en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨凯,男,1995年生。博士研究生,构造地质学专业。E-mail:kaiy_cugb@163.com。

通讯作者:

戴紧根,男,1983年生。教授,博士,从事青藏高原白垩纪-新生代生长过程及其机制研究。E-mail:djgtibet@163.com。

参考文献
Agranier A, Lee C T A, Li Z X A, Leeman W P. 2007. Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chemical Geology, 245(3-4): 230~241.
参考文献
Agrinier P, Cannat M. 1997. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge(23°N). In: Karson J A, Cannat M, Miller D J, Elthon D, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 153: 381~388.
参考文献
Ali S, Ntaflos T, Sami M. 2021. Geochemistry of Khor Um-Safi ophiolitic serpentinites, central eastern desert, Egypt: implications for neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry, 81(1): 125690.
参考文献
Alt J C, Shanksiii W. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242(3-4): 272~285.
参考文献
Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.
参考文献
Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick A E, Fouquet Y. 2014. Tectonic structure, lithology, and hydrothermal signature of the rainbow massif (mid-Atlantic ridge 36° 14′ N). Geochemistry, Geophysics, Geosystems, 15(9): 3543~3571.
参考文献
Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth and Planetary Science Letters, 357: 238~248.
参考文献
Anselmi B, Mellini M, Viti C. 2000. Chlorine in the Elba, Monti Livornesi and Murlo serpentines: evidence for sea-water interaction. European Journal of Mineralogy, 12(1): 137~146.
参考文献
Augustin N, Lackschewitz K S, Kuhn T, Devey C W. 2008. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Marine Geology, 256(1-4): 18~29.
参考文献
Augustin N, Paulick H, Lackschewitz K S, Eisenhauer A, Garbe-Schönberg D, Kuhn T, Botz R, Schmidt M. 2012. Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr-O isotope data. Geochemistry, Geophysics, Geosystems, 13(3), doi: 10. 1029/2011GC003903.
参考文献
Audétat A, Günther D, Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-WF-mineralized mole granite (Australia). Geochimica et Cosmochimica Acta, 64(19): 3373~3393.
参考文献
Aziz N R H, Aswad K J A, Koyi H A. 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan region, Iraq. Geological Magazine, 148(5-6): 819~837.
参考文献
Babechuk M G, Kamber B S, Greig A, Canil D, Kodolányi J. 2010. The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales. Geochimica et Cosmochimica Acta, 74(4): 1448~1470.
参考文献
Bali E, Keppler H, Audetat A. 2012. The mobility of W and Mo in subduction zone fluids and the Mo-W-Th-U systematics of island arc magmas. Earth and Planetary Science Letters, 351: 195~207.
参考文献
Barnes J D, Beltrando M, Lee C T A, Cisneros M, Loewy S, Chin E. 2014. Geochemistry of Alpine serpentinites from rifting to subduction: a view across paleogeographic domains and metamorphic grade. Chemical Geology, 389: 29~47.
参考文献
Barnes J D, Manning C, Scambelluri M, Selverstone J. 2018. The behavior of halogens during subduction zone processes. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Berlin: Springer, 545~590.
参考文献
Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3-4): 373~393.
参考文献
Black J R, Kavner A, Schauble E A. 2011. Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc. Geochimica et Cosmochimica Acta, 75(3): 769~783.
参考文献
Blanco-Quintero I, Proenza J A, Garcia-Casco A, Tauler E, Gali S. 2011. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, Eastern Cuba. Geologica Acta, 9: 389~405.
参考文献
Bonatti E. 1976. Serpentinite protrusions in the oceanic crust. Earth and Planetary Science Letters, 32(2): 107~113.
参考文献
Boschi C, Bonatti E, Ligi M, Brunelli D, Cipriani A, Dallai L, D'Orazio M, FrühGreen G L, Tonarini S, Barnes J D, Bedini R M. 2013. Serpentinization of mantle peridotites along an uplifted lithospheric section, mid Atlantic ridge at 11° N. Lithos, 178: 3~23.
参考文献
Bostock M G, Hyndman R D, Rondenay S, Peacock S M. 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417(6888): 536~538.
参考文献
Bouilhol P, Magni V, van Hunen J, Kaislaniemi L. 2015. A numerical approach to melting in warm subduction zones. Earth and Planetary Science Letters, 411: 37~44.
参考文献
Bouilhol P, Debret B, Inglis E C, Warembourg M, Grocolas T, Rigaudier T, Villeneuve J, Burton K W. 2022. Decoupling of inorganic and organic carbon during slab mantle devolatilisation. Nature Communications, 13(1): 1~10.
参考文献
Bowen N L, Tuttle O F. 1949. The system MgO-SiO2-H2O. Geological Society of America Bulletin, 60(3): 439~460.
参考文献
Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.
参考文献
Cannaò E, Scambelluri M, Agostini S, Tonarini S, Godard M. 2016. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study(Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta, 190: 115~133.
参考文献
Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge(22°-24°N). Geology, 23(1): 49~52.
参考文献
Chalot-Prat F, Ganne J, Lombard A. 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69(3-4): 69~103.
参考文献
Chen Yixiang. 2021. The fractionation behavior of Mg and Fe isotopes during serpentinite dehydration in subduction zones: progress and prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1034~1048 (in Chinese with English abstract).
参考文献
Chen Yixiang, Lu Wenning, He Yongsheng, Schertl H P, Zheng Yongfei, Xiong Jiawei, Zhou Kun. 2019. Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: a tale of whiteschist from the Western Alps. Geochimica et Cosmochimica Acta, 267: 1~16.
参考文献
Chen Yixiang, Demény A, Schertl H P, Zheng Yongfei, Huang Fang, Zhou Kun, Jin Qizhen, Xia Xiaoping. 2020. Tracing subduction zone fluids with distinct Mg isotope compositions: insights from high-pressure metasomatic rocks(leucophyllites)from the Eastern Alps. Geochimica et Cosmochimica Acta, 271: 154~178.
参考文献
Chen Zuxing, Chen Jiubin, Zeng Zhigang, Soh Tamehe L, Zhang Ting, Zhang Yuxiang, Yin Xuebo, Wang Xiaoyuan, Chen Shuai, Shuai Wangcai. 2021. Zinc isotopes of the mariana and ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022261.
参考文献
Coleman R G, Keith T E. 1971. A chemical study of serpentinization—Burro Mountain, California. Journal of Petrology, 12(2): 311~328.
参考文献
Cooper G F, Macpherson C G, Blundy J D, Maunder B, Allen R W, Goes S, Collier J S, Bie L, Harmon N, Hicks S P, Iveson A A, Prytulak J, Rietbrock A, Rychert C A, Davidson J P. 2020. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582(7813): 525~529.
参考文献
Craddock P R, Warren J M, Dauphas N. 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365: 63~76.
参考文献
Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.
参考文献
Debret B, Koga K T, Nicollet C, Andreani M. 2013. F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova, 26(2): 96~101.
参考文献
Debret B, Millet M A, Pons M L, Bouilhol P, Inglis E, Williams H. 2016. Isotopic evidence for iron mobility during subduction. Geology, 44(3): 215~218.
参考文献
Debret B, Beunon H, Mattielli N, Andreani M, Da Costa I R, Escartin J. 2018. Ore component mobility, transport and mineralization at mid-oceanic ridges: a stable isotopes (Zn, Cu and Fe) study of the rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Earth and Planetary Science Letters, 503: 170~180.
参考文献
Debret B, Albers E, Walter B, Price R, Barnes J D, Beunon H, Facq S, Gillikin D P, Mattielli N, Williams H. 2019. Shallow forearc mantle dynamics and geochemistry: new insights from IODP Expedition 366. Lithos, 326: 230~245.
参考文献
Debret B, Reekie C D J, Mattielli N, Beunon H, Ménez B, Savov I, Williams H M. 2020. Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc. Geochemical Perspectives Letters, 12: 46~51.
参考文献
Debret B, Garrido C J, Pons M L, Bouilhol P, Inglis E, López Sánchez-Vizcaíno V, Williams H. 2021. Iron and zinc stable isotope evidence for open-system high-pressure dehydration of antigorite serpentinite in subduction zones. Geochimica et Cosmochimica Acta, 296: 210~225.
参考文献
Delacour A, Früh-Green G L, Frank M, Gutjahr M, Kelley D S. 2008. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology, 254(1-2): 19~35.
参考文献
Deng Jianghong, He Yongsheng, Zartman R E, Yang Xiaoyong, Sun Weidong. 2022. Large iron isotope fractionation during mantle wedge serpentinization: implications for iron isotopes of arc magmas. Earth and Planetary Science Letters, 583: 117423.
参考文献
Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3-4): 262~277.
参考文献
Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, Wunder B, France L. 2012. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chemical Geology, 312: 93~117.
参考文献
Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178: 96~127.
参考文献
Dessimoulie L, Delacour A, Guillaume D, Chevet J, Cottin J-Y. 2020. Major and trace elements exchanges during fluid-rock interaction at ultraslow-spreading oceanic lithosphere: example of the South West Indian Ridge (SWIR). Lithos, 352: 105233.
参考文献
Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405~412.
参考文献
Evans B W. 2004. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46(6): 479~506.
参考文献
Evans B W, Trommsdorff V. 1978. Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40(3): 333~348.
参考文献
Evans K A. 2012. The redox budget of subduction zones. Earth-Science Reviews, 113(1-2): 11~32.
参考文献
Evans K A, Tomkins A G. 2011. The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3-4): 401~409.
参考文献
Evans K A, Frost B R. 2020. Deserpentinization in subduction zones as a source of oxidation in arcs: a reality check. Journal of Petrology, 62(1): 1~32.
参考文献
Faccenda M, Burlini L, Gerya T V, Mainprice D. 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455(7216): 1097~1100.
参考文献
Früh-Green G L, Plas A, Lécuyer C. 1996. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895). Proceedings of the Ocean Drilling Program, Scientific Results, 147: 255~291.
参考文献
Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 65 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46(3): 555~578.
参考文献
Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539(7629): 420~424.
参考文献
Garrido C J, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T, Trommsdorff V, Alard O, Bodinier J L, Godard M. 2005. Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochemistry, Geophysics, Geosystems, 6(1): https: //doi. org/10. 1029/2004GC000791.
参考文献
Geldmacher J, Hoernle K, Van Den Bogaard P, Hauff F, Klugel A. 2008. Age and geochemistry of the central American Forearc basement (DSDP leg 67 and 84): insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP. Journal of Petrology, 49(10): 1781~1815.
参考文献
Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics, 21(6): https: //doi. org/10. 1029/2002TC001406.
参考文献
Gilio M. 2017. Alpine serpentinite geochemistry: a key to unravel subduction accretion at the plate interface. Doctoral thesis of University of Genova, Italy, 308.
参考文献
Gilio M, Scambelluri M, Agostini S, Godard M, Peters D, Pettke T. 2019. Petrology and geochemistry of serpentinites associated with the ultra-high pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 60(6): 1229~1262.
参考文献
González-Jiménez J M, Plissart G, Garrido L N, Padrón-Navarta J A, Aiglsperger T, Romero R, Marchesi C, Moreno-Abril A J, Reich M, Barra F, Morata D. 2017. Titanian clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction. European Journal of Mineralogy, 29(6): 959~970.
参考文献
Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34(21): doi: 10. 1029/2007GL031059.
参考文献
Grove T, Chatterjee N, Parman S, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1-2): 74~89.
参考文献
Guillot S, Hattori K H, de Sigoyer J. 2000. Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology, 28(3): 199~202.
参考文献
Guillot S, Hattori K H, de Sigoyer J, Nägler T, Auzende A L. 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 193(1-2): 115~127.
参考文献
Guillot S, Hattori K H, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: a review. Subduction Zone Geodynamics, 175~205. Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1~19.
参考文献
Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.
参考文献
Hattori K H, Guillot S. 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8(9): DOI: 10. 1029/2007GC001594.
参考文献
Hermann J, Müntener O, Scambelluri M. 2000. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327(3-4): 225~238.
参考文献
Hermann J, Spandler C, Hack A, Korsakov A. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos, 92(3-4): 399~417.
参考文献
Hilairet N, Reynard B. 2009. Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics, 465(1-4): 24~29.
参考文献
Hirth G, Guillot S. 2013. Rheology and tectonic significance of serpentinite. Elements, 9(2): 107~113.
参考文献
Inglis E C. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.
参考文献
John T, Klemd R, Gao J, Garbe-Schönberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogitefacies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1~24.
参考文献
John T, Scambelluri M, Frische M, Barnes J D, Bach W. 2011. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth and Planetary Science Letters, 308(1-2): 65~76.
参考文献
Jöns N, Bach W, Klein F. 2010. Magmatic influence on reaction paths and element transport during serpentinization. Chemical Geology, 274(3-4): 196~211.
参考文献
Kendrick M A, Scambelluri M, Honda M, Phillips D. 2011. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature Geoscience, 4(11): 807~812.
参考文献
Kendrick M A, Hémond C, Kamenetsky V S, Danyushevsky L, Devey C W, Rodemann T, Jackson M G, Perfit M R. 2017. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nature Geoscience, 10(3): 222~228.
参考文献
Kodolányi J, Pettke T, Spandler C, Kamber B S, Gméling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235~270.
参考文献
Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C. 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38~54.
参考文献
Lazar C, Cooperdock E H G, Seymour B H T. 2021. A continental forearc serpentinite diapir with deep origins: elemental signatures of a mantle wedge protolith and slab-derived fluids at New Idria, California. Lithos, 398: 106252.
参考文献
Li Xuping, Rahn M, Bucher K. 2004. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22(3): 159~177.
参考文献
Li Yuanhui. 1991. Distribution patterns of the elements in the ocean: a synthesis. Geochimica et Cosmochimica Acta, 55(11): 3223~3240.
参考文献
Li Z X A, Lee C T A. 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology, 235(1-2): 161~185.
参考文献
Liu Shenao, Liu Pingping, Lv Y, Wang Zezhou, Dai Jingen. 2019. Cu and Zn isotope fractionation during oceanic alteration: implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.
参考文献
Malvoisin B. 2015. Mass transfer in the oceanic lithosphere: serpentinization is not isochemical. Earth and Planetary Science Letters, 430: 75~85.
参考文献
Marchesi C, Garrido C J, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T. 2013. Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos, 178: 128~142.
参考文献
Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12): 862~867.
参考文献
Mellini M, Trommsdorff V, Compagnoni R. 1987. Antigorite polysomatism: behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97(2): 147~155.
参考文献
Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.
参考文献
Padrón-Navarta J A, Lopez Sanchez-Vizcaino V, Garrido C J, Gomez-Pugnaire M T. 2011. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52(10): 2047~2078.
参考文献
Palme H, O'Neill H St C. 2014. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. Elsevier, 1~39.
参考文献
Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.
参考文献
Paulick H, Bach W, Godard M, De Hoog J C M, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234(3-4): 179~210.
参考文献
Pearce J A, Barker P F, Edwards S J, Parkinson I J, Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the south sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36~53.
参考文献
Perrillat J, Daniel I, Koga K, Reynard B, Cardon H, Crichton W. 2005. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth and Planetary Science Letters, 236(3-4): 899~913.
参考文献
Peters D, Bretscher A, John T, Scambelluri M, Pettke T. 2017. Fluid-mobile elements in serpentinites: constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466: 654~666.
参考文献
Peters D, Pettke T, John T, Scambelluri M. 2020. The role of brucite in water and element cycling during serpentinite subduction—insights from Erro Tobbio (Liguria, Italy). Lithos, 360: 105431.
参考文献
Pettke T, Bretsche, A. 2022. Fluid-mediated element cycling in subducted oceanic lithosphere: the orogenic serpentinite perspective. Earth-Science Reviews, 225: 103896. Plank T. 2014. The chemical composition of subducting sediments. Treatise on Geochemistry, 4: 607~629.
参考文献
Plümper O, King H E, Geisler T, Liu Yang, Pabst S, Savov I P, Rost D, Zack T. 2017. Subduction zone forearc serpentinites as incubators for deep microbial life. Proceedings of the National Academy of Sciences, 114(17): 4324~4329.
参考文献
Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.
参考文献
Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communications, 7(1): 1~8.
参考文献
Prichard H M. 1979. A petrographie study of the process of erpentinization in ophiolites and the ocean crust. Contributions to Mineralogy and Petrology, 68(3): 231~241.
参考文献
Ranero C R, Phipps Morgan J, McIntosh K, Reichert C. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367~373.
参考文献
Rebay G, Spalla M I, Zanoni D. 2012. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: insights from the Western Alps. Journal of Metamorphic Geology, 30(7): 687~702.
参考文献
Reynard B. 2013. Serpentine in active subduction zones. Lithos, 178: 171~185.
参考文献
Ribeiro J M, Lee C T A. 2017. An imbalance in the deep water cycle at subduction zones: the potential importance of the fore-arc mantle. Earth and Planetary Science Letters, 479: 298~309.
参考文献
Rouméjön S, Cannat M, Agrinier P, Godard M, Andreani M. 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the southwest Indian ridge (62-65 E). Journal of Petrology, 56(4): 703~734.
参考文献
Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): 1~27.
参考文献
Saumur B M, Hattori K H, Guillot S. 2010. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic. Geological Society of America Bulletin, 122(1-2): 292~304.
参考文献
Savov I P, Guggino S, Ryan J G, Fryer P, Mottl M J. 2005a. Geochemistry of serpentine muds and metamorphic rocks from the Mariana Forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical seamounts. Proceedings of the Ocean Drilling Program, Scientific Results, 195: 1~49.
参考文献
Savov I P, Ryan J G, D'Antonio M, Kelley K, Mattie P. 2005b. Geochemistry of serpentinized peridotites from the Mariana Forearc conical seamount, ODP leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4): 1~24.
参考文献
Savov I P, Ryan J G, D'Antonio M, Fryer P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research: Solid Earth, 112: B09205.
参考文献
Scambelluri M, Müntener O, Hermann J, Piccardo G B, Trommsdorff V. 1995. Subduction of water into the mantle: history of an Alpine peridotite. Geology, 23(5): 459~462.
参考文献
Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, GòmezPugnaire M T, Lòpez-Sànchez Vizca1no V. 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters, 192(3): 457~470.
参考文献
Scambelluri M, Tonarini S. 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology, 40(10): 907~910.
参考文献
Scambelluri M, Pettke T, Rampone E, Godard M, Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle(Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459~498.
参考文献
Scambelluri M, Pettke T, Cannaò E. 2015. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle(Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 429: 45~59.
参考文献
Scambelluri M, Cannaò E, Gilio M. 2019. The water and fluid-mobile element cycles during serpentinite subduction: a review. European Journal of Mineralogy, 31(3): 405~428.
参考文献
Schwartz S, Allemand P, Guillot S. 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (western Alps). Tectonophysics, 342(1-2): 193~206.
参考文献
Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende A L. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197~210.
参考文献
Shen Tingting, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Jing. 2014. FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167(4): 1~15.
参考文献
Shen Tingting, Hermann J, Zhang Lifei, Lü Zeng, Padrón-Navarta J A, Xia Bing, Bader T. 2015. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan. Journal of Petrology, 56(7): 1425~1458.
参考文献
Shen Tingting, Zhang Lifei, Chen Jing. 2016. Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica, 32(4): 1206~1218 (in Chinese with English abstract).
参考文献
Shen Tingting, Zhang Cong, Chen Jing, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Li, Xu Jun, Yang Jingsui. 2020. Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. American Mineralogist: Journal of Earth and Planetary Materials, 105(4): 569~582.
参考文献
Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research: Solid Earth, 97(B1): 197~216.
参考文献
Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: a review. Lithos, 170: 208~223.
参考文献
Staub R. 1922. Über die Verteilung der Serpentine in den alpinen Ophiolithen. Schweiz, Verlag nicht ermittelbar, 2: 74~149.
参考文献
Staudigel H. 2014. Chemical fluxes from hydrothermal alteration of the oceanic crust. In: Holland, H D, Turekian K K, eds. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 583~603.
参考文献
Su Benxun, Teng Fangzhen, Hu Yan, Shi Rendeng, Zhou Meifu, Zhu Bin, Liu Fan, Gong Xiaohan, Huang Qishuai, Xiao Yan, Chen Chen, He Yongsheng. 2015. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth and Planetary Science Letters, 430: 523~532.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophysical Research Letters, 13(8): 717~720.
参考文献
Tatsumi Y. 2005. The subduction factory: how it operates in the evolving Earth. Gsa Today, 15(7): 4.
参考文献
Teng Fangzhen, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry. Magnesium Isotope Geochemistry, 82: 219~287.
参考文献
Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contributions to Mineralogy and Petrology, 163(4): 669~688.
参考文献
Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858~861.
参考文献
van Keken P E. 2003. The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215(3-4): 323~338.
参考文献
Viti C, Mellini M. 1998. Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy, 10(6): 1341~1360.
参考文献
Whattam S A, Früh-Green G L, Cannat M, De Hoog J C M, Schwarzenbach E M, Escartin J, John B E, Leybourne M I, Williams M J, Rouméjon S, Akizawa N, Boschi C, Harris M, Wenzel K, McCaig A, Weis D, Bilenker L. 2022. Geochemistry of serpentinized and multiphase altered Atlantis Massif peridotites (IODP Expedition 357): petrogenesis and discrimination of melt-rock vs. fluid-rock processes. Chemical Geology, 594: 120681.
参考文献
Xie Zhipeng, Hattori K, Dong Youpu, Wang Jian. 2021. In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: behavior of fluid-mobile elements in continental subduction zone. Geoscience Frontiers, 12(4): 101139.
参考文献
Xiong Jiawei, Chen Yixiang, Zhou Kun, Schertl H P, Zheng Yongfei, Huang Fang, Xia Xiaoping, Chen Zhenwu. 2021. Fe and O isotopes in coesite-bearing jadeite quartzite from the Western Alps record multistage fluid-rock interactions in a continental subduction zone. Geochimica et Cosmochimica Acta, 312: 1~24.
参考文献
Xiong Jiawei, Chen Yixiang, Ma Hezhi, Schertl H P, Zheng Yongfei, Zhao Kuidong. 2022. Tourmaline boron isotopes trace metasomatism by serpentinite-derived fluid in continental subduction zone. Geochimica et Cosmochimica Acta, 320: 122~142.
参考文献
Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48): eabj2515.
参考文献
Zhao Jing, Long Xiaoping, Li Jie, Zhao Bingshuang, Gao Yilin, Zuo R. 2022. Serpentinite as a tracer for tectonic setting and mantle metasomatism of ophiolites: a case study of the Aoyougou ophiolite in the Qilian Orogenic Belt, NW China. Gondwana Research, 105: 1~11.
参考文献
Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10(4): 1223~1254.
参考文献
陈伊翔. 2021. 俯冲带蛇纹岩变质脱水过程中的 Mg, Fe 同位素分馏行为: 进展与展望. 矿物岩石地球化学通报, 40(5): 1034~1048.
参考文献
申婷婷, 张立飞, 陈晶. 2016. 俯冲带蛇纹岩的变质过程. 岩石学报, 32(4): 1206~1218.
目录contents

    摘要

    蛇纹岩对地球深部和浅部的元素循环以及氧化还原状态调节具有非常重要的作用。蛇纹岩中的流体活动性元素(fluid-mobile element, FME)是揭示地幔岩石水化、脱水以及元素循环的关键。本文系统收集和分析了前人报道的不同构造环境的蛇纹岩矿物化学、全岩微量元素和非传统稳定同位素(Fe、Zn、Cu)的组成特征,试图从多个角度总结蛇纹岩脱水过程的元素迁移规律及流体性质。蛇纹岩主要矿物蛇纹石微量元素含量具有以下主要特征:① 不同变质程度的蛇纹岩中的蛇纹石既包含轻稀土元素(light rare earth element, LREE)富集,又包含LREE亏损的特征;② 纤蛇纹石的REE和微量元素分布在利蛇纹石和叶蛇纹石的范围内,利蛇纹石重稀土元素(heavy rare earth element, HREE)整体上略高于叶蛇纹石且更加富集FME;③ 通过中度不相容元素与REE含量相结合,能够较好地区分橄榄石和辉石蛇纹石化所形成的蛇纹石,即辉石形成的蛇纹石富集相容元素(如Sc、Zn、Cr、Y和Ti等)并具有较高的HREE,而橄榄石形成的蛇纹石则表现为平坦且整体较低的REE分布型式。在蛇纹岩全岩微量元素和稀土元素(rare earth element, REE)含量方面,不同构造环境的蛇纹岩具有较大范围的重叠,但也有一定的差异:① 慢速扩张的印度洋中脊蛇纹岩REE和微量元素含量要整体高于快速扩张的大西洋中脊和太平洋中脊的蛇纹岩;② 马里亚纳蛇纹岩泥相比于蛇纹岩和蛇纹石化纯橄岩具有更高的REE和微量元素,而蛇纹石化纯橄岩相比于蛇纹岩则具有相对低的REE及流体不活动性元素含量。因此,利用微量元素的含量在区分不同环境的蛇纹岩方面存在一定的困难。但是,碱金属元素与U元素含量及其相应的比值,则可以较明显区分出大洋蛇纹岩和弧前蛇纹岩。目前已发表的蛇纹岩Fe、Zn、Cu同位素数据表明:① 蛇绿岩中的蛇纹岩Fe和Zn同位素的分馏与其变质程度密切相关。蛇纹岩在进变质过程中δ56Fe值与Fe3+/∑Fe值呈负相关,而Zn含量和δ66Zn值则呈现正相关,表明蛇纹岩变质脱水能够释放氧化性流体;② 与橄榄岩相比,蛇纹岩具有明显低的δ65Cu值,表明橄榄岩蛇纹石化过程中存在氧化性流体的加入。蛇纹岩Fe、Zn、Cu同位素在示踪流体性质和氧化还原状态方面有很大潜力,对壳幔系统的化学循环具有重要意义。

    Abstract

    Serpentinite is essential in chemical exchanges between Earth's interior and surface, and plays a fundamental role in cycling of redox sensitive elements. Fluid-mobile element (FME) of serpentinite is critical for revealing the processes of mantle rock hydration, dehydration, and element recycling. Here we compile mineral and whole-rock trace elements and non-traditional stable isotopic compositions (Fe, Zn, Cu) of serpentinites from various tectonic settings. Trace elements of serpentine indicate that the occurrence of both LREE-enriched and LREE-depleted patterns in serpentines experienced by different degrees of serpentinization. The contents of REE and trace element of chrysotile are compared with those of lizardite and antigorite, while the contents of HREE and FME of lizardite are slightly higher than those of antigorite. The moderately incompatible elements together with REE could be useful to discriminate serpentines formed after olivine and pyroxene. Serpentine originated from pyroxene is enriched in compatible elements such as Sc, Zn, Cr, Y and Ti, while serpentine generated from olivine displays nearly flat REE patterns. The whole-rock trace element and REE patterns are overlapped for serpentinites formed among different settings, but there are also some differences. The REE and trace elements of the serpentinite from the slow-spreading Indian Mid-Ocean Ridge are higher than those from the Atlantic Mid-Ocean ridge and the Pacific Mid-Ocean ridge. Compared with serpentinite and serpentinized dunite, the Mariana serpentinite mud has higher REE and trace elements, while the serpentinized dunite has lower REE and fluid-immobile element. It is difficult to distinguish serpentinite in different environments by using absolute element concentrations. However, the alkali-U element ratios can distinguish mid-oceanic serpentinite from forearc serpentinite. We summarize the data of Fe, Zn and Cu isotopes of serpentinite. The fractionation of Fe and Zn isotopes of ophiolitic serpentinite is closely related to serpentinite devolatilization. The δ56Fe values of these serpentinites progressively increased during serpentinite devolatilization as bulk Fe3+/∑Fe decreased, while the δ66Zn and Zn contents show a positive correlation. These features suggest that serpentinite can release oxidized fluids. Compared to peridotite, serpentinite has significantly lower δ65Cu values, which can be explained by the addition of oxidation of sulfur-bearing fluids during serpentinization. Fe, Zn, and Cu isotopes composition of the serpentinite have great potential in tracing fluid properties and redox states, which is of great significance to the chemical cycle of the crust-mantle system.

  • 蛇纹岩对全球大洋及俯冲带中活动性元素的循环具有重要的作用,是地球深部和表层元素交换的重要媒介(Deschamps et al.,2013; Galvez et al.,2016; Kendrick et al.,2017; Barnes et al.,2018; Scambelluri et al.,2019)。蛇纹岩具有富水(高达16%)、卤素、稀有气体、Mg、Fe以及含有少量的C和S等特征,并且可以稳定到弧下深度,而且蛇纹岩的体量巨大,因此可以把较多的H2O通过俯冲带带入到深部地幔中,极大影响了地球内部水含量和地球的水循环(Scambelluri et al.,2015; Shen Tingting et al.,2015; Chen Yixiang et al.,2019; Zheng Yongfei,2019); 蛇纹岩在进变质脱水过程中,能够将含C-H-O的组分转移到俯冲带流体中,使汇聚板块边界俯冲带之上的地幔楔发生水化作用或部分熔融作用。这些过程可能会改变地幔楔及地球深部的氧化还原状态,并产生大量的火山作用使挥发分进入大气圈,因此对地球的宜居性方面也具有重要作用(Hattori and Guillot,2003; Evans,2012; Alt et al.,2013; Crossley et al.,2018; Scambelluri et al.,2019)。

  • 在20世纪早期,蛇纹岩就引起了地质学家和实验岩石学家的研究兴趣。他们对蛇纹岩在造山过程中的作用进行了研究(Staub,1922; Bowen and Tuttle,1949),取得了以下重要认识:① 蛇纹岩广泛分布在大洋中(Bonatti,1976); ② 榴辉岩相的变质橄榄岩起源于蛇纹岩的脱水作用(Evans and Trommsdorff,1978); ③ 蛇纹石化的弧前地幔具有携带弧下水和FME进入弧熔岩的潜力(Tatsumi,1986)等。需要指出的是,Evans and Trommsdorff(1978)的研究第一次提出了蛇纹岩脱水对于俯冲带水循环具有关键作用。到20世纪90年代,随着大洋钻探、实验以及野外考察等工作的深入,科学家们确认了蛇纹岩在大洋板块中的广泛存在,进一步证实了它们具有携带和转移挥发分物质到岛弧中的能力(Cannat et al.,1995; Scambelluri et al.,1995; Ulmer and Trommsdorff,1995)。在这些研究之前,科学家的研究重点是新鲜地幔岩石以及深俯冲的含柯石英和金刚石等矿物的超高压变质岩石,而缺乏对蛇纹岩的研究。

  • 最近几十年,大洋钻探研究进一步揭示了超镁铁质岩(如蛇纹岩、橄榄岩)在大洋中出露的位置:① 慢速、超慢速扩张大洋中脊; ② 俯冲板片弯折带外侧剪切断层; ③ 弧前地幔浅部(Dick et al.,2003; Ranero et al.,2003; Alt and Shanksiii,2006; Faccenda et al.,2008; 图1a)。其中,有关俯冲带的蛇纹岩:① 来自深部地震资料揭示了低速带的存在,表明了俯冲板片和弧前地幔楔下部存在广泛的蛇纹石化作用(Bostock et al.,2002; van Keken,2003; Savov et al.,2005a); ② 它们可以是上板片构造混杂岩的一部分(Bebout,2007),也可以是从俯冲板片拆离的洋壳岩石圈的主体(Garrido et al.,2005; Angiboust et al.,2012),还可以是弧前地幔楔水化作用的产物(Bostock et al.,2002)。已有一些蛇纹岩板片俯冲、构造剥露、挥发分和FME化学循环贡献以及氧化还原状态的研究被报道(John et al.,2011; Kendrick et al.,2011; Scambelluri and Tonarini,2012; Marschall and Schumacher,2012; Deschamps et al.,2013; Reynard,2013; Debret et al.,20162021; Chen Yixiang et al.,2019; Cooper et al.,2020; Zhang Yuxiang et al.,2021)。

  • 从岩石学和地球化学角度来看,蛇纹岩是水、卤素、FME以及惰性气体的主要储库(Kodolányi et al.,2012; Cannaò et al.,2016; 申婷婷等,2016; Barnes et al.,2018; 陈伊翔,2021)。储存在蛇纹岩中的这些元素会在进变质脱水过程中被释放(Hattori and Guillot,2003; Deschamps et al.,2013; Scambelluri et al.,2015),目前关于蛇纹岩在俯冲过程中对FME循环的作用还具有争议。俯冲沉积物和蚀变洋壳也是向弧源区输送不相容元素的主要储库(Plank,2014; Staudigel,2014),有学者提出蛇纹岩变质产生的流体能够促使板片上部的变沉积物发生部分熔融作用并释放不相容元素(Hermann et al.,2006; Spandler and Pirard,2013)。此外,浅部的板片脱水以及沉积物压实过程中会有来自壳源的富含FME的流体进入到地幔楔,从而促使橄榄岩发生水化作用及变质作用,最终转移至弧岩浆源区(Savov et al.,2007; Ribeiro and Lee,2017)。蛇纹岩具有记录与外部流体多期相互作用过程的能力,并具有将微量元素循环至地幔的能力,对揭示高压—超高压岩石的剥露及演变有重要的意义(Deschamps et al.,2010; Barnes et al.,2014; Cannaò et al.,2016)。

  • 目前对蛇纹岩的研究主要包括岩石学、地球化学以及传统稳定同位素等方法,但是这些研究方法较难区分不同构造背景和种类蛇纹岩脱水过程中元素的迁移。近年来的研究表明非传统稳定同位素对示踪俯冲带的流体迁移及物质循环具有很大的潜力(Debret et al.,201620202021; Pons et al.,2016; Chen Yixiang et al.,20192020; 陈伊翔,2021; Xiong Jiawei et al.,20212022)。为了探究蛇纹岩作为俯冲带流体活动性示踪剂所起的作用,本文整合已发表数据,总结了不同环境中的蛇纹岩的微量元素和Fe-Zn-Cu稳定同位素的研究进展,重点探讨蛇纹岩脱水流体对地幔元素循环及氧化还原状态的影响。

  • 1 蛇纹岩的划分类型及特征

  • 1.1 蛇纹岩类型

  • 蛇纹石矿物是具有较宽P-T稳定域的一种低密度矿物,其在俯冲带的动力学(地震的触发、高压—超高压岩石的剥露、板片的初始俯冲等)以及地球化学变化(元素循环、氧化还原状态等)中扮演重要的作用(Tatsumi,2005; Hirth and Guillot,2013)。蛇纹岩在所有的板块边界都能够发育(Guillot et al.,2015; 图1a),其形成时的构造环境对它的地球化学特征的影响很大。按构造环境可将蛇纹岩可分为三种类型:大洋蛇纹岩、弧前蛇纹岩、俯冲相关蛇绿岩中的蛇纹岩(Deschamps et al.,2013)。大洋蛇纹岩是由大洋橄榄岩受到海底热液或海水蚀变而成的,但它会随俯冲板片进入到俯冲带(图1a)。弧前蛇纹岩是地幔楔橄榄岩受俯冲板片释放流体作用发生水化而形成的。俯冲相关蛇绿岩中的蛇纹岩在蛇纹石化的时间上是不均一的,主要指与蛇绿岩一起仰冲到缝合带的大洋地幔蛇纹岩或形成于俯冲板片与地幔楔界面的蛇纹岩。

  • 图1 蛇纹岩构造框架图(a)(修改自Deschamps et al.,2013; Scambelluri et al.,2019),蛇纹岩和脱蛇纹石化橄榄岩P-T相关系示意图(b)(修改自Scambelluri et al.,2019)和硅镁石相含钛矿物的P-T相关系图解(c)(修改自Shen Tingting et al.,2015

  • Fig.1 Schematic sketch illustrating the main environments for serpentinite occurrence (a) (modified after Deschamps et al., 2013; Scambelluri et al., 2019) , P-T phase relations in serpentinite and in de-serpentinized peridotite (b) (modified after Scambelluri et al., 2019) and P-T phase relations for Ti-bearing humite phases (c) (modified after Shen Tingting et al., 2015)

  • (b)中带数字的曲线代表矿物反应界限,五角星代表不同位置的样品:记录了俯冲相关蛇绿岩中的蛇纹岩脱水顺序,浅紫色的粗箭头代表地温梯度,1~4为蛇纹岩四条主要的脱水反应,具体在正文解释; 矿物缩写:amph—角闪石; atg—叶蛇纹石; brc—水镁石; chl—绿泥石; ctl—纤蛇纹石; grt—石榴子石; ol—橄榄石; opx—斜方辉石; TiCh—钛粒状硅镁石; TiCl—钛斜硅镁石

  • In Fig.1b, the numbers on each curve refer to the mineral reactions; the stars refer to different sample sets from various localities: they disclose the dehydration sequence recorded by subduction zone serpentinites; the bold lilac arrow represents a geothermal gradient; curves 1 to 4 are the four main dehydration reactions of serpentinite; abbreviations: amph—amphibole; atg—antigorite; brc—brucite; chl—chlorite; ctl—chrysotile; grt—garnet; ol—olivine; opx—orthopyroxene; TiCh—Ti chondrodite; TiCl—Ti clinohumite

  • 由于快速扩张脊(扩张速率>9 cm/a)的岩浆活动活跃,从而形成一个厚的洋壳(7~10 km)阻止蛇纹石化的发生。因此快速扩张的洋中脊处很少有蛇纹岩的出现(Sinton and Detrick,1992)。在慢速、超慢速扩张脊(大约55000 km,约占全球洋中脊系统的三分之一; Dick et al.,2003),橄榄岩直接暴露在海底而发生了很大程度的蛇纹石化形成大洋蛇纹岩。因此,可在慢速-超慢速扩张的洋中脊观察到大量的大洋蛇纹岩和蛇纹石化橄榄岩的存在,前人对其进行了氧同位素和氢同位素的分析,研究表明大洋橄榄岩水化作用的主要流体是海水,蛇纹石化发生的温度一般低于450~500℃(Früh-Green et al.,1996; Agrinier and Cannat,1997)。大洋蛇纹岩中的蛇纹石主要以橄榄石、辉石的假晶结构存在,表明海水渗滤蛇纹石化是一个相对静态的过程(Prichard,1979)。

  • 弧前蛇纹岩位于板片之上地幔楔的最冷的部分,接近于板片(Guillot et al.,2009)。由于下伏俯冲板片来源的物质输入和弧火山熔体的输出使地幔楔具有复杂的地球化学组成。地幔楔相比于洋中脊区域显示更高的部分熔融程度和氧逸度特征。俯冲板片脱水释放的流体会诱发地幔楔发生水化作用,尤其是当温度低于700℃时发生蛇纹石化作用。

  • 俯冲相关蛇绿岩中的蛇纹岩指进入到俯冲带、经历俯冲及仰冲之后被剥露为增生杂岩或缝合带中的蛇纹岩(Deschamps et al.,2013)。在俯冲的过程中,沉积物和蚀变洋壳逐渐脱水使上覆地幔楔橄榄岩发生水化作用形成蛇纹岩。在俯冲带小于20 km的深度,蛇纹岩中主要以纤蛇纹石和利蛇纹石为主。随着板片向下俯冲,利蛇纹石在300℃左右开始转变为叶蛇纹石并且会与周围发生水化作用的沉积物相互作用(Deschamps et al.,2013; Lafay et al.,2013)。沉积物和蛇纹岩的相互作用有利于FME向蛇纹岩迁移而产生具有俯冲特征的叶蛇纹石蛇纹岩。蛇纹石矿物一般被认为形成于俯冲板片之上以薄层形式存在,有5~10 km厚且延伸至20~80 km深度(Schwartz et al.,2001; Hilairet and Reynard,2009),被定义为蛇纹岩俯冲通道(Guillot et al.,200020012009)。数值模拟表明蛇纹岩俯冲通道能够容纳大量的俯冲大洋蛇纹岩、来自俯冲板片的高压岩石以及上覆地幔楔的蛇纹石化橄榄岩(Gerya et al.,2002; Gorczyk et al.,2007)。所有这些块体或者岩石碎片与地壳或地幔楔解耦,随后形成增生楔的一部分(Saumur et al.,2010; Deschamps et al.,2012)。研究表明这样的混杂岩带的证据在很多地方能看到,明显有蛇纹岩和榴辉岩存在,显生宙有约30%的榴辉岩块体与蛇纹岩有关系(Guillot et al.,2009)。

  • 1.2 俯冲带蛇纹岩的相态关系

  • 蛇纹岩在俯冲带的演化与温度、压力变化相伴随的变质脱水过程密切相关。蛇纹岩自然样品岩石学的研究以及实验数据表明利蛇纹石和纤蛇纹石在温度低于300℃时是稳定的(Evans,2004; Schwartz et al.,2013)。叶蛇纹石在温度高于300℃时才能形成,并且当温度低于380℃、压强大于0.9 GPa时,叶蛇纹石和利蛇纹石能够共存(Schwartz et al.,2013)。蛇纹石系统中随着温度的增加纤蛇纹石或利蛇纹石能够转变为叶蛇纹石,具体的反应如下:

  • 纤蛇纹石 /利蛇纹石 = 叶蛇纹石 + 水镁石 300C
    (1)
  • 纤蛇纹石 /利蛇纹石 +SiO2 (溶解态) = 叶蛇纹石 + 流体 <380C
    (2)
  • 叶蛇纹石矿物相比于纤蛇纹石和利蛇纹石要更富硅,主要是由于它们分子结构的差异,叶蛇纹石具有波状结构,而且这种结构随着温压条件变化还在发生调整(Shen Tingting et al.,2020)。关于叶蛇纹石富硅的一种可能的外因解释是蛇纹岩与沉积物成因的俯冲流体相互作用的结果(Lafay et al.,2013; Schwartz et al.,2013; Malvoisin,2015)。总的来说,纤蛇纹石和叶蛇纹石以及磁铁矿、绿泥石、水镁石等次生矿物与浅部地幔低温水化作用相关。在纤蛇纹石和利蛇纹石转化为叶蛇纹石的过程中一般都伴随着蛇纹岩中的H2O和FMEs丢失。根据透射电镜显示,随着温度和压力的增高,叶蛇纹石形成于纤蛇纹石和利蛇纹石之后,并且可在纤蛇纹石和利蛇纹石中观察到叶蛇纹石脉的存在(Mellini et al.,1987; Schwartz et al.,2013)。当温度升高至450℃以上,水镁石和叶蛇纹石能够反应生成稳定的次生橄榄石并释放H2O。

  • 叶蛇纹石 + 水镁石 = 橄榄石 + 流体 >450C
    (3)
  • 阿尔卑斯有很多榴辉岩相的蛇纹岩记录了反应(3)的过程,在这些蛇纹岩中还发现一些高压绿泥石、透辉石及钛斜硅镁石的岩石或者脉状矿物集合体(Li Xuping et al.,2004; Rebay et al.,2012; Debret et al.,2013; Cannaò et al.,2016; 申婷婷等,2016)。最近的实验岩石学的研究表明,变质橄榄石可在高压下通过多孔的、滑石的中间反应产物生成(Perrillat et al.,2005; Plümper et al.,2017)。由于反应(3)形成的含叶蛇纹石和变质橄榄石的蛇纹岩具有浮力,并含有高达11%的水,因此其与阿尔卑斯造山带以及其他地区的榴辉岩物质相伴生,并对高压岩石的剥露具有重要作用。高压叶蛇纹石蛇纹岩完全脱水的反应如下:

  • 叶蛇纹石 = 敢榄石 + 斜方辉石 + 流体
    (4)
  • 这一反应能够释放高达10%的水进入变质橄榄岩中,极大地影响了俯冲板片、俯冲通道以及之上地幔楔超镁铁质岩的性质。这一反应形成的变质橄榄岩很难被剥露到地表,仅在阿尔卑斯中部的Cima di Gagnone(Evans and Trommsdorff,1978; Scambelluri et al.,2014)存在少量构造剥露的蛇纹岩完全脱水形成的变质橄榄岩。在这种高压—超高压的环境中,绿泥石方辉橄榄岩和石榴子石橄榄岩能够被密度较轻的地壳岩石包裹,并携带其折返至地表(Hermann et al.,2000)。在高压—超高压环境中绿泥石和钛-斜硅镁石是和叶蛇纹石、橄榄石、透辉石及磁铁矿能够共存的含水矿物相。自然样品中的叶蛇纹石分解后绿泥石和钛-斜硅镁石还能够存在。变质绿泥石方辉橄榄岩可由蛇纹岩脱水形成(Fumagalli and Poli,2005; Padrón-Navarta et al.,2011; Scambelluri et al.,2014; Shen Tingting et al.,20142015; 陈伊翔,2021),绿泥石能够从超镁铁质系统中吸收大量Al并且可以储存大量的水。实验岩石学(Fumagalli and Poli,2005)以及基于脱蛇纹石化橄榄岩自然样品的热力学模拟(Scambelluri et al.,2014)研究表明,绿泥石可以在超过800℃时通过反应(5)的分解形成石榴子石。

  • 绿泥石 + 单斜辉石 = 橄榄石 + 石榴子石 (+ 斜方辉不 )+ 流体
    (5)
  • 前人的实验工作对弧下深度的绿泥石分解转换为石榴子石过程与流体释放的关系进行了讨论(Fumagalli and Poli,2005; Grove et al.,2006; Till et al.,2012)。绿泥石的脱水反应(图1b中的4G)除了能释放额外流体之外,还可能在2.0~3.6 GPa之间与水饱和固相橄榄岩相交(图1b中的橙色曲线),从而诱发橄榄岩在弧下深度发生熔融(Till et al.,2012)。超镁铁质岩石中经常能够发现硅镁石族矿物的存在,它们在块状硅镁石和橄榄石之间能够形成多面体系列层状结构。含叶蛇纹石和橄榄石的高压蛇纹岩和相关的变质辉长岩中存在有钛-斜硅镁石和钛-粒状硅镁石矿物(Shen Tingting et al.,2015; Gilio,2017; González-Jiménez et al.,2017)。钛-斜硅镁石在含叶蛇纹石的岩石中是含OH-的矿物相,但是叶蛇纹石的分解会使钛-斜硅镁石吸收大量的氟,导致其稳定域扩大几百摄氏度(Ulmer and Trommsdorff,1995)。为了更准确约束硅镁石的稳定域,Shen Tingting et al.(2015)基于野外观测和一组在600~750℃温度和2.5~5.5 GPa压力范围的不含氟的自然体系中进行了11个实验,对硅镁石的稳定域做了较好的限定(图1c)。这个实验的结果表明,在正常成分的蛇纹岩变质过程中,钛粒硅镁石的出现代表了超高压的状态,可以作为超高压指示矿物。

  • 2 全球蛇纹岩单矿物及全岩微量元素特征

  • 本文主要收集了来自洋中脊、现代弧前以及俯冲相关蛇绿岩中的蛇纹岩样品的数据进行分析讨论。洋中脊蛇纹岩数据357个,弧前蛇纹岩数据共334个,俯冲相关蛇绿岩蛇纹岩数据共418个。洋中脊和弧前样品主要是来自于钻探或拖网,包括深海钻探计划(DSDP)、综合大洋钻探计划(IODP)、大洋钻探计划(ODP)或者通过潜水或载具采样。本文收集的数据是通过不同的分析方法获得的,因此其结果可能有一定的误差,但是不影响整体的规律性结果。主要收集了蛇纹岩和蛇纹石化橄榄岩的全岩主微量、蛇纹石矿物主微量以及蛇纹岩同位素的数据。

  • 2.1 蛇纹石矿物主微量元素特征

  • 三种蛇纹石矿物的主量元素很难区分开。但是实验证明不同程度的蛇纹石化会引起蛇纹石成分的变化,尤其是SiO2、MgO。叶蛇纹石具有更高的SiO2低的H2O以及MgO,这种现象可能是利蛇纹石-叶蛇纹石相互转化过程中部分脱水造成的(Deschamps et al.,2013)。

  • 纤蛇纹石、利蛇纹石和叶蛇纹石的REE和微量元素分布差异性不太明显(图2),叶蛇纹石具有比利蛇纹石整体略低的REE和微量元素含量,富集LREE及B、U、Pb、Li等FME。已有的纤蛇纹石数据显示其与利蛇纹石及叶蛇纹石几乎一致的分布特征(图2)。因此,仅通过稀土及微量元素的分布特征难以区分不同种类的蛇纹石矿物。

  • 蛇纹石通常能够明显保留原始矿物的形态和结构特征,橄榄石蛇纹石化形成的蛇纹石一般呈椭圆状,部分核部残留有较新鲜橄榄石,辉石蛇纹石化形成的蛇纹石更均一,形成明显的辉石假晶。橄榄石形成的蛇纹石具有更高的MgO(35%~45%)和NiO(可达0.5%),而辉石形成的蛇纹石有较低的MgO(20%~40%)、较高的Al2O3(可达4%)和Cr2O3(可达1%)。但是对于辉石形成的蛇纹石利用主量元素是难以区分的,因为Ca在蛇纹石化过程中整体迁移了。

  • 图2 不同种类蛇纹石稀土元素分布图和微量元素蛛网图

  • Fig.2 Chondrite-normalized REE and primitive mantle-normalized trace element plots of serpentine

  • (a、b)—纤蛇纹石;(c、d)—利蛇纹石;(e、f)—叶蛇纹石; 球粒陨石标准化数据据Sun and McDonough(1989); 原始地幔标准化数据据Palme and O'Neill(2014); 纤蛇纹石数据来自Lafay et al.(2013); 利蛇纹石数据来自Lafay et al.(2013)Xie Zhipeng et al.(2021); 叶蛇纹石数据来自Marchesi et al.(2013)Lafay et al.(2013)Gilio et al.(2019)Peters et al.(2020)Xie Zhipeng et al.(2021)Pettke and Bretsche(2022)

  • (a, b) —Chrysotile; (c, d) —lizardite; (e, f) —antigorite; chondrite and primitive mantle normalized data according to Sun and McDonough (1989) , Palme and O'Neill (2014) , respectively; the chrysotile data from Lafay et al. (2013) ; the lizardite data from Lafay et al. (2013) , Xie Zhipeng et al. (2021) ; the antigorite data from Marchesi et al. (2013) , Lafay et al. (2013) , Gilio et al. (2019) , Peters et al. (2020) , Xie Zhipeng et al. (2021) , Pettke and Bretsche (2022)

  • 橄榄石蛇纹石化形成的蛇纹石具有比辉石形成的蛇纹石整体略微低的REE和微量元素分布,两者有很大部分的重叠(图3)。两种类型的蛇纹石都富具有较明显的Eu负异常现象,富集B、U、Pb及Li。通过中度不相容元素结合REE能够较好地区分橄榄石和辉石所形成的蛇纹石:橄榄石形成的蛇纹石显示平坦的REE分布,而辉石形成的蛇纹石富集HREE亏损LREE。辉石形成的蛇纹石富集相容元素,如Sc、Co、V、Zn、Cr、Y和Ti等。标准化元素含量的大范围变化表明早期蛇纹石化过程中初始元素含量是复杂且不均一的,并且在洋底或弧前水化作用过程中不同程度FME的富集增加了这种差异。这是因为流体交代作用是一个强烈受岩性单元渗透率和分布控制的过程,单独的扩散过程是次要的。因此,沿着这些流体通道或靠近这些流体通道的化学印记将更加突出,从而导致一个岩性单元内的物理化学性质不均匀(John et al.,2008)。当使用绝对元素浓度时少量的样品更容易引起取样偏差和明显的化学趋势。

  • 图3 不同原始矿物蛇纹石化形成的蛇纹石稀土元素分布图(a、c)和微量元素蛛网图(b、d)

  • Fig.3 Chondrite-normalized REE and primitive mantle-normalized trace element plots of (a, b) serpentine after olivine and (c, d) serpentine after pyroxene

  • 球粒陨石标准化数据来自Sun and McDonough(1989); 原始地幔标准化数据据Palme and O'Neill(2014); 原始矿物为辉石和橄榄石的蛇纹石数据来自Deschamps et al.(2012)Lafay et al.(2013)Peters et al.(2020)Xie Zhipeng et al.(2021)

  • Chondrite and primitive mantle normalized data according to Sun and McDonough (1989) , Palme and O'Neill (2014) , respectively; the serpentine after pyroxene and olivine data from Deschamps et al. (2012) , Lafay et al. (2013) , Peters et al. (2020) , Xie Zhipeng et al. (2021)

  • 2.2 全球蛇纹岩全岩微量元素特征

  • 当橄榄岩体系中有水进入时会发生蛇纹石化作用。蛇纹石矿物含有很高的水,但是全岩的烧失量(LOI)值的大小并不能够直接反映蛇纹石化的程度,因为蛇纹岩中还存在一些其他的含水较高的矿物(如水镁石、绿泥石、滑石等)影响LOI的大小。球粒陨石标准化稀土元素分布图和原始地幔标准化微量元素蛛网图结果显示俯冲相关蛇绿岩中的蛇纹岩、弧前蛇纹岩以及洋中脊蛇纹岩之间大部分是重叠的(图4)。所有蛇纹岩样品中,由于在蛇纹石化之前不同程度的熔体亏损和再富集作用,流体不活动性元素(如Th和LREE)的浓度分散在几个数量级上。由于稀土和微量元素含量受流体-岩石的相互作用以及其他因素的影响,比如原始矿物相的元素含量、水化作用时的稳定性、渗滤流体的元素含量、次生矿物的特征等。因此,蛇纹岩的稀土和微量元素分布特征能够为蛇纹石化以及脱水过程中产生的流体的属性提供很关键的信息。

  • 不同构造环境的蛇纹岩中FME的富集特征也并不完全一致(图4)。MOR(Mid-Ocean Ridge)蛇纹岩整体具有强烈富集(经常超过100倍PM)Tl、U、B、Sb及As,中度富集(大多低于100倍PM)Cs、Rb、Ba、K、Pb、Sb、Mo、Sr、P和Li的特征(图4b; Peters et al.,2017)。本文对慢速扩张的大西洋中脊蛇纹岩和超慢速扩张的西南印度洋中脊蛇纹岩REE和微量元素对比可以发现印度洋中脊蛇纹岩具有整体较高的REE和微量元素,太平洋脊蛇纹岩则介于两者之间,FME的富集程度要略小一些(图4 a、b)。大多数的弧前蛇纹岩强烈富集B和Sr,中度富集Cs、Tl、Rb、Ba、U、K、As、Sb和Li(图4d)。根据原岩可将弧前蛇纹岩分为蛇纹岩泥、橄榄岩变质形成的蛇纹岩以及蛇纹石化纯橄岩,同一环境的弧前蛇纹岩泥相比于蛇纹岩和蛇纹石化纯橄岩具有更高的REE和微量元素分布,蛇纹石化纯橄岩相比于蛇纹岩则具有相对低的REE及流体不活动性元素(图4c,d),这些特征主要继承自其原岩。相比于洋中脊和弧前蛇纹岩,俯冲相关蛇绿岩中的蛇纹岩显示更加平坦的REE分布,富集LREE和中稀土元素(middle rare earth element,MREE; 图4e),FME的分布范围更加宽泛,其强烈富集B、Pb及W,中度富集Rb、Ba、Th、U、Sr(图4f)。蛇纹岩脱蛇纹石化作用形成的绿泥石橄榄岩具有较明显的Eu负异常和相对较低含量的FME,其整体和俯冲带蛇纹岩相似(图4e、f)。

  • 图4 不同构造环境的蛇纹岩稀土元素分布图和微量元素蛛网图

  • Fig.4 Chondrite-normalized REE and primitive mantle-normalized trace element plots of serpentinite from different tectonic setting

  • (a)、(b)—洋中脊蛇纹岩;(c)、(d)—现代弧前蛇纹岩;(e)、(f)—俯冲相关蛇绿岩中的蛇纹岩; 球粒陨石标准化数据来自Sun and McDonough(1989); 原始地幔标准化数据来自Palme and O'Neill(2014); 洋中脊蛇纹岩数据来自Niu Yaoling(2004)Paulick et al.(2006),Augustin et al.(2008,2012),Delacour et al.(2008)Jöns et al.(2010)Kodolányi et al.(2012)Boschi et al.(2013)Andreani et al.(2014),Rouméjon et al.(2015),Dessimoulie et al.(2020)Whattam et al.(2022); 弧前蛇纹岩数据来自Parkinson and Pearce(1998)Pearce et al.(2000),Savov et al.(2005a,2005b,2007),Geldmacher et al.(2008)Kodolányi et al.(2012)Debret et al.(2019); 俯冲相关蛇绿岩中的蛇纹岩数据来自Coleman and Keith(1971)Viti and Mellini(1998)Anselmi et al.(2000)Scambelluri et al.(2001),Chalot Prat(2003),Li Xuping et al.(2004)Garrido et al.(2005)Li and Lee(2006)Agranier et al.(2007)Hattori and Guillot(2007)Saumur et al.(2010)Aziz et al.(2011)Blanco-Quintero et al.(2011)Deschamps et al.(2012)Kodolányi et al.(2012)Cannaò et al.(2016),Debret et al.(2016,2021),Peters et al.(2020)Lazar et al.(2021)Ali et al.(2021)Xie Zhipeng et al.(2021)Zhao Jing et al.(2022); serp—serpentinite; harz—harzburgite

  • (a) , (b) —Mid-ocean ridge serpentinite; (c) , (d) —modern forearc serpentinite; (e) , (f) —subduction related ophiolitic serpentinite; chondrite and primitive mantle normalized data according to Sun and McDonough (1989) , Palme and O'Neill (2014) , respectively; the mid-ocean ridge serpentinite data from Niu Yaoling (2004) , Paulick et al. (2006) , Augustin et al. (2008, 2012) , Delacour et al. (2008) , Jöns et al. (2010) , Kodolányi et al. (2012) , Boschi et al. (2013) , Andreani et al. (2014) , Rouméjon et al. (2015) , Dessimoulie et al. (2020) , Whattam et al. (2022) ; the modern forearc serpentinite data from Parkinson and Pearce (1998) , Pearce et al. (2000) , Savov et al. (2005a, 2005b, 2007) , Geldmacher et al. (2008) , Kodolányi et al. (2012) , Debret et al. (2019) ; the subduction related ophiolitic serpentinite data from Coleman and Keith (1971) , Viti and Mellini (1998) , Anselmi et al. (2000) , Scambelluri et al. (2001) , Chalot Prat (2003) , Li Xuping et al. (2004) , Garrido et al. (2005) , Li and Lee (2006) , Agranier et al. (2007) , Hattori and Guillot (2007) , Saumur et al. (2010) , Aziz et al. (2011) , Blanco-Quintero et al. (2011) , Deschamps et al. (2012) , Kodolányi et al. (2012) , Cannaò et al. (2016) , Debret et al. (2016, 2021) , Peters et al. (2020) , Lazar et al. (2021) , Ali et al. (2021) , Xie Zhipeng et al. (2021) , Zhao Jing et al. (2022) ; serp—serpentinite; harz—harzburgite

  • 对于许多FME,特别是亲铜元素的数据是较少甚至不存在的。例如,Tl在MOR蛇纹石中强烈富集,因此Tl在示踪蛇纹石化过程中流体传导的富集过程具有很大的潜力。然而,弧前蛇纹石中Tl的数据非常少,导致很难在不同的蛇纹石化环境中系统地限定Tl的特征。此外,两种蛇纹石化环境的中等-强烈富集的元素B、As、Sb等的有限数据不能够精确定义那些潜在的有效流体示踪剂在蛇纹石化过程中的趋势(Peters et al.,2017)。相比于以上亲铜元素,亲铁元素W在洋中脊和弧前以及俯冲相关蛇绿岩中的蛇纹岩都很富集。Babechuk et al.(2010)对亏损的地幔岩石高含量的W元素特征解释为W可在合金相中不受部分熔融影响而残留。但是蛇纹岩高达100倍原始地幔值的标准化的W正异常则需要通过水化过程富集实现。

  • 2.3 流体活动性元素行为

  • FME富集的典型表现是相比于强不相容和流体不活动元素(Th、Ce等)具有较高的含量。FME的相对丰度的演化特征取决于富集过程和富集环境,而与绝对富集程度无关。因此,对于蛇纹岩的研究使用元素丰度比来限定要比使用绝对元素浓度更加科学和准确。Peters et al.(2017)的研究表明不同环境中的碱金属元素具有较明显的差异,尤其是碱金属元素和U的比值具有示踪不同构造环境蛇纹岩流体的潜力。FME和流体不活动性元素的相互关系表明弧前环境和洋中脊环境中分别具有明显的高的Cs和U(图4)。蛇纹岩流体中的Cs和U的行为在弧前和洋中脊环境中是截然不同的,弧前蛇纹岩具有优先富集Cs而洋中脊蛇纹岩则具有优先富集U元素的特征(Peters et al.,2017)。因为当U以[UO2]2+离子的形式存在时溶解度很高,海水中具有明显富集的U,所以能进入MOR蛇纹岩。因此海水来源的氧化的U难以大量进入到弧前蛇纹岩环境。碱金属元素与U/FME的比值表明洋中脊蛇纹岩中碱金属元素的富集和U的富集具有很强烈的耦合性,表明他们具有一个共同的富集过程,即蛇纹石化过程中溶入海水的元素的加入。而在弧前环境中,碱金属元素的富集与U元素的富集发生了解耦,碱金属元素的富集比U元素的富集更为明显。弧前氧化程度较低的流体可能来源于:经沉积岩平衡之后的洋壳的水; 浅部板片脱水释放的流体。

  • 洋中脊蛇纹岩可以用Li/Cs>100以及Rb/Cs>10来区分,而弧前蛇纹岩用Li/Cs<100以及Rb/Cs<10来辨别(图5a、b)。这表明,与弧前环境相比,洋中脊蛇纹石化过程中Li和Rb的逐渐富集相对于Cs的富集更为显著。这种富集现象至少部分地反映了潜在流体来源的继承特征。弧前蛇纹岩具有较强的Cs富集,因此可以确定弧前流体与富含Cs的沉积物相平衡。到目前为止,获得的少数W的数据显示W和富集的FME元素(包括B、Cs、U)相耦合可达PM的100倍。虽然通过锡钨矿床的赋存、弧熔岩中W的富集和高温高压实验记录了W在高温下的水溶液流动性,但推断出的W在低温蛇纹石化环境中的流动性是未知的(Audétat et al.,2000; Bali et al.,2012; Peters et al.,2017)。需要更多的数据来探讨这个问题。

  • 弧前蛇纹岩中Li和Cs vs. Th没有观察到明显的相关性,类似的MOR蛇纹岩的U vs. Th也没有明显相关的趋势(图5e、f)。因此,这些元素的富集可能不是岩浆过程形成的。对于弧前蛇纹岩中的U vs. Th比值较小,MOR蛇纹岩中Li、Rb、Cs和Th的比值较小,但是,其正相关关系表明存在由熔体-岩石相互作用反应引起的次要的变化。保存在弧前蛇纹岩中的明显的U vs. Th富集的趋势可被解释为岩浆的残留,这再次强调了在这种蛇纹石化环境中流体流动性非常有限,因此U的富集也非常有限。对于Li、Rb和Cs vs. Th,趋势是在海底蛇纹石化过程中Li、Rb和Cs的富集具有较大的重叠。因此,基于蛇纹岩数据集,仍然无法确定熔融岩石反应对这些元素的影响。

  • 结合碱金属元素-U比值,洋中脊和弧前的不同蛇纹石化趋势可以在元素比值图中显示出来(图5),这些元素比值图以亏损地幔为起点,随着蛇纹石变质脱水程度的增加逐渐远离亏损地幔。大西洋、印度洋和太平洋中脊蛇纹石的FME富集模式没有差异,大西洋中脊数据有较大的分散,表明快速和慢速扩张的洋中脊系统总体具有相似的趋势。因此,FME在洋中脊蛇纹岩中的富集是通过海水水化作用形成的。

  • 图5 碱金属元素结合U元素区分不同环境的蛇纹岩(a~f)

  • Fig.5 Alkali-U element ratio discrimination for serpentinite from different tectonic setting (a~f)

  • 原始地幔数据据Palme and O'Neill(2014),亏损地幔数据据Salters and Stracke(2004),海水的数据据Li Yuanhui(1991),洋中脊蛇纹岩和现代弧前蛇纹岩范围据Peters et al.(2017); 蛇纹岩数据来源与图4一致; serp—serpentinite; harz—harzburgite

  • Primitive mantle, depleted mantle and sea water data according to Palme and O'Neill (2014) , Salters and Stracke (2004) , Li Yuanhui (1991) , respectively; the field of the mid-ocean ridge serpentinite and the modern forearc serpentinite are modified after Peters et al. (2017) ; the serpentinites data are as the same as Fig.4; serp—serpentinite; harz—harzburgite

  • FME的富集可能是一系列累积过程的产物,即产生的FME特征可能是不同水化阶段的结果。洋中脊和弧前的蛇纹岩轻微重叠(图5)与样品位置并无系统关系,但所有洋中脊和弧前的样品具有比较明显的区分。除了可能的分析原因,这种重叠可能是初始成分变化的结果; 更简单环境中的蛇纹石化; 甚至可能是与上覆的远洋沉积物相互作用造成的。洋中脊蛇纹岩相比于弧前蛇纹岩大多数的数据点,其具有富集的Li/Cs和Rb/Cs,这和从图5c、d中得到的富集的比值是一致的。这些比值主要受控于Cs的富集,因为Li和Rb在洋中脊和弧前环境中的富集是相似的。图5c、d的MOR蛇纹岩中也观察到了一致的U/Li和U/Rb的富集。而弧前蛇纹岩的U/Li和U/Rb没有很好的约束,因为弧前蛇纹岩中有限的U。蛇纹岩脱水后形成的高压岩石残余体中含有无水的橄榄石、斜方辉石、单斜辉石以及石榴子石仍然含有相当数量的卤素和流体活动性微量元素。实际上,蛇纹岩脱水过程不会释放出其全部的FME,蛇纹岩脱水形成的超镁铁质岩石可以将卤素和FME异常转移到下部的深地幔。

  • 考虑到蛇纹岩的碱金属元素和U元素的特征可能通过与沉积物的相互作用沿着弧前的趋势进化,并且其他FME的丰度模式不会提供额外的区分,因此利用现有数据在弧前环境下不可能进一步区分蛇纹石化的环境。沿着弯折带大洋岩石圈地幔的水化作用,通过与增生楔来源的沉积物平衡的流体,预计会留下沉积物FME特征,这些特征与板块界面浅层板片脱水阶段释放的流体使分离的板片或地幔楔橄榄岩发生蛇纹岩化。将氧化还原敏感的流体示踪剂(U、As、Sb和Mo)与对氧化还原不敏感的碱金属元素结合使用,可以在未来提供这方面的积极证据。

  • 3 蛇纹岩非传统同位素Fe-Zn-Cu的行为

  • 随着非传统稳定同位素地球化学研究领域的迅速发展,对不同同位素系统的研究发现许多同位素显示出独特的地球化学性质。金属稳定同位素地球化学是近年来出现的一种示踪不同地球化学过程的有力工具(Teng Fangzhen et al.,2017)。传统的研究方法难以区分板片脱挥发分过程中元素的迁移,近年来的研究发现Fe-Zn稳定同位素对示踪俯冲带的流体迁移及物质循环具有很大的潜力(Debret et al.,201620202021; Pons et al.,2016)。本文总结了已报道的不同环境和岩性的Fe、Zn、Cu同位素数据,分析不同条件下的同位素行为(图6)。

  • 低温蛇纹石化形成的洋中脊蛇纹岩除个别数据外δ56Fe整体较低(图6a)。阿尔卑斯变质蛇绿岩中的蛇纹岩δ56Fe值随蛇纹岩进变质程度的增加而增大,如利蛇纹石蛇纹岩δ56Fe值为-0.02‰±0.14‰,利蛇纹石-叶蛇纹石蛇纹岩δ56Fe值为0.07‰±0.07‰,叶蛇纹石蛇纹岩δ56Fe值为0.08‰±0.11‰(图6d; Debret et al.,2016)。蛇纹岩在俯冲带进变质过程中Fe同位素具有从利蛇纹石蛇纹岩到叶蛇纹石蛇纹岩δ56Fe值与Fe3+/∑Fe值呈负相关关系,表明蛇纹石脱水形成的流体中含Fe2+,使得蛇纹岩表现为重Fe同位素的特征(Debret et al.,20162021)。Chen Yixiang et al.(2019)对西阿尔卑斯蛇纹岩脱水流体交代变花岗岩形成的白片岩的研究表明,俯冲带存在蛇纹岩来源的还原性流体。在较高压力条件下Fe同位素在变质蛇纹岩与地幔橄榄岩在误差范围内是一致的,暗示至少从脱水残留相的角度来看没有发现显著的Fe同位素分馏行为(Debret et al.,2021)。Deng Jianghong et al.(2022)对马里亚纳弧前地幔楔蛇纹石化橄榄岩和蛇纹岩的研究显示地幔楔蛇纹石化过程中Fe同位素具有显著的分馏现象,并可能会导致岛弧地幔逐渐氧化并富集轻Fe同位素。就目前的研究程度,蛇纹岩释放的流体是否充分富集Fe,从而显著影响弧下地幔橄榄岩及其岩浆的氧化还原状态及Fe同位素特征,仍然没有明确的结论。

  • 相比Fe同位素来说,Zn同位素能够记录更加灵敏的信息。因此Zn同位素结合Fe同位素能够提供更加全面的证据。Pons et al.(2011)首次利用Zn同位素来研究地质流体化学特征,对Isua表壳带的太古代蛇纹岩的Zn同位素的研究表明,这些古老的蛇纹岩与马里亚纳弧前现代蛇纹岩组成很相似,它们的Zn同位素比现代洋脊蛇纹岩和蛇绿岩蛇纹岩都要轻。这种低Zn同位素的弧前蛇纹岩被解释为受到高pH的富碳酸盐流体渗滤的结果(Pons et al.,2011)。Zn同位素也可应用于研究俯冲带流体-岩石相互作用及流体转移过程中的氧化还原状态。Zn同位素是自然界的含C和S的流体的敏感示踪剂(Black et al.,2011),因此Zn同位素具有间接评估地质过程中氧化还原状态的潜力。俯冲过程中含水大洋岩石圈的变质作用导致了含水矿物相的脱水,使流体在俯冲板片与上覆地幔楔块之间转移(Bouilhol et al.,20152022)。这种流体通常被认为在俯冲带氧化还原敏感组分的转移中起着关键作用(Evans and Tompkins,2011; Evans and Frost,2020)。但是对精确的氧化还原机制的认识还不清楚。近年来利用Zn同位素限定俯冲带流体性质的研究越来越多。Pons et al.(2016)对阿尔卑斯变质蛇绿岩中蛇纹岩的Zn同位素数据分析表明蛇纹岩δ66Zn值随着变质程度的增加而降低(图6e),而流体物质记录到更重的Zn同位素组成,表明这种同位素分馏的可能机制是含Zn-SOX的蛇纹岩来源氧化性流体的释放(Pons et al.,2016),证明了Zn同位素在追踪俯冲带流体循环过程中高氧化流体流动性方面的敏感性。Debret et al.(2018)进一步研究发现Zn和Fe稳定同位素是板块脱挥发过程中示踪氧化性流体的有用示踪剂,并且可以用于评估流体中碳酸盐的转移。在蛇纹岩高压脱水形成的绿泥石方辉橄榄岩样品中,Zn同位素具有明显的分馏现象,并且Zn和δ66Zn之间的正相关关系反映氧化性流体的存在(Debret et al.,2021)。除地幔岩石之外,Inglis et al.(2017)对一套典型的俯冲带不同变质条件下形成的变质镁铁质洋壳(变质玄武岩和变质辉长岩)Zn同位素特征的研究发现即使在榴辉岩相经过高压变质作用后,产生的无水榴辉岩组合仍然保留了与现代MORB(Mid-Ocean Ridge Basalt)估计值在误差范围相似的δ66Zn值,这表明俯冲带的脱水并没有引起俯冲的基性岩中Zn同位素组成的改变。因此,在基性洋壳脱水过程中释放的流体不是溶解的Zn-SOX或Zn-COX的理想载体。Chen Zuxing et al.(2021)对马里亚纳和琉球岛弧对应不同板片深度的火山岩样品进行Zn同位素分析发现马里亚纳岛弧和冲绳海槽南部的火山岩样品Zn同位素组成比MORB低,而中部的火山岩Zn同位素组成与MORB一致,且δ66Zn与流体活动性指标(87Sr /86Sr和Ba/La)以及板片俯冲深度具有很好的相关性。表明Zn同位素可以有效区分板片蛇纹岩和地幔楔蛇纹岩脱水对岛弧岩浆的影响,并对弧前地幔楔蛇纹岩可以被卷入俯冲通道进入弧下深度,进而脱水改造弧下地幔楔的假说提供了确凿的证据。

  • 图6 不同类型蛇纹岩Fe-Zn-Cu同位素分布图

  • Fig.6 Fe-Zn-Cu isotope compositions for serpentinite from different tectonic setting

  • (a)—Fe同位素数据(来自Craddock et al.,2013; Su Benxun et al.,2015; Debret et al.,201620182021; Deng Jianghong et al.,2022);(b)—Zn同位素数据(来自Pons et al.,20112016; Debret et al.,20182021; Liu Shenao et al.,2019; Chen Zuxing et al.,2021);(c)—Cu同位素数据(来自Debret et al.,2018; Liu Shenao et al.,2019; Brzozowski et al.,2021); serp—serpentinite; harz—harzburgite

  • (a) —Fe isotope data from Craddock et al., 2013; Su Benxun et al., 2015; Debret et al., 2016, 2018, 2021; Deng Jianghong et al., 2022; (b) —Zn isotope data from Pons et al., 2011, 2016; Debret et al., 2018, 2021; Liu Shenao et al., 2019; Chen Zuxing et al., 2021; (c) —Cu isotope data from Debret et al., 2018; Liu Shenao et al., 2019; Brzozowski et al., 2021; serp—serpentinite; harz—harzburgite

  • 在这些研究中,Fe和Zn稳定同位素的变化归因于C、S和Cl流体在变质过程中的氧化还原反应和相关的金属迁移。这些结果突出了非传统稳定同位素系统可用于跟踪氧化还原敏感元素的迁移潜力,并量化与俯冲带进变质作用相关的氧化还原收支变化。但是目前对于俯冲相关蛇绿岩中的蛇纹岩的非传统稳定同位素的相关研究还比较少,对于俯冲带变质过程中释放的流体中氧化还原敏感和挥发性元素的流动性和形态的认识还不清晰。最近的研究表明:弧岩浆组成的Cu是很有潜力的板片蛇纹岩来源流体的示踪剂(Zhang Yuxiang et al.,2021)。已有的蛇纹岩和橄榄岩Cu同位素的研究显示超慢速扩张的西南印度洋脊橄榄岩的δ65Cu值明显高于原始地幔值,蛇绿岩中的橄榄岩接近于原始地幔值,而洋中脊蛇纹岩具有明显低且较大范围的δ65Cu值(图6c; Debret et al.,2018)。但是关于在橄榄岩蛇纹石化过程中Cu同位素的分馏行为还不清楚。因此,对非传统稳定同位素体系能否用于示踪俯冲带从板片到地幔楔的氧化还原交换仍需进一步研究。特别是基于目前的技术水平,有必要结合这些同位素体系来进一步解决这一问题。

  • 4 展望

  • 蛇纹岩是上地幔流体活动性元素的重要储库并参与下地幔交代作用已被大量研究所证实,其对地球浅(表)层与深部的物质、能量交换具有至关重要的作用。近年来科学家逐渐对蛇纹岩开展相对精细的矿物层次以及非传统稳定同位素的研究,对蛇纹岩的认识也有了很大的进展。但是,还存在许多关键的科学问题亟需解决,比如:① 不同条件下精细的蛇纹石化过程的刻画; ② 如何比较准确地区分不同环境中的蛇纹岩; ③ 蛇纹岩脱水过程释放的流体属性; ④ 蛇纹岩对俯冲带氧化还原状态的影响程度; ⑤ 蛇纹岩对全球物质、能量循环过程中贡献程度等。

  • 利用全岩地球化学比较难以区分蛇纹岩形成及脱水过程中的元素行为。目前,对蛇纹岩FME的迁移以及俯冲带氧化还原状态研究的比较可行方法是对蛇纹石组分、结构等进行原位分析结合传统及非传统稳定同位素分析。近年来对非传统稳定同位素的研究表明Fe、Zn、Cu等金属稳定同位素在示踪俯冲相关蛇绿岩中的蛇纹岩流体循环和评估氧化还原状态等方面有很大的潜力。但是目前利用非传统稳定同位素进行俯冲带物质循环的研究主要集中在马里亚纳等现代俯冲带以及阿尔卑斯地区。对于具有代表性的全球范围俯冲带的研究还存在很多研究空缺,需要我们在未来做更多的相关研究来探讨非传统稳定同位素在蛇纹石化及脱水作用中所能反映的具体科学意义。

  • 未来我们需要通过结合多种研究手段、开发新的研究方法来解决这些问题。比如结合理论计算、数值模拟、实验模拟、非传统稳定同位素等研究手段,多角度分析解释,才能够得到更加科学、准确的结论。

  • 致谢:感谢主编、编辑以及两名审稿人在本文修改过程中提出的宝贵意见。

  • 参考文献

    • Agranier A, Lee C T A, Li Z X A, Leeman W P. 2007. Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chemical Geology, 245(3-4): 230~241.

    • Agrinier P, Cannat M. 1997. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge(23°N). In: Karson J A, Cannat M, Miller D J, Elthon D, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 153: 381~388.

    • Ali S, Ntaflos T, Sami M. 2021. Geochemistry of Khor Um-Safi ophiolitic serpentinites, central eastern desert, Egypt: implications for neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry, 81(1): 125690.

    • Alt J C, Shanksiii W. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242(3-4): 272~285.

    • Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.

    • Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick A E, Fouquet Y. 2014. Tectonic structure, lithology, and hydrothermal signature of the rainbow massif (mid-Atlantic ridge 36° 14′ N). Geochemistry, Geophysics, Geosystems, 15(9): 3543~3571.

    • Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth and Planetary Science Letters, 357: 238~248.

    • Anselmi B, Mellini M, Viti C. 2000. Chlorine in the Elba, Monti Livornesi and Murlo serpentines: evidence for sea-water interaction. European Journal of Mineralogy, 12(1): 137~146.

    • Augustin N, Lackschewitz K S, Kuhn T, Devey C W. 2008. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Marine Geology, 256(1-4): 18~29.

    • Augustin N, Paulick H, Lackschewitz K S, Eisenhauer A, Garbe-Schönberg D, Kuhn T, Botz R, Schmidt M. 2012. Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr-O isotope data. Geochemistry, Geophysics, Geosystems, 13(3), doi: 10. 1029/2011GC003903.

    • Audétat A, Günther D, Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-WF-mineralized mole granite (Australia). Geochimica et Cosmochimica Acta, 64(19): 3373~3393.

    • Aziz N R H, Aswad K J A, Koyi H A. 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan region, Iraq. Geological Magazine, 148(5-6): 819~837.

    • Babechuk M G, Kamber B S, Greig A, Canil D, Kodolányi J. 2010. The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales. Geochimica et Cosmochimica Acta, 74(4): 1448~1470.

    • Bali E, Keppler H, Audetat A. 2012. The mobility of W and Mo in subduction zone fluids and the Mo-W-Th-U systematics of island arc magmas. Earth and Planetary Science Letters, 351: 195~207.

    • Barnes J D, Beltrando M, Lee C T A, Cisneros M, Loewy S, Chin E. 2014. Geochemistry of Alpine serpentinites from rifting to subduction: a view across paleogeographic domains and metamorphic grade. Chemical Geology, 389: 29~47.

    • Barnes J D, Manning C, Scambelluri M, Selverstone J. 2018. The behavior of halogens during subduction zone processes. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Berlin: Springer, 545~590.

    • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3-4): 373~393.

    • Black J R, Kavner A, Schauble E A. 2011. Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc. Geochimica et Cosmochimica Acta, 75(3): 769~783.

    • Blanco-Quintero I, Proenza J A, Garcia-Casco A, Tauler E, Gali S. 2011. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, Eastern Cuba. Geologica Acta, 9: 389~405.

    • Bonatti E. 1976. Serpentinite protrusions in the oceanic crust. Earth and Planetary Science Letters, 32(2): 107~113.

    • Boschi C, Bonatti E, Ligi M, Brunelli D, Cipriani A, Dallai L, D'Orazio M, FrühGreen G L, Tonarini S, Barnes J D, Bedini R M. 2013. Serpentinization of mantle peridotites along an uplifted lithospheric section, mid Atlantic ridge at 11° N. Lithos, 178: 3~23.

    • Bostock M G, Hyndman R D, Rondenay S, Peacock S M. 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417(6888): 536~538.

    • Bouilhol P, Magni V, van Hunen J, Kaislaniemi L. 2015. A numerical approach to melting in warm subduction zones. Earth and Planetary Science Letters, 411: 37~44.

    • Bouilhol P, Debret B, Inglis E C, Warembourg M, Grocolas T, Rigaudier T, Villeneuve J, Burton K W. 2022. Decoupling of inorganic and organic carbon during slab mantle devolatilisation. Nature Communications, 13(1): 1~10.

    • Bowen N L, Tuttle O F. 1949. The system MgO-SiO2-H2O. Geological Society of America Bulletin, 60(3): 439~460.

    • Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.

    • Cannaò E, Scambelluri M, Agostini S, Tonarini S, Godard M. 2016. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study(Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta, 190: 115~133.

    • Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge(22°-24°N). Geology, 23(1): 49~52.

    • Chalot-Prat F, Ganne J, Lombard A. 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69(3-4): 69~103.

    • Chen Yixiang. 2021. The fractionation behavior of Mg and Fe isotopes during serpentinite dehydration in subduction zones: progress and prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1034~1048 (in Chinese with English abstract).

    • Chen Yixiang, Lu Wenning, He Yongsheng, Schertl H P, Zheng Yongfei, Xiong Jiawei, Zhou Kun. 2019. Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: a tale of whiteschist from the Western Alps. Geochimica et Cosmochimica Acta, 267: 1~16.

    • Chen Yixiang, Demény A, Schertl H P, Zheng Yongfei, Huang Fang, Zhou Kun, Jin Qizhen, Xia Xiaoping. 2020. Tracing subduction zone fluids with distinct Mg isotope compositions: insights from high-pressure metasomatic rocks(leucophyllites)from the Eastern Alps. Geochimica et Cosmochimica Acta, 271: 154~178.

    • Chen Zuxing, Chen Jiubin, Zeng Zhigang, Soh Tamehe L, Zhang Ting, Zhang Yuxiang, Yin Xuebo, Wang Xiaoyuan, Chen Shuai, Shuai Wangcai. 2021. Zinc isotopes of the mariana and ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022261.

    • Coleman R G, Keith T E. 1971. A chemical study of serpentinization—Burro Mountain, California. Journal of Petrology, 12(2): 311~328.

    • Cooper G F, Macpherson C G, Blundy J D, Maunder B, Allen R W, Goes S, Collier J S, Bie L, Harmon N, Hicks S P, Iveson A A, Prytulak J, Rietbrock A, Rychert C A, Davidson J P. 2020. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582(7813): 525~529.

    • Craddock P R, Warren J M, Dauphas N. 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365: 63~76.

    • Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.

    • Debret B, Koga K T, Nicollet C, Andreani M. 2013. F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova, 26(2): 96~101.

    • Debret B, Millet M A, Pons M L, Bouilhol P, Inglis E, Williams H. 2016. Isotopic evidence for iron mobility during subduction. Geology, 44(3): 215~218.

    • Debret B, Beunon H, Mattielli N, Andreani M, Da Costa I R, Escartin J. 2018. Ore component mobility, transport and mineralization at mid-oceanic ridges: a stable isotopes (Zn, Cu and Fe) study of the rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Earth and Planetary Science Letters, 503: 170~180.

    • Debret B, Albers E, Walter B, Price R, Barnes J D, Beunon H, Facq S, Gillikin D P, Mattielli N, Williams H. 2019. Shallow forearc mantle dynamics and geochemistry: new insights from IODP Expedition 366. Lithos, 326: 230~245.

    • Debret B, Reekie C D J, Mattielli N, Beunon H, Ménez B, Savov I, Williams H M. 2020. Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc. Geochemical Perspectives Letters, 12: 46~51.

    • Debret B, Garrido C J, Pons M L, Bouilhol P, Inglis E, López Sánchez-Vizcaíno V, Williams H. 2021. Iron and zinc stable isotope evidence for open-system high-pressure dehydration of antigorite serpentinite in subduction zones. Geochimica et Cosmochimica Acta, 296: 210~225.

    • Delacour A, Früh-Green G L, Frank M, Gutjahr M, Kelley D S. 2008. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology, 254(1-2): 19~35.

    • Deng Jianghong, He Yongsheng, Zartman R E, Yang Xiaoyong, Sun Weidong. 2022. Large iron isotope fractionation during mantle wedge serpentinization: implications for iron isotopes of arc magmas. Earth and Planetary Science Letters, 583: 117423.

    • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3-4): 262~277.

    • Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, Wunder B, France L. 2012. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chemical Geology, 312: 93~117.

    • Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178: 96~127.

    • Dessimoulie L, Delacour A, Guillaume D, Chevet J, Cottin J-Y. 2020. Major and trace elements exchanges during fluid-rock interaction at ultraslow-spreading oceanic lithosphere: example of the South West Indian Ridge (SWIR). Lithos, 352: 105233.

    • Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405~412.

    • Evans B W. 2004. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46(6): 479~506.

    • Evans B W, Trommsdorff V. 1978. Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40(3): 333~348.

    • Evans K A. 2012. The redox budget of subduction zones. Earth-Science Reviews, 113(1-2): 11~32.

    • Evans K A, Tomkins A G. 2011. The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3-4): 401~409.

    • Evans K A, Frost B R. 2020. Deserpentinization in subduction zones as a source of oxidation in arcs: a reality check. Journal of Petrology, 62(1): 1~32.

    • Faccenda M, Burlini L, Gerya T V, Mainprice D. 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455(7216): 1097~1100.

    • Früh-Green G L, Plas A, Lécuyer C. 1996. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895). Proceedings of the Ocean Drilling Program, Scientific Results, 147: 255~291.

    • Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 65 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46(3): 555~578.

    • Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539(7629): 420~424.

    • Garrido C J, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T, Trommsdorff V, Alard O, Bodinier J L, Godard M. 2005. Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochemistry, Geophysics, Geosystems, 6(1): https: //doi. org/10. 1029/2004GC000791.

    • Geldmacher J, Hoernle K, Van Den Bogaard P, Hauff F, Klugel A. 2008. Age and geochemistry of the central American Forearc basement (DSDP leg 67 and 84): insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP. Journal of Petrology, 49(10): 1781~1815.

    • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics, 21(6): https: //doi. org/10. 1029/2002TC001406.

    • Gilio M. 2017. Alpine serpentinite geochemistry: a key to unravel subduction accretion at the plate interface. Doctoral thesis of University of Genova, Italy, 308.

    • Gilio M, Scambelluri M, Agostini S, Godard M, Peters D, Pettke T. 2019. Petrology and geochemistry of serpentinites associated with the ultra-high pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 60(6): 1229~1262.

    • González-Jiménez J M, Plissart G, Garrido L N, Padrón-Navarta J A, Aiglsperger T, Romero R, Marchesi C, Moreno-Abril A J, Reich M, Barra F, Morata D. 2017. Titanian clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction. European Journal of Mineralogy, 29(6): 959~970.

    • Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34(21): doi: 10. 1029/2007GL031059.

    • Grove T, Chatterjee N, Parman S, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1-2): 74~89.

    • Guillot S, Hattori K H, de Sigoyer J. 2000. Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology, 28(3): 199~202.

    • Guillot S, Hattori K H, de Sigoyer J, Nägler T, Auzende A L. 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 193(1-2): 115~127.

    • Guillot S, Hattori K H, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: a review. Subduction Zone Geodynamics, 175~205. Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1~19.

    • Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.

    • Hattori K H, Guillot S. 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8(9): DOI: 10. 1029/2007GC001594.

    • Hermann J, Müntener O, Scambelluri M. 2000. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327(3-4): 225~238.

    • Hermann J, Spandler C, Hack A, Korsakov A. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos, 92(3-4): 399~417.

    • Hilairet N, Reynard B. 2009. Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics, 465(1-4): 24~29.

    • Hirth G, Guillot S. 2013. Rheology and tectonic significance of serpentinite. Elements, 9(2): 107~113.

    • Inglis E C. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.

    • John T, Klemd R, Gao J, Garbe-Schönberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogitefacies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1~24.

    • John T, Scambelluri M, Frische M, Barnes J D, Bach W. 2011. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth and Planetary Science Letters, 308(1-2): 65~76.

    • Jöns N, Bach W, Klein F. 2010. Magmatic influence on reaction paths and element transport during serpentinization. Chemical Geology, 274(3-4): 196~211.

    • Kendrick M A, Scambelluri M, Honda M, Phillips D. 2011. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature Geoscience, 4(11): 807~812.

    • Kendrick M A, Hémond C, Kamenetsky V S, Danyushevsky L, Devey C W, Rodemann T, Jackson M G, Perfit M R. 2017. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nature Geoscience, 10(3): 222~228.

    • Kodolányi J, Pettke T, Spandler C, Kamber B S, Gméling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235~270.

    • Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C. 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38~54.

    • Lazar C, Cooperdock E H G, Seymour B H T. 2021. A continental forearc serpentinite diapir with deep origins: elemental signatures of a mantle wedge protolith and slab-derived fluids at New Idria, California. Lithos, 398: 106252.

    • Li Xuping, Rahn M, Bucher K. 2004. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22(3): 159~177.

    • Li Yuanhui. 1991. Distribution patterns of the elements in the ocean: a synthesis. Geochimica et Cosmochimica Acta, 55(11): 3223~3240.

    • Li Z X A, Lee C T A. 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology, 235(1-2): 161~185.

    • Liu Shenao, Liu Pingping, Lv Y, Wang Zezhou, Dai Jingen. 2019. Cu and Zn isotope fractionation during oceanic alteration: implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.

    • Malvoisin B. 2015. Mass transfer in the oceanic lithosphere: serpentinization is not isochemical. Earth and Planetary Science Letters, 430: 75~85.

    • Marchesi C, Garrido C J, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T. 2013. Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos, 178: 128~142.

    • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12): 862~867.

    • Mellini M, Trommsdorff V, Compagnoni R. 1987. Antigorite polysomatism: behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97(2): 147~155.

    • Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.

    • Padrón-Navarta J A, Lopez Sanchez-Vizcaino V, Garrido C J, Gomez-Pugnaire M T. 2011. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52(10): 2047~2078.

    • Palme H, O'Neill H St C. 2014. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. Elsevier, 1~39.

    • Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.

    • Paulick H, Bach W, Godard M, De Hoog J C M, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234(3-4): 179~210.

    • Pearce J A, Barker P F, Edwards S J, Parkinson I J, Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the south sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36~53.

    • Perrillat J, Daniel I, Koga K, Reynard B, Cardon H, Crichton W. 2005. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth and Planetary Science Letters, 236(3-4): 899~913.

    • Peters D, Bretscher A, John T, Scambelluri M, Pettke T. 2017. Fluid-mobile elements in serpentinites: constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466: 654~666.

    • Peters D, Pettke T, John T, Scambelluri M. 2020. The role of brucite in water and element cycling during serpentinite subduction—insights from Erro Tobbio (Liguria, Italy). Lithos, 360: 105431.

    • Pettke T, Bretsche, A. 2022. Fluid-mediated element cycling in subducted oceanic lithosphere: the orogenic serpentinite perspective. Earth-Science Reviews, 225: 103896. Plank T. 2014. The chemical composition of subducting sediments. Treatise on Geochemistry, 4: 607~629.

    • Plümper O, King H E, Geisler T, Liu Yang, Pabst S, Savov I P, Rost D, Zack T. 2017. Subduction zone forearc serpentinites as incubators for deep microbial life. Proceedings of the National Academy of Sciences, 114(17): 4324~4329.

    • Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.

    • Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communications, 7(1): 1~8.

    • Prichard H M. 1979. A petrographie study of the process of erpentinization in ophiolites and the ocean crust. Contributions to Mineralogy and Petrology, 68(3): 231~241.

    • Ranero C R, Phipps Morgan J, McIntosh K, Reichert C. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367~373.

    • Rebay G, Spalla M I, Zanoni D. 2012. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: insights from the Western Alps. Journal of Metamorphic Geology, 30(7): 687~702.

    • Reynard B. 2013. Serpentine in active subduction zones. Lithos, 178: 171~185.

    • Ribeiro J M, Lee C T A. 2017. An imbalance in the deep water cycle at subduction zones: the potential importance of the fore-arc mantle. Earth and Planetary Science Letters, 479: 298~309.

    • Rouméjön S, Cannat M, Agrinier P, Godard M, Andreani M. 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the southwest Indian ridge (62-65 E). Journal of Petrology, 56(4): 703~734.

    • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): 1~27.

    • Saumur B M, Hattori K H, Guillot S. 2010. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic. Geological Society of America Bulletin, 122(1-2): 292~304.

    • Savov I P, Guggino S, Ryan J G, Fryer P, Mottl M J. 2005a. Geochemistry of serpentine muds and metamorphic rocks from the Mariana Forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical seamounts. Proceedings of the Ocean Drilling Program, Scientific Results, 195: 1~49.

    • Savov I P, Ryan J G, D'Antonio M, Kelley K, Mattie P. 2005b. Geochemistry of serpentinized peridotites from the Mariana Forearc conical seamount, ODP leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4): 1~24.

    • Savov I P, Ryan J G, D'Antonio M, Fryer P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research: Solid Earth, 112: B09205.

    • Scambelluri M, Müntener O, Hermann J, Piccardo G B, Trommsdorff V. 1995. Subduction of water into the mantle: history of an Alpine peridotite. Geology, 23(5): 459~462.

    • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, GòmezPugnaire M T, Lòpez-Sànchez Vizca1no V. 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters, 192(3): 457~470.

    • Scambelluri M, Tonarini S. 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology, 40(10): 907~910.

    • Scambelluri M, Pettke T, Rampone E, Godard M, Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle(Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459~498.

    • Scambelluri M, Pettke T, Cannaò E. 2015. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle(Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 429: 45~59.

    • Scambelluri M, Cannaò E, Gilio M. 2019. The water and fluid-mobile element cycles during serpentinite subduction: a review. European Journal of Mineralogy, 31(3): 405~428.

    • Schwartz S, Allemand P, Guillot S. 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (western Alps). Tectonophysics, 342(1-2): 193~206.

    • Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende A L. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197~210.

    • Shen Tingting, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Jing. 2014. FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167(4): 1~15.

    • Shen Tingting, Hermann J, Zhang Lifei, Lü Zeng, Padrón-Navarta J A, Xia Bing, Bader T. 2015. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan. Journal of Petrology, 56(7): 1425~1458.

    • Shen Tingting, Zhang Lifei, Chen Jing. 2016. Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica, 32(4): 1206~1218 (in Chinese with English abstract).

    • Shen Tingting, Zhang Cong, Chen Jing, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Li, Xu Jun, Yang Jingsui. 2020. Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. American Mineralogist: Journal of Earth and Planetary Materials, 105(4): 569~582.

    • Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research: Solid Earth, 97(B1): 197~216.

    • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: a review. Lithos, 170: 208~223.

    • Staub R. 1922. Über die Verteilung der Serpentine in den alpinen Ophiolithen. Schweiz, Verlag nicht ermittelbar, 2: 74~149.

    • Staudigel H. 2014. Chemical fluxes from hydrothermal alteration of the oceanic crust. In: Holland, H D, Turekian K K, eds. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 583~603.

    • Su Benxun, Teng Fangzhen, Hu Yan, Shi Rendeng, Zhou Meifu, Zhu Bin, Liu Fan, Gong Xiaohan, Huang Qishuai, Xiao Yan, Chen Chen, He Yongsheng. 2015. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth and Planetary Science Letters, 430: 523~532.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophysical Research Letters, 13(8): 717~720.

    • Tatsumi Y. 2005. The subduction factory: how it operates in the evolving Earth. Gsa Today, 15(7): 4.

    • Teng Fangzhen, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry. Magnesium Isotope Geochemistry, 82: 219~287.

    • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contributions to Mineralogy and Petrology, 163(4): 669~688.

    • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858~861.

    • van Keken P E. 2003. The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215(3-4): 323~338.

    • Viti C, Mellini M. 1998. Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy, 10(6): 1341~1360.

    • Whattam S A, Früh-Green G L, Cannat M, De Hoog J C M, Schwarzenbach E M, Escartin J, John B E, Leybourne M I, Williams M J, Rouméjon S, Akizawa N, Boschi C, Harris M, Wenzel K, McCaig A, Weis D, Bilenker L. 2022. Geochemistry of serpentinized and multiphase altered Atlantis Massif peridotites (IODP Expedition 357): petrogenesis and discrimination of melt-rock vs. fluid-rock processes. Chemical Geology, 594: 120681.

    • Xie Zhipeng, Hattori K, Dong Youpu, Wang Jian. 2021. In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: behavior of fluid-mobile elements in continental subduction zone. Geoscience Frontiers, 12(4): 101139.

    • Xiong Jiawei, Chen Yixiang, Zhou Kun, Schertl H P, Zheng Yongfei, Huang Fang, Xia Xiaoping, Chen Zhenwu. 2021. Fe and O isotopes in coesite-bearing jadeite quartzite from the Western Alps record multistage fluid-rock interactions in a continental subduction zone. Geochimica et Cosmochimica Acta, 312: 1~24.

    • Xiong Jiawei, Chen Yixiang, Ma Hezhi, Schertl H P, Zheng Yongfei, Zhao Kuidong. 2022. Tourmaline boron isotopes trace metasomatism by serpentinite-derived fluid in continental subduction zone. Geochimica et Cosmochimica Acta, 320: 122~142.

    • Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48): eabj2515.

    • Zhao Jing, Long Xiaoping, Li Jie, Zhao Bingshuang, Gao Yilin, Zuo R. 2022. Serpentinite as a tracer for tectonic setting and mantle metasomatism of ophiolites: a case study of the Aoyougou ophiolite in the Qilian Orogenic Belt, NW China. Gondwana Research, 105: 1~11.

    • Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10(4): 1223~1254.

    • 陈伊翔. 2021. 俯冲带蛇纹岩变质脱水过程中的 Mg, Fe 同位素分馏行为: 进展与展望. 矿物岩石地球化学通报, 40(5): 1034~1048.

    • 申婷婷, 张立飞, 陈晶. 2016. 俯冲带蛇纹岩的变质过程. 岩石学报, 32(4): 1206~1218.

  • 参考文献

    • Agranier A, Lee C T A, Li Z X A, Leeman W P. 2007. Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chemical Geology, 245(3-4): 230~241.

    • Agrinier P, Cannat M. 1997. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge(23°N). In: Karson J A, Cannat M, Miller D J, Elthon D, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 153: 381~388.

    • Ali S, Ntaflos T, Sami M. 2021. Geochemistry of Khor Um-Safi ophiolitic serpentinites, central eastern desert, Egypt: implications for neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry, 81(1): 125690.

    • Alt J C, Shanksiii W. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242(3-4): 272~285.

    • Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.

    • Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick A E, Fouquet Y. 2014. Tectonic structure, lithology, and hydrothermal signature of the rainbow massif (mid-Atlantic ridge 36° 14′ N). Geochemistry, Geophysics, Geosystems, 15(9): 3543~3571.

    • Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth and Planetary Science Letters, 357: 238~248.

    • Anselmi B, Mellini M, Viti C. 2000. Chlorine in the Elba, Monti Livornesi and Murlo serpentines: evidence for sea-water interaction. European Journal of Mineralogy, 12(1): 137~146.

    • Augustin N, Lackschewitz K S, Kuhn T, Devey C W. 2008. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Marine Geology, 256(1-4): 18~29.

    • Augustin N, Paulick H, Lackschewitz K S, Eisenhauer A, Garbe-Schönberg D, Kuhn T, Botz R, Schmidt M. 2012. Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr-O isotope data. Geochemistry, Geophysics, Geosystems, 13(3), doi: 10. 1029/2011GC003903.

    • Audétat A, Günther D, Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-WF-mineralized mole granite (Australia). Geochimica et Cosmochimica Acta, 64(19): 3373~3393.

    • Aziz N R H, Aswad K J A, Koyi H A. 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan region, Iraq. Geological Magazine, 148(5-6): 819~837.

    • Babechuk M G, Kamber B S, Greig A, Canil D, Kodolányi J. 2010. The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales. Geochimica et Cosmochimica Acta, 74(4): 1448~1470.

    • Bali E, Keppler H, Audetat A. 2012. The mobility of W and Mo in subduction zone fluids and the Mo-W-Th-U systematics of island arc magmas. Earth and Planetary Science Letters, 351: 195~207.

    • Barnes J D, Beltrando M, Lee C T A, Cisneros M, Loewy S, Chin E. 2014. Geochemistry of Alpine serpentinites from rifting to subduction: a view across paleogeographic domains and metamorphic grade. Chemical Geology, 389: 29~47.

    • Barnes J D, Manning C, Scambelluri M, Selverstone J. 2018. The behavior of halogens during subduction zone processes. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Berlin: Springer, 545~590.

    • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3-4): 373~393.

    • Black J R, Kavner A, Schauble E A. 2011. Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc. Geochimica et Cosmochimica Acta, 75(3): 769~783.

    • Blanco-Quintero I, Proenza J A, Garcia-Casco A, Tauler E, Gali S. 2011. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, Eastern Cuba. Geologica Acta, 9: 389~405.

    • Bonatti E. 1976. Serpentinite protrusions in the oceanic crust. Earth and Planetary Science Letters, 32(2): 107~113.

    • Boschi C, Bonatti E, Ligi M, Brunelli D, Cipriani A, Dallai L, D'Orazio M, FrühGreen G L, Tonarini S, Barnes J D, Bedini R M. 2013. Serpentinization of mantle peridotites along an uplifted lithospheric section, mid Atlantic ridge at 11° N. Lithos, 178: 3~23.

    • Bostock M G, Hyndman R D, Rondenay S, Peacock S M. 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417(6888): 536~538.

    • Bouilhol P, Magni V, van Hunen J, Kaislaniemi L. 2015. A numerical approach to melting in warm subduction zones. Earth and Planetary Science Letters, 411: 37~44.

    • Bouilhol P, Debret B, Inglis E C, Warembourg M, Grocolas T, Rigaudier T, Villeneuve J, Burton K W. 2022. Decoupling of inorganic and organic carbon during slab mantle devolatilisation. Nature Communications, 13(1): 1~10.

    • Bowen N L, Tuttle O F. 1949. The system MgO-SiO2-H2O. Geological Society of America Bulletin, 60(3): 439~460.

    • Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.

    • Cannaò E, Scambelluri M, Agostini S, Tonarini S, Godard M. 2016. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study(Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta, 190: 115~133.

    • Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge(22°-24°N). Geology, 23(1): 49~52.

    • Chalot-Prat F, Ganne J, Lombard A. 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69(3-4): 69~103.

    • Chen Yixiang. 2021. The fractionation behavior of Mg and Fe isotopes during serpentinite dehydration in subduction zones: progress and prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1034~1048 (in Chinese with English abstract).

    • Chen Yixiang, Lu Wenning, He Yongsheng, Schertl H P, Zheng Yongfei, Xiong Jiawei, Zhou Kun. 2019. Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: a tale of whiteschist from the Western Alps. Geochimica et Cosmochimica Acta, 267: 1~16.

    • Chen Yixiang, Demény A, Schertl H P, Zheng Yongfei, Huang Fang, Zhou Kun, Jin Qizhen, Xia Xiaoping. 2020. Tracing subduction zone fluids with distinct Mg isotope compositions: insights from high-pressure metasomatic rocks(leucophyllites)from the Eastern Alps. Geochimica et Cosmochimica Acta, 271: 154~178.

    • Chen Zuxing, Chen Jiubin, Zeng Zhigang, Soh Tamehe L, Zhang Ting, Zhang Yuxiang, Yin Xuebo, Wang Xiaoyuan, Chen Shuai, Shuai Wangcai. 2021. Zinc isotopes of the mariana and ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022261.

    • Coleman R G, Keith T E. 1971. A chemical study of serpentinization—Burro Mountain, California. Journal of Petrology, 12(2): 311~328.

    • Cooper G F, Macpherson C G, Blundy J D, Maunder B, Allen R W, Goes S, Collier J S, Bie L, Harmon N, Hicks S P, Iveson A A, Prytulak J, Rietbrock A, Rychert C A, Davidson J P. 2020. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582(7813): 525~529.

    • Craddock P R, Warren J M, Dauphas N. 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365: 63~76.

    • Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.

    • Debret B, Koga K T, Nicollet C, Andreani M. 2013. F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova, 26(2): 96~101.

    • Debret B, Millet M A, Pons M L, Bouilhol P, Inglis E, Williams H. 2016. Isotopic evidence for iron mobility during subduction. Geology, 44(3): 215~218.

    • Debret B, Beunon H, Mattielli N, Andreani M, Da Costa I R, Escartin J. 2018. Ore component mobility, transport and mineralization at mid-oceanic ridges: a stable isotopes (Zn, Cu and Fe) study of the rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Earth and Planetary Science Letters, 503: 170~180.

    • Debret B, Albers E, Walter B, Price R, Barnes J D, Beunon H, Facq S, Gillikin D P, Mattielli N, Williams H. 2019. Shallow forearc mantle dynamics and geochemistry: new insights from IODP Expedition 366. Lithos, 326: 230~245.

    • Debret B, Reekie C D J, Mattielli N, Beunon H, Ménez B, Savov I, Williams H M. 2020. Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc. Geochemical Perspectives Letters, 12: 46~51.

    • Debret B, Garrido C J, Pons M L, Bouilhol P, Inglis E, López Sánchez-Vizcaíno V, Williams H. 2021. Iron and zinc stable isotope evidence for open-system high-pressure dehydration of antigorite serpentinite in subduction zones. Geochimica et Cosmochimica Acta, 296: 210~225.

    • Delacour A, Früh-Green G L, Frank M, Gutjahr M, Kelley D S. 2008. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology, 254(1-2): 19~35.

    • Deng Jianghong, He Yongsheng, Zartman R E, Yang Xiaoyong, Sun Weidong. 2022. Large iron isotope fractionation during mantle wedge serpentinization: implications for iron isotopes of arc magmas. Earth and Planetary Science Letters, 583: 117423.

    • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3-4): 262~277.

    • Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, Wunder B, France L. 2012. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chemical Geology, 312: 93~117.

    • Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178: 96~127.

    • Dessimoulie L, Delacour A, Guillaume D, Chevet J, Cottin J-Y. 2020. Major and trace elements exchanges during fluid-rock interaction at ultraslow-spreading oceanic lithosphere: example of the South West Indian Ridge (SWIR). Lithos, 352: 105233.

    • Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405~412.

    • Evans B W. 2004. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46(6): 479~506.

    • Evans B W, Trommsdorff V. 1978. Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40(3): 333~348.

    • Evans K A. 2012. The redox budget of subduction zones. Earth-Science Reviews, 113(1-2): 11~32.

    • Evans K A, Tomkins A G. 2011. The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3-4): 401~409.

    • Evans K A, Frost B R. 2020. Deserpentinization in subduction zones as a source of oxidation in arcs: a reality check. Journal of Petrology, 62(1): 1~32.

    • Faccenda M, Burlini L, Gerya T V, Mainprice D. 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455(7216): 1097~1100.

    • Früh-Green G L, Plas A, Lécuyer C. 1996. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895). Proceedings of the Ocean Drilling Program, Scientific Results, 147: 255~291.

    • Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 65 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46(3): 555~578.

    • Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539(7629): 420~424.

    • Garrido C J, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T, Trommsdorff V, Alard O, Bodinier J L, Godard M. 2005. Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochemistry, Geophysics, Geosystems, 6(1): https: //doi. org/10. 1029/2004GC000791.

    • Geldmacher J, Hoernle K, Van Den Bogaard P, Hauff F, Klugel A. 2008. Age and geochemistry of the central American Forearc basement (DSDP leg 67 and 84): insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP. Journal of Petrology, 49(10): 1781~1815.

    • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics, 21(6): https: //doi. org/10. 1029/2002TC001406.

    • Gilio M. 2017. Alpine serpentinite geochemistry: a key to unravel subduction accretion at the plate interface. Doctoral thesis of University of Genova, Italy, 308.

    • Gilio M, Scambelluri M, Agostini S, Godard M, Peters D, Pettke T. 2019. Petrology and geochemistry of serpentinites associated with the ultra-high pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 60(6): 1229~1262.

    • González-Jiménez J M, Plissart G, Garrido L N, Padrón-Navarta J A, Aiglsperger T, Romero R, Marchesi C, Moreno-Abril A J, Reich M, Barra F, Morata D. 2017. Titanian clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction. European Journal of Mineralogy, 29(6): 959~970.

    • Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34(21): doi: 10. 1029/2007GL031059.

    • Grove T, Chatterjee N, Parman S, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1-2): 74~89.

    • Guillot S, Hattori K H, de Sigoyer J. 2000. Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology, 28(3): 199~202.

    • Guillot S, Hattori K H, de Sigoyer J, Nägler T, Auzende A L. 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 193(1-2): 115~127.

    • Guillot S, Hattori K H, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: a review. Subduction Zone Geodynamics, 175~205. Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1~19.

    • Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525~528.

    • Hattori K H, Guillot S. 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8(9): DOI: 10. 1029/2007GC001594.

    • Hermann J, Müntener O, Scambelluri M. 2000. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327(3-4): 225~238.

    • Hermann J, Spandler C, Hack A, Korsakov A. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos, 92(3-4): 399~417.

    • Hilairet N, Reynard B. 2009. Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics, 465(1-4): 24~29.

    • Hirth G, Guillot S. 2013. Rheology and tectonic significance of serpentinite. Elements, 9(2): 107~113.

    • Inglis E C. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.

    • John T, Klemd R, Gao J, Garbe-Schönberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogitefacies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1~24.

    • John T, Scambelluri M, Frische M, Barnes J D, Bach W. 2011. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth and Planetary Science Letters, 308(1-2): 65~76.

    • Jöns N, Bach W, Klein F. 2010. Magmatic influence on reaction paths and element transport during serpentinization. Chemical Geology, 274(3-4): 196~211.

    • Kendrick M A, Scambelluri M, Honda M, Phillips D. 2011. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature Geoscience, 4(11): 807~812.

    • Kendrick M A, Hémond C, Kamenetsky V S, Danyushevsky L, Devey C W, Rodemann T, Jackson M G, Perfit M R. 2017. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nature Geoscience, 10(3): 222~228.

    • Kodolányi J, Pettke T, Spandler C, Kamber B S, Gméling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235~270.

    • Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C. 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38~54.

    • Lazar C, Cooperdock E H G, Seymour B H T. 2021. A continental forearc serpentinite diapir with deep origins: elemental signatures of a mantle wedge protolith and slab-derived fluids at New Idria, California. Lithos, 398: 106252.

    • Li Xuping, Rahn M, Bucher K. 2004. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22(3): 159~177.

    • Li Yuanhui. 1991. Distribution patterns of the elements in the ocean: a synthesis. Geochimica et Cosmochimica Acta, 55(11): 3223~3240.

    • Li Z X A, Lee C T A. 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology, 235(1-2): 161~185.

    • Liu Shenao, Liu Pingping, Lv Y, Wang Zezhou, Dai Jingen. 2019. Cu and Zn isotope fractionation during oceanic alteration: implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.

    • Malvoisin B. 2015. Mass transfer in the oceanic lithosphere: serpentinization is not isochemical. Earth and Planetary Science Letters, 430: 75~85.

    • Marchesi C, Garrido C J, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T. 2013. Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos, 178: 128~142.

    • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12): 862~867.

    • Mellini M, Trommsdorff V, Compagnoni R. 1987. Antigorite polysomatism: behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97(2): 147~155.

    • Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.

    • Padrón-Navarta J A, Lopez Sanchez-Vizcaino V, Garrido C J, Gomez-Pugnaire M T. 2011. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52(10): 2047~2078.

    • Palme H, O'Neill H St C. 2014. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. Elsevier, 1~39.

    • Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.

    • Paulick H, Bach W, Godard M, De Hoog J C M, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234(3-4): 179~210.

    • Pearce J A, Barker P F, Edwards S J, Parkinson I J, Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the south sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36~53.

    • Perrillat J, Daniel I, Koga K, Reynard B, Cardon H, Crichton W. 2005. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth and Planetary Science Letters, 236(3-4): 899~913.

    • Peters D, Bretscher A, John T, Scambelluri M, Pettke T. 2017. Fluid-mobile elements in serpentinites: constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466: 654~666.

    • Peters D, Pettke T, John T, Scambelluri M. 2020. The role of brucite in water and element cycling during serpentinite subduction—insights from Erro Tobbio (Liguria, Italy). Lithos, 360: 105431.

    • Pettke T, Bretsche, A. 2022. Fluid-mediated element cycling in subducted oceanic lithosphere: the orogenic serpentinite perspective. Earth-Science Reviews, 225: 103896. Plank T. 2014. The chemical composition of subducting sediments. Treatise on Geochemistry, 4: 607~629.

    • Plümper O, King H E, Geisler T, Liu Yang, Pabst S, Savov I P, Rost D, Zack T. 2017. Subduction zone forearc serpentinites as incubators for deep microbial life. Proceedings of the National Academy of Sciences, 114(17): 4324~4329.

    • Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.

    • Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communications, 7(1): 1~8.

    • Prichard H M. 1979. A petrographie study of the process of erpentinization in ophiolites and the ocean crust. Contributions to Mineralogy and Petrology, 68(3): 231~241.

    • Ranero C R, Phipps Morgan J, McIntosh K, Reichert C. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367~373.

    • Rebay G, Spalla M I, Zanoni D. 2012. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: insights from the Western Alps. Journal of Metamorphic Geology, 30(7): 687~702.

    • Reynard B. 2013. Serpentine in active subduction zones. Lithos, 178: 171~185.

    • Ribeiro J M, Lee C T A. 2017. An imbalance in the deep water cycle at subduction zones: the potential importance of the fore-arc mantle. Earth and Planetary Science Letters, 479: 298~309.

    • Rouméjön S, Cannat M, Agrinier P, Godard M, Andreani M. 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the southwest Indian ridge (62-65 E). Journal of Petrology, 56(4): 703~734.

    • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): 1~27.

    • Saumur B M, Hattori K H, Guillot S. 2010. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic. Geological Society of America Bulletin, 122(1-2): 292~304.

    • Savov I P, Guggino S, Ryan J G, Fryer P, Mottl M J. 2005a. Geochemistry of serpentine muds and metamorphic rocks from the Mariana Forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical seamounts. Proceedings of the Ocean Drilling Program, Scientific Results, 195: 1~49.

    • Savov I P, Ryan J G, D'Antonio M, Kelley K, Mattie P. 2005b. Geochemistry of serpentinized peridotites from the Mariana Forearc conical seamount, ODP leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4): 1~24.

    • Savov I P, Ryan J G, D'Antonio M, Fryer P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research: Solid Earth, 112: B09205.

    • Scambelluri M, Müntener O, Hermann J, Piccardo G B, Trommsdorff V. 1995. Subduction of water into the mantle: history of an Alpine peridotite. Geology, 23(5): 459~462.

    • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, GòmezPugnaire M T, Lòpez-Sànchez Vizca1no V. 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters, 192(3): 457~470.

    • Scambelluri M, Tonarini S. 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology, 40(10): 907~910.

    • Scambelluri M, Pettke T, Rampone E, Godard M, Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle(Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459~498.

    • Scambelluri M, Pettke T, Cannaò E. 2015. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle(Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 429: 45~59.

    • Scambelluri M, Cannaò E, Gilio M. 2019. The water and fluid-mobile element cycles during serpentinite subduction: a review. European Journal of Mineralogy, 31(3): 405~428.

    • Schwartz S, Allemand P, Guillot S. 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (western Alps). Tectonophysics, 342(1-2): 193~206.

    • Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende A L. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197~210.

    • Shen Tingting, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Jing. 2014. FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167(4): 1~15.

    • Shen Tingting, Hermann J, Zhang Lifei, Lü Zeng, Padrón-Navarta J A, Xia Bing, Bader T. 2015. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan. Journal of Petrology, 56(7): 1425~1458.

    • Shen Tingting, Zhang Lifei, Chen Jing. 2016. Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica, 32(4): 1206~1218 (in Chinese with English abstract).

    • Shen Tingting, Zhang Cong, Chen Jing, Hermann J, Zhang Lifei, Padrón-Navarta J A, Chen Li, Xu Jun, Yang Jingsui. 2020. Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. American Mineralogist: Journal of Earth and Planetary Materials, 105(4): 569~582.

    • Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research: Solid Earth, 97(B1): 197~216.

    • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: a review. Lithos, 170: 208~223.

    • Staub R. 1922. Über die Verteilung der Serpentine in den alpinen Ophiolithen. Schweiz, Verlag nicht ermittelbar, 2: 74~149.

    • Staudigel H. 2014. Chemical fluxes from hydrothermal alteration of the oceanic crust. In: Holland, H D, Turekian K K, eds. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 583~603.

    • Su Benxun, Teng Fangzhen, Hu Yan, Shi Rendeng, Zhou Meifu, Zhu Bin, Liu Fan, Gong Xiaohan, Huang Qishuai, Xiao Yan, Chen Chen, He Yongsheng. 2015. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth and Planetary Science Letters, 430: 523~532.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophysical Research Letters, 13(8): 717~720.

    • Tatsumi Y. 2005. The subduction factory: how it operates in the evolving Earth. Gsa Today, 15(7): 4.

    • Teng Fangzhen, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry. Magnesium Isotope Geochemistry, 82: 219~287.

    • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contributions to Mineralogy and Petrology, 163(4): 669~688.

    • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858~861.

    • van Keken P E. 2003. The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215(3-4): 323~338.

    • Viti C, Mellini M. 1998. Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy, 10(6): 1341~1360.

    • Whattam S A, Früh-Green G L, Cannat M, De Hoog J C M, Schwarzenbach E M, Escartin J, John B E, Leybourne M I, Williams M J, Rouméjon S, Akizawa N, Boschi C, Harris M, Wenzel K, McCaig A, Weis D, Bilenker L. 2022. Geochemistry of serpentinized and multiphase altered Atlantis Massif peridotites (IODP Expedition 357): petrogenesis and discrimination of melt-rock vs. fluid-rock processes. Chemical Geology, 594: 120681.

    • Xie Zhipeng, Hattori K, Dong Youpu, Wang Jian. 2021. In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: behavior of fluid-mobile elements in continental subduction zone. Geoscience Frontiers, 12(4): 101139.

    • Xiong Jiawei, Chen Yixiang, Zhou Kun, Schertl H P, Zheng Yongfei, Huang Fang, Xia Xiaoping, Chen Zhenwu. 2021. Fe and O isotopes in coesite-bearing jadeite quartzite from the Western Alps record multistage fluid-rock interactions in a continental subduction zone. Geochimica et Cosmochimica Acta, 312: 1~24.

    • Xiong Jiawei, Chen Yixiang, Ma Hezhi, Schertl H P, Zheng Yongfei, Zhao Kuidong. 2022. Tourmaline boron isotopes trace metasomatism by serpentinite-derived fluid in continental subduction zone. Geochimica et Cosmochimica Acta, 320: 122~142.

    • Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48): eabj2515.

    • Zhao Jing, Long Xiaoping, Li Jie, Zhao Bingshuang, Gao Yilin, Zuo R. 2022. Serpentinite as a tracer for tectonic setting and mantle metasomatism of ophiolites: a case study of the Aoyougou ophiolite in the Qilian Orogenic Belt, NW China. Gondwana Research, 105: 1~11.

    • Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10(4): 1223~1254.

    • 陈伊翔. 2021. 俯冲带蛇纹岩变质脱水过程中的 Mg, Fe 同位素分馏行为: 进展与展望. 矿物岩石地球化学通报, 40(5): 1034~1048.

    • 申婷婷, 张立飞, 陈晶. 2016. 俯冲带蛇纹岩的变质过程. 岩石学报, 32(4): 1206~1218.