-
吉尔吉斯斯坦天山造山带处于“亚洲金腰带”的核心部位,以其特殊的大地构造位置及丰富的矿产资源而广受瞩目(毛景文等,2002; Seltmann et al.,2014; 高俊等,2019)。吉尔吉斯斯坦天山造山带可以划分为北天山、中天山、南天山三个构造单元,与中国境内构造单元基本可以对比(图1; 何国琦等,2006)。吉尔吉斯斯坦天山造山带构造演化过程与三个单元间夹持的Terskey洋、Turkestan洋的俯冲闭合及随后的陆-陆碰撞有关(李宝强等,2015; 陈博等,2017),在洋陆俯冲、陆-陆碰撞过程中形成了多条重要的金成矿带(朱永峰等,2014)。这些金成矿带如何与我国境内的金成矿带相连是一个具有重要科学意义及现实勘查意义的重大问题。薛春纪等(2014a,2014b,2015)将境内的金矿床划分为造山型金矿与斑岩型金铜矿两个成矿系统,前者形成于俯冲增生和碰撞造山环境,受控于“古老地壳+构造变形+岩浆热液”,后者则形成于古生代成熟岛弧环境(申萍等,2015),受控于“深源岩浆浅成侵入+叠加复合长期成矿”; 李丽等(2013,2015)将本区金矿床成矿时间划分为加里东期与华力西期,并认为加里东期成矿作用与洋岛弧岩浆岩和碰撞期花岗岩有关,华力西期成矿作用与南天山洋俯冲闭合及北天山洋闭合后的陆内演化有关; 北天山造山带内成矿时间主要为加里东期和华力西期,中、南天山则为华力西期(李丽等,2010)。前人主要关注了吉尔吉斯斯坦境内的石炭纪—二叠纪俯冲岛弧型与碰撞造山型金矿床(毛景文等,2002; 宋佩德等,2013; 薛春纪等,2014a; 姚文光等,2015; 高俊等,2019),少见有关早古生代金矿的报道。此外,研究较为深入的矿床主要分布在中、南天山造山带内,北天山内的矿床研究程度较低。这种研究现状限制了合理构建吉尔吉斯斯坦成矿带与我国新疆成矿带之间的动力学关联。
-
布丘克金矿床发现于20世纪60年代,苏联解体后,多家矿业公司对其进行勘探工作,矿床规模达到中型以上。但有关矿床成因及地质背景等研究工作程度较低。该矿床位于吉尔吉斯斯坦北天山造山带内,形成于早古生代晚期。详细描述其矿床特点、成矿过程将有助于回答上述科学问题。本文在野外地质观察的基础上,重点对成矿期石英包裹体特征、成矿流体性质及物质来源等开展研究,试图探讨布丘克金矿形成的地质背景、成矿过程,以期丰富对吉尔吉斯斯坦北天山造山带区域成矿特点的认识。
-
1 区域地质背景
-
1.1 古生代大地构造演化
-
古亚洲构造域夹持于北部的西伯利亚陆块和南部的卡拉库姆-塔里木陆块之间,天山造山带位于古亚洲构造域南部,呈近东西向横跨中国新疆、哈萨克斯坦、以及吉尔吉斯斯坦等地区。吉尔吉斯斯坦天山造山带分别被Nikolayev断裂、Atbashi-Inylchek断裂分隔为北天山、中天山和南天山3个构造单元(图1)。这两条断裂向东分别与中国境内的那拉提山北缘断裂、那拉提山南缘-长阿吾子-乌瓦门-库米什断裂相接(薛春纪等,2014b)。因而,两地北、中、南天山三个构造单元基本一一对应。布丘克金矿床位于北天山与中天山交界处北天山一侧,Nikolayev断裂北侧约5 km(杨帅等,2018)的吉尔吉斯斯坦?萨尔通萨雷地区中部。
-
古生代洋-陆俯冲及随后的陆-陆碰撞控制了吉尔吉斯斯坦天山造山带的大地构造格局及成矿过程(薛春纪等,2014b)。在古生代早期,Terskey洋盆、Turkestan洋盆分别位于中天山北、南两侧。Terskey洋壳于寒武纪、奥陶纪期间向北俯冲于北天山之下,形成沿Nikolayev缝合带分布的寒武纪—奥陶纪SSZ型蛇绿岩与弧火山岩组合(Bazhenov et al.,2003; Biske et al.,2010),以及大量位于北天山地块内部的中、晚奥陶世花岗岩、花岗闪长岩及浅色花岗岩侵入体。这些俯冲相关岩浆岩被早—中泥盆世中酸性火山岩、火山沉积岩不整合覆盖。目前普遍认为,Terskey洋盆在晚奥陶世已接近消亡,从志留纪开始进入陆-陆碰撞造山带阶段(Mikolaichuk et al.,1997; 朱宝清等,2002; 韩宝福等,2004)。中天山以南的Turkestan洋盆大致形成于奥陶纪,志留纪—早泥盆世向北俯冲,在中天山微陆块南缘形成陆缘弧火山岩和侵入岩。中泥盆世末期或晚泥盆世早中期Turkestan洋盆关闭,南天山与中天山开始陆-陆碰撞(薛春纪等,2014a)。
-
1.2 区域地质特征
-
萨尔通萨雷地区位于Nikolayev断裂以北,主要出露寒武系、奥陶系和泥盆系、石炭系。寒武系为一套具弧岩浆岩地球化学属性的玄武岩、流纹岩、凝灰岩等火山岩组合; 奥陶系下部由砾岩、砂岩、泥板岩及凝灰岩组成; 中部为英安岩、凝灰岩、粉砂岩、黏土岩、灰岩等。寒武系、奥淘系被下泥盆统—上石炭统砾岩、砂岩、粉砂岩、灰岩组合角度不整合覆盖。这些地层在萨尔通萨雷地区的空间展布显示一个近东西走向的大型向斜构造(萨尔通萨雷向斜),泥盆系—石炭系位于该向斜的核部(图2a)。
-
图1 吉尔吉斯斯坦地质略图及其在中亚造山带中的位置图(据Konopelko et al.,2008修改)
-
Fig.1 Geological sketch of Kyrgyzstan and its location within the Central Asian Orogenic Belt (modified after Konopelko et al., 2008)
-
布丘克金矿床位于萨尔通萨雷向斜北翼(图2b),地层整体向南陡倾。各主要地层单元之间的界面均被近东西向压性断层改造:Talabalak断裂为中下寒武统Techarskaja组与中下奥陶统Dzholdzhilginskaja组的界面、North Altyntor断裂为中下奥陶统Dzholdzhilginskaja组与正长斑岩的界线,South Altyntor断裂为中奥陶统Dzhakshinskaja组下段和中奥陶统Dzhakshinskaja组上段之间的分界线,South Kumbel断裂为中奥陶统Karagryskaja组与下泥盆统—上石炭统Koktaiskaja组分界线。这种断层、褶皱、地层层面之间的几何关系表明,这些断层与褶皱近同时形成,是陆-陆碰撞作用引发的地壳缩短的结果。此外,在褶皱过程中,地层发生了强烈的劈理化(详见下文)。
-
在萨尔通萨雷地区及邻区,大型岩基主要分布在Belittles断裂以北及Nikolayev断裂以南。如位于Belittles断裂以北的Kichy-Naryn花岗岩体Djetim斑状黑云母花岗闪长岩、花岗岩岩基,两者形成时代为奥陶纪(Konopelko et al.,2008)。Nikolayev断裂以南,发育大型Songur岩基,由斑状花岗闪长岩、花岗岩组成,呈东西向带状分布,侵位时间为中石炭世。布丘克金矿区发育两条由小型岩体组成的岩浆岩带,分别为正长斑岩带与花岗斑岩带,形成时代为奥陶纪(我们锆石U-Pb测年结果分别为454 Ma、456 Ma,未发表资料)。
-
图2 萨尔通萨雷区域地质略图(a)与布丘克金矿区地质图(b)
-
Fig.2 Regional geological sketch of the Solton Sary area (a) and geological map of the Buchuk gold deposit (b)
-
2 矿床地质特征
-
2.1 矿区地质特征
-
矿区地层自北向南由老变新,下—中寒武统Soltonsary组()和Techarskaja组()分布在矿区最北部,主要为中基性火山熔岩、火山碎屑岩、中酸性的火山碎屑岩及陆源碎屑岩,岩石普遍片理化; 下—中奥陶统呈北西西向横贯矿区中部,有Dzholdzhilginskaja组(O1-2dd)、Dzhakshinskaja组(O1-2dz)和Karagryskaja组(O2kr),岩性主要为砂岩、板岩、凝灰岩等,为矿区主要赋矿层位,岩石片理化强烈; 下泥盆统—上石炭统Koktaiskaja组(D3-C1kk)分布于矿区南部,主要为砾岩、杂砂岩及灰岩(图2b)。
-
矿区断裂构造以NWW向的Talablak断裂、North Altyntor断裂、South Altyntor断裂及South Kumbel断裂为主。Talablak断裂为右行走滑断裂,分隔寒武系与奥陶系,断层地貌特征明显,断层两侧地形起伏变化大。North Altyntor断裂呈“S”状延伸,控制区内正长斑岩产出,断层带内具有挤压片理、剪切片理叠加发育的特征。South Altyntor逆断层控制花岗斑岩产出,断裂带内发育透镜体、片理化带。South Kumbel断层位于矿区南西部,为早古生代地层与晚古生代地层接触界线,两盘地层的岩性、产状、变形程度变化明显。矿区地层发育三期面理构造(图3a~d),包括原生层理S0、挤压面理S1(图3g、h)和剪切面理S2(图3i),其中S0在泥盆系—石炭系中较明显,变形较弱,面理走向近EW向,倾角低缓; S1面理在矿区古生界中普遍发育,面理走向近EW向,倾角陡立,显见是大型褶皱构造的轴面劈理; S2发育于North Altyntor断裂构造中,面理走向NWW向—近EW向,倾角陡立,与矿体的产状一致,可能是递进变形晚阶段的产物。
-
区内侵入岩以正长斑岩与花岗斑岩为主(图3e、f),正长斑岩分布于North Altyntor断裂中,NWW向正长斑岩厚度大,连续性较好,近EW向正长斑岩厚度较小,断续状分布。正长斑岩的出露范围与矿体规模呈正比。花岗斑岩分布于South Altyntor断裂,走向延伸、厚度较稳定。
-
2.2 矿体地质特征
-
布丘克金矿矿体赋存于蚀变正长斑岩内,少数穿插于地层中,矿体以石英脉型为主,少量黄铁绢英蚀变岩型。矿体总体走向295°~305°,倾向SW,倾角60°~70°。矿区内共圈定矿体数十条,单条矿体厚0.8~21 m不等,平均厚度3~5 m,品位2~3 g/t,矿体厚度与品位成正比。矿体形态主要为透镜状、脉状、似层状,具膨胀收缩、分枝复合、尖灭再现等特征。布丘克金矿东紧邻Altyntor金矿,两个矿床具有相同的地质特征,受同一剪切带控制。
-
2.3 矿石特征与围岩蚀变
-
矿石中金属硫化物以黄铁矿为主,次为黄铜矿、闪锌矿、磁黄铁矿、毒砂、方铅矿、钛铁矿,贵金属矿物主要为自然金和微量的碲银矿,自然金平均成色为897.3‰。脉石矿物以正长石、斜长石、石英、绢云母为主,次为铁白云石、白云石、方解石等。自然金与黄铁矿关系密切,可见自然金嵌存在黄铁矿粒间及裂隙中(图5)。
-
矿石具有他形晶粒状结构、半自形—自形结构、交代溶蚀结构、交代残余结构等,发育稀疏浸染状构造、细脉状构造、块状构造。矿体围岩主要为蚀变正长斑岩,常见硅化、绢云母化、碳酸盐化等蚀变。
-
3 采样与分析方法
-
基于矿石结构构造特点,我们重点对成矿期含金石英-多金属硫化物脉的中石英、黄铁矿进行相关测试分析工作。共采集、制备了石英流体包裹体测温样品19件(包裹体薄片由廊坊宏信地质勘查技术服务有限公司切制)。通过岩相学观察,选取其中17件开展显微测温,4件开展激光拉曼测试; 在石英-硫化物脉中采集了10件热液期石英样品,经破碎后筛选出40~60目的石英颗粒,在双目镜下挑选出纯度大于99%的石英单矿物样品,开展H、O同位素分析。在石英-硫化物脉中采集了5件热液期含金黄铁矿样品,经手工逐级破碎、过筛至40~60目,在双目镜下挑选得到纯度均大于99%的单矿物样品5 g以上; 将挑纯后的黄铁矿样品在玛瑙钵内研磨至200目以下,送实验室开展S同位素分析。包裹体岩相学观察、包裹体测温、包裹体成分测试、石英H-O同位素测试、黄铁矿S同位素测试均在核工业北京地质研究院分析测试研究中心完成。所用仪器、分析流程简述如下。
-
包裹体显微测温使用仪器型号为Linkam THMS600型冷热台,检测温度范围196~600℃,温度低于31℃时,测试精度为0.2℃; 31~300℃时,测试精度为±1℃; 大于300℃时,测试精度±2℃。包裹体激光拉曼分析仪器为LABHR-VIS LabRAM HR800研究级显微激光拉曼光谱,光源为Yag晶体倍频固体激光器,波长532 nm,扫描范围100~4200 cm-1。
-
图3 布丘克金矿地层与侵入岩野外露头与镜下照片
-
Fig.3 Field outcrop and microscope photos of the strata and intrusive rocks of the Buchuk gold deposit
-
(a)—粉砂质板岩与泥质板岩互层层理S0被挤压劈理S1继承;(b)—绿泥石片岩及挤压面理S1;(c)—正长斑岩发育剪切面理S2;(d)—砾岩层理;(e)—正长斑岩与地层接触界线;(f)—花岗斑岩与地层接触界线;(g)—绿泥石片岩镜下照片;(h)—变质粉砂岩镜下照片;(i)—正长斑岩发育剪切面理镜下照片; S0—原生层理; S1—挤压劈理; S2—剪切面理; Qz—石英; Pl—斜长石; Kfs—钾长石; Ser—绢云母; Chl—绿泥石
-
(a) —the bedding S0 of silty slate and argillaceous slate is inherited by the cleavage S1; (b) —chlorite schist and the cleavage S1; (c) —the syenite porphyry develops shear foliation S2; (d) —conglomerate bedding; (e) —contact boundary between syenite porphyry and strata; (f) —contact boundary between granite porphyry and strata; (g) —microscope photo of chlorite schist; (h) —microscope photo of metamorphic siltston; (i) —microscope photo of syenite porphyry; S0—primary bedding; S1—compression cleavage; S2—shear foilation; Qz—quartz; Pl—plagioclase; Kfs—potassium feldspar; Ser—sericite; Chl—chlorite
-
石英包裹体中H同位素测试:在105℃恒温烘箱中将石英样品烘烤4 h以上,然后在装有玻璃碳的陶瓷管里使其爆裂,释放出含H气体、H2O及其他含H有机物,在高温下与玻璃碳发生还原反应并生成H2,在MAT-253气体同位素质谱仪进行分析。测量结果以SMOW为标准,记为δDV-SMOW,分析精度优于±1‰。
-
石英包裹体中O同位素测试:在10-3 Pa 的真空和高温条件下,将石英与BrF5反应提取O2,然后在700℃恒温条件下,O2与石墨反应生成CO2,用Delta v advantage气体同位素质谱分析O同位素组成。测量结果以SMOW为标准,记为δ18OV-SMOW,分析精度优于±0.2‰。
-
黄铁矿S同位素测试:S同位素分析样品以Cu2O作为氧化剂制样,在1000℃真空条件下反应15 min,将S氧化为SO2,测试SO2硫同位素组成。所用质谱仪器型号为Delta v plus。测定结果以V-CDT为标准,分析精度优于±0.2‰。
-
4 测试结果
-
4.1 流体包裹体
-
4.1.1 流体包裹体岩相学特征
-
布丘克金矿床含金石英脉中流体包裹体较发育,以原生流体包裹体为主,呈孤立、群状、环带链状分布在石英矿物内部,形态大小各异。次生流体包裹体少见,呈线状排列。
-
图4 布丘克金矿地质剖面图
-
Fig.4 Geological section map of the Buchuk gold deposit
-
室温条件下,按照包裹体相态类型,将布丘克金矿含金石英脉的原生包裹体划分为H2O-CO2型(Ⅰ型)、富CO2型(Ⅱ型)、水溶液型(Ⅲ型)包裹体3种类型(图6)。Ⅰ型包裹体:由CO2和液相水组成,约占40%以上,多呈椭圆状、菱形状、不规则状等,大小5~10 μm不等,气相成分略显模糊,气相分数约为5%~30%,均一过程气泡逐渐变小最终消失,均一到液相; Ⅱ型包裹体:主要由气相CO2组成,此类包裹体约占包裹体总数的30%,多呈次圆状,大小约为3~7 μm,包裹体略显模糊,气相分数约占80%以上,均一过程中气泡逐渐变大最终液相消失,均一到气相。Ⅲ型包裹体:该类包裹体约占20%,呈均一的液相或含少量气相H2O,颜色清澈,包裹体体积较小,不规则状,大部分直径小于10 μm,升温过程均一到液相。
-
4.1.2 流体包裹体显微测温
-
在岩相学观测的基础上,通过显微测温实验得到流体包裹体的冰点温度(Tm)、完全均一温度(Th)、笼合物熔化温度(Tc)等数据,然后由不同类型包裹体测得的参数计算求得流体包裹体的盐度等参数(Collins,1979; Hall et al.,1988)。布丘克金矿床含金石英脉中流体包裹体的显微测温及盐度计算结果见表1、图7。
-
均一温度:包裹体均一温度范围为190.0~420.0℃,集中在200~320℃,加权平均值为279.7℃,测温数据具有近正态分布特征(图7a); 单个石英矿物颗粒中同时出现不同类型、不同填充度的流体包裹体,且它们的均一温度范围相近,说明流体包裹体形成于非均一的流体介质条件,指示流体沸腾作用的存在,即主成矿阶段的流体包裹体为沸腾包裹体,该阶段均一温度能大致代表流体包裹体捕获时的成矿温度(卢焕章,2011),即布丘克金矿床为中温成矿作用。
-
图5 布丘克金矿矿石露头与镜下照片
-
Fig.5 Ore outcrop and microscopic photo of Buchuk gold deposit
-
(a)—采场露头;(b)—石英脉矿体;(c)—矿化正长斑岩;(d)~(f)—矿体显微照片;(g)~(h)—矿体扫描电镜照片; Py—黄铁矿; Ccp—黄铜矿; Ilm—钛铁矿; Gn—方铅矿; Ng—自然金
-
(a) —stope outcrop; (b) —ore body of quartz vein; (c) —mineralized syenite porphyry; (d) ~ (f) —micrograph of the ore body; (g) ~ (h) —scanning electron microscope photo of ore body; Py—pyrite; Ccp—chalcopyrite; Ilm—ilmenite; Gn—galena; Ng—natural gold
-
盐度:流体盐度NaCleqv为1.1%~10.3%,集中在3.0%~7.0%,加权平均值为4.9%,具有近正态分布特征(图7b),代表布丘克金矿床成矿热液具有低盐度特征。
-
4.1.3 包裹体成分分析
-
激光拉曼测试显示,含金石英脉中气相包裹体中可见清晰的CO2、CH4谱峰,气液两相包裹体中气体以CO2为主。流体包裹体成分分析表明,布丘克金矿床成矿流体为富CO2、含CH4的H2O-NaCl-CO2体系流体(图8)。
-
4.2 H-O同位素组成
-
含金石英脉样品的δ18OV-SMOW范围为13.3‰~17.7‰,平均值15.76‰(表2),由于从流体包裹体获得的均一温度变化较大,很难精确地计算出与石英平衡的流体中值(Ding Qingfeng et al.,2014)。布丘克金矿含金石英脉测得的均一温度在190.0~420.0℃,平均值为279℃,因此将279℃作为捕获温度计算值(表2)。利用石英-水氧同位素分馏方程1000lnα石英-水=3.38×106/t23.40(Clayton et al.,1972),计算得到成矿阶段流体的值介于4.86‰~9.26‰之间,平均值7.32‰。
-
图6 布丘克金矿床石英脉中流体包裹体显微照片
-
Fig.6 Microphotographs of fluid inclusions in quartze veins in the Buchuk gold deposit
-
(a)—石英中Ⅰ型包裹体与Ⅱ型包裹体;(b)—石英中线性排布的次生包裹体;(c)~(e)—石英中三种类型包裹体; —液相H2O; —气相CO2; —气相CH4
-
(a) —type I and type II inclusions in quartz; (b) —linearly arranged secondary inclusions in quartz; (c) ~ (e) —three types of inclusions in quartz; —liquid phase H2O; —vapor phase CO2; —vapor phase CH4
-
含金石英样品中流体包裹体的H同位素结果如表2所示,δDV-SMOW为108.1‰~90.2‰,平均值96.14‰。
-
4.3 S同位素组成
-
吉尔吉斯斯坦布丘克金矿床热液期5件黄铁矿S同位素测试结果见表2,样品中δ34S值变化于0.9‰~1.6‰,平均值0.06‰。矿石中S同位素组成变化范围小,极差为2.5‰。
-
图7 布丘克金矿床流体包裹体均一温度、盐度统计直方图
-
Fig.7 Histogram showing homogenization temperatures (a) and salinitiy (b) for fluid inclusions from the Buchuk gold deposit
-
5 讨论
-
5.1 成矿流体来源
-
陈衍景等(2007)根据成矿流体来源、性质将热液矿床划分为岩浆热液矿床、造山型矿床和浅成热液矿床,岩浆热液矿床流体以高盐度、富CO2、K、F、含子晶为特征,成矿温度一般>300℃(陈衍景等,2009),造山型矿床以低盐度、富CO2为特征,成矿温度在200~400℃(张莉等,2009; 刘春发等,2010; 卢焕章等,2018),而浅成热液矿床以低盐度、贫CO2为特征,成矿温度一般<300℃。布丘克金矿包裹体以富含CO2为特征,为中温、低盐度成矿流体,具有造山型金矿的流体特征。
-
图8 布丘克金矿床包裹体激光拉曼光谱
-
Fig.8 Laser Raman spectra of fluid inclusions in the Buchuk gold deposit
-
(a)、(b)—纯气相包裹体中气相成分;(c)、(d)—气液两相包裹体中气相成分
-
(a) , (b) —gas phase components of vapor fluid inclusions in; (c) , (d) —gas phase components of gas-liquid two-phase fluid inclusions
-
布丘克金矿含金石英脉δ18O值(13.3‰~17.7‰)与造山型金矿石英脉相似(δ18O=12‰~22‰; Jia Yifei et al.,2003),δ18O值变化范围较小(图9),表明石英可能是从均一的流体中沉淀出来的。基于均一温度的平均值计算的值在4.86‰~9.26‰,变换范围较小,与其他造山型金矿床相当(=5‰~10‰; Groves et al.,1998; 蒋少涌等,2009)。一般来说,捕获温度高于造山型流体的均一温度,因此值将略高于本次计算的4.86‰~9.26‰。岩浆成因流体值大多低于9‰,而显生宙矿床值高达+14‰,反映富集δ18O的变质碎屑岩为流体来源(Böhlke et al.,1986; Kerrich et al.,1992; Chen Huayong et al.,2012)。布丘克金矿床比岩浆成因流体范围大,分布在变质水范围内,推断布丘克金矿床的成矿流体可能源于绿片岩相变质过程中富δ18O的变质沉积岩的变质脱水作用。
-
布丘克金矿中石英流体包裹体的H同位素组成从108.1‰~90.2‰,低于典型的造山型金矿数据范围(δD=80‰~20‰; Kerrich et al.,2000; Zheng Jianping et al.,2006),明显高于国外卡林型金矿数据(δD=160‰~110‰; Hosftra et al.,1999),但低于国内卡林型金矿数据(δD=76‰~55‰; 陈懋弘等,2021; 李松涛等,2022),由于石英中存在包裹体类型复杂,不能完全代表成矿期包裹体,较低的δD值可能反映了矿床在抬升过程中受到了富含大气水的次生包裹体影响(McCuaig et al.,1998; 蒋少涌等,2009)。在含碳浊积岩脉状矿床中较低的δD值也可能是深源流体与围岩中亏损δD的有机质作用的结果(McCuaig et al.,1998),也有可能因为水溶液中含CH4/H2所致。对本次研究的样品,由于天山地区大气水值(70‰; 张理刚,1985)高于石英中δD值,因此大气水对较低δD值贡献可以忽略不计,布丘克金矿围岩为典型的含碳地层,最有可能为含碳围岩中富含亏损δD有机物与水溶液中含CH4的结果。
-
图9 布丘克和天山地区典型金矿床成矿流体- 图解(底图据Ridley et al.,2000)
-
Fig.9 The - diagram of ore-forming fluids from the gold deposits of the Buchuk and Tianshan area (after Ridley et al., 2000)
-
在天山地区,一些含碳黑色页岩、浊积岩是金的主要来源,黑色含碳岩系是成矿流体产生与金沉淀的重要场所,如乌兹别克斯坦穆龙套金矿床围岩为碳质变粉砂岩、变质砂岩(Drew et al.,1996); 吉尔吉斯斯坦库姆托尔金矿围岩为含碳千枚岩与绢云母绿泥石片岩(李志丹等,2017),吉尔吉斯斯坦Zharkulak金矿围岩为含碳片岩(李志丹等,2017); 中国新疆萨瓦雅尔顿金矿围岩为深灰色黑色薄层粉砂岩及碳质板岩(Chen Huayong et al.,2012),中国Awanda金矿的形成也与深部的含碳页岩密切相关(Ding Qingfeng et al.,2014),这些矿床围岩是及其相似的。众所周知,黑色页岩在天山地区分布广泛,布丘克金矿广泛存在的变质沉积岩是含碳的云母片岩、变质碎屑岩、变质火山岩,我们开展的岩石地球化学测量工作显示矿区不同组岩石碳含量分布在0.31%~8.78%之间,平均值为1.44%,为典型的含碳地层,库姆托尔金矿、穆龙套金矿、萨瓦雅尔顿金矿含矿围岩碳含量分别为1%~2%、2%~7%、1%~3%(李志丹等,2017)。含碳岩系可能含有有机物,含有机质的地层经过区域变质和脱水过程,释放的H2和CH4被纳入到变质流体中(陈衍景等,2007)。布丘克金矿床包裹体以富CO2、含CH4为特征,因此,布丘克金矿成矿流体可能源于含有机质沉积岩在深部脱水产生的变质流体,这种含有机质沉积岩可能是矿区广泛存在的含碳黑色岩系。
-
5.2 硫的来源
-
布丘克金矿含金黄铁矿硫同位素分布在0.9‰~1.6‰,平均值为0.06‰,硫同位素组成属于典型造山型金矿床δ34S值的下限(δ34S=0~9‰; Groves et al.,1998; McCuaig et al.,1998; Kerrich et al.,2000; Goldfarb et al.,2001),并与天山地区一些与变质沉积岩相关的造山型金矿床大体相似(Chang Zhaoshan et al.,2008),如穆龙套金矿的4‰~+7.5‰(杨富全等,2005),Amantaytau金矿的0.13‰~+7.30‰(Pasava et al.,2013),库姆托尔金矿1.8‰~+0.8‰(Chen Huayong et al.,2012),新疆西天山大山口金矿、萨瓦雅尔顿金矿、伊尔曼德金矿、阿希金矿、塔吾尔别克金矿的2.6‰~+3.6‰(杨鑫朋等,2015; 彭义伟等,2020)。这些矿床的S都被解释为岩浆来源。
-
在布丘克金矿床中未发现硫酸盐矿物及赤铁矿等高氧化环境下形成的矿物。矿石矿物组合主要为黄铁矿、辉锑矿、毒砂等金属硫化物及石英+绢云母蚀变组合。因此,我们推测,形成黄铁矿等硫化物的硫直接来自于成矿热液中的还原硫,黄铁矿的硫同位素测试结果基本可以代表热液硫同位素组成。布丘克金矿床δ34S值在岩浆硫范围(Hoefs,2009)内,且分布范围更加狭窄,暗示硫来源较均匀。
-
图10 天山地区金矿床S同位素频数分布图
-
Fig.10 Diagram of S isotope composition of gold deposits in the Tianshan area
-
矿区范围内发育延长数千米的含矿正长斑岩与花岗斑岩,形成于晚奥陶世,正长斑岩中S含量(约0.1%)远远高于地层(<0.01%)。显而易见,矿体中的硫源自岩浆岩。
-
5.3 矿床成因类型与成矿模式
-
综合上述数据,布丘克金矿床与Groves et al.(1998)定义的造山型金矿床具有如下共性:① 矿床发育于吉尔吉斯斯坦北天山造山带内,形成于Terskey洋关闭(Konopelko et al.,2008)后的陆陆碰撞造山阶段(395~390 Ma; Ispolatov,2001); ② 金矿体以石英脉形式呈复脉带状分布,受压扭性断裂构造与韧性剪切带控制; ③ 矿物组合为黄铁矿、黄铜矿、磁黄铁矿、毒砂、方铅矿等,这些硫化物为主要的载金矿物; ④ 具有硅化、绢云母化和弱碳酸盐化的蚀变特征; ⑤ 成矿流体以中温、低盐、富CO2为特征; ⑥ 石英δ18O值(13.3‰~17.7‰)和流体的δ18O估计值(4.86‰~9.26‰); ⑦ 硫化物的δ34S值在0.9‰~+1.6‰之间,虽然略低于典型的造山金矿床,但属于沉积岩型造山金矿床范围; ⑧ 矿石元素组合为Au-Ag-Cu-Pb-As-Hg-Sb。因而,布丘克金矿属于较为典型的造山型金矿。
-
一般而言,造山型金矿的形成受变形引发的流体活动控制,如描述断层相关流体活动的断层阀模型(Sibson et al.,1988)。陆陆碰撞造山作用往往在地壳深部形成韧性剪切带、在地壳上部形成脆性断层,两者渐变过渡、断续相连(刘俊来,2017; 刘贵,2020)。地壳深部的韧性变形促进变质流体活动,活动的流体萃取围岩中的成矿物质,形成成矿热液; 热液逐渐向上聚集于脆性断裂带中(如Nicolayev断裂),这些变质流体通过断层上盘中的次级断层迁移到容矿构造中(如North Altyntor断层中的次级张性裂隙),硫化物、石英、与金元素一起发生沉淀,形成脉状矿体。
-
由此可见,吉尔吉斯斯坦布丘克金矿床的构造背景、矿床地质、矿石矿物、流体特征、矿床地球化学与境内外天山地区中国萨瓦雅尔顿、中国Awanda、吉尔吉斯斯坦库姆托尔、乌兹别克斯坦穆龙套等矿床大体相似(陈华勇等,2004; 孟广路等,2015),均属于造山型金矿床,不同之处在于布丘克金矿形成于早古生代吉尔吉斯斯坦南天山与北天山碰撞作用,而天山地区其他矿床多形成于晚古生代吉尔吉斯斯坦中天山与南天山碰撞作用(左国朝等,2011; 高俊等,2019)。但不可否认随着深部勘探工作的进行,布丘克金矿有望成为天山地区又一超大型金矿床,不同于斑岩型矿床,这将极大促进对吉尔吉斯斯坦造山型金矿的研究。
-
6 结论
-
(1)布丘克金矿位于吉尔吉斯斯坦北天山造山带南缘,赋存于正长斑岩及变质碎屑岩内,矿体呈石英脉带受NWW向剪切带构造控制,矿体呈透镜状、脉状产出。
-
(2)布丘克金矿床成矿阶段含金石英脉包裹体普遍较小,以气相、气液两相包裹体为主,成分以富CO2、含CH4为特征,是具有中温、低盐度的金矿床。
-
(3)含金石英的δ18O实测值范围为13.3‰~17.7‰,流体的δ18O估算值范围为4.86‰~9.26‰。含金石英流体包裹体的δD值范围为108.1‰~90.2‰。结果表明,成矿流体为变质成因,来源于碳质黑色页岩与变质碎屑岩的脱水作用。
-
(4)含金黄铁矿的δ34S值范围为0.9‰~1.6‰,平均值0.06‰,表明硫来源于深部岩浆岩。
-
(5)布丘克金矿床为比较典型的造山型金矿。随着Terskey洋的闭合,吉尔吉斯斯坦北天山与中天山发生碰撞造山运动,产生不同尺度的区域逆冲断层与次级的控矿断裂,成矿流体沿这些断裂构造运移,在剪切带内沉淀成矿。
-
致谢:野外工作得到了中吉矿业有限公司、凯奇-恰拉特封闭式股份公司的大力帮助与支持,论文编写过程与信迪助理研究员、中国地质大学(北京)季雷博士后进行了有益探讨,中国地质科学院地质研究所杨天南研究员对论文提出大量宝贵的修改意见,审稿人的批评意见完善了本文,一并谨致谢忱。
-
参考文献
-
Bazhenov M L, Collins A Q, Degtyarev K E, Levashova N M, Mikolaichuk A V, Pavlov V E, Voo R. 2003. Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism. Tectonophysics, 366(1): 113~141.
-
Biske Y S, Seltmann R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Research, 17(2-3): 602~613.
-
Böhlke J K, Kistler R W. 1986. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California. Economic Geology, 81: 296~322.
-
Chang Zhaoshan, Large R R, Maslennikov V. 2008. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology, 36: 971~974.
-
Chen Bo, Ma Zhongping, Meng Guanglu, Wang Bin, Cao Jifei. 2017. Late Paleozoic magmatic activities and related mineralization of Tianshan in Kyrgyzstan. Acta Geologica Sinica, 91(4): 913~927 (in Chinese with English abstract).
-
Chen Huayong, Chen Yanjing, Ni Pei, Zhang Zengjie. 2004. Fluid inclusion study of the Sawayardun Au deposit in southern Tian Shan, China: Implication for ore genesis and exploration. Journal of Mineralogy Petrology, 24(3): 46~54 (in Chinese with English abstract).
-
Chen Huayong, Chen Yanjing, Baker Mike. 2012. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration. Chemical Geology, 310: 1~11.
-
Chen Maohong, Ma Kezhong, Chen Gang, Wang Yu, Yue Xingwen, Li Zhongyang, Chen Zhong-bin. 2021. Carlin-type gold deposits hosted in Cambrian dolostone on isolated carbonate platform in western Guangxi, China: A case study from De'e gold deposit, Longlin. Mineral Deposits, 40(5): 891~914 (in Chinese with English abstract).
-
Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao, Zhang Hui. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica. Sinica, 23(9): 2085~2108 (in Chinese with English abstract).
-
Chen Yanjing, Li Nuo. 2009. Nature of ore-fluids of intracontinental intrusion-related hypothermal deposits and its diffrernce from those in island arcs. Acta Petrologica. Sinica, 25(10): 2477~2508 (in Chinese with English abstract).
-
Clayton R N, O'neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77: 3057~3067.
-
Collins. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74: 1435~1444.
-
Ding Qingfeng, Wu Changzhi, Santosh M, Fu Yu, Dong Lianhui, Qu Xun, Gu Lianxing. 2014. H-O, S and Pb isotope geochemistry of the Awanda gold deposit in southern Tianshan, Central Asian orogenic belt: Implications for fluid regime and metallogeny. Ore Geology Reviews, 62: 40~53.
-
Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11: 175~196.
-
Gao Jun, Zhu Mingtian, Wang Xinshui, Hong Tao, Li Guangming, Li Jilei, Xiao Wenjiao, Qin Kezhang, Zeng Qingdong, Shen Ping, Xu Xingwang, Zhang Zhaochong, Zhou Jianbo, Lai Yong, Zhang Xiaohui, Sun Jinggui, Wan Bo, Wang Bo. 2019. Large-scale porphyry type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geological Sinica, 93(1): 24~71 (in Chinese with English abstract).
-
Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18(1-2): 1~75.
-
Groves D I, Goldfarb R J, Gebre M M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Review, 13: 7~27.
-
Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-H2O solution. Economic Geology, 83(1): 197~202.
-
Han Baofu, He Guoqi, Wu Tairan, Li Huimin. 2004. Zircon U-Pb dating and geochemical features of early Paleozoic granites from Tianshan, Xinjiang: Implications for tectonic evolution. Xinjiang Geology, 22(1): 4~11 (in Chinese with English abstract).
-
He Guoqi, Zhu Yongfeng. 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions. Geology in China, 33(3): 451~460 (in Chinese with English abstract).
-
Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer-Verlag.
-
Hosftra A H, Snee L W, Rye R O, Folger H W, Phinisey J D, Loranger R J, Dahi A R, Naeser C W, Stein H J, Lewchuk M. 1999. Age constraints on Jerritt canyon and other Carlin-type gold deposits in the western United States—relationship to Mid-Tertiary extension and magmatism. Economic Geology, 94: 769~802.
-
Ispolatev V O. 2001. Geology, 40Ar-39Ar Geochronology, and Fluid Inclusion Study of the Solton Sary mesothermal gold district, Kyrgyzstan. New Mexico: New Mexico institute of mining and technology.
-
Jia Yifei, Kerrich R, Goldfarb R. 2003. Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera: Constrains from reconnaissance study of δ15N, δD, and δ18O. Economic Geology, 98: 109~123.
-
Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Zhao Haixiang, Hou Minglan. 2009. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings. Acta Petrologica. Sinica, 25(11): 2727~2738 (in Chinese with English abstract).
-
Kerrich R, Feng R. 1992. Archean geodynamics and the Abitibi-Pontiac collision: Implications for advection of fluids at transpressive collisional boundaries and the origin of giant quartz vein systems. Earth Science Reviews, 32: 33~60.
-
Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Yiefei. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D Earth Science, 43: 1~68.
-
Konopelko D, Biske G, Seltmann R, Kiseleva M, Matukov D, Sergeeev S. 2008. Deciphering Caledonian events: Timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan. Journal of Asian Earth Sciences, 32(2-4): 131~141.
-
Li Baoqiang, Meng Guanglu, Cao Xin, Cao Jifei, Fan Baocheng, Wang Bin. 2015. Ore-forming geological background of the Tianshan Mountains-Pamir region in Central Asia. Geological Bulletin of China, 34(4): 686~695 (in Chinese with English abstract).
-
Li Li, Yao Wenguang. 2010. Spatial distribution of metallic minerals in Kyrgyzstan. Mineral Deposits, 29(201): 12~13 (in Chinese with English abstract).
-
Li Li, Li Shanglin. 2013. Porphyry deposits in Kyrgyzstan. Acta Mineralogica Sinica, 202: 1045 (in Chinese with English abstract).
-
Li Li, Li Shanglin. 2015. Time distribution of metallic minerals in Kyrgyzstan. Acta Mineralogica Sinica, 201: 1080 (in Chinese with English abstract).
-
Li Songtao, Liu Jianzhong, Xia Yong, Wang Zetao, Xie Zhuojun, Tan Qinping, Zhou Guanghong, Zhang Bingqiang, Tan LiJin, Meng Minghua, Zheng Lulin. 2022. Geological and geochemical significance of hydrothermal minerals from Nibao-Baogudi Carlin-type gold orefield in Southwestern Guizhou. Geological Review, 68(2): 551~570 (in Chinese with English abstract).
-
Li Zhidan, Xue Chunji, Zhang Qi, Li Xiaoguang, Dong Xinfeng, Zhang Guozhen. 2017. Metallogenic background, characteristics and prospecting strategy of Muruntau-type gold deposit in Southern Tianshan, Central Asia. Contributions to Geology and Mineral Resources Research, 32(4): 509~525 (in Chinese with English abstract).
-
Liu Chunfa, Zhang Li, Zheng Yi. 2010. Characteristics of ore fluids of the Saridala gold deposit, Xinjiang, and its geological significance. Acta Petrologica Sinica, 26(10): 3036~3046 (in Chinese with English abstract).
-
Liu Gui. 2020. Research progress of interaction of fluid with rock in the ductile shear zone. Journal of Geomechanics, 26(2): 175~186 (in Chinese with English).
-
Liu Jiajun, Zheng Minghua, Long Xun-rong, Yin Huaixin, Wang Jiangzhen, Li Endong, Wang Jin. 2002. Metallogenic characteristics of Sawayaerdun gold deposit in Xinjiang, and their similarities to and differences from those of the Muruntau-type gold deposit. Acta Mineralogica Sinica, 22(1): 54~61 (in Chinese with English abstract).
-
Liu Junlai. 2017. Strain localization and strain weakening in the continental middle crust. Acta Petrologica Sinica, 33(6): 1653~1666 (in Chinese with English).
-
Lu Huanzhang. 2011. Fluids immiscibity and fluid inclusions. Acta Petrologica Sinica, 27(5): 1253~1261 (in Chinese with English abstract).
-
Lu Huanzhang, Chi Guoxiang, Zhu Xiaoqing, Archambault Guha J. , Wang Zhonggang. 2018. Geological characteristics and ore forming fluids of orogenic gold deposits. Geotectonic et Metallogenia, 42(2): 244~265 (in Chinese with English).
-
Mao Jingwen, Han Chunming, Wang Yitian, Yang Jianmin, Wang Zhiliang. 2002. Geological characteristics, metallogenic model and criteria for exploration of the large South Tianshan gold metallogenic belt in Central Asia. Geological Bulletin of China, 21(12): 1~14 (in Chinese with English abstract).
-
McCuaig T C, Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geology Reviews, 12: 381~453.
-
Meng Guanglu, Wang Bin, Fan Baocheng, Cao Jifei, Li Baoqiang. 2015. Classification and metallogenesis of metallogenic belts of the Tianshan Mountains in China and Kyrgyzstan. Geological Bulletin of China, 34(4): 696~709 (in Chinese with English abstract).
-
Mikolaichuk A V, Kurenkov S A, Degtyarev K E, Rubtsov V I. 1997. Northern Tien-Shan, main stages of geodynamic evolution in the late Precambrian and early Palaeozoic. Geotectonics, 1997, 31(6): 445~462.
-
Pasava J, Frimmel H, Vymazalova A, Dobes P, Jukov A V, Koneev R I. 2013. A two-stage evolution model for the Amantaytau orogenic-type gold deposit in Uzbekistan. Miner Deposita, 48: 825~840.
-
Peng Yiwei, Gu Xuexiang, Zhang Yongmei, Wang Xinli, Zheng Shaohua, Wang Guannan. 2020. Genetic link between the Axi and the Tawuerbieke gold deposits, Xinjiang Province: Constraints from fluid inclusions, S-Pb isotopes and thermoelectric characteristics of pyrite. Acta Geologica Sinica, 94(10): 2919~2945 (in Chinese with English abstract).
-
Ridley J R, Diamond L W. 2000. Fluid chemistry of lode-gold deposits and implications for genetic models. Reviews in Economic Geology, 13: 141~162.
-
Seltmann R, Porter T M, Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. Journal of Asian Earth Sciences, 79: 810~841.
-
Shen Ping, Pan Hongdi, Seitmuratova Eleonora. 2015. Characterics of the porphyry Cu deposits in the Central Asia Metallogenic Domin. Acta Petrologica Sinica, 31(2): 315~332 (in Chinese with English abstract).
-
Sibson R H, Robert F, Poulsen K H. 1988. Hign-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16: 551~555.
-
Song Peide, Zhang Huawen. 2013. Geological characteristics and ore-prospecting prognosis of Karakazyk Cu-Au deposit in Kyrgyzstan. Xinjiang Geology, 31(4): 376~379 (in Chinese with English abstract).
-
Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev Bakhtiar, Pak Nikolay, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014a. Asian gold belt in western Tianshan and its dynamic setting, metallogenic control and exploration. Earth Science Fronties, 21(5): 128~155 (in Chinese with English abstract).
-
Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Chen Yuchuan, Dong Lianhui, Gu Xuexiang, Zhang Zhaochong, Nurtaev Bakhtiar, Pak Nikolay, Li Zhidan, Wang Xinli, Zhang Guozhen, Yalikun Yaxiaer, Feng Bo, Zu Bo, Liu Jiaying. 2014b. Tectonic-Metallogenic evolution of western Tianshan giant Au-Cu-Zn-Pb metallogenic belt and prospecting orietation. Acta Geologica Sinica, 88(12): 2490~2531 (in Chinese with English abstract).
-
Xue Chunji, Zhao Xiaobo, Zhang Guozhen, Mo Xuanxue, Gu Xuexiang, Dong Lianhui, Zhao Shuming, Mi Dengjiang, Nurtaev Bakhtiar, Pak Nikolay, Li Zhidan, Wang Xinli, Zu Bo, Yalikun Yaxiaer, Feng Bo. 2015. Metallogenic environments, ore-forming types and prospecting potential of Au-Cu-Zn-Pb resources in Western Tianshan Mountains. Geology in China, 42(3): 381~410 (in Chinese with English abstract).
-
Yang Fuquan, Mao Jingwen, Wang Yitian, Li Mengwen, Ye Huishou, Ye Jinhua. 2005. Geological characteristics and metallogenesis of Sawayaerdun gold deposit in southwest Tianshan Mountains, Xinjiang. Mineral Deposits, 24(3): 206~227 (in Chinese with English abstract).
-
Yang Shuai, Yeernaer B, Li Yuyang, Zhang Shun. 2018. Geological conditions and prospecting perspectives of Buchuk gold deposit in the Kyrgyzstan. Gold, 39(9): 22~25 (in Chinese with English abstract).
-
Yang Xinpeng, Yu Xinqi, Wang Zongxiu, Xiao Weifeng, Zhou Xiang. 2015. Comparative study on ore-forming conditions and sources of the hydrothermal gold deposits in the Chinese Western Tianshan. Geotectonic et Metallogenia, 39(4): 633~646 (in Chinese with English abstract).
-
Yao Wenguang, Lv Pengrui, Wu Liang, Hong Jun, Yang Bo, Li Li, Jia Qunzi, Li Baoqiang. 2015. Geological characteristics of dominant mineral resources of the Tianshan Mountains in Kyrgyzstan and their prospecting. Geological Bulletin of China, 34(4): 710~725 (in Chinese with English abstract).
-
Zhang Li, Liu Chunfa, Wu Guang. 2009. The fluid inclusion geochemistry and mineragenetic type of the Wangfeng gold deposit, Xinjiang, China. Acta Petrologica Sinica, 25(6): 1465~1473 (in Chinese with English abstract).
-
Zhang Ligang. 1985. The Application of Stable Isotopes in Geosciences. Xi'an: Shanxi Science and Technology Press (in Chinese).
-
Zheng Jianping, Griffin W L, O'reilly Suzanne Y, Zhang Ming, Liou J G, Pearson Norman. 2006. Granulite xenoliths and their zircons, Tuoyun, NW China: Insights into southwestern Tianshan lower crust. Precambrian Research, 145: 159~181.
-
Zhu Baoqing, Feng Yimin, Yang Junlu, Zhang Kaichun. 2002. Discover of ophiolitic mélange and Silurian foreland basin at Gangou of Tokxun, Xingjiang and their tectonic significance. Xinjiang Geology, 20(4): 326~330 (in Chinese with English abstract).
-
Zhu Yongfeng. 2014. Geological evolution and division of giant metallogenic belts in core part of Central Asian metallogenic region. Mineral Deposits, 33(3): 471~485 (in Chinese with English abstract).
-
Zuo Guochao, Liu Yike, Zhang Zhaochong, Huang He. 2011. Tectonic evolution of Central and South Tianshan Orogenic Belts in the Central Asia and mineralization backgroung. Geoscience, 25(1): 858~868 (in Chinese with English abstract).
-
陈博, 马中平, 孟广路, 王斌, 曹积飞. 2017. 吉尔吉斯天山晚古生代岩浆活动及相关成矿作用. 地质学报, 91(4): 913~927.
-
陈华勇, 陈衍景, 倪培, 张增杰. 2004. 南天山萨瓦雅尔顿金矿流体包裹体研究: 矿床成因和勘探意义. 矿物岩石, 24(3): 46~54.
-
陈懋弘, 马克忠, 陈港, 王昱, 乐兴文, 李忠阳, 陈忠斌. 2021. 贵西孤立台地寒武系白云岩中的卡林型金矿——以隆林德峨金矿为例. 矿床地质, 40(5): 891~914.
-
陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085~2108.
-
陈衍景, 李诺. 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异. 岩石学报, 25(10): 2477~2508.
-
高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24~71.
-
韩宝福, 何国琦, 吴泰然, 李惠民. 2004. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义. 新疆地质, 22(1): 4~11.
-
何国琦, 朱永峰. 2006 中国新疆及其邻区地质矿产对比研究. 中国地质, 33(3): 451~460.
-
蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省. 岩石学报, 25(11): 2727~2738.
-
李宝强, 孟广路, 曹新, 曹积飞, 范堡程, 王斌. 2015. 中亚天山—帕米尔地区成矿地质背景. 地质通报, 34(4): 686~695.
-
李丽, 姚文光. 2010. 吉尔吉斯金属矿产的空间展布. 矿床地质, 29(201): 12~13.
-
李丽, 李尚林. 2013. 吉尔吉斯斑岩型矿床. 矿物学报, 202: 1045.
-
李丽, 李尚林. 2015. 吉尔吉斯金属矿产时间分布. 矿物学报, 201: 1080.
-
李松涛, 刘建中, 夏勇, 王泽涛, 谢卓君, 谭亲平, 周光红, 张兵强, 谭礼金, 蒙明华, 郑禄林. 2022. 黔西南泥堡—包谷地卡林型金矿体热液矿物地球化学特征及地质意义. 地质论评, 68(2): 551~570.
-
李志丹, 薛春纪, 张祺, 李效广, 董新丰, 张国震. 2017. 中亚南天山穆龙套型金矿地质背景、成矿特征和找矿策略. 地质找矿论丛, 32(4): 509~525.
-
刘春发, 张莉, 郑义. 2010. 新疆萨日达拉金矿床成矿流体特征及地质意义. 岩石学报, 26(10): 3036~3046.
-
刘贵. 2020. 韧性剪切带内的流体与岩石相互作用研究进展. 地质力学学报, 26(2): 175~186.
-
刘家军, 郑明华, 龙训荣, 尹怀信, 王奖臻, 李恩东, 王进. 2002. 新疆萨瓦雅尔顿金矿床成矿特征及其与穆龙套型金矿床的异同性. 矿物学报, 22(1): 54~61.
-
刘俊来. 2017. 大陆中部地壳应变局部化与应变弱化. 岩石学报, 33(6): 1653~1666.
-
卢焕章. 2011. 流体不混溶性和流体包裹体. 岩石学报, 27(5): 1253~1261.
-
卢焕章, 池国祥, 朱笑青, Archambault G J, 王中刚. 2018. 造山型金矿的地质特征和成矿流体. 大地构造与成矿学, 42(2): 244-265.
-
毛景文, 韩春明, 王义天, 杨建民, 王志良. 2002. 中亚地区南天山大型金矿带的地质特征、成矿模型和勘查准则. 地质通报, 21(12): 1~14.
-
孟广路, 王斌, 范堡程, 曹积飞, 李宝强. 2015. 中国—吉尔吉斯天山成矿单元划分及其特征. 地质通报, 34(4): 696~709.
-
彭义伟, 顾雪祥, 章永梅, 王新利, 郑少华, 王冠南. 2020. 新疆阿希与塔吾尔别克金矿床的成因联系: 来自流体包裹体、S-Pb同位素和黄铁矿热电性的证据. 地质学报, 94(10): 2919~2945.
-
申萍, 潘鸿迪, Seitmuratova E. 2015. 中亚成矿域斑岩铜矿床基本特征. 岩石学报, 31(2): 315~332.
-
宋佩德, 张华文. 2013. 吉尔吉斯卡拉卡泽克铜金矿床地质特征及找矿预测. 新疆地质, 31(4): 376~379.
-
薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Nurtaev B, Pak N, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛. 2014a. 西天山“亚洲金腰带”及其动力背景和成矿控制与找矿. 地学前缘, 21(5): 128~155.
-
薛春纪, 赵晓波, 莫宣学, 陈毓川, 董连慧, 顾雪祥, 张招崇, Nurtaev B, Pak N, 李志丹, 王新利, 张国震, 亚夏尔亚力坤, 冯博, 俎波, 刘家瑛. 2014b. 西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向. 地质学报, 88(12): 2490~2531
-
薛春纪, 赵晓波, 张国震, 莫宣学, 顾雪祥, 董连慧, 赵树铭, 米登江, Nurtaev B, Pak N, 李志丹, 王新利, 俎波, 亚夏尔亚力坤, 冯博. 2015. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力. 中国地质, 42(3): 381~410.
-
杨富全, 毛景文, 王义天, 李蒙文, 叶会寿, 叶锦华. 2005. 新疆西南天山萨瓦雅尔顿金矿床地质特征及成矿作用. 矿床地质, 24(3): 206~227.
-
杨帅, 叶尔那尔别力克, 李余洋, 张顺. 2018. 吉尔吉斯斯坦布丘克金矿床成因及找矿前景. 黄金, 39(9): 22~25.
-
杨鑫朋, 余心起, 王宗秀, 肖伟峰, 周翔. 2015. 西天山成矿带热液型金矿成矿地质条件及成矿物质来源对比. 大地构造与成矿学, 39(4): 633~646.
-
姚文光, 吕鹏瑞, 吴亮, 洪俊, 杨博, 李丽, 贾群子, 李宝强. 2015. 吉尔吉斯斯坦天山优势矿种地质特征及找矿潜力. 地质通报, 34(4): 710~725.
-
张莉, 刘春发, 武广. 2009. 新疆望峰金矿床流体包裹体地球化学及矿床成因类型. 岩石学报, 25(6): 1465~1473.
-
张理刚. 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社.
-
朱宝清, 冯益民, 杨军录, 张开春. 2002. 新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义. 新疆地质, 20(4): 326~330.
-
朱永峰. 2014. 中亚成矿域核心区地质演化和巨型成矿带划分. 矿床地质, 33(3): 471~485.
-
左国朝, 刘义科, 张招崇, 黄河. 2011. 中亚地区中、南天山造山带构造演化及成矿背景分析. 现代地质, 25(1): 858~868.
-
摘要
吉尔吉斯斯坦北天山构造带的矿床学数据缺乏,制约了天山造山带境内外成矿对比。布丘克金矿床位于吉尔吉斯斯坦北天山构造带中部。金矿体为石英复脉,呈带状发育于NWW向韧性剪切带中。矿体倾向SSW,倾角60°~70°,赋矿围岩主要为侵入于早古生代变质碎屑杂岩中的正长斑岩。布丘克金矿床成矿期石英流体包裹体观察、石英H-O同位素、硫化物S同位素测试结果显示,布丘克金矿床石英脉中包裹体大小集中在2~10 μm之间,类型以H2O-CO2型、富CO2型、水溶液型包裹体为主,成分以富CO2、含CH4为特征。成矿流体具有中温(200~320℃)、低盐度(3%~7%NaCleqv)特征;石英δDV-SMOW值介于108.1‰~90.2‰之间,δ18O流体值介于4.86‰~9.26‰之间; 黄铁矿δ34S分布在0‰左右(0.9‰~1.6‰)。综合本文数据、矿床地质特征、区域地质资料,本文认为布丘克金矿床为发育于吉尔吉斯斯坦北天山构造带内的造山型金矿床,韧性剪切带控制了成矿作用过程; 成矿热液来自含碳地层的变质脱水作用,成矿物质来自深部岩浆岩。
Abstract
The lack of data on mineral deposits in the North Tianshan tectonic belt of Kyrgyzstan restricts the comparison of mineralization in China and abroad in the Tianshan orogenic belt. The Buchuk gold deposit is located in the middle of the Kyrgyz North Tianshan tectonic belt. The gold ore bodies are developed in the NWW-trending ductile shear zone in the form of quartz complex veins. The ore body is inclined to SSW, with a dip angle of 60°~70°. The ore-hosting wall rock is mainly syenite porphyry intruded into the Early Paleozoic metamorphic clastic complex. The observation of quartz fluid inclusions, quartz H-O isotope, and sulfide S isotope test results show that the size of the inclusions in the quartz veins of the Buchuk gold deposit is concentrated between 2~10 μm, and the types of inclusions are mainly H2O-CO2 type, CO2-rich type, and aqueous solution type. The components of fluid inclusions are characterized by being rich in CO2 and containing CH4. The ore-forming fluid has the characteristics of mesothermal (200~320℃) and low salinity (3%~7% NaCleqv). The quartz δDV-SMOW values range from 108.1‰ to 90.2‰, and δ18Ofluid fluid values range from 4.86‰ to 9.26‰; the pyrites δ34S are distributed around 0‰ (0.9‰ to 1.6‰). Based on the data in this paper, the geological characteristics of the deposit, and the regional geological data, this paper proposes that the Buchuk gold deposit is an orogenic gold deposit developed in the North Tianshan tectonic belt in Kyrgyzstan, and ductile shear zone controls the mineralization process. The ore-forming hydrothermal fluids come from the metamorphic dehydration of carbon-bearing strata, and the ore-forming materials come from deep magmatic rocks.