en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张志杰,女,1977年生。高级工程师,主要从事石油地质学和沉积学研究。E-mail:zhzhijie@petrochina.com.cn。

通讯作者:

袁选俊,男,1963年生。教授级高级工程师,主要从事石油地质学和岩性油气藏研究。E-mail:yxj@petrochina.com.cn。

参考文献
Allen P A. 2008. From landscapes into geological history. Nature, 451(7176): 274~276.
参考文献
Allen P A. 2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge: Cambridge University Press.
参考文献
Allen P A, Armitage J J, Carter A, Duller R A, Michael N A, Sinclair H D, Whitchurch A L, Whittaker A C. 2013. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1): 102~130.
参考文献
Bhattacharya J P, Copeland P, Lawton T F, Holbrook J. 2016. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 153: 77~110.
参考文献
Brewer C J, Hampson G J, Whittaker A C, Roberts G G, Watkins S E. 2020. Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth-Science Reviews, 207.
参考文献
Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. In: Roberts D G, Bally A W, eds. Regional Geology and Tectonics: Principles of Geologic Analysis. Amsterdam: Elsevier, 378~404.
参考文献
Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Ablimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).
参考文献
Cao Yingchang, Xu Qisong, Wang Jian. 2018. Progress in “Source-to-Sink” system research. Earth Science Frontiers, 25(4): 116~131 (in Chinese with English abstract).
参考文献
Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology, 38(2): 191~192.
参考文献
Chen Bin, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23: 691~703.
参考文献
Chen Fajing, Wang Xinwen, Wang Xinwei. 2005. Prototype and tectonic evolution of the Junggar basin, northwestern China. Earth Science Frontiers, 12(3): 77~89 (in Chinese with English abstract).
参考文献
Chen Jiafu, Han Baofu, Zhang Lei. 2010a. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317~2335 (in Chinese with English abstract).
参考文献
Chen Jiafu, Han Baofu, Ji Jianqing, Zhang Lei, Xu Zhao, He Guoqi, Wang Tao. 2010b. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137~152.
参考文献
Chen Wanfeng. 2017. Comparative study on Late Paleozoic tectonic-magmatism evolution in eastern and western Junggar, Xinjiang, western China. PhD thesis of Lanzhou University (in Chinese with English abstract).
参考文献
Chen Xin, Lu Huafu, Shu Liangshu, Wang Huimin, Zhang Guoqing. 2002. Study on tectonic evolution of Junggar basin. Geological Journal of China Universities, 8(3): 257~266 (in Chinese with English abstract).
参考文献
Chen Zhonghong, Zha Mimg, Zhu Xixaomin. 2003. Relation between unconformity surface and hydrocarbon migration and accumulation of Luliang uplift in Junggar basin. Journal of Palaeogeography, 5(1): 120~126 (in Chinese with English abstract).
参考文献
Choulet F, Chen Y, Wang B, Faure M, Cluzel D, Charvet J, Lin W, Xu B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences, 42(5): 867~884.
参考文献
Dickinson W R, Gehrels G E. 2003. U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163(1-2): 29~66.
参考文献
Du Jinhu, Zhi Dongming, Tang Yong, Jia Chunming, Xu Yang, Abulimity Yiming, Deng Yong. 2019. Prospects in Upper Permian and strategic discovery in Shawan sag, Junggar basin. China Petroleum Exploration, 24(1): 24~35 (in Chinese with English abstract).
参考文献
Duan Fenghao, Li Yongjun, Zhi Qian, Yang Gaoxue, Gao Junbao. 2019. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China. Journal of Asian Earth Sciences, 175: 158~177.
参考文献
Feng Qianwen, Li Jintie, Liu Jianfeng, Song Biao, Wang Yanbin, Chen Wen, Zhang Yan. 2012. Ages and geological significance of the dark dykes emplaced in the Karamay pluton and adjacent area, in western Junggar, Xinjiang, NW China: Evidence from LAICP-MS zircon chronology and Ar-Ar amphibole chronology. Acta Petrologica Sinica, 28(7): 2158~2170 (in Chinese with English abstract).
参考文献
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086 (in Chinese with English abstract).
参考文献
Geng Hongyan, Sun Min, Yuan Chao, Xiao Wenjiao, Xian Weisheng, Zhao Guochun, Zhang Lifei, Wong Kenny, Wu Fuyuan. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4): 364~389.
参考文献
Geng Hongyan, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 42(5): 854~866.
参考文献
Gong Chenglin, Qi Kun, Xu Jie, Liu Xiting, Wang Yingmin. 2021. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes. Acta Sedimentologica Sinica, 39(1): 232~252 (in Chinese with English abstract).
参考文献
He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018a. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).
参考文献
He Dengfa, Wu Songtao, Zhao Long, Zheng Menglin, Li Di, Lu Yu. 2018b. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu sag, Junggar basin. Xingjiang Petroleum Geology, 39(1): 35~47 (in Chinese with English abstract).
参考文献
He Haiqing, Zhi Dongming, Tang Yong, Liu Chaowei, Chen Hong, Guo Xuguang, Wang Zesheng. 2021. A great discovery of well Kangtan 1 in the Fukang sag in the Junggar basin and its significance. China Petroleum Exploration, 26(2): 1~11 (in Chinese with English abstract) .
参考文献
He Wenjun, Wang Xulong, Zou Yang, Yang Haibo, Zhao Longmei, Wu Si, Ding Jing, Bao Haijuan, Wu Haisheng. 2019. The geological conditions, resource potential and exploration direction of oil in Junggar basin. Marine Origin Petroleum Geology, 24(2): 75~84 (in Chinese with English abstract).
参考文献
Huang Yunfei, Zhang Changmin, Zhu Rui, Yi Xuefei, Qu Jianhua, Tang Yong. 2017. Palaeoclimatology, provenance and tectonic setting during Late Permian to Middle Triassic in Mahu sag in Junggar basin, China. Earth Science, 42(10): 1736~1749 (in Chinese with English abstract).
参考文献
Jian Ping, Li Dunyi, Shi Yurou, Zhang Fuqin. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian Orogenic Belt. In: Sklyarov E V, ed. Structural and Tectonic Correlation across the Central Asian Orogenic Collage. Northeastern Segment, 246~251.
参考文献
Jin Song, Zhang Zhaoyi, Rong Guilin, Liu Xinyu, Li Yuehui, Zhang Hanwen, Bi Li. 2015. Geochemical characteristics, zircon U-Pb age, and Hf isotopes of Yushenkala pluton in western Junggar, Xinjiang: Constraint on the closure of Paleo-Asian Ocean. Geology in China, 42(3): 494~508 (in Chinese with English abstract).
参考文献
Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).
参考文献
Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2021. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).
参考文献
Kuang Lichun, Zhi Dongming, Wang Xiaojun, Song Yong, Jiang Wenlong, Cao Zhenglin, Yang Zhifeng, He Wenjun. 2022. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permian in Junggar basin. Acta Petrolei Sinica, 43(3): 325~340 (in Chinese with English abstract).
参考文献
Li Huaqin, Chen Fuwen, Cai Hong. 2000. Study on Rb-Sr isotopic ages of gold deposits in west Junggar area, Xinjiang. Acta Geologica Sinica, 74(2): 181~192 (in Chinese with English abstract).
参考文献
Li Pan, Li Yongqiang, Jing Jianbo, Cao Zhenglin, Yuan Xuanjun. 2020. Unconformities formed during the P-T transition in the northwestern Junggar basin: Nature, evolution and implications. Journal of Palaeogeography (Chinese Edition), 22(4): 698~714 (in Chinese with English abstract).
参考文献
Li Xinzi, Han Baofu, Ji Jianqing, Li Zonghuai, Liu Zhiqiang, Yang Bin. 2004. Geology, geochemistry and K-Ar ages of the Karamay basic-intermediate dyke swarm from Xinjiang, China. Geochimica, 33(6): 574~584 (in Chinese with English abstract).
参考文献
Li Yanan, Shao Longyi, Xu Jie, Hou Haihai, Tang Yue, Yuan Yuan, Zhang Jiaqiang. 2020. Application of channel-belt scaling relationships to early Middle Jurassic source-to-sink system evolution in the southern Junggar basin. Marine and Petroleum Geology, 117.
参考文献
Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, soruce to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).
参考文献
Liu Bingqiang, Shao Longyi, Wang Xuetian, Li Yanan, Xu Jie. 2019. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam basin, NW China. Journal of Palaeogeography, 8(1): 16.
参考文献
Liu Dongdong, Jolivet Marc, Yang Wei, Zhang Ziya, Cheng Feng, Zhu Bei, Guo Zhaojie. 2013. Latest Paleozoic-Early Mesozoic basin-range interactions in South Tian Shan (Northwest China) and their tectonic significance: Constraints from detrital zircon U-Pb ages. Tectonophysics, 599: 197~213.
参考文献
Liu Hao, Loon A J, Xu Jie, Tian Lixin, Du Xiaofeng, Zhang Xintao, Chen Danlei. 2019. Relationships between tectonic activity and sedimentary source-to-sink system parameters in a lacustrine rift basin: A quantitative case study of the Huanghekou depression (Bohai Bay basin, E China). Basin Research, 32(4): 587~612.
参考文献
Margins_Office. 2003. Source-to-Sink (S2S). NSF MARGINS Program Science Plans 2004. New York: Columbia University, 131~157.
参考文献
Meng Xiangchao, Qi Hongyan, Chen Yang, Xie Zongrui, Dou Yang, Xu Yang, Guo Huajun. 2021. Genesis of low GR weathering paleosols and high GR glutenite and oil & gas exploration: A case study of the Upper Permian Wuerhe Formation in Manan area. Journal of China University of Mining & Technology, 50(6): 1153~1168 (in Chinese with English abstract).
参考文献
Paola C. 2000. Quantitative models of sedimentary basin filling. Sedimentology, 47: 121~178.
参考文献
Paola C, Martin J M. 2012. Mass-balance effects in depositional systems. Journal of Sedimentary Research, 82(5-6): 435~450.
参考文献
Qin Zhijun, Chen Lihua, Li Yuwen, Wang Tingting, Cao Jian. 2016. Paleo-sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu sag, Junggar basin. Xinjiang Petroleum Geology, 37(1): 1~6 (in Chinese with English abstract) .
参考文献
Rahl J M, Ehlers T A, van der Pluijm B A. 2007. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256(1-2): 147~161.
参考文献
Romans B W, Castelltort S, Covault J A, Fildani A, Walsh J P. 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153: 7~29.
参考文献
Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299~307.
参考文献
Shang Zhaocong, Wang Huaitao, Zhang Wei, Liu Kunxin, He Yanbin, Wei Dongwei. 2012. Geochronology and tectonic implications of the granites in West Junggar, Xinjiang. Gansu Geology, 21(1): 1~5+80 (in Chinese with English abstract).
参考文献
Shao Longyi, Wang Xuetian, Li Yanan, Liu Bingqiang. 2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography, 21(1): 73~87 (in Chinese with English abstract).
参考文献
Sun Zhaocai. 1998. Mesozoic-Cenozoic foreland basin of the western China and its hydrocarbon exploration prospect with a comment on the division of tectonic units in Junggar basin. Marine Petroleum Prospect, 4(3): 16~30 (in Chinese with English abstract).
参考文献
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128-131: 73~83.
参考文献
Tang Gongjian, Chung Sunlin, Hawkesworth C J, Cawood P A, Wang Qiang, Wyman D A, Xu Yigang, Zhao Zhenhua. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142~154.
参考文献
Tang Wenbin, Zhang Yuanyuan, Pe-Piper Georgia, Piper David, Guo Zhaojie, Li Wei. 2021. Permian rifting processes in the NW Junggar basin, China: Implications for the post-accretionary successor basins. Gondwana Research, 98: 107~124.
参考文献
Tang Yong, Yin Taiju, Qin Jianhua, Wang Dongdong. 2017. Development of large-scale shallow-water fan delta: Sedimentary laboratory simulation and experiments. Xingjiang Petroleum Geology, 38(6): 253~263 (in Chinese with English abstract).
参考文献
Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).
参考文献
Tang Yong, Song Yong, He Wenjun, Zhao Long, Zhao Changyong, Zheng Menglin, Yang Haibo, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract) .
参考文献
Tian Yazhou. 2015. Genesis of high-Al chromitite of the Sartohyay ophiolite, Xinjiang. PhD thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Wang Mengshi, Zhang Zhijie, Zhou Chuanmin, Yuan Xuanjun, Lin Mingjie, Liu Yinhe, Cheng Dawei. 2018. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu sag, Junggar basin. Journal of Palaeogeography, 20(1): 147~162 (in Chinese with English abstract).
参考文献
Wu Kongyou, Zha Mimg, Liu Guangdi. 2002. The unconformity surface in the Permian of Junggar basin and the characters of oil-gas migration and accumulation. Petroleum Exploration and Development, 29(2): 53~54 (in Chinese with English abstract).
参考文献
Wu Qingfu. 1986. Tectonic evolution and exploration realms. Xinjiang Geology, 4(3): 1~9 (in Chinese with English abstract).
参考文献
Xiang Kunpeng. 2015. Carboniferous sedimentary basin analysis and tectonic significance in the Baogutu-Halaalate Mountain, western Junggar, Xinjiang. PhD thesis of Chang'an University (in Chinese with English abstract).
参考文献
Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jiliang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102~117.
参考文献
Xiao Xuchang, Tang Yaoqing, Li Jintie, Feng Yimin, Zhu Baoqing. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1~169 (in Chinese).
参考文献
Xu Changgui, Du Xiaofeng, Xu Wei, Zhao Meng. 2017. New advances of the “Source-to-Sink” system research in sedimentary basin. Oil & Gas Geology, 38(1): 1~11 (in Chinese with English abstract) .
参考文献
Xu Qisong, Wang Jian, Cao Yingchang, Wang Xintong, Xiao Jie, Muhammad Kashif. 2019. Characteristics and evolution of the late Permian “source-to-sink” system of the Beisantai area in the eastern Junggar basin, NW China. Journal of Asian Earth Sciences, 181.
参考文献
Xu Zhao, Han Baofu, Ren Rong, Zhou Yinzhang, Su Li. 2012. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: Implications for tectonic evolution of the West Junggar. International Geology Review, 55(5): 633~656.
参考文献
Yang Gaoxue, Li Yongjun, Gu Pingyang, Yang Baokai, Tong Lili, Zhang Hongwei. 2012a. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Research, 21(4): 1037~1049.
参考文献
Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Yan Jun, Zhang Bing, Tong Lili. 2012b. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic melange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences, 59: 141~155.
参考文献
Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Zhang Bing, Tong Lili. 2013. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar (NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids. Geological Society of America Bulletin, 125 (3-4): 401~419
参考文献
Yang Youxing, Zhang Junfeng, Zhang Jinhu, Gao Yongjin, Zhou Xingui, Sun Xiangcan, Wen Lei, Miao Miaoqing. 2022. Sedimentary characteristics and main controlling factors of the Middle-Upper Permian and Middle-Upper Triassic in the Bogda Mountain area of Xinjiang, NW China. Petroleum Exploration and Development, 49(3): 1~13 (in Chinese with English abstract).
参考文献
Yang Zhi, Hou Lianhua, Lin Senhu, Luo Xia, Zhang Lijun, Wu Songtao, Cui Jingwei. 2018. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar sag. China Petroleum Exploration, 23(4): 76~85 (in Chinese with English abstract).
参考文献
Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Sun Min, Cai Keda. 2017a. Petrogenesis and tectonic implications of early Devonian mafic dike-granite association in the northern West Junggar, NW China. International Geology Review, 60(1): 87~100.
参考文献
Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Windley B F, Yu Shun, Cai Keda. 2017b. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Research, 43: 55~73.
参考文献
Yu Yuanjiang, Hu Suyun, He Dengfa. 2020. Skeleton components of Permian-Lower Jurassic clastic rocks in NW margin of Junggar basin: Tracing to provenance and tectonic settings evolution. Acta Geologica Sinica, 94(5): 1347~1366 (in Chinese with English abstract).
参考文献
Zhang Jinyu, Kim Wonsuck, Olariu Cornel, Steel Ronald. 2019. Accommodation-versus supply-dominated systems for sediment partitioning to deep water. Geology, 47(5): 419~422.
参考文献
Zhang Ruofei, Yuan Feng, Zhou Taofa, Deng Yufeng, Zhang Dayu, Xu Chao, Zhao Bingbing. 2015, Geological characteristics, geochronology and geochemical characteristics of volcanic hydrothermal type copper deposits (points) in Taerbahatai-Xiemisitai region, West Junggar. Acta Petrologica Sinica, 31(8): 2259~2276 (in Chinese with English abstract).
参考文献
Zhang Yijie, Qi Xuefeng, Cheng Xiansheng, Luo Zhengjiang. 2007. Approach to sedimentary environment of Late Carboniferous Permian in Junggar basin. Xinjiang Petroleum Geology, 28(6): 673~675 (in Chinese with English abstract).
参考文献
Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).
参考文献
Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar, NW China. Petroleum Exploration and Development, 45(6): 972~984 (in Chinese with English abstract).
参考文献
Zhao Rui, Zhang Jinyu, Zhou Chuanmin, Zhang Zhijie, Chen Si, Stockli D F, Cornel Olariu, Steel Ronald, Wang Hua. 2020. Tectonic evolution of Tianshan-Bogda-Kelameili Mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar basin. Marine and Petroleum Geology, 114: 1~17.
参考文献
Zhao Wenzhi, Hu Suyun, Guo Xujie, Li Jianzhong, Cao Zhenglin. 2019. New concepts for deepening hydrocarbon exploration and their application effect in the Junggar basin. Petroleum Exploration and Development, 46(5): 811~819 (in Chinese with English abstract).
参考文献
Zheng Menglin, Fan Xiangdong, He Wenjun, Yang Tongyuan, Tang Yong, Ding Jing, Wu Haisheng, Chen Lei, Guo Jianchen. 2019. Superposition of deep geological structural evolution and hydrocarbon accumulation in the Junggar basin. Earth Science Frontiers, 26(1): 22~32 (in Chinese with English abstract).
参考文献
Zhou Jing, Ji Jianqing, Han Baofu, Ma Fang, Gong Junfeng, Xu Qinqin, Guo Zhaojie. 2008. 40Ar/39Ar geochronology of mafic dykes in north Xinjiang. Acta Petrologica Sinica, 24(5): 997~1010 (in Chinese with English abstract).
参考文献
Zhu Hongtao, Xu Changgui, Zhu Xiomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).
参考文献
Zhu Rukai, Xu Huaixian, Deng Shenghui, Guo Hongli. 2007. Lithofacies palaeogeography of the Permian in northern China. Journal of Palaeogeography, 9(2): 133~142 (in Chinese with English abstract).
参考文献
Zong Ruiwen, Wang Zhihong, Fan Ruoying, Song Junjun, Zhang Xinsong, Shen Zhen, Gong Yiming. 2020. New knowledge on the Honguleleng Formation and Devonian-Carboniferous boundary in western Junggar, Xinjiang. Acta Geologica Sinica, 94(8): 2460~2475 (in Chinese with English abstract).
参考文献
曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.
参考文献
陈发景, 汪新文, 汪新伟. 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3) : 77~89.
参考文献
操应长, 徐琦松, 王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116~131.
参考文献
陈家富, 韩宝福, 张磊. 2010a. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317~2335.
参考文献
陈万峰. 2017. 新疆东、西准噶尔地区晚古生代构造岩浆演化对比研究. 兰州大学博士学位论文.
参考文献
陈新, 卢华复, 舒良树, 王惠民, 张国清. 2002. 准噶尔盆地构造演化分析新进展. 高校地质学报, 8(3) : 257~266.
参考文献
陈中红, 查明, 朱筱敏. 2003. 准噶尔盆地陆梁隆起不整合面与油气运聚关系. 古地理学报, 5(1) : 120~126.
参考文献
杜金虎, 支东明, 唐勇, 贾春明, 徐洋, 阿不力米提·依明, 邓勇. 2019. 准噶尔盆地上二叠统风险领域分析与沙湾凹陷战略发现. 中国石油勘探, 24(1): 24~35.
参考文献
冯乾文, 李锦轶, 刘建峰, 宋彪, 王彦斌, 陈文, 张彦. 2012. 新疆西准噶尔克拉玛依岩体中暗色岩墙的形成时代及地质意义——来自锆石LA-ICP-MS和角闪石Ar-Ar 定年的证据. 岩石学报, 28(7): 2158~2170.
参考文献
龚承林, 齐昆, 徐杰, 刘喜停, 王英民. 2021. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 232~252.
参考文献
韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代垂向生长(I)——后成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.
参考文献
何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018a. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.
参考文献
何登发, 吴松涛, 赵龙, 郑孟林, 李涤, 路玉. 2018b. 环玛湖凹陷二叠—三叠纪的构造-沉积背景及其演化. 新疆石油地质, 39(1) : 35~47.
参考文献
何海清, 支东明, 唐勇, 刘超威, 陈洪, 郭旭光, 王泽胜. 2021. 准噶尔盆地阜康凹陷康探1井重大突破及意义. 中国石油勘探, 26(2): 1~11.
参考文献
何文军, 王绪龙, 邹阳, 杨海波, 赵龙梅, 吴斯, 丁靖, 鲍海娟, 吴海生. 2019. 准噶尔盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 75~84.
参考文献
黄云飞, 张昌民, 朱锐, 易雪斐, 瞿建华, 唐勇. 2017. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景. 地球科学, 42(10): 1736~1749.
参考文献
靳松, 张兆祎, 荣桂林, 刘新宇, 李跃辉, 张瀚文, 毕立. 2015. 新疆西准噶尔玉什喀腊岩体的地球化学特征、锆石U-Pb年龄及Hf同位素: 对古亚洲洋闭合的制约. 中国地质, 42(3): 494~508.
参考文献
匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.
参考文献
匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2021. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.
参考文献
匡立春, 支东明, 王小军, 宋永, 蒋文龙, 曹正林, 杨智峰, 何文军. 2022. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向. 石油学报, 43(3): 325~340.
参考文献
李攀, 李永强, 经俭波, 曹正林, 袁选俊. 2020. 准噶尔盆地西北部 P-T 转换期不整合的发育演化特征及意义. 古地理学报, 22(4): 698~714.
参考文献
李华芹, 陈富文, 蔡红. 2000. 新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究. 地质学报, 74(2): 181~192.
参考文献
李辛子, 韩宝福, 季建清, 李宗怀, 刘志强, 杨斌. 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代. 地球化学, 33(6): 574~584.
参考文献
林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.
参考文献
孟祥超, 齐洪岩, 陈扬, 谢宗瑞, 窦洋, 徐洋, 郭华军. 2021. 低GR风化古土壤—高GR砂砾岩成因与油气勘探——以玛南地区二叠系上乌尔禾组为例. 中国矿业大学学报, 50(6): 1153~1168.
参考文献
秦志军, 陈丽华, 李玉文, 王婷婷, 曹剑. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景. 新疆石油地质, 37(1): 1~6.
参考文献
尚兆聪, 王怀涛, 张伟, 刘昆鑫, 何彦彬, 魏东伟. 2012. 新疆西准噶尔地区花岗岩类年代学及其构造意义. 甘肃地质, 21(1): 1~5+80.
参考文献
邵龙义, 王学天, 李雅楠, 刘炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 73~87.
参考文献
孙肇才. 1998. 中国中西部中—新生代前陆盆地及其含油气性——兼论准噶尔盆地内部结构单元划分. 海相油气地质, 4(3) : 16~30.
参考文献
唐勇, 尹太举, 覃建华, 王冬冬. 2017. 大型浅水扇三角洲发育的沉积物理模拟实验研究. 新疆石油地质, 38(6): 253~263.
参考文献
唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.
参考文献
唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.
参考文献
田亚洲. 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因. 中国地质科学院博士学位论文.
参考文献
汪梦诗, 张志杰, 周川闽, 袁选俊, 林敏捷, 刘银河, 成大伟. 2018. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因. 古地理学报, 20(1): 147~162.
参考文献
吴孔友, 查明, 柳广弟. 2002. 准噶尔盆地二叠系不整合面及其油气运聚特征. 石油勘探与开发, 29(2) : 53~54.
参考文献
吴庆福. 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4(3) : 1~9.
参考文献
肖序常, 汤耀庆, 李锦铁, 冯益民, 朱宝清. 1992. 新疆北部及邻区大地构造. 北京: 地质出版社, 1~169.
参考文献
向坤鹏. 2015. 新疆西准噶尔包古图-哈拉阿拉特山一带石炭纪沉积盆地分析及构造意义. 长安大学博士学位论文.
参考文献
新疆维吾尔自治区地质矿产局. 1993. 新疆区域地质志. 北京: 地质出版社, 442~504.
参考文献
徐长贵, 杜晓峰, 徐伟, 赵梦. 2017. 沉积盆地源-汇系统研究新进展. 石油与天然气地质, 38(1): 1~11.
参考文献
杨有星, 张君峰, 张金虎, 高永进, 周新桂, 孙相灿, 文磊, 苗苗青. 2022. 新疆博格达山周缘中上二叠统与中上三叠统沉积特征及其主控因素. 石油勘探与开发, 49(3): 1~13.
参考文献
杨智, 侯连华, 林森虎, 罗霞, 张丽君, 吴松涛, 崔景伟. 2018. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力. 中国石油勘探, 23(4): 76~85.
参考文献
蔚远江, 胡素云, 何登发. 2020. 准噶尔盆地西北缘二叠系—下侏罗统碎屑岩骨架组分及其物源与构造背景演化示踪. 地质学报, 94(5): 1347~1366.
参考文献
张若飞, 袁峰, 周涛发, 邓宇峰, 张达玉, 许超, 赵冰冰. 2015. 西准噶尔塔尔巴哈台-谢米斯台地区火山热液型铜矿床(点)地质及含矿火山岩年代学、地球化学特征. 岩石学报, 31(8): 2259~2276.
参考文献
张义杰, 齐雪峰, 程显胜, 罗正江. 2007. 准噶尔盆地晚石炭世和二叠纪沉积环境. 新疆石油地质, 28(6): 673~675.
参考文献
张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.
参考文献
张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.
参考文献
赵文智, 胡素云, 郭绪杰, 李建忠, 曹正林. 2019. 油气勘探新理念及其在准噶尔盆地的实践成效. 石油勘探与开发, 46(5): 811~819.
参考文献
郑孟林, 樊向东, 何文军, 杨彤远, 唐勇, 丁靖, 吴海生, 陈磊, 郭建辰. 2019. 准噶尔盆地深层地质结构叠加演变与油气赋存. 地学前缘, 26(1): 22~32.
参考文献
周晶, 季建清, 韩宝福, 马芳, 龚俊峰, 徐芹芹, 郭召杰. 2008. 新疆北部基性岩脉40Ar/39Ar年代学研究. 岩石学报, 24(5): 997~1010.
参考文献
朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.
参考文献
朱如凯, 许怀先, 邓胜徽, 郭宏莉. 2007. 中国北方地区二叠纪岩相古地理. 古地理学报, 9(2): 133~142.
参考文献
纵瑞文, 王志宏, 范若颖, 宋俊俊, 张欣松, 申震, 龚一鸣. 2020. 新疆西准噶尔洪古勒楞组与泥盆系—石炭系界线新知. 地质学报, 94(8): 2460~2475.
目录contents

    摘要

    源-汇系统是目前国内外地球科学领域的研究热点,对于含油气盆地古地理重建以及源储预测评价有着重要的指导作用。本文以准噶尔盆地二叠系为研究对象,通过基于盆地地质大剖面的构造-层序特征分析、定年数据的物源体系演化分析和沉积过程约束的正演模拟等方法,深化了对准噶尔盆地二叠纪古地理格局的认识,探讨了二叠纪源-汇系统演化特征与二叠系源储分布规律。早二叠世为盆地断陷发育期,以石炭系为主物源,除东南部发育海相-海陆过渡相沉积外,总体以近物源扇三角洲-湖相沉积体系为主,多断陷的沉积格局控制了玛湖等凹陷优质烃源岩的分布,与火山岩相关的扇三角洲前缘砂体与混积云质岩构成有利储集体;中二叠世为盆地断-拗转换期,物源年龄开始趋于复杂,沉积中心、沉降中心较早二叠世明显向盆内迁移,早期断陷趋于连通,盆地西部仍以近物源的扇三角洲群-湖相沉积体系为主,东南部则转换为远物源三角洲群-湖盆沉积体系,在盆地中部发育连片分布的规模烃源岩,可与同期(扇)三角洲前缘形成良好的源储组合;晚二叠世进入盆地拗陷发育期,物源供给范围更广,物源年龄进一步复杂化,大型浅水湖盆发育远物源为主的退覆型河流-三角洲沉积体系,为盆地规模油气成藏奠定了储层基础。

    Abstract

    Source-to-sink system is a hot topic in geosciences, which has an important guiding role in the paleogeographic reconstruction of hydrocarbon-bearing basins and in the prediction and evaluation of source and reservoir of hydrocarbon resources. This study takes the Permian in Junggar basin as an example to analyze the stratigraphic and sedimentary pattern in basin-scale geological sections to investigate the evolution of the provenance system based on the chronostratigraphy, and to set up stratigraphic forward models based on sedimentary constraints. Finally, it explores the evolution and source-reservoir distribution of the source-to-sink system. In the Early Permian, which belonged to faulted basin, Carboniferous of the basin's periphery provided the majority of sediments. Fan delta to lacustrine sedimentation with nearby provenance is dominant in most regions, while marine and continental-marine transition sedimentation developed in the southeastern region. The depositional pattern influenced by multiple faults controlled the distribution of high-quality hydrocarbon source rocks in the Mahu and other depressions, and the sand bodies in delta front and dolomite associated with volcanic rocks constituted favorable reservoirs. In the Middle Permian, which belonged to the transition period from faulted basin to depression, the dating results shows that provenance range tended to be wide and complex. The sedimentation center and subsidence center obviously migrated to the inner basin, and the early-formed faulted sags tended to be connected. The western part of the basin is still dominated by the fan deltas to lacustrine sedimentation system with nearby provenance, while the southeastern part converted to fan deltas to lacustrine sedimentation with distal provenance. The large-scale hydrocarbon source rocks with high connectivity in the central basin can form good source-reservoir association with the delta front formed during this period. In the Late Permian, which belonged to depression, provenance range tended to wider or more complex. Large shallow lake allowed the development of regressive river-delta systems with distal provenance. They provided the reservoir for the basin-scale stratigraphic reservoirs.

  • 源-汇系统研究遵循自然界物质守恒定律,沉积物自剥蚀地貌中形成、搬运到沉积区或汇水盆地中最终沉积下来的整个动力学过程,可看成一个完整的源-汇系统,又称沉积物路径系统(Allen,20082017操应长等,2018邵龙义等,2019)。有关“源”、“汇”概念提出较早,但在沉积学领域的系统性研究工作是近三十年开展起来的。如,美国国家科学基金会(NSF)于1998年将“源-汇系统”列为“大陆边缘科学计划”的一个重要子课题,主要研究构造活动、气候变化等因素对源-汇系统的调节、控制作用及其与沉积记录保存之间的关系。Paola et al.(2012)将“沉积物物质平衡”应用于沉积盆地填充的定量分析,以便于通过地层记录估算沉积通量。此后的研究开始量化和表征不同时间尺度的沉积物质平衡,通过恢复沉积通量重建古地理、预测沉积体规模(Allen et al.,2013Bhattacharya et al.,2016Brewer et al.,2020)。

  • 国外学者的源-汇系统研究多聚焦于中—新生代以来的陆-洋沉积体系,在海相-海陆过渡相砂体预测中发挥了重要作用。深时源-汇系统及古地理重建能够通过盆地沉积记录揭示出物源区古地理演化特征,为沉积盆地充填过程恢复提供沉积供给的信息,对深时古环境研究与盆地能源矿产勘探具有重要意义(邵龙义等,2019)。近年来,我国学者开始将源-汇系统研究思路及方法应用于陆相系统。林畅松等(2015)认为内陆湖盆构造差异活动明显、沉积区范围小、沉积物类型对气候变化响应敏感等为特征,因此沉积体系以近源-多源为主。朱红涛等(2017)提出陆相断陷盆地源-汇时空耦合控砂原理,Liu Hao et al.(2019)构建了断陷湖盆构造活动强度与源-汇系统发育类型之间的定量关系,Liu Bingqiang et al.(2019)Xu Qisong et al.(2019)、Li Yanyan et al.(2020)尝试对深时陆相湖盆源-汇系统的沉积通量进行定量分析。

  • 准噶尔盆地二叠系发育风城组、芦草沟组等优质湖相烃源岩,是近源油气勘探的主力层系,已成为盆地增储上产的现实领域(何文军等,2019匡立春等,2021唐勇等,2022)。近年来,相继在西北缘玛湖、沙湾凹陷发现大规模砾岩岩性油气藏与页岩油气藏,在腹部地区阜康、东道海子凹陷等发现上二叠统大面积岩性地层油气藏(群),在准东吉木萨尔凹陷发现中二叠统芦草沟组页岩油/致密油藏,展现了巨大的勘探潜力(赵文智等,2019杜金虎等,2019唐勇等,2019何海清等,2021匡立春等,2022)。

  • 准噶尔盆地持续的勘探突破和勘探重心向深部转移,推动了二叠系各层组古地理研究的不断深入,特别是玛湖凹陷风城组(曹剑等,2015秦志军等,2016汪梦诗等,2018张元元等,2018张志杰等,2018)、准东南芦草沟组(匡立春等,2012杨智等,2018杨有星等,2022)的细粒沉积岩研究取得了较成熟的认识,但二叠纪的盆地规模的整体研究相对较少(张义杰等,2007)。本文应用古物源分析、层序-沉积响应、沉积过程正演模拟等方法,恢复准噶尔盆地二叠纪古地理,分析其源-汇系统演化特征,并探讨深时源-汇系统研究方法及对古地理重建的意义。

  • 1 区域地质概况

  • 1.1 盆地构造背景

  • 准噶尔盆地处于哈萨克斯坦板块东南缘,是中亚造山带的重要组成部分(Sengor et al.,1993;Xiao Wenjiao et al.,2008),被古生代褶皱带所围限。盆地西缘为西准噶尔褶皱造山带,盆地北东及东面是西伯利亚古板块南缘的阿尔泰褶皱造山带及东准噶尔褶皱造山带,盆地南缘为北天山褶皱造山带(图1a)。依据盆地内部二叠系构造特征及后期构造改造特点,将准噶尔盆地划分为西部隆起、东部隆起、陆梁隆起、北天山山前冲断带、中央坳陷和乌伦古坳陷等6个一级构造单元和44个二级构造单元(图1a)(何登发等,2018a)。

  • 准噶尔盆地是一个大型叠合型盆地,目前对其盆地演化阶段,特别是二叠纪的盆地构造属性的认识尚存分歧。肖序常等(1992)孙肇才(1998)陈新等(2002)认为早二叠世准噶尔盆地为前陆盆地发育期。吴庆福(1986)陈发景等(2005)何登发等(2018a)认为早二叠世为裂谷期,不同之处在于,吴庆福(1986)认为二叠纪始终为裂陷,陈发景等(2005)认为中二叠世为裂谷期后弱伸展拗陷、晚二叠世为弱缩短挠曲拗陷,而何登发等(2018a)则认为中晚二叠世为挤压前陆。

  • 图1 准噶尔盆地构造地质单元分布图(a)与地层柱状图(b)

  • Fig.1 Tectonic geological units (a) and Permian stratigraphic columns (b) of Junggar basin

  • 1.2 地层发育情况

  • 准噶尔盆地在前石炭系褶皱基底之上形成了上万米厚的石炭系—第四系沉积,二叠纪是盆地的主要沉积充填期之一,盆地不同部分对二叠系各层组的命名不甚相同(图1b),如,盆地西北缘从老到新依次发育佳木河组(P1j)、风城组(P1f)、夏子街组(P2x)、下乌尔禾组(P2w)、上乌尔禾组(P3w)5套地层(图1b)。下二叠统发育多套火山岩系,风城组暗色泥页岩为西北缘主力烃源岩;中二叠统夏子街组主体为河流-冲积相,下乌尔禾组发育大型湖泊沉积,为盆地主要烃源岩发育期,同期发育在盆地东南部的芦草沟组的烃源潜力已得到勘探实践证实;上二叠统上乌尔禾组为一套冲积扇/扇三角洲-滨浅湖沉积。

  • 2 二叠系构造-地层层序

  • 准噶尔盆地二叠系发育P1j/C、P2x/P1f、P3w/P2w及T1b/P3w四个区域性不整合,它们在西部隆起区和凹陷斜坡区常表现为削蚀不整合或上超不整合,在东部陆梁隆起区则常表现为上超不整合(吴孔友等,2002陈中红等,2003何登发等,2018b李攀等,2020)。除此之外,还发育下二叠统P1f/P1j、中二叠统P2w/P2x的局部不整合,可为构造层序、盆地类型与演化等研究提供参考。

  • 本文通过7条跨盆地的大剖面解释(剖面位置见图1),以4个区域性不整合面为界,将准噶尔盆地二叠系划分为下、中、上3个构造-层序,分别对应于二叠纪早、中、晚3个时期。3个构造-层序的外形特征在纵向上具有从楔形向透镜状再向席状演化的特点,并发育各具特色的内部地层结构与沉积特征(图2),下面以跨盆地内几个主要凹陷的A—A’剖面进行描述。

  • 下二叠统构造-层序表现为一向西部山前带增厚的楔形,分布范围较局限(图2)。内部具有多期上超特征,受后期构造掀斜影响具有“似下超”形态,发育巨厚的碎屑岩与火山岩夹层,其沉积时玛湖地区具有分隔性的沉降中心,并且在盆地局部地区(如达巴松凸起)明显受同沉积正断层控制(图2)。

  • 中二叠统构造-层序在一定程度上继承了下构造-层序的外形特征,受盆地缓慢扩张影响形成明显透镜状,且沉积中心相对于下构造-层序而言,明显向东迁移。下乌尔禾组沉积期,二叠纪早期相互分隔的沉降中心相互联通形成统一的沉降中心(图2)。

  • 上二叠统构造-层序的席状特征明显,厚度相对较薄但分布范围广(图2)。内部可见多期地层超覆接触关系,整体显示为一个水进的退积序列。由于该时期地形坡度较缓,超覆特征不及中、下构造-层序明显,需要仔细观察方能识别。这种盆地结构与沉积背景一直持续到三叠纪初,故而有学者将上二叠统与下三叠统作为一个构造层(何登发等,2018a郑孟林等,2019李攀等,2020),笔者考虑到二者间存在一个区域性不整合,代表了一次大的区域性事件,因此将上二叠统作为一个单独的构造-层序单元。

  • 图2 准噶尔盆地南北-东西向(A—A′)地震大剖面(a)及地质-沉积解释剖面(b)(剖面位置见图1)

  • Fig.2 SN-EW seismic profile (A—A′) (a) and geological &depositional architecture cross-section (b) of Junggar basin (the location is shown in Fig.1)

  • 3 个构造-层序的这些特征表明,准噶尔盆地具有从早二叠世不对称性沉降向晚二叠世均衡性沉降转化的特点,南北演化较一致,东西差异较明显。二叠系表现为自西向东超覆,盆地沉降中心、沉积中心由西向东由山前向盆内迁移。西部沉降中心(玛湖凹陷)在早、中、晚二叠世经历了不同程度的构造隆升,而东部隆起区主要为自石炭纪以来的继承性古隆起,被不同时期的二叠纪地层所超覆掩埋。

  • 基于不整合面、地层层序结构等特征,结合前人研究(吴庆福,1986陈发景等,2005何登发等,2018a)与区域板块构造背景,认为准噶尔盆地二叠纪的盆地构造演化阶段为:早二叠世为裂陷,中二叠世为断-拗转换,晚二叠世为拗陷。

  • 3 二叠系物源分析

  • 大型内陆碎屑湖盆源-汇系统通常以近源、多方向物源、构造差异活动明显、汇水盆地小等为特征(林畅松等,2015)。基于物源区的物质组成、物源类型和沉积区沉积记录的研究,能够分析源-汇系统动力学过程和物质交换方式、原型盆地恢复、构造演化历史及其沉积响应机制(Dickinson et al.,2003Romans et al.,2016)。较常用的物源分析方法是通过对比碎屑矿物年龄分布与潜在物源区母岩年龄,结合区域地质资料,可寻找潜在物源区,判断沉积物搬运路径,从沉积记录中恢复构造运动对盆地充填的控制作用(Rahl et al.,2007Carrapa,2010Romans et al.,2016)。

  • 前人已对准噶尔盆地周缘的母岩岩性与年代、构造背景展开了探讨(韩宝福等,2006Choulet et al.,2011Liu Dongdong et al.,2013黄云飞等,2017蔚远江等,2020),为本文讨论物源区年龄分布提供了数据基础。本文通过对盆地内关键井段采样分析,结合前人已公开发表的盆地周缘与盆地内年龄数据(韩宝福等,2006Choulet et al.,2011Liu Dongdong et al.,2013Tang Wenbin et al.,2021),开展以年代地层约束的源-汇系统分析。准噶尔盆地西缘与东部的二叠系来自不同的物源区,西北缘以西准噶尔褶皱造山带为主要物源区,东南缘以天山造山带和东准噶尔造山带为主要物源区,关于东南缘二叠纪源-汇系统的物源体系演化的研究成果,笔者团队已在其他文章中讨论(Zhao Rui et al.,2020)。本文重点对西北缘二叠系应用碎屑锆石U-Pb年代学分析,将潜在物源区岩性与年龄特征进行对比,示踪物源体系分布与演化。物源体系演化分析是准噶尔盆地二叠系源-汇体系演化与古地理重建的重要依据。

  • 3.1 样品采集与分析

  • 分别在玛湖—中拐地区二叠系的五个不同层位采集了26件岩石样品(具体采样井点见图3),对其进行锆石U-Pb年代学分析。因西北缘二叠系无露头剖面出露,所有样品均采自钻井岩芯,岩性主要为砂岩、砂砾岩。锆石的分离与挑选、样品靶的制作、阴极发光图像(CL)采集、LA-ICPMS锆石U-Pb定年分析在西北大学大陆动力学国家重点实验室完成。

  • 3.2 潜在物源区年龄分布特征

  • 理清潜在物源区的地层出露情况及岩浆岩年代学格架,是开展物源分析的基础工作之一。本文将西准噶尔不同地区已发表的643个岩浆岩样品的同位素年龄数据进行分析,并按照西准噶尔北部扎尔玛-萨吾尔岩浆弧、博什库尔-成吉斯岩浆弧、西准噶尔中部、西准噶尔南部及位于西北缘盆地内部5个单元进行统计分析(图3)。

  • 统计结果表明,上述前4个潜在物源区的年龄分布具有明显差异(图4)。西准噶尔北部的岩浆活动明显分为北部晚古生代扎尔玛-萨吾尔岩浆弧和南部早古生代博什库尔-成吉斯岩浆弧,前者的锆石年龄主要分布在石炭纪,后者的年龄主要分布在晚泥盆世—志留纪。西准噶尔中部的地层年龄集中在晚石炭世,早石炭世及泥盆纪也有分布,但是缺乏早古生代的年龄证据。与西准噶尔北部和中部相比,西准噶尔南部年龄广泛分布于早古生代,但无早石炭世—泥盆纪、奥陶纪年龄分布。而准噶尔盆地内部的锆石年龄则在二叠纪—石炭纪连续分布。

  • 总体来看,准噶尔盆地内部的锆石年龄分布较为集中,显示在二叠纪—石炭纪连续分布,与西准噶尔中部的年龄分布最为接近(图4),因此推断西北缘二叠系的物源主要来自西准噶尔地区中部的上石炭统。

  • 3.3 物源体系及其演化分析

  • 通常物源区相同的沉积物的碎屑锆石年龄分布具有相似性,而物源区不同且物源区岩体年龄有明显差异的地层,其锆石年龄的相似性较差。本文将准噶尔盆地西北周缘出露岩体年龄与盆地内部二叠系的碎屑锆石年龄进行对比,综合分析西北缘二叠纪的物源信息及其演化。

  • 平面上,通过样品位置和年龄分布的相似性,进行物源体系划分。以样品较多的下乌尔禾组为例,年龄分布规律相似的沉积区相邻井可能处于同一物源体系,将准噶尔盆地西北缘划分为玛湖凹陷北部、玛湖凹陷中部、玛湖凹陷南部和中拐地区4个物源体系。

  • 图3 西准噶尔地质简图(据新疆维吾尔自治区地质矿产局,1993Yang Gaoxue et al.,2013; 纵瑞文等,2020)与准噶尔盆地西缘碎屑锆石采样位置

  • Fig.3 Geological map of West Junggar (after Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993; Yang Gaoxue et al., 2013; Zong Ruiwen et al., 2020) and sampling location of detrital zircon in northwestern margin of Junggar basin

  • 玛湖凹陷北部的锆石年龄分布跨度广,呈现一个宽缓主峰加多个次峰的特征(图5),说明物源较复杂,具多物源混合特征。主体年龄分布在345~290 Ma,推测其物源主要来自邻近的西准噶尔中部石炭纪—早二叠世岩浆岩。这组样品含有一部分泥盆纪—晚奥陶世碎屑锆石,反映可能有部分沉积物来自北部远源的泥盆纪—志留纪火山岩以及早泥盆世—晚志留世侵入体。

  • 玛湖凹陷中部的年龄分布呈宽缓的单峰状(图5),说明物源较单一。与其他地区相比,玛湖凹陷中部早二叠世—早石炭世的锆石数量明显增多,这可能与西准噶尔中部扎伊尔山—哈拉阿拉特山一带广泛发育的早二叠世火山岩密切相关(Chen Bin and Jahn,2004韩宝福等,2006Geng Hongyan et al.,2009Duan Fenghao et al.,2019)。因此,推测碎屑物质主要来自邻近的西准噶尔中部的下石炭统—下二叠统,为典型的近物源沉积。由于样品缺乏志留纪—泥盆纪年龄,说明物源区未能向北延伸至博什库尔-成吉斯岩浆弧。

  • 玛湖凹陷南部的年龄谱特征主体分布于石炭纪,有一个主峰和多个次峰,说明其为混源性质。中拐地区的年龄谱较玛湖凹陷南部更广,主要分布于371~266 Ma、452~415 Ma两个区间。与玛湖凹陷南部样品相比,这组样品早泥盆世—早志留世的锆石变多,而这些年龄的锆石可能主要来自西准噶尔南部,指示了中拐地区受西准噶尔南部物源的输入影响更大,且锆石多呈次圆状,说明碎屑锆石经过了一定距离的搬运。

  • 图4 西准噶尔地区与准噶尔盆地内部锆石年龄分布图

  • Fig.4 Zircon age distributions of magmatic and metamorphic rocks in West Junggar and northwestern Junggar basin

  • 西北准噶尔地区的定年数据来自李华芹等(2000); 李辛子等(2004); Jian Ping et al.(2005); 韩宝福等(2006); 周晶等(2008); Geng Hongyan et al.(2009); Chen Jiafu et al.(2010b); 陈家富等(2010a); 冯乾文等(2012); 尚兆聪等(2012); Tang Gongjian et al.(2012); Xu Zhao et al.(2012); Yang Gaoxue et al.(2012a,2012b); 田亚洲(2015); 向坤鹏(2015); 张若飞等(2015); 靳松(2016); 陈万峰(2017); Tang Gongjian et al.(2017); Yin Jiyuan et al.(2017); Duan Fenghao(2019)

  • Age data of northwestern Junggar basin from Li Huaqin et al. (2000) ; Li Xinzi et al. (2004) ; Jian Ping et al. (2005) ; Han Baofu et al. (2006) ; Zhou Jing et al. (2008) ; Geng Hongyan et al. (2009) ; Chen Jiafu et al. (2010a, 2010b) ; Feng Qianwen et al. (2012) ; Shang Zhaocong et al. (2012) ; Tang Gongjian et al. (2012) ; Xu Zhao et al. (2012) ; Yang Gaoxue et al. (2012a,2012b) ; Tian Yazhou (2015) ; Xiang Kunpeng (2015) ; Zhang Ruofei et al. (2015) ; Jin Song (2016) ; Chen Wanfeng (2017) ; Tang Gongjian et al. (2017) ; Yin Jiyuan et al. (2017) ; Duan Fenghao (2019)

  • 图5 准噶尔盆地西北缘下乌尔禾组碎屑锆石U-Pb年龄分布与部分碎屑锆石阴极发光图像

  • Fig.5 U-Pb age distributions and some cathodoluminescence images of detrital zircons in Lower Wuerhe Formation in northwestern Junggar basin

  • 纵向上看,二叠系的5个层组的样品年龄均存在330~310 Ma的主峰年龄区间(图6),反映出不同时间物源体系的发育具有一定的继承性。佳木河组、风城组、夏子街组的样品年龄分布较为相似,均以石炭纪窄峰为特征(图6),反映物源较为单一,主要来自于邻近的西准噶尔中部石炭纪岩浆岩。下乌尔禾组、上乌尔禾组的样品年龄分布区间较宽,且峰值变多(图6),反映出中二叠世晚期至晚二叠世物源年龄的复杂化,这可能与物源区扩大,更多年龄的地层提供沉积物来源有关。另外也可发现,下乌尔禾组和上乌尔禾组样品中出现较多二叠纪碎屑锆石,反映出可能存在邻区二叠系的再搬运。

  • 4 西北缘玛湖凹陷中南部上乌尔禾组沉积过程模拟

  • 沉积正演遵从沉积物侵蚀、搬运、沉积的物理规律,运用流体力学、泥沙动力学等原理,模拟沉积体系从无到有的形成过程及其最终结果,对沉积体系进行恢复重建 (Paola,2000; Burgess et al.,2012)。沉积正演可以为准确的古地理恢复提供依据,预测沉积体展布与规模,从而为油气勘探的储集体预测和区带优选提供支撑。对于源-汇系统研究而言,沉积过程模拟可以从沉积体系的特征反推源区的特征,从而建立源区与汇区之间的联系,为利用沉积区资料进行定量源-汇系统分析的重要手段。本文尝试将源-汇思想应用到数值模拟中,对物源供给参数、主次物源等模拟输入参数的获取进行优化,通过模型调试分析影响沉积过程的主控因素,进而对凹陷内可能发育的沉积体类型及特征进行预测。

  • 受篇幅所限,本文仅以玛湖凹陷中南部的上乌尔禾组沉积过程模拟为例,应用Dionisos软件,阐述准噶尔盆地西北缘二叠系的代表性沉积过程模拟研究。上乌尔禾组为大型粗粒扇三角洲沉积,为继百口泉组之后的下一个重要油气勘探开发潜力层段,也是从断陷湖盆向拗陷湖盆的过渡层段,具备一定代表性。Dionisos软件以扩散方程为核心,通过物源供给、可容纳空间和搬运过程等参数的变化,描述沉积体系整体搬运能力和沉积体展布,从而实现对不同尺度范围内的构造沉降、湖/海平面变化、压实、剥蚀等地质过程进行模拟。

  • 图6 准噶尔盆地西北缘二叠系碎屑锆石年龄U-Pb年龄分布图

  • Fig.6 U-Pb age distributions of Permian detrital zircons in northwestern Junggar basin

  • 4.1 模拟输入参数的获取

  • 输入正确参数是沉积正演可靠性的基础,也是后续模型分析的基础。但实际研究中往往缺乏完备的研究区资料,尤其是对于深时系统而言,恢复古沉积环境难度较大,因此选取输入参数是沉积正演的难点也是关键所在。本次模拟遵从地层回剥、岩性压实系数定沉降参数,古地貌、湖平面变化定可容纳空间,物源分析+年代地层定主、次要物源,粒度+现代河流解剖等定物源供给参数的原则,确定模拟的输入参数。

  • 残余厚度法恢复的古地貌显示,上乌尔禾期古地貌整体呈缓坡浅湖特征,中拐凸起到沉积湖盆以及扎伊尔山山脚到沉积湖盆为渐变转化,为方便描述,将低凸起之上称为坡上区域,坡度稍大;而低凸起之下称为坡下区域,坡度稍缓。模拟工区南北长100 km,东西宽80 km(见图1a中的红框范围),网格分辨率为1 km×1 km。模拟时限为上乌尔禾组沉积时长267.7~250.6 Ma(孟祥超等,2021),时间步长0.3 Ma,总层数为57层。

  • 上乌尔禾期沉积一套湖侵退积型沉积序列,可容空间逐渐变小,以同期全球海平面变化与典型井GR曲线拟合基准面变化曲线,确立了研究区湖平面为震荡式上升。通过研究区的粒径分布特征,可以半定量的以泥岩和砂砾岩分界线为大致湖岸线范围。

  • 前文述及,西北缘二叠纪主要发育四大继承性物源体系,晚二叠世玛湖凹陷北部抬升剥蚀,模拟工区内主要是三大物源体系的产物,其中来自研究区南部的物源体系形成的扇体较小,这里重点讨论研究区中部的中拐扇和东部的白碱滩扇体。通过沉积区的扇体规模与粒度分布来看,中拐扇的沉积物供给高于白碱滩扇,且牵引流、洪流、碎屑流三种沉积过程均发育。

  • 4.2 过程模拟控制因素分析

  • 由于资料的不完备性、地质过程的复杂性和技术方法的局限性等,对影响沉积正演模拟的关键因素及其量化的关键参数的求取仍然存在不确定性。因此对于沉积正演模拟的量化参数诸如初始古水深等需要通过多次调参,考察模拟结果的合理性最终确立。同时,控制变量单因素分析也可为沉积体系的控制因素研究提供量化依据。

  • 本次研究借鉴了前人利用沉积正演对比大陆边缘海平面升降控制的层序特征以及沉积供给变化控制的层序特征这一思路(Zhang Jinyu et al.,2019;龚承林等,2020),通过建立假想模型明确主控因素,从而辅助参数选取以及最终建立沉积正演模型。本次研究首先建立4种假想模型,探讨4种成因下扇三角洲特征和退积模式,即沉积供给降低(图7a)、洪流强度减少(图7b)、径流量降低、湖平面升高。对比其扇三角洲特征,可见高沉积物供给型扇三角洲为扇状,入湖处形成明显坡折,坡上沉积多,洪流强度型扇三角洲为帚状,无明显坡折,坡上沉积少,高径流量和低湖平面型介于二者之间。而相对A/S比控制的退积具有明显坡折,上超现象明显,当A/S比极低时存在前积,径流量和浊流强度控制的退积坡折不明显,缺乏明显前积与上超现象。而研究区扇三角洲前端不圆滑,分支河道多,上超、坡折、局部前积不明显,更接近水动力降低以及洪流强度降低控制的退积,但在前期岩芯和粒度概率曲线的研究发现浊流所占比例低于牵引流,因此综合分析认为,水动力降低为研究区退积的主要成因。

  • 此外,唐勇等(2017)采用长江大学水槽模拟实验装置,对砾石在缓坡浅水环境下长距离搬运的机制进行了研究,本研究借鉴这一思路,采取沉积正演遵循单一变量原则,设置50个模型,定量统计五大因素对扇体长度的影响,即沉积供给(图7c)、水流量(图7d)、物源至湖岸线距离(图7e)、坡度、洪流强度。研究显示当各个因素增大10~50倍时,扇体长度增大20%~80%,对比回归分析可知沉积供给、坡度、距湖岸线距离三个因素和扇体长度的相关性高;洪流强度、径流量两个因素和扇体长度的相关性低。而对比回归分析曲线的斜率可见距湖岸距离、坡度、洪流强度三个因素促进沉积物搬运的效率高,沉积供给和水流量效率低两个因素促进沉积物搬运的效率高。综合分析认为强水动力为砾石缓坡长距离搬运的主要原因。

  • 4.3 沉积体展布与演化

  • 结果显示,碎屑流平面(图8a)上主要处于湖盆边缘陡坡处以及扇三角洲扇根处,也可分布在扇三角洲前缘陡坡带以及古地貌微凸起周缘。洪流沉积(图8b)广泛分布在扇三角洲之上,形成片状沉积物,在三角洲前缘水下二次发育,形成向前延伸条带。水流量(图8c)分布包括洪流和牵引流,可以反映研究区的水动力特征,流量大时水动力强,对于沉积物的搬运能力强,而高流量分布带也可指示平原水道以及分支水道的分布。研究区高水流区域水流广泛分布在中拐扇和白碱滩扇之上,从扇根自扇端呈发散状。沉积参数中地层厚度(图8d)以及砂岩厚度(图8e)可以指示有利储层分布,分析结果显示砂岩主要发育在研究区两大沟槽处,呈南-北向顺物源分布。而泥岩厚度以及泥岩隔夹层数(图8f)可以指示有利盖层分布,分析结果显示厚层泥岩主要发育在湖盆中心,而薄层泥岩发育在坡上坡下过渡带。

  • 图7 玛湖凹陷中南部上乌尔禾组沉积过程模拟单因素分析

  • Fig.7 Single-factor analysis of sedimentation process for Upper Wuerhe Formation in central and sorthern Mahu sag, northwestern Junggar basin

  • (a)—沉积供给降低退积;(b)—洪流强度降低退积;(c)—沉积供给与扇体长度关系;(d)—水流量与扇体长度关系;(e)—物源距湖平面距离与扇体长度关系

  • (a) —regression controlled by decreasing sediment supply; (b) —regression controlled by decreasing floods; (c) —relationship between sediment supply and fan length; (d) —relationship between water discharge and fan length; (e) —relationship between the distance between source area and shoreline and fan length

  • 最终对比中拐扇(图9a)和白碱滩扇(图9b),其共同点为砂砾缓坡较长距离搬运,扇体总体呈退覆沉积,洪流、碎屑流、牵引流共同控制。差异在于:中拐扇存在两个搬运通道,沉积物供给量高,古地貌坡度大,混物源特征明显;地貌方面地势低,可容纳空间大;沉积厚度大、含砂率高、厚层砂砾岩为主,为主力扇体;纵向上来看,扇根部位垂向差异小,扇端垂向差异大,三期退覆叠置明显。白碱滩扇物源供给量低,砂泥各半,坡度小,来自单一物源;地势较高,可容纳空间较小;沉积的厚度小,含砂率低,薄层砂泥互层,总体规模较小;总体来看垂向差异大,三期退覆叠置较少,自下而上都向北延伸。

  • 5 二叠系源-汇系统与古地理重建

  • 通过盆地大剖面构造-层序分析明确了二叠纪地层层序发育特征,通过物源分析确定沉积体系的物源供给关系及演化,结合沉积过程模拟对凹陷内沉积体系的刻画,综合分析可恢复准噶尔盆地二叠纪古地理格局,从而明确烃源岩与有利规模储集体分布特征。前已述及,准噶尔盆地二叠纪,沉积中心和沉降中心由山前向盆内迁移,早二叠世以分隔断陷发育为主,各断陷小而深,至中二叠世,断陷逐渐趋于连通,到二叠纪末形成一个全盆地连通的大坳陷,完成了由断陷向拗陷的转化。

  • 5.1 早二叠世沉积格局分异明显

  • 准噶尔盆地在早二叠世为盆地扭张期,构造活动强烈,西北缘抬升,古特提斯洋逐渐向东南方向退出,除博格达地区发育残留海沉积,而其他地区则以陆相沉积为主,多个与火山活动有关的、彼此相隔的断陷控制了沉积格局及烃源岩分布。早二叠世早期(佳木河期)火山活动强烈,在火山活动间歇期局部出现小规模湖泊外,广大地区以富火山岩和火山碎屑岩的冲积扇-河流环境为主;早二叠世晚期(风城期)火山活动依然强烈,且水体迅速扩大加深,总体以富含火山碎屑和钠碳酸盐岩的扇三角洲-湖泊环境占主导,下面进行重点介绍早二叠世风城期古地理。

  • 图8 玛湖凹陷中南部上乌尔禾组沉积过程模拟所得沉积参数图

  • Fig.8 Distribution of sedimentological parameters and process parameters for the First Member of the Upper Wuerhe Formation in central and sorthern Mahu sag, northwestern Junggar basin

  • (a)—碎屑流;(b)—洪流;(c)—水流量;(d)—地层厚度;(e)—砂岩厚度;(f)—泥岩层数

  • (a) —debris flow; (b) —floods; (c) —water discharge; (d) —strata thickness; (e) —sandstone thickness; (f) —mudstone thickness

  • 盆地内风城期沉积格局分异明显,发育三大类沉积体系。在盆地西部发育多个与火山活动有关的、彼此相隔的断陷,火山机构和西准噶尔中部的断块山物源在隆凹区的次凹带作为主要物源,同时还可能发育来自西准噶尔北部、甚至阿尔泰造山带的远物源,从而形成了以近物源扇三角洲-湖相沉积体系为主,并与远物源三角洲-湖相沉积体系共存的局面,优质咸化湖相烃源岩与(扇)三角洲储集体叠置形成良好的源储组合。盆地南缘被残留海环绕,北天山为该时期盆地的主要沉积物源(Zhao Rui et al.,2020),以远物源三角洲-残留海沉积体系为主导,发育了塔什库拉组(与风城组同期异相)海相烃源岩与浊积岩储集体(图10)。中东部冲积平原沉积体系发育小型凹陷群,以河流-泛滥平原沉积体系为主,局部发育远物源三角洲-浅湖相沉积体系(图11)。

  • 5.2 中二叠世沉积格局趋同

  • 中二叠世,古特提斯洋完全退出准噶尔地区,火山活动减弱,早二叠世发育的多个小断陷渐渐趋于连通,盆地进入断-拗转换期,三角洲-湖泊体系广布。中二叠世早期(夏子街期)湖泊面积较小,仅南缘局部地区发育小规模湖泊,其他广大地区以冲积扇、河流环境为主,中二叠世中晚期(下乌尔禾期)发生明显湖侵,盆地东南部形成湖域广、水体深的陆缘近海湖泊环境(朱如凯等,2007),形成西部、东部两大沉积中心(图12、13),西部沉积中心包括玛湖-盆1井西凹陷、沙湾凹陷等次级沉积中心,中东部沉积中心包括阜康凹陷、吉木萨尔凹陷等次级沉积中心。该时期是盆地重要的烃源岩发育期,西部的下乌尔禾组和东部的芦草沟组烃源潜力均已被勘探实践证实。

  • 图9 玛湖凹陷中南部上乌尔禾组一段沉积过程模拟所得连井剖面

  • Fig.9 Strike section showing the content of sandstone and gravels for the Upper Wuerhe Formation in central and sorthern Mahu sag, northwestern Junggar basin

  • (a)—中拐扇顺物源剖面;(b)—白碱滩扇顺物源剖面

  • (a) —strike section of Zhongguai fan; (b) —strike section of Baijiantan fan

  • 图10 准噶尔盆地南缘井井子沟剖面塔什库拉组(P1t)深水页岩与重力流沉积互层(露头位置见图11中红三角)

  • Fig.10 Interbeding of deep-water shale and gravity flow deposits of the Tashikula Formation (P1t) in Jingjingzigou section of southern Junggar basin (outcrop location is shown by red triangle in Fig.11)

  • 下乌尔禾组沉积时期盆地发生快速沉降(何登发等,2018a),盆地西部火山活动对扇体及烃源岩发育的影响有所减弱,但仍以西准噶尔造山带为主物源供给区,以发育近物源的三角洲群-湖相沉积体系为主,西北缘同时还发育有源自阿尔泰造山带和陆梁隆起区的远物源三角洲-湖相沉积体系,因远源河流沿途接纳了流域两侧冲积扇或扇三角洲沉积(图13),使得西北缘下乌尔禾组岩相更为复杂,既有高成熟度组分,又有低成熟度组分。盆地中东部阜康地区与吉木萨尔地区形成广而深的湖泊环境,北天山西部构造活动增加,中天山隆起,北天山西部物源仍为主物源(Zhao Rui et al.,2020),克拉美丽和南天山剥蚀作用减弱,东部广泛以接受远物源三角洲群-湖相沉积体系为主。

  • 5.3 晚二叠世水进型退覆沉积

  • 晚二叠世,准噶尔盆地趋于大同,沉降减速,形成了大型浅水拗陷湖盆,总体呈浅碟状(参见图2),整个盆地显示一个水进沉积序列。盆地西部在接受西准噶尔和北部缝合带物源供给的同时,玛湖凹陷北部由于中二叠世末强烈的抬升剥蚀(郑孟林等,2019),早期沉积的中—下二叠统也可提供沉积物作为补充(参见图6),从而形成了远物源为主、近物源为辅的混合物源的冲积扇-河流-扇三角洲沉积体系(图14)。准东南地区仍以北天山西部和中天山南部作为主要物源,同时博格达山在晚二叠世隆起,开始为准噶尔盆地提供沉积物(Zhao Rui et al.,2020),据目前资料看,此时期准东南以冲积扇-三角洲-湖相沉积体系为主。

  • 图11 准噶尔盆地早二叠世风城期古地理恢复模式图

  • Fig.11 Palaeogeography pattern of Fengcheng Period, Early Permian in Junggar basin

  • 图12 准噶尔盆地中二叠统下乌尔禾组连井沉积剖面图(剖面位置见图13)

  • Fig.12 Depositional section of Lower Wuerhe Formation, Middle Permian in Junggar basin (section loction is shown in Fig.13)

  • 6 结论

  • 通过层序-沉积格局与物源体系分析,结合沉积过程模拟结果分析,恢复了准噶尔盆地二叠纪古地理,取得以下主要认识:

  • (1)二叠系可划分为下、中、上3个构造层序,分别对应下二叠统的佳木禾组和风城组、中二叠统夏子街组和下乌尔禾组、上二叠统上乌尔禾组,时间上分别对应于盆地的断陷期、断-拗转换期、拗陷期3个演化阶段,3个构造层序的外形特征具有从楔形向透镜状,再向席状演化的特点。

  • (2)二叠纪源-汇系统的演化具有一定继承性,并呈现出单一物源向复杂物源的演化趋势。早二叠世至中二叠世早期,盆地周缘石炭纪岩浆岩为主要物质来源,从下乌尔禾期开始,构造隆升作用使得西准噶尔北部隆升,晚二叠世博格达山隆升,隆起区的中下二叠统遭受剥蚀,向盆地内提供沉积物源。

  • 图13 准噶尔盆地中二叠世下乌尔禾期古地理恢复模式图

  • Fig.13 Palaeogeography pattern of Lower Wuerhe Period, Middle Permian in Junggar basin

  • 图14 准噶尔盆地晚二叠世上乌尔禾期古地理恢复模式图

  • Fig.14 Palaeogeography pattern of Upper Wuerhe Period, Late Permian in Junggar basin

  • (3)基于沉积过程约束的正演模拟方法强调物源供给、可空纳空间和搬运过程等参数的变化,既能模拟源-汇系统的整体搬运能力,又能再现沉积体沉积过程及其时空展布,为准确的古地理恢复提供依据,进而为油气勘探的储集体预测和区带优选提供支撑。

  • (4)早二叠世,除盆地东南部发育海相沉积外,总体以近物源扇三角洲-湖相沉积体系占主导,多排断陷控制了沉积格局及湖相烃源岩分布,与火山岩相关的扇三角洲前缘砂体与混积云质岩构成有利储集体。中二叠世,多个断陷趋于连通,盆地西部仍以近物源的扇三角洲群-湖相沉积体系为主,东南部则转换为以远物源三角洲群-湖盆沉积体系为主导,是盆地重要的烃源岩发育期,湖相优质烃源岩与同期(扇)三角洲前缘可形成良好的源储组合。晚二叠世,大型浅水拗陷湖盆形成,以远物源的冲积扇-河流-浅水三角洲沉积体系为主。

  • 致谢:样品采集和资料收集,得到了中国石油新疆油田分公司勘探处和研究院专家的支持和帮助,在本文研究与编写过程中得到了新疆油田唐勇教授、中国石油勘探开发研究院朱如凯教授等的指导与帮助,在此表示衷心感谢!最后,特别感谢审稿专家对本文给出的中肯且富建设性的意见和建议!

  • 参考文献

    • Allen P A. 2008. From landscapes into geological history. Nature, 451(7176): 274~276.

    • Allen P A. 2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge: Cambridge University Press.

    • Allen P A, Armitage J J, Carter A, Duller R A, Michael N A, Sinclair H D, Whitchurch A L, Whittaker A C. 2013. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1): 102~130.

    • Bhattacharya J P, Copeland P, Lawton T F, Holbrook J. 2016. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 153: 77~110.

    • Brewer C J, Hampson G J, Whittaker A C, Roberts G G, Watkins S E. 2020. Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth-Science Reviews, 207.

    • Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. In: Roberts D G, Bally A W, eds. Regional Geology and Tectonics: Principles of Geologic Analysis. Amsterdam: Elsevier, 378~404.

    • Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Ablimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).

    • Cao Yingchang, Xu Qisong, Wang Jian. 2018. Progress in “Source-to-Sink” system research. Earth Science Frontiers, 25(4): 116~131 (in Chinese with English abstract).

    • Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology, 38(2): 191~192.

    • Chen Bin, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23: 691~703.

    • Chen Fajing, Wang Xinwen, Wang Xinwei. 2005. Prototype and tectonic evolution of the Junggar basin, northwestern China. Earth Science Frontiers, 12(3): 77~89 (in Chinese with English abstract).

    • Chen Jiafu, Han Baofu, Zhang Lei. 2010a. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317~2335 (in Chinese with English abstract).

    • Chen Jiafu, Han Baofu, Ji Jianqing, Zhang Lei, Xu Zhao, He Guoqi, Wang Tao. 2010b. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137~152.

    • Chen Wanfeng. 2017. Comparative study on Late Paleozoic tectonic-magmatism evolution in eastern and western Junggar, Xinjiang, western China. PhD thesis of Lanzhou University (in Chinese with English abstract).

    • Chen Xin, Lu Huafu, Shu Liangshu, Wang Huimin, Zhang Guoqing. 2002. Study on tectonic evolution of Junggar basin. Geological Journal of China Universities, 8(3): 257~266 (in Chinese with English abstract).

    • Chen Zhonghong, Zha Mimg, Zhu Xixaomin. 2003. Relation between unconformity surface and hydrocarbon migration and accumulation of Luliang uplift in Junggar basin. Journal of Palaeogeography, 5(1): 120~126 (in Chinese with English abstract).

    • Choulet F, Chen Y, Wang B, Faure M, Cluzel D, Charvet J, Lin W, Xu B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences, 42(5): 867~884.

    • Dickinson W R, Gehrels G E. 2003. U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163(1-2): 29~66.

    • Du Jinhu, Zhi Dongming, Tang Yong, Jia Chunming, Xu Yang, Abulimity Yiming, Deng Yong. 2019. Prospects in Upper Permian and strategic discovery in Shawan sag, Junggar basin. China Petroleum Exploration, 24(1): 24~35 (in Chinese with English abstract).

    • Duan Fenghao, Li Yongjun, Zhi Qian, Yang Gaoxue, Gao Junbao. 2019. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China. Journal of Asian Earth Sciences, 175: 158~177.

    • Feng Qianwen, Li Jintie, Liu Jianfeng, Song Biao, Wang Yanbin, Chen Wen, Zhang Yan. 2012. Ages and geological significance of the dark dykes emplaced in the Karamay pluton and adjacent area, in western Junggar, Xinjiang, NW China: Evidence from LAICP-MS zircon chronology and Ar-Ar amphibole chronology. Acta Petrologica Sinica, 28(7): 2158~2170 (in Chinese with English abstract).

    • Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086 (in Chinese with English abstract).

    • Geng Hongyan, Sun Min, Yuan Chao, Xiao Wenjiao, Xian Weisheng, Zhao Guochun, Zhang Lifei, Wong Kenny, Wu Fuyuan. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4): 364~389.

    • Geng Hongyan, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 42(5): 854~866.

    • Gong Chenglin, Qi Kun, Xu Jie, Liu Xiting, Wang Yingmin. 2021. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes. Acta Sedimentologica Sinica, 39(1): 232~252 (in Chinese with English abstract).

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018a. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • He Dengfa, Wu Songtao, Zhao Long, Zheng Menglin, Li Di, Lu Yu. 2018b. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu sag, Junggar basin. Xingjiang Petroleum Geology, 39(1): 35~47 (in Chinese with English abstract).

    • He Haiqing, Zhi Dongming, Tang Yong, Liu Chaowei, Chen Hong, Guo Xuguang, Wang Zesheng. 2021. A great discovery of well Kangtan 1 in the Fukang sag in the Junggar basin and its significance. China Petroleum Exploration, 26(2): 1~11 (in Chinese with English abstract) .

    • He Wenjun, Wang Xulong, Zou Yang, Yang Haibo, Zhao Longmei, Wu Si, Ding Jing, Bao Haijuan, Wu Haisheng. 2019. The geological conditions, resource potential and exploration direction of oil in Junggar basin. Marine Origin Petroleum Geology, 24(2): 75~84 (in Chinese with English abstract).

    • Huang Yunfei, Zhang Changmin, Zhu Rui, Yi Xuefei, Qu Jianhua, Tang Yong. 2017. Palaeoclimatology, provenance and tectonic setting during Late Permian to Middle Triassic in Mahu sag in Junggar basin, China. Earth Science, 42(10): 1736~1749 (in Chinese with English abstract).

    • Jian Ping, Li Dunyi, Shi Yurou, Zhang Fuqin. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian Orogenic Belt. In: Sklyarov E V, ed. Structural and Tectonic Correlation across the Central Asian Orogenic Collage. Northeastern Segment, 246~251.

    • Jin Song, Zhang Zhaoyi, Rong Guilin, Liu Xinyu, Li Yuehui, Zhang Hanwen, Bi Li. 2015. Geochemical characteristics, zircon U-Pb age, and Hf isotopes of Yushenkala pluton in western Junggar, Xinjiang: Constraint on the closure of Paleo-Asian Ocean. Geology in China, 42(3): 494~508 (in Chinese with English abstract).

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2021. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Song Yong, Jiang Wenlong, Cao Zhenglin, Yang Zhifeng, He Wenjun. 2022. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permian in Junggar basin. Acta Petrolei Sinica, 43(3): 325~340 (in Chinese with English abstract).

    • Li Huaqin, Chen Fuwen, Cai Hong. 2000. Study on Rb-Sr isotopic ages of gold deposits in west Junggar area, Xinjiang. Acta Geologica Sinica, 74(2): 181~192 (in Chinese with English abstract).

    • Li Pan, Li Yongqiang, Jing Jianbo, Cao Zhenglin, Yuan Xuanjun. 2020. Unconformities formed during the P-T transition in the northwestern Junggar basin: Nature, evolution and implications. Journal of Palaeogeography (Chinese Edition), 22(4): 698~714 (in Chinese with English abstract).

    • Li Xinzi, Han Baofu, Ji Jianqing, Li Zonghuai, Liu Zhiqiang, Yang Bin. 2004. Geology, geochemistry and K-Ar ages of the Karamay basic-intermediate dyke swarm from Xinjiang, China. Geochimica, 33(6): 574~584 (in Chinese with English abstract).

    • Li Yanan, Shao Longyi, Xu Jie, Hou Haihai, Tang Yue, Yuan Yuan, Zhang Jiaqiang. 2020. Application of channel-belt scaling relationships to early Middle Jurassic source-to-sink system evolution in the southern Junggar basin. Marine and Petroleum Geology, 117.

    • Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, soruce to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).

    • Liu Bingqiang, Shao Longyi, Wang Xuetian, Li Yanan, Xu Jie. 2019. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam basin, NW China. Journal of Palaeogeography, 8(1): 16.

    • Liu Dongdong, Jolivet Marc, Yang Wei, Zhang Ziya, Cheng Feng, Zhu Bei, Guo Zhaojie. 2013. Latest Paleozoic-Early Mesozoic basin-range interactions in South Tian Shan (Northwest China) and their tectonic significance: Constraints from detrital zircon U-Pb ages. Tectonophysics, 599: 197~213.

    • Liu Hao, Loon A J, Xu Jie, Tian Lixin, Du Xiaofeng, Zhang Xintao, Chen Danlei. 2019. Relationships between tectonic activity and sedimentary source-to-sink system parameters in a lacustrine rift basin: A quantitative case study of the Huanghekou depression (Bohai Bay basin, E China). Basin Research, 32(4): 587~612.

    • Margins_Office. 2003. Source-to-Sink (S2S). NSF MARGINS Program Science Plans 2004. New York: Columbia University, 131~157.

    • Meng Xiangchao, Qi Hongyan, Chen Yang, Xie Zongrui, Dou Yang, Xu Yang, Guo Huajun. 2021. Genesis of low GR weathering paleosols and high GR glutenite and oil & gas exploration: A case study of the Upper Permian Wuerhe Formation in Manan area. Journal of China University of Mining & Technology, 50(6): 1153~1168 (in Chinese with English abstract).

    • Paola C. 2000. Quantitative models of sedimentary basin filling. Sedimentology, 47: 121~178.

    • Paola C, Martin J M. 2012. Mass-balance effects in depositional systems. Journal of Sedimentary Research, 82(5-6): 435~450.

    • Qin Zhijun, Chen Lihua, Li Yuwen, Wang Tingting, Cao Jian. 2016. Paleo-sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu sag, Junggar basin. Xinjiang Petroleum Geology, 37(1): 1~6 (in Chinese with English abstract) .

    • Rahl J M, Ehlers T A, van der Pluijm B A. 2007. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256(1-2): 147~161.

    • Romans B W, Castelltort S, Covault J A, Fildani A, Walsh J P. 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153: 7~29.

    • Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299~307.

    • Shang Zhaocong, Wang Huaitao, Zhang Wei, Liu Kunxin, He Yanbin, Wei Dongwei. 2012. Geochronology and tectonic implications of the granites in West Junggar, Xinjiang. Gansu Geology, 21(1): 1~5+80 (in Chinese with English abstract).

    • Shao Longyi, Wang Xuetian, Li Yanan, Liu Bingqiang. 2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography, 21(1): 73~87 (in Chinese with English abstract).

    • Sun Zhaocai. 1998. Mesozoic-Cenozoic foreland basin of the western China and its hydrocarbon exploration prospect with a comment on the division of tectonic units in Junggar basin. Marine Petroleum Prospect, 4(3): 16~30 (in Chinese with English abstract).

    • Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128-131: 73~83.

    • Tang Gongjian, Chung Sunlin, Hawkesworth C J, Cawood P A, Wang Qiang, Wyman D A, Xu Yigang, Zhao Zhenhua. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142~154.

    • Tang Wenbin, Zhang Yuanyuan, Pe-Piper Georgia, Piper David, Guo Zhaojie, Li Wei. 2021. Permian rifting processes in the NW Junggar basin, China: Implications for the post-accretionary successor basins. Gondwana Research, 98: 107~124.

    • Tang Yong, Yin Taiju, Qin Jianhua, Wang Dongdong. 2017. Development of large-scale shallow-water fan delta: Sedimentary laboratory simulation and experiments. Xingjiang Petroleum Geology, 38(6): 253~263 (in Chinese with English abstract).

    • Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Zhao Changyong, Zheng Menglin, Yang Haibo, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract) .

    • Tian Yazhou. 2015. Genesis of high-Al chromitite of the Sartohyay ophiolite, Xinjiang. PhD thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Wang Mengshi, Zhang Zhijie, Zhou Chuanmin, Yuan Xuanjun, Lin Mingjie, Liu Yinhe, Cheng Dawei. 2018. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu sag, Junggar basin. Journal of Palaeogeography, 20(1): 147~162 (in Chinese with English abstract).

    • Wu Kongyou, Zha Mimg, Liu Guangdi. 2002. The unconformity surface in the Permian of Junggar basin and the characters of oil-gas migration and accumulation. Petroleum Exploration and Development, 29(2): 53~54 (in Chinese with English abstract).

    • Wu Qingfu. 1986. Tectonic evolution and exploration realms. Xinjiang Geology, 4(3): 1~9 (in Chinese with English abstract).

    • Xiang Kunpeng. 2015. Carboniferous sedimentary basin analysis and tectonic significance in the Baogutu-Halaalate Mountain, western Junggar, Xinjiang. PhD thesis of Chang'an University (in Chinese with English abstract).

    • Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jiliang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102~117.

    • Xiao Xuchang, Tang Yaoqing, Li Jintie, Feng Yimin, Zhu Baoqing. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1~169 (in Chinese).

    • Xu Changgui, Du Xiaofeng, Xu Wei, Zhao Meng. 2017. New advances of the “Source-to-Sink” system research in sedimentary basin. Oil & Gas Geology, 38(1): 1~11 (in Chinese with English abstract) .

    • Xu Qisong, Wang Jian, Cao Yingchang, Wang Xintong, Xiao Jie, Muhammad Kashif. 2019. Characteristics and evolution of the late Permian “source-to-sink” system of the Beisantai area in the eastern Junggar basin, NW China. Journal of Asian Earth Sciences, 181.

    • Xu Zhao, Han Baofu, Ren Rong, Zhou Yinzhang, Su Li. 2012. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: Implications for tectonic evolution of the West Junggar. International Geology Review, 55(5): 633~656.

    • Yang Gaoxue, Li Yongjun, Gu Pingyang, Yang Baokai, Tong Lili, Zhang Hongwei. 2012a. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Research, 21(4): 1037~1049.

    • Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Yan Jun, Zhang Bing, Tong Lili. 2012b. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic melange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences, 59: 141~155.

    • Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Zhang Bing, Tong Lili. 2013. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar (NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids. Geological Society of America Bulletin, 125 (3-4): 401~419

    • Yang Youxing, Zhang Junfeng, Zhang Jinhu, Gao Yongjin, Zhou Xingui, Sun Xiangcan, Wen Lei, Miao Miaoqing. 2022. Sedimentary characteristics and main controlling factors of the Middle-Upper Permian and Middle-Upper Triassic in the Bogda Mountain area of Xinjiang, NW China. Petroleum Exploration and Development, 49(3): 1~13 (in Chinese with English abstract).

    • Yang Zhi, Hou Lianhua, Lin Senhu, Luo Xia, Zhang Lijun, Wu Songtao, Cui Jingwei. 2018. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar sag. China Petroleum Exploration, 23(4): 76~85 (in Chinese with English abstract).

    • Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Sun Min, Cai Keda. 2017a. Petrogenesis and tectonic implications of early Devonian mafic dike-granite association in the northern West Junggar, NW China. International Geology Review, 60(1): 87~100.

    • Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Windley B F, Yu Shun, Cai Keda. 2017b. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Research, 43: 55~73.

    • Yu Yuanjiang, Hu Suyun, He Dengfa. 2020. Skeleton components of Permian-Lower Jurassic clastic rocks in NW margin of Junggar basin: Tracing to provenance and tectonic settings evolution. Acta Geologica Sinica, 94(5): 1347~1366 (in Chinese with English abstract).

    • Zhang Jinyu, Kim Wonsuck, Olariu Cornel, Steel Ronald. 2019. Accommodation-versus supply-dominated systems for sediment partitioning to deep water. Geology, 47(5): 419~422.

    • Zhang Ruofei, Yuan Feng, Zhou Taofa, Deng Yufeng, Zhang Dayu, Xu Chao, Zhao Bingbing. 2015, Geological characteristics, geochronology and geochemical characteristics of volcanic hydrothermal type copper deposits (points) in Taerbahatai-Xiemisitai region, West Junggar. Acta Petrologica Sinica, 31(8): 2259~2276 (in Chinese with English abstract).

    • Zhang Yijie, Qi Xuefeng, Cheng Xiansheng, Luo Zhengjiang. 2007. Approach to sedimentary environment of Late Carboniferous Permian in Junggar basin. Xinjiang Petroleum Geology, 28(6): 673~675 (in Chinese with English abstract).

    • Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).

    • Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar, NW China. Petroleum Exploration and Development, 45(6): 972~984 (in Chinese with English abstract).

    • Zhao Rui, Zhang Jinyu, Zhou Chuanmin, Zhang Zhijie, Chen Si, Stockli D F, Cornel Olariu, Steel Ronald, Wang Hua. 2020. Tectonic evolution of Tianshan-Bogda-Kelameili Mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar basin. Marine and Petroleum Geology, 114: 1~17.

    • Zhao Wenzhi, Hu Suyun, Guo Xujie, Li Jianzhong, Cao Zhenglin. 2019. New concepts for deepening hydrocarbon exploration and their application effect in the Junggar basin. Petroleum Exploration and Development, 46(5): 811~819 (in Chinese with English abstract).

    • Zheng Menglin, Fan Xiangdong, He Wenjun, Yang Tongyuan, Tang Yong, Ding Jing, Wu Haisheng, Chen Lei, Guo Jianchen. 2019. Superposition of deep geological structural evolution and hydrocarbon accumulation in the Junggar basin. Earth Science Frontiers, 26(1): 22~32 (in Chinese with English abstract).

    • Zhou Jing, Ji Jianqing, Han Baofu, Ma Fang, Gong Junfeng, Xu Qinqin, Guo Zhaojie. 2008. 40Ar/39Ar geochronology of mafic dykes in north Xinjiang. Acta Petrologica Sinica, 24(5): 997~1010 (in Chinese with English abstract).

    • Zhu Hongtao, Xu Changgui, Zhu Xiomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).

    • Zhu Rukai, Xu Huaixian, Deng Shenghui, Guo Hongli. 2007. Lithofacies palaeogeography of the Permian in northern China. Journal of Palaeogeography, 9(2): 133~142 (in Chinese with English abstract).

    • Zong Ruiwen, Wang Zhihong, Fan Ruoying, Song Junjun, Zhang Xinsong, Shen Zhen, Gong Yiming. 2020. New knowledge on the Honguleleng Formation and Devonian-Carboniferous boundary in western Junggar, Xinjiang. Acta Geologica Sinica, 94(8): 2460~2475 (in Chinese with English abstract).

    • 曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.

    • 陈发景, 汪新文, 汪新伟. 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3) : 77~89.

    • 操应长, 徐琦松, 王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116~131.

    • 陈家富, 韩宝福, 张磊. 2010a. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317~2335.

    • 陈万峰. 2017. 新疆东、西准噶尔地区晚古生代构造岩浆演化对比研究. 兰州大学博士学位论文.

    • 陈新, 卢华复, 舒良树, 王惠民, 张国清. 2002. 准噶尔盆地构造演化分析新进展. 高校地质学报, 8(3) : 257~266.

    • 陈中红, 查明, 朱筱敏. 2003. 准噶尔盆地陆梁隆起不整合面与油气运聚关系. 古地理学报, 5(1) : 120~126.

    • 杜金虎, 支东明, 唐勇, 贾春明, 徐洋, 阿不力米提·依明, 邓勇. 2019. 准噶尔盆地上二叠统风险领域分析与沙湾凹陷战略发现. 中国石油勘探, 24(1): 24~35.

    • 冯乾文, 李锦轶, 刘建峰, 宋彪, 王彦斌, 陈文, 张彦. 2012. 新疆西准噶尔克拉玛依岩体中暗色岩墙的形成时代及地质意义——来自锆石LA-ICP-MS和角闪石Ar-Ar 定年的证据. 岩石学报, 28(7): 2158~2170.

    • 龚承林, 齐昆, 徐杰, 刘喜停, 王英民. 2021. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 232~252.

    • 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代垂向生长(I)——后成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018a. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 何登发, 吴松涛, 赵龙, 郑孟林, 李涤, 路玉. 2018b. 环玛湖凹陷二叠—三叠纪的构造-沉积背景及其演化. 新疆石油地质, 39(1) : 35~47.

    • 何海清, 支东明, 唐勇, 刘超威, 陈洪, 郭旭光, 王泽胜. 2021. 准噶尔盆地阜康凹陷康探1井重大突破及意义. 中国石油勘探, 26(2): 1~11.

    • 何文军, 王绪龙, 邹阳, 杨海波, 赵龙梅, 吴斯, 丁靖, 鲍海娟, 吴海生. 2019. 准噶尔盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 75~84.

    • 黄云飞, 张昌民, 朱锐, 易雪斐, 瞿建华, 唐勇. 2017. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景. 地球科学, 42(10): 1736~1749.

    • 靳松, 张兆祎, 荣桂林, 刘新宇, 李跃辉, 张瀚文, 毕立. 2015. 新疆西准噶尔玉什喀腊岩体的地球化学特征、锆石U-Pb年龄及Hf同位素: 对古亚洲洋闭合的制约. 中国地质, 42(3): 494~508.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2021. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.

    • 匡立春, 支东明, 王小军, 宋永, 蒋文龙, 曹正林, 杨智峰, 何文军. 2022. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向. 石油学报, 43(3): 325~340.

    • 李攀, 李永强, 经俭波, 曹正林, 袁选俊. 2020. 准噶尔盆地西北部 P-T 转换期不整合的发育演化特征及意义. 古地理学报, 22(4): 698~714.

    • 李华芹, 陈富文, 蔡红. 2000. 新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究. 地质学报, 74(2): 181~192.

    • 李辛子, 韩宝福, 季建清, 李宗怀, 刘志强, 杨斌. 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代. 地球化学, 33(6): 574~584.

    • 林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.

    • 孟祥超, 齐洪岩, 陈扬, 谢宗瑞, 窦洋, 徐洋, 郭华军. 2021. 低GR风化古土壤—高GR砂砾岩成因与油气勘探——以玛南地区二叠系上乌尔禾组为例. 中国矿业大学学报, 50(6): 1153~1168.

    • 秦志军, 陈丽华, 李玉文, 王婷婷, 曹剑. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景. 新疆石油地质, 37(1): 1~6.

    • 尚兆聪, 王怀涛, 张伟, 刘昆鑫, 何彦彬, 魏东伟. 2012. 新疆西准噶尔地区花岗岩类年代学及其构造意义. 甘肃地质, 21(1): 1~5+80.

    • 邵龙义, 王学天, 李雅楠, 刘炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 73~87.

    • 孙肇才. 1998. 中国中西部中—新生代前陆盆地及其含油气性——兼论准噶尔盆地内部结构单元划分. 海相油气地质, 4(3) : 16~30.

    • 唐勇, 尹太举, 覃建华, 王冬冬. 2017. 大型浅水扇三角洲发育的沉积物理模拟实验研究. 新疆石油地质, 38(6): 253~263.

    • 唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田亚洲. 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因. 中国地质科学院博士学位论文.

    • 汪梦诗, 张志杰, 周川闽, 袁选俊, 林敏捷, 刘银河, 成大伟. 2018. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因. 古地理学报, 20(1): 147~162.

    • 吴孔友, 查明, 柳广弟. 2002. 准噶尔盆地二叠系不整合面及其油气运聚特征. 石油勘探与开发, 29(2) : 53~54.

    • 吴庆福. 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4(3) : 1~9.

    • 肖序常, 汤耀庆, 李锦铁, 冯益民, 朱宝清. 1992. 新疆北部及邻区大地构造. 北京: 地质出版社, 1~169.

    • 向坤鹏. 2015. 新疆西准噶尔包古图-哈拉阿拉特山一带石炭纪沉积盆地分析及构造意义. 长安大学博士学位论文.

    • 新疆维吾尔自治区地质矿产局. 1993. 新疆区域地质志. 北京: 地质出版社, 442~504.

    • 徐长贵, 杜晓峰, 徐伟, 赵梦. 2017. 沉积盆地源-汇系统研究新进展. 石油与天然气地质, 38(1): 1~11.

    • 杨有星, 张君峰, 张金虎, 高永进, 周新桂, 孙相灿, 文磊, 苗苗青. 2022. 新疆博格达山周缘中上二叠统与中上三叠统沉积特征及其主控因素. 石油勘探与开发, 49(3): 1~13.

    • 杨智, 侯连华, 林森虎, 罗霞, 张丽君, 吴松涛, 崔景伟. 2018. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力. 中国石油勘探, 23(4): 76~85.

    • 蔚远江, 胡素云, 何登发. 2020. 准噶尔盆地西北缘二叠系—下侏罗统碎屑岩骨架组分及其物源与构造背景演化示踪. 地质学报, 94(5): 1347~1366.

    • 张若飞, 袁峰, 周涛发, 邓宇峰, 张达玉, 许超, 赵冰冰. 2015. 西准噶尔塔尔巴哈台-谢米斯台地区火山热液型铜矿床(点)地质及含矿火山岩年代学、地球化学特征. 岩石学报, 31(8): 2259~2276.

    • 张义杰, 齐雪峰, 程显胜, 罗正江. 2007. 准噶尔盆地晚石炭世和二叠纪沉积环境. 新疆石油地质, 28(6): 673~675.

    • 张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.

    • 张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.

    • 赵文智, 胡素云, 郭绪杰, 李建忠, 曹正林. 2019. 油气勘探新理念及其在准噶尔盆地的实践成效. 石油勘探与开发, 46(5): 811~819.

    • 郑孟林, 樊向东, 何文军, 杨彤远, 唐勇, 丁靖, 吴海生, 陈磊, 郭建辰. 2019. 准噶尔盆地深层地质结构叠加演变与油气赋存. 地学前缘, 26(1): 22~32.

    • 周晶, 季建清, 韩宝福, 马芳, 龚俊峰, 徐芹芹, 郭召杰. 2008. 新疆北部基性岩脉40Ar/39Ar年代学研究. 岩石学报, 24(5): 997~1010.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.

    • 朱如凯, 许怀先, 邓胜徽, 郭宏莉. 2007. 中国北方地区二叠纪岩相古地理. 古地理学报, 9(2): 133~142.

    • 纵瑞文, 王志宏, 范若颖, 宋俊俊, 张欣松, 申震, 龚一鸣. 2020. 新疆西准噶尔洪古勒楞组与泥盆系—石炭系界线新知. 地质学报, 94(8): 2460~2475.

  • 参考文献

    • Allen P A. 2008. From landscapes into geological history. Nature, 451(7176): 274~276.

    • Allen P A. 2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge: Cambridge University Press.

    • Allen P A, Armitage J J, Carter A, Duller R A, Michael N A, Sinclair H D, Whitchurch A L, Whittaker A C. 2013. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1): 102~130.

    • Bhattacharya J P, Copeland P, Lawton T F, Holbrook J. 2016. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 153: 77~110.

    • Brewer C J, Hampson G J, Whittaker A C, Roberts G G, Watkins S E. 2020. Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth-Science Reviews, 207.

    • Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. In: Roberts D G, Bally A W, eds. Regional Geology and Tectonics: Principles of Geologic Analysis. Amsterdam: Elsevier, 378~404.

    • Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Ablimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).

    • Cao Yingchang, Xu Qisong, Wang Jian. 2018. Progress in “Source-to-Sink” system research. Earth Science Frontiers, 25(4): 116~131 (in Chinese with English abstract).

    • Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology, 38(2): 191~192.

    • Chen Bin, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23: 691~703.

    • Chen Fajing, Wang Xinwen, Wang Xinwei. 2005. Prototype and tectonic evolution of the Junggar basin, northwestern China. Earth Science Frontiers, 12(3): 77~89 (in Chinese with English abstract).

    • Chen Jiafu, Han Baofu, Zhang Lei. 2010a. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317~2335 (in Chinese with English abstract).

    • Chen Jiafu, Han Baofu, Ji Jianqing, Zhang Lei, Xu Zhao, He Guoqi, Wang Tao. 2010b. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137~152.

    • Chen Wanfeng. 2017. Comparative study on Late Paleozoic tectonic-magmatism evolution in eastern and western Junggar, Xinjiang, western China. PhD thesis of Lanzhou University (in Chinese with English abstract).

    • Chen Xin, Lu Huafu, Shu Liangshu, Wang Huimin, Zhang Guoqing. 2002. Study on tectonic evolution of Junggar basin. Geological Journal of China Universities, 8(3): 257~266 (in Chinese with English abstract).

    • Chen Zhonghong, Zha Mimg, Zhu Xixaomin. 2003. Relation between unconformity surface and hydrocarbon migration and accumulation of Luliang uplift in Junggar basin. Journal of Palaeogeography, 5(1): 120~126 (in Chinese with English abstract).

    • Choulet F, Chen Y, Wang B, Faure M, Cluzel D, Charvet J, Lin W, Xu B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences, 42(5): 867~884.

    • Dickinson W R, Gehrels G E. 2003. U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163(1-2): 29~66.

    • Du Jinhu, Zhi Dongming, Tang Yong, Jia Chunming, Xu Yang, Abulimity Yiming, Deng Yong. 2019. Prospects in Upper Permian and strategic discovery in Shawan sag, Junggar basin. China Petroleum Exploration, 24(1): 24~35 (in Chinese with English abstract).

    • Duan Fenghao, Li Yongjun, Zhi Qian, Yang Gaoxue, Gao Junbao. 2019. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China. Journal of Asian Earth Sciences, 175: 158~177.

    • Feng Qianwen, Li Jintie, Liu Jianfeng, Song Biao, Wang Yanbin, Chen Wen, Zhang Yan. 2012. Ages and geological significance of the dark dykes emplaced in the Karamay pluton and adjacent area, in western Junggar, Xinjiang, NW China: Evidence from LAICP-MS zircon chronology and Ar-Ar amphibole chronology. Acta Petrologica Sinica, 28(7): 2158~2170 (in Chinese with English abstract).

    • Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086 (in Chinese with English abstract).

    • Geng Hongyan, Sun Min, Yuan Chao, Xiao Wenjiao, Xian Weisheng, Zhao Guochun, Zhang Lifei, Wong Kenny, Wu Fuyuan. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4): 364~389.

    • Geng Hongyan, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 42(5): 854~866.

    • Gong Chenglin, Qi Kun, Xu Jie, Liu Xiting, Wang Yingmin. 2021. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes. Acta Sedimentologica Sinica, 39(1): 232~252 (in Chinese with English abstract).

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018a. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • He Dengfa, Wu Songtao, Zhao Long, Zheng Menglin, Li Di, Lu Yu. 2018b. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu sag, Junggar basin. Xingjiang Petroleum Geology, 39(1): 35~47 (in Chinese with English abstract).

    • He Haiqing, Zhi Dongming, Tang Yong, Liu Chaowei, Chen Hong, Guo Xuguang, Wang Zesheng. 2021. A great discovery of well Kangtan 1 in the Fukang sag in the Junggar basin and its significance. China Petroleum Exploration, 26(2): 1~11 (in Chinese with English abstract) .

    • He Wenjun, Wang Xulong, Zou Yang, Yang Haibo, Zhao Longmei, Wu Si, Ding Jing, Bao Haijuan, Wu Haisheng. 2019. The geological conditions, resource potential and exploration direction of oil in Junggar basin. Marine Origin Petroleum Geology, 24(2): 75~84 (in Chinese with English abstract).

    • Huang Yunfei, Zhang Changmin, Zhu Rui, Yi Xuefei, Qu Jianhua, Tang Yong. 2017. Palaeoclimatology, provenance and tectonic setting during Late Permian to Middle Triassic in Mahu sag in Junggar basin, China. Earth Science, 42(10): 1736~1749 (in Chinese with English abstract).

    • Jian Ping, Li Dunyi, Shi Yurou, Zhang Fuqin. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian Orogenic Belt. In: Sklyarov E V, ed. Structural and Tectonic Correlation across the Central Asian Orogenic Collage. Northeastern Segment, 246~251.

    • Jin Song, Zhang Zhaoyi, Rong Guilin, Liu Xinyu, Li Yuehui, Zhang Hanwen, Bi Li. 2015. Geochemical characteristics, zircon U-Pb age, and Hf isotopes of Yushenkala pluton in western Junggar, Xinjiang: Constraint on the closure of Paleo-Asian Ocean. Geology in China, 42(3): 494~508 (in Chinese with English abstract).

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Li Jianzhong, Liu Gang, He Wenjun, Ma Debo. 2021. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region. China Petroleum Exploration, 26(4): 1~16 (in Chinese with English abstract).

    • Kuang Lichun, Zhi Dongming, Wang Xiaojun, Song Yong, Jiang Wenlong, Cao Zhenglin, Yang Zhifeng, He Wenjun. 2022. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permian in Junggar basin. Acta Petrolei Sinica, 43(3): 325~340 (in Chinese with English abstract).

    • Li Huaqin, Chen Fuwen, Cai Hong. 2000. Study on Rb-Sr isotopic ages of gold deposits in west Junggar area, Xinjiang. Acta Geologica Sinica, 74(2): 181~192 (in Chinese with English abstract).

    • Li Pan, Li Yongqiang, Jing Jianbo, Cao Zhenglin, Yuan Xuanjun. 2020. Unconformities formed during the P-T transition in the northwestern Junggar basin: Nature, evolution and implications. Journal of Palaeogeography (Chinese Edition), 22(4): 698~714 (in Chinese with English abstract).

    • Li Xinzi, Han Baofu, Ji Jianqing, Li Zonghuai, Liu Zhiqiang, Yang Bin. 2004. Geology, geochemistry and K-Ar ages of the Karamay basic-intermediate dyke swarm from Xinjiang, China. Geochimica, 33(6): 574~584 (in Chinese with English abstract).

    • Li Yanan, Shao Longyi, Xu Jie, Hou Haihai, Tang Yue, Yuan Yuan, Zhang Jiaqiang. 2020. Application of channel-belt scaling relationships to early Middle Jurassic source-to-sink system evolution in the southern Junggar basin. Marine and Petroleum Geology, 117.

    • Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, soruce to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).

    • Liu Bingqiang, Shao Longyi, Wang Xuetian, Li Yanan, Xu Jie. 2019. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam basin, NW China. Journal of Palaeogeography, 8(1): 16.

    • Liu Dongdong, Jolivet Marc, Yang Wei, Zhang Ziya, Cheng Feng, Zhu Bei, Guo Zhaojie. 2013. Latest Paleozoic-Early Mesozoic basin-range interactions in South Tian Shan (Northwest China) and their tectonic significance: Constraints from detrital zircon U-Pb ages. Tectonophysics, 599: 197~213.

    • Liu Hao, Loon A J, Xu Jie, Tian Lixin, Du Xiaofeng, Zhang Xintao, Chen Danlei. 2019. Relationships between tectonic activity and sedimentary source-to-sink system parameters in a lacustrine rift basin: A quantitative case study of the Huanghekou depression (Bohai Bay basin, E China). Basin Research, 32(4): 587~612.

    • Margins_Office. 2003. Source-to-Sink (S2S). NSF MARGINS Program Science Plans 2004. New York: Columbia University, 131~157.

    • Meng Xiangchao, Qi Hongyan, Chen Yang, Xie Zongrui, Dou Yang, Xu Yang, Guo Huajun. 2021. Genesis of low GR weathering paleosols and high GR glutenite and oil & gas exploration: A case study of the Upper Permian Wuerhe Formation in Manan area. Journal of China University of Mining & Technology, 50(6): 1153~1168 (in Chinese with English abstract).

    • Paola C. 2000. Quantitative models of sedimentary basin filling. Sedimentology, 47: 121~178.

    • Paola C, Martin J M. 2012. Mass-balance effects in depositional systems. Journal of Sedimentary Research, 82(5-6): 435~450.

    • Qin Zhijun, Chen Lihua, Li Yuwen, Wang Tingting, Cao Jian. 2016. Paleo-sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu sag, Junggar basin. Xinjiang Petroleum Geology, 37(1): 1~6 (in Chinese with English abstract) .

    • Rahl J M, Ehlers T A, van der Pluijm B A. 2007. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256(1-2): 147~161.

    • Romans B W, Castelltort S, Covault J A, Fildani A, Walsh J P. 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153: 7~29.

    • Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299~307.

    • Shang Zhaocong, Wang Huaitao, Zhang Wei, Liu Kunxin, He Yanbin, Wei Dongwei. 2012. Geochronology and tectonic implications of the granites in West Junggar, Xinjiang. Gansu Geology, 21(1): 1~5+80 (in Chinese with English abstract).

    • Shao Longyi, Wang Xuetian, Li Yanan, Liu Bingqiang. 2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography, 21(1): 73~87 (in Chinese with English abstract).

    • Sun Zhaocai. 1998. Mesozoic-Cenozoic foreland basin of the western China and its hydrocarbon exploration prospect with a comment on the division of tectonic units in Junggar basin. Marine Petroleum Prospect, 4(3): 16~30 (in Chinese with English abstract).

    • Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128-131: 73~83.

    • Tang Gongjian, Chung Sunlin, Hawkesworth C J, Cawood P A, Wang Qiang, Wyman D A, Xu Yigang, Zhao Zhenhua. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142~154.

    • Tang Wenbin, Zhang Yuanyuan, Pe-Piper Georgia, Piper David, Guo Zhaojie, Li Wei. 2021. Permian rifting processes in the NW Junggar basin, China: Implications for the post-accretionary successor basins. Gondwana Research, 98: 107~124.

    • Tang Yong, Yin Taiju, Qin Jianhua, Wang Dongdong. 2017. Development of large-scale shallow-water fan delta: Sedimentary laboratory simulation and experiments. Xingjiang Petroleum Geology, 38(6): 253~263 (in Chinese with English abstract).

    • Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Zhao Changyong, Zheng Menglin, Yang Haibo, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract) .

    • Tian Yazhou. 2015. Genesis of high-Al chromitite of the Sartohyay ophiolite, Xinjiang. PhD thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Wang Mengshi, Zhang Zhijie, Zhou Chuanmin, Yuan Xuanjun, Lin Mingjie, Liu Yinhe, Cheng Dawei. 2018. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu sag, Junggar basin. Journal of Palaeogeography, 20(1): 147~162 (in Chinese with English abstract).

    • Wu Kongyou, Zha Mimg, Liu Guangdi. 2002. The unconformity surface in the Permian of Junggar basin and the characters of oil-gas migration and accumulation. Petroleum Exploration and Development, 29(2): 53~54 (in Chinese with English abstract).

    • Wu Qingfu. 1986. Tectonic evolution and exploration realms. Xinjiang Geology, 4(3): 1~9 (in Chinese with English abstract).

    • Xiang Kunpeng. 2015. Carboniferous sedimentary basin analysis and tectonic significance in the Baogutu-Halaalate Mountain, western Junggar, Xinjiang. PhD thesis of Chang'an University (in Chinese with English abstract).

    • Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jiliang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102~117.

    • Xiao Xuchang, Tang Yaoqing, Li Jintie, Feng Yimin, Zhu Baoqing. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1~169 (in Chinese).

    • Xu Changgui, Du Xiaofeng, Xu Wei, Zhao Meng. 2017. New advances of the “Source-to-Sink” system research in sedimentary basin. Oil & Gas Geology, 38(1): 1~11 (in Chinese with English abstract) .

    • Xu Qisong, Wang Jian, Cao Yingchang, Wang Xintong, Xiao Jie, Muhammad Kashif. 2019. Characteristics and evolution of the late Permian “source-to-sink” system of the Beisantai area in the eastern Junggar basin, NW China. Journal of Asian Earth Sciences, 181.

    • Xu Zhao, Han Baofu, Ren Rong, Zhou Yinzhang, Su Li. 2012. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: Implications for tectonic evolution of the West Junggar. International Geology Review, 55(5): 633~656.

    • Yang Gaoxue, Li Yongjun, Gu Pingyang, Yang Baokai, Tong Lili, Zhang Hongwei. 2012a. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Research, 21(4): 1037~1049.

    • Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Yan Jun, Zhang Bing, Tong Lili. 2012b. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic melange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences, 59: 141~155.

    • Yang Gaoxue, Li Yongjun, Santosh M, Yang Baokai, Zhang Bing, Tong Lili. 2013. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar (NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids. Geological Society of America Bulletin, 125 (3-4): 401~419

    • Yang Youxing, Zhang Junfeng, Zhang Jinhu, Gao Yongjin, Zhou Xingui, Sun Xiangcan, Wen Lei, Miao Miaoqing. 2022. Sedimentary characteristics and main controlling factors of the Middle-Upper Permian and Middle-Upper Triassic in the Bogda Mountain area of Xinjiang, NW China. Petroleum Exploration and Development, 49(3): 1~13 (in Chinese with English abstract).

    • Yang Zhi, Hou Lianhua, Lin Senhu, Luo Xia, Zhang Lijun, Wu Songtao, Cui Jingwei. 2018. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar sag. China Petroleum Exploration, 23(4): 76~85 (in Chinese with English abstract).

    • Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Sun Min, Cai Keda. 2017a. Petrogenesis and tectonic implications of early Devonian mafic dike-granite association in the northern West Junggar, NW China. International Geology Review, 60(1): 87~100.

    • Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Windley B F, Yu Shun, Cai Keda. 2017b. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Research, 43: 55~73.

    • Yu Yuanjiang, Hu Suyun, He Dengfa. 2020. Skeleton components of Permian-Lower Jurassic clastic rocks in NW margin of Junggar basin: Tracing to provenance and tectonic settings evolution. Acta Geologica Sinica, 94(5): 1347~1366 (in Chinese with English abstract).

    • Zhang Jinyu, Kim Wonsuck, Olariu Cornel, Steel Ronald. 2019. Accommodation-versus supply-dominated systems for sediment partitioning to deep water. Geology, 47(5): 419~422.

    • Zhang Ruofei, Yuan Feng, Zhou Taofa, Deng Yufeng, Zhang Dayu, Xu Chao, Zhao Bingbing. 2015, Geological characteristics, geochronology and geochemical characteristics of volcanic hydrothermal type copper deposits (points) in Taerbahatai-Xiemisitai region, West Junggar. Acta Petrologica Sinica, 31(8): 2259~2276 (in Chinese with English abstract).

    • Zhang Yijie, Qi Xuefeng, Cheng Xiansheng, Luo Zhengjiang. 2007. Approach to sedimentary environment of Late Carboniferous Permian in Junggar basin. Xinjiang Petroleum Geology, 28(6): 673~675 (in Chinese with English abstract).

    • Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).

    • Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar, NW China. Petroleum Exploration and Development, 45(6): 972~984 (in Chinese with English abstract).

    • Zhao Rui, Zhang Jinyu, Zhou Chuanmin, Zhang Zhijie, Chen Si, Stockli D F, Cornel Olariu, Steel Ronald, Wang Hua. 2020. Tectonic evolution of Tianshan-Bogda-Kelameili Mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar basin. Marine and Petroleum Geology, 114: 1~17.

    • Zhao Wenzhi, Hu Suyun, Guo Xujie, Li Jianzhong, Cao Zhenglin. 2019. New concepts for deepening hydrocarbon exploration and their application effect in the Junggar basin. Petroleum Exploration and Development, 46(5): 811~819 (in Chinese with English abstract).

    • Zheng Menglin, Fan Xiangdong, He Wenjun, Yang Tongyuan, Tang Yong, Ding Jing, Wu Haisheng, Chen Lei, Guo Jianchen. 2019. Superposition of deep geological structural evolution and hydrocarbon accumulation in the Junggar basin. Earth Science Frontiers, 26(1): 22~32 (in Chinese with English abstract).

    • Zhou Jing, Ji Jianqing, Han Baofu, Ma Fang, Gong Junfeng, Xu Qinqin, Guo Zhaojie. 2008. 40Ar/39Ar geochronology of mafic dykes in north Xinjiang. Acta Petrologica Sinica, 24(5): 997~1010 (in Chinese with English abstract).

    • Zhu Hongtao, Xu Changgui, Zhu Xiomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).

    • Zhu Rukai, Xu Huaixian, Deng Shenghui, Guo Hongli. 2007. Lithofacies palaeogeography of the Permian in northern China. Journal of Palaeogeography, 9(2): 133~142 (in Chinese with English abstract).

    • Zong Ruiwen, Wang Zhihong, Fan Ruoying, Song Junjun, Zhang Xinsong, Shen Zhen, Gong Yiming. 2020. New knowledge on the Honguleleng Formation and Devonian-Carboniferous boundary in western Junggar, Xinjiang. Acta Geologica Sinica, 94(8): 2460~2475 (in Chinese with English abstract).

    • 曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.

    • 陈发景, 汪新文, 汪新伟. 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3) : 77~89.

    • 操应长, 徐琦松, 王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116~131.

    • 陈家富, 韩宝福, 张磊. 2010a. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317~2335.

    • 陈万峰. 2017. 新疆东、西准噶尔地区晚古生代构造岩浆演化对比研究. 兰州大学博士学位论文.

    • 陈新, 卢华复, 舒良树, 王惠民, 张国清. 2002. 准噶尔盆地构造演化分析新进展. 高校地质学报, 8(3) : 257~266.

    • 陈中红, 查明, 朱筱敏. 2003. 准噶尔盆地陆梁隆起不整合面与油气运聚关系. 古地理学报, 5(1) : 120~126.

    • 杜金虎, 支东明, 唐勇, 贾春明, 徐洋, 阿不力米提·依明, 邓勇. 2019. 准噶尔盆地上二叠统风险领域分析与沙湾凹陷战略发现. 中国石油勘探, 24(1): 24~35.

    • 冯乾文, 李锦轶, 刘建峰, 宋彪, 王彦斌, 陈文, 张彦. 2012. 新疆西准噶尔克拉玛依岩体中暗色岩墙的形成时代及地质意义——来自锆石LA-ICP-MS和角闪石Ar-Ar 定年的证据. 岩石学报, 28(7): 2158~2170.

    • 龚承林, 齐昆, 徐杰, 刘喜停, 王英民. 2021. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 232~252.

    • 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代垂向生长(I)——后成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018a. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 何登发, 吴松涛, 赵龙, 郑孟林, 李涤, 路玉. 2018b. 环玛湖凹陷二叠—三叠纪的构造-沉积背景及其演化. 新疆石油地质, 39(1) : 35~47.

    • 何海清, 支东明, 唐勇, 刘超威, 陈洪, 郭旭光, 王泽胜. 2021. 准噶尔盆地阜康凹陷康探1井重大突破及意义. 中国石油勘探, 26(2): 1~11.

    • 何文军, 王绪龙, 邹阳, 杨海波, 赵龙梅, 吴斯, 丁靖, 鲍海娟, 吴海生. 2019. 准噶尔盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 75~84.

    • 黄云飞, 张昌民, 朱锐, 易雪斐, 瞿建华, 唐勇. 2017. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景. 地球科学, 42(10): 1736~1749.

    • 靳松, 张兆祎, 荣桂林, 刘新宇, 李跃辉, 张瀚文, 毕立. 2015. 新疆西准噶尔玉什喀腊岩体的地球化学特征、锆石U-Pb年龄及Hf同位素: 对古亚洲洋闭合的制约. 中国地质, 42(3): 494~508.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 匡立春, 支东明, 王小军, 李建忠, 刘刚, 何文军, 马德波. 2021. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1~16.

    • 匡立春, 支东明, 王小军, 宋永, 蒋文龙, 曹正林, 杨智峰, 何文军. 2022. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向. 石油学报, 43(3): 325~340.

    • 李攀, 李永强, 经俭波, 曹正林, 袁选俊. 2020. 准噶尔盆地西北部 P-T 转换期不整合的发育演化特征及意义. 古地理学报, 22(4): 698~714.

    • 李华芹, 陈富文, 蔡红. 2000. 新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究. 地质学报, 74(2): 181~192.

    • 李辛子, 韩宝福, 季建清, 李宗怀, 刘志强, 杨斌. 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代. 地球化学, 33(6): 574~584.

    • 林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.

    • 孟祥超, 齐洪岩, 陈扬, 谢宗瑞, 窦洋, 徐洋, 郭华军. 2021. 低GR风化古土壤—高GR砂砾岩成因与油气勘探——以玛南地区二叠系上乌尔禾组为例. 中国矿业大学学报, 50(6): 1153~1168.

    • 秦志军, 陈丽华, 李玉文, 王婷婷, 曹剑. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景. 新疆石油地质, 37(1): 1~6.

    • 尚兆聪, 王怀涛, 张伟, 刘昆鑫, 何彦彬, 魏东伟. 2012. 新疆西准噶尔地区花岗岩类年代学及其构造意义. 甘肃地质, 21(1): 1~5+80.

    • 邵龙义, 王学天, 李雅楠, 刘炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 73~87.

    • 孙肇才. 1998. 中国中西部中—新生代前陆盆地及其含油气性——兼论准噶尔盆地内部结构单元划分. 海相油气地质, 4(3) : 16~30.

    • 唐勇, 尹太举, 覃建华, 王冬冬. 2017. 大型浅水扇三角洲发育的沉积物理模拟实验研究. 新疆石油地质, 38(6): 253~263.

    • 唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田亚洲. 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因. 中国地质科学院博士学位论文.

    • 汪梦诗, 张志杰, 周川闽, 袁选俊, 林敏捷, 刘银河, 成大伟. 2018. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因. 古地理学报, 20(1): 147~162.

    • 吴孔友, 查明, 柳广弟. 2002. 准噶尔盆地二叠系不整合面及其油气运聚特征. 石油勘探与开发, 29(2) : 53~54.

    • 吴庆福. 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4(3) : 1~9.

    • 肖序常, 汤耀庆, 李锦铁, 冯益民, 朱宝清. 1992. 新疆北部及邻区大地构造. 北京: 地质出版社, 1~169.

    • 向坤鹏. 2015. 新疆西准噶尔包古图-哈拉阿拉特山一带石炭纪沉积盆地分析及构造意义. 长安大学博士学位论文.

    • 新疆维吾尔自治区地质矿产局. 1993. 新疆区域地质志. 北京: 地质出版社, 442~504.

    • 徐长贵, 杜晓峰, 徐伟, 赵梦. 2017. 沉积盆地源-汇系统研究新进展. 石油与天然气地质, 38(1): 1~11.

    • 杨有星, 张君峰, 张金虎, 高永进, 周新桂, 孙相灿, 文磊, 苗苗青. 2022. 新疆博格达山周缘中上二叠统与中上三叠统沉积特征及其主控因素. 石油勘探与开发, 49(3): 1~13.

    • 杨智, 侯连华, 林森虎, 罗霞, 张丽君, 吴松涛, 崔景伟. 2018. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力. 中国石油勘探, 23(4): 76~85.

    • 蔚远江, 胡素云, 何登发. 2020. 准噶尔盆地西北缘二叠系—下侏罗统碎屑岩骨架组分及其物源与构造背景演化示踪. 地质学报, 94(5): 1347~1366.

    • 张若飞, 袁峰, 周涛发, 邓宇峰, 张达玉, 许超, 赵冰冰. 2015. 西准噶尔塔尔巴哈台-谢米斯台地区火山热液型铜矿床(点)地质及含矿火山岩年代学、地球化学特征. 岩石学报, 31(8): 2259~2276.

    • 张义杰, 齐雪峰, 程显胜, 罗正江. 2007. 准噶尔盆地晚石炭世和二叠纪沉积环境. 新疆石油地质, 28(6): 673~675.

    • 张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.

    • 张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.

    • 赵文智, 胡素云, 郭绪杰, 李建忠, 曹正林. 2019. 油气勘探新理念及其在准噶尔盆地的实践成效. 石油勘探与开发, 46(5): 811~819.

    • 郑孟林, 樊向东, 何文军, 杨彤远, 唐勇, 丁靖, 吴海生, 陈磊, 郭建辰. 2019. 准噶尔盆地深层地质结构叠加演变与油气赋存. 地学前缘, 26(1): 22~32.

    • 周晶, 季建清, 韩宝福, 马芳, 龚俊峰, 徐芹芹, 郭召杰. 2008. 新疆北部基性岩脉40Ar/39Ar年代学研究. 岩石学报, 24(5): 997~1010.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.

    • 朱如凯, 许怀先, 邓胜徽, 郭宏莉. 2007. 中国北方地区二叠纪岩相古地理. 古地理学报, 9(2): 133~142.

    • 纵瑞文, 王志宏, 范若颖, 宋俊俊, 张欣松, 申震, 龚一鸣. 2020. 新疆西准噶尔洪古勒楞组与泥盆系—石炭系界线新知. 地质学报, 94(8): 2460~2475.