018. 塔里木东北缘早二叠世坡东铜镍硫化物矿床成矿特征与岩石成因. 岩石学报, 34(8): 2211~2222.
-
李华芹, 陈富文, 梅玉萍, 吴华, 程松林, 杨甲全, 代玉财. 2006. 新疆坡北基性-超基性岩带No. 1号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义. 矿床地质, 25(4): 463~469.
-
李华芹, 梅玉萍, 屈文俊, 蔡红, 杜国民. 2009. 新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义. 矿床地质, 28(5): 633~642.
-
刘月高. 2015. 新疆坡北地区铜镍矿床成岩成矿作用与找矿标志研究. 中国地质大学博士学位论文, 1~170.
-
孟庆鹏, 柴凤梅, 李强, 郑佳浩, 邵发志, 耿新霞, 韩文清. 2014. 新疆磁海铁(钴)矿区镁铁质岩锆石U-Pb年龄、Hf同位素特征及岩石成因. 岩石学报, 30(1): 109~124.
-
林瑶, 汤庆艳, 张铭杰, 焦建刚, 陈思童, 虎啸. 2014. 新疆北部二叠纪基性岩墙群岩浆作用及其动力学背景. 地球科学与环境学报, 36(3): 73~82.
-
齐天骄, 薛春纪, 张招崇, 王银宏, 邵发志. 2012. 新疆磁海超大型铁矿区基性岩及其成矿背景指示. 地球科学, 37(6): 1315~1326.
-
阮班晓. 2017. 新疆北山西段红石山镁铁-超镁铁质岩带成矿成岩作用. 中国地质大学(武汉)博士学位论文.
-
苏本勋, 秦克章, 孙赫, 唐冬梅, 肖庆华, 曹明坚. 2009. 新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征: 对同化混染和结晶分异过程的启示. 岩石学报, 25(4): 873~887.
-
苏本勋, 秦克章, 孙赫, 王恒. 2010. 新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究. 岩石学报, 26(11): 3283~3294.
-
汤庆艳, 张铭杰, 李文渊, 余明, 张照伟, 汪扬. 2015. 新疆北山二叠纪大型超镁铁质杂岩体的动力学背景及成矿潜力. 中国地质, 42(3): 468~482.
-
唐萍芝, 王京彬, 王玉往, 龙灵利. 2010. 新疆磁海铁矿区镁铁-超镁铁岩地球化学特征及其地质意义. 地球化学, 39(6): 542~552.
-
唐萍芝, 王玉往, 王京彬, 龙灵利, 廖震. 2012. 新疆哈密磁海铁矿床中钴的地球化学及地质意义. 矿物学报, 32(3): 379~385.
-
王玉往, 王京彬, 王莉娟. 2006. 东天山地区两类钒钛磁铁矿型矿床含矿岩石对比. 岩石学报, 22(5): 1425~1436.
-
王玉往, 王京彬, 王莉娟, 龙灵利. 2009. 新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征. 岩石学报, 25(4): 888~900.
-
王玉往, 石煜, 唐萍芝, 李德东, 王京彬, 解洪晶. 2018. 新疆磁海Fe (-Co)矿床: 两个系列幔源岩浆复合的热液矿床. 地学前缘, 25(2): 280~298.
-
王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825~3838.
-
吴建亮, 吕新彪, 冯金, 王恒, 邓刚, 刘月高, 尹显科, 张伟, 刘文. 2017. 新疆北山坡一基性-超基性岩体铬铁矿矿物学特征及其指示意义. 大地构造与成矿学, 42(2): 348~364.
-
夏明哲. 2009. 新疆东天山黄山岩带镁铁—超镁铁质岩石成因及成矿作用. 长安大学博士学位论文.
-
肖庆华, 秦克章, 唐冬梅, 苏本勋, 孙赫, 三金柱, 曹明坚, 惠卫东. 2010. 新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物——矿相学、锆石U-Pb年代学及岩石地球化学证据. 岩石学报, 26(2): 503~522.
-
薛春纪, 姬金生, 杨前进. 2000. 新疆磁海铁(钴)矿床次火山热液成矿学. 矿床地质, 19(2): 156~164.
-
薛胜超, 秦克章, 唐冬梅, 毛亚晶, 姚卓森. 2015. 东疆二叠纪镁铁-超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示. 岩石学报, 31(8): 2175~2192.
-
杨经绥, 郑新华, 王希斌, 史仁灯. 1999. 德尔尼Cu-Co-Zn硫化物矿床的成因探讨新进展——兼论矿床围岩是蛇绿岩地幔橄榄岩而不是超基性火山岩. 地学前缘, 6(1): 180~181.
-
杨洋, 杨永强, 杨博, 文鹏, 贺海跟, 李浩, 卢鸿飞. 2014. 新疆北山地区红石山镍矿原生晕地球化学特征. 矿床地质, 33(S1): 979~980.
-
郑勇, 陈俊, 庞建材, 王君良. 2009. 新疆哈密北山黑山岭一带基性岩SHRIMP测年及地质意义. 新疆地质, 27(4): 320~324.
-
摘要
塔里木克拉通东北缘坡北、磁海等地二叠纪幔源岩浆活动形成了镍钴硫化物矿床和铁钴氧化物矿床,两者赋矿镁铁-超镁铁岩体的年龄相近(290~260 Ma),主、微量元素和Sr-Nd-Hf同位素组成相似,分配系数接近的微量元素比值分布于相同趋势线,揭示两者岩浆源区相同,可能为俯冲板片流体交代的亏损地幔或软流圈地幔。两类矿床镁铁-超镁铁质岩中Co与Ni含量正相关,Co主要富集在基性程度高的岩石中;块状硫化物与磁铁矿矿石中Co与Ni相关性差,Co和Ni具有不同的富集机制,Co热液富集作用明显。北山镁铁-超镁铁杂岩体是地幔柱相关软流圈上涌,诱发俯冲板片交代的亏损岩石圈地幔发生部分熔融,形成的高镁母岩浆演化过程中经历壳源混染、硫化物饱和富集镍钴形成铜镍钴硫化物矿床,富铁母岩浆氧逸度高、富水,岩浆分离结晶磁铁矿、叠加热液作用富集钴,形成铁钴氧化物矿床。
Abstract
The Permian mantle-derived magmatism had formed Ni-Co sulfide deposits and Fe-Co oxide deposits in the Pobei and Cihai area of the northeastern margin of Tarim craton. The mafic-ultramafic complexes hosting Pobei Ni-Cu-Co sulfide deposit, Cihai Fe-Co oxide deposit were formed in the same period (260~290 Ma). The ore-bearing mafic-ultramafic complexes show similar major-trace elements petrogeochemical and Sr-Nd-Hf isotopic signatures, the trace element ratios with close partition coefficient are plotted on the same trend lines, indicating a simillar mantle magmatic source. The mantle magmatic source could be depleted mantle metasomatized by subducted slab fluids and superimposed by asthenosphere mantle. The mafic-ultramafic rocks of both Cu-Ni-Co sulfide deposits and Fe-Co oxide deposits display a strong positive correlation between Ni and Co contents, but the magnetite ore shows weak correlation between Co and Ni contents. Co is mainly enriched in ultramafic rocks in mafic-ultramafic complexes. The magnetite ores have different Co-Ni enrichment mechanisms from Ni-Co sulfide ores, cobalt minerals as cobaltite etc. occurs at the edge or fissure of pyrrhotite, suggesting an obvious hydrothermal enrichment. The Early Permian mafic-ultramafic complexes in the northeastern margin of Tarim craton could be derived from the different degree of partial melting of metasomatic depleted mantle, which was caused by asthenosphere upwelling associated with mantle plume. Ni-Co sulfide deposits were formed through sulfide saturation of high-MgO magma caused by crustal contamination. Low degree of partial melting of depleted mantle with subduction metasomatism had formed in the oxygen fugacity parent magma with high iron and water contents, which crystallized and formed magnetite ore, and hydrothermal process caused cobalt enrichment to form Fe-Co oxide deposits.