en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张招崇,男,1965年生。教授,主要从事岩浆作用与金属成矿方面的研究。E-mail:zczhang@cugb.edu.cn。

参考文献
Abbott D, Mooney W. 1995. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33(Suppl): 231~242.
参考文献
Aguirre-Diaz G J, Mcdowell F W. 1991. The volcanic section at Nazas, Durango, Mexico, and the possibility of widespread Eocene volcanism within the Sierra-Madre Occidental. Journal of Geophysical Research: Solid Earth, 96(B8): 13373~13388.
参考文献
Aguirre-Diaz G J, Labarthe-Hernández G. 2003. Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with basin and range faulting. Geology, 31(9): 773~776.
参考文献
Alt J, Teagle D. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527~1535.
参考文献
Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095~1108.
参考文献
Anderson D L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1(5): 271~275.
参考文献
Arndt N. 2000. Geochemistry-hot heads and cold tails. Nature, 407: 458~461.
参考文献
Arndt N, Bruzak G, Reischmann T. 2001. The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara craton, Australia. In: Ernst R E, Buchan K E, eds. Mantle Plumes: Their Identification through Time. GSA Special Publication, 352: 359~387.
参考文献
Baksi A K. 1999. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans. The Journal of Geology, 107(1): 13~26.
参考文献
Baksi A K. 2006. Guidelines for assessing the reliability of 40Ar/39Ar plateau ages: application to ages relevant to hotspot track. Accessed on, 25(3): 2009.
参考文献
Baragar W R A, Ernst R E, Hulbert L. 1996. Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield. Journal of Petrology, 37(2): 317~359.
参考文献
Barbero E, Zaccarini F, Delavari M, Dolati A, Saccani E, Marroni M, Pandolfi L. 2021. New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan complex (Makran Accretionary Prism, SE Iran). Lithos, 396~397: 106228.
参考文献
Barley M E, Pickard A L, Sylvester P J. 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2. 45 billion years ago. Nature, 385(6611): 55~58.
参考文献
Beane J E, Hooper P R. 1998. A note on the picrite basalts of the Western Ghats, Deccan Traps, India. Memoir-Geological Society of India, 10: 117~134.
参考文献
Beaudry P, Longpre M A, Economos R, Wing B A, Bui T H, Stix J. 2018. Degassing-induced fractionation of multiple sulphur isotopes unveils post-Archaean recycled oceanic crust signal in hotspot lava. Nature Communications, 9(1): 5093.
参考文献
Becker T W, Boschi L. 2002. A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1).
参考文献
Black B A, Elkins-Tanton L T, Rowe M C, Peate I U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317: 363~373.
参考文献
Black B A, Hauri E H, Elkins-Tanton L T, Brown S M. 2014a. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters, 394: 58~69.
参考文献
Black B A, Lamarque J F, Shields C A, Elkins-Tanton L T, Kiehl J T. 2014b. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1): 67~70.
参考文献
Bleeker W. 2004. Taking the pulse of planet Earth: a proposal for a new multidisciplinary flagship project in Canadian solid Earth sciences. Geoscience Canada, 31(4): 179~190.
参考文献
Bo Hongze, Zhang Zhaochong. 2020. Genesis of Silicic Large Igneous Provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973~1985 (in Chinese with English abstract).
参考文献
Bond D P G, Wignall P B, Keller G, Kerr A C. 2014. Large igneous provinces and mass extinctions: an update. The Geological Society of America Special Paper, 505: 29~55.
参考文献
Bond D P G, Grasby S E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3~29.
参考文献
Bono R K, Tarduno J A, Bunge H P. 2019. Hotspot motion caused by the Hwaiian-Emperor bend and LLSVPs are not fixed. Nature Communications, 10(1): 1~9.
参考文献
Bryan S. 2007. Silicic Large Igneous Provinces. Episodes, 30(1): 20~31.
参考文献
Bryan S, Ernst R E. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175~202.
参考文献
Bryan S E, Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125(7-8): 1053~1078.
参考文献
Bryan S E, Constantine A E, Stephens C J, Ewart A, Schon, R W, Parianos J. 1992. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters, 153: 85~102.
参考文献
Bryan S E, Ewart A, Stephens C J, Parianos J, Downes P J. 2000. The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1-4): 55~78.
参考文献
Bryan S E, Riley T R, Jerram D A, Leat P T, Stephens C J. 2002. Silicic volcanism: an under-valued component of large igneous provinces and volcanic rifted margins. In: Menzies M A, Klemperer S L, Ebinger C J, Baker J, eds. Magmatic Rifted Margins. Boulder, CO: Special Papers-Geological Society of America, 362: 97~118.
参考文献
Buchan K L, Ernst R E. 2004. Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada, “A” Series Map. Geological Survey of Canada, Ottawa, Canada, 39.
参考文献
Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4): 489~510.
参考文献
Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences, 111(9): 3316~3321.
参考文献
Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8(1): 1~6.
参考文献
Burke K, Torsvik T H. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227 (3-4): 531~538.
参考文献
Burov E, Guillou-Frottier L. 2005. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 161(2): 469~490.
参考文献
Burov E, Gerya T. 2014. Asmmetric three-dimensional topography over mantle plumes. Nature, 513(7516): 85~89.
参考文献
Cabato J A, Stefano C J, Mukasa S B. 2015. Volatile concentrations in olivine-hosted melt inclusions from the Columbia river flood basalts and associated lavas of the Oregon plateau: implications for magma genesis. Chemical Geology, 392: 59~73.
参考文献
Cabral R A, Jackson M G, Rose-Koga E F, Koga K T, Whitehouse M J, Antonelli M A. 2013. Anomolous sulphur isotopes in plume lavas reveal deep mantle storage of Archean crust. Nature, 496(7446): 490~493.
参考文献
Caldeira K, Rampino M R. 1990. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect. Geophysical Research Letters, 17(9): 1299~1302.
参考文献
Camp V E, Ross M E, Hanson W E. 2003. Genesis of flood basalts and basin and range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geological Society of America Bulletin, 115(1): 105~128.
参考文献
Campbell I H. 1998. The mantle's chemical structure: insights from the melting products of mantle plumes. In: Jackson I, ed. The Earth's Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 259~310.
参考文献
Campbell I H. 2005. Large igneous provinces and the mantle plume hypothesis. Elements, 1(5): 265~269.
参考文献
Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79~93.
参考文献
Campbell I H, Griffiths R W. 1991. On the dynamics of long lived plume conduits in the convecting mantle. Earth and Planetary Science Letters, 103(1-4): 214~227.
参考文献
Capriolo M, Marzoli A, Aradi L E, Callegaro S, Dal Corso J, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szab C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11(1): 1~11.
参考文献
Capriolo M, Marzoli A, Aradi L E, Ackerson M R, Callegaro S, Dal Corso J, Ernesto M, Vasconcellos E M G, De Min A, Newton R J, Szabo C. 2021. Massive methane fluxing from magma-sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 12(1): 1~9.
参考文献
Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.
参考文献
Cawthorn R G, Walraven F. 1998. Emplacement and crystallization time for the Bushveld Complex. Journal of Petrology, 39(9): 1669~1687.
参考文献
Cawthorn R G, Webb S J. 2013. Cooling of the Bushveld Complex, South Africa: implications for paleomagnetic reversals. Geology, 41(6): 687~690.
参考文献
Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.
参考文献
Chavagnac V. 2004. A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos, 75(3-4): 253~281.
参考文献
Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1~15.
参考文献
Cheng Z G, Zhang Z C, Hou T, Santosh M, Zhang D Y, Ke S. 2015. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: implications for mantle source characteristics and plume-lithosphere interaction. Lithos, 220-223: 164~178.
参考文献
Cheng Z G, Zhang Z C, Hou T, Santosh M, Chen L L, Ke S, Xu L J. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159~178.
参考文献
Cheng Z G, Zhang Z C, Xie Q H, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim large igneous province. Earth and Planetary Science Letters, 489: 100~110.
参考文献
Cheng Z G, Zhang Z C, Wang Z C, Wang F Y, Mao Q, Xu L J, Ke S, Yu H M, Santosh M. 2020. Petrogenesis of transitional large igneous province: insights from bimodal volcanic suite in the Tarim large igneous province. Journal of Geophysical Research: Solid Earth, 125(5): 1~22.
参考文献
Clapham M E, Renne P R. 2019. Flood basalts and mass extinctions. Annual Review of Earth and Planetary Sciences Letters, 47(1): 275~303.
参考文献
Coffin M F, Eldholm O. 1991. Large igneous provinces: JOI/USSAC workshop report, Tach. University of Texas at Austin Institute for Geophysics, 114: 1~79.
参考文献
Coltice N, Phillips B R, Bertrand H, Ricard Y, Rey P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology, 35(5): 391~394.
参考文献
Condie K C. 2001. Mantle Plumes and Their Record in Earth History. Cambridge: Cambridge University Press, 1~306.
参考文献
Condie K C, Chomiak B. 1996. Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America. Tectonophysics, 265(1-2): 101~126.
参考文献
Cordery M J, Davies G F, Campbell I H. 1997. Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research: Solid Earth, 102(B9): 20179~20197.
参考文献
Choudhary B R, Santosh M, Vivo B D, Jadhav G. 2019. Melt inclusion evidence for mantle heterogeneity and magma degassing in the Deccan Large Igneous Province, India. Lithos, 346: 105135.
参考文献
Courtillot V, Renne P R. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335: 113~140.
参考文献
Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau M G, Besse J. 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333(6176): 843~846.
参考文献
Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3): 177~195.
参考文献
Cox K G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342(6252): 873~877.
参考文献
Creaser R A, White A J R. 1991. Yardea Dacite; large-volume, high-temperature felsic volcanism from the middle Proterozoic of South Australia. Geology, 19(1): 48~51.
参考文献
Czamanske G K, Gurevitch A B, Fedorenko V, Simonov O. 1998. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review, 40(2): 95~115.
参考文献
Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1~13.
参考文献
Davies J H F L, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U. 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nature Communications, 8: 15596.
参考文献
Delavault H, Chauvel C, Thomassot E, Devey C W, Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 113(46): 12952~12956.
参考文献
de Wall H, Pandit M K, Donhauser I, Schobel S, Wang W, Sharma K K. 2018. Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite: a Neoproterozoic silicic-dominated Large Igneous Province in NW India-SE Pakistan. Journal of Asian Earth Sciences, 160: 136~158.
参考文献
Dingwell D B, Mysen B O. 1985. Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation. Earth and Planetary Science Letters, 74(2-3): 266~274.
参考文献
Dottin J W, Labidi J, Lekic V, Jackson M G, Farquhar J. 2020. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters, 534: 116073.
参考文献
Dottin J W, Labidi J, Jackson M G, Farquhar J. 2021. Sulfur isotope evidence for a geochemical zonation of the Samoan Mantle Plume. Geochemistry Geophysics Geosystems, 22(6): e2021GC009816.
参考文献
Donnadieu Y, Goddéris Y, Pierrehumbert R, Dromart G, Fluteau F, Jacob R. 2006. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry Geophysics Geosystems, 7(11): Q11019.
参考文献
Doucelance R, Hammouda T, Moreira M, Martins J C. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochimica et Cosmochimica Acta, 74(24): 7261~7282.
参考文献
Drewitt J W E, Walter M J, Zhang H L, McMahon S C, Edwards D, Heinen B J, Lord O T, Anzellini S, Kleppe A K. 2019. The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth and Planetary Science Letters, 511: 213~222.
参考文献
Duncan R A, Pyle D G. 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333(6176): 841~843.
参考文献
Duncan R A, Richards M A. 1991. Hotspots, mantle plumes, flood basalts and true polar wander. Reviews of Geophysics, 29(1): 31~50.
参考文献
Eales H V, Cawthorn R G. 1996. The Bushveld complex. In: Cawthorn R G, ed. Layered Intrusions. Amsterdam: Elsevier, 181~229.
参考文献
Eldholm O, Grue K. 1994. North Atlantic volcanic margins: dimensions and production rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955~2968.
参考文献
Elkins-Tanton L T. 2005. Continental magmatism caused by lithospheric delamination. In: Foulger G R, Natland J H, Presnall D C, eds. Plates, Plumes and Paradigms. Geological Society of America Special Papers, 388: 449~462.
参考文献
Elkins-Tanton L T, Grasby S E, Black B A, Veselovskiy R V, Ardakani O H, Goodarzi F. 2020. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, 48(10): 986~991.
参考文献
Ellis B S, Branney M J, Barry T L, Barfod D, Bindeman I, Wolff J A, Bonnichsen B. 2012. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bulletin of Volcanology, 74(1): 261~277.
参考文献
Ernst R E. 2014. Large Igneous Provinces. Cambridge University Press, 1~653.
参考文献
Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98(1-4): 55~76.
参考文献
Ernst R E, Youbi N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Paleogeography Paleoclimatology Paleoecolory, 478: 30~52.
参考文献
Etiope G, Ciccioli P. 2009. Earth's degassing: a missing ethane and propane source. Journal of Advertising, 323(5913): 478.
参考文献
Ewart A, Schon R W, Chappell B W. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast--a rift related ‘calc-alkaline’ province. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 327~345.
参考文献
Fan J, Kerrich R. 1997. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: a heterogeneous mantle plume-convergent margin environment. Geochimica et Cosmochimica Acta, 61(22): 4723~4744.
参考文献
Farnetani C G, Richards M A. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research: Solid Earth, 99(B7): 13813~13833.
参考文献
Farquhar J, Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 213(1-2): 1~13.
参考文献
Ferrari L, Valencia-Moreno M N, Bryan S E. 2007. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In: Alaniz-Álvarez S A, Nieto-Samaniego Á F, eds. Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico, 422: 1~39.
参考文献
Foley S F, Pintér Z. 2018. Chapter 1-Primary Melt Compositions in the Earth's Mantle. In: Kono Y, Sanloup C, eds. Magmas under Pressure. Elsevier, 3~42.
参考文献
Foulger G R. 2005. Mantle plumes: why the current skepticism? Chinses Science Bulletin, 50: 1814~1819 (in Chinese with English abstract).
参考文献
Foulger G R. 2007. The “plate” model for the genesis of melting anomalies. In: Foulger G R, Jurdy D M, eds. Plates, Plumes and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 1~28.
参考文献
Foulger G R. 2010. Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell, 328. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567): 95~99.
参考文献
Frey F A, Coffin M F, Wallace P J, Weis D. 2003. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge—a large igneous province. Texas A & M University Ocean Drilling Program.
参考文献
Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.
参考文献
Ganino C, Arndt N T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323~326. .
参考文献
Garland F, Hawkesworth C J, Mantovani M S M. 1995. Description and petrogenesis of the Paraná rhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193~1227.
参考文献
Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10~20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chemical Geology, 262(1-2): 17~28.
参考文献
Gibson S A, Thompson R N, Dickin A P. 2000. Ferropicrites; geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters, 174(3): 355~374.
参考文献
Giordano D, Russell J K, Dingwell D B. 2008. Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271(1-4): 123~134.
参考文献
Gleeson M, Soderman C, Matthews S, Cottaar S, Gibson S. 2021. Geochemical constraints on the structure of the Earth's deep mantle and the origin of the LLSVPs. Geochemistry Geophysics Geosystems, 22(9): e2021GC009932.
参考文献
Grasby S E, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2): 104~107.
参考文献
Grice K, Cao C Q, Love G D, Bottcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706~709.
参考文献
Griffiths R W, Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66~78.
参考文献
Gu X Y, Wang P Y, Kuritani T, Hanski E, Xia Q K, Wang Q Y. 2019. Low water content in the mantle source of the Hainan plume as a factor inhibiting the formation of a large igneous province. Earth and Planetary Science Letters, 515: 221~230.
参考文献
Halls H C, Davis D W, Stott G M. 2008. The Paleoproterozoic Marathon Large Igneous Province: new evidence for a 2. 1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province. Precambrian Research, 162(3-4): 327~353.
参考文献
Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.
参考文献
He B, Xu Y G, Chung S L, Xiao L, Wang Y M. 2003. Sedimentary evidence for a rapid, kilometer scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213: 391~405.
参考文献
Heimdal T H, Jones M T, Svensen H H. 2020. Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proceedings of the National Academy of Sciences, 117(22): 11968~11974.
参考文献
Herzberg C, O'Hara M J. 2002. Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology, 43(10): 1857~1883.
参考文献
Hildebrand A R, Penfield G T, Kring D A, Pilkington M, Camargo A, Jacobsen S B, Boynton W V. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19(9): 867~871.
参考文献
Hofmann C, Feraud G, Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13~27.
参考文献
Hooper P R, Camp V E, Reidel S P, Ross M E. 2007. The origin of the Columbia River flood basalt province: plume versus nonplume models. In: Foulger G R, Jurdy D M, eds. Plates, Plumes, and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 635~668.
参考文献
Howell D, Stachel T, Stern R A. 2020. Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica et Cosmochimica Acta, 275: 99~122.
参考文献
Huang C, Leng W, Wu Z Q. 2020. The continually stable subduction, iron-spin transition, and the formation of LLSVPs from subducted oceanic crust. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018262.
参考文献
Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochimica Cosmochimica Acta, 75(17): 4987~4997.
参考文献
Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475): 266~272.
参考文献
Hwang H J, Seoung D H, Lee Y J. 2017. A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geosciences, 10(12): 947~953.
参考文献
Ichiyama Y, Ishiwatari A, Koizumi K. 2008. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: evidence for an accreted Permian oceanic plateau. Lithos, 100(1-4): 127~146.
参考文献
Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy Petrology, 168(1): 1019.
参考文献
Ickert R B, Stachel T, Stern R A, Harris J W. 2013. Diamond from recycled crustal carbon documented by coupled delta O-18-delta C-13 measurements of diamonds and their inclusions. Earth and Planetary Science Letters, 364: 85~97.
参考文献
Ingle S, Coffin M F. 2004. Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1-2): 123~134.
参考文献
Ivanov A V, Mukasa S B, Kamenetsky V S, Ackerson M, Demonterova E I, Pokrovsky B G, Vladykin N V, Kolesnichenko M V, Litasov K D, Zedgenizov D A. 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps large igneous province: evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483: 442~462.
参考文献
Jerram D A, Widdowson M. 2005. The anatomy of continental flood basalt provinces: geological constraints on the process and products of flood volcanism. Lithos, 79(3-4): 385~405.
参考文献
Jian P, Liu D Y, Kroner A, Zhang Q, Wang Y Z, Sun X M, Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767~784.
参考文献
Johnson C M. 1991. Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America. Journal of Geophysical Research: Solid Earth, 96B: 13485~13507.
参考文献
Jones A P, Price G D, Price N J, DeCarli P S, Clegg R A. 2002. Impact induced melting and the development of large igneous provinces. Earth and Planetary Science Letters, 202(3-4): 551~561.
参考文献
Jones M T, Jerram D A, Svensen H H, Grove C. 2016. The effects of large igneous provinces on the global carbon and sulphur cycles. Paleogeogr Paleoclimatol Paleoecol, 441(1): 4~21.
参考文献
Kamenetsky V S, Gurenko A A, Kerr A C. 2010. Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 38(11): 1003~1006.
参考文献
Kaminski E, Jaupart C. 2000. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth and Planetary Science Letters, 178(1): 139~149.
参考文献
Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochemistry Geophysics Geosystems, 4(9): 1073.
参考文献
Keken P, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 116(B1): B01401.
参考文献
Keller C B, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2. 5 Gyr ago. Nature, 485: 191~493.
参考文献
Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43(4): 335~338.
参考文献
Keppie D F. 2016. How subduction broke up Pangaea with implications for the supercontinent cycle. Geological Society Special Publication, London, Special Publications, 424(1): 265~288.
参考文献
Kerr A C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, 155(4): 619~626.
参考文献
Kerr A C. 2014. Oceanic plateaus. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (The Crust. 2nd Edition), 4: 631~667.
参考文献
Kerr A C, Tarney J, Marriner G F, Nivia A, Saunders A D. 1997. The Caribbean-Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Mahoney J J, Coffin M, eds. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington, DC: American Geophysical Union, 100: 45~93.
参考文献
Kerr A C, Tarney J, Nivia A, Marriner G F, Saunders A D. 1998. The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean. Tectonophysics, 292(3): 173~188.
参考文献
Keskin M. 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 1~4.
参考文献
King S D, Anderson D L. 1998. Edge-driven convection. Earth and Planetary Science Letter, 160(3-4): 289~296.
参考文献
Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letter, 256(3-4): 295~313.
参考文献
Kong W L, Zhang Z C, Cheng Z G, Liu B X, Santosh M, Wei B W, Ke S, Xu L J, Zhang X C. 2022. Mantle source of tephritic porphyry in the Tarim Large Igneous Province constrained from Mg, Zn, Sr, and Nd isotope systematics: implications for deep carbon cycling. Geological Socity of America Bulletin, 134(1-2): 487~500.
参考文献
Kuroda J, Ogawa N O, Tanimizu M, Coffin M F, Tokuyama H, Kitazato H, Ohkouchi N. 2007. Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic event 2. Earth and Planetary Science Letters, 256(1-2): 211~223.
参考文献
Kuritani T, Xia Q K, Kimura J I, Liu J, Shimizu K, Ushikubo T, Zhao D P, Nakagawa M, Yoshimura S. 2019. Buoyant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9(1): 6549.
参考文献
Labidi J, Cartigny P, Moreira M. 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501(7466): 208~211.
参考文献
Labidi J, Cartigny P, Jackson M G. 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics. Earth and Planetary Science Letters, 417: 28~39.
参考文献
Landwehrs J P, Feulner G, Hofmann M, Petri S. 2020. Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. Earth Planetary Science Letters, 537: 116174.
参考文献
Lang M D, Cheng Z G, Zhang Z C, Mao Q, Santosh M. 2020. Hisingerite in trachydacite from Tarim: implications for voluminous felsic rocks in transitional large igneous province. Journal of Earth Science, 31(5): 875~883.
参考文献
Larsen H C, Saunders A D. 1998. Tectonism and volcanism at the SE Greenland rifted margin: a record of plume impact and later continental rupture. In: Wise S, ed. Proceedings of the Ocean Drilling Program, Scientific Results 152. College Station, TX: Ocean Drilling Program, 503~533.
参考文献
Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Wiley, 1~236.
参考文献
Lee C T A, Erdman M, Yang W B, Ingram L, Chin E J, DePaolo D J. 2018. Sulfur isotopic compositions of deep arc cumulates. Earth and Planetary Science Letters, 500: 76~85.
参考文献
Leng W, Zhong S J. 2010. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth and Planetary Science Letters, 291(1-4): 207~214.
参考文献
Leitch A M, Davies G F. 2001. Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. Journal of Geophysical Research, 106(B2): 2047~2059.
参考文献
Lewis J F, Jimenez J G. 1991. Duarte complex in the La Vega-Jarabacoa-Janico area, central Hispaniola: geologic and geochemical features of the sea floor during the early stages of arc evolution. Geological Society of America Specical Papers, 262: 115~141.
参考文献
Li H B, Zhang Z C, Ernst R, Lu L S, Santosh M, Zhang D Y, Cheng Z G. 2015. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province, identifying the mantle plume centre. Terra Nova, 27(4): 247~257.
参考文献
Li J L, Schwarzenbach E M, John T, Ague J J, Huang F, Gao J, Klemd R, Whitehouse M J, Wang X S. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11(1): 514.
参考文献
Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).
参考文献
Li R B, Pei X Z, Wei B, Li Z C, Pei L, Chen G C, Chen Y X, Liu C J. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.
参考文献
Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111~120.
参考文献
Li Z L, Chen H L, Song B, Li Y Q, Yang S F, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim basin, Northwest China. Journal of Asian Earth Sciences, 42(5): 917~927.
参考文献
Lin S C, van Keken P E. 2005. Multiple volcanic episodes: multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature, 436(7048): 250~252.
参考文献
Litasov K D, Goncharov A F, Hemley R J. 2011. Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle. Earth and Planetary Science Letters, 309(3-4): 318~323.
参考文献
Liu Bingxiang, Zhang Zhaochong, Cheng Zhiguo. 2021. Classification, characteristics and petrogenesis of lamprophyres: an overview. Acta Geologica Sinica, 95(2): 292~316 (in Chinese with English abstract).
参考文献
Liu J, Xia Q K, Kuritani T, Hanski E, Yu H R. 2017. Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications, 8(1): 1824.
参考文献
Liu J G, Pearson D G, Wang L H L, Mather K A, Kjarsgaard B A, Schaeffer A J, Irvine G J, Kopylova M G, Armstrong J P. 2021. Plume-driven recratonization of deep continental lithospheric mantle. Nature, 592(7856): 732~736.
参考文献
Liu Yongsheng, Chen Chunfei, He Detao, Chen Wei. 2019. Deep carbon cycle in subduction zones. Scientia Sinica (Terrae), 49(12): 1982~2003 (in Chinese with English abstract).
参考文献
Liu Z, Tian X B, Chen Y, Xu T, Bai Z M, Liang X F, Iqbal J, Xu Y. 2017. Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding. Tectonophysics, 721: 387~394.
参考文献
Mahoney J J, Duncan R A, Khan W, Gnos E, McCormick G R. 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters, 203(1): 295~310.
参考文献
Mahoney J J, Coffin M F. 1997. Preface. AGU Geophysical Monograph, 100: ix-x.
参考文献
Mao H K, Mao W L. 2020. Key problems of the four-dimensional earth system. Matter and Radiation at Extremes, 5(3): 038102.
参考文献
Marzoli A, Bertrand H, Youbi N, Callegaro S, Merle R, Reisberg L, Chiaradia M, Brownlee S I, Jourdan F, Zanetti A, Davies J H F L, Cuppone T, Mahmoudi A, Medina F, Renne P R, Bellieni G, Crivellari S, El Hachimi H, Bensalah M K, Meyzen C M, Tegner C. 2019. The Central Atlantic magmatic province (CAMP) in Morocco. Journal of Petrology, 60(5): 945~996.
参考文献
Melluso L, Cucciniello C, Petrone C M, Lustrino M, Morra V, Tiepolo M, Vasconcelos L. 2008. Petrology of Karoo volcanic rocks in the southern Lembombo monocline, Mozambique. Journal of African Earth Sciences, 52(4-5): 139~151.
参考文献
Mills J V, Gomes M L, Kristall B, Sageman B B, Jacobson A D, Hurtgen M T. 2017. Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean. Geology, 45(5): 475~478.
参考文献
Moore A, Blenkinsop T. 2002. The role of mantle plumes in the development of continental-scale drainage patterns: the southern African example revisited. South African Journal of Geology, 105(4): 353~360.
参考文献
Moore G, Marone C, Carmichael I S E, Renne P. 1994. Basaltic volcanism and extension near the intersection of the Sierra-Madre volcanic province and the Mexican volcanic belt. Geological Socity of America Bulletin, 106(3): 383~394.
参考文献
Natali C, Beccaluva L, Bianchini G, Franca. 2011. Rhyolites associated to Ethipoian CFB: clues for initial rifting at the Afar plume axis. Earth and Planetary Science Letters, 312(1-2): 59~68.
参考文献
Nelson D R, Chivas A R, Chappell B W, McCulloch M T. 1988. Geochemcal and kotopic systematics in cartonatites and implications for the evolution of ocean-island sources. Geochimica Cosmochimica Acta, 52: 1~17.
参考文献
Nelson P L, Grand S P. 2018. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geoscience, 11(4): 280~284.
参考文献
Niu Y L. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics--a petrological and geochemical perspective. Geoscience Frontiers, 9(5): 1265~1278.
参考文献
Niu Y L, Shi X F, Li T G, Wu S G, Sun W D, Zhu R X. 2017. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Science Bulletin, 62(21): 1464~1472.
参考文献
Olsson J R, Soderlund U, Klausen M B, Ernst R E. 2010. U-Pb baddeleyite ages of major Archean dyke swarms and the Bushveld complex, Kaapvaal Craton (South Africa): correlations to volcanic rift forming events. Precambrian Research, 183(3): 490~500.
参考文献
Pankhurst M J, Schaefer B F, Betts P G. 2011. Geodynamics of rapid voluminous felsic magmatism through time. Lithos, 123(1-4): 92~101.
参考文献
Pankhurst R J, Rapela C W. 1995. Production of Jurassic rhyolite by anatexis in the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1): 23~36.
参考文献
Pankhurst R J, Leat P T, Sruoga P, Rapela C W, Márquez M, Storey B C, Riley T R. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research, 81(1): 113~136.
参考文献
Pankhurst R J, Riley T R, Fanning C M, Kelley S P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41(5): 605~625.
参考文献
Parsons T, Thompson G A, Sleep N H. 1994. Mantle plume influence on the Neogene uplift and extension of the U. S. western Cordillera. Geology, 22(1): 83~86.
参考文献
Patchett P J, Gehrels G E. 1998. Continental influence on Canadian Cordilleran terranes from Nd isotopic study, and significance for crustal growth processes. The Journal of Geology, 106(3): 269~280.
参考文献
Payne J L, Clapham M E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences, 40(1): 89~111.
参考文献
Payne J L, Turchyn A V, Paytan A, DePaolo D J, Lehrmann D J, Yu M Y, Wei J Y. 2010. Calciumisotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8543~8548.
参考文献
Peacock S A. 1990. Fluid processes in subduction zones. Science, 248(4953): 329~337.
参考文献
Percival J A, Card K D. 1983. The Archean crust as revealed in the Kapuskasing uplift, Superior province, Canada. Geology, 11(6): 323~326.
参考文献
Pirajno F, Mao J W, Zhang Z C, Zhang Z H, Chai F M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China, implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165~183.
参考文献
Planke S, Alvestad E, Eldholm O. 2017. Seismic characteristics of basaltic extrusive and intrusive rocks. The Leading Edge, 18(3): 342~348.
参考文献
Podmore F, Wilson A H. 1987. A reappraisal of the structure, geology, and emplacement of the Great Dyke, Zimbabwe. In: Halls H C, Fahrig W F, eds. Mafic Dyke Swarms; a Collection of Papers Based on the Proceedings of an International Conference. Geological Association of Canada Special Paper, 34: 317~330.
参考文献
Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth and Planetary Science Letters, 278(3-4): 350~360.
参考文献
Prokoph A, Ernst R E, Buchan K L. 2004. Time-series analysis of Large Igneous Provinces: 3500 Ma to present. The Journal of Geology, 112(1): 1~22.
参考文献
Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schonberg C D, Samsonov A V, Schipansky A A. 1999. Combined mantle plume-island arc model for the formation of the 2. 9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595.
参考文献
Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.
参考文献
Rainbird R H, Ernst R E. 2001. The sedimentary record of mantle-plume uplift. In: Ernst R E, Buchan K L, eds. Mantle Plumes: Their Identification through Time. Boulder, CO: Geological Society of America Special Papers, 352: 227~245.
参考文献
Raymond C A, Stock J M, Cande S C. 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In: Richards M A, Gordon R G, van der Hilst R D, eds. History and Dynamics of Plate Motions. Geophys Monogr, 121: 359~375.
参考文献
Reichow M K, Saunders A D, White R V, Pringle M S, Al'Mukhamedov A I, Medvedev A I, Kirda N P. 2002. 40Ar/39Ar dates from the West Siberian basin: Siberian flood basalt province doubled. Science, 296(5547): 1846~1849.
参考文献
Reidel S P, Camp V E, Ross M E, Wolff J A, Wells R E. 2013. The Columbia River Flood Basalt Province. Boulder, CO: Geological Society of America Special Paper, 497: 1~43.
参考文献
Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hotspot tracks-plume heads and tails. Science, 246(4926): 103~107.
参考文献
Riciputi L R, Johnson C M. 1990. Nd- and Pb-isotope variations in the multicyclic caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization. Geology, 18(10): 975~978.
参考文献
Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1043~1065.
参考文献
Ripley E M, Lightfoot P C, Elswick E R. 2003. Sulfur isotopic studies of continental flood basalts in the Noril'sk region: implications for the association between lavas and ore-bearing intrusions. Geochimica et Cosmochimica Acta, 67(15): 2805~2817.
参考文献
Rivers T, Corrigan D. 2000. Convergent margin on southeastern Laurentia during the Mesoproterozoic: tectonic implications. Canadian Journal of Earth Sciences, 37(2-3): 359~383.
参考文献
Robinson S A, Heimhofer U, Hesselbo S P, Petrizzo M. 2017. Mesozoic climates and oceans--a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64(1): 1~15.
参考文献
Rocha B C, Davies J H F L, Janasi V A, Schaltegger U, Nardy A J R, Nicolas D, Greber N D, Lucchetti A C F, Polo L A. 2020. Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology, 48(12): 1174~1178.
参考文献
Rudnick R L, Jackson I. 1995. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: implications for the properties of an underplated lower continental crust. Journal of Geophysical Research: Solid Earth, 100(B6): 10211~10218.
参考文献
Saccani E, Allahyar K, Beccaluva L, Bianchini G. 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1): 392~411.
参考文献
Safonova I, Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126~158.
参考文献
Safonova I, Litasov K, Maruyama S. 2015a. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers, 6(5): 679~685.
参考文献
Safonova I, Maruyama S, Litasov K. 2015b. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics, 662: 454~471.
参考文献
Saunders A D. 2005. Large igneous provinces: origin and environmental consequences. Elements, 1: 259~263.
参考文献
Saunders A D, England R W, Reichow M K. 2005. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian basin, Russia. Lithos, 79(3-4): 407~424.
参考文献
Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Y G. 2007. Regional uplift associated with continental large igneous provinces: the role of mantle plumes and the lithosphere. Chemical Geology, 241(3-4): 282~318.
参考文献
Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344(6189): 1265~1268.
参考文献
Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end Cretaceous mass extinction. Science, 347: 182~184.
参考文献
Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429): 862~866.
参考文献
Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A, Gulick S P, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Mon-Tanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Rav-izza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327: 1214~1218.
参考文献
Self S, Widdowson M, Thordarson T, Jay A E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet Science Letters, 248: 518~532.
参考文献
Self S, Blake S, Sharma K, Widdowson M, Sephton S. 2008. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science, 319(5870): 1654~1657.
参考文献
Sen G, Bizimis M, Das R, Paul D K, Ray A, Biswas S. 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planet Science Letters, 277: 101~111.
参考文献
Seto Y, Hamane D, Nagai T, Fujino K. 2008. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and Chemistry Minerals, 35: 223~229.
参考文献
Shangguan S M, Peate I U, Tian W, Xu Y G. 2016. Re-evaluating the geochronology of the Permian Tarim magmatic province: Implications for temporal evolution of magmatism. Journal of Geological Society, 173: 228~239.
参考文献
Sharma K K. 2005. Malani magmatism: an extensional lithospheric tectonic origin. In: Foulger G R, Natland J H, Presnall D C, Anderson D L, ed. Plates, Plumes and Paradigms. Geological Society of America Special Paper, 463~476.
参考文献
Shcheka S S, Wiedenbeck M, Frost D J, Keppler H. 2006. Carbon solubility in mantle minerals. Earth Planet Science Letters, 245: 730~742.
参考文献
Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing B A. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Communications, 2(1): 1~5.
参考文献
Sheth H. 2007. Large Igneous Provinces (LIPs): definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85: 117~124.
参考文献
Shilobreva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insight into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochimica et Cosmochimica Acta, 75: 2237~2255.
参考文献
Sleep N H. 1990. Hotspots and mantle plumes: some phenomenology. Journal of Geophysical Research, 95: 6715~6736.
参考文献
Sleep N H. 2006. Mantle plumes from top to bottom. Earth-Science Reviews, 77: 231~271.
参考文献
Smit J, Hertogen J. 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature, 285(5762): 198~200.
参考文献
Smith A D. 1992. Back-arc convection model for Columbia River basalt genesis. Tectonophysics, 207: 269~285.
参考文献
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412~417.
参考文献
Sobolev S V, Sobolev A V, Kuzmin D V, Krivolutskaya N A, Petrunin A G, Arndt N T, Radko V A, Vasiliev Y R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477: 312~316.
参考文献
Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature, 493: 84~88.
参考文献
Stefano C J, Mukasa S B, Andronikov A, Leeman W P. 2011. Water and other volatile systematics of olivine-hosted melt inclusions from the Yellowstone hotspot track. Contributions to Mineralogy and Petrology, 161(4): 615~633.
参考文献
Storey B C, Alabaster T. 1991. Tectonomagmatic controls on Gondwana break-up models: evidence from the proto-Pacific margin of Antarctica. Tectonics, 10: 1274~1288.
参考文献
Storey M, Duncan R A, Tegner C. 2007. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241: 264~281.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313~345.
参考文献
Svensen H, Planke S, Polozov A G, Schmidbauer N, Corfu F, Podladchikov Y Y, Jamtveit B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet Science Letters, 277: 490~500.
参考文献
Swanson E R, Kempter K A, McDowell F W, McIntosh W C. 2006. Major ignimbrites and volcanic centers of the Copper Canyon area: a view into the core of Mexico's Sierra Madre Occidental. Geosphere, 2(3): 125~141.
参考文献
Tarduno J A, Tian W, Wilkison S. 1998. Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophysical Research Letters, 25(21): 3987~3990.
参考文献
Teng F Z. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~87.
参考文献
Teng F Z, Wang S J, Moynier F. 2019. Tracing the formation and differentiation of the Earth by no-traditional stable isotopes. Science China Earth Sciences, 62(11): 1702~1715.
参考文献
Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, EIMF, Walter M J. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168.
参考文献
Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76.
参考文献
Thomson A R, Crichton W A, Brodholt J P, Wood I G, Siersch N C, Muir J M R, Dobson D P, Hunt S A. 2019. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth's lower mantle. Nature, 572: 643~647.
参考文献
Tian H C, Yang W, Li S G, Ke S. 2017. Could sedimentary carbonates be recycled into the lower mantle? constraints from Mg isotopic composition of Emeishan basalts. Lithos, 292: 250~261.
参考文献
Tian W, Campbell I H, Allen C M, Guan P, Pan W Q, Chen M M, Yu H, Zhu W. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160: 407~425.
参考文献
Torsvik T H, Burke K, Steinberger B, Webb S J, Ashwal L D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466 (7304): 352~355.
参考文献
Trendall A F. 1995. The Woongarra rhyolite—a giant lavalike felsic sheet in the Hamersley basin. East Perth: Geological Survey of Western Australia, 42.
参考文献
Trumbull R B, Sobolev S V, Bauer K. 2002. Petrophysical modeling of high seismic velocity crust at the Namibian volcanic margin. Geological Society of America Special Paper, 362: 225~234.
参考文献
Turner S, Hawkesworth C, Gallagher K, Stewart K, Peate D, Mantovani M. 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Paraná. Journal of Geophysical Research, 101: 11503~11518.
参考文献
Twist D. 1985. Geochemical evolution of the Rooiberg silicic lavas in the Loskop Dam area, southeastern Bushveld. Economic Geology, 80: 1153~1165.
参考文献
Twist D, French B M. 1983. Voluminous acid volcanism in the Bushveld complex; a review of the Rooiberg Felsite. Bulletin Volcanologique, 46: 225~242.
参考文献
Ukstins-Peate I, Bryan S E. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience, 1: 625~629.
参考文献
Ukstins-Peate I, Baker J A, Al-Kadasi M, Al-Subbary A, Knight K B, Riisager P, Thirlwall M F, Peate D W, Renne P R, Menzies M A. 2005. Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen. Bulletin Volcanologique, 68: 135~156.
参考文献
Veksler I V, Dorfman A M, Danyushevsky L V, Jakobsen J K, Dingwell D B. 2006. Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152: 685~702.
参考文献
Vogt P R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature, 240(5380): 338~342.
参考文献
Wallmann K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65(18): 3005~3025.
参考文献
Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, 334: 54~57.
参考文献
Wang C H, Zhang Z C, Xie Q H, Cheng Z G, Kong W L, Liu B X , Santosh M, Jin S K. 2021a. Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution. American Mineralogist, 106: 1064~1076.
参考文献
Wang C H, Zhang Z C, Giuliani A, Cheng Z G, Liu B X, Kong W L. 2021b. Geochemical and O-C-Sr-Nd isotopic constraints on the petrogenetic link between aillikites and carbonatites in the Tarim large igneous province. Journal of Petrol, 62(5): 0022~3530.
参考文献
Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous earth surface system changes. Earth Science Frontiers, 16(5): 1~14 (in Chinese with English abstract).
参考文献
Wang S F, Fu X G, Liu Y D, Fan S Y, Wang J, Wu Z H. 2021. Bitu ophiolite in eastern Tibet: the last piece of the jigsaw puzzle in the Paleotethyan regime along the eastern Cimmerian continental margin. Lithos, 406~407: 1062520.
参考文献
Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of National Academy Sciences, 115: 8682~8687.
参考文献
Wang Y, Ukstins-Peate I, Luo Z H, Wang S Z, Cheng L L, Hao J H, Wang Y. 2019. Rifting in SW China: structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP. Geological Magazine, 156: 745~758.
参考文献
White R S. 1997. Mantle plume origin for the Karoo and Ventersdorp flood basalts, South Africa. South African Journal of Geology, 100: 271~282.
参考文献
White R S, McKenzie D. 1989. Magmatism at rift zones-the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research-Solid Earth, 94: 7685~7729.
参考文献
White R V, Tarney J, Kerr A C, Saunders A D, Kempton P D, Pringle M S, Klaver G T. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos, 46: 43~68.
参考文献
Widdowson M, Cox K G. 1996. Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet Science Letters, 137: 57~69.
参考文献
Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1~33.
参考文献
Williams G E, Gostin V A. 2000. Mantle plume uplift in the sedimentary record: origin of kilometre-deep canyons within late Neoproterozoic successions, South Australia. Journal of Geological Society London, 157: 759~768.
参考文献
Wilson C J N, Gravley D M, Leonard G S, Rowland J V. 2009. Volcanism in the central Taupo volcanic zone, New Zealand: tempo styles and controls. In: Thordarson T, Larsen G, Self S, Rowland S K, Hoskuldsson A, eds. Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI. Journal of Geological Society, 2: 225~247.
参考文献
Wilson M. 1989. Igneous Petrology. The Netherlands: Springer, 2200.
参考文献
Wingate M T D, Pirajno F, Morris P A. 2004. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology, 32: 105~108.
参考文献
Xia Q K, Bi Y, Li P, Tian W, Wei X, Chen H L. 2016. High water content in primitive continental flood basalts. Scientific Reports-UK, 6(1): 25416.
参考文献
Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W, Song W, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.
参考文献
Xu X, Zuza A, Yin A, Lin X B, Chen H L, Yang S F. 2020. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49: 96~100.
参考文献
Xu Y G, He B, Chung S L, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32: 917~920.
参考文献
Xu Y G, Chung S L, Shao H, He B. 2010. Silicic magmas from the Emeishan large igneous province, Southwest China: petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119: 47~60.
参考文献
Xu Y G, Wei X, Luo Z Y, Liu H Q, Gao J. 2014. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos, 204: 20~35.
参考文献
Yang G X, Li Y J, Tong L L, Wang Z P, Wu L. 2017. Oceanic island basalts in ophiolitic mélanges of the Central China Orogen: an overview. Geological Journal, 52: 155~173.
参考文献
Yang G X, Li Y J, Tong L L, Wang Z P, Duan F H, Xu Q, Li H. 2019. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 179: 385~398.
参考文献
Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chemical Geology, 328: 185~194.
参考文献
Yu S Y, Chen L M, Lan J B, He Y S, Chen Q, Song X Y. 2020. Controls of mantle source and condition of melt extraction on generation of the picritic lavas from the Emeishan large igneous province, SW China. Journal of Asian Earth Sciences, 203: 104534.
参考文献
Zhang D Y, Zhang Z C, Santosh M, Cheng Z G, Huang H, Kang J L. 2013. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters, 361(1): 238~248.
参考文献
Zhang G J, Zhang X L, Li D D, Farquhar J, Shen S Z, Chen X Y, Shen Y A. 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology, 43(12): 1091~1094.
参考文献
Zhang Y, Ren Z Y, Xu Y G. 2013. Sulfur in olivine-hosted melt inclusions from the Emeishan picrites: implications for S degassing and its impact on environment. Journal of Geophysical Research-Solid Earth, 118(8): 4063~4070.
参考文献
Zhang Y Q, Song Y G, Yang L M, Su L, Niu Y L, Allen M B, Xu X. 2017. Basalts and picrites from a plume-type ophiolite in the South Qilian accretionary belt, Qilian Orogen: accretion of a Cambrian Oceanic Plateau? Lithos, 278-281: 97~110.
参考文献
Zhang Z C, Mahoney J J, Mao J W, Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.
参考文献
Zhang Zhaochong. 2009. A discussion on some important problems concerning the Emeishan large igneous province. Geology of China, 36(3): 634~646 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Dong Shuyun. 2007. Were large igneous provinces caused by mantle plumes? Geoscience, 21(2): 247~254 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Hou Tong, Cheng Zhiguo. 2021. Mineralization related to large igneous province. Acta Geologica Sinica, 96(1): 131~154 (in Chinese with English abstract).
参考文献
Zhong Y T, He B, Mundil R, Xu YG. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province. Lithos, 204: 14~19.
参考文献
Zhong Y T, Luo Z Y, Mundil R, Wei X, Liu H Q, He B, Huang X L, Tian W, Xu Y G. 2022. Constraining the duration of the Tarim flood basalts (northwestern China): CA-TIMS zircon U-Pb dating of tuffs. Geological Socity of America Bulletin, 134(1-2): 325~334.
参考文献
Zhu B, Guo Z J, Liu R, Liu D, Du W. 2014. No pre-eruptive uplift in the Emeishan large igneous province: new evidences from its ‘inner zone’, Dali area, southwest China. Journal of Volcanology Geothermal Research, 269: 57~67.
参考文献
Zhu B, Peate D W, Guo Z J, Liu R C, Du W. 2017. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province. International Journal of Earth Sciences, 106(7): 2503~2525.
参考文献
Zhu J, Zhang Z C, Reichow M K, Li H B, Cai W C, Pan R H. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. Journal of Geophysical Research-Solid Earth, 123(2): 1018~1034.
参考文献
Zhu J, Zhang Z C, Santosh M, Jin Z L. 2020. Carlin-style gold province linked to the extinct Emeishan plume. Earth and Planetary Science Letters, 530: 115940.
参考文献
Zhu J, Zhang Z C, Santosh M, Tan S C, Jin Z L. 2021a. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: implication for end-Guadalupian extinction of marine biota. Gondwana Research, 92: 228~238.
参考文献
Zhu J, Zhang Z C, Santosh M, Tan S C, Deng Y N, Xie Q H. 2021b. Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations. Geoscience Frontiers, 12(4): 101140.
参考文献
薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973~1985.
参考文献
Foulger G R. 2005. 地幔柱: 为什么现在怀疑?科学通报, 50: 1814~1819.
参考文献
李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38: 1345~1359.
参考文献
刘秉翔. 2021. 塔里木大火成岩省钠质闪煌岩岩石成因与地幔交代作用. 中国地质大学(北京)博士学位论文.
参考文献
刘秉翔, 张招崇, 程志国. 2021. 煌斑岩的分类、特征及成因. 地质学报, 95(2): 292~316.
参考文献
刘勇胜, 陈春飞, 何德涛, 陈唯. 2019. 俯冲带地球深部碳循环作用. 中国科学: 地球科学, 49(12): 1982~2003.
参考文献
王成善, 曹珂, 黄永建. 2009. 沉积记录与白垩纪地球表层系统变化. 地学前缘, 16(5): 1~14.
参考文献
张招崇. 2009. 关于峨眉山大火成岩省一些重要问题的讨论. 中国地质, 36(3): 634~646.
参考文献
张招崇, 董书云. 2007. 大火成岩省是地幔柱作用引起的吗? 现代地质, 21(2): 247~254.
参考文献
张招崇, 侯通, 程志国. 2022. 大火成岩省的成矿效应. 地质学报, 96(1): 131~154.
目录contents

    摘要

    大火成岩省指的是板块内部在相对短的时间间隔内(通常<3 Ma)巨量的岩浆喷发和侵入形成的火成岩省(面积超过105 km2,体积超过105 km3)。自此概念提出至今,在许多方面都取得了重要进展,但对于其成因以及对大陆裂解、物质循环、环境效应、生物灭绝等方面还存在着诸多争论。本文在回顾大火成岩省定义及其演变的基础上,对上述问题进行了全面的讨论,内容包括:① 镁铁质大火成岩省(MLIP)成因的地幔柱模型及其存在的问题;② 水在MLIP形成过程中的作用;③ MLIP成因的其他替代模型;④ 硅质大火成岩省(SLIP)的成因及其与MLIP之间的关系;⑤ 大火成岩省和超大陆裂解之间的耦合关系;⑥ 大火成岩省与碳、硫循环及其对全球环境和生物大规模绝灭的影响;⑦ 大火成岩省与全球海平面升高、温室效应以及大洋缺氧事件的关系;⑧ 大火成岩省的地表地形效应。最后提出了大火成岩省研究中有待解决的几个重要问题和可能的解决思路。

    Abstract

    Large igneous province (LIP) refers to the igneous province produced by massive magmatic eruption and intrusion (area >105 km2, volume >105 km3) within a relatively short time interval (usually <3 Ma). Since the LIP was proposed, important progress has been made in many aspects, but there are still many debates on its genesis and its effects on continental fragmentation, material cycling, environmental effects, biological extinction, and mineralization effects. With a review of the definition and evolution of LIP, the present study provides a comprehensive discussion of the above issues, including: ① Mantle plume model for the genesis of mafic large igneous province (MLIP) and its remaining issues; ② The role of water in the formation of MLIP; ③ Alternative models for MLIP; ④ Genesis of the silicic large igneous province (SLIP) and its genetic relationship to MLIP; ⑤ The coupling relationship between LIP and supercontinental breakup; ⑥ Carbon and sulfur cycles in LIP and their impact on the global environment and mass extinction; ⑦ The relationship between LIP and globe sea level rise, greenhouse effect and oceanic anoxic events; ⑧ LIP's effect on the surface topography. Finally, we raised several important issues that require to be solved and the related possible methods in the future study.

  • 板块构造理论的诞生是地球科学领域的一场革命,它成功地解释了发生在板块边界的许多地质现象和过程(如岩浆活动、变质作用、构造变形、地震活动等)。按照板块构造理论,主要的岩浆活动应当发生在板块的边界,而板块内部的岩浆活动应该是很微弱的。然而,随着研究的深入以及同位素测年技术的提高,人们发现在板块内部也存在着大规模的岩浆活动,不仅如此,这些巨量的岩浆活动是在很短的时间内完成的,其喷发速率远远超过洋中脊(Condie,2001及其所引参考文献)。很显然,板块构造理论无法解释这种现象。Coffin and Eldholm(1991)首先注意到这种现象,他们将板块内部这种短时间内巨量喷发形成的岩浆省称之为大火成岩省(large igneous province,LIP)。虽然近30多年来在LIP成因以及对地球系统的影响等方面取得了许多重要进展,但也存在一些需要进一步解决的问题。本文首先介绍LIP的概念以及演变过程和全球LIP的主要特征,并探讨LIP成因以及可能产生的地质效应,最后提出有待进一步解决的问题。

  • 1 大火成岩省的定义及其演变

  • LIP原始的定义指的是主要由镁铁质岩石(包括喷出岩和侵入岩)组成的,面积超过105 km2的岩浆省,并强调了岩浆不是形成于板块边缘的环境。这个概念的提出具有里程碑的意义,主要是因为:① 板块内部大规模的岩浆活动无法用板块构造解释,暗示存在一个完全不同于板块运动的地球动力学过程; ② 大规模的板内岩浆活动不仅发生在大陆板内(即大陆溢流玄武岩省),也可以发生在大洋板内,暗示大洋板内和大陆板内大规模岩浆活动可能存在类似的地球深部过程。

  • 随着研究的深入,许多学者对LIP的概念进行了重新定义,如Mahoney and Coffin(1997)Bleeker(2004)Sheth(2007)Halls et al.(2008)Bryan and Ernst(2008)。其中对LIP的定义、分类和特征进行详细阐述的有Sheth(2007)以及 Bryan and Ernst(2008)Sheth(2007)对LIP的定义比较简单,主要是强调岩浆岩(包括喷出岩和侵入岩)的面积超过0.5×105 km2,并不强调构造环境以及岩石组合,所以他的概念比较宽泛,既包括了板内岩浆活动,也包括板块边界的岩浆活动。因此,Sheth(2007)的LIP概念基本上不为其他学者所接受。后来Bryan and Ernst(2008)对LIP的定义进行了纠正,不但强调了岩浆的面积,还强调了岩浆的体积要在105 km3以上,并且75%以上的岩浆体积形成于1~5 Ma之内,即高的岩浆产出率(是大洋中脊的2~10倍,Ernst,2014)。另外,他们将LIP划分为2种类型,即以镁铁质岩石为主的镁铁质大火成岩省[mafic large igneous province,简写为MLIP,可以有少量长英质岩石(这里指的是狭义的长英质岩石,只是包括含石英的富硅长英质岩石,不包括只是由斜长石或似长石组成的岩石,如斜长岩或霞石岩等),但占比<10%]以及由长英质岩石为主的硅质大火成岩省(silicic large igneous province,简写为SLIP,镁铁质岩石占比不到10%),他们分别代表了LIP的两个端元。这个LIP的概念目前基本上已为多数学者所接受。

  • 然而,Cheng et al.(2020)基于我国塔里木LIP的长英质岩石出露面积达0.48×105 km2,约占总面积的18%,提出还存在第三种类型LIP,称之为过渡型大火成岩省(transitional large igneous province,简写为TLIP),即镁铁质岩石和长英质岩石各占一定比例,介于MLIP和SLIP之间。实际上,除了塔里木LIP之外,全球范围内还有2个其他LIP也应该属于TLIP,如澳大利亚西北部的Woongarra LIP(~2450 Ma),玄武岩和流纹岩的体积大致相等,均大约为0.15×105 km3Trendall,1995; Barley et al.,1997); 南非的Bushveld LIP(~2100 Ma),其玄武岩和流纹岩的体积分别为~10×105 km3 和~3×105 km3Twist and French,1983; Twist,1985; Cawthorn and Walraven,1998)。然而,根据Bryan and Ernst(2008)对LIP的定义,Woongarra的玄武岩和流纹岩的总体积并没有达到LIP的要求(105 km3),但考虑到其形成时代较老,有大量的岩浆岩可能被剥蚀,准确的岩浆岩体积已经很难估算,因而是否能构成一个LIP尚无定论。就目前有限的资料来看,3个过渡型LIP的镁铁质组分比例高于长英质组分,还没有发现长英质组分高于镁铁质组分的TLIP,这可能与后期的剥蚀有关,因为长英质岩石通常位于火山岩地层的上部,最先被剥蚀。

  • 值得指出的是,在我国的中亚造山带西段天山—准噶尔—北山一带广泛分布~280 Ma的花岗岩以及少量的玄武岩和镁铁—超镁铁质岩体,其形成时代和塔里木LIP的主体时代一致,两者是否同属于一个LIP目前还存在争议(Pirajno et al.,2008; Qin et al.,2011; 薄弘泽和张招崇,2020),如果是,则该地区构成一个巨大的TLIP。

  • 通过上述分析,LIP按照镁铁质岩石和长英质岩石的比例可以分为三种类型,即镁铁质大火成岩省(MLIP)、硅质大火成岩省(SLIP)和过渡型大火成岩省(TLIP),它们之间的关系见图1。

  • 图1 大火成岩省类型

  • Fig.1 The classification of LIPs

  • 横坐标的数字代表长英质组分占的比例,其中的①和②分别代表塔里木和Bushveld LIP

  • The numbers on the x-axis represent the proportion of felsic components, where ① and ② stand for Tarim and Bushveld LIP, respectively

  • 2 大火成岩省的基本特征

  • 由于TLIP介于MLIP和SLIP之间,而且目前的实例较少,并且考虑到还是以镁铁质岩石为主,所以在此将其与MLIP一起进行论述。

  • 2.1 镁铁质大火成岩省

  • 2.1.1 形成环境

  • MLIP既可以产于大陆环境,也可以产于大洋环境。产于大陆环境的MLIP包括大陆溢流玄武岩省(continental flood basalt province,CFB)和火山裂谷边缘(volcanic rifted margin),两者有密切的成因联系,其中后者是大陆溢流玄武岩省导致大陆裂解后位于大陆裂谷边缘的LIP。大洋环境的镁铁质火成岩省包括大洋高原(oceanic plateau)和大洋盆地(ocean-basin)的LIP,这两者也有密切的成因联系,主要区别在于地貌和地壳的结构,其中大洋高原玄武岩往往代表了喷发中心,而洋盆玄武岩则往往是大洋高原玄武岩流入洋盆所形成的。然而,无论是大陆环境还是大洋环境,岩浆的喷发形式均为裂隙式喷发,并且大陆环境中的玄武岩在早期可以是海相,如峨眉山LIP早期喷发为海相环境,直到中晚期才变为陆相环境(Ukstins-Peate and Bryan,2008; Zhu et al.,20182021a); 另外,大洋环境中的镁铁质LIP由于玄武岩厚度逐步增大,局部也可以高出海平面,如Ontong Java LIP东侧(Ernst,2014)。

  • 图2 3个典型大洋高原(Ontong Java,Caribbean,Kerguelen)玄武岩的TAS图解(底图据Le Maitre,1989; 数据来自http://georoc.mpch-mainz.gwdg.de/georoc/)

  • Fig.2 TAS diagrams of the basalts from three typical oceanic plateaus (Ontong Java, Caribbean, Kerguelen) (after Le Maitre, 1989; the data are referred to http://georoc.mpch-mainz.gwdg.de/georoc/)

  • 需要指出的是,古老的大洋高原LIP被认为是一些蛇绿岩带的重要组成部分(如Ichiyama et al.,20082014)。目前在很多的造山带的蛇绿岩中均识别出大量具有洋岛玄武岩(OIB)地球化学特征的玄武岩,它们普遍与硅质岩和灰岩共生,并且具有与MORB和岛弧拉斑玄武岩明显不同的地球化学特征,所以它们一般被解释为形成于海山或大洋高原(如Safonova and Santosh,2014; Yang et al.,20172019; Barbero et al.,2021)。如中亚造山带的不同蛇绿岩带中,分布有从晚新元古代到早石炭世的OIB型玄武岩(如Zhang et al.,2017; Yang et al.,2019); 在特提斯构造域,无论是在原特提斯阶段(如Li et al.,2021)还是古特提斯阶段(Wang S F et al.,2021)或新特提斯阶段(Saccani et al.,2013)的蛇绿岩带中均分布有这种OIB型玄武岩。然而,这些OIB型玄武岩均为碱性玄武岩,而大洋高原玄武岩中碱性玄武岩非常稀少,占绝大多数的是拉斑玄武岩(图2),并且稀土和微量元素图解总体上显示出相对平缓的特征(图3),这一点明显不同于蛇绿岩带中的OIB型碱性玄武岩,后者具有明显的轻稀土富集和大离子亲石元素富集的特征(如Yang et al.,2019)。另一方面,洋岛玄武岩虽然也以拉斑玄武岩为主,但在晚期常常出现碱性玄武岩,总体上其碱性玄武岩出现的几率要明显高于大洋高原。另外,由于大洋高原密度低于正常的大洋岩石圈,这样就不太可能通过狭小的海沟俯冲进入地幔,由此会堵塞海沟终止俯冲,并增生至大陆边缘,导致大陆地壳生长(见4.6节)。然而,目前蛇绿岩带中的OIB地球化学特征的玄武岩规模很小,这显然与大洋高原大面积的玄武岩不符。相比之下,海山的规模比较小,可以在俯冲过程中被拖入海沟进入到地幔。因此,综合分析,蛇绿岩带中具有OIB地球化学特征的碱性玄武岩很可能不是大洋高原玄武岩,而是海山或洋岛玄武岩。

  • 除了蛇绿岩带中的具有OIB地球化学特征的玄武岩之外,太古宙绿岩带中的玄武岩—科马提岩也被认为是形成于大洋高原环境,其主要依据是玄武岩往往具有枕状构造而缺乏陆相沉积岩夹层,说明是海相环境,并且其地球化学特征(如具有球粒陨石的Nb/La比值和低的正εNd)与白垩纪大洋高原相似(Kerr,2014)。典型实例包括南非Kaapval克拉通内的Barberton和Pietersberg带(约3.5 Ga,Chavagnac,2004),澳大利亚Pilbara克拉通(约3.5 Ga,Arndt et al.,2001),加拿大苏必利尔省(约3.0~2.7 Ga,Fan and Kerrich,1997)和波罗的地盾的Kostomuksha和Sumozero-Kenozero绿岩带(约3.0~2.8 Ga,Puchtel et al.,1999)。

  • 图3 典型大洋高原玄武岩(Ontong Java,Caribbean,Kerguelen)稀土元素球粒陨石和微量元素原始地幔标准化图解(标准化数据据Sun and McDonough,1989; 数据出处同图2)

  • Fig.3 Chondrite-normalized rare earth elemental patterns and primitive mantle-normalized trace elemental patterns of basalts from typical oceanic plateaus (Ontong Java, Caribbean, Kerguelen) (the normalized data are from Sun and McDonough, 1989; the data source of basalts is same as Fig.2)

  • 2.1.2 岩石类型和岩石组合

  • MLIP在岩石类型上,喷出相绝大部分为拉斑玄武岩,有少量的碱性玄武岩(有时甚至出现霞石岩),出现在喷发的早期或者晚期的LIP的边缘地区,显示出与厚的岩石圈有关。除了玄武岩之外,常常还有少量的长英质岩石,多数出现在喷发的晚期阶段,呈现出双峰式岩浆特征(如Ukstins-Peate et al.,2005),有的则以爆发相的凝灰岩形式存在。总体上,长英质岩石占的比例较低,普遍低于5%,多数<1%,如Deccan LIP的长英质岩石大约只有500 km3Ernst,2014及其所引文献),峨眉山LIP虽然没有精确的数据,但根据野外观察可以肯定,其比例<1%。虽然Paraná-Etendeka和Karoo-Ferrar LIP的长英质岩石体积分别达约1.5×104~2.0×104 km3Rocha et al.,2020)和约3.5×104 km3White,1997),并高于著名的Yellowstone-Snake River Plain(SRP)长英质岩石体积(约104 km3Ellis et al.,2012),但分别只占总体积的约1.5%~2%和1%,并低于SLIP。在一些剥蚀程度比较高的地区(如西伯利亚LIP)则会出现相应的侵入岩(如花岗岩,Pankhurst et al.,2011)。然而,在一些大洋LIP中,往往缺乏长英质岩石,如Kerguelen LIP(Frey et al.,2003)。

  • 图4 大火成岩省中各主要岩石类型的成因关系(据Wilson,1989; Ernst,2014修改)

  • Fig.4 The genetic relationships among the dominated rock units in LIPs (modified from Wilson, 1989; Ernst, 2014)

  • 除了上述喷出岩之外,MLIP还有少量超镁铁质熔岩,如苦橄岩和科马提岩(如Gibson et al.,2000; Herzberg and O'Hara,2002; Zhang et al.,2006),它们通常代表了地幔直接部分熔融形成的原始岩浆,是热异常的地幔柱部分熔融的产物。无论是大陆环境还是大洋环境的MLIP,均发现有这种超镁铁质熔岩。然而,也有一些MLIP至今没有发现超镁铁质熔岩,这可能是因为超镁铁质熔岩具有高的密度无法喷发到地表。

  • 除了喷出岩外,MLIP通常还有大量的侵入岩,常见的侵入岩包括镁铁—超镁铁质岩体和基性岩墙群,其中镁铁—超镁铁质岩体代表了原始岩浆(如苦橄质和科马提质岩浆)在地壳岩浆房演化的产物,并且在演化过程中形成了岩浆型铜镍硫化物(铂族元素)矿床、钒钛磁铁矿床和铬铁矿床(张招崇等,2022),而溢流玄武岩则代表了原始岩浆在岩浆房演化后残留的岩浆沿通道喷出地表的产物。当残留的岩浆没有足够的量喷出地表时,就滞留在火山通道内形成基性岩墙群。岩墙群的空间分布格局主要受断裂的分布控制,在MLIP中多数表现为放射状的扇形,其收敛的位置指示了地幔柱的中心位置(Ernst,2014),如~1270 Ma的Mackenzie(Baragar et al.,1996)、~200 Ma的中大西洋岩浆省(Ernst,2014)和~260 Ma的峨眉山LIP(Li et al.,2015)。镁铁—超镁铁质岩体、岩墙群和溢流玄武岩的关系见图4。从图4可以看出,镁铁—超镁铁质岩体和溢流玄武岩在成分上有互补关系,而基性岩墙在成分上应该接近于溢流玄武岩。大洋高原的MLIP与产在大陆的MLIP基本相似,但略有区别,表现为缺乏岩墙群,代之以大量水平产出的厚岩席和岩床(图5),是过量的岩浆在垂向堆积的同时大规模侧向顺层侵入的结果(Kerr et al.,1997)。

  • 此外,幔源岩浆在地壳岩浆房中通过AFC过程(分离结晶+地壳混染)或者带来的大量热导致地壳发生部分熔融形成中酸性岩浆(图4),所以MLIP中也经常见一些中酸性侵入岩。另外,在某些LIP中,特别是岩石圈较厚的MLIP,如西伯利亚、Deccan和塔里木等,还常见一些碱性、过碱性岩石,如金伯利岩、煌斑岩(包括超镁铁质煌斑岩,如方解霞黄煌岩(aiilikite),刘秉翔等,2021; Wang et al.,2021a2021b)、碳酸岩(包括钙质、镁质和钙镁质,其中以钙质最为常见)、霞石正长岩等。虽然这些碱性、过碱性岩石规模不大,但指示了源区存在CO2组分,对研究深部碳循环具有重要的意义。

  • 值得指出的是,由于不同的剥蚀程度,所以很多MLIP出露的岩石类型和岩石组合略有不同。在某些剥蚀程度浅的新生代MLIP以及大洋MLIP中,有时只能见到溢流玄武岩,而见不到岩墙和层状岩体; 在剥蚀程度高的MLIP特别是时代比较古老的MLIP,有时甚至没有相应的溢流玄武岩,只剩下代表通道的岩墙群或者代表岩浆房的层状镁铁—超镁铁质岩体。MLIP中的岩墙群的长度大多超过300 km,最长可达2000 km以上,宽度大多为10~40 m,最宽可达100~200 m(Ernst,2014)。与大型层状岩体共生的超镁铁质岩墙宽度可达1000 m,如津巴布韦大岩墙(Podmore and Wilson,1987)。岩墙群在空间上呈线型或放射状。最著名的岩墙群是产于加拿大北部~1270 Ma的Mackenzie LIP,岩墙分布面积达~2.7×106 km2,岩墙长度超过2000 km,在空间上组成100°的扇形(Buchan and Ernst,2004)。某些岩墙沿沉积岩的层理侵入时,则可形成与沉积岩假整合产出的岩床,如澳大利亚1078~1070 Ma的Warakurna LIP,岩床的分布面积达~1.5×106 km2Wingate et al.,2004)。南非的Bushveld层状岩体形成于~2100 Ma,是全球最大的层状岩体,岩体的厚度达9 km(Eales and Cawthorn,1996; Cawthorn and Walraven,1998)。我国的两个二叠纪LIP——峨眉山LIP和塔里木LIP不同地区由于剥蚀程度不同,镁铁—超镁铁质岩体、基性岩墙群和溢流玄武岩均可见到,但是基性岩墙群和镁铁—超镁铁质岩体的规模相对较小(张招崇,2009; Li et al.,2015; Cheng et al.,20172018; Kong et al.,2022)。

  • 图5 大洋高原LIP各类岩石相互关系示意图(据Kerr et al.,1998

  • Fig.5 The relationships among the rock units in oceanic plateau LIP (after Kerr et al., 1998)

  • 2.1.3 岩浆作用持续时间和期次

  • 由于MLIP的主体是玄武岩,并且往往受到后期的热效应和风化作用的影响,所以精确厘定岩浆作用的持续时间相对较为困难,目前大多数MLIP缺少精确的测年结果。已有的研究表明,绝大多数MLIP(包括大陆和大洋)的持续时间多数在5~10 Ma,最高可达50 Ma(Bryan and Ernst,2008; 图6)。但是其主体时间往往是很短暂的,大多<5 Ma,甚至在1 Ma之内(Hofmann et al.,2000),类似于图7a的形式,如西伯利亚LIP,主体喷发基本上发生在250 Ma左右(Reichow et al.,2002); 我国的峨眉山LIP,玄武岩的喷发时限为260~259 Ma(Zhong et al.,2014及其所引参考文献),甚至厚度达9 km的Bushveld层状岩体,据Cawthorn and Webb(2013)估计其形成时间可能只有75 ka。最典型的是全球最年轻也是最小的LIP——美国哥伦比亚河(Columbia River)LIP的喷发时间为17~6 Ma,但主体喷发发生在16.6~15.3 Ma之内,在这个时间段内喷发的岩浆体积占总体的90%以上(Camp et al.,2003; Hooper et al.,2007; Reidel et al.,2013)。

  • 也有一些LIP显示出2个或多个期次的特征,类似于图7b的形式,即每个期次的持续时间都很短且都喷发出大体积的岩浆,但两个期次之间岩浆活动十分微弱,时间跨度几百万年至几十百万年,每个期次的岩浆规模各不相同,有的LIP早期规模大于晚期,有的LIP则相反。这个现象可能与地幔柱中存在高密度的榴辉岩(通常是再循环的洋壳)有关,这一点得到Lin and van Keken(2005)数值模拟的支持,他们的模拟结果表明,密度高的榴辉岩堆积在地幔底部,可以导致LIPs周期性的活动和不稳定性,两次间隔时间可以为10~100 Ma,而两次时间间隔长短可能是多种因素造成的,如下地幔黏度、密度层的结构以及周围地幔的性质等。

  • 图6 MLIP持续时间统计(包括大陆和大洋LIP)(据Bryan and Ernst,2008; 横坐标表示LIP的持续时间)

  • Fig.6 Compilation of the MLIP duration (including continental and oceanic LIPs, after Bryan and Ernst, 2008; x-axis stands for the duration of LIPs)

  • 图7 MLIP随时间演化岩浆活动强度的变化(据Prokoph et al.,2004

  • Fig.7 Variation of magmatic activity intensity in MLIP vs. time (after Prokoph et al., 2004)

  • (a)—只有一个活动期次;(b)—2个活动期次

  • (a) —Only one magmatic pulse; (b) —two magmatic pulses

  • 某些具有2个活动期次的MLIP分别代表了裂谷前和同裂谷岩浆活动,典型的如北大西洋LIP,第一期为裂谷前的大陆溢流玄武岩,分布在大陆架的边缘,形成于62~58 Ma; 第二期为同裂谷期,形成于56~52 Ma(Jerram and Widdowson,2005; Storey et al.,2007)。而我国的塔里木LIP则至少可以分为3个期次:第一期次为小规模的岩浆活动形成方解霞黄煌岩(该岩石初始被误认为金伯利岩,Wang et al.,2021a2021b),其形成时间大约300 Ma(Zhang D Y et al.,2013); 第二期次为岩浆活动主峰,形成广泛分布的溢流玄武岩和长英质岩石,其形成时间为290~285 Ma(Xu et al.,2014; Zhong et al.,2022); 第三期次形成于284~273 Ma,为衰弱期,形成一系列碱性—过碱性侵入岩以及镁铁—超镁铁质侵入岩和碱性镁铁质岩脉(Tian et al.,2010; Li et al.,2011; Xu et al.,2014; Cheng et al.,2015; Shangguan et al.,2016)。尽管不同的LIP有不同的期次和活动规模,几乎所有的LIP的主期均以拉斑玄武岩为主,这主要是因为拉斑玄武岩是相对高的部分熔融程度的产物,而碱性玄武岩由于部分熔融程度较低,所以规模不会太大。

  • 2.2 硅质大火成岩省

  • SLIP最早由Bryan et al.(2002)提出,指的是以长英质岩石为主、有少量镁铁质岩石和中性岩石的LIP(Bryan and Ferrari,2013)。Bryan and Ernst(2008)以及Ernst(2014)将其作为与镁铁质LIP并列的一种LIP类型。需要指出的是,虽然在俯冲带中也有大量的长英质岩石,其规模符合SLIP的标准,但是因为其不产于板内环境,并且喷发速率低,所以这种构造环境的岩浆省不能归为SLIP。与MLIP既可以产于大陆环境也可以产于大洋环境不同的是,所有的SLIP都产在大陆环境,通常形成于裂谷作用之前。

  • 目前SLIP的数量较少,已识别的SLIP大多在300 Ma之后,如墨西哥的Sierra Madre Occcidental LIP形成于38~20 Ma(Swanson et al.,2006; Ferrari et al.,2007),是目前最年轻且保存最为完好的SLIP; 南美—南极洲的Chon Aike LIP,形成于侏罗纪(188~153 Ma,Pankhurst et al.,19982000); 澳大利亚东部的Whitsunday SLIP形成于白垩纪(132~95 Ma,Ewart et al.,1992); 位于澳大利亚东北部的Kennedy-Connors-Auburn SLIP形成于320~280 Ma(Bryan,2007)。然而,随着同位素测年水平的提高,也逐渐识别出元古宙的SLIP,如印度的Malani SLIP(约750 Ma,Sharma,2005; de Wall et al.,2018)、澳大利亚南部的Gawler SLIP(约1590 Ma,Creaser and White,1991)。古老的SLIP较少的原因可能是与后期的构造运动、风化剥蚀等地质过程有关,但更大的可能是与地壳的成熟度和厚度有关。

  • 从已识别的SLIP来看,主要有如下特征:

  • (1)岩浆岩的面积超过105 km2,体积超过105 km3,这一点与MLIP相同。

  • (2)岩石组合上也具有双峰式组合,但90%以上的岩浆岩成分为SiO2>65%的长英质,并且绝大多数具有钙碱性I型至A型花岗岩的地球化学信号,可以有少量的基性和中性岩石,如玄武岩和安山岩等。

  • (3)与MILP以熔岩为主的特征不同的是,多数SLIP以火山碎屑岩为主,且以熔结凝灰岩为主要组成部分的火山碎屑流(ignimbrite)为主。在这些火山碎屑流中,晶屑主要由长石(斜长石为主)、石英、钛铁氧化物、辉石组成,并常含有黑云母、角闪石等含水矿物(Ewart et al.,1992; Bryan,2007; Bryan and Ferrari,2013),说明岩浆富水。当然,也有部分SLIP以熔岩为主,如Gawler SLIP,可能与熔体富F有关,因为F在熔体中起到解聚作用使得岩浆黏度降低(Dingwell and Mysen,1985; Dingwell,1996; Giordano et al.,2008),从而降低其爆发性。

  • (4)与MLIP火山机构缺乏或很少的特点不同的是,SLIP由于有大量的熔结凝灰岩,所以往往存在规模巨大的破火山机构,其直径多为10~40 km,如Chon Alike LIP,最大的破火山口可达100 km以上(Riley et al.,2001)。然而,也有一些SLIP,识别的火山口数量较少,如Sierra Madre Occidental LIP识别的破火山口不足20个(Aguirre-Díaz and Labarthe-Hernández,2003; Swanson et al.,2006),而Whitsunday LIP只识别出5个破火山机构(Ewart et al.,1992; Bryan et al.,2000),其原因可能与后期的剥蚀作用有关。

  • (5)SLIP持续时间最长可达40 Ma,长的持续时间同样是因为多期次的岩浆活动,如Chon Aike LIP持续时间达35 Ma,有3个活动期次,每个期次的持续时间为5~10 Ma,且喷发的长英质岩浆体积超过0.5×105~>1×105 km3Pankhurst et al.,19982000); Whitsunday LIP的持续时间为37 Ma,存在118~113 Ma和110~105 Ma两个期次(Bryan et al.,1992; Ewart et al.,1992); 墨西哥的Sierra Madre Occcidental LIP的年龄为38~20 Ma,也有2个期次,每次持续时间大约4 Ma(Aguirre-Diaz and Mcdowell,1991; Moore et al.,1994; Swanson et al.,2006; Ferrari et al.,2007)。

  • 3 大火成岩省的成因

  • 自提出LIP的概念以来,LIP的成因一直是研究的热点,并且取得了重要的进展,下面就MLIP和SLIP的成因分别进行阐述。

  • 3.1 镁铁质大火成岩省的成因

  • 3.1.1 镁铁质大火成岩省的成因与地幔柱

  • 众所周知,按照板块构造理论,主要岩浆活动应当发生于板块的边界,如大洋中脊和岛弧构造环境,板块内部(包括大陆和大洋板内)的岩浆活动是很微弱的。很显然,利用板块构造无法解释板块内部的以短时间喷发巨量岩浆为特征(即高的喷发速率)的LIP。因此一些学者提出起源于地幔深部(主要是核幔边界的D”层或上下地幔边界)的地幔柱可以很好地解释LIP的特征(Richards et al.,1989; Campbell and Griffiths,1990; Campbell,2005)。尽管地幔柱假说提出之后的20年间没有引起广泛关注,并且质疑地幔柱假说的声音从未间断过,但是自Griffiths and Campbell(1990)开展著名的地幔柱模拟实验之后,地幔柱假说开始盛行,并且多数学者相信地幔柱假说是正确的,之后的问题是应该像板块构造理论那样如何去完善它。通过几十年的努力,地质学家在LIPs中也确实找到了支持地幔柱假说的间接证据,比如代表高温的高镁熔岩,如苦橄岩或科马提岩(Zhang et al.,2006; 张招崇和董书云,2007)、喷发前地壳的大规模隆升(>500 m,Xu et al.,2004; Saunders et al.,2005)以及放射状岩墙群(Ernst,2014; Li et al.,2015)。

  • 近10多年来深部地球物理探测结果进一步支持了地幔柱假说。Becker and Boschi(2002)的深部地球物理探测结果发现,非洲和西南太平洋下部的核幔边界各存在一个低剪切波速异常区(Large Low Shear Wave Velocity Provinces,LLSVPs)(图8)。Burke and Torsvik(2004)通过古地磁构造重建发现,全球绝大部分MLIP(除了西伯利亚、峨眉山、塔里木和哥伦比亚河等少数几个LIPs外)按照其形成时间的古地理位置都落在这两个低速异常区的边缘,暗示这两个LLSVPs至少存在了500 Ma,并且自形成之后一直保持相对稳定(Torsvik et al.,2010)。这一研究成果表明,地幔柱起源于核幔边界而且长期固定不动。在此基础上,Torsvik et al.(2010)将重建的含金刚石的金伯利岩的古地理位置投影到两大LLSVPs中,发现全球85%的金伯利岩落在两大LLSVPs范围内,强烈暗示金伯利岩的形成可能与超级地幔柱的活动有关(Torsvik et al.,2010)。对于LLSVPs的成因,多数学者基于地球物理和高温高压实验,认为是再循环洋壳下沉的结果(Thomson et al.,2019; Huang et al.,2020; Gleeson et al.,2021)。由于这种下沉的洋壳密度大,所以起到了“绝缘”的作用,阻止了地核的热向地幔传导,并且在堆积体的边缘地幔橄榄岩发生部分熔融,这样形成的熔体密度显著低于周围的地幔(Niu,2018及其所引参考文献),从而激发地幔柱在LLSVPs的周围上升形成大火成岩省。

  • 图8 核幔边界两个大的低剪切波速异常区和全球LIP的古地理位置(据Burke and Torsvik,2004修改)

  • Fig.8 Two large low shear wave velocity provinces at the core-mantle boundary and the paleogeographic location of the global LIP (modified after Burke and Torsvik, 2004)

  • 白色圆圈代表LIP; 白色五角星代表非洲和太平洋异常中心; 红色和绿色圆圈代表热点

  • White circles represent LIPs; white stars represent African and Pacific anomaly centers; red and green circles represent hot spots

  • 另外,近年来一些高精度的地震层析成像研究结果显示,在许多的现代热点地区,如夏威夷、冰岛、萨摩亚(French and Romanowicz,2015)和黄石(Nelson and Grand,2018)存在延伸到核幔边界的近垂直、细长的低速异常,可能指示了地幔柱起源于核幔边界。

  • 3.1.2 地幔柱假说的困惑

  • 虽然地幔柱假说可以解释MLIP高的喷发速率,并且也在MLIP中找到了经典的地幔柱模型预测到的地质现象,然而随着研究的深入,发现有很多的地质观察并不符合地幔柱模型。

  • 地幔柱的假说有4个要点:① 首先,按照经典的地幔柱模型,应该有细长的尾和巨大的蘑菇形的头,前者部分熔融形成热点玄武岩,后者部分熔融形成LIP; ② 源于地球核—幔边界缓慢上升的细长柱状热物质流; ③ 地幔柱是相对静止的; ④ 热点下具有异常高温地幔。然而,这4点均受到挑战,如对于第一点也是最重要的一点,代表地幔柱尾熔融产物的有些洋岛玄武岩,没有相应的LIP,如作为经典地幔柱产物的夏威夷至今没有发现“地幔柱头”的LIP; 而有的LIP则缺失“地幔柱柱尾”,如西伯利亚、峨眉山、塔里木和Ontong Java等。因此作为经典地幔柱产物的夏威夷,寻找相应的“地幔柱头”是检验是否存在地幔柱的关键。对于第二点,一些地震层析图像并没有显示令人信服的细长柱状热物质流结构,如Tristan 和Afar 下的地震异常仅限于上地幔,而许多其他“热点”如Reunion 和Hoggar 之下根本就没有任何异常(Foulger,2005)。即使近年来的一些地震层析图像显示,夏威夷、冰岛、萨摩亚和黄石等热点都显示出近垂直的、细长的低速异常直达核幔边界,并被作为起源于核幔边界的地幔柱的关键证据(如French and Romanowicz,2015; Nelson and Grand,2018),也有一些学者认为,地震波速异常的分辨率实际上还达不到那么高的程度(Niu et al.,2017及其所引参考文献),或者认为这种异常很可能是地幔存在熔体或CO2Foulger,2010)。对于第三点,对许多热点的研究发现,很多热点也都是迁移的(如Niu et al.,2017),只是迁移的速度相对板块的运动速度较慢而已(Duncan and Richards,1991)。例如,大西洋“热点”相对太平洋“热点” 在大约50 Ma前一直就不固定(Raymond et al.,2000),而Bono et al.(2019)更是认为Hawaii-Emperor岛链的弯曲并不是板块运动造成的,而是热点移动的结果; 对于第四点,按照地幔柱假说,MLIP应该存在代表高温岩浆的苦橄岩或科马提岩,并且这种代表高温岩浆的超镁铁质熔岩在地幔柱的中心最多,向四周减少,但实际上这种情况很少,甚至许多MLIP并没有这种高镁熔岩,如哥伦比亚河LIP。而有的即使存在苦橄岩,也并不代表其为高温条件下形成,而是堆晶成因,如被一些学者当作高温证据的印度Deccan苦橄岩(Campbell and Griffiths,1991),恢复的原始岩浆的MgO含量仅为9%~10%(Beane and Hooper,1998)。值得一提的是,位于Caribbean/Colombian Plateau西南的Gorgona岛发现了迄今为止显生宙唯一一例具有鬣刺结构的科马提岩(Kerr et al.,1998),其橄榄石的最高Fo值达94.2,估算的地幔潜温高达~1770°C(Arndt,2000; Herzberg and O'Hara,2002)。然而,Kamenetsky et al.(2010)根据橄榄石(Fo=89.0~91.5)中的熔融包裹体的成分以及高的挥发分含量,估算其原始岩浆温度只有1330~1340°C,只是略高于MORB玄武岩的温度。另外,苦橄岩也可以产出在其他的构造环境,如大洋中脊环境以及裂谷环境(形成于压力大于2500 MPa条件)。因此,是否存在异常高温地幔还存在争议。

  • 除上述4点之外,另有2点也和地幔柱假说不符:① 许多MLIP没有显示出空间上年龄递变的轨迹,如冰岛、Ascension等(Baksi,1999)。此外,有些被认为有火山迁移轨迹的MLIP,因为同位素年龄数据的质量问题,被怀疑是否真的代表了火山迁移的轨迹(Baksi,2006); ② 有很多MLIP缺乏喷发前的隆起(Saunders et al.,2007),如Ontong Java LIP,而西伯利亚LIP大规模喷发前反而沉降(Czamanske et al.,1998),即使像峨眉山LIP被认为喷发前存在千米级的隆升(He et al.,2003; Xu et al.,2004),后来也受到广泛质疑(如Ukstins-Peate and Bryan,2008; Zhu et al.,2014; Wang et al.,2019)。

  • 总之,虽然地幔柱假说是一个主流的观点,但是还是存在一些地质现象无法用地幔柱模型很好地解释,所以目前有关地幔柱的争论依然非常激烈,并且这种争论预计依然会持续相当长的时间。但不管最终争论的结果如何,对地球科学的发展都会起到推动作用。

  • 3.1.3 水在镁铁质大火成岩省形成过程中的作用

  • 按照经典的地幔柱模型,MLIP在板块内部形成的主要因素是从深部地幔上升的地幔柱带来的异常的热导致岩石圈地幔熔融或者上升的地幔柱本身发生减压熔融而形成,前者形成Paraná型MLIP,后者形成Deccan型MLIP(Turner et al.,1996)。至于是岩石圈地幔发生部分熔融或者是地幔柱本身发生部分熔融取决于岩石圈的厚度(Mahoney et al.,2002; Sen et al.,2009)。在岩石圈相对较厚的条件下,地幔柱到达岩石圈底部时,因为没有达到部分熔融的条件,其热传导作用导致岩石圈地幔中的富集组分先发生部分熔融,并导致岩石圈的减薄,因此在一些MLIP中,地球化学研究发现,早期岩石圈地幔源区占主导,而晚期则地幔柱组分逐渐增加; 而在岩石圈较薄的条件下,上升的地幔柱发生减压熔融形成具有OIB特征的玄武质或苦橄质岩浆。但无论是哪种方式,地幔柱的热贡献都被认为是MLIP形成的关键因素,并且部分熔融是在相对“干”的体系下发生的,这一点也被一些MLIP中的玄武岩岩相特征所佐证,如玄武岩中普遍含有大量粗大的斜长石斑晶,如峨眉山LIP(Zhang et al.,2006; 张招崇,2009)以及其他MLIP,如Paraná、Karoo、Deccan等(Wilson,1989及其所引参考文献),这一点和大洋中脊玄武岩非常相似,后者被普遍认为是缺水条件下形成的。因此,水在MLIP中的作用被认为是不显著的,因而也就没有引起相关学者的普遍重视。

  • 近年来一些学者通过对几个典型的MLIP玄武岩的水含量研究发现,其水的含量普遍高于大洋中脊玄武岩,并且和岛弧玄武岩中的水含量接近甚至高于岛弧玄武岩中的水含量。如Cabato et al.(2015)测定了哥伦比亚河LIP溢流玄武岩中橄榄石和斜长石的熔体包裹体的水含量,可以高达4.2%; 黄石热点玄武岩橄榄石中演化程度最低的熔体包裹体的水含量可以达到3.3%(Stefano et al.,2011); Ivanov et al.(2018)测定了西伯利亚LIP原始麦美奇岩中橄榄石的熔体包裹体的水含量为3.88%,并且对暗色霞石岩中橄榄石的熔体包裹体含水量的测定后,推测其原始岩浆的水含量也可以达到3%左右; Choudhary et al.(2019)对Deccan LIP玄武岩单斜辉石和斜长石斑晶中的熔体包裹体的水含量进行了测定,发现可以达到2%; 夏群科团队近年来对我国峨眉山和塔里木两个LIP玄武岩的含水量进行了系统的研究,发现两个MLIP原始岩浆的含水量均很高,前者为3.4%(Liu J et al.,2017),而后者则高达4.82%±1.00%(Xia et al.,2016); 与此可以对比的是,东南亚玄武岩省(southeastern Asian basalt province,SABP)规模远不及普通的MLIP,虽然也被认为是地幔柱作用的结果,但是测定的水含量明显要低(0.28%~1.24%,Gu et al.,2019),因此相关的学者认为水含量低是其岩浆规模较小的主要原因。通过这些研究,一些学者认为以前MLIP中的水含量可能被低估了,水可能对于MLIP的形成起到了重要的作用,这是因为水的加入可以大幅度降低地幔橄榄岩的固相线(Gaetani and Grove,1998; Katz et al.,2003),亦即一个富水的源区相对“干”的体系更容易发生熔融,其对温度、压力以及源岩等先决条件并不那么苛刻,更容易形成MLIP。以上实验数据表明这种具有弧岩浆特点的高水含量同样也广泛出现在MLIP的岩石中,所以其高的水含量一般被解释为MLIP形成之前地幔经历了俯冲事件(如Cheng et al.,2018及其所引参考文献)。

  • 鉴于水含量在MLIP形成过程中的作用日益凸显,一些学者开始将重点放在地幔柱的形成与地球深部水循环的联系上,并且认为一些MLIP的源区是含水的地幔柱。如果这个结论是正确的,那么水又是如何进入到地幔柱中?在热的地幔柱中是以何种形式存在的?很显然,俯冲作用是地表水进入深部地幔的唯一方式。Peacock(1990)认为俯冲作用会俯冲8.7×1011 kg的水,虽然70%的水会通过岛弧岩浆作用的途径回到地表(Hattori and Guillot,2003),但依然会有将近3×1011 kg的水进入到深部地幔中去(Keken et al.,2011)。俯冲板片进入深部地幔既可以滞留在地幔转换带,也可以穿过地幔转换带到达核幔边界,由于地幔转换带的主要矿物林伍德石和瓦兹利石本身的晶格缺陷具有很大的储水能力,俯冲板片在这个层位滞留、脱水、部分熔融,使得地幔转换带成为地球深部重要的储水层(Schmandt et al.,2014; Hwang et al.,2017)。大量的地球物理研究发现,俯冲板片还可以从过渡带进入到下地幔,那么俯冲板片进入到下地幔后,其中的“水”在下地幔的赋存形式是否与上地幔和地幔转换带相同?Mao and Mao(2020)根据高温高压实验研究,认为下沉到核幔边界的俯冲板片会发生脱氢作用,剩余的氧会与地核的铁反应,在核幔边界处形成氢化含铁超氧化物(hydrogenated iron-bearing superoxides,HISOs),随着时间推移,这种超氧化物的堆积最终会引起剧烈的熔融。而地幔转换带和核幔边界也是大家公认的地幔柱起源部位,因此有理由推测存在含水地幔柱,目前越来越多的地质学、地震层析成像和数值模拟证据证明了含水地幔柱的存在(Safonova et al.,2015a2015b; Liu J et al.,2017; Kuritani et al.,2019)。然而,俯冲作用如何将水带到核幔边界,具体的过程尚不清楚。对于古老的MLIP,如何从喷出的基性-超基性熔岩示踪水的来源,是来自核幔边界还是地幔柱上升时与俯冲板片相互作用或在过渡带与滞留的俯冲板片相互作用的结果,尚缺少有效的方法,因此将地幔源区水含量与地幔柱、源区易熔组分特征等因素综合起来是未来讨论MLIP形成机制的重要方向。

  • 3.1.4 镁铁质大火成岩省成因的替代模型

  • 由于地幔柱模型不能解释所有的地质、地球化学和地球物理所观察到的现象,所以一些学者认为地幔柱不是MLIP形成的必要条件,其他模型也可以解释MLIP的成因,这些模型包括:① 陨石撞击(如,Jones et al.,2002; Ingle and Coffin,2004); ② 裂谷减压熔融(White and McKenzie,1989; Coltice et al.,2007); ③ 边缘对流(King and Anderson,1998); ④ 富集地幔部分熔融(Anderson,2005); ⑤ 板块构造过程或板块模型(Foulger,2007); ⑥ 岩石圈拆沉和板片断离(Keskin,2003; Elkins-Tanton,2005); ⑦ 弧后裂谷(如Smith,1992; Rivers and Corrigan,2000; Jian et al.,2009)。

  • 上述不同模型虽然可以比较好地解释某些MLIP的成因,但是当将其应用到其他一些MLIP就会遇到一些困难,总体上不具有普适性。比如陨石撞击模型,尽管在一些MLIP(如Ontong Java Plateau)中找到一些陨石撞击的证据,如岩石中有少量星外的组分,包括震动石英、淬火的球粒和Ni尖晶石以及亲铁元素的异常等(Jones et al.,2002),但绝大多数MLIP没有发现相关的证据。另外,根据裂谷减压熔融、富集地幔部分熔融、岩石圈拆沉和板片断离以及弧后裂谷等模型,虽然也可以解释MLIP大体积岩浆的现象,但是数值模拟结果表明,在这些模型的条件下要产生大体积岩浆则需要更长的时间(Saunders,2005及其所引参考文献),这与大火成岩省的特点(75%以上体积岩浆在<5 Ma内产生)不符,同时这些模型也均无法解释某些大火成岩省存在高温成因的高镁熔岩,因为根据这些模型不应该能产生高温的岩浆。边缘对流模型同样也只能解释少数大火成岩省的现象,如某些大火成岩省位于克拉通的边缘以及大体积的岩浆,但无法解释其他不位于克拉通边缘的大火成岩省的成因以及存在高温成因的高镁熔岩。

  • 总体上,地幔柱模型尽管也遭受到一些学者的质疑,但是迄今为止最为大家接受的模型。

  • 3.2 硅质大火成岩省的成因

  • 长英质岩石产于不同的构造环境,最常见的是产在与俯冲有关的构造背景中,如大洋岛弧、活动大陆边缘和碰撞造山带,虽然板内和大陆裂谷环境中也有长英质岩石产出,但规模相对不大。然而,在地质历史上大陆板块内部也有大规模的长英质岩石,其面积(>105 km2)和体积(>105 km3)要远远大于现代岛弧地区,如著名的新西兰Taupo超级火山带,其分布面积约0.06×105 km2,体积大约0.0053×105 km3Wilson et al.,2009)。那么板块内部如此大规模的长英质岩浆活动是如何形成的?

  • 对于上述问题,首先必须搞清楚长英质岩浆如何形成的。一般认为形成长英质岩浆有2种主要机制:① 地壳部分熔融; ② 镁铁质岩浆的分离结晶作用(或同时伴随地壳的同化混染作用,即AFC过程)。除了上述2种主要机制之外,实验岩石学的研究表明,镁铁质岩浆演化到晚期可以发生不混溶作用形成富铁的玄武岩和流纹岩(Veksler et al.,2006; Charlier et al.,2013)。然而,这种不混溶成因至今还没有被认为是LIP长英质岩浆的成因,无论是MLIP还是SLIP,这主要可能是因为缺少不混溶作用地质证据的支持。由于分离结晶作用或AFC过程形成的长英质岩浆数量很少,SLIP大规模的长英质岩浆的形成不太可能是通过这种机制形成,而这种机制通常被用来解释MLIP中的长英质岩浆的成因,如峨眉山(Xu et al.,2010)、CAMP(Marzoli et al.,2019)、Ethiopian(Natali et al.,2011)和 Karoo LIP(Melluso et al.,2008)。因此除了早期少数学者根据镁铁质岩石和长英质岩石的微量元素和Sr-Nd同位素成分的相似性(图9),认为SLIP中的长英质岩石是通过分离结晶作用或AFC过程形成(Riciputi and Johnson,1990; Storey and Alabaster,1991; Johnson,1991)外,主流的观点认为大规模的长英质岩浆是通过地壳部分熔融形成。至于长英质岩石“幔源”的Sr-Nd同位素特征(图9)则是由于早期底侵的镁铁质下地壳或新生下地壳部分熔融形成(Pankhurst and Rapela,1995)。

  • 理论上,要形成巨量的长英质岩浆,地壳必须发生高程度的部分熔融。而要使得地壳发生高程度的部分熔融,通常的条件是:① 高的温度和② 流体的存在导致固相线温度的降低。Bryan et al.(2002)对全球一些典型SLIP的特征总结时发现,大多数SLIP中长英质岩石的斑晶主要是斜长石和石英,也有镁铁质矿物,如辉石和角闪石。而MLIP中的流纹岩却很少出现含水矿物,反映一个贫水的岩浆体系。他们据此提出大体积长英质岩浆的形成是由于镁铁质—超镁铁质岩浆的底侵作用导致地热梯度的升高使得含水的地壳发生高程度的部分熔融的结果。相反,MLIP长英质岩石占的比例较低的原因一种可能是由于地壳贫水,部分熔融程度较低,或者是由于贫水地壳不能发生部分熔融,长英质岩石是镁铁质岩浆发生分离结晶作用形成的。但无论是哪种可能性,其产生的长英质岩浆的量都不大。按照这个解释,形成SLIP中巨量的长英质岩石则需要大量的幔源岩浆的参与。然而SLIP中镁铁质岩石所占的比例很低,如果镁铁质岩浆仅仅是这样的比例,是无法为巨量长英质岩浆的形成提供足够热量的。因此,Ernst(2014)认为SLIP之下还存在一个MLIP,巨量的幔源岩浆为地壳发生高程度的部分熔融创造了条件。然而,值得注意的是,迄今为止尚未发现SLIP和MLIP共生的实例,即使美国的Snake River Plain(SRP)和哥伦比亚河LIP在时空上共生,被Ernst(2014)作为SLIP和MLIP共生的一个典型的实例,但SRP长英质岩石(流纹岩)的体积实际上也只有~104 km3Ellis et al.,2012),达不到SLIP定义的最低限。为了解释上述现象,Pankhurst et al.(1998)认为SLIP镁铁质岩浆少的原因是与地壳的成熟度有关,当地壳成熟度很高时,上升的镁铁质岩浆无法通过地壳,因此在地壳中形成岩浆房发生分离结晶作用形成长英质岩浆,同时也可以使得地壳发生部分熔融形成长英质岩浆。Ernst(2014)则认为是由于密度低的长英质岩浆首先喷发使得地壳的密度变低,产生的密度障阻碍了镁铁质岩浆上升而使其停留在下地壳。不管怎样,上述研究还只是停留在解释上,缺乏地质的证据。

  • 图9 某些SLIP和MLIP中的长英质岩石的Sr和Nd 同位素成分

  • Fig.9 Sr and Nd isotopic compositions of felsic rocks in some SLIPs and MLIPs

  • SLIP(华南,Whitsunday,Chon Alike,Malani,Sierra Madre Occidental)的数据据薄弘泽和张招崇(2020)及其相关参考文献; 峨眉山据Xu et al.(2010)Zhu et al.(2017); 塔里木据Cheng et al.(2020)及其所引参考文献; Paraná据Garland et al.(1995)

  • The data of SLIP (South China, Whitsunday, Chon Alike, Malani, Sierra Madre Occidental) are from Bo Hongze and Zhang Zhaochong (2020) and references theirin; Emeishan is from Xu et al. (2010) and Zhu et al. (2017) ; Tarim is from Cheng et al. (2020) and references therein; Paraná is from Garland et al. (1995)

  • 鉴于目前尚未有MLIP和SLIP共生的实例,所以要验证上述模型,更切实际的方法是研究TLIP中长英质岩石体积大的原因,进而理清镁铁质岩浆和硅质岩浆的成因关系。因为在TLIP中,镁铁质岩石和长英质岩石在时空上是共生的,显然两者之间存在着紧密的成因关联,厘定两者之间具体的成因关系,特别是镁铁质岩浆在长英质岩浆形成过程中的作用,将为解决巨量长英质岩浆的成因提供重要信息和约束。Cheng et al.(2020)对塔里木TLIP两类长英质岩石的研究发现,具有“幔源”地球化学特征的长英质岩石含水量较低,认为是溢流玄武岩通过AFC过程形成的,而占主体的“壳源”长英质岩石出现含水矿物斑晶硅铁石(hisingerite,Lang et al.,2020),说明具有较高的水含量,并且计算的水含量介于典型的MLIP和SLIP长英质岩石的水含量之间,略低于弧岩浆的水含量,因此认为塔里木TLIP中相对较高的长英质岩石比例是由于镁铁质岩浆导致富水地壳发生部分熔融的结果,至于富水地壳的形成则与早期南天山洋的南向俯冲作用有关。由于相关的研究较少,这个结论的普适性如何尚需更多的实例支持和验证。

  • 4 大火成岩省对地球系统的影响

  • 板块理论和全球变化是20世纪地球科学中的两大突破性进展。进入21世纪,地球系统科学已成为地球科学领域的主旋律,它以全球性、统一性的整体观、系统观和多时空尺度,来研究地球系统所涉及的过程、各组成部分之间的联系和相互作用,获取在全球尺度上对整个地球系统的科学理解。起源于地球深部的LIP是地质历史上重大的地质事件,它从核幔边界开始,作用在地幔、地壳、水圈、生物圈、大气圈等圈层,导致了地球各圈层之间巨大的物质和能量交换,在地球形成演化中发挥了重要作用,是全球变化的重要驱动因素之一。

  • 4.1 大火成岩省和超大陆旋回

  • “超大陆旋回”的研究是近30年来固体地球科学一个热点研究领域。地质历史上,全球的主要大陆经历了多次的聚合和裂解过程,其中研究程度最高的是最后两个旋回,即Gondwana-Pangea和Rodinia超大陆。超大陆的聚合是通过全球性的大规模增生和碰撞造山作用实现的,但是对于超大陆的裂解机制还存在比较大的争议,争议的焦点在于超大陆的裂解是否和LIP事件有关(Cawood et al.,2016)。

  • 一些学者(如White and McKenzie,1989; Courtillot et al.,1999)注意到,尽管不是所有的LIP都能够导致大陆裂解和洋盆的打开,但是所有的洋盆的打开(红海、亚丁湾、阿拉伯海、南大西洋、中大西洋、北大西洋和西南印度洋等)都与LIP事件密切相关(表1)。多数情况下,大陆裂解发生在大规模火山作用的3~15 Ma之后,如冰岛,北大西洋LIP大规模火山作用发生在60 Ma,裂谷则发生在55 Ma,洋壳形成于53 Ma,并导致挪威和格陵兰的分裂(Larsen et al.,1998),因此大规模火山作用和洋壳形成的时间差大约为7 Ma。实际上,不同LIP与洋壳形成的时间间隔可长可短,短的不到5 Ma,如Paraná和Deccan,长的如Karoo和中大西洋,其时间间隔分别为13 Ma和25 Ma。基于上述观察,一些学者认为LIP和大陆裂解存在因果关系,即深部上升的地幔柱导致了岩石圈的穹状隆起以及地壳的破裂,最终导致大陆的裂解。然而,从地质的角度分析,这一过程可能需要很长的时间,所以一些学者并不认为LIP导致了大陆的裂解(Keppie,20152016; Cawood et al.,2016)。Burov and Gerya(2014)通过高分辨率3D数值模拟,结果表明,如果构造板块受弱张应力作用,那么上升的物质流足以引起大陆裂解,并且几千米深、数千千米深的裂谷系统可以仅仅在2 Ma内形成,比绝大多数LIP和裂谷的时间差都还要短。

  • 表1 LIP事件与大陆裂解以及洋盆打开的关系

  • Table1 LIPs associated with continental breakup and ocean basin opening

  • 注:据Ernst(2014)及其所引参考文献

  • 如上所述,部分LIP如西伯利亚、峨眉山、Keweenawan和塔里木LIP等却没有导致大陆裂解。既然LIP可以导致大陆裂解,那么为何这些LIP没有导致大陆裂解?一些学者认为可能与区域构造应力状态有关,如果LIP形成时,周围的造山作用使得该区处于挤压状态,那么就会抵消上升地幔柱所产生的伸展作用造成的影响,由此不会导致岩石圈的破裂。这个模式可以较好地解释西伯利亚、峨眉山、Keweenawan和塔里木等大火成岩省没有产生大陆裂解的原因。

  • 不管LIP是否导致了大陆裂解,在LIP形成过程中,地幔柱—岩石圈相互作用会导致岩石圈的减薄,这一点得到了一些MLIP系统的地球化学研究结果的支持:岩浆的源区早期以富集的岩石圈地幔为主,而晚期地幔柱组分逐渐增多,这一现象一般被解释为地幔柱—岩石圈相互作用的结果(如Campbell,1998; Zhang et al.,2006),因为薄的岩石圈可以诱发地幔柱的熔融。另一方面,最近的研究表明,地幔柱在导致岩石圈减薄的同时,在LIP形成的后期,能够利用高压、高程度的部分熔融的残余体来重新愈合所破坏的克拉通山根,并使之重新恢复到原先的厚度,即所谓的“克拉通再生”(Liu et al.,2021)。这一模式可以很好地解释塔里木盆地为何新生代地层可呈水平状态而没有受喜马拉雅碰撞造山作用的影响,这是因为二叠纪塔里木地幔柱导致已经减薄的岩石圈(Cheng et al.,2018)变成一个厚的、刚性的岩石圈(Xu et al.,2020)。

  • 4.2 大火成岩省和全球生物灭绝事件

  • Vogt(1972)注意到德干LIP的大规模玄武质岩浆喷发与白垩纪末期(end-Cretaceous)生物灭绝事件在时间上存在密切的联系,并认为火山喷发所释放的有毒物质在此次生物灭绝事件中起到了重要的作用。随后的年代学研究显示在时间上多个LIP事件与其他生物灭绝事件(或极端气候和环境事件)也存在戏剧性的耦合,如峨眉山LIP与中二叠世瓜德鲁普统末期(end-Guadalupian)生物灭绝事件、西伯利亚LIP与二叠纪末期(end-Permian)生物灭绝事件、中大西洋岩浆省与三叠纪末期(end-Triassic)生物灭绝事件以及Deccan与白垩纪末期生物灭绝事件(图10),据此很多学者认为LIP的岩浆活动在全球性气候及环境急剧恶化以及生物灭绝事件扮演了至关重要的角色(如,Wignall,2001; Courtillot and Renne,2003; Ernst and Youbi,2017; Bond and Grasby,2017; Clapham and Renne,2019)。

  • 当然,也有学者认为是其他原因导致的生物灭绝事件,主要包括海洋分层缺氧(anoxic和euxinia stratified ocean)(如,Grice et al.,2005; Shen et al.,2011; Zhang et al.,2015)和地外撞击作用假说(如,Alvarez et al.,1980; Smit and Hertogen,1980; Hildebrand et al.,1991; Schulte et al.,2010; Hull et al.,2020)。海洋分层缺氧主要是由于硫化海水快速上涌至海洋表面或浅水区促使生物缺氧死亡,如二叠纪末期以及中二叠世瓜德鲁普统末期生物灭绝事件都被认为是当时全球海洋分层缺氧所导致(Grice et al.,2005; Shen et al.,2011; Zhang et al.,2015)。然而,海洋的这种缺氧模式可能不会导致生物生理选择性灭绝方式以及不同环境下的生物选择性灭绝(Knoll et al.,2007)。基于此,Payne and Calpham(2012)认为仅仅是海洋分层缺氧不太可能导致全球性大规模生物灭绝事件。白垩纪末期生物灭绝事件,包括恐龙在内大约有75%的动植物消失,其在时间上与墨西哥湾的希克苏鲁伯陨石撞击事件(Chicxulub impact)戏剧性耦合(如,Alvarez et al.,1980; Smit and Hertogen,1980; Hildebrand et al.,1991; Schulte et al.,2010; Hull et al.,2020)。值得指出的是,该次生物灭绝事件与Deccan LIP事件也是同时发生的(Vogt,1972; Courtillot et al.,1988; Duncan and Pyle,1988; Chenet et al.,2007; Schoene et al.,20152019)。然而,长期以来,关于此次生物灭绝事件是由地外撞击作用,还是大火成岩省事件占据主导作用还一直存在激烈的争议。

  • 图10 400 Ma以来的大火成岩省事件与生物灭绝事件的时间关系图(据Bond et al.,2014修改)

  • Fig.10 Relationship between generic extinction magnitude and large igneous province events through the past 400 Ma (modified from Bond et al., 2014)

  • PDD—Pripyat-Dnieper-Donets裂谷; CAMP—中大西洋岩浆省; OJP 1/OJP 2—Ontong Java 高原phases 1和2; NAIP—北大西洋岩浆省; CR—Columbia River玄武岩群; 大陆溢流玄武岩省和大洋高原玄武岩省在图中分别以红色和蓝色条表示

  • PDD—Pripyat-Dnieper-Donets rift; CAMP—Central Atlantic magmatic province; OJP 1/OJP 2—Ontong Java Plateau phases 1 and 2; NAIP—North Atlantic igneous province; CR—Columbia River Basalt Group; continental flood basalt provinces and oceanic plateaus are shown as red and blue bars, respectively

  • 近年来,大量研究揭示了在LIP的形成过程中会释放大量的挥发性气体(例如,CO2、CH4、SO2、HCl等),其可以在短时间内触发全球气候和环境发生急剧变化,从而导致地球历史上多次生物灭绝事件(如,Ganino and Arndt,2009; Svensen et al.,2009; Sobolev et al.,2011; Burgess et al.,2017; Davies et al.,2017; Heimdal et al.,2020; Capriolo et al.,20202021; Zhu et al.,2021b)。LIP事件中所释放的挥发分气体中二氧化碳(CO2)对全球气候和环境影响最为深刻,其可导致全球尺度的气候变暖和海洋酸化(Jones et al.,2016; Ernst and Youbi,2017)。此外,LIP的大规模玄武质岩浆喷发脱气产生的二氧化硫(SO2)可以导致气候变冷、酸雨以及海洋酸化等,也是造成全球气候和环境急剧恶化的重要因素(如,Self et al.,20062008; Black et al.,2012; Zhang Y et al.,2013; Zhu et al.,2021a)。然而,值得注意的是,不是所有LIP事件都能够导致生物灭绝事件,特别是白垩纪期间大洋中有多个LIP事件并没有导致全球生物大规模灭绝事件。多数学者认为LIP事件能否导致全球性气候环境变化主要取决于两个因素:一是地幔柱中含大量再循环沉积物(如,Sobolev et al.,2011; Zhu et al.,2021a); 二是地幔柱岩浆活动之前的LIP沉积地层中富含有机质或碳酸盐岩(如,Ganino and Arndt,2009; Svensen et al.,2009),这是因为这两个因素可导致LIP产生足够多的CO2,而仅仅依靠玄武质岩浆喷发过程中的CO2脱气作用所释放处的量是有限的(详见4.3.1节)。

  • 4.3 大火成岩省和碳循环

  • 近十多年的研究表明,全球大约99%的碳储存于固体地球的深部,而地球表层系统(大气圈、水圈和生物圈)只占1%左右(Etiope and Ciccioli,2009)。众所周知,火山喷发会将地球深部(地核、地幔和地壳)的碳运送到大气圈并导致大气圈温室气体的增加。作为地质历史上火山作用规模最大的LIP,无疑是将地球深部碳传输到大气圈的主要介质,构成大气中CO2的一个重要源,这些CO2有一部分通过生物的光合作用和地表风化作用以及海水吸收溶解。过去的研究表明,通过这些途径消耗的CO2只是地球向外部圈层排放的CO2的一部分,多余的可能通过俯冲作用将它们带到地幔。那么,地球深部的碳是如何输送到地球的浅部?地球表层系统的碳又是如何进入地球深部的,并且能进入到多深的位置?深部碳循环问题已成为国际学术界的一个重要科学议题(Howell et al.,2020)。

  • 4.3.1 大火成岩省脱碳过程中碳的来源

  • 前已述及,在LIP事件中所释放的CO2可导致全球尺度的气候变暖和海洋酸化。然而,LIP的大规模玄武质岩浆(CO2的溶解度约为0.2%~0.5%)喷发通过脱气作用所释放到大气中的CO2量可能比较有限,还不足以对气候变暖起到重要作用(Caldeira and Rampino,1990; Self et al.,2006; Ganino and Arndt,2009)。那么LIP形成过程中导致全球气候和环境急剧变化的碳到底来自哪里?很多学者注意到一个重要的地质事实,地幔柱活动所产生的大量岩浆侵入到碳酸盐岩地层和富含有机质沉积物中,如西伯利亚、中大西洋、峨眉山等(Svensen et al.,2009; Ganino and Arndt,2009; Heimdal et al.,2020)(图11)。基于此,这些学者认为热接触变质作用会释放巨量碳,其远远大于玄武质岩浆喷发脱气的碳通量,例如,峨眉山LIP的热成因碳通量(约16800~39700 Gt C)是岩浆来源(包括火山喷发和侵入岩的脱气)碳通量(约4585 Gt C)的3.6~8.6倍(Ganino and Arndt,2009)。更为重要的是,热成因的碳通常以轻碳同位素组成为主,其释放地表后会导致大气—海洋系统中碳同位素组成发生显著的负漂移。近年来,热成因碳的假说得到了一些重要地质证据的支持。例如,在加拿大北极高地以及西伯利亚的P—T界线地层中存在大量富含玄武质成分的燃烧过的煤粉(coal combustion),表明西伯利亚LIP所产生的大量岩浆与Tunguska盆地的富含有机质沉积物发生了相互作用(Grasby et al.,2011; Elkins-Tanton et al.,2020)。最近,Capriolo et al.(2021)对巴西亚马逊(Amazon)盆地中大西洋岩浆省晚期浅成侵入岩中岩浆和热液成因石英进行了流体包裹体的分析测试,显示其中存在大量的热成因CH4。此外,高精度ID-TIMS U-Pb锆石测年结果显示LIP的主喷发期一般发生在生物灭绝事件之前的几个100 ka,例如西伯利亚和Deccan LIP(Burgess and Bowring,2015; Burgess et al.,20142017; Schoene et al.,2015)。值得指出的是,西伯利亚和中大西洋LIP的初始/早期岩席侵位与地层上主要碳同位素负漂移在时间上是一致的,因此有学者认为西伯利亚LIP的Tunguska盆地和中大西洋岩浆省的亚马逊(Amazon)盆地中富有机质沉积物的接触热变质作用所释放的热成因碳是全球二叠纪末期和三叠纪末期气候和环境急剧恶化的最重要驱动者(如,Burgess et al.,2017; Davies et al.,2017)。此外,结合中大西洋LIP的ID-TIMS U-Pb锆石年代学数据,Heimdal et al.(2020)开展了长期海洋—大气沉积物碳循环库的模拟,其结果显示热成因碳促使了三叠纪末期主要碳循环扰动。

  • 图11 中大西洋岩浆省玄武质岩浆的地壳中岩浆通道系统及CO2排放示意图(据Capriolo et al.,2020修改; Cpx为单斜辉石)

  • Fig.11 Schematic diagram of the crustal magma plumbing system and CO2 degassing of basaltic magma in the Mid-Atlantic magmatic province (modified after Capriolo et al., 2020; Cpx=clinopyroxene)

  • 另外,近来的一些研究也有很多证据显示,地幔柱源区中含有大量的再循环洋壳物质(如,Hoffman et al.,1982; Sobolev et al.,2007),如西伯利亚和峨眉山地幔柱中再循环组分含量可以达到约10%~20%(如,Sobolev et al.,2011; Zhu et al.,2018)。有学者提出含大量再循环洋壳的西伯利亚地幔柱与岩石圈相互作用时的减压脱气作用会释放出巨量的CO2(~32800 Gt C)到当时大气中(Sobolev et al.,2011),其超过了西伯利亚LIP释放的热成因CO2最大体积(~27600 Gt C)(Svensen et al.,2009),并且该过程释放的CO2Payne et al.(2010)基于P—T界线碳酸盐岩的钙同位素(δ44Ca/40Ca)所估算二叠纪末大气—海洋系统中突然增加的CO2体积大致吻合。基于此,Sobolev et al.(2011)认为西伯利亚地幔柱中再循环洋壳的脱气作用是造成二叠纪末期全球气候和环境危机的主要驱动者。与此相似的是,峨眉山LIP的主要围岩是碳酸盐台地相沉积地层并且具有偏重的碳同位素,暗示其产生的热成因碳可能不会导致当时大气—海洋系统中出现明显的碳同位素负漂移(Bond and Grasby,2017; Zhu et al.,2021b)。Zhu et al.(2021b)估算了峨眉山地幔柱中再循环洋壳所释放的CO2通量及其碳同位素组成,结合华南广西蓬莱滩瓜德鲁普统—乐平统(Guadalupian-Lopingian)界线层型剖面的碳同位素数据,认为峨眉山地幔柱中再循环洋壳快速释放的CO2(约12300~20400 Gt C)是瓜德鲁普统晚期的主要碳循环扰动的潜在驱动者。Capriolo et al.(2020)利用中大西洋LIP的单斜辉石中熔体包裹体的挥发分Nano-SIMS测试结果,揭示挥发分出溶前的深部岩浆中CO2含量约为0.5%~1.0%,并且认为深部岩浆脱气作用所释放的CO2是三叠纪末期灾难性气候和环境急剧变化的驱动者(图11),而不是浅部地壳沉积物的热成因碳。综上所述,在LIP形成过程中所释放的碳除了火山喷发的脱气成因之外,还有两个主要的来源:① 地壳中碳酸盐岩及富含有机物的沉积物(即热成因碳); ② 地幔柱(包括部分再循环洋壳中的碳)。然而,对于它们两者中哪个占主导地位,目前还存在不同的认识。

  • 4.3.2 再循环碳酸盐对大火成岩省源区的贡献与示踪

  • 理论计算和实验模拟均表明,地表碳,如沉积型碳酸盐岩以及蚀变洋壳通过岩浆-热液作用或者水岩相互作用所吸收的CO2(平均可达2.5%; Alt and Teagle,1999; Shilobreva et al.,2011),除部分通过弧岩浆重回大气圈以外,仍有相当多的碳可以在板片脱水过程中幸存并随着俯冲板片抵达不同深度的地幔(Kerrick and Connolly,2001; Poli et al.,2009),这一点也得到了深部地球物理观测的支持(van der Voo et al.,1999)。大火成岩省以及起源于核幔边界的地幔柱作用促使着地球各圈层之间发生显著的物质和能量交换,在地球深部碳循环中扮演着重要角色,其中最主要的证据来源于洋岛玄武岩(OIB),它们具有比洋中脊玄武岩(MORB; <100×10-6)更高的碳含量(>1000×10-6; Dasgupta and Hirschmann,2010)。近年来地球化学家们发现一些板内碱性玄武岩具有明显富集轻Mg和轻Ca同位素的特征,通过与地球各个储库的对比,提出再循环沉积型碳酸盐岩可能是这些同位素异常的主要来源(Huang et al.,2011; Yang et al.,2012; Li et al.,2017; Teng,2017; Teng et al.,2019)。Huang et al.(2011)观察到夏威夷洋岛玄武岩的δ44Ca/40Ca与87Sr/86Sr呈负相关关系,被认为是地幔源区有古老沉积碳酸盐加入的结果。Chen et al.(2017,2018)对塔里木LIP中的溢流玄武岩(δ26Mg=-0.45‰~-0.29‰)、碳酸岩(δ26Mg =-1.09‰~-0.85‰)、霞石岩(δ26Mg=-0.55‰~-0.35‰)以及方解霞黄煌岩(δ26Mg=-0.75‰~-0.36‰)开展了系统的镁同位素研究,揭示了他们普遍具有轻的镁同位素异常,并进一步识别出两个不同的地幔源区:以溢流玄武岩为代表的镁铁—超镁铁岩石起源于受方解石/白云石改造的岩石圈地幔源区,以碳酸岩、霞石岩和方解霞黄煌岩为代表的碱性—过碱性岩石起源于菱镁矿、方镁石/钙钛矿改造的地幔柱源区。Wang et al.(2018)基于Pitcairn洋岛玄武岩低的δ26Mg值(-0.40‰~-0.25‰)和低的CaO/Al2O3比值,认为再循环碳酸盐并没有以碳酸盐的形式直接加入至Pitcairn 玄武岩的源区,而是通过碳酸盐与周围富硅组分发生脱碳反应:

  • CaMg(CO32(白云石)+2SiO2(柯石英)→CaMgSi2O6(透辉石)+2CO2,深度<150 km

  • MgCO3(菱镁矿)+SiO2(柯石英)→MgSiO3(顽火辉石)+CO2,深度>150 km

  • 释放出碳酸盐中的CaO和CO2,反应生成的透辉石和顽火辉石则保留了俯冲的镁同位素组成,继而在地幔柱作用下发生熔融,形成的熔体能够在继承俯冲碳酸盐岩轻镁同位素特征的同时而不体现高的CaO含量,即所谓的“幽灵”碳酸盐(ghost carbonate; Wang et al.,2018),因此Wang et al.(2018)认为轻的低δ26Mg来自再循环的榴辉岩,与“富碳酸盐”无关。

  • 相对于塔里木LIP和Pitcairn地幔柱,峨眉山LIP的轻镁同位素异常并不显著。Tian et al.(2017)对峨眉山LIP中的玄武岩镁同位素研究表明,他们呈现出具有和地幔类似的镁同位素组成,因此认为俯冲再循环碳酸盐岩在峨眉山LIP源区中的量非常有限(<2%)。进一步的研究表明,峨眉山LIP中少量的苦橄岩同样具有低的δ26Mg值,推测是少量沉积型碳酸盐岩的加入的结果(Yu et al.,2020)。由此可见,一些LIP的源区是富碳酸盐的,比如塔里木LIP,而另一些可能是贫碳酸盐组分的,比如峨眉山LIP(Yu et al.,2020)。因此,沉积型碳酸盐岩能否进入下地幔依然存在着争议。Thomson et al.(2016) 通过对人工合成的含有2.5%的MORB组分进行高温高压实验(3~21 GPa),发现在300~700 km的深度碳酸盐化洋壳的固相线温度会显著降低(约200℃),从而与多数俯冲板片的地温线相交(图12)。因此,俯冲的碳酸盐化洋壳在300~700 km的深度就会发生熔融,碳酸盐组分因形成熔体脱离板片而无法进入更深地幔,使得地幔转换层成为阻碍碳酸盐抵达下地幔的直接障碍。Drewitt et al.(2019)进一步使用金刚石砧分别研究了FeO-MgO-SiO2-CO2(FMSC)和CaO-MgO-SiO2-CO2(CMSC)体系在下地幔条件下(约40~60 GPa)碳酸盐矿物的脱碳反应:

  • CaxMg(2-x(CO32+SiO2=(2-x)MgSiO3(布里奇曼石)+xCaSiO3(Ca-钙钛矿)+2CO2

  • CO2=C(金刚石)+O2

  • 他们的研究认为,冷的俯冲洋壳可以沿着碳酸盐化洋壳的固相线通过地幔转换层,进而与周围的富硅组分(如斯石英)通过亚固相的脱碳反应形成金刚石(图12),俯冲碳最终以金刚石的形式进入下地幔,并预测这些堆积在下地幔底部的碳可以长时间存在,并由地幔柱捕获进而形成具有OIB特征的岩浆再次循环至地表(Drewitt et al.,2019)。因此,OIB中高的碳含量可能归因于位于下地幔底部以金刚石形式存在的俯冲碳。

  • 图12 碳酸盐化MORB熔融曲线和不同类型板片地温线的p-t相图

  • Fig.12 Pressure-temperature diagram showing the melting curves of the carbonated MORB and different types of subducted slab

  • 地幔过渡带之上的碳酸盐化MORB熔融曲线引自Kiseeva et al.(2013)和Thomson et al.(2016); 俯冲板片的地温线和地幔地温线引自Katsura et al.(2010)和Syracuse et al.(2010); 地幔过渡带之下的脱碳反应引自Drewitt et al.(2019)

  • The melting curves of the carbonated MORB atop the MTZ are from Kiseeva et al. (2013) and Thomson et al. (2016) . The geotherms of the subducted slab and the mantle are from Katsura et al. (2010) and Syracuse et al. (2010) . The decarbonation reaction beneath the MTZ is from Drewitt et al. (2019)

  • 碳在地幔中是不相容的,其存在形式主要以碳酸盐、碳化物和金刚石为主,具体形式取决于地幔的氧化还原状态(Shcheka et al.,2006)。在氧化条件下,相较于干的地幔橄榄岩体系,碳酸盐可以有效降低地幔橄榄岩的固相线温度约500℃(Ghosh et al.,2009)。在更加还原的条件下,如上地幔下部或者地幔转换层,碳主要是以碳化物或者金刚石的形式存在,此时它们很难直接影响地幔橄榄岩的固相线温度(Stagno et al.,2013)。金刚石只有沿着高的地温梯度上涌至浅部被再次氧化成碳酸盐后才能有效降低周围地幔的固相线,因此,金刚石在地幔的氧化熔融过程非常关键,而这一过程需要地幔柱的上升动力,使深部地幔含Fe3+硅酸盐矿物释放出Fe3+将单质碳氧化成碳酸盐,并诱发高温熔融(Thomson et al.,2016; Drewitt et al.,2019)。地幔中碳酸盐组分的加入会显著影响熔体的成分,从而形成富碱贫硅的熔体(Foley and Pintér,2018)。因此,幔源的碱性—过碱性岩石(如碳酸岩、黄长岩、霞石岩、金伯利岩、方解霞黄煌岩等)可以很好地指示深部碳循环作用(刘勇胜等,2019)。目前已知的大多数碳酸岩、霞石岩和金伯利岩在MLIP中均有发现,如Deccan、塔里木、西伯利亚LIP、东非大裂谷系、Canary Islands、Cape Verde等地区,其成因被认为与地幔柱活动相关(Ernst and Bell,2010),这也是佐证LIP存在深部碳循环的直接岩石学证据。大量对全球碳酸岩的同位素示踪结果表明,俯冲再循环碳酸盐岩对碳酸岩的成因起着非常重要的作用(Nelson et al.,1988; Doucelance et al.,2010; Xu et al.,2014)。Cheng et al.(2015,2017)分别对塔里木LIP中的霞石岩和碳酸岩开展了镁同位素研究,发现两种岩石均存在显著的轻镁同位素异常,并在碳酸岩中识别出Mg-C和Sr-Nd-O同位素解耦的现象,认为碳酸盐矿物随着俯冲深度的增加可发生显著的矿物相变,逐渐由方解石/白云石向菱镁矿再向方镁石和钙钛矿转变(Seto et al.,2008; Litasov et al.,2011; Drewitt et al.,2019)。

  • 前已述及,古地磁研究发现,全球85%的金伯利岩的古地理位置均落在上述两个超级地幔柱范围内,暗示金伯利岩的形成很可能与地幔柱的活动存在联系。金伯利岩中的超深金刚石起源于≥200 km的深度,是迄今为止人类所能获得的唯一深部地幔碳储库样品。针对这些金刚石及其中硅酸盐包裹体的碳氧同位素研究表明,很多金刚石呈现出极度的碳同位素负漂移(Bulanova et al.,2010; Walter et al.,2011; Thomson et al.,2014),其中的硅酸盐包裹体也普遍具有重的氧同位素组成(Ickert et al.,2013),有力地说明其源区存在俯冲再循环物质的贡献。

  • 4.4 大火成岩省和硫循环

  • 硫在火山气体中通常以SO2、S2和H2S等形式存在的,其含量仅次于CO2和H2O,其大量释放会导致气候变冷、酸雨以及海洋酸化,造成全球气候和环境急剧恶化(Self et al.,20062008; Black et al.,20122014b),其造成的全球气候变冷的持续时间约为100~1000 a(Landwehrs et al.,2020); 而在金属矿床形成过程中,溶解态的硫又可作为络合剂与金属结合形成许多金属硫化物矿床(如Cu、Pb、Zn、Mo、Sb、Bi 等)。因此,硫在全球气候变化等诸多地质过程中扮演着非常重要的角色。然而与深部碳循环相比,目前人们对地球深部硫循环的相关研究还较少。

  • 在地表硫循环中,地球深部的硫通过火山爆发进入大气,再通过降水沉降进入海水,最终以海水溶解硫酸盐以及海相沉积物中硫化物(主要为黄铁矿)的形式存在于海洋中。与此同时,当板片发生俯冲消减时,洋壳以及大洋沉积物中的硫也会随之向深部俯冲返回到地幔,参与深部硫循环过程。

  • 为了揭示LIP岩浆作用释放SO2对环境的影响,前人对相关基性—超基性火山岩中的熔融包裹体进行了硫含量的测定。例如,Self et al.(2008)分析了Deccan LIP基性火山熔岩中熔体包裹体的硫含量,结果显示硫的含量为~1400×10-6,暗示了该LIP的大规模玄武质岩浆喷发具备释放大量SO2的能力。Black et al.(2012)对西伯利亚LIP浅成侵入岩和火山岩挥发分硫含量分析,结果显示硫的平均含量在约600×10-6~2100×10-6之间,并估计该LIP的基性火山喷发释放出大约有6300~7800 Gt S。大气化学模型模拟(CAM-Chem,Community Atmosphere Model-Chemistry)表明西伯利亚LIP岩浆活动所释放的硫会造成严重的区域性酸雨事件,并导致陆地生态系统的崩溃(Black et al.,2014b)。Zhang Y et al.(2013)对峨眉山LIP苦橄岩的熔融包裹体分析发现其硫含量高达1311×10-6,估计通过火山喷发可释放出~5000 Gt S,但是由于峨眉山大火成岩省在早期处于相对还原环境,当苦橄质岩浆上升到地壳岩浆房中,在橄榄石发生分离结晶的同时部分硫会以硫化物的形式堆积在岩浆房中(Zhu et al.,2020),所以Zhang Y et al.(2013)估算的硫的释放量可能偏高。另外,值得注意的是,峨眉山LIP早期大规模玄武质岩浆喷发发生在浅海环境(如,Ukstins-Peate and Bryan,2008; Zhu et al.,2018),由于SO2易溶于海水(Zhu et al.,2021b),所以实际释放到大气中的S会更低。但另一方面SO2溶解于海水可导致当时海洋pH值下降,从而造成海洋酸化。那么,这些LIP释放出的硫来自哪里?是否都来自地幔?Black et al.(2014a)对西伯利亚LIP玄武质岩石中熔体包裹体的硫同位素测定表明硫主要来源于地幔,其次还同化混染了地壳沉积物中硫(~10%),尤其是地层中的膏盐层(Ripley et al.,2003)。因此,地壳硫的加入可能是西伯利亚LIP喷发时能释放出大量硫进而导致P—T边界全球生物大规模灭绝的重要因素之一。

  • 那么,LIP释放出的巨量硫除了来自地幔以及地层之外,是否还有如碳一样来自再循环的洋壳?总体上,相关的研究较少。既然碳主要是通过俯冲再循环的途径进入LIP岩浆系统中,那么我们也有理由相信,LIP岩浆系统的源区可能有再循环的硫。近年来对俯冲系统的硫同位素研究为硫的深部循环提供了重要约束。相关的研究表明,俯冲系统每年硫的通量为46.5×1012 g,其δ34S约为-3.6‰,其中以不同形式进入岛弧岩浆系统中的硫每年大约2.9×1012 g,其δ34S表现为正值,可能是熔体形成后受到海水蚀变洋壳混染的结果(Lee et al.,2018),而绝大部分的硫(每年的硫通量大约为43.6×1012 g)通过深部循环进入深部地幔(>230 km)中,但进入深部地幔的S同位素则为负值(Alt et al.,2012,2013; Walters et al.,2019; Li et al.,2020及其相关参考文献)。为了验证地幔深部具有再循环地表硫的存在,人们还对多个洋岛玄武岩(<200 Ma,包括Mangaia、Pitcairn、Discovery、Samoa和Canary岛等)进行了硫同位素组成的研究。研究发现,Mangaia和Pitcairn洋岛熔岩具有负的δ34S值以及显著的S同位素非质量分馏特征(Δ33S≠0),反映在大洋板块的深部地幔源区保存有发生深俯冲的太古宙低δ34S地表硫(Farquhar and Wing,2003; Cabral et al.,2013; Delavault et al.,2016); 而Discovery、Samoa和Canary岛的熔岩则表现出硫同位素质量分馏但明显高于MORB值的正的δ34S值(~3‰),表明其深部地幔受到了俯冲再循环的元古宙洋壳物质的作用(Labidi et al.,20132015; Beaudry et al.,2018; Dottin et al.,20202021)。最近,刘秉翔(2021)对塔里木大火成岩省煌斑岩中岩浆硫化物的S同位素原位测定发现,其δ34S值为-0.69‰~+1.95‰,由此认为S基本上来自于地幔,基本上没有或者很少有再循环硫的混入,尽管再循环洋壳被认为在塔里木大火成岩省的形成过程中起到了重要作用(如Cheng et al.,20172018; Kong et al.,2022)。遗憾的是,迄今为止,有关深部再循环的硫对LIP岩浆源区贡献的报道太少,尚不能较好评估再循环的硫对LIP源区贡献的大小,有限的数据暗示不同LIP硫的来源可能不同。

  • 需要指出的是,虽然近年来对C和S 循环进行了大量的研究,并取得了大量重要进展,但两者的研究完全是独立的( 李继磊等,2022及其所引文献),即使在同一论文中提到C和S的循环过程(如Alt et al.,2012,2013),也基本上没有研究C-S 的协同演化机制。由于两者均为变价元素,而且既可呈负价态,也可呈正价态,在地球化学上有一定的相似性,所以在循环过程中可能存在协同的脱挥发分过程。然而,S和C的化合物在流体中的溶解度有较大差别,推测应该会存在解耦现象,因此开展C-S 协同演化机制和C-S 循环耦合/解耦关系的研究,无疑对于物质循环以及地球不同圈层的相互作用关系甚至金属元素的迁移和富集机理均具有重要的意义。

  • 4.5 大火成岩省与全球海平面升高、温室效应以及大洋缺氧事件

  • 恢复的600 Ma海平面变化表明(图13),早古生代、晚古生代和中生代各有一次大的升高,并且每次升高都对应相应洋壳的增厚(Condie,2001),其中最晚期的白垩纪达到了最高点,此时海洋面积比现今扩大了10%,并由此导致大约1/3的陆地面积被海水所覆盖(王成善等,2009)。由于该时期是大洋高原火山集中喷发期,如Ontong Java、Colombian-Caribbean、Kerguelen等,所以白垩纪晚期海平面的升高很可能是大洋高原的大规模火山作用造成的,这是因为大洋高原喷出的巨量熔岩置换了海水的空间,并且海水在岩浆热的作用下使得体积增大。

  • 巨量的海底岩浆喷发不仅导致了海平面上升,还会引起一系列的连锁反应(Kerr,2014):① 释放出大量CO2,产生“温室效应”; ② 释放出的SO2、HCl、H2S等酸性气体促使海洋的pH值降低,从而引起沉淀的碳酸盐岩溶解释放出CO2; ③ 海底火山作用增加了海水的温度,由此降低O2在海水中的溶解度,从而引起大洋缺氧; ④ 海底火山作用也带来了大量的营养物质,如磷酸盐和铁元素等,这些营养物质可促进海洋生物的繁殖,而繁殖的海洋生物会不断消耗海水中的氧气,从而导致海水的进一步缺氧。另一方面,海洋生物因缺乏氧气的供给出现大量死亡并被直接埋藏形成富有机质的黑色页岩(图14)。上述环境效应表明,大规模的海底火山喷发可导致大气和海洋中CO2浓度的升高(Wallmann,2001; Donnadieu et al.,2006; Mills et al.,2017)以及海水缺氧,前者引起全球气候变暖,后者引起大洋缺氧事件和黑色页岩的大量沉积。因此,白垩纪气温升高(Tarduno et al.,1998)和最大的大洋缺氧事件(Kuroda et al.,2007)以及相应的黑色页岩的广泛发育(Kerr,1998)是LIP大规模海底火山喷发的耦合效应(Kerr,2014)。

  • 图13 600 Ma以来海平面相对现今高度的变化(据Condie,2001及其所引参考文献)

  • Fig.13 Variations of the sea level relative to the present height over the past 600 Ma (after Condie, 2001 and references therein)

  • 图14 白垩纪大洋缺氧事件和黑色页岩形成模式图(据Robinson et al.,2017及其所引参考文献)

  • Fig.14 The cartoon model showing the Cretaceous oceanic anoxic events and the formation of black shale (after Robinson et al., 2017 and references theirin)

  • 4.6 大火成岩省和大陆地壳生长

  • 一般认为,俯冲作用是大陆地壳生长的主要方式。除此之外,还有另外2种方式,分别是幔源岩浆的底侵作用以及大洋高原通过碰撞拼贴在大陆边缘(Rudnick and Jackson,1995; Abbott and Mooney,1995; Condie and Chomiak,1996)。

  • 幔源岩浆的底侵作用可以发生在不同的构造背景中,如岛弧、大陆裂谷和大陆溢流玄武岩省,后两种环境均与LIP有关。通常而言,底侵的幔源岩浆停留在中—下地壳位置,其体积往往是其喷出岩的数倍,最高可达10倍(Bryan and Ernst,2008),这一点已经被地球物理数据所证实(如Eldholm and Grue,1994; Planke et al.,2017; Trumbull et al.,2002),同时也与喷出地表的溢流玄武岩绝大多数是演化的岩浆的特点一致。Zhu et al.(2020)对峨眉山LIP东部的模拟结果表明,幔源岩浆在下地壳发生了大约80%~90%的分离结晶作用,也即在下地壳堆积的体积大约是玄武岩的4~9倍,模拟结果大约和地球物理的数据一致(Liu Z et al.,2017)。

  • 大洋高原通过碰撞拼贴在大陆边缘的典型实例是北美的科迪勒拉和阿巴拉契亚造山带(Condie and Chomiak,1996; Patchett and Gehrels,1998)以及中亚造山带(Yang et al.,20172019)和特提斯造山带(Saccani et al.,2013),一些学者认为太古宙地壳的生长可能也是通过这种方式(Percival and Card,1983)。然而,由于大洋高原的成分是玄武岩,而大陆壳的成分则主要为长英质。所以通过这种方式形成的大陆壳必须再经过后期的改造才能形成长英质地壳,如玄武岩的再次发生部分熔融。一些学者发现,Caribbean大洋高原南部的Aruba地区一些类似于TTG特征的长英质岩体侵入到玄武岩之中,而且两者的Sr和Nd同位素相似,暗示长英质岩石是玄武岩发生部分熔融的结果(Lewis and Jimenez,1991; White et al.,1999)。然而,该长英质岩石具有强烈的Nb-Ta负异常,显示出岛弧岩石的地球化学特征,所以其是否是玄武岩部分熔融形成的,目前尚不能确定。

  • 然而,LIP对地壳生长也会带来负反馈:大量的岩浆底侵到地壳使得地壳不断加厚,最终导致岩石圈地幔或下地壳发生拆沉作用,如太古宙—元古宙边界(2.5 Ga左右)地壳厚度的突然降低被认为是这种效应的结果(Keller and Schoene,2012)。同时地幔柱对岩石圈地幔发生热侵蚀,最终导致大陆的裂解(见4.1节)。

  • 4.7 大火成岩省和地表地形响应

  • 按照经典的地幔柱模型(Campbell and Griffiths,1990; Sleep,19902006; Farnetani and Richards,1994),地幔柱上升时地表可发生穹状隆升,隆升幅度超过500 m。其中核幔边界上升的地幔柱,隆升幅度可达1~2 km,而上下地幔边界上升的地幔柱,隆升幅度大约500~1000 m,并且开始隆升的时间往往发生在LIP岩浆作用之前的几百万年到几十百万年,而当地幔柱到达岩石圈底部大约5 Ma之后,隆升幅度达到最大值。这一模型在很多LIP得到验证,如Deccan、Paraná-Etendeka、哥伦比亚河等(表2),主要证据包括地层缺失、地层变薄、地层不整合、地层反映的沉积相变化、喀斯特以及放射状水系(图15)等。但是在某些LIP中并没有观察到穹状隆升的证据,比如大陆上最大的LIP之一的西伯利亚LIP在很多地区地层是连续的,而且还显示出喷发前的沉降现象(Czamanske et al.,1988),但是在其西部显示出轻微的隆升(Saunders et al.,2007)。代表大洋中最大的大火成岩省Ontong Java,熔岩的厚度达35 km,如果在喷发之前已经发生隆起,那么喷发时应该处于陆相环境,但实际上喷发时一直处于海相环境(Ingle and Coffin,2004),所以喷发前并没有隆升。目前争议最大的是我国的峨眉山LIP,He et al.(2003)通过对区域上峨眉山玄武岩之下茅口组的对比,提出存在千米级的穹状隆升,但是Ukstins-Peate and Bryan(2008)根据峨眉山玄武岩底部存在大量水下喷发物,认为千米级的隆升并不存在,因为下伏茅口组灰岩所形成的海水深度可能不超过200 m(典型的碳酸盐台地相),如果存在千米级的隆升,那么喷发环境应该是陆相,而不是海相。最近,Zhu et al.(2018)通过对峨眉山LIP大量剖面观察发现,在茅口组灰岩之上存在一些碎屑物,代表喷发前应该是潟湖相环境,所以提出喷发前发生了隆升,但其隆升幅度大约只有200 m。总之,某些LIPs确实存在隆升,与经典的地幔柱模型吻合,而有些则不符合,或者是不存在隆升,或者隆升幅度没有模型预测的那么大,或者在同一个LIP内有些地区隆升,有些地区下沉(如西伯利亚LIP),那么是什么因素控制了地壳的隆升或下沉?

  • 表2 一些主要大火成岩省喷发前的隆升情况

  • Table2 Some major LIPs associated with pre-eruption domal uplift

  • 图15 穹状隆起与河流流向

  • Fig.15 Domal uplift and river flow directions

  • (a)—穹状隆起引起的放射状河流(实心箭头)与裂谷有关的河流流向(空心箭头)(据Moore and Blenkinsop,2002);(b)—Deccan LIP的扇形河流走向(据Ernst,2014及其所引文献)

  • (a) —Radial drainage caused by domal uplifts (solid arrows) and rift-related river flows (open arrows) (after Moore and Blenkinsop, 2002) ; (b) —fan-shaped river flows of Deccan LIP (after Ernst, 2014 and references theirin)

  • 值得注意的是,经典地幔柱模型假设的是地幔柱是由纯的橄榄岩所组成,并且岩石圈是均匀的。但是实际情况可能要复杂的多,如果岩石圈不均匀,具有流变分层,那么在地幔柱作用下,地表就可能会出现有的地区隆起,有的地区下沉(Burov and Guillou-Frottier,2005; Foulger,2007)。另外,如果地幔柱中含有再循环洋壳(榴辉岩),那么密度大的榴辉岩会抵消地幔柱上升的浮力,导致地壳不会上隆,或者隆升幅度较低(Cordery et al.,1997; Campbell,1998; Leitch and Davies,2001; Sobolev et al.,2011)。Zhu et al.(2018)基于上述观点,认为峨眉山LIP喷发前地表只有弱隆起的原因就是由于地幔柱中含有高密度的再循环洋壳。另一方面,Leng and Zhong(2010)通过数值模拟,提出了另外一个导致喷发前缺乏隆升甚至下沉的原因:当从核幔边界上升的地幔柱停留在660 km的过渡带时,在喷发前地球表面将会下沉。因此,理论上,LIP在喷发前可能由于多种因素导致地表不发生隆升甚至下沉,或隆升幅度较低,或者在同一个LIP内,有的隆升,有的下沉。但是对于具体的LIP,具体的原因还需要具体的分析。

  • 近20年来的研究表明,LIP的地表响应也会随时间而变化。地幔柱引起的穹状隆起一般是短暂的,因为随时间的演化,地幔柱的热量不断的损耗会导致其热浮力逐渐降低,因此隆起就不会持续。其持续时间取决于地幔柱作用产生的岩浆底侵作用的规模。当岩浆房中岩浆随喷发不断减少,其提供的热量就会不断的减少,所以在LIP喷发峰期过后地表往往会出现下沉,形成盆地。另外,还有一个因素也会导致LIP岩浆峰期过后地表出现下沉,即LIP大规模的岩浆底侵作用使得地壳变厚,其下部发生相转变形成榴辉岩,导致其密度加大,密度发生倒转,由此产生密度载荷形成盆地(Kaminski and Jaupart,2000)。其中~2100 Ma的Bushveld LIP被认为是一个典型的实例,该LIP中Transvaal盆地的形成可能是通过这种途径形成的(Olsson et al.,2010)。

  • 5 问题和展望

  • LIP的概念自提出来之后在短短的30年的时间里取得了许多重要进展,其概念和岩石成因不断得到完善,并且被应用于解释地质历史上许多地质现象,它沟通了地球深部和地球浅表系统之间的成因联系,有力地促进了地球科学以及相关学科的发展。当然也存在一些问题有待进一步解决。

  • (1)大火成岩省识别的问题。目前最老的LIP为3.79 Ga(Ernst and Buchan,2001),而保存的大洋LIP不超过200 Ma,更古老的大洋LIP是否存在?作为被保留在大陆上洋壳残片的蛇绿岩是否保存有古老大洋LIP?SLIP也有类似的问题,目前发现的SLIP以中新生代为主,那么,太古宙和元古宙是否也存在大量的SLIP?另外,作为介于MLIP和SLIP之间的TLIP数量很少,是否由于与上部的长英质岩石被剥蚀有关?要解决上述问题,除了精确的同位素测年之外,还需要利用古地磁方法恢复古地理的位置,并结合其地质学、岩石学和地球化学特征,约束不同火成岩省之间的可能成因关系。

  • (2)LIP的成因问题。地幔柱模型可以解释多数MLIP的成因,但是有些MLIP的地质和地球化学特征不能很好地用地幔柱模型来解释,那么这些MLIP是否不是地幔柱作用的结果?相比于MLIP,SLIP的成因研究程度比较低,巨量的长英质岩浆的形成到底哪个因素是关键,是否是富水地壳和隐伏的MLIP的耦合?为什么没有发现MLIP和SLIP共生?TLIP中大体积的长英质岩浆的成因可能为揭示SLIP成因提供了一个重要窗口,即研究TLIP中长英质岩浆与镁铁质岩浆之间的成因关系以及TLIP中长英质岩浆体积大于MLIP中的长英质岩浆的原因。

  • (3)LIP和超大陆的裂解耦合关系问题。过去的研究表明大陆裂解都与大火成岩省有关,但是并不是所有的大火成岩省都导致了大陆的裂解,其原因是否都与LIP周边的应力状态或者其他因素有关?要解决这个问题,关键是要对没有导致大陆裂解的LIP进行研究,通过对LIP形成时的区域地质背景,地幔柱—岩石圈相互作用过程的研究,并结合地质条件约束下的数值模拟,阐明大火成岩省与大陆裂解的成因关系及关键控制因素。

  • (4)大火成岩省和地壳生长问题。长期以来俯冲作用是地壳生长最重要的机制。然而,MLIP大规模的幔源岩浆无疑为地壳生长起到了重要作用。据估计,没有喷出的岩浆(主要停留在地壳岩浆房中,以底侵的形式存在)是喷出岩浆体积的数倍到十倍,那么从全球的角度,与俯冲作用相比,MLIP对地壳生长的贡献如何?其贡献率大致的比例是多少?通过对地质历史上的LIP的详细研究,可为解决上述问题提供一些约束。

  • (5)大火成岩省和深部硫循环问题。LIP将岩浆喷发时释放出大量的硫对环境产生了重要影响,同时LIP岩浆中的硫也为铜镍硫化物矿床大规模成矿奠定了重要基础,那么硫是如何进入LIP岩浆源区的?是否如碳一样通过再循环的方式进入到岩浆源区中?目前,示踪硫的来源的主要方法是硫同位素,但是硫同位素分馏受控因素很多,因此只有在了解研究岩浆作用过程的前提下(包括物理化学条件),利用硫同位素才能有效地示踪深部硫循环过程。

  • (6)大火成岩省与全球生物灭绝问题。显生宙以来,全球发生了5次大规模的生物灭绝事件,其中有4次被证明与LIP在时间上吻合,并且被认为是LIP导致了生物的灭绝。然而,在大约120 Ma时,全球有多个MLIP(图8),也是地质历史上MLIP形成的高峰期,据估计大约产生了100×106 km3体积的岩浆(Bryan and Ferrari,2013),但该时期为什么没有全球性的大规模生物灭绝事件发生?此外,SLIP产生的主要是酸性的凝灰岩,其喷发高度可以达到10 km以上的平流层,应该会改变全球的气候环境,但为何至今尚未发现哪次全球性的生物灭绝事件与SLIP有联系?因此,LIPs对全球环境和生物灭绝影响的关键因素是什么还有待进一步研究,通过不同学科的结合了解不同LIP的特点及其对大气圈、水圈和生物圈的影响,可能是揭示LIP与全球生物灭绝事件关系的关键。

  • 总之,LIP的研究虽然取得了许多重要进展,但是也留下了许多有待进一步解决的问题,这些问题的解决无疑会对地球科学的发展产生重要的影响,而多学科方法(如地质学、岩石学、地球化学和地球物理)的结合无疑是解决这些重要问题的有效途径。

  • 致谢:感谢张宏福院士和郑建平教授的邀稿,同时郑建平教授和马绪宣博士两位评审人对本文提出了许多建设性的意见,在此一并感谢!

  • 参考文献

    • Abbott D, Mooney W. 1995. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33(Suppl): 231~242.

    • Aguirre-Diaz G J, Mcdowell F W. 1991. The volcanic section at Nazas, Durango, Mexico, and the possibility of widespread Eocene volcanism within the Sierra-Madre Occidental. Journal of Geophysical Research: Solid Earth, 96(B8): 13373~13388.

    • Aguirre-Diaz G J, Labarthe-Hernández G. 2003. Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with basin and range faulting. Geology, 31(9): 773~776.

    • Alt J, Teagle D. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527~1535.

    • Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095~1108.

    • Anderson D L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1(5): 271~275.

    • Arndt N. 2000. Geochemistry-hot heads and cold tails. Nature, 407: 458~461.

    • Arndt N, Bruzak G, Reischmann T. 2001. The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara craton, Australia. In: Ernst R E, Buchan K E, eds. Mantle Plumes: Their Identification through Time. GSA Special Publication, 352: 359~387.

    • Baksi A K. 1999. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans. The Journal of Geology, 107(1): 13~26.

    • Baksi A K. 2006. Guidelines for assessing the reliability of 40Ar/39Ar plateau ages: application to ages relevant to hotspot track. Accessed on, 25(3): 2009.

    • Baragar W R A, Ernst R E, Hulbert L. 1996. Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield. Journal of Petrology, 37(2): 317~359.

    • Barbero E, Zaccarini F, Delavari M, Dolati A, Saccani E, Marroni M, Pandolfi L. 2021. New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan complex (Makran Accretionary Prism, SE Iran). Lithos, 396~397: 106228.

    • Barley M E, Pickard A L, Sylvester P J. 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2. 45 billion years ago. Nature, 385(6611): 55~58.

    • Beane J E, Hooper P R. 1998. A note on the picrite basalts of the Western Ghats, Deccan Traps, India. Memoir-Geological Society of India, 10: 117~134.

    • Beaudry P, Longpre M A, Economos R, Wing B A, Bui T H, Stix J. 2018. Degassing-induced fractionation of multiple sulphur isotopes unveils post-Archaean recycled oceanic crust signal in hotspot lava. Nature Communications, 9(1): 5093.

    • Becker T W, Boschi L. 2002. A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1).

    • Black B A, Elkins-Tanton L T, Rowe M C, Peate I U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317: 363~373.

    • Black B A, Hauri E H, Elkins-Tanton L T, Brown S M. 2014a. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters, 394: 58~69.

    • Black B A, Lamarque J F, Shields C A, Elkins-Tanton L T, Kiehl J T. 2014b. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1): 67~70.

    • Bleeker W. 2004. Taking the pulse of planet Earth: a proposal for a new multidisciplinary flagship project in Canadian solid Earth sciences. Geoscience Canada, 31(4): 179~190.

    • Bo Hongze, Zhang Zhaochong. 2020. Genesis of Silicic Large Igneous Provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973~1985 (in Chinese with English abstract).

    • Bond D P G, Wignall P B, Keller G, Kerr A C. 2014. Large igneous provinces and mass extinctions: an update. The Geological Society of America Special Paper, 505: 29~55.

    • Bond D P G, Grasby S E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3~29.

    • Bono R K, Tarduno J A, Bunge H P. 2019. Hotspot motion caused by the Hwaiian-Emperor bend and LLSVPs are not fixed. Nature Communications, 10(1): 1~9.

    • Bryan S. 2007. Silicic Large Igneous Provinces. Episodes, 30(1): 20~31.

    • Bryan S, Ernst R E. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175~202.

    • Bryan S E, Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125(7-8): 1053~1078.

    • Bryan S E, Constantine A E, Stephens C J, Ewart A, Schon, R W, Parianos J. 1992. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters, 153: 85~102.

    • Bryan S E, Ewart A, Stephens C J, Parianos J, Downes P J. 2000. The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1-4): 55~78.

    • Bryan S E, Riley T R, Jerram D A, Leat P T, Stephens C J. 2002. Silicic volcanism: an under-valued component of large igneous provinces and volcanic rifted margins. In: Menzies M A, Klemperer S L, Ebinger C J, Baker J, eds. Magmatic Rifted Margins. Boulder, CO: Special Papers-Geological Society of America, 362: 97~118.

    • Buchan K L, Ernst R E. 2004. Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada, “A” Series Map. Geological Survey of Canada, Ottawa, Canada, 39.

    • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4): 489~510.

    • Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences, 111(9): 3316~3321.

    • Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8(1): 1~6.

    • Burke K, Torsvik T H. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227 (3-4): 531~538.

    • Burov E, Guillou-Frottier L. 2005. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 161(2): 469~490.

    • Burov E, Gerya T. 2014. Asmmetric three-dimensional topography over mantle plumes. Nature, 513(7516): 85~89.

    • Cabato J A, Stefano C J, Mukasa S B. 2015. Volatile concentrations in olivine-hosted melt inclusions from the Columbia river flood basalts and associated lavas of the Oregon plateau: implications for magma genesis. Chemical Geology, 392: 59~73.

    • Cabral R A, Jackson M G, Rose-Koga E F, Koga K T, Whitehouse M J, Antonelli M A. 2013. Anomolous sulphur isotopes in plume lavas reveal deep mantle storage of Archean crust. Nature, 496(7446): 490~493.

    • Caldeira K, Rampino M R. 1990. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect. Geophysical Research Letters, 17(9): 1299~1302.

    • Camp V E, Ross M E, Hanson W E. 2003. Genesis of flood basalts and basin and range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geological Society of America Bulletin, 115(1): 105~128.

    • Campbell I H. 1998. The mantle's chemical structure: insights from the melting products of mantle plumes. In: Jackson I, ed. The Earth's Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 259~310.

    • Campbell I H. 2005. Large igneous provinces and the mantle plume hypothesis. Elements, 1(5): 265~269.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79~93.

    • Campbell I H, Griffiths R W. 1991. On the dynamics of long lived plume conduits in the convecting mantle. Earth and Planetary Science Letters, 103(1-4): 214~227.

    • Capriolo M, Marzoli A, Aradi L E, Callegaro S, Dal Corso J, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szab C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11(1): 1~11.

    • Capriolo M, Marzoli A, Aradi L E, Ackerson M R, Callegaro S, Dal Corso J, Ernesto M, Vasconcellos E M G, De Min A, Newton R J, Szabo C. 2021. Massive methane fluxing from magma-sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 12(1): 1~9.

    • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.

    • Cawthorn R G, Walraven F. 1998. Emplacement and crystallization time for the Bushveld Complex. Journal of Petrology, 39(9): 1669~1687.

    • Cawthorn R G, Webb S J. 2013. Cooling of the Bushveld Complex, South Africa: implications for paleomagnetic reversals. Geology, 41(6): 687~690.

    • Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.

    • Chavagnac V. 2004. A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos, 75(3-4): 253~281.

    • Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1~15.

    • Cheng Z G, Zhang Z C, Hou T, Santosh M, Zhang D Y, Ke S. 2015. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: implications for mantle source characteristics and plume-lithosphere interaction. Lithos, 220-223: 164~178.

    • Cheng Z G, Zhang Z C, Hou T, Santosh M, Chen L L, Ke S, Xu L J. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159~178.

    • Cheng Z G, Zhang Z C, Xie Q H, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim large igneous province. Earth and Planetary Science Letters, 489: 100~110.

    • Cheng Z G, Zhang Z C, Wang Z C, Wang F Y, Mao Q, Xu L J, Ke S, Yu H M, Santosh M. 2020. Petrogenesis of transitional large igneous province: insights from bimodal volcanic suite in the Tarim large igneous province. Journal of Geophysical Research: Solid Earth, 125(5): 1~22.

    • Clapham M E, Renne P R. 2019. Flood basalts and mass extinctions. Annual Review of Earth and Planetary Sciences Letters, 47(1): 275~303.

    • Coffin M F, Eldholm O. 1991. Large igneous provinces: JOI/USSAC workshop report, Tach. University of Texas at Austin Institute for Geophysics, 114: 1~79.

    • Coltice N, Phillips B R, Bertrand H, Ricard Y, Rey P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology, 35(5): 391~394.

    • Condie K C. 2001. Mantle Plumes and Their Record in Earth History. Cambridge: Cambridge University Press, 1~306.

    • Condie K C, Chomiak B. 1996. Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America. Tectonophysics, 265(1-2): 101~126.

    • Cordery M J, Davies G F, Campbell I H. 1997. Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research: Solid Earth, 102(B9): 20179~20197.

    • Choudhary B R, Santosh M, Vivo B D, Jadhav G. 2019. Melt inclusion evidence for mantle heterogeneity and magma degassing in the Deccan Large Igneous Province, India. Lithos, 346: 105135.

    • Courtillot V, Renne P R. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335: 113~140.

    • Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau M G, Besse J. 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333(6176): 843~846.

    • Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3): 177~195.

    • Cox K G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342(6252): 873~877.

    • Creaser R A, White A J R. 1991. Yardea Dacite; large-volume, high-temperature felsic volcanism from the middle Proterozoic of South Australia. Geology, 19(1): 48~51.

    • Czamanske G K, Gurevitch A B, Fedorenko V, Simonov O. 1998. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review, 40(2): 95~115.

    • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1~13.

    • Davies J H F L, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U. 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nature Communications, 8: 15596.

    • Delavault H, Chauvel C, Thomassot E, Devey C W, Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 113(46): 12952~12956.

    • de Wall H, Pandit M K, Donhauser I, Schobel S, Wang W, Sharma K K. 2018. Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite: a Neoproterozoic silicic-dominated Large Igneous Province in NW India-SE Pakistan. Journal of Asian Earth Sciences, 160: 136~158.

    • Dingwell D B, Mysen B O. 1985. Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation. Earth and Planetary Science Letters, 74(2-3): 266~274.

    • Dottin J W, Labidi J, Lekic V, Jackson M G, Farquhar J. 2020. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters, 534: 116073.

    • Dottin J W, Labidi J, Jackson M G, Farquhar J. 2021. Sulfur isotope evidence for a geochemical zonation of the Samoan Mantle Plume. Geochemistry Geophysics Geosystems, 22(6): e2021GC009816.

    • Donnadieu Y, Goddéris Y, Pierrehumbert R, Dromart G, Fluteau F, Jacob R. 2006. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry Geophysics Geosystems, 7(11): Q11019.

    • Doucelance R, Hammouda T, Moreira M, Martins J C. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochimica et Cosmochimica Acta, 74(24): 7261~7282.

    • Drewitt J W E, Walter M J, Zhang H L, McMahon S C, Edwards D, Heinen B J, Lord O T, Anzellini S, Kleppe A K. 2019. The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth and Planetary Science Letters, 511: 213~222.

    • Duncan R A, Pyle D G. 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333(6176): 841~843.

    • Duncan R A, Richards M A. 1991. Hotspots, mantle plumes, flood basalts and true polar wander. Reviews of Geophysics, 29(1): 31~50.

    • Eales H V, Cawthorn R G. 1996. The Bushveld complex. In: Cawthorn R G, ed. Layered Intrusions. Amsterdam: Elsevier, 181~229.

    • Eldholm O, Grue K. 1994. North Atlantic volcanic margins: dimensions and production rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955~2968.

    • Elkins-Tanton L T. 2005. Continental magmatism caused by lithospheric delamination. In: Foulger G R, Natland J H, Presnall D C, eds. Plates, Plumes and Paradigms. Geological Society of America Special Papers, 388: 449~462.

    • Elkins-Tanton L T, Grasby S E, Black B A, Veselovskiy R V, Ardakani O H, Goodarzi F. 2020. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, 48(10): 986~991.

    • Ellis B S, Branney M J, Barry T L, Barfod D, Bindeman I, Wolff J A, Bonnichsen B. 2012. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bulletin of Volcanology, 74(1): 261~277.

    • Ernst R E. 2014. Large Igneous Provinces. Cambridge University Press, 1~653.

    • Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98(1-4): 55~76.

    • Ernst R E, Youbi N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Paleogeography Paleoclimatology Paleoecolory, 478: 30~52.

    • Etiope G, Ciccioli P. 2009. Earth's degassing: a missing ethane and propane source. Journal of Advertising, 323(5913): 478.

    • Ewart A, Schon R W, Chappell B W. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast--a rift related ‘calc-alkaline’ province. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 327~345.

    • Fan J, Kerrich R. 1997. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: a heterogeneous mantle plume-convergent margin environment. Geochimica et Cosmochimica Acta, 61(22): 4723~4744.

    • Farnetani C G, Richards M A. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research: Solid Earth, 99(B7): 13813~13833.

    • Farquhar J, Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 213(1-2): 1~13.

    • Ferrari L, Valencia-Moreno M N, Bryan S E. 2007. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In: Alaniz-Álvarez S A, Nieto-Samaniego Á F, eds. Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico, 422: 1~39.

    • Foley S F, Pintér Z. 2018. Chapter 1-Primary Melt Compositions in the Earth's Mantle. In: Kono Y, Sanloup C, eds. Magmas under Pressure. Elsevier, 3~42.

    • Foulger G R. 2005. Mantle plumes: why the current skepticism? Chinses Science Bulletin, 50: 1814~1819 (in Chinese with English abstract).

    • Foulger G R. 2007. The “plate” model for the genesis of melting anomalies. In: Foulger G R, Jurdy D M, eds. Plates, Plumes and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 1~28.

    • Foulger G R. 2010. Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell, 328. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567): 95~99.

    • Frey F A, Coffin M F, Wallace P J, Weis D. 2003. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge—a large igneous province. Texas A & M University Ocean Drilling Program.

    • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.

    • Ganino C, Arndt N T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323~326. .

    • Garland F, Hawkesworth C J, Mantovani M S M. 1995. Description and petrogenesis of the Paraná rhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193~1227.

    • Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10~20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chemical Geology, 262(1-2): 17~28.

    • Gibson S A, Thompson R N, Dickin A P. 2000. Ferropicrites; geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters, 174(3): 355~374.

    • Giordano D, Russell J K, Dingwell D B. 2008. Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271(1-4): 123~134.

    • Gleeson M, Soderman C, Matthews S, Cottaar S, Gibson S. 2021. Geochemical constraints on the structure of the Earth's deep mantle and the origin of the LLSVPs. Geochemistry Geophysics Geosystems, 22(9): e2021GC009932.

    • Grasby S E, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2): 104~107.

    • Grice K, Cao C Q, Love G D, Bottcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706~709.

    • Griffiths R W, Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66~78.

    • Gu X Y, Wang P Y, Kuritani T, Hanski E, Xia Q K, Wang Q Y. 2019. Low water content in the mantle source of the Hainan plume as a factor inhibiting the formation of a large igneous province. Earth and Planetary Science Letters, 515: 221~230.

    • Halls H C, Davis D W, Stott G M. 2008. The Paleoproterozoic Marathon Large Igneous Province: new evidence for a 2. 1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province. Precambrian Research, 162(3-4): 327~353.

    • Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.

    • He B, Xu Y G, Chung S L, Xiao L, Wang Y M. 2003. Sedimentary evidence for a rapid, kilometer scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213: 391~405.

    • Heimdal T H, Jones M T, Svensen H H. 2020. Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proceedings of the National Academy of Sciences, 117(22): 11968~11974.

    • Herzberg C, O'Hara M J. 2002. Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology, 43(10): 1857~1883.

    • Hildebrand A R, Penfield G T, Kring D A, Pilkington M, Camargo A, Jacobsen S B, Boynton W V. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19(9): 867~871.

    • Hofmann C, Feraud G, Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13~27.

    • Hooper P R, Camp V E, Reidel S P, Ross M E. 2007. The origin of the Columbia River flood basalt province: plume versus nonplume models. In: Foulger G R, Jurdy D M, eds. Plates, Plumes, and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 635~668.

    • Howell D, Stachel T, Stern R A. 2020. Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica et Cosmochimica Acta, 275: 99~122.

    • Huang C, Leng W, Wu Z Q. 2020. The continually stable subduction, iron-spin transition, and the formation of LLSVPs from subducted oceanic crust. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018262.

    • Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochimica Cosmochimica Acta, 75(17): 4987~4997.

    • Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475): 266~272.

    • Hwang H J, Seoung D H, Lee Y J. 2017. A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geosciences, 10(12): 947~953.

    • Ichiyama Y, Ishiwatari A, Koizumi K. 2008. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: evidence for an accreted Permian oceanic plateau. Lithos, 100(1-4): 127~146.

    • Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy Petrology, 168(1): 1019.

    • Ickert R B, Stachel T, Stern R A, Harris J W. 2013. Diamond from recycled crustal carbon documented by coupled delta O-18-delta C-13 measurements of diamonds and their inclusions. Earth and Planetary Science Letters, 364: 85~97.

    • Ingle S, Coffin M F. 2004. Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1-2): 123~134.

    • Ivanov A V, Mukasa S B, Kamenetsky V S, Ackerson M, Demonterova E I, Pokrovsky B G, Vladykin N V, Kolesnichenko M V, Litasov K D, Zedgenizov D A. 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps large igneous province: evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483: 442~462.

    • Jerram D A, Widdowson M. 2005. The anatomy of continental flood basalt provinces: geological constraints on the process and products of flood volcanism. Lithos, 79(3-4): 385~405.

    • Jian P, Liu D Y, Kroner A, Zhang Q, Wang Y Z, Sun X M, Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767~784.

    • Johnson C M. 1991. Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America. Journal of Geophysical Research: Solid Earth, 96B: 13485~13507.

    • Jones A P, Price G D, Price N J, DeCarli P S, Clegg R A. 2002. Impact induced melting and the development of large igneous provinces. Earth and Planetary Science Letters, 202(3-4): 551~561.

    • Jones M T, Jerram D A, Svensen H H, Grove C. 2016. The effects of large igneous provinces on the global carbon and sulphur cycles. Paleogeogr Paleoclimatol Paleoecol, 441(1): 4~21.

    • Kamenetsky V S, Gurenko A A, Kerr A C. 2010. Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 38(11): 1003~1006.

    • Kaminski E, Jaupart C. 2000. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth and Planetary Science Letters, 178(1): 139~149.

    • Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochemistry Geophysics Geosystems, 4(9): 1073.

    • Keken P, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 116(B1): B01401.

    • Keller C B, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2. 5 Gyr ago. Nature, 485: 191~493.

    • Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43(4): 335~338.

    • Keppie D F. 2016. How subduction broke up Pangaea with implications for the supercontinent cycle. Geological Society Special Publication, London, Special Publications, 424(1): 265~288.

    • Kerr A C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, 155(4): 619~626.

    • Kerr A C. 2014. Oceanic plateaus. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (The Crust. 2nd Edition), 4: 631~667.

    • Kerr A C, Tarney J, Marriner G F, Nivia A, Saunders A D. 1997. The Caribbean-Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Mahoney J J, Coffin M, eds. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington, DC: American Geophysical Union, 100: 45~93.

    • Kerr A C, Tarney J, Nivia A, Marriner G F, Saunders A D. 1998. The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean. Tectonophysics, 292(3): 173~188.

    • Keskin M. 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 1~4.

    • King S D, Anderson D L. 1998. Edge-driven convection. Earth and Planetary Science Letter, 160(3-4): 289~296.

    • Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letter, 256(3-4): 295~313.

    • Kong W L, Zhang Z C, Cheng Z G, Liu B X, Santosh M, Wei B W, Ke S, Xu L J, Zhang X C. 2022. Mantle source of tephritic porphyry in the Tarim Large Igneous Province constrained from Mg, Zn, Sr, and Nd isotope systematics: implications for deep carbon cycling. Geological Socity of America Bulletin, 134(1-2): 487~500.

    • Kuroda J, Ogawa N O, Tanimizu M, Coffin M F, Tokuyama H, Kitazato H, Ohkouchi N. 2007. Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic event 2. Earth and Planetary Science Letters, 256(1-2): 211~223.

    • Kuritani T, Xia Q K, Kimura J I, Liu J, Shimizu K, Ushikubo T, Zhao D P, Nakagawa M, Yoshimura S. 2019. Buoyant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9(1): 6549.

    • Labidi J, Cartigny P, Moreira M. 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501(7466): 208~211.

    • Labidi J, Cartigny P, Jackson M G. 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics. Earth and Planetary Science Letters, 417: 28~39.

    • Landwehrs J P, Feulner G, Hofmann M, Petri S. 2020. Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. Earth Planetary Science Letters, 537: 116174.

    • Lang M D, Cheng Z G, Zhang Z C, Mao Q, Santosh M. 2020. Hisingerite in trachydacite from Tarim: implications for voluminous felsic rocks in transitional large igneous province. Journal of Earth Science, 31(5): 875~883.

    • Larsen H C, Saunders A D. 1998. Tectonism and volcanism at the SE Greenland rifted margin: a record of plume impact and later continental rupture. In: Wise S, ed. Proceedings of the Ocean Drilling Program, Scientific Results 152. College Station, TX: Ocean Drilling Program, 503~533.

    • Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Wiley, 1~236.

    • Lee C T A, Erdman M, Yang W B, Ingram L, Chin E J, DePaolo D J. 2018. Sulfur isotopic compositions of deep arc cumulates. Earth and Planetary Science Letters, 500: 76~85.

    • Leng W, Zhong S J. 2010. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth and Planetary Science Letters, 291(1-4): 207~214.

    • Leitch A M, Davies G F. 2001. Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. Journal of Geophysical Research, 106(B2): 2047~2059.

    • Lewis J F, Jimenez J G. 1991. Duarte complex in the La Vega-Jarabacoa-Janico area, central Hispaniola: geologic and geochemical features of the sea floor during the early stages of arc evolution. Geological Society of America Specical Papers, 262: 115~141.

    • Li H B, Zhang Z C, Ernst R, Lu L S, Santosh M, Zhang D Y, Cheng Z G. 2015. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province, identifying the mantle plume centre. Terra Nova, 27(4): 247~257.

    • Li J L, Schwarzenbach E M, John T, Ague J J, Huang F, Gao J, Klemd R, Whitehouse M J, Wang X S. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11(1): 514.

    • Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).

    • Li R B, Pei X Z, Wei B, Li Z C, Pei L, Chen G C, Chen Y X, Liu C J. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.

    • Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111~120.

    • Li Z L, Chen H L, Song B, Li Y Q, Yang S F, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim basin, Northwest China. Journal of Asian Earth Sciences, 42(5): 917~927.

    • Lin S C, van Keken P E. 2005. Multiple volcanic episodes: multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature, 436(7048): 250~252.

    • Litasov K D, Goncharov A F, Hemley R J. 2011. Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle. Earth and Planetary Science Letters, 309(3-4): 318~323.

    • Liu Bingxiang, Zhang Zhaochong, Cheng Zhiguo. 2021. Classification, characteristics and petrogenesis of lamprophyres: an overview. Acta Geologica Sinica, 95(2): 292~316 (in Chinese with English abstract).

    • Liu J, Xia Q K, Kuritani T, Hanski E, Yu H R. 2017. Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications, 8(1): 1824.

    • Liu J G, Pearson D G, Wang L H L, Mather K A, Kjarsgaard B A, Schaeffer A J, Irvine G J, Kopylova M G, Armstrong J P. 2021. Plume-driven recratonization of deep continental lithospheric mantle. Nature, 592(7856): 732~736.

    • Liu Yongsheng, Chen Chunfei, He Detao, Chen Wei. 2019. Deep carbon cycle in subduction zones. Scientia Sinica (Terrae), 49(12): 1982~2003 (in Chinese with English abstract).

    • Liu Z, Tian X B, Chen Y, Xu T, Bai Z M, Liang X F, Iqbal J, Xu Y. 2017. Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding. Tectonophysics, 721: 387~394.

    • Mahoney J J, Duncan R A, Khan W, Gnos E, McCormick G R. 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters, 203(1): 295~310.

    • Mahoney J J, Coffin M F. 1997. Preface. AGU Geophysical Monograph, 100: ix-x.

    • Mao H K, Mao W L. 2020. Key problems of the four-dimensional earth system. Matter and Radiation at Extremes, 5(3): 038102.

    • Marzoli A, Bertrand H, Youbi N, Callegaro S, Merle R, Reisberg L, Chiaradia M, Brownlee S I, Jourdan F, Zanetti A, Davies J H F L, Cuppone T, Mahmoudi A, Medina F, Renne P R, Bellieni G, Crivellari S, El Hachimi H, Bensalah M K, Meyzen C M, Tegner C. 2019. The Central Atlantic magmatic province (CAMP) in Morocco. Journal of Petrology, 60(5): 945~996.

    • Melluso L, Cucciniello C, Petrone C M, Lustrino M, Morra V, Tiepolo M, Vasconcelos L. 2008. Petrology of Karoo volcanic rocks in the southern Lembombo monocline, Mozambique. Journal of African Earth Sciences, 52(4-5): 139~151.

    • Mills J V, Gomes M L, Kristall B, Sageman B B, Jacobson A D, Hurtgen M T. 2017. Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean. Geology, 45(5): 475~478.

    • Moore A, Blenkinsop T. 2002. The role of mantle plumes in the development of continental-scale drainage patterns: the southern African example revisited. South African Journal of Geology, 105(4): 353~360.

    • Moore G, Marone C, Carmichael I S E, Renne P. 1994. Basaltic volcanism and extension near the intersection of the Sierra-Madre volcanic province and the Mexican volcanic belt. Geological Socity of America Bulletin, 106(3): 383~394.

    • Natali C, Beccaluva L, Bianchini G, Franca. 2011. Rhyolites associated to Ethipoian CFB: clues for initial rifting at the Afar plume axis. Earth and Planetary Science Letters, 312(1-2): 59~68.

    • Nelson D R, Chivas A R, Chappell B W, McCulloch M T. 1988. Geochemcal and kotopic systematics in cartonatites and implications for the evolution of ocean-island sources. Geochimica Cosmochimica Acta, 52: 1~17.

    • Nelson P L, Grand S P. 2018. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geoscience, 11(4): 280~284.

    • Niu Y L. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics--a petrological and geochemical perspective. Geoscience Frontiers, 9(5): 1265~1278.

    • Niu Y L, Shi X F, Li T G, Wu S G, Sun W D, Zhu R X. 2017. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Science Bulletin, 62(21): 1464~1472.

    • Olsson J R, Soderlund U, Klausen M B, Ernst R E. 2010. U-Pb baddeleyite ages of major Archean dyke swarms and the Bushveld complex, Kaapvaal Craton (South Africa): correlations to volcanic rift forming events. Precambrian Research, 183(3): 490~500.

    • Pankhurst M J, Schaefer B F, Betts P G. 2011. Geodynamics of rapid voluminous felsic magmatism through time. Lithos, 123(1-4): 92~101.

    • Pankhurst R J, Rapela C W. 1995. Production of Jurassic rhyolite by anatexis in the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1): 23~36.

    • Pankhurst R J, Leat P T, Sruoga P, Rapela C W, Márquez M, Storey B C, Riley T R. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research, 81(1): 113~136.

    • Pankhurst R J, Riley T R, Fanning C M, Kelley S P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41(5): 605~625.

    • Parsons T, Thompson G A, Sleep N H. 1994. Mantle plume influence on the Neogene uplift and extension of the U. S. western Cordillera. Geology, 22(1): 83~86.

    • Patchett P J, Gehrels G E. 1998. Continental influence on Canadian Cordilleran terranes from Nd isotopic study, and significance for crustal growth processes. The Journal of Geology, 106(3): 269~280.

    • Payne J L, Clapham M E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences, 40(1): 89~111.

    • Payne J L, Turchyn A V, Paytan A, DePaolo D J, Lehrmann D J, Yu M Y, Wei J Y. 2010. Calciumisotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8543~8548.

    • Peacock S A. 1990. Fluid processes in subduction zones. Science, 248(4953): 329~337.

    • Percival J A, Card K D. 1983. The Archean crust as revealed in the Kapuskasing uplift, Superior province, Canada. Geology, 11(6): 323~326.

    • Pirajno F, Mao J W, Zhang Z C, Zhang Z H, Chai F M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China, implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165~183.

    • Planke S, Alvestad E, Eldholm O. 2017. Seismic characteristics of basaltic extrusive and intrusive rocks. The Leading Edge, 18(3): 342~348.

    • Podmore F, Wilson A H. 1987. A reappraisal of the structure, geology, and emplacement of the Great Dyke, Zimbabwe. In: Halls H C, Fahrig W F, eds. Mafic Dyke Swarms; a Collection of Papers Based on the Proceedings of an International Conference. Geological Association of Canada Special Paper, 34: 317~330.

    • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth and Planetary Science Letters, 278(3-4): 350~360.

    • Prokoph A, Ernst R E, Buchan K L. 2004. Time-series analysis of Large Igneous Provinces: 3500 Ma to present. The Journal of Geology, 112(1): 1~22.

    • Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schonberg C D, Samsonov A V, Schipansky A A. 1999. Combined mantle plume-island arc model for the formation of the 2. 9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595.

    • Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.

    • Rainbird R H, Ernst R E. 2001. The sedimentary record of mantle-plume uplift. In: Ernst R E, Buchan K L, eds. Mantle Plumes: Their Identification through Time. Boulder, CO: Geological Society of America Special Papers, 352: 227~245.

    • Raymond C A, Stock J M, Cande S C. 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In: Richards M A, Gordon R G, van der Hilst R D, eds. History and Dynamics of Plate Motions. Geophys Monogr, 121: 359~375.

    • Reichow M K, Saunders A D, White R V, Pringle M S, Al'Mukhamedov A I, Medvedev A I, Kirda N P. 2002. 40Ar/39Ar dates from the West Siberian basin: Siberian flood basalt province doubled. Science, 296(5547): 1846~1849.

    • Reidel S P, Camp V E, Ross M E, Wolff J A, Wells R E. 2013. The Columbia River Flood Basalt Province. Boulder, CO: Geological Society of America Special Paper, 497: 1~43.

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hotspot tracks-plume heads and tails. Science, 246(4926): 103~107.

    • Riciputi L R, Johnson C M. 1990. Nd- and Pb-isotope variations in the multicyclic caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization. Geology, 18(10): 975~978.

    • Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1043~1065.

    • Ripley E M, Lightfoot P C, Elswick E R. 2003. Sulfur isotopic studies of continental flood basalts in the Noril'sk region: implications for the association between lavas and ore-bearing intrusions. Geochimica et Cosmochimica Acta, 67(15): 2805~2817.

    • Rivers T, Corrigan D. 2000. Convergent margin on southeastern Laurentia during the Mesoproterozoic: tectonic implications. Canadian Journal of Earth Sciences, 37(2-3): 359~383.

    • Robinson S A, Heimhofer U, Hesselbo S P, Petrizzo M. 2017. Mesozoic climates and oceans--a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64(1): 1~15.

    • Rocha B C, Davies J H F L, Janasi V A, Schaltegger U, Nardy A J R, Nicolas D, Greber N D, Lucchetti A C F, Polo L A. 2020. Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology, 48(12): 1174~1178.

    • Rudnick R L, Jackson I. 1995. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: implications for the properties of an underplated lower continental crust. Journal of Geophysical Research: Solid Earth, 100(B6): 10211~10218.

    • Saccani E, Allahyar K, Beccaluva L, Bianchini G. 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1): 392~411.

    • Safonova I, Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126~158.

    • Safonova I, Litasov K, Maruyama S. 2015a. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers, 6(5): 679~685.

    • Safonova I, Maruyama S, Litasov K. 2015b. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics, 662: 454~471.

    • Saunders A D. 2005. Large igneous provinces: origin and environmental consequences. Elements, 1: 259~263.

    • Saunders A D, England R W, Reichow M K. 2005. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian basin, Russia. Lithos, 79(3-4): 407~424.

    • Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Y G. 2007. Regional uplift associated with continental large igneous provinces: the role of mantle plumes and the lithosphere. Chemical Geology, 241(3-4): 282~318.

    • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344(6189): 1265~1268.

    • Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end Cretaceous mass extinction. Science, 347: 182~184.

    • Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429): 862~866.

    • Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A, Gulick S P, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Mon-Tanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Rav-izza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327: 1214~1218.

    • Self S, Widdowson M, Thordarson T, Jay A E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet Science Letters, 248: 518~532.

    • Self S, Blake S, Sharma K, Widdowson M, Sephton S. 2008. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science, 319(5870): 1654~1657.

    • Sen G, Bizimis M, Das R, Paul D K, Ray A, Biswas S. 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planet Science Letters, 277: 101~111.

    • Seto Y, Hamane D, Nagai T, Fujino K. 2008. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and Chemistry Minerals, 35: 223~229.

    • Shangguan S M, Peate I U, Tian W, Xu Y G. 2016. Re-evaluating the geochronology of the Permian Tarim magmatic province: Implications for temporal evolution of magmatism. Journal of Geological Society, 173: 228~239.

    • Sharma K K. 2005. Malani magmatism: an extensional lithospheric tectonic origin. In: Foulger G R, Natland J H, Presnall D C, Anderson D L, ed. Plates, Plumes and Paradigms. Geological Society of America Special Paper, 463~476.

    • Shcheka S S, Wiedenbeck M, Frost D J, Keppler H. 2006. Carbon solubility in mantle minerals. Earth Planet Science Letters, 245: 730~742.

    • Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing B A. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Communications, 2(1): 1~5.

    • Sheth H. 2007. Large Igneous Provinces (LIPs): definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85: 117~124.

    • Shilobreva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insight into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochimica et Cosmochimica Acta, 75: 2237~2255.

    • Sleep N H. 1990. Hotspots and mantle plumes: some phenomenology. Journal of Geophysical Research, 95: 6715~6736.

    • Sleep N H. 2006. Mantle plumes from top to bottom. Earth-Science Reviews, 77: 231~271.

    • Smit J, Hertogen J. 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature, 285(5762): 198~200.

    • Smith A D. 1992. Back-arc convection model for Columbia River basalt genesis. Tectonophysics, 207: 269~285.

    • Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412~417.

    • Sobolev S V, Sobolev A V, Kuzmin D V, Krivolutskaya N A, Petrunin A G, Arndt N T, Radko V A, Vasiliev Y R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477: 312~316.

    • Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature, 493: 84~88.

    • Stefano C J, Mukasa S B, Andronikov A, Leeman W P. 2011. Water and other volatile systematics of olivine-hosted melt inclusions from the Yellowstone hotspot track. Contributions to Mineralogy and Petrology, 161(4): 615~633.

    • Storey B C, Alabaster T. 1991. Tectonomagmatic controls on Gondwana break-up models: evidence from the proto-Pacific margin of Antarctica. Tectonics, 10: 1274~1288.

    • Storey M, Duncan R A, Tegner C. 2007. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241: 264~281.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313~345.

    • Svensen H, Planke S, Polozov A G, Schmidbauer N, Corfu F, Podladchikov Y Y, Jamtveit B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet Science Letters, 277: 490~500.

    • Swanson E R, Kempter K A, McDowell F W, McIntosh W C. 2006. Major ignimbrites and volcanic centers of the Copper Canyon area: a view into the core of Mexico's Sierra Madre Occidental. Geosphere, 2(3): 125~141.

    • Tarduno J A, Tian W, Wilkison S. 1998. Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophysical Research Letters, 25(21): 3987~3990.

    • Teng F Z. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~87.

    • Teng F Z, Wang S J, Moynier F. 2019. Tracing the formation and differentiation of the Earth by no-traditional stable isotopes. Science China Earth Sciences, 62(11): 1702~1715.

    • Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, EIMF, Walter M J. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168.

    • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76.

    • Thomson A R, Crichton W A, Brodholt J P, Wood I G, Siersch N C, Muir J M R, Dobson D P, Hunt S A. 2019. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth's lower mantle. Nature, 572: 643~647.

    • Tian H C, Yang W, Li S G, Ke S. 2017. Could sedimentary carbonates be recycled into the lower mantle? constraints from Mg isotopic composition of Emeishan basalts. Lithos, 292: 250~261.

    • Tian W, Campbell I H, Allen C M, Guan P, Pan W Q, Chen M M, Yu H, Zhu W. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160: 407~425.

    • Torsvik T H, Burke K, Steinberger B, Webb S J, Ashwal L D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466 (7304): 352~355.

    • Trendall A F. 1995. The Woongarra rhyolite—a giant lavalike felsic sheet in the Hamersley basin. East Perth: Geological Survey of Western Australia, 42.

    • Trumbull R B, Sobolev S V, Bauer K. 2002. Petrophysical modeling of high seismic velocity crust at the Namibian volcanic margin. Geological Society of America Special Paper, 362: 225~234.

    • Turner S, Hawkesworth C, Gallagher K, Stewart K, Peate D, Mantovani M. 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Paraná. Journal of Geophysical Research, 101: 11503~11518.

    • Twist D. 1985. Geochemical evolution of the Rooiberg silicic lavas in the Loskop Dam area, southeastern Bushveld. Economic Geology, 80: 1153~1165.

    • Twist D, French B M. 1983. Voluminous acid volcanism in the Bushveld complex; a review of the Rooiberg Felsite. Bulletin Volcanologique, 46: 225~242.

    • Ukstins-Peate I, Bryan S E. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience, 1: 625~629.

    • Ukstins-Peate I, Baker J A, Al-Kadasi M, Al-Subbary A, Knight K B, Riisager P, Thirlwall M F, Peate D W, Renne P R, Menzies M A. 2005. Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen. Bulletin Volcanologique, 68: 135~156.

    • Veksler I V, Dorfman A M, Danyushevsky L V, Jakobsen J K, Dingwell D B. 2006. Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152: 685~702.

    • Vogt P R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature, 240(5380): 338~342.

    • Wallmann K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65(18): 3005~3025.

    • Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, 334: 54~57.

    • Wang C H, Zhang Z C, Xie Q H, Cheng Z G, Kong W L, Liu B X , Santosh M, Jin S K. 2021a. Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution. American Mineralogist, 106: 1064~1076.

    • Wang C H, Zhang Z C, Giuliani A, Cheng Z G, Liu B X, Kong W L. 2021b. Geochemical and O-C-Sr-Nd isotopic constraints on the petrogenetic link between aillikites and carbonatites in the Tarim large igneous province. Journal of Petrol, 62(5): 0022~3530.

    • Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous earth surface system changes. Earth Science Frontiers, 16(5): 1~14 (in Chinese with English abstract).

    • Wang S F, Fu X G, Liu Y D, Fan S Y, Wang J, Wu Z H. 2021. Bitu ophiolite in eastern Tibet: the last piece of the jigsaw puzzle in the Paleotethyan regime along the eastern Cimmerian continental margin. Lithos, 406~407: 1062520.

    • Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of National Academy Sciences, 115: 8682~8687.

    • Wang Y, Ukstins-Peate I, Luo Z H, Wang S Z, Cheng L L, Hao J H, Wang Y. 2019. Rifting in SW China: structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP. Geological Magazine, 156: 745~758.

    • White R S. 1997. Mantle plume origin for the Karoo and Ventersdorp flood basalts, South Africa. South African Journal of Geology, 100: 271~282.

    • White R S, McKenzie D. 1989. Magmatism at rift zones-the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research-Solid Earth, 94: 7685~7729.

    • White R V, Tarney J, Kerr A C, Saunders A D, Kempton P D, Pringle M S, Klaver G T. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos, 46: 43~68.

    • Widdowson M, Cox K G. 1996. Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet Science Letters, 137: 57~69.

    • Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1~33.

    • Williams G E, Gostin V A. 2000. Mantle plume uplift in the sedimentary record: origin of kilometre-deep canyons within late Neoproterozoic successions, South Australia. Journal of Geological Society London, 157: 759~768.

    • Wilson C J N, Gravley D M, Leonard G S, Rowland J V. 2009. Volcanism in the central Taupo volcanic zone, New Zealand: tempo styles and controls. In: Thordarson T, Larsen G, Self S, Rowland S K, Hoskuldsson A, eds. Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI. Journal of Geological Society, 2: 225~247.

    • Wilson M. 1989. Igneous Petrology. The Netherlands: Springer, 2200.

    • Wingate M T D, Pirajno F, Morris P A. 2004. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology, 32: 105~108.

    • Xia Q K, Bi Y, Li P, Tian W, Wei X, Chen H L. 2016. High water content in primitive continental flood basalts. Scientific Reports-UK, 6(1): 25416.

    • Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W, Song W, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu X, Zuza A, Yin A, Lin X B, Chen H L, Yang S F. 2020. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49: 96~100.

    • Xu Y G, He B, Chung S L, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32: 917~920.

    • Xu Y G, Chung S L, Shao H, He B. 2010. Silicic magmas from the Emeishan large igneous province, Southwest China: petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119: 47~60.

    • Xu Y G, Wei X, Luo Z Y, Liu H Q, Gao J. 2014. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos, 204: 20~35.

    • Yang G X, Li Y J, Tong L L, Wang Z P, Wu L. 2017. Oceanic island basalts in ophiolitic mélanges of the Central China Orogen: an overview. Geological Journal, 52: 155~173.

    • Yang G X, Li Y J, Tong L L, Wang Z P, Duan F H, Xu Q, Li H. 2019. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 179: 385~398.

    • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chemical Geology, 328: 185~194.

    • Yu S Y, Chen L M, Lan J B, He Y S, Chen Q, Song X Y. 2020. Controls of mantle source and condition of melt extraction on generation of the picritic lavas from the Emeishan large igneous province, SW China. Journal of Asian Earth Sciences, 203: 104534.

    • Zhang D Y, Zhang Z C, Santosh M, Cheng Z G, Huang H, Kang J L. 2013. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters, 361(1): 238~248.

    • Zhang G J, Zhang X L, Li D D, Farquhar J, Shen S Z, Chen X Y, Shen Y A. 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology, 43(12): 1091~1094.

    • Zhang Y, Ren Z Y, Xu Y G. 2013. Sulfur in olivine-hosted melt inclusions from the Emeishan picrites: implications for S degassing and its impact on environment. Journal of Geophysical Research-Solid Earth, 118(8): 4063~4070.

    • Zhang Y Q, Song Y G, Yang L M, Su L, Niu Y L, Allen M B, Xu X. 2017. Basalts and picrites from a plume-type ophiolite in the South Qilian accretionary belt, Qilian Orogen: accretion of a Cambrian Oceanic Plateau? Lithos, 278-281: 97~110.

    • Zhang Z C, Mahoney J J, Mao J W, Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhang Zhaochong. 2009. A discussion on some important problems concerning the Emeishan large igneous province. Geology of China, 36(3): 634~646 (in Chinese with English abstract).

    • Zhang Zhaochong, Dong Shuyun. 2007. Were large igneous provinces caused by mantle plumes? Geoscience, 21(2): 247~254 (in Chinese with English abstract).

    • Zhang Zhaochong, Hou Tong, Cheng Zhiguo. 2021. Mineralization related to large igneous province. Acta Geologica Sinica, 96(1): 131~154 (in Chinese with English abstract).

    • Zhong Y T, He B, Mundil R, Xu YG. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province. Lithos, 204: 14~19.

    • Zhong Y T, Luo Z Y, Mundil R, Wei X, Liu H Q, He B, Huang X L, Tian W, Xu Y G. 2022. Constraining the duration of the Tarim flood basalts (northwestern China): CA-TIMS zircon U-Pb dating of tuffs. Geological Socity of America Bulletin, 134(1-2): 325~334.

    • Zhu B, Guo Z J, Liu R, Liu D, Du W. 2014. No pre-eruptive uplift in the Emeishan large igneous province: new evidences from its ‘inner zone’, Dali area, southwest China. Journal of Volcanology Geothermal Research, 269: 57~67.

    • Zhu B, Peate D W, Guo Z J, Liu R C, Du W. 2017. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province. International Journal of Earth Sciences, 106(7): 2503~2525.

    • Zhu J, Zhang Z C, Reichow M K, Li H B, Cai W C, Pan R H. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. Journal of Geophysical Research-Solid Earth, 123(2): 1018~1034.

    • Zhu J, Zhang Z C, Santosh M, Jin Z L. 2020. Carlin-style gold province linked to the extinct Emeishan plume. Earth and Planetary Science Letters, 530: 115940.

    • Zhu J, Zhang Z C, Santosh M, Tan S C, Jin Z L. 2021a. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: implication for end-Guadalupian extinction of marine biota. Gondwana Research, 92: 228~238.

    • Zhu J, Zhang Z C, Santosh M, Tan S C, Deng Y N, Xie Q H. 2021b. Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations. Geoscience Frontiers, 12(4): 101140.

    • 薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973~1985.

    • Foulger G R. 2005. 地幔柱: 为什么现在怀疑?科学通报, 50: 1814~1819.

    • 李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38: 1345~1359.

    • 刘秉翔. 2021. 塔里木大火成岩省钠质闪煌岩岩石成因与地幔交代作用. 中国地质大学(北京)博士学位论文.

    • 刘秉翔, 张招崇, 程志国. 2021. 煌斑岩的分类、特征及成因. 地质学报, 95(2): 292~316.

    • 刘勇胜, 陈春飞, 何德涛, 陈唯. 2019. 俯冲带地球深部碳循环作用. 中国科学: 地球科学, 49(12): 1982~2003.

    • 王成善, 曹珂, 黄永建. 2009. 沉积记录与白垩纪地球表层系统变化. 地学前缘, 16(5): 1~14.

    • 张招崇. 2009. 关于峨眉山大火成岩省一些重要问题的讨论. 中国地质, 36(3): 634~646.

    • 张招崇, 董书云. 2007. 大火成岩省是地幔柱作用引起的吗? 现代地质, 21(2): 247~254.

    • 张招崇, 侯通, 程志国. 2022. 大火成岩省的成矿效应. 地质学报, 96(1): 131~154.

  • 参考文献

    • Abbott D, Mooney W. 1995. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33(Suppl): 231~242.

    • Aguirre-Diaz G J, Mcdowell F W. 1991. The volcanic section at Nazas, Durango, Mexico, and the possibility of widespread Eocene volcanism within the Sierra-Madre Occidental. Journal of Geophysical Research: Solid Earth, 96(B8): 13373~13388.

    • Aguirre-Diaz G J, Labarthe-Hernández G. 2003. Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with basin and range faulting. Geology, 31(9): 773~776.

    • Alt J, Teagle D. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527~1535.

    • Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095~1108.

    • Anderson D L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1(5): 271~275.

    • Arndt N. 2000. Geochemistry-hot heads and cold tails. Nature, 407: 458~461.

    • Arndt N, Bruzak G, Reischmann T. 2001. The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara craton, Australia. In: Ernst R E, Buchan K E, eds. Mantle Plumes: Their Identification through Time. GSA Special Publication, 352: 359~387.

    • Baksi A K. 1999. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans. The Journal of Geology, 107(1): 13~26.

    • Baksi A K. 2006. Guidelines for assessing the reliability of 40Ar/39Ar plateau ages: application to ages relevant to hotspot track. Accessed on, 25(3): 2009.

    • Baragar W R A, Ernst R E, Hulbert L. 1996. Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield. Journal of Petrology, 37(2): 317~359.

    • Barbero E, Zaccarini F, Delavari M, Dolati A, Saccani E, Marroni M, Pandolfi L. 2021. New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan complex (Makran Accretionary Prism, SE Iran). Lithos, 396~397: 106228.

    • Barley M E, Pickard A L, Sylvester P J. 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2. 45 billion years ago. Nature, 385(6611): 55~58.

    • Beane J E, Hooper P R. 1998. A note on the picrite basalts of the Western Ghats, Deccan Traps, India. Memoir-Geological Society of India, 10: 117~134.

    • Beaudry P, Longpre M A, Economos R, Wing B A, Bui T H, Stix J. 2018. Degassing-induced fractionation of multiple sulphur isotopes unveils post-Archaean recycled oceanic crust signal in hotspot lava. Nature Communications, 9(1): 5093.

    • Becker T W, Boschi L. 2002. A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1).

    • Black B A, Elkins-Tanton L T, Rowe M C, Peate I U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317: 363~373.

    • Black B A, Hauri E H, Elkins-Tanton L T, Brown S M. 2014a. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters, 394: 58~69.

    • Black B A, Lamarque J F, Shields C A, Elkins-Tanton L T, Kiehl J T. 2014b. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1): 67~70.

    • Bleeker W. 2004. Taking the pulse of planet Earth: a proposal for a new multidisciplinary flagship project in Canadian solid Earth sciences. Geoscience Canada, 31(4): 179~190.

    • Bo Hongze, Zhang Zhaochong. 2020. Genesis of Silicic Large Igneous Provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973~1985 (in Chinese with English abstract).

    • Bond D P G, Wignall P B, Keller G, Kerr A C. 2014. Large igneous provinces and mass extinctions: an update. The Geological Society of America Special Paper, 505: 29~55.

    • Bond D P G, Grasby S E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3~29.

    • Bono R K, Tarduno J A, Bunge H P. 2019. Hotspot motion caused by the Hwaiian-Emperor bend and LLSVPs are not fixed. Nature Communications, 10(1): 1~9.

    • Bryan S. 2007. Silicic Large Igneous Provinces. Episodes, 30(1): 20~31.

    • Bryan S, Ernst R E. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175~202.

    • Bryan S E, Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125(7-8): 1053~1078.

    • Bryan S E, Constantine A E, Stephens C J, Ewart A, Schon, R W, Parianos J. 1992. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters, 153: 85~102.

    • Bryan S E, Ewart A, Stephens C J, Parianos J, Downes P J. 2000. The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1-4): 55~78.

    • Bryan S E, Riley T R, Jerram D A, Leat P T, Stephens C J. 2002. Silicic volcanism: an under-valued component of large igneous provinces and volcanic rifted margins. In: Menzies M A, Klemperer S L, Ebinger C J, Baker J, eds. Magmatic Rifted Margins. Boulder, CO: Special Papers-Geological Society of America, 362: 97~118.

    • Buchan K L, Ernst R E. 2004. Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada, “A” Series Map. Geological Survey of Canada, Ottawa, Canada, 39.

    • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4): 489~510.

    • Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences, 111(9): 3316~3321.

    • Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8(1): 1~6.

    • Burke K, Torsvik T H. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227 (3-4): 531~538.

    • Burov E, Guillou-Frottier L. 2005. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 161(2): 469~490.

    • Burov E, Gerya T. 2014. Asmmetric three-dimensional topography over mantle plumes. Nature, 513(7516): 85~89.

    • Cabato J A, Stefano C J, Mukasa S B. 2015. Volatile concentrations in olivine-hosted melt inclusions from the Columbia river flood basalts and associated lavas of the Oregon plateau: implications for magma genesis. Chemical Geology, 392: 59~73.

    • Cabral R A, Jackson M G, Rose-Koga E F, Koga K T, Whitehouse M J, Antonelli M A. 2013. Anomolous sulphur isotopes in plume lavas reveal deep mantle storage of Archean crust. Nature, 496(7446): 490~493.

    • Caldeira K, Rampino M R. 1990. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect. Geophysical Research Letters, 17(9): 1299~1302.

    • Camp V E, Ross M E, Hanson W E. 2003. Genesis of flood basalts and basin and range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geological Society of America Bulletin, 115(1): 105~128.

    • Campbell I H. 1998. The mantle's chemical structure: insights from the melting products of mantle plumes. In: Jackson I, ed. The Earth's Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 259~310.

    • Campbell I H. 2005. Large igneous provinces and the mantle plume hypothesis. Elements, 1(5): 265~269.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79~93.

    • Campbell I H, Griffiths R W. 1991. On the dynamics of long lived plume conduits in the convecting mantle. Earth and Planetary Science Letters, 103(1-4): 214~227.

    • Capriolo M, Marzoli A, Aradi L E, Callegaro S, Dal Corso J, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szab C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11(1): 1~11.

    • Capriolo M, Marzoli A, Aradi L E, Ackerson M R, Callegaro S, Dal Corso J, Ernesto M, Vasconcellos E M G, De Min A, Newton R J, Szabo C. 2021. Massive methane fluxing from magma-sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 12(1): 1~9.

    • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.

    • Cawthorn R G, Walraven F. 1998. Emplacement and crystallization time for the Bushveld Complex. Journal of Petrology, 39(9): 1669~1687.

    • Cawthorn R G, Webb S J. 2013. Cooling of the Bushveld Complex, South Africa: implications for paleomagnetic reversals. Geology, 41(6): 687~690.

    • Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.

    • Chavagnac V. 2004. A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos, 75(3-4): 253~281.

    • Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1~15.

    • Cheng Z G, Zhang Z C, Hou T, Santosh M, Zhang D Y, Ke S. 2015. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: implications for mantle source characteristics and plume-lithosphere interaction. Lithos, 220-223: 164~178.

    • Cheng Z G, Zhang Z C, Hou T, Santosh M, Chen L L, Ke S, Xu L J. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159~178.

    • Cheng Z G, Zhang Z C, Xie Q H, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim large igneous province. Earth and Planetary Science Letters, 489: 100~110.

    • Cheng Z G, Zhang Z C, Wang Z C, Wang F Y, Mao Q, Xu L J, Ke S, Yu H M, Santosh M. 2020. Petrogenesis of transitional large igneous province: insights from bimodal volcanic suite in the Tarim large igneous province. Journal of Geophysical Research: Solid Earth, 125(5): 1~22.

    • Clapham M E, Renne P R. 2019. Flood basalts and mass extinctions. Annual Review of Earth and Planetary Sciences Letters, 47(1): 275~303.

    • Coffin M F, Eldholm O. 1991. Large igneous provinces: JOI/USSAC workshop report, Tach. University of Texas at Austin Institute for Geophysics, 114: 1~79.

    • Coltice N, Phillips B R, Bertrand H, Ricard Y, Rey P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology, 35(5): 391~394.

    • Condie K C. 2001. Mantle Plumes and Their Record in Earth History. Cambridge: Cambridge University Press, 1~306.

    • Condie K C, Chomiak B. 1996. Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America. Tectonophysics, 265(1-2): 101~126.

    • Cordery M J, Davies G F, Campbell I H. 1997. Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research: Solid Earth, 102(B9): 20179~20197.

    • Choudhary B R, Santosh M, Vivo B D, Jadhav G. 2019. Melt inclusion evidence for mantle heterogeneity and magma degassing in the Deccan Large Igneous Province, India. Lithos, 346: 105135.

    • Courtillot V, Renne P R. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335: 113~140.

    • Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau M G, Besse J. 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333(6176): 843~846.

    • Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3): 177~195.

    • Cox K G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342(6252): 873~877.

    • Creaser R A, White A J R. 1991. Yardea Dacite; large-volume, high-temperature felsic volcanism from the middle Proterozoic of South Australia. Geology, 19(1): 48~51.

    • Czamanske G K, Gurevitch A B, Fedorenko V, Simonov O. 1998. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review, 40(2): 95~115.

    • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1~13.

    • Davies J H F L, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U. 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nature Communications, 8: 15596.

    • Delavault H, Chauvel C, Thomassot E, Devey C W, Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 113(46): 12952~12956.

    • de Wall H, Pandit M K, Donhauser I, Schobel S, Wang W, Sharma K K. 2018. Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite: a Neoproterozoic silicic-dominated Large Igneous Province in NW India-SE Pakistan. Journal of Asian Earth Sciences, 160: 136~158.

    • Dingwell D B, Mysen B O. 1985. Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation. Earth and Planetary Science Letters, 74(2-3): 266~274.

    • Dottin J W, Labidi J, Lekic V, Jackson M G, Farquhar J. 2020. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters, 534: 116073.

    • Dottin J W, Labidi J, Jackson M G, Farquhar J. 2021. Sulfur isotope evidence for a geochemical zonation of the Samoan Mantle Plume. Geochemistry Geophysics Geosystems, 22(6): e2021GC009816.

    • Donnadieu Y, Goddéris Y, Pierrehumbert R, Dromart G, Fluteau F, Jacob R. 2006. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry Geophysics Geosystems, 7(11): Q11019.

    • Doucelance R, Hammouda T, Moreira M, Martins J C. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochimica et Cosmochimica Acta, 74(24): 7261~7282.

    • Drewitt J W E, Walter M J, Zhang H L, McMahon S C, Edwards D, Heinen B J, Lord O T, Anzellini S, Kleppe A K. 2019. The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth and Planetary Science Letters, 511: 213~222.

    • Duncan R A, Pyle D G. 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333(6176): 841~843.

    • Duncan R A, Richards M A. 1991. Hotspots, mantle plumes, flood basalts and true polar wander. Reviews of Geophysics, 29(1): 31~50.

    • Eales H V, Cawthorn R G. 1996. The Bushveld complex. In: Cawthorn R G, ed. Layered Intrusions. Amsterdam: Elsevier, 181~229.

    • Eldholm O, Grue K. 1994. North Atlantic volcanic margins: dimensions and production rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955~2968.

    • Elkins-Tanton L T. 2005. Continental magmatism caused by lithospheric delamination. In: Foulger G R, Natland J H, Presnall D C, eds. Plates, Plumes and Paradigms. Geological Society of America Special Papers, 388: 449~462.

    • Elkins-Tanton L T, Grasby S E, Black B A, Veselovskiy R V, Ardakani O H, Goodarzi F. 2020. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, 48(10): 986~991.

    • Ellis B S, Branney M J, Barry T L, Barfod D, Bindeman I, Wolff J A, Bonnichsen B. 2012. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bulletin of Volcanology, 74(1): 261~277.

    • Ernst R E. 2014. Large Igneous Provinces. Cambridge University Press, 1~653.

    • Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98(1-4): 55~76.

    • Ernst R E, Youbi N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Paleogeography Paleoclimatology Paleoecolory, 478: 30~52.

    • Etiope G, Ciccioli P. 2009. Earth's degassing: a missing ethane and propane source. Journal of Advertising, 323(5913): 478.

    • Ewart A, Schon R W, Chappell B W. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast--a rift related ‘calc-alkaline’ province. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 327~345.

    • Fan J, Kerrich R. 1997. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: a heterogeneous mantle plume-convergent margin environment. Geochimica et Cosmochimica Acta, 61(22): 4723~4744.

    • Farnetani C G, Richards M A. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research: Solid Earth, 99(B7): 13813~13833.

    • Farquhar J, Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 213(1-2): 1~13.

    • Ferrari L, Valencia-Moreno M N, Bryan S E. 2007. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In: Alaniz-Álvarez S A, Nieto-Samaniego Á F, eds. Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico, 422: 1~39.

    • Foley S F, Pintér Z. 2018. Chapter 1-Primary Melt Compositions in the Earth's Mantle. In: Kono Y, Sanloup C, eds. Magmas under Pressure. Elsevier, 3~42.

    • Foulger G R. 2005. Mantle plumes: why the current skepticism? Chinses Science Bulletin, 50: 1814~1819 (in Chinese with English abstract).

    • Foulger G R. 2007. The “plate” model for the genesis of melting anomalies. In: Foulger G R, Jurdy D M, eds. Plates, Plumes and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 1~28.

    • Foulger G R. 2010. Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell, 328. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567): 95~99.

    • Frey F A, Coffin M F, Wallace P J, Weis D. 2003. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge—a large igneous province. Texas A & M University Ocean Drilling Program.

    • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.

    • Ganino C, Arndt N T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323~326. .

    • Garland F, Hawkesworth C J, Mantovani M S M. 1995. Description and petrogenesis of the Paraná rhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193~1227.

    • Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10~20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chemical Geology, 262(1-2): 17~28.

    • Gibson S A, Thompson R N, Dickin A P. 2000. Ferropicrites; geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters, 174(3): 355~374.

    • Giordano D, Russell J K, Dingwell D B. 2008. Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271(1-4): 123~134.

    • Gleeson M, Soderman C, Matthews S, Cottaar S, Gibson S. 2021. Geochemical constraints on the structure of the Earth's deep mantle and the origin of the LLSVPs. Geochemistry Geophysics Geosystems, 22(9): e2021GC009932.

    • Grasby S E, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2): 104~107.

    • Grice K, Cao C Q, Love G D, Bottcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706~709.

    • Griffiths R W, Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66~78.

    • Gu X Y, Wang P Y, Kuritani T, Hanski E, Xia Q K, Wang Q Y. 2019. Low water content in the mantle source of the Hainan plume as a factor inhibiting the formation of a large igneous province. Earth and Planetary Science Letters, 515: 221~230.

    • Halls H C, Davis D W, Stott G M. 2008. The Paleoproterozoic Marathon Large Igneous Province: new evidence for a 2. 1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province. Precambrian Research, 162(3-4): 327~353.

    • Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.

    • He B, Xu Y G, Chung S L, Xiao L, Wang Y M. 2003. Sedimentary evidence for a rapid, kilometer scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213: 391~405.

    • Heimdal T H, Jones M T, Svensen H H. 2020. Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proceedings of the National Academy of Sciences, 117(22): 11968~11974.

    • Herzberg C, O'Hara M J. 2002. Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology, 43(10): 1857~1883.

    • Hildebrand A R, Penfield G T, Kring D A, Pilkington M, Camargo A, Jacobsen S B, Boynton W V. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19(9): 867~871.

    • Hofmann C, Feraud G, Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13~27.

    • Hooper P R, Camp V E, Reidel S P, Ross M E. 2007. The origin of the Columbia River flood basalt province: plume versus nonplume models. In: Foulger G R, Jurdy D M, eds. Plates, Plumes, and Planetary Processes. Boulder, CO: Geological Society of America Special Papers, 430: 635~668.

    • Howell D, Stachel T, Stern R A. 2020. Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica et Cosmochimica Acta, 275: 99~122.

    • Huang C, Leng W, Wu Z Q. 2020. The continually stable subduction, iron-spin transition, and the formation of LLSVPs from subducted oceanic crust. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018262.

    • Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochimica Cosmochimica Acta, 75(17): 4987~4997.

    • Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475): 266~272.

    • Hwang H J, Seoung D H, Lee Y J. 2017. A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geosciences, 10(12): 947~953.

    • Ichiyama Y, Ishiwatari A, Koizumi K. 2008. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: evidence for an accreted Permian oceanic plateau. Lithos, 100(1-4): 127~146.

    • Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy Petrology, 168(1): 1019.

    • Ickert R B, Stachel T, Stern R A, Harris J W. 2013. Diamond from recycled crustal carbon documented by coupled delta O-18-delta C-13 measurements of diamonds and their inclusions. Earth and Planetary Science Letters, 364: 85~97.

    • Ingle S, Coffin M F. 2004. Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1-2): 123~134.

    • Ivanov A V, Mukasa S B, Kamenetsky V S, Ackerson M, Demonterova E I, Pokrovsky B G, Vladykin N V, Kolesnichenko M V, Litasov K D, Zedgenizov D A. 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps large igneous province: evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483: 442~462.

    • Jerram D A, Widdowson M. 2005. The anatomy of continental flood basalt provinces: geological constraints on the process and products of flood volcanism. Lithos, 79(3-4): 385~405.

    • Jian P, Liu D Y, Kroner A, Zhang Q, Wang Y Z, Sun X M, Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767~784.

    • Johnson C M. 1991. Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America. Journal of Geophysical Research: Solid Earth, 96B: 13485~13507.

    • Jones A P, Price G D, Price N J, DeCarli P S, Clegg R A. 2002. Impact induced melting and the development of large igneous provinces. Earth and Planetary Science Letters, 202(3-4): 551~561.

    • Jones M T, Jerram D A, Svensen H H, Grove C. 2016. The effects of large igneous provinces on the global carbon and sulphur cycles. Paleogeogr Paleoclimatol Paleoecol, 441(1): 4~21.

    • Kamenetsky V S, Gurenko A A, Kerr A C. 2010. Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 38(11): 1003~1006.

    • Kaminski E, Jaupart C. 2000. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth and Planetary Science Letters, 178(1): 139~149.

    • Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochemistry Geophysics Geosystems, 4(9): 1073.

    • Keken P, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 116(B1): B01401.

    • Keller C B, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2. 5 Gyr ago. Nature, 485: 191~493.

    • Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43(4): 335~338.

    • Keppie D F. 2016. How subduction broke up Pangaea with implications for the supercontinent cycle. Geological Society Special Publication, London, Special Publications, 424(1): 265~288.

    • Kerr A C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, 155(4): 619~626.

    • Kerr A C. 2014. Oceanic plateaus. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (The Crust. 2nd Edition), 4: 631~667.

    • Kerr A C, Tarney J, Marriner G F, Nivia A, Saunders A D. 1997. The Caribbean-Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Mahoney J J, Coffin M, eds. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington, DC: American Geophysical Union, 100: 45~93.

    • Kerr A C, Tarney J, Nivia A, Marriner G F, Saunders A D. 1998. The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean. Tectonophysics, 292(3): 173~188.

    • Keskin M. 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 1~4.

    • King S D, Anderson D L. 1998. Edge-driven convection. Earth and Planetary Science Letter, 160(3-4): 289~296.

    • Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letter, 256(3-4): 295~313.

    • Kong W L, Zhang Z C, Cheng Z G, Liu B X, Santosh M, Wei B W, Ke S, Xu L J, Zhang X C. 2022. Mantle source of tephritic porphyry in the Tarim Large Igneous Province constrained from Mg, Zn, Sr, and Nd isotope systematics: implications for deep carbon cycling. Geological Socity of America Bulletin, 134(1-2): 487~500.

    • Kuroda J, Ogawa N O, Tanimizu M, Coffin M F, Tokuyama H, Kitazato H, Ohkouchi N. 2007. Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic event 2. Earth and Planetary Science Letters, 256(1-2): 211~223.

    • Kuritani T, Xia Q K, Kimura J I, Liu J, Shimizu K, Ushikubo T, Zhao D P, Nakagawa M, Yoshimura S. 2019. Buoyant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9(1): 6549.

    • Labidi J, Cartigny P, Moreira M. 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501(7466): 208~211.

    • Labidi J, Cartigny P, Jackson M G. 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics. Earth and Planetary Science Letters, 417: 28~39.

    • Landwehrs J P, Feulner G, Hofmann M, Petri S. 2020. Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. Earth Planetary Science Letters, 537: 116174.

    • Lang M D, Cheng Z G, Zhang Z C, Mao Q, Santosh M. 2020. Hisingerite in trachydacite from Tarim: implications for voluminous felsic rocks in transitional large igneous province. Journal of Earth Science, 31(5): 875~883.

    • Larsen H C, Saunders A D. 1998. Tectonism and volcanism at the SE Greenland rifted margin: a record of plume impact and later continental rupture. In: Wise S, ed. Proceedings of the Ocean Drilling Program, Scientific Results 152. College Station, TX: Ocean Drilling Program, 503~533.

    • Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Wiley, 1~236.

    • Lee C T A, Erdman M, Yang W B, Ingram L, Chin E J, DePaolo D J. 2018. Sulfur isotopic compositions of deep arc cumulates. Earth and Planetary Science Letters, 500: 76~85.

    • Leng W, Zhong S J. 2010. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth and Planetary Science Letters, 291(1-4): 207~214.

    • Leitch A M, Davies G F. 2001. Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. Journal of Geophysical Research, 106(B2): 2047~2059.

    • Lewis J F, Jimenez J G. 1991. Duarte complex in the La Vega-Jarabacoa-Janico area, central Hispaniola: geologic and geochemical features of the sea floor during the early stages of arc evolution. Geological Society of America Specical Papers, 262: 115~141.

    • Li H B, Zhang Z C, Ernst R, Lu L S, Santosh M, Zhang D Y, Cheng Z G. 2015. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province, identifying the mantle plume centre. Terra Nova, 27(4): 247~257.

    • Li J L, Schwarzenbach E M, John T, Ague J J, Huang F, Gao J, Klemd R, Whitehouse M J, Wang X S. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11(1): 514.

    • Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).

    • Li R B, Pei X Z, Wei B, Li Z C, Pei L, Chen G C, Chen Y X, Liu C J. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.

    • Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111~120.

    • Li Z L, Chen H L, Song B, Li Y Q, Yang S F, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim basin, Northwest China. Journal of Asian Earth Sciences, 42(5): 917~927.

    • Lin S C, van Keken P E. 2005. Multiple volcanic episodes: multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature, 436(7048): 250~252.

    • Litasov K D, Goncharov A F, Hemley R J. 2011. Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle. Earth and Planetary Science Letters, 309(3-4): 318~323.

    • Liu Bingxiang, Zhang Zhaochong, Cheng Zhiguo. 2021. Classification, characteristics and petrogenesis of lamprophyres: an overview. Acta Geologica Sinica, 95(2): 292~316 (in Chinese with English abstract).

    • Liu J, Xia Q K, Kuritani T, Hanski E, Yu H R. 2017. Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications, 8(1): 1824.

    • Liu J G, Pearson D G, Wang L H L, Mather K A, Kjarsgaard B A, Schaeffer A J, Irvine G J, Kopylova M G, Armstrong J P. 2021. Plume-driven recratonization of deep continental lithospheric mantle. Nature, 592(7856): 732~736.

    • Liu Yongsheng, Chen Chunfei, He Detao, Chen Wei. 2019. Deep carbon cycle in subduction zones. Scientia Sinica (Terrae), 49(12): 1982~2003 (in Chinese with English abstract).

    • Liu Z, Tian X B, Chen Y, Xu T, Bai Z M, Liang X F, Iqbal J, Xu Y. 2017. Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding. Tectonophysics, 721: 387~394.

    • Mahoney J J, Duncan R A, Khan W, Gnos E, McCormick G R. 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters, 203(1): 295~310.

    • Mahoney J J, Coffin M F. 1997. Preface. AGU Geophysical Monograph, 100: ix-x.

    • Mao H K, Mao W L. 2020. Key problems of the four-dimensional earth system. Matter and Radiation at Extremes, 5(3): 038102.

    • Marzoli A, Bertrand H, Youbi N, Callegaro S, Merle R, Reisberg L, Chiaradia M, Brownlee S I, Jourdan F, Zanetti A, Davies J H F L, Cuppone T, Mahmoudi A, Medina F, Renne P R, Bellieni G, Crivellari S, El Hachimi H, Bensalah M K, Meyzen C M, Tegner C. 2019. The Central Atlantic magmatic province (CAMP) in Morocco. Journal of Petrology, 60(5): 945~996.

    • Melluso L, Cucciniello C, Petrone C M, Lustrino M, Morra V, Tiepolo M, Vasconcelos L. 2008. Petrology of Karoo volcanic rocks in the southern Lembombo monocline, Mozambique. Journal of African Earth Sciences, 52(4-5): 139~151.

    • Mills J V, Gomes M L, Kristall B, Sageman B B, Jacobson A D, Hurtgen M T. 2017. Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean. Geology, 45(5): 475~478.

    • Moore A, Blenkinsop T. 2002. The role of mantle plumes in the development of continental-scale drainage patterns: the southern African example revisited. South African Journal of Geology, 105(4): 353~360.

    • Moore G, Marone C, Carmichael I S E, Renne P. 1994. Basaltic volcanism and extension near the intersection of the Sierra-Madre volcanic province and the Mexican volcanic belt. Geological Socity of America Bulletin, 106(3): 383~394.

    • Natali C, Beccaluva L, Bianchini G, Franca. 2011. Rhyolites associated to Ethipoian CFB: clues for initial rifting at the Afar plume axis. Earth and Planetary Science Letters, 312(1-2): 59~68.

    • Nelson D R, Chivas A R, Chappell B W, McCulloch M T. 1988. Geochemcal and kotopic systematics in cartonatites and implications for the evolution of ocean-island sources. Geochimica Cosmochimica Acta, 52: 1~17.

    • Nelson P L, Grand S P. 2018. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geoscience, 11(4): 280~284.

    • Niu Y L. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics--a petrological and geochemical perspective. Geoscience Frontiers, 9(5): 1265~1278.

    • Niu Y L, Shi X F, Li T G, Wu S G, Sun W D, Zhu R X. 2017. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Science Bulletin, 62(21): 1464~1472.

    • Olsson J R, Soderlund U, Klausen M B, Ernst R E. 2010. U-Pb baddeleyite ages of major Archean dyke swarms and the Bushveld complex, Kaapvaal Craton (South Africa): correlations to volcanic rift forming events. Precambrian Research, 183(3): 490~500.

    • Pankhurst M J, Schaefer B F, Betts P G. 2011. Geodynamics of rapid voluminous felsic magmatism through time. Lithos, 123(1-4): 92~101.

    • Pankhurst R J, Rapela C W. 1995. Production of Jurassic rhyolite by anatexis in the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1): 23~36.

    • Pankhurst R J, Leat P T, Sruoga P, Rapela C W, Márquez M, Storey B C, Riley T R. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research, 81(1): 113~136.

    • Pankhurst R J, Riley T R, Fanning C M, Kelley S P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41(5): 605~625.

    • Parsons T, Thompson G A, Sleep N H. 1994. Mantle plume influence on the Neogene uplift and extension of the U. S. western Cordillera. Geology, 22(1): 83~86.

    • Patchett P J, Gehrels G E. 1998. Continental influence on Canadian Cordilleran terranes from Nd isotopic study, and significance for crustal growth processes. The Journal of Geology, 106(3): 269~280.

    • Payne J L, Clapham M E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences, 40(1): 89~111.

    • Payne J L, Turchyn A V, Paytan A, DePaolo D J, Lehrmann D J, Yu M Y, Wei J Y. 2010. Calciumisotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8543~8548.

    • Peacock S A. 1990. Fluid processes in subduction zones. Science, 248(4953): 329~337.

    • Percival J A, Card K D. 1983. The Archean crust as revealed in the Kapuskasing uplift, Superior province, Canada. Geology, 11(6): 323~326.

    • Pirajno F, Mao J W, Zhang Z C, Zhang Z H, Chai F M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China, implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165~183.

    • Planke S, Alvestad E, Eldholm O. 2017. Seismic characteristics of basaltic extrusive and intrusive rocks. The Leading Edge, 18(3): 342~348.

    • Podmore F, Wilson A H. 1987. A reappraisal of the structure, geology, and emplacement of the Great Dyke, Zimbabwe. In: Halls H C, Fahrig W F, eds. Mafic Dyke Swarms; a Collection of Papers Based on the Proceedings of an International Conference. Geological Association of Canada Special Paper, 34: 317~330.

    • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth and Planetary Science Letters, 278(3-4): 350~360.

    • Prokoph A, Ernst R E, Buchan K L. 2004. Time-series analysis of Large Igneous Provinces: 3500 Ma to present. The Journal of Geology, 112(1): 1~22.

    • Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schonberg C D, Samsonov A V, Schipansky A A. 1999. Combined mantle plume-island arc model for the formation of the 2. 9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595.

    • Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.

    • Rainbird R H, Ernst R E. 2001. The sedimentary record of mantle-plume uplift. In: Ernst R E, Buchan K L, eds. Mantle Plumes: Their Identification through Time. Boulder, CO: Geological Society of America Special Papers, 352: 227~245.

    • Raymond C A, Stock J M, Cande S C. 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In: Richards M A, Gordon R G, van der Hilst R D, eds. History and Dynamics of Plate Motions. Geophys Monogr, 121: 359~375.

    • Reichow M K, Saunders A D, White R V, Pringle M S, Al'Mukhamedov A I, Medvedev A I, Kirda N P. 2002. 40Ar/39Ar dates from the West Siberian basin: Siberian flood basalt province doubled. Science, 296(5547): 1846~1849.

    • Reidel S P, Camp V E, Ross M E, Wolff J A, Wells R E. 2013. The Columbia River Flood Basalt Province. Boulder, CO: Geological Society of America Special Paper, 497: 1~43.

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hotspot tracks-plume heads and tails. Science, 246(4926): 103~107.

    • Riciputi L R, Johnson C M. 1990. Nd- and Pb-isotope variations in the multicyclic caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization. Geology, 18(10): 975~978.

    • Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1043~1065.

    • Ripley E M, Lightfoot P C, Elswick E R. 2003. Sulfur isotopic studies of continental flood basalts in the Noril'sk region: implications for the association between lavas and ore-bearing intrusions. Geochimica et Cosmochimica Acta, 67(15): 2805~2817.

    • Rivers T, Corrigan D. 2000. Convergent margin on southeastern Laurentia during the Mesoproterozoic: tectonic implications. Canadian Journal of Earth Sciences, 37(2-3): 359~383.

    • Robinson S A, Heimhofer U, Hesselbo S P, Petrizzo M. 2017. Mesozoic climates and oceans--a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64(1): 1~15.

    • Rocha B C, Davies J H F L, Janasi V A, Schaltegger U, Nardy A J R, Nicolas D, Greber N D, Lucchetti A C F, Polo L A. 2020. Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology, 48(12): 1174~1178.

    • Rudnick R L, Jackson I. 1995. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: implications for the properties of an underplated lower continental crust. Journal of Geophysical Research: Solid Earth, 100(B6): 10211~10218.

    • Saccani E, Allahyar K, Beccaluva L, Bianchini G. 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1): 392~411.

    • Safonova I, Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126~158.

    • Safonova I, Litasov K, Maruyama S. 2015a. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers, 6(5): 679~685.

    • Safonova I, Maruyama S, Litasov K. 2015b. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics, 662: 454~471.

    • Saunders A D. 2005. Large igneous provinces: origin and environmental consequences. Elements, 1: 259~263.

    • Saunders A D, England R W, Reichow M K. 2005. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian basin, Russia. Lithos, 79(3-4): 407~424.

    • Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Y G. 2007. Regional uplift associated with continental large igneous provinces: the role of mantle plumes and the lithosphere. Chemical Geology, 241(3-4): 282~318.

    • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344(6189): 1265~1268.

    • Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end Cretaceous mass extinction. Science, 347: 182~184.

    • Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429): 862~866.

    • Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A, Gulick S P, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Mon-Tanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Rav-izza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327: 1214~1218.

    • Self S, Widdowson M, Thordarson T, Jay A E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet Science Letters, 248: 518~532.

    • Self S, Blake S, Sharma K, Widdowson M, Sephton S. 2008. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science, 319(5870): 1654~1657.

    • Sen G, Bizimis M, Das R, Paul D K, Ray A, Biswas S. 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planet Science Letters, 277: 101~111.

    • Seto Y, Hamane D, Nagai T, Fujino K. 2008. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and Chemistry Minerals, 35: 223~229.

    • Shangguan S M, Peate I U, Tian W, Xu Y G. 2016. Re-evaluating the geochronology of the Permian Tarim magmatic province: Implications for temporal evolution of magmatism. Journal of Geological Society, 173: 228~239.

    • Sharma K K. 2005. Malani magmatism: an extensional lithospheric tectonic origin. In: Foulger G R, Natland J H, Presnall D C, Anderson D L, ed. Plates, Plumes and Paradigms. Geological Society of America Special Paper, 463~476.

    • Shcheka S S, Wiedenbeck M, Frost D J, Keppler H. 2006. Carbon solubility in mantle minerals. Earth Planet Science Letters, 245: 730~742.

    • Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing B A. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Communications, 2(1): 1~5.

    • Sheth H. 2007. Large Igneous Provinces (LIPs): definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85: 117~124.

    • Shilobreva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insight into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochimica et Cosmochimica Acta, 75: 2237~2255.

    • Sleep N H. 1990. Hotspots and mantle plumes: some phenomenology. Journal of Geophysical Research, 95: 6715~6736.

    • Sleep N H. 2006. Mantle plumes from top to bottom. Earth-Science Reviews, 77: 231~271.

    • Smit J, Hertogen J. 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature, 285(5762): 198~200.

    • Smith A D. 1992. Back-arc convection model for Columbia River basalt genesis. Tectonophysics, 207: 269~285.

    • Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412~417.

    • Sobolev S V, Sobolev A V, Kuzmin D V, Krivolutskaya N A, Petrunin A G, Arndt N T, Radko V A, Vasiliev Y R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477: 312~316.

    • Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature, 493: 84~88.

    • Stefano C J, Mukasa S B, Andronikov A, Leeman W P. 2011. Water and other volatile systematics of olivine-hosted melt inclusions from the Yellowstone hotspot track. Contributions to Mineralogy and Petrology, 161(4): 615~633.

    • Storey B C, Alabaster T. 1991. Tectonomagmatic controls on Gondwana break-up models: evidence from the proto-Pacific margin of Antarctica. Tectonics, 10: 1274~1288.

    • Storey M, Duncan R A, Tegner C. 2007. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241: 264~281.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313~345.

    • Svensen H, Planke S, Polozov A G, Schmidbauer N, Corfu F, Podladchikov Y Y, Jamtveit B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet Science Letters, 277: 490~500.

    • Swanson E R, Kempter K A, McDowell F W, McIntosh W C. 2006. Major ignimbrites and volcanic centers of the Copper Canyon area: a view into the core of Mexico's Sierra Madre Occidental. Geosphere, 2(3): 125~141.

    • Tarduno J A, Tian W, Wilkison S. 1998. Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophysical Research Letters, 25(21): 3987~3990.

    • Teng F Z. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~87.

    • Teng F Z, Wang S J, Moynier F. 2019. Tracing the formation and differentiation of the Earth by no-traditional stable isotopes. Science China Earth Sciences, 62(11): 1702~1715.

    • Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, EIMF, Walter M J. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168.

    • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76.

    • Thomson A R, Crichton W A, Brodholt J P, Wood I G, Siersch N C, Muir J M R, Dobson D P, Hunt S A. 2019. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth's lower mantle. Nature, 572: 643~647.

    • Tian H C, Yang W, Li S G, Ke S. 2017. Could sedimentary carbonates be recycled into the lower mantle? constraints from Mg isotopic composition of Emeishan basalts. Lithos, 292: 250~261.

    • Tian W, Campbell I H, Allen C M, Guan P, Pan W Q, Chen M M, Yu H, Zhu W. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160: 407~425.

    • Torsvik T H, Burke K, Steinberger B, Webb S J, Ashwal L D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466 (7304): 352~355.

    • Trendall A F. 1995. The Woongarra rhyolite—a giant lavalike felsic sheet in the Hamersley basin. East Perth: Geological Survey of Western Australia, 42.

    • Trumbull R B, Sobolev S V, Bauer K. 2002. Petrophysical modeling of high seismic velocity crust at the Namibian volcanic margin. Geological Society of America Special Paper, 362: 225~234.

    • Turner S, Hawkesworth C, Gallagher K, Stewart K, Peate D, Mantovani M. 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Paraná. Journal of Geophysical Research, 101: 11503~11518.

    • Twist D. 1985. Geochemical evolution of the Rooiberg silicic lavas in the Loskop Dam area, southeastern Bushveld. Economic Geology, 80: 1153~1165.

    • Twist D, French B M. 1983. Voluminous acid volcanism in the Bushveld complex; a review of the Rooiberg Felsite. Bulletin Volcanologique, 46: 225~242.

    • Ukstins-Peate I, Bryan S E. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience, 1: 625~629.

    • Ukstins-Peate I, Baker J A, Al-Kadasi M, Al-Subbary A, Knight K B, Riisager P, Thirlwall M F, Peate D W, Renne P R, Menzies M A. 2005. Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen. Bulletin Volcanologique, 68: 135~156.

    • Veksler I V, Dorfman A M, Danyushevsky L V, Jakobsen J K, Dingwell D B. 2006. Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152: 685~702.

    • Vogt P R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature, 240(5380): 338~342.

    • Wallmann K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65(18): 3005~3025.

    • Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, 334: 54~57.

    • Wang C H, Zhang Z C, Xie Q H, Cheng Z G, Kong W L, Liu B X , Santosh M, Jin S K. 2021a. Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution. American Mineralogist, 106: 1064~1076.

    • Wang C H, Zhang Z C, Giuliani A, Cheng Z G, Liu B X, Kong W L. 2021b. Geochemical and O-C-Sr-Nd isotopic constraints on the petrogenetic link between aillikites and carbonatites in the Tarim large igneous province. Journal of Petrol, 62(5): 0022~3530.

    • Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous earth surface system changes. Earth Science Frontiers, 16(5): 1~14 (in Chinese with English abstract).

    • Wang S F, Fu X G, Liu Y D, Fan S Y, Wang J, Wu Z H. 2021. Bitu ophiolite in eastern Tibet: the last piece of the jigsaw puzzle in the Paleotethyan regime along the eastern Cimmerian continental margin. Lithos, 406~407: 1062520.

    • Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of National Academy Sciences, 115: 8682~8687.

    • Wang Y, Ukstins-Peate I, Luo Z H, Wang S Z, Cheng L L, Hao J H, Wang Y. 2019. Rifting in SW China: structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP. Geological Magazine, 156: 745~758.

    • White R S. 1997. Mantle plume origin for the Karoo and Ventersdorp flood basalts, South Africa. South African Journal of Geology, 100: 271~282.

    • White R S, McKenzie D. 1989. Magmatism at rift zones-the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research-Solid Earth, 94: 7685~7729.

    • White R V, Tarney J, Kerr A C, Saunders A D, Kempton P D, Pringle M S, Klaver G T. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos, 46: 43~68.

    • Widdowson M, Cox K G. 1996. Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet Science Letters, 137: 57~69.

    • Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1~33.

    • Williams G E, Gostin V A. 2000. Mantle plume uplift in the sedimentary record: origin of kilometre-deep canyons within late Neoproterozoic successions, South Australia. Journal of Geological Society London, 157: 759~768.

    • Wilson C J N, Gravley D M, Leonard G S, Rowland J V. 2009. Volcanism in the central Taupo volcanic zone, New Zealand: tempo styles and controls. In: Thordarson T, Larsen G, Self S, Rowland S K, Hoskuldsson A, eds. Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI. Journal of Geological Society, 2: 225~247.

    • Wilson M. 1989. Igneous Petrology. The Netherlands: Springer, 2200.

    • Wingate M T D, Pirajno F, Morris P A. 2004. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology, 32: 105~108.

    • Xia Q K, Bi Y, Li P, Tian W, Wei X, Chen H L. 2016. High water content in primitive continental flood basalts. Scientific Reports-UK, 6(1): 25416.

    • Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W, Song W, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu X, Zuza A, Yin A, Lin X B, Chen H L, Yang S F. 2020. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49: 96~100.

    • Xu Y G, He B, Chung S L, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32: 917~920.

    • Xu Y G, Chung S L, Shao H, He B. 2010. Silicic magmas from the Emeishan large igneous province, Southwest China: petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119: 47~60.

    • Xu Y G, Wei X, Luo Z Y, Liu H Q, Gao J. 2014. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos, 204: 20~35.

    • Yang G X, Li Y J, Tong L L, Wang Z P, Wu L. 2017. Oceanic island basalts in ophiolitic mélanges of the Central China Orogen: an overview. Geological Journal, 52: 155~173.

    • Yang G X, Li Y J, Tong L L, Wang Z P, Duan F H, Xu Q, Li H. 2019. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 179: 385~398.

    • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chemical Geology, 328: 185~194.

    • Yu S Y, Chen L M, Lan J B, He Y S, Chen Q, Song X Y. 2020. Controls of mantle source and condition of melt extraction on generation of the picritic lavas from the Emeishan large igneous province, SW China. Journal of Asian Earth Sciences, 203: 104534.

    • Zhang D Y, Zhang Z C, Santosh M, Cheng Z G, Huang H, Kang J L. 2013. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters, 361(1): 238~248.

    • Zhang G J, Zhang X L, Li D D, Farquhar J, Shen S Z, Chen X Y, Shen Y A. 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology, 43(12): 1091~1094.

    • Zhang Y, Ren Z Y, Xu Y G. 2013. Sulfur in olivine-hosted melt inclusions from the Emeishan picrites: implications for S degassing and its impact on environment. Journal of Geophysical Research-Solid Earth, 118(8): 4063~4070.

    • Zhang Y Q, Song Y G, Yang L M, Su L, Niu Y L, Allen M B, Xu X. 2017. Basalts and picrites from a plume-type ophiolite in the South Qilian accretionary belt, Qilian Orogen: accretion of a Cambrian Oceanic Plateau? Lithos, 278-281: 97~110.

    • Zhang Z C, Mahoney J J, Mao J W, Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhang Zhaochong. 2009. A discussion on some important problems concerning the Emeishan large igneous province. Geology of China, 36(3): 634~646 (in Chinese with English abstract).

    • Zhang Zhaochong, Dong Shuyun. 2007. Were large igneous provinces caused by mantle plumes? Geoscience, 21(2): 247~254 (in Chinese with English abstract).

    • Zhang Zhaochong, Hou Tong, Cheng Zhiguo. 2021. Mineralization related to large igneous province. Acta Geologica Sinica, 96(1): 131~154 (in Chinese with English abstract).

    • Zhong Y T, He B, Mundil R, Xu YG. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province. Lithos, 204: 14~19.

    • Zhong Y T, Luo Z Y, Mundil R, Wei X, Liu H Q, He B, Huang X L, Tian W, Xu Y G. 2022. Constraining the duration of the Tarim flood basalts (northwestern China): CA-TIMS zircon U-Pb dating of tuffs. Geological Socity of America Bulletin, 134(1-2): 325~334.

    • Zhu B, Guo Z J, Liu R, Liu D, Du W. 2014. No pre-eruptive uplift in the Emeishan large igneous province: new evidences from its ‘inner zone’, Dali area, southwest China. Journal of Volcanology Geothermal Research, 269: 57~67.

    • Zhu B, Peate D W, Guo Z J, Liu R C, Du W. 2017. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province. International Journal of Earth Sciences, 106(7): 2503~2525.

    • Zhu J, Zhang Z C, Reichow M K, Li H B, Cai W C, Pan R H. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. Journal of Geophysical Research-Solid Earth, 123(2): 1018~1034.

    • Zhu J, Zhang Z C, Santosh M, Jin Z L. 2020. Carlin-style gold province linked to the extinct Emeishan plume. Earth and Planetary Science Letters, 530: 115940.

    • Zhu J, Zhang Z C, Santosh M, Tan S C, Jin Z L. 2021a. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: implication for end-Guadalupian extinction of marine biota. Gondwana Research, 92: 228~238.

    • Zhu J, Zhang Z C, Santosh M, Tan S C, Deng Y N, Xie Q H. 2021b. Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations. Geoscience Frontiers, 12(4): 101140.

    • 薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973~1985.

    • Foulger G R. 2005. 地幔柱: 为什么现在怀疑?科学通报, 50: 1814~1819.

    • 李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38: 1345~1359.

    • 刘秉翔. 2021. 塔里木大火成岩省钠质闪煌岩岩石成因与地幔交代作用. 中国地质大学(北京)博士学位论文.

    • 刘秉翔, 张招崇, 程志国. 2021. 煌斑岩的分类、特征及成因. 地质学报, 95(2): 292~316.

    • 刘勇胜, 陈春飞, 何德涛, 陈唯. 2019. 俯冲带地球深部碳循环作用. 中国科学: 地球科学, 49(12): 1982~2003.

    • 王成善, 曹珂, 黄永建. 2009. 沉积记录与白垩纪地球表层系统变化. 地学前缘, 16(5): 1~14.

    • 张招崇. 2009. 关于峨眉山大火成岩省一些重要问题的讨论. 中国地质, 36(3): 634~646.

    • 张招崇, 董书云. 2007. 大火成岩省是地幔柱作用引起的吗? 现代地质, 21(2): 247~254.

    • 张招崇, 侯通, 程志国. 2022. 大火成岩省的成矿效应. 地质学报, 96(1): 131~154.