-
华北克拉通东部被认为是克拉通发生破坏的典型案例(Menzies et al.,1993; 朱日祥等,2012; Wu Fuyuan et al.,2019)。古生代金伯利岩和新生代碱性玄武岩中的橄榄岩捕虏体的对比研究表明华北克拉通东部减薄了至少100 km(Menzies et al.,1993; Griffin et al.,1998; 郑建平等,1999; Xu Yigang,2001; Zheng Jianping et al.,2007),克拉通根从冷的、难熔的转变为热的、饱满的(Zheng Jianping et al.,2007; Zhang Hongfuet,2008; Wu Fuyuan et al.,2019)。尽管关于华北克拉通破坏的机制仍存在争议(Xu Yigang,2001; Zhang Hongfu,2005; Niu Yaoling,2005; Zheng Jianping et al.,2007; 吴福元等,2008; Gao Shan et al.,2008; 朱日祥等,2019; Ma Qiang et al.,2019; 汤艳杰等,2021),但对熔体/流体参与了岩石圈地幔的转变已经达成共识(朱日祥等,2012)。西太平洋板块俯冲作用被认为是华北克拉通破坏的主要动力因素(朱日祥等,2012,2019; Wu Fuyuan et al.,2019; Ma Qiang et al.,2021),早白垩世岩浆岩具有较高的水含量并含有洋壳组分(Xia Qunke et al.,2013; Ma Qiang et al.,2016; Hong Lubin et al.,2020; 冯亚洲等,2020; Yang Chuanmao et al.,2022),表明古太平洋板片来源的含水熔/流体注入上覆地幔,显著降低了岩石圈的黏滞度和熔融温度,并最终导致华北克拉通的破坏(朱日祥等,2019)。再循环壳源和软流圈地幔来源的熔体,它们会与地幔橄榄岩相互作用,导致岩石圈组成转变和交代富集,是热化学侵蚀作用的重要过程(Xu Yigang,2001; Zheng Jianping et al.,2007; 郑建平,2009),橄榄岩-熔体的反应甚至被认为是岩石圈地幔组成转变的最重要方式之一(Zhang Hongfu,2005; 张宏福,2009; 汤艳杰等,2021)。由此可见,熔/流体交代岩石圈地幔是华北克拉通破坏的主要过程,但是对于熔/流体的性质与来源仍不清楚或存在争议,特别是蚀变洋壳熔/流体参与地幔演化的直接证据仍较为缺乏。
-
氧同位素地球化学对不同温度岩石与水圈相互作用具有敏感性,这使其成为从幔源岩石或矿物中识别再循环壳源物质的重要途径(Eiler,2001)。前人对山东和辽西中生代玄武岩中的斑晶/捕虏晶橄榄石以及橄榄岩捕虏体的氧同位素组成进行研究,揭示了壳源组分在岩石圈地幔演化中的重要作用(Zhang Junjun et al.,2009; Zhou Qunjun et al.,2012; Guo Jiangtao et al.,2013; 郭锋等,2013; Xu Yao et al.,2020)。而目前对于新生代岩石圈地幔橄榄石氧同位素的报道非常少(Hao Yantao et al.,2015),且缺乏华北克拉通破坏峰期和之后再循环物质贡献的对比研究,因而制约了进一步理解俯冲物质对华北岩石圈地幔的减薄与增生作用的贡献。本文采用二次离子探针(SIMS)原位分析手段,对辽东半岛~110 Ma小岭组玄武岩中的橄榄石斑晶以及~0.6 Ma宽甸玄武岩中的橄榄石捕虏晶开展了氧同位素组成研究。我们基于这些数据,结合早白垩世—新生代华北其他地区前人已经发表的岩石圈地幔氧同位素数据,探讨了此期间壳源熔流体组分对华北岩石圈地幔演化的作用。
-
1 区域地质背景和样品
-
华北克拉通是世界上最古老的克拉通之一(Liu Dunyi et al.,1992; Ma Qiang et al.,2020),它由太古宙东、西华北地块及其之间的古元古代中央造山带组成(图1; Zhao Guochun et al.,2001)。晚古生代以来,华北克拉通开始遭受多板块俯冲作用(Windely et al.,2010; 朱日祥等,2012),诱发了华北克拉通东部破坏,产生了大规模的晚中生代岩浆岩(Wu Fuyuan et al.,2019; Ma Qiang et al.,2021; Yang Fan et al.,2021; 马强等,2022)以及新生代大地幔楔板内玄武岩(Xu Yigang,2014; Chen Huan et al.,2015; Li Hongyan et al.,2016,2017; 徐义刚等,2018)。
-
辽东半岛地处华北克拉通东北部(图1b),该地区广泛发育早白垩世—新生代火山岩。早白垩世小岭组(110.5±1.1 Ma; Pang Chongjing et al.,2015)分布于中生代伸展盆地内,岩石类型主要为安山岩,以及少量玄武岩、英安岩、安山角砾岩、凝灰岩和砂岩。宽甸地区发育大规模火山群(包含20多座第四纪火山),喷发年龄小于0.6 Ma(刘若新等,1992),其中常见大量的橄榄岩和辉石岩捕虏体(刘若新等,1992; Wu Fuyuan et al.,2006)。
-
本次研究的对象为辽东小岭组玄武岩中的橄榄石斑晶,以及宽甸玄武岩中的橄榄石捕虏晶。小岭组玄武岩呈黑色,斑状结构,斑晶主要为橄榄石、单斜辉石以及少量的斜长石,基质主要为微晶斜长石、单斜辉石,以及少量的磷灰石和铁—钛氧化物(图2a、c),橄榄石斑晶较为新鲜,呈自形—半自形,大小约0.1~0.6 mm。宽甸玄武岩呈黑色,具斑状结构,斑晶主要为橄榄石、单斜辉石; 基质为间粒—间隐结构,由橄榄石、斜方辉石、单斜辉石和斜长石等微晶和玻璃组成。宽甸玄武岩含有大量的他形橄榄石捕虏晶,粒径较大(2~5 mm),发育环状裂隙结构与弱环带结构(图2b、d、e)。
-
2 分析方法
-
橄榄石的主量元素测试工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,分析仪器为JXA-8230型号电子探针仪(EMPA),分析条件为加速电压15 kV,电流20 nA,电子束斑3 μm。橄榄石的Ca和Mn的峰值计数时间为40 s,Ni为60 s,其余元素为5 s。
-
橄榄石氧同位素分析在中国科学院广州地球化学研究所的二次离子探针质谱仪CAMECA IMS-1280HR上完成,具体的分析流程见Yang Qing et al.(2018)。橄榄石颗粒和橄榄石标样San Carlos(Fo为~90)一同嵌入环氧树脂靶中并抛光。氧同位素分析的SIMS仪器条件为一次离子源CS+,加速电压10 kV,电流强度2 nA,离子束斑10 μm×20 μm; 分析过程采用电子枪对样品充注进行补偿; 分析时间~4 min,包括预溅射(~120 s)。橄榄石标样的平均内部精度为0.2‰(2SE)。单个样品颗粒间氧同位素变化范围为0.1‰~0.3‰(2SE)。
-
图1 华北克拉通晚中生代—新生代火山岩分布简图
-
Fig.1 Geological sketch map showing localities of Mesozoic to Cenozoic igneous rocks in the North China Craton
-
搜集数据分别来自:四合屯(125 Ma; Gao Shan et al.,2008; Xu Yao et al.,2020); 方城(125 Ma; Guo Jiangtao et al.,2013); 莒南和青岛(67~82 Ma; 郭锋等,2013)
-
The samples integrated in this study were collected from Sihetun (125 Ma; Gao Shan et al., 2008; Xu Yao et al., 2020) ; Fangcheng (125 Ma; Guo Jiangtao et al., 2013) ; Junan and Qingdao (67~82 Ma; Guo Feng et al., 2013)
-
图2 辽东小岭组玄武岩中橄榄石斑晶和宽甸玄武岩中橄榄石捕虏晶岩相学和背散射照片
-
Fig.2 Photomicrographs and backscattered electron images of olivine phenocrysts from Xiaoling basalts and olivine xenocrysts from Kuandian basalts
-
(a)—小岭组玄武岩岩相学(选自Pang Chongjing et al.2015);(b)—宽甸玄武岩岩相学;(c)—小岭组橄榄石斑晶背散射照片;(d、e)—宽甸橄榄石捕虏晶背散射照片; Ol—橄榄石
-
(a) —Photomicrographs of Xiaoling basalts (from Pang Chongjing et al.2015) ; (b) —photomicrographs of Kuandian basalts; (c) —backscattered electron images of olivine phenocrysts from Xiaoling basalts; (d, e) —backscattered electron images of olivine xenocrysts from Kuandian basalts; Ol—olivine
-
3 分析结果
-
3.1 小岭组玄武岩橄榄石斑晶
-
小岭组玄武岩中橄榄石斑晶具有相对偏低的Fo值(79~88),它们的SiO2、MgO、NiO、MnO和CaO分别为39.1%~40.3%、40.6%~47.9%、0.15%~0.42%、 0.17%~0.16%和0.10%~0.24%(表1)。其中,橄榄石的CaO含量高于地幔橄榄石值(CaO<0.1%; Foley et al.,2013)。小岭组橄榄石斑晶的δ18O值变化较大(4.77‰~5.96‰,平均值5.52‰±0.2‰)(表2),最高值明显高于地幔橄榄石的δ18O(5.18‰±0.28‰)(Chazot et al.,1997)。
-
3.2 宽甸玄武岩橄榄石捕虏晶
-
宽甸玄武岩的橄榄石捕虏晶的SiO2、MgO、NiO、MnO和CaO分别为39.92%~40.19%、43.79%~50.21%、0.29%~0.41%、0.11%~0.19%和<0.1%(表1)。宽甸橄榄石捕虏晶的Fo值为88~92,与饱满和难熔地幔的橄榄石相似(Zheng Jianping et al.,2021)。橄榄石捕虏晶的δ18O为4.58‰~5.38‰(平均值5.21‰±0.17‰)(表2),基本与地幔橄榄石值(Chazot et al.,1997)相当。
-
续表1
-
4 讨论
-
4.1 小岭组玄武岩的起源与辽东早白垩世岩石圈地幔属性
-
早白垩世小岭组玄武岩具有亏损高场强元素(HFSE),富集大离子亲石元素(LILE),以及EM-Ⅰ型Sr-Nd同位素等特征,被证明来自于岩石圈地幔源区(Pang Chongjing et al.,2015)。玄武岩中橄榄石的低Fo(79~88)、高CaO(>0.1%)(图3c),以及无明显的成分环带等特征,指示其为斑晶(Foley et al.,2013)。橄榄石是玄武质岩浆系统中最早结晶的矿物,因此它是记录岩浆源区信息的重要载体(Foley et al.,2013)。因为元素Ni、Ca和Mn分别更容易进入橄榄石、辉石以及石榴子石中(Beattie et al.,1991; Balta et al.,2011),所以相比于橄榄岩熔体,辉石岩熔体(辉石和石榴子石的模式成分更高)具有更高的Ni、Fe/Mn(比值>60)以及更低的Ca和Mn含量(Sobolev et al.,2007; Herzberg,2011)。此外,前人研究证明Ca和Mn元素与橄榄石主量元素的比值在辉石岩源区残留相中较为富集(Foley et al.,2013),因此辉石岩熔体中的橄榄石相比于MORB中的橄榄石具有更高的Ni/Mg比值以及更低的Ca/Fe和Mn/Fe比值。小岭组橄榄石斑晶具有高Ni/Mg和Fe/Mn比值(62~76)(图4a、b),低的Mn/Fe和Ca/Fe比值(图4c、d),且在Ni/(Mg/Fe)/1000-100×Mn/Fe图中(图4c)与辉石岩和橄榄岩实验熔体的混合线所重叠(Sobolev et al.,2007),表明小岭组玄武岩母岩浆起源于橄榄岩和辉石岩的混合源区。
-
续表2
-
橄榄石氧同位素对热液蚀变再循环物质的示踪较为敏感(Eiler,2001)。俯冲沉积物和上洋壳与海水发生低温热液反应通常具有高于地幔橄榄石(5.18‰±0.28‰; Gregory et al.,1981; Eiler,2001)的δ18O值(≥7‰),然而俯冲下洋壳与海水发生高温热液反应具有低于地幔橄榄石的δ18O值(0~6‰)(Gregory et al.,1981; Eiler,2001)。小岭组橄榄石斑晶具有比地幔橄榄石变化范围更大的氧同位素组成(4.77‰~5.96‰),总体上显示较高的δ18O值,个别橄榄石显示低于地幔橄榄石的氧同位素值。部分熔融,分离结晶和脱气作用对玄武岩中橄榄石氧同位素的影响值小于0.1‰(Eiler,2001)。此外,我们所分析的橄榄石斑晶都较为新鲜,且寄主岩浆未经历明显的地壳混染(Pang Chongjing et al.,2015)。因此,小岭组玄武岩中橄榄石斑晶的高氧同位素反映地幔源区的特征,即可能受到高δ18O壳源熔体的交代作用的影响。
-
基于早白垩世辽东地区的构造环境,小岭组玄武岩源区交代的熔体/流体有两种可能来源:俯冲古太平洋壳(中生代—新生代)和俯冲古亚洲洋(古生代)。本文认为高δ18O熔体更有可能来自于俯冲古太平洋壳,依据如下:① 小岭组玄武岩具有高Rb/Sr和低87Sr/86Sr比值,并伴随大量角闪石结晶,指示该地区地质历史上最近一期含水流体的交代事件(Pang Chongjing et al.,2015),即中生代古太平洋板块俯冲最可能导致小岭组玄武岩斑晶的高δ18O橄榄石形成; ② Ma Qiang et al.(2021)综合运用地质年代学、全岩地球化学和锆石Hf同位素资料,揭示了华北克拉通早白垩世岩浆的形成主要受控于古太平洋板块的后撤; ③ 早白垩世幔源岩浆普遍存在热液蚀变洋壳组分和大量的水,为中生代古太平洋板块俯冲提供了物质记录(Xia Qunke et al.,2013; Ma Qiang et al.,2016; 冯亚洲等,2020)。
-
4.2 宽甸橄榄石捕虏晶的成因与辽东第四纪岩石圈地幔性质
-
橄榄石捕虏晶是幔源岩浆(如金伯利岩岩浆和玄武质岩浆)在向上迁移过程中捕获的岩石圈地幔碎块或其解体矿物,它们是研究地球深部物质组成特征和地幔演化过程的理想对象(Lehtonen et al.,2004; Tang Yanjie,2004)。宽甸玄武岩的橄榄石颗粒大,呈亚圆形或镶嵌状,有裂缝和弱环带发育。同时,橄榄石具有较高的Fo值(88~92),高NiO(0.3%~0.4%),低CaO(<0.1%)和MnO含量(0.1%~0.2%),它们与新生代宽甸玄武岩的橄榄岩捕虏体中的橄榄石成分较为接近(图3)。上述现象表明本文研究的宽甸橄榄石可能是来自于岩石圈地幔的捕虏晶。个别橄榄石具有较低的Fo值(83~88),它们的NiO与Fo呈正相关并明显脱离地幔橄榄石趋势线范围(Tatsumi,2006),推测其可能为橄榄石捕虏晶与寄主岩浆发生反应后再平衡的产物,因此后续讨论不再考虑。
-
宽甸橄榄石捕虏晶的Fo值为88~92(图5b),主体显示饱满型地幔橄榄石特征,但也有少量过渡和难熔型地幔橄榄石特点。宽甸橄榄岩捕虏体中矿物主量元素特征(橄榄石相对低Mg#,高CaO和Al2O3; 尖晶石低Cr#值)以及年轻的亏损Re-Os模式年龄表明其为经过低程度部分熔融抽取熔体后残留的新生饱满地幔(Wu Fuyuan et al.,2006)。橄榄石氧同位素(4.58‰~5.38‰)与正常地幔值(δ18O约为5.18‰±0.28‰)较为接近,表明新生代时期洋壳熔流体对岩石圈地幔的改造较为有限(Liu Jia et al.,2017)。Wu Fuyuan et al.(2006)基于宽甸橄榄岩捕虏体87Sr/86Sr-εNd(t)-εHf(t)的变化,提出宽甸橄榄岩捕虏体受到了再循环壳源物质的改造,但是并没有具体识别出壳源物质的来源。Xu Rong et al.(2013)对宽甸橄榄岩捕虏体中辉石和橄榄石的原位微量元素和Li-Sr同位素分析,明确了这种壳源熔体来自于俯冲古太平洋洋壳。结合本文橄榄石氧同位素的数据,我们认为新生代时期岩石圈地幔可能受到少量高温蚀变下部洋壳流体或熔体的交代作用。
-
图3 辽东小岭组橄榄石斑晶和宽甸橄榄石捕虏晶Fo-NiO(a)、Fo-MnO(b)和Fo-CaO(c)关系图
-
Fig.3 Diagrams of Fo-NiO (a) , Fo-MnO (b) , Fo-CaO (c) for olivine phenocrysts from the Xiaoling basalts and olivine xenocrysts from the Kuandian basalts
-
中生代方城玄武岩中橄榄石斑晶引自Guo Jiangtao et al.(2013),中生代义县组玄武岩中橄榄石捕虏晶引自Xu Yao et al.(2020),中生代四合屯玄武岩中橄榄石斑晶引自Gao Shan et al.(2008); 新生代宽甸橄榄岩捕虏体引自Wu Fuyuan et al.(2006); Xu Rong et al.(2013); 地幔橄榄石趋势来源Tatsumi(2006)
-
Olivine phenocrysts from Mesozoic Fangcheng and Sihetun basalts are from Guo Jiangtao et al. (2013) and Gao Shan et al. (2008) respectively; olivine xenocrysts from Mesozoic Sihetun basalts are from Xu Yao et al. (2020) ; the data of Cenozoic peridotite xenolith from Kuandian basalts are from Wu Fuyuan et al. (2006) ; Xu Rong et al. (2013) ; mantle olivine trend sources from Tatsumi (2006)
-
4.3 对华北中-新生代岩石圈地幔演化的指示意义
-
不同年龄火山岩中地幔捕虏体的对比研究发现,华北克拉通中部以及东部厚的、难熔的岩石圈地幔发生减薄,并被新生饱满地幔置换(Griffin et al.,1998; Gao Shan et al.,2002; Zheng Jianping et al.,1998,2007,2021)。Guo Jianfang et al.(2022)统计了华北克拉通地幔橄榄岩中橄榄石Mg#的时空演变规律发现:来自早古生代蒙阴含金刚石金伯利岩中的地幔捕虏体主要为难熔(橄榄石Mg#>92)石榴子石相橄榄岩,以及少量过渡型橄榄岩(橄榄石Mg#在90至92之间),它们具太古宙Re亏损模式年龄(Gao Shan et al.,2002; Tang Yanjie et al.,2021); 与之相反,大部分来自中生代和新生代玄武岩中的地幔捕虏体主要为饱满尖晶石相二辉橄榄岩(大部分橄榄石Mg#小于90,少数位于90~92之间),且具有高的187Os/188Os比值,以及年轻的Re亏损模式年龄(Gao Shan et al.,2002),但仍有少数样品(主要来自于华北中部,例如河北地区)显示太古宙或者古元古代的Re亏损模式年龄(Gao Shan et al.,2002; Zheng Jianping et al.,2007; Bian Xiao et al.,2021; Tang Yanjie et al.,2021)。前人观察结果显示,华北东部以及中部难熔岩石圈根大多已经被更加饱满的岩石圈地幔置换,只有少量古老难熔地幔残留(Gao Shan et al.,2002; Wu Fuyuan et al.,2006; Zhang Hongfu et al.,2008; Zheng Jianping et al.,2006,2021)。
-
通过对比早白垩世小岭组橄榄石斑晶和第四纪宽甸橄榄石捕虏晶的氧同位素变化,结合早白垩世-新生代华北其他地区的橄榄石氧同位素数据,我们发现蚀变洋壳熔流体对华北岩石圈性质转变起了重要作用。早白垩世辽西125 Ma义县组玄武岩中的橄榄石捕虏晶(δ18O为5.9‰~7‰)(图6a)具有远高于正常地幔橄榄石的氧同位素组成,说明岩石圈地幔受到了低温热液蚀变洋壳熔流体的交代(Xu Yao et al.,2020)。110 Ma 小岭组玄武岩中的橄榄石斑晶氧同位素组成变化范围很大(δ18O为4.77‰~5.96‰)(图6a),超过了正常地幔橄榄石的氧同位素值范围,说明岩石圈地幔受到了高δ18O和低δ18O两种熔/流体的交代影响。结合辽东地质背景以及前人研究成果(Pang Chongjing et al.,2015; 冯亚洲等,2020; Ma Qiang et al.,2021),本文认为这些高δ18O熔体以及少量低δ18O熔体可能来自于古太平洋俯冲板片。第四纪辽东宽甸橄榄石捕虏晶的Fo值为88~92,指示饱满与难熔地幔共存的特点。橄榄石捕虏晶氧同位素(4.58‰~5.38‰)与正常地幔橄榄石值(δ18O约为5.18‰±0.28‰)较为接近(图6a),表明新生代岩石圈地幔已经被置换,受壳源熔流体的改造较为有限。总体而言,辽东岩石圈地幔在白垩纪到第四纪期间,壳源熔流体的交代作用呈逐渐减弱的趋势。我们总结对比了华北克拉通已经发表的中—新生代橄榄石氧同位素数据(图6b),发现早白垩世山东地区橄榄石的氧同位素值(平均值约为6.5‰)明显高于华北北缘(例如,辽宁地区小岭组、宽甸、四合屯)橄榄石氧同位素组成,可能是因为华北南缘岩石圈地幔受到了扬子陆壳熔体的改造(Zhou Qunjun et al.,2012; Guo Jiangtao et al.,2013)。山东晚白垩世橄榄石的氧同位素则低于正常地幔橄榄石值,被认为与俯冲板片高温熔/流体的交代作用有关(郭锋等,2013)。从时间演化角度看,早白垩世期间,华北岩石圈地幔中橄榄石氧同位素值大多高于正常地幔,指示了俯冲板块物质的贡献(Zhou Qunjun et al.,2012; Guo Jiangtao et al.,2013; 郭锋等,2013; Pang Chongjing et al.,2015; Xu Yao et al.,2020及本文); 110 Ma以后,华北岩石圈地幔中开始出现大量低δ18O特征的橄榄石(图6),表明高温蚀变下洋壳熔流体开始交代华北岩石圈地幔。我们认为华北克拉通岩石圈地幔交代物质组成和强度的变化可能与古太平洋板块俯冲和后撤—撕裂作用相关。古太平洋板块自侏罗纪开始向欧亚大陆边缘俯冲,俯冲的古太平洋板块在145 Ma左右开始后撤(Ma Qiang et al.,2021)并伴随着局部撕裂作用的发生(Meng Qingren et al.,2021)。板块撕裂作用使软流圈地幔沿着断裂带上涌和脱水洋壳熔融(Guo Feng et al.,2021),因而造成华北岩石圈地幔被交代,且交代强度自白垩纪以来逐渐减弱。
-
图4 Ni-Fo(a)、 Fe/Mn-Fo(b)、 Ni/(Mg/Fe)/1000-100Mn/Fe(c)、 100Ni/Mg-100Mn/Fe(d)关系图
-
Fig.4 Plots of Ni-Fo (a) , Fe/Mn-Fo (b) , Ni/ (Mg/Fe) /1000-100Mn/Fe (c) and 100Ni/Mg-100Mn/Fe (d)
-
MORB和夏威夷橄榄石数据引自Sobolev et al.(2007),橄榄岩实验熔体数据来源:Herzberg(2011)
-
Data for MORB and Hawaii olivine are from Sobolev et al. (2007) , data of peridotite experimental melt is derived from Herzberg (2011)
-
图5 辽东小岭组橄榄石斑晶和宽甸橄榄石捕虏晶δ18O值与Fo含量关系图(a)及宽甸橄榄石捕虏晶Fo值分布直方图(b)
-
Fig.5 (a) A plot of δ18O values Fo contents of olivine phenocrysts from Xiaoling basalts and olivine xenocrysts from Kuandian basalts; (b) Histograms of Fo contents of olivine xenocrysts from Kuandian basalts
-
饱满地幔、过渡地幔和难熔地幔中橄榄石Fo值范围分别是小于90,90到92之间,大于92
-
Fertile, refractory and transitional peridotites are characterized by olivines with Fo<90, 90~92 and >92, respectively
-
5 主要认识
-
基于华北克拉通玄武岩中橄榄石斑晶和捕虏晶的主量元素以及氧同位素组成分析,本文取得如下几点结论:
-
(1)早白垩世小岭组玄武岩中橄榄石斑晶具有低Fo(79~88)、CaO(>0.1%)、高δ18O(4.77‰~5.96‰)、高Ni/Mg比值、低Mn/Fe和低Ca/Fe比值,指示源区为辉石岩和橄榄岩混合源区。小岭组橄榄石斑晶还具有比地幔橄榄石变化范围更宽的氧同位素组成,本文认为这些高和低δ18O(4.77‰~5.96‰)熔体是来自于古太平洋俯冲板块的贡献。
-
图6 华北克拉通早白垩世—新生代岩石圈地幔δ18O柱状对比图
-
Fig.6 Comparison of the δ18O values of olivine from early Cretaceous to Cenozoic lithospheric mantle
-
地幔橄榄石δ18O值(5.18‰±0.28‰; Gregory et al.,1981; Eiler,2001); 早白垩世方城、四合屯橄榄石斑晶,早白垩世辉石岩、橄榄岩捕虏体,晚白垩世胶东橄榄岩捕虏体中的橄榄石δ18O值分别引自:Guo Jiangtao et al.(2013); Xu Yao et al.(2020); Zhou Qunjun et al.(2012); 郭锋等,2013
-
Olivine values in normal peridotite (5.18±0.28‰; Gregory et al., 1981; Eiler, 2001) ; data sources for Cretaceous North China Craton olivines are: olivine phenocrysts from Fangcheng and Sihetun basalts (Guo Jiangtao et al., 2013; Xu Yao et al., 2020) , olivine from pyroxenites and peridotite xenoliths (Zhou Qunjun et al., 2012; Guo Feng et al., 2013)
-
(2)新生代宽甸橄榄石捕虏晶具有高Fo(88~92)和NiO,以及低CaO(<0.1%)和MnO含量(0.1%~0.2%),主要显示饱满型地幔特征,其δ18O(4.58‰~5.38‰)与正常地幔橄榄石接近,表明新生代时期岩石圈地幔受壳源熔流体的改造较为有限。
-
(3)综合华北克拉通其他地区地幔橄榄石氧同位素数据,我们认为华北地幔氧同位素存在时空分布不均一性,且蚀变洋壳熔流体的贡献对早白垩世到新生代岩石圈性质转变和最终置换起了重要作用。
-
致谢:实验分析测试得到了夏小平、潘发斌和曹慧颖的大力支持; 郭锋研究员和匿名审稿人对本文提出了建设性修改意见; 在此一并感谢。
-
参考文献
-
Balta J B, Asimow P D, Mosenfelder J L. 2011. Manganese partitioning during hydrous melting of peridotite. Geochimica et Cosmochimica Acta, 75(20): 5819~5833.
-
Beattie P, Ford C, Russell D. 1991. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contributions to Mineralogy and Petrology, 109(2): 212~224.
-
Bian Xiao, Su Yuping, Zheng Jianping, Xiong Qing, Zhou Xiang, Dai Hongku, Zhou Liang, Wang Jian, Lin Abing. 2021. Multi-stage mantle accretions and metasomatisms related to peripheral subduction or collision in the northern North China Craton: evidence from the Nangaoya peridotite xenoliths. Lithos, 390: 106~116.
-
Chazot G, Lowry D, Menzies M, Mattey D. 1997. Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochimica et Cosmochimica Acta, 61: 161~169.
-
Chen Huan, Xia Qunke, Ingrin J, Jia Zubing, Feng Min. 2015. Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: new constraints from water content. Tectonophysics, 650: 113~123.
-
Eiler J M, Farley K A, Valley J W, Hauri E, Craig H, Hart S R, Stolper E M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry, 43: 319~364.
-
Feng Yazhou, Yang Jinhui, Sun Jingfeng, Zhang Jiheng. 2020. Material record of the subduction-induced destruction of the North China Craton by the Mesozoic Paleo-Pacific plate. Science China Earth Sciences, 50(5): 651~662 (in Chinese).
-
Foley S F, Prelevic D, Rehfeldt D, Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181~191.
-
Gao Shan, Rudnick R L, Carlson R W, McDonough W F, Liu Yongsheng. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3): 307~322.
-
Gao Shan, Rudnick R L, Xu Wenliang, Yuan Honglin, Liu Yongsheng, Walker R J, Puchtel I S, Liu Xiaomin, Huang Hua, Wang Xiaorui, Yang Jie. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270: 41~53.
-
Gregory R T, Taylor H P. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 86(4): 2737~2755.
-
Griffin W L, Zhang Andi, O'Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Conference on Mantle Dynamics and Plate Interactions in East Asia. American Geophysics Union Geodynamics Series, 27: 107~126.
-
Guo Feng, Guo Jiangtao, Wang Yan, Fan Weiming, Li Chaowen, Li Hongxia, Zhao Liang. 2013. Metasomatized mantle wedge genesis of low δ18Oolivine in Late Cretaceous Junan and Qingdao basalts of Sulu region. Chinese Science Bulletin, 58(14): 1289~1299 (in Chinese).
-
Guo Feng, Wu Yangming, Zhang Bo, Zhang Xiaobing, Zhao Liang, Liao Jie. 2021. Magmatic responses to Cretaceous subduction and tearing of the Paleo-Pacific Plate in SE China: an overview. Earth-Science Reviews, 212: 103~448.
-
Guo Jianfang, Ma Qiang, Zheng Jianping, Su Yuping. 2022. Spatial and temporal evolution of lithospheric mantle beneath the eastern North China Craton: constraints from mineral chemistry of peridotite xenoliths from the Miocene Qingyuan basalts and a regional synthesis. Journal of Earth Science, 32(6): 1~30.
-
Guo Jiangtao, Guo Feng, Christina Yan Wang, Li Chaowei. 2013. Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton: new constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170: 1~16.
-
Hao Yantao, Xia Qunke, Dallai L, Coltorti M. 2015. Recycled oceanic crust-derived fluids in the lithospheric mantle of eastern China: constraints from oxygen isotope compositions of peridotite xenoliths. Lithos, 228: 55~61.
-
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. Journal of Petrology, 52(1): 113~146.
-
Hong Lubing, Xu Yigang, Zhang Le, Liu Zhe, Xia Xiaoping, Kuang Yongsheng. 2020. Oxidized Late Mesozoic subcontinental lithospheric mantle beneath the eastern North China Craton: a clue to understanding cratonic destruction. Gondwana Research, 81: 230~239.
-
Lehtonen M L, O'Brien H E, Peltonen P, Johanson B S, Pakkanen L K. 2004. Layered mantle at the Karelian Craton margin: P-T of mantle xenocrysts and xenoliths from the Kaavi-Kuopio kimberlites, Finland. Lithos, 77(1-4): 593~608.
-
Li Hongyan, Xu Yigang, Ryan J G, Huang Xiaolong, Ren Zhongyuan, Guo Hua, Ning Zhenguo. 2016. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: discrimination of contributions from the subducted Pacific slab. Geochimica et Cosmochimica Acta, 178: 1~19.
-
Li Hongyan, Xu Yigang, Ryan J G, Scott A. Whattam. 2017. Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: linking geochemical and geophysical observations. Journal of Geophysical Research: Solid Earth, 122(1): 224~246.
-
Liu Dunyi, Nutman A P, Compston W, Wu Jiashan, Shen Qihan. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339~342.
-
Liu Jia, Wang Zizhen, Yu Haoran, Xia Qunke, Deloule E, Feng Min. 2017. Dynamic contribution of recycled components from the subducted Pacific slab: oxygen isotopic composition of the basalts from 106 Ma to 60 Ma in North China Craton. Journal of Geophysical Research: Solid Earth, 122(2): 988~1006.
-
Liu Ruoxin, Chen Wenji, Sun Jianzhong, Li Daming. 1992. K-Ar dating and tectonic setting of Cenozoic volcanic rocks in China. In: Chronology and geochemistry of Cenozoic volcanic rocks in China. Beijing: Earthquake Press(in Chinese).
-
Ma Qiang, Xu Yigang, Zheng Jianping, Griffin W L, Hong Lubin, Ma Liang. 2016. Coexisting early Cretaceous high-Mg andesites and adakitic rocks in the North China Craton: the role of water in intraplate magmatism and cratonic destruction. Journal of Petrology, 57(7): 1279~1308.
-
Ma Qiang, Xu Yigang, Deng Yangfan, Zheng Jianping, Sun Min, Griffin W L, Wang Christina Yan. 2019. Similar crust beneath disrupted and intact cratons: arguments against lower-crust delamination as a decratonization trigger. Tectonophysics, 750: 1~8.
-
Ma Qiang, Xu Yigang, Huang Xiaolong, Zheng Jianping, Ping Xianquan, Xia Xiaoping. 2020. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths. Geochimica et Cosmochimica Acta, 278: 94~109.
-
Ma Qiang, Xu Yigang. 2021. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia. Earth-Science Reviews, 213: 103~473.
-
Ma Qiang, Guo Jianfang, Xu Yigang, Zheng Jianping. 2022. Mesozoic volcanism in the north China Craton: constraints for the deep processes and shallow responses of the cratonic destruction. Bulletin of Mineralogy, Petrology and Geochemistry, 41(4): 776~787 (in Chinese with English abstract).
-
Meng Qingren, Zhou Zhonghe, Zhu Rixiang, Xu Yigang, Guo Zhengtang. 2021. Cretaceous basin evolution in northeast Asia: tectonic responses to the Paleo-Pacific plate subduction. National Science Review, 9(1): nwab088.
-
Menzies M A, Fan Weiming, Zhang Ming. 1993. Palaeozoic and Cenozoic lithosphere and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publications, 76: 71~81.
-
Niu Yaoling. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities, 11: 9~46.
-
Pang Chongjin, Wang Xuance, Xu Yigang, Wen Shun, Kuang Yongsheng, Hong Lubin. 2015. Pyroxenite-derived Early Cretaceous lavas in the Liaodong Peninsula: implication for metasomatism and thinning of the lithospheric mantle beneath North China Craton. Lithos, 227: 77~93.
-
Shao Jian, Lu Fengxiang, Zhang Fuqiao, Yang Jinghui. 2005. Discovery of basaltic xenocrysts of Yixian Formation in western Liaoning and its significance. Acta Petrologica Sinica, 21(6): 1547~1558 (in Chinese with English abstract).
-
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412~417.
-
Tang Yanjie. 2004. High-Mg olivine xenocrysts entrained in Cenozoic basalts in central Taihang Mountains: relicts of old lithospheric mantle. Acta Petrologica Sinica, 20: 1243~1252.
-
Tang Yanjie, Ying Jifeng, Zhao Yuepeng, Xu Xinrang. 2021. Nature and secular evolution of the lithospheric mantle beneath the North China Craton. Science China Earth Sciences, 51(9): 1492~1503.
-
Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review of Earth and Planetary Sciences, 34: 467~499.
-
Windley B F, Maruyama S, Xiao Wenjiao. 2010. Delamination/thinning of sub-continental lithospheric mantle under eastern China: the role of water and multiple subductions. American Journal of Science, 310: 1250~1293.
-
Wu Fuyuan, Walker R J, Yang Yueheng, Yuan Honglin, Yang Jinhui. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta, 70(19): 5013~5034.
-
Wu Fuyuan, Xu Yigang, Gao Shan, Zheng Jianping. 2008. Major academic debates on the study of lithospheric thinning and Craton destruction in North China. Acta Petrologica Sinica, 24(6): 1145~1174 (in Chinese with English abstract).
-
Wu Fuyuan, Yang Jinhui, Xu Yigang, Wilde S A, Walker R J. 2019. Destruction of the North China craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173~195.
-
Xia Qunke, Liu Jia, Liu Shaochen, Kovacs I, Feng Min, Li Dang. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters, 361: 85~97.
-
Xu Rong, Liu Yongsheng, Tong Xirun, Hu Zhaochu, Zong Keqing, Gao Shan. 2013. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chemical Geology, 354: 107~123.
-
Xu Yigang. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 26(9~10): 747~757.
-
Xu Yigang. 2014. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49~67.
-
Xu Yigang, Li Hongyan, Hong Lubing, Ma Liang, Ma Qiang, Sun Mingdao. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China Earth Sciences, 48(7): 825~843 (in Chinese).
-
Xu Yao, Zhang Hongfu. 2020. Secular evolution of the lithospheric mantle beneath the northern margin of the North China Craton: insights from zoned olivine xenocrysts in Early Cretaceous basalts. Geological Society of America Bulletin, 132(11-12): 2353~2366.
-
Yang Fan, Kim S W, Tsunogae T, Zhou Hongying. 2021. Multiple enrichment of subcontinental lithospheric mantle with Archean to Mesozoic components: evidence from the Chicheng ultramafic complex, North China Craton. Gondwana Research, 94: 201~221.
-
Yang Chuanmao, Xu Yigang, Xia Xiaoping, Yang Jinhui, Sun Jinfen, Zhang Wanfeng, Yang Qing, Yang Yanan. 2022. High water contents in zircons suggest water-fluxed crustal melting during cratonic destruction. Geophysical Research Letters, 49(7): e2021GL097126.
-
Yang Qing, Xia Xiaoping, Zhang Wanfeng, Zhang Yanqiang, Xiong Boqin, Xu Yigang, Wang Qiang, Wei Gangjian. 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sciences, 3(3): 81~86.
-
Zhou Qunjun, Xu Wenliang, Yang Dabin, Pei Fuping, Wang Wei, Yuan Honglin, Gao Shan. 2012. Modification of the lithospheric mantle by melt derived from recycled continental crust evidenced by wehrlite xenoliths in Early Cretaceous high-Mg diorites from western Shandong, China. Science China Earth Sciences, 55(12): 1972~1986.
-
Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton. Science China Earth Sciences, 42(8): 1135~1159(in Chinese).
-
Zhu Rixiang, Xu Yigang. 2019. Pacific-plate subduction and destruction of the North China Craton. Science China Earth Sciences, 49(9): 1346~1356(in Chinese).
-
Zhao Guochun, Wilde S A, Cawood P A, Sun Min. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45~73.
-
Zhang Junjun, Zheng Yongfei, Zhao Zifu. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in East-central China. Lithos, 110: 305~326.
-
Zhang Hongfu. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth and Planetary Science Letters, 237: 768~780.
-
Zhang Hongfu. 2009. Trends in the Re-Os system during peridotite-melt interaction: implications for the Re-Os age of Cenozoic mantle peridotites in North China. Acta Petrologica Sinica, 24(11): 2457~2467 (in Chinese with English abstract).
-
Zhang Hongfu, Goldstein S L, Zhou Xinhua, Sun Min, Zheng Jianping, Cai Yue. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology, 155(30): 271~293.
-
Zheng Jianping. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397~3416.
-
Zheng Jianping, O'Reilly S Y, Griffin W L, Lu Fengxiang, Zhang Ming. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. International Geology Review, 40(6): 471~499.
-
Zheng Jianping, Lu Fengxiang, Zhang Ming. 1999. Characteristics of the Paleozoic and Cenozoic lithospheric mantle and secure evolution in the eastern part of the North China Platform. Acta Geologica Sinica, 73(1): 47~56 (in Chinese with English abstract).
-
Zheng Jianping, Griffin W L, O'Reilly S Y, Yang Jinsui, Li Tianfu, Zhang Ming, Zhang Ruth Y, Liu John G. 2006. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. Journal of Petrology, 47(11): 2233~2256.
-
Zheng Jianping, Griffin W L, O'Reilly S Y, Yu Chunmei, Zhang Hongfu, Pearson N J, Zhang Ming. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203~5225.
-
Zheng Jianping, Xia Bin, Dai Hongkun, Ma Qiang. 2021. Lithospheric structure and evolution of the North China Craton: an integrated study of geophysical and xenolith data. Science China Earth Sciences, 64(2): 205~219.
-
冯亚洲, 杨进辉, 孙金凤, 张吉衡. 2020. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录. 中国科学: 地球科学, 50(5): 651~662.
-
郭锋, 郭江涛, 王焰, 范蔚茗, 李超文, 李红霞, 赵亮. 2013. 苏鲁地区晚白垩世莒南和青岛玄武岩中低δ18Oolivine的交代地幔楔成因. 科学通报, 58(14): 1289~1299.
-
刘若新, 陈文寄, 孙建中, 李大明. 1992. 中国新生代火山岩的K-Ar年代与构造环境. 中国新生代火山岩年代学与地球化学. 北京: 地震出版社.
-
马强, 郭建芳, 徐义刚, 郑建平. 2022. 华北中生代火山作用: 对克拉通破坏深部过程和浅部响应的制约. 矿物岩石地球化学通报, 41(4): 776~787.
-
邵济安, 路凤香, 张履桥, 杨进辉. 2005. 辽西义县组玄武岩捕虏晶的发现及其意义. 岩石学报, 21(6): 1547~1558.
-
汤艳杰, 英基丰, 赵月鹏, 许欣然. 2021. 华北克拉通岩石圈地幔特征与演化过程. 中国科学: 地球科学, 51(9): 1489~1503.
-
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145~1174.
-
徐义刚, 李洪颜, 洪路兵, 马亮, 马强, 孙明道. 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因. 中国科学: 地球科学, 48(7): 825~843.
-
张宏福. 2009. 橄榄岩-熔体相互作用过程中Re-Os体系的变化趋势: 对华北新生代地幔橄榄岩Re-Os年龄含义的启示. 岩石学报, 24(11): 2457~2467.
-
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135~1159.
-
朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学: 地球科学, 49(9): 1346~1356.
-
郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程. 科学通报, 14: 1990~2007.
-
郑建平, 路凤香, 张明. 1999. 华北地台东部古生代与新生代岩石圈地幔特征及其演化. 地质学报, 73(1): 47~56.
-
摘要
华北克拉通东部岩石圈地幔性质在中—新生代时期发生了重大转变,但细节还不清楚。本文对辽东半岛早白垩世(克拉通破坏峰期)小岭组玄武岩和第四纪(克拉通破坏后)宽甸玄武岩中橄榄石斑晶/捕虏晶进行了主量元素和氧同位素组成研究。早白垩世小岭组玄武岩斑晶橄榄石Fo为 79~88,CaO>0.1%,具有高Ni/Mg(0.4~1.2)、低Mn/Fe(1.3~1.6)和低Ca/Fe比值(0.2~1.5)的特征,指示岩浆源区是辉石岩和橄榄岩混合的岩石圈地幔;高于正常地幔橄榄石的δ18O(4.77‰~5.96‰,平均值5.4‰)显示低温热液蚀变洋壳熔体/流体组分对地幔源区的影响。第四纪宽甸玄武岩捕虏晶橄榄石Fo值为88~92(平均值90),具有高NiO(0.3%~0.4%)和低CaO(<0.1%)、MnO(0.1%~0.2%)含量,显示主体饱满、与少量过渡型和难熔型并存的地幔组成特征;其δ18O(4.58‰~5.38‰,平均值5.3‰)与正常地幔值接近。结合华北其他地区地幔橄榄石氧同位素数据,发现早白垩世破坏峰期有较多俯冲洋壳来源的熔/流体交代岩石圈地幔,而新生代岩石圈地幔则为破坏后的残余和新增生产物,我们认为古太平洋板块俯冲和后撤—撕裂引起的熔体/流体交代作用对华北克拉通岩石圈地幔的弱化、侵蚀和最终置换起了重要作用。
Abstract
The properties of subcontinental lithospheric mantle beneath the eastern North China Craton changed significantly in the Mesozoic-Cenozoic, but details are sketchy. In this study, we report major element and oxygen isotopic compositions of olivine phenocrysts from early Cretaceous Xiaoling basalts and olivine xenocrysts from Quaternary Kuandian basalts. The olivine phenocrysts from the Xiaoling basalts show relatively low Fo values (79~88), Mn/Fe (1.3~1.6) and Ca/Fe ratios (0.2~1.5), but relatively high CaO (greater than 0.1%) and Ni/Mg values (0.4~1.2), indicating that the Xiaoling basalts were derived from a hybrid source of peridotite and pyroxenite within the lithoshperic mantle. Their δ18O (4.77‰~5.96‰, mean 5.4‰) values significantly higher than those of the normal mantle value, further demonstrate the influence of cryogenic hydrothermal alteration oceanic crust melt/fluid components in the mantle source. The olivine xenocrysts from the Kuandian basalts have Fo values ranging from 88 to 92, together with high NiO (0.3%~0.4%) and low CaO (<0.1%) and MnO contents (0.1%~0.2%), indicating the coexistence of fertile and refractory lithospheric mantle beneath the eastern North China Craton in the Quaternary. Their δ18O values (4.58‰~5.38‰, mean 5.3‰) are close to the normal mantle value. Combined with previous olivine oxygen isotope data from different regions in North China Craton, we find that destruction of the North China Craton reached the peak in the Early Cretaceous, accompanied by a large number of crust-derived melts/fluids metasomatized the lithospheric mantle. Whereas the Cenozoic lithospheric mantle is juvenile and residual after destruction. We suggest that the metasomatism caused by the melts/fluids resulting from subduction and retreat-tearing of Paleo-Pacific plate played an important role in the weakening, erosion and final replacement of the lithospheric mantle beneath the North China Craton.