-
经历了二十世纪快速工业化的人类社会,在进入二十一世纪时越来越多地关注人与环境、人与自然、人与地球等重大科学问题。涉及全球的重大学科问题如温室气体与全球变暖,中国提出的重大思想和学科问题如和谐发展、碳中和、碳达峰和宜居地球等,所有这些理论都集中在人、人类健康、地球环境演变和可持续发展方面(黄建平等,2021;朱日祥等,2021;陈良侃等,2022;纪伟强和吴福元,2022;贺振宇等,2022)。
-
岩石、矿物、地质过程、环境与人类健康之间的联系可以追溯到史前,并在人类文明演化过程中扮演着重要角色。地球上广泛存在的岩石和矿物不仅为人类生存和发展提供了各种资源,也是人类文明进程中不可或缺的实物材料。工业革命以来,全球化、工业化和城市化使得世界各国对矿物和岩石原材料的需求陡增,使得矿产的勘探和开采日趋活跃。工业化的过程极大地改善了人类生活,提高了人们的生活品质,但同时也对人类生存和健康造成了诸多负面影响,如酸雨、毒雾、全球变暖、尘肺病、水俣病、黑肺病、氡气所致肺癌等(王勤和陈旸,2022)。所有这些全球性的、影响较大的负面效应都与人类对岩石和矿物的过度和不当消耗有密切关系。进入二十一世纪,宜居地球的可持续发展成为地球科学、环境科学和医学研究领域的前沿议题。然而,大多数人并不清楚在现代社会人的健康可能受到地质事件、地质过程和地质资源的深刻影响。作为地质学环境和医学的交叉学科,岩石、矿物与人类健康的关系是近年来国际研究的前沿和新领域,引起了不同学科科研工作者和社会大众的广泛关注,以及各级政府的重视。因此,地质学和医学等跨学科的交叉研究成为未来的必然趋势,也必将造福社会和公众(王勤和陈旸,2022)。
-
大陆地壳是地球区别于太阳系其他行星的最重要标志(图1)。花岗岩,本文特指花岗岩类岩石,即不同类别的、粗粒的长英质岩浆岩的统称,这类岩浆岩主要组成矿物为石英,斜长石和碱性长石;花岗岩为石如富集斜长石的英云闪长岩到碱富集的正长岩,贫石英的二长岩到石英富集的石英岩等。花岗岩是地球大陆地壳主要的组成岩石,约占大陆地壳的22%,分布广泛,应用广泛,与人类生活密切相关。从某种程度上说,对花岗岩的开采和利用程度是对社会发展水平和工业化程度较好的检验。花岗岩不仅能为人类提供便利的石材用于各种工程和民居建设(如浙江温岭石头房,西藏乡村石头房,福建平潭石头房等),也能为人类提供最丰富的矿产资源,如斑岩型铜-金矿(孙卫东等,2014),花岗岩型钨-锡-铌-钽矿等(陈骏等,2014),还能为人类提供丰富的观赏石和宝玉石,如碧玺、海蓝宝石、祖母绿、辉石、石榴子石、锆石、磷灰石和水晶等(马丽等,2015)。
-
图1 地球的层圈结构及大陆地壳示意图(据Reynolds,2019修改)
-
Fig.1 The structure of the Earth and the continental crust (modified after Reynolds, 2019)
-
在为人类带来丰富的资源和美的同时,某些花岗岩也为人类带来了一些负面影响,如肺癌(Darby et al.,2005; Abdel-Razek,2022)。表面上,人类肺癌与花岗岩似乎没有直接联系,也没有引起足够多的关注。美国环保署的调查发现,美国平均每年有21000个肺癌病人是死于放射性氡气辐射(图2),氡气是吸烟肺癌患者的第二大致癌因子,是非吸烟肺癌患者的第一大肺癌诱发因子(Pawel and Puskin,2003)。联合国世界卫生组织调查报告显示全球3%~15%的肺癌是氡气诱发所致(WHO,2009)。在氡气富集区,如西班牙加利西亚、马德里北部、埃斯特雷马杜拉、以及卡斯蒂利亚部分地区,氡气致肺癌比例更高,原因是这些地区土壤都具有花岗岩来源属性(Quindós et al.,1991,1995; Barros-Dios et al.,2007; Lorenzo-González et al.,2017)。氡气的来源多样,主要来源是铀-238(238U)的衰变。含铀最多的铀矿,一般人很难接触到,也不在本文讨论之内。而赋存于花岗岩中的238U很多,且花岗岩也最易与人类接触。看似“温顺、典雅”的花岗岩,其实是辐射性氡气的重要来源之一。
-
氡气致癌已经引发医学界的广泛关注,但这两医学界对氡的来源和花岗岩的关系却知之甚少;相比之下,地质学界比较了解花岗岩,但对花岗岩与人类肺癌的形成却没有引起足够多的关注。对于公众而言,花岗岩、氡气与人类肺癌之间的关系就知道的更少了。本文综合多学科资料,致力于构建清晰的氡气来源和其危害性之间的桥梁。希望本文能抛砖引玉,促使更多人从事地球科学、环境科学和医学等多学科交叉的研究,并为公众科普相关知识。
-
1 氡、氡气及其对人类的危害
-
在元素周期表中,氡元素(英文为Radon,化学式为Rn,原子数为86)位于第Ⅵ周期零族。1899年卢瑟福(Ernest Rutherford)和欧文(Robert B. Owens)首先发现氡,其是继铀、钍、镭和钋之后第五个放射性元素。氡气是一种单原子、稀有、惰性气体,无色、无味、无臭,其化学性质不活泼,但具有放射性。氡的熔点为~71℃,沸点为~62℃,密度为9.73 kg/m3。氡已知的放射性同位素共有39种,其相对原子质量介于193~231之间,最稳定的同位素是222Rn。危害性最大的是三个天然放射系分别为222Rn(Radon emanation)(镭射气)、220Rn(Thoron emanation)(钍射气)、219Rn(Actinium emanation)(锕射气)(表1)。在这三种放射性气体中,219Rn是锕的最稳定同位素227Ac的产物,其半衰期为3.96 s;220Rn是钍的最稳定同位素232Th的自然衰变产物,其半衰期为55.6 s。通常所说的放射性氡特指222Rn,222Rn的半衰期为3.8235 d,对人类危害最大,氡形成后很快衰变并产生一系列放射性产物,最终成为稳定元素铅。半衰期大于1 h的其他三个氡同位素分别为210Rn,211Rn和224Rn。
-
图2 美国2010年主要癌症死亡人数统计(数据来自美国环保署)
-
Fig.2 The death numbers of people due to the cancer in USA in 2010 (data come from Environment Protection Agency)
-
自然界中的铀(uranium)主要以238U同位素存在,约占其所有同位素总和的99%,具有放射性,235U占比0.711%(图3)。238U有92个质子和146个中子,238U的半衰期是4.5 Ga,在衰变时,它会释放出阿尔法粒子(α),进而衰变为234Th原子(图4)。234Th原子有90个质子和144个中子,其半衰期是24.5 d,在衰变时会释放出贝塔粒子(β)和放射线,进而变为234Pa原子。234Pa半衰期为1.14 min,衰变为234U。234U半衰期为233 ka,衰变为230Th原子。230Th原子有90个质子和140个中子,其半衰期是83 ka,在衰变时会释放出阿尔法粒子(α)和放射线,进而变为226Ra原子。226Ra原子有88个质子和138个中子,其半衰期是1620 a,在衰变时会释放出阿尔法粒子和放射线,进而变为氡-222原子(222Rn)。这类氡原子是气体原子,半衰期为3.8235 d(图5)。简言之,238U经历6级衰变形成放射性氡。
-
氡气易被脂肪、橡胶、硅胶、活性炭吸附。常温下氡及子体在空气中能形成放射性气溶胶而污染空气,并随着人的呼吸进入鼻咽部、支气管和肺部,过量的氡气会对人体产生致命性影响(Sola et al.,2015)。自然界中的氡为铀衰变产生,是人类所接触到的唯一气体放射性元素。氡是世界卫生组织(WHO)公布为19种主要的环境致癌物质之一,被国际放射防护委员会推荐的慢性照射行动水平具体数据的唯一核素(引自中国疾病预防控制中心辐射防护与核安全医学所官网表述,http://www.nirp.cn/htm/article391.htm)。世界卫生组织调查报告发现氡气是肺癌的重要诱因,全球不同国家中大约3%~15%的肺癌是由氡气辐射造成的,氡气与吸烟的协同效应会使得吸烟者患肺癌的几率大增(WHO,2009)。研究发现,室内条件下,氡浓度升高100 Bq/m3,肺癌几率增加约16%(Darby et al.,2005)。国际癌症研究署发现肺癌形成与累积接触氡气及其衰变子体呈线性相关关系。联合国原子辐射效应科学委员会估计,来自天然的辐射对公众的年有效剂量为2.4 mSv,其中氡及其子体的贡献约占54%,氡气是肺癌形成的主要诱因之一。美国环境保护署发布报告显示氡气是非吸烟人群患肺癌的最主要因素,每年因为氡气致癌而死的人数都异常高(图2)。
-
图3 地球U元素及其主要核素的丰度(数据来自美国核管理委员会:https://www.nrc.gov/materials/fuel-cycle-fac/ur-enrichment.html)
-
Fig.3 The U element and its nucleus in the Earth (data come from Nuclear Regulatory Commission)
-
图4 U-238衰变为Th-234的过程示意图(原图来自 https://cnx.org/contents/mrt82dCz@2/Radioactive-Decay)
-
Fig.4 The decay route for 238U to 234Th (modified after the figure from https://cnx.org/contents/mrt82dCz@2/ Radioactive-Decay)
-
图5 U-238详细衰变过程示意图(原图来自美国新墨西哥地质和矿产资源局网站:https://geoinfo.nmt.edu/ resources/uranium/what.html)
-
Fig.5 The decay route for 238U to 206Pb (modified after the figure from https://geoinfo.nmt.edu/resources/ uranium/what.html)
-
氡对人体健康的影响主要分为确定性效应和随机性效应两种。所谓确定性效应,即氡具有良好脂溶性和水溶性,氡及其衰变子体约三分之一通过血气屏障和呼吸道黏膜进入血液,从而分布于全身(王晶和陈红红,2014)。氡对人体脂肪有很高的亲和力,特别是神经系统与氡结合后可产生痛觉缺失。暴露在高浓度的氡气环境下,人的机体出现血细胞的变化,如中性白细胞减少,外周血液红细胞增加,淋巴细胞增多,血压下降,血管扩张,可见血凝增加和高血糖症状。随机效应则表现为肺癌发生。氡是放射性气体,氡及其子体被人体吸收后主要沉积在呼吸道表面,氡发生衰变不断发射出阿尔法粒子,对支气管和肺上皮细胞产生高放射性辐射,可在人的呼吸系统造成辐射损伤,造成DNA损伤,进而引发肺癌(马吉英,2012; Pacheco-Torgal,2012)。氡的浓度越高,累积吸入的氡越多,人体患肺癌的几率就越大,但也不排除低浓度的氡对部分人群有致癌性影响。
-
2 室内氡气的主要来源:与花岗岩类岩石相关
-
空气中氡气的来源比较复杂,除特殊场地外(矿坑,洞穴,封闭的温泉等),少量的氡对人体的危害较为有限,因此不在本论文的讨论范围。室内氡气对人危害最大,也是人群最易接触到的放射性危险源。通常,室内氡的主要来源如下: ① 从户外空气中进入室内的氡气,② 地下水和天然气中释放的氡气(Cho and Choo,2019),③房屋地基土壤中析出的氡气(Adepelumi et al.,2005),以及4花岗岩类建材、装饰物和设备中产生的氡气(Kobeissi et al.,2012; Thabayneh,2012; Abbasi,2013; Kunovska et al.,2013; Harb et al.,2016; Bala et al.,2017)。室内氡气的主要来源是房屋地基的土壤和花岗质基岩,氡气沿着裂隙或孔洞向上流动到空气中和室内,而土壤和裂隙中的氡气亦与其附近的花岗岩类岩体有关(图6)。
-
然而,随着开采技术和运输技术的进步,以及对美和艺术要求的提高,越来越多的花岗岩建材和装饰物进入人居环境,如房屋和办公建筑的建设、装饰等,成为人们长久密切接触对象。多个国家的调查报告发现,部分花岗岩建材要比其他建筑材料有更高的氡散发率,也更易对人体造成危害(Sola et al.,2015)。因此,花岗岩释放的氡气需要给予更多重视。葡萄牙Canas de senhorim地区的花岗岩采矿场前缘的7个土壤氡气监测站发现,平均氡气浓度是102~2982 Bq/m3(贝克/每立方米),可能与海西期花岗岩的U异常有关(Pereira et al.,2011)。相比之下,泰国空气中氡气浓度的背景值是20 Bq/m3,而美国环保署推荐的家庭居室氡气的浓度上限是148 Bq/m3(Sola et al.,2015)。这些监测数据说明花岗岩中的U对室内氡气浓度异常可能会有重要贡献,需引起高度重视。
-
图6 家庭房屋氡气的主要来源示意图(原图来自美国波特兰市消防局网站: https://www.portlandoregon.gov/fire/article/302605)
-
Fig.6 The main source for indoor randon gas (the original figure could be seen in https://www. portlandoregon.gov/fire/article/302605)
-
3 花岗岩与氡气
-
3.1 花岗岩的形成
-
花岗岩是地球大陆地壳的主要组成部分,约占大陆地壳组成的22%(图7)。现有资料表明太阳系内其他行星没有发现花岗岩的存在,因此,花岗岩是地球区别于太阳系内其他七大行星的重要标志物,是地球较太阳系其他行星演化程度更高的标志(吴福元等,2007;Brown,2013)。通常,只有演化成熟,即具有固体地壳、现代层圈结构、全球板块构造活动、营养元素丰富、且具有大气层环绕的天体(如地球)才能孕育和出现生命,也才适合人类和生物生存(肖智勇和许志琴,2021; Ma Chao et al.,2022)。从这个角度看,花岗岩的存在及其规模大小是地球或其他未知天体宜居或适合人类居住的重要参考指标。花岗岩组成的主要矿物为长石、石英、黑云母、角闪石,有时见少量辉石,副矿物主要为锆石、榍石、磷灰石、磁铁矿等。花岗岩种类繁多,可形成在多种构造背景,因此其成因较为复杂,也一直存在着争论(马昌前等,2020;徐夕生等,2020)。
-
图7 藏南冈底斯不同时期大陆弧地壳柱面图(修改自Ma Xuxuan et al.,2022)
-
Fig.7 Crustal sections of the Gangdese belt, southern Lhasa terrane at 90 Ma and 50 Ma, showing that the continental crust is dominated by granite (modified after Ma Xuxuan et al., 2022)
-
图8 藏南主要花岗岩成矿带示意图(修改自马绪宣等,2021)
-
Fig.8 Distribution of magmatic rocks and the associated metallogenic belts in the southern Tibet (modified after Ma Xuxuan et al., 2021)
-
正如前文所述,花岗岩是地球大陆地壳的重要组成部分,对生命演化和宜居性都至关重要。首先,花岗岩为人类提供了最多、最丰富的矿藏和资源。国内知名的花岗岩型岩浆-热液矿床类型,如四川甲基卡超大型伟晶岩锂辉石矿(许志琴等,2016,2020)、西藏冈底斯岩浆带斑岩型铜-金矿带(侯增谦等,2012;Tang Juxing et al.,2015)(图8)及华南花岗岩型钨锡矿带等(华仁民,2005; 蒋少涌等,2006)。其次,花岗岩为人类提供了大量的建材和实物资料,如建筑材料、路基、桥梁和各种装饰物等等。此外,花岗岩地貌丰富多样,为人类提供了众多优美的景观,供人们欣赏,如福建太姥山、陕西华山、浙江莫干山、湖南衡山、江苏灵岩山、宁夏贺兰山、四川贡嘎山、安徽黄山、海南五指山、美国优胜美地国家地质公园、美国约书亚树国家公园等(图9)。
-
花岗岩成因复杂,涉及物质源区、岩浆结晶分异、岩浆混合、围岩物质混染、大地构造背景等(Annen et al.,2006; Bachmann and Huber,2016; Ma Xuxuan et al.,2021; 马绪宣等,2021;陈兵等,2021)。仅从地质构造背景上看,花岗岩的形成有很强的规律性。花岗岩主要形成在汇聚板块边界、陆内和碰撞造山带环境(图10)。汇聚板块边界指活动大陆边缘弧环境,花岗岩广泛出露,且规模较大,往往以巨大的岩基形式出现,如冈底斯曲水岩基(Zhu Dicheng et al.,2019; Ma Xuxuan et al.,2022),美国内华达岩基(Paterson and Ducea,2015),墨西哥巴哈岩基等等(Morton et al.,2014)。在洋内俯冲岛弧环境,花岗岩虽有出露,但规模较小(Burg,2011)。陆内环境,主要是裂谷或岩石圈地幔拆沉引发的深熔,多形成A型花岗岩(Collins et al.,1982; Whalen et al.,1987; 李小伟等,2010)。陆陆碰撞造山带环境,由于地壳加厚,或加厚的弧根拆离,诱发大规模岩浆作用,形成地壳物质重熔型S型花岗岩,如喜马拉雅淡色花岗岩带(Zeng Lingsen et al.,2011; Gao Li'e et al.,2016; Liu Xiaochi et al.,2016)。
-
3.2 花岗岩组成与氡气
-
自然规律总是惊人的相似,任何事物都有两面性。花岗岩在为人类提供众多矿产、资源和景观的同时,某些花岗岩也有其对人类不利的一面。由于出露规模大、成分差异大、矿物组合和结构多样,花岗岩逐渐成为各种建材和装饰品的首选,进而成为人们经常接触的、很难避开的一个潜在危险源。
-
花岗岩中的很多矿物都含有微量的U,但U最富集的还是一些副矿物,如褐帘石((Ca,Ce,Th)2(Al,Fe,Mg)3Si3O12(OH),U最高可到0.02%)、锆石(ZrSiO4,U最高可到2.7%)、独居石((Ce,La,Th)PO4,富Th独居石U介于3.5~5.5%)、磷灰石(Ca5[PO4]3(OH,F,Cl))、榍石(CaTiSiO5)、磷钇矿(YPO4,U最高可到3.6%)、烧绿石((Na,Ca)2(Nb,Ta)2O6F,U最高可到17.1%)、钛锆钍矿、磷酸盐矿物、黑稀金矿((Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6,U介于0.6~9.0%)等(图11)(凌洪飞,2011)。哪种花岗岩U更富集,受很多因素控制,比如岩浆源区、岩浆结晶和分异的程度、岩性、矿物组合等。U属于锕系元素,具有强不相容特性,在地幔和地核中含量较低,U主要分布在地壳中。因此,从岩浆源区来看,壳源S型花岗岩更易富集U元素,如华南印支期产铀花岗岩大多数为S型花岗岩,多为地壳物质重熔形成(张龙等,2021;邵上等,2022)。此外,由于强不相容性,岩浆结晶分异过程中U以类质同象进入副矿物的晶格中,使得高分异花岗岩中锆石具有较高的U和Th含量(吴福元等,2017),如华南部分富U花岗岩为高分异花岗岩(伍皓等,2020),南格陵兰伊利马萨克高分异碱性杂岩体具有富U特征(李圻等,2021)。在岩浆岩中,通常酸性岩中U含量最高,基性岩中U含量最低;单个岩体中,晚期结晶部分比早期结晶部分U含量更高(王大钊等,2022)。考虑到花岗岩中U含量,及其衰变产生的氡对人类致癌效应,在使用前需要对花岗岩进行放射性强度检测。花岗岩的放射性强度(一般指放射性通量,即单位面积或体积在单位时间释放氡气的量)及其危害程度与氡气产生的累积量肯定有正相关关系。花岗岩类型、成分、年龄、风化程度、U富集程度等与氡气释放通量的关系如何,即花岗岩的氡气释放通量主要受何种因素控制,何种因素或哪几种因素起主导作用,仍然是研究较为薄弱的环节,有待后续加强。
-
图9 全球典型花岗岩景观地貌
-
Fig.9 Wonderful granite landscape around the globe
-
(a)—安徽黄山花岗岩地貌(贺振宇提供);(b)—藏南冈底斯曲水岩基花岗岩露头;(c)—藏南冈底斯曲水岩基花岗岩景观;(d)—福建太姥山花岗岩地貌景观(贺振宇提供);(e)—美国内华达岩基Fairview山花岗岩景观
-
(a) —granite landscape of Huangshan in Anhui province (the photo was provided by Prof. Zhenyu He) ; (b) —outcrop from granite landscape of Quxu batholith of the Gangdese magmatic belt, southern Tibet; (c) —granite landscape of Quxu batholith of the Gangdese magmatic belt, southern Tibet; (d) —granite landscape of the Taimushan sightseeing in Fujian Province (the photo was provided by Prof. Zhenyu He) ; (e) —Fairview dome in the Sierra Nevada batholith, showing the granite landscape
-
花岗岩中的铀经过一系列衰变过程产生氡,氡的其中一部分透过花岗岩的裂隙和孔隙迁移至岩石表面,以吸附状态存在。而另一部分由于岩石内放射性核素的反冲作用,而存在于岩石自身的孔隙和裂隙中,这类氡较为活跃,能以自由氡的形式从裂隙中析出。同时,极少的氡封闭于岩石矿物的晶格骨架中,这类的封闭氡只可能在岩石样品的晶格被破坏时才能析出(任宏微等,2010;严俊等,2013)。正如前文所述,虽然氡的半衰期只有3.82 d,但是铀的半衰期却高达4.5 Ga,只要U在不断衰变,就能持续产生氡,如有裂隙存在,加之室内封闭的环境,氡气就能持续积聚,形成高浓度,对人体产生持续的危害。研究发现,西部某在建花岗质隧道内空气中的氡气主要来源于花岗岩石表面,岩石风化破坏越严重,孔隙越多,隧道内空气压力越小,氡气析出就越多、越快(甘光元和蒲东,2022)。某芬兰进口花岗岩石材内、外照射指标计算结果分别为1.55和1.3,均超国内标准限值1,不能用于居民住宅和公共用房的室内装修,即使用于外墙贴面,也会引起环境辐射水平的局部增高(朱耀明,1996)。因此,用于房屋建设和室内装修花岗岩石材一定要进行放射性氡气检测,从源头上杜绝辐射性高的石材的使用。此外,对使用了花岗岩石材的民居而言,纵使石材放射性很低,也要经常开窗通风,尽量减少聚集性氡气对人体的放射性伤害。
-
图10 花岗岩产出主要构造地质背景简图(据Reynolds,2019修改)
-
Fig.10 Tectonic settings of the granite formation (modified after Reynolds, 2019)
-
图11 花岗岩形成过程及主要含铀副矿物,如锆石、独居石、磷钇矿和磷灰石
-
Fig.11 Formation process of the granite and the U-bearing accessory minerals including: zircon, monazite, xenotime, and apatite
-
(a)—大陆弧岩浆通过分离结晶过程形成花岗岩过程示意图(据Reynolds,2019修改);(b~f)含U副矿物图片来自国际矿物数据库(http://webmineral.com/)
-
(a) —the granite is formed through fractional crystallization in the continental arc setting (modified after Reynolds, 2019) ; (b~f) —the photos of main U-bearing accessory minerals in the granite were collected from the international mineral database (http://webmineral.com/)
-
4 结论
-
氡气作为唯一具有放射性的气体,是人类肺癌形成的主要诱发因素之一。氡气主要来自U的衰变,氡(Rn)的半衰期只有3.82天,而U的半衰期是45亿年。只要有U的存在,就能源源不断产生对人体有危害的放射性氡。通常,U主要赋存在大陆地壳花岗岩的副矿物中,如锆石、褐帘石、独居石、磷钇矿、磷灰石等。花岗岩中氡气的释放机制需要进一步的研究。为了减少氡气辐射对人体的伤害,建议使用花岗岩作为建材之前进行放射性检测;在使用花岗岩的作为建筑材料的居室中,经常保持通风。
-
致谢:本文写作初衷受南京大学王勤与陈旸两位老师《矿物与人类健康-导读》一书的启发。北京科技大学贺振宇教授,以及其他三位匿名评审人对论文进行了细致的评审,贺振宇教授提供部分花岗岩体图片,在此深表谢意。
-
参考文献
-
Abbasi A. 2013. Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiation Protection Dosimetry, 155: 335~342.
-
Abdel-Razek Y A. 2022. Calculation of the ndoor adon oncentrations and their ffective oses ue to the ublic se of ome Egyptian lbite ranites. Journal of Radiation and Nuclear Applications, 7: 51~56.
-
Adepelumi A A, Ajayi T R, Ako B D, Ojo A O. 2005. Radon soilgas as a geological mapping tool: Case study from basement complex of Nigeria. Environmental Geology, 48: 762~770.
-
Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47: 505~539.
-
Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101: 2377~2404.
-
Bala P, Kumar V, Mehra R. 2017. Measurement of radon exhalation rate in various building materials and soil samples. Journal of Earth System Science, 126: 1~8.
-
Barros-Dios J M, Ruano-Ravina A, Gastelu-Iturri J, Figueiras A. 2007. Factors underlying residential radon concentration: Results from Galicia, Spain. Environmental Research, 103: 185~190.
-
Brown M. 2013. Granite: Genesis to emplacement. Geological Society of America Bulletin, 125: 1079~1113.
-
Burg J P. 2011. The Asia Kohistan India. In: Brown D, Ryan P D. Arc-Continent Collision Springer, 279~310.
-
Chen Bing, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu. 2021. Coupling relation between magma mixing and igneous petrological diversity: An example of Bairiqili felsic pluton in East Kunlun Orogen. Earth Science, 46: 2057~2072 (in Chinese with English abstract).
-
Chen Jun, Wang Rucheng, Zhu Jinchu, Lu Jianjun, Ma Dongsheng. 2014. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China. Science China: Earth Sciences, 56: 2045~2055 (in Chinese with English abstract).
-
Chen Liangkan, Chen Mingxing, Zhang Xiaoping, Cheng Jiafan. 2022. Habitable earth, carbon neutrality and global sustainable urbanization. Journal of Natural Resources, 37: 1370~1382 (in Chinese with English abstract).
-
Cho B W, Choo C O. 2019. Geochemical of and in of Jurassic, Icheon, Middle Korea. Water, 11: 1278.
-
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and of A-with to Australia. Contributions to Mineralogy and Petrology, 80: 189~200.
-
Darby S, Hill D, Auvinen A, Barros-Dios J M, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario A S, Tirmarche M, Tomáscaron L, Whitley E, Wichmann H E, Doll R. 2005. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ, 330: 1~6.
-
Gan Guangyuan, Pu Dong. 2022. Radioactivity evaluation and engineering measures of a granite tunnel. High Speed Railway Technology, 13: 53~56 (in Chinese with English abstract).
-
Gao Li'e, Zeng Lingsen, Asimow P D. 2016. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45: 39~42.
-
Harb S, Ahmed N K, Elnobi S. 2016. Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. Journal of Nuclear and Particle Physics, 6: 80~87.
-
He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38: 1419~1442 (in Chinese with English abstract).
-
Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, Yang Zhusen. 2012. Metallogenesis of continental collision setting: Part I. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31: 647~670 (in Chinese with English abstract).
-
Hua Renmin. 2005. Differences between rock-forming and related ore-forming times for the Mesozoic granitoids of crust remelting types in the Nanling range, South China, and its geological significance. Geological Review, 51: 633~639 (in Chinese with English abstract).
-
Huang Jianping, Liu Xiaoyue, He Yongsheng, Shen Shuzhong, Hou Zengqian, Li Shuguang, Li Changyu, Yao Lijie, Huang Jiping. 2021. The oxygen cycle and a habitable Earth. Science China Earth Science, 64: 511~528 (in Chinese with English abstract).
-
Ji Weiqiang, Wu Fuyuan. 2022. Volatile cycling and evolution of habitable environment on Earth. Acta Petrologica Sinica, 38: 1285~1301 (in Chinese with English abstract).
-
Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Ling Hongfei, Ni Pei. 2006. New type of tin mineralization related to granite in South China: Evidence from mineral chemistry, element and isotope geochemistry. Acta Petrologica Sinica, 22: 2509~2516 (in Chinese with English abstract).
-
Kobeissi M A, El-Samad O, Rachidi I. 2012. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon. Radiation Protection Dosimetry, 153: 342~351.
-
Kunovska B, Ivanova K, Stojanovska Z, Vuchkov D, Zaneva N. 2013. Measurements of radon concentration in soil gas of urban areas, 58: S172~S179.
-
Li Qi, Song Hao, Chen Youliang, Yu Zhongmei, Li Juchu, Nie Rui. 2021. Review on the mineralization characteristics and processes of the ranium-rich alkaline Ilimaussaq complex in South Greenland. Uranium Geology, 37: 549~559 (in Chinese with English abstract).
-
Li Xiaowei, Mo Xuanxue, Zhao Zhidan, Zhu Dicheng. 2010. A discussion on how to discriminate A-type granite. Geological Bulletin of China, 29: 278~285 (in Chinese with English abstract).
-
Ling Hongfei. 2011. Origin of hydrothermal fluids of granite-typeranium deposits: Constraints from redox conditions. Geological Review, 57: 193~206 (in Chinese with English abstract).
-
Liu Xiaochi, Wu Fuyuan, Yu Liangjun, Li Zhichao, Ji Weiqiang, Wang Jiangang. 2016. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667: 163~175.
-
Lorenzo-González M, Ruano-Ravina A, Peon J, Piñeiro M, Barros-Dios J M. 2017. Residential radon in Galicia: A cross-sectional study in a radon-prone area. Journal of Radiological Protection, 37: 728~741.
-
Ma Changqian, Zou Bowen, Gao Ke, Wen Xia. 2020. Crystal mush storage, incremental pluton assembly and granitic petrogenesis. Earth Science, 45: 4332~4351 (in Chinese with English abstract).
-
Ma Chao, Tang Yanjie, Ying Jifeng. 2022. Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth-Science Reviews, 232: 104101.
-
Ma Jiying. 2012. The damage to body health and protection about the indoor radon. China Journal of Radioactive Health, 21: 506~507 (in Chinese with English abstract).
-
Ma Li, Xu Zhi, Zheng Hao, Deng Changjie. 2015. Identification of epidote granite: A red and green jade. Journal of Gems and Gemmology, 17: 38~41 (in Chinese with English abstract).
-
Ma Xuxuan, Shi Bin, Xiong Fahui, Li Haibing. 2020. Magma mixing of the Quxu batholith in the Gangdese belt, southern Tibet: Evidence from microstructure of hornblende in microgranular enclaves. Acta Petrologica Sinica, 36: 3063~3080 (in Chinese with English abstract).
-
Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95: 107~123 (in Chinese with English abstract).
-
Ma Xuxuan, Gao Li'e, Zhao Zhongbao, Chen Xijie, Li Haibing. 2021. Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision. China Geology, 1: 56~66.
-
Ma Xuxuan, Attia S, Cawood T, Cao Wenrong, Xu Zhiqin, Li Haibing. 2022. Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 149: 101897.
-
Morton D M, Miller F K, Kistler R W, Premo W R, Lee C T A, Langenheim V E, Wooden J L, Snee L W, Clausen B L, Cossette P. 2014. Framework and petrogenesis of the northern Peninsular Ranges batholith, southern California. In: Morton D MMiller F K, eds. Peninsular Ranges Batholith, Baja California and Southern California. Geological Society of America Memoir, 211: 61~143.
-
Pacheco-Torgal F. 2012. Indoor radon: An overview on a perennial problem. Building and Environment, 58: 270~277.
-
Paterson S R, Ducea M N. 2015. Arc agmatic empos: Athering the vidence. Elements, 11: 91~98.
-
Pawel D J, Puskin J S. 2003. EPA ssessment of isks from adon in omes. Office of Radiation and Indoor Air United States Environmental Protection Agency Washington.
-
Pereira A J S C, Barbosa S M, Neves L J P F, Aumento F. 2011. Soil-gas radon monitoring in an active granite quarry from central Portugal. Natural Hazards and Earth System Sciences, 11: 1845~1849.
-
Quindós L S, Fernandez P L, Soto J. 1991. National survey on indoor radon in Spain. Environment International, 17: 449~453.
-
Quindós L S, Fernandez P L, Soto J. 1995. Study of areas of Spain with high indoor radon. Radiation Measurements, 24: 207~210.
-
Ren Hongwei, Liu Yaowei, Ma Yuchuan. 2010. Discussion on mechanism of the post-seismic effect of radon in the Wenchuan M 8. 0 earthquake. Earthquake Research in China, 26: 73~83 (in Chinese with English abstract).
-
Reynolds S J, Johnson J K, Morin P J, Carter C M, Shaw C C. 2019. Exploring Geology, Fifth dition. McGraw-Hill Education.
-
Shao Shang, Wang Chunshuang, Liu Bin, Wu Jianyong, Ye Songxin. 2022. Comparison of element geochemical characteristics of Yanshanian and Indosinian granites in Guidong composite pluton and its indicative significance. World Nuclear Geoscience, 39: 50~59 (in Chinese with English abstract).
-
Sola P, Srinuttrakul W, Kewsuwan P. 2015. Estimation of the indoor radon and the annual effective dose from granite samples. Journal of Physics: Conference Series, 611: 012013.
-
Sun Weidong, Li He, Ding Xing, Ling Mingxing, Li Congying. 2014. Brief introduction to subduction factory. Plate Tectonics, Geological Events and Resource: Geological Progress, 395~424 (in Chinese with English abstract).
-
Tang Juxing, Lang Xinghai, Xie Fuwei, Gao Yiming, Li Zhijun, Huang Yong, Ding Feng, Yang Huanhuan, Zhang Li, Wang Qin, Zhou Yun. 2015. Geological characteristics and genesis of the Jurassic No. I porphyry CuAu deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet. Ore Geology Reviews, 70: 438~456.
-
Thabayneh K M. 2012. Measurement of atural adioactivity and adon xhalation ate in ranite amples sed in alestinian uildings. Arabian Journal for Science and Engineering, 38: 201~207.
-
Wang Dazhao, Leng Chengbiao, Qin Chaojian, Duan Fenghao, Zhou Wanpeng, Xu Deru. 2022. Geochemical characteristics and mineralization of uranium. Geotectonica et Metallogenia, 46: 282~302 (in Chinese with English abstract).
-
Wang Jing, Chen Honghong. 2014. The molecular mechanism for lung cancer and blood damage triggered by radon and its decay product. China Journal of adioactive Health, 23: 573~576 (in Chinese with English abstract).
-
Wang Qin, Chen Yang. 2022. Minerals and human health. Science Press, 1~307.
-
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407~419.
-
WHO (World Health Organization). 2009. Handbook on ndoor adon: ublic ealth erspective 2009, Geneva.
-
Wu Hao, Xia Yu, Zhou Kenken, Zhang Jianjun. 2020. Highly fractionated granite magmas maybe the main uranium source of granite-type uranium deposits in South China: Evidence from the uranium content of zircon in southern Zhuguangshan granitic composite. Acta Petrologica Sinica, 36: 589~600 (in Chinese with English abstract).
-
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23: 1217~1238 (in Chinese with English abstract).
-
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60: 1201~1219.
-
Xiao Zhiyong, Xu Zhiqin. 2021. Planetary tectonics: Indicators to earth's evolution. Acta Geologica Sinica, 95: 259~275 (in Chinese with English abstract).
-
Xu Xisheng, Wang Xiaolei, Zhao Kai, Du Dehong. 2020. Progresses and tendencies of granite researches in last decade: A review. Bulletin of Mineralogy, Petrology and Geochemistry, 39: 899~911 (in Chinese with English abstract).
-
Xu Zhiqin, Fu Xiaofang, Ma Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geological Sinica, 90: 2971~2981 (in Chinese with English abstract).
-
Xu Zhiqin, Wang Rucheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang, Li Guangwei. 2020. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geologica Sinica, 94: 2177~2189 (in Chinese with English abstract).
-
Yan Jun, Ge Liangquan, Zou Gongjiang, Zhao Jiankun, Gu Yi, Xu Lipeng, Luo Yaoyao, Jia Xuehui. 2013. Explore the precipitation amount of radon in granite under uniaxial pressure. Nuclear Techniques, 36: 050201 (in Chinese with English abstract).
-
Zeng Lingsen, Gao Li'e, Xie Kejia, Liu-Zeng Jing. 2011. Mid-Eocene high Sr/Y granites in the orthern Himalayan neiss omes: Elting thickened lower continental crust. Earth and Planetary Science Letters, 303: 251~266.
-
Zhang Long, Chen Zhenyu, Wang Fangyue. 2021. General characteristics and research progresses in metallogenesis of granite-related uranium deposits in South China. Acta Petrologica Sinica, 37: 2657~2676 (in Chinese with English abstract).
-
Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P A, Zhao Zhidan. 2019. Gangdese magmatism in southern Tibet and India Asia convergence since 120 Ma. In: Treloar P J, Searle M P, eds. Himalayan ectonics: Modern Synthesis. Geological Society, London, Special Publications, 483: 583~604.
-
Zhu Rixiang, Hou Zengqian, Guo Zhengtang, Wan Bo. 2021. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science”. Chinese Science Bulletin, 35: 4485~4490 (in Chinese with English abstract)
-
Zhu Yaoming. 1996. Monitoring and evaluation on the radioactivity of granite stone. Fujian Environment, 13: 15~16 (in Chinese).
-
陈兵, 熊富浩, 马昌前, 陈越, 黄虎. 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46: 2057~2072.
-
陈骏, 王汝成, 朱金初, 陆建军, 马东升. 2014. 南岭多时代花岗岩的钨锡成矿作用. 中国科学: 地球科学, 44: 111~121.
-
陈良侃, 陈明星, 张晓平, 程嘉梵. 2022. 自然资源学报, 37: 1370~1382.
-
甘光元, 蒲东. 2022. 某花岗岩质隧道放射性评价及工程措施. 高速铁路技术, 13: 53~56.
-
贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38: 1419~1442.
-
侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用: I. 冈底斯新生代斑岩成矿系统. 矿床地质, 31: 647~670.
-
华仁民. 2005. 南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义. 地质论评, 51: 633~639.
-
黄建平, 刘晓岳, 何永胜, 沈树忠, 侯增谦, 李曙光, 李昶豫, 姚丽洁, 黄季平. 2021. 氧循环与宜居地球. 中国科学: 地球科学, 51: 487~506.
-
纪伟强, 吴福元. 2022. 地球的挥发分循环与宜居环境演变. 岩石学报, 38: 1285~1301.
-
蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培. 2006. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学、元素和同位素地球化学证据. 岩石学报, 22: 2509~2516.
-
李圻, 宋昊, 陈友良, 余中美, 李巨初, 聂睿. 2021. 南格林兰岛伊利马萨克富铀碱性杂岩体成岩成矿特征及作用过程综述. 铀矿地质, 37: 549~559.
-
李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29: 278~285.
-
凌洪飞. 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57: 193~206.
-
马昌前, 邹博文, 高珂, 文霞. 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45: 4332~4351.
-
马吉英. 2012. 室内氡对人体健康的危害及防护. 中国辐射卫生, 21: 506~507.
-
马丽, 徐志, 郑昊, 邓常劼. 2015. 绿帘花岗岩: 一种红绿相间玉石的鉴定. 宝石和宝石学杂志, 17: 38~41.
-
马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95: 107~123.
-
任宏微, 刘耀炜, 马玉川. 2010. 汶川8. 0级地震氡震后效应机理讨论. 中国地震, 26: 73~83.
-
邵上, 王春双, 刘斌, 吴建勇, 叶松鑫. 2022. 贵东岩体燕山期与印支期花岗岩元素地球化学特征对比及其指示意义. 世界核地质科学, 39: 50~59.
-
孙卫东, 李贺, 丁兴, 凌明星, 李聪颖. 2014. “俯冲工场”研究进展. 板块构造、地质事件与资源: 地质科学新进展, 395~424.
-
王大钊, 冷成彪, 秦朝建, 段丰浩, 周万蓬, 许德如. 2022. 铀的地球化学性质与成矿作用. 大地构造与成矿学, 46: 282~302.
-
王晶, 陈红红. 2014. 氡及其子体暴露诱导肺癌和血液系统的损伤效应及其分子机制. 中国辐射卫生, 23: 573~576.
-
王勤, 陈旸. 2022. 矿物与人类健康导读. 北京科学出版社, 1~307.
-
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23: 1217~1238.
-
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47: 745~765.
-
伍皓, 夏彧, 周恳恳, 张建军. 2020. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源: 来自诸广山南体花岗岩锆石铀含量的证据. 岩石学报, 36: 589~600.
-
肖智勇, 许志琴. 2021. 行星构造: 寻求地球演化的踪迹. 地质学报, 95: 259~275.
-
徐夕生, 王孝磊, 赵凯, 杜德宏. 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39: 899~911.
-
许志琴, 付小芳, 马绪宣, 戚学祥, 吴婵, 侯立伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90: 2971~2981.
-
许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意义. 地质学报, 94: 2177~2189.
-
严俊, 葛良全, 邹功江, 赵剑锟, 谷懿, 徐立鹏, 罗耀耀, 贾雪辉. 2013. 单轴压力下花岗岩氡析出量的探究. 核技术, 36: 050201.
-
张龙, 陈振宇, 汪方跃. 2021. 华南花岗岩型铀矿床主要特征与成矿作用研究进展. 岩石学报, 37: 2657~2676.
-
朱日祥, 侯增谦, 郭正堂, 万博. 2021. 宜居地球的过去、现在与未来——地球科学发展战略概要. 科学通报, 66: 4485~4490.
-
朱耀明. 1996. 花岗岩石材放射性监测与评价. 福建环境, 13: 15~16.
-
摘要
氡作为唯一具有放射性的惰性气体,其危害性被医学研究所证实。世界卫生组织研究报告表明,氡气及其放射性子体的吸入是除吸烟因素之外人类肺癌的第一大致病因子,全球不同国家中大概3%到15%的肺癌是由氡气辐射造成的,氡气与吸烟的协同效应还会使得吸烟者患肺癌的几率大增。此外,过量氡气吸入还能破坏人的神经系统,造成白细胞减少,导致血凝增加和高血糖症状。氡是U-238衰变而来,而花岗岩是U主要赋存岩石之一。花岗岩是大陆地壳主要成分,约占地壳体积的22%。花岗岩的成因在地质学界研究较多,但花岗岩与人类肺癌的关联却没有引起地质工作者足够多的关注;医学界对氡的危害了解较多,但对氡的来源和花岗岩的关系却知之甚少。本文致力于阐明花岗岩与氡气形成的内在逻辑关系,并为公众科普氡气及其危害。
Abstract
Radon gas is the only radioactive inert gas, whose hazards for human have been confirmed by medical and health science. The WHO report revealed that the inhalation of radon and its decay products was carcinogenic for the human lungs among non-smokers. Approximate 3%~15% human lung cancers are triggered by the radon gas among different countries all over the world. The synergistic effect of radon gas and smoke will significantly raise the possibility of lung cancer. In addition, excess radon inhalation will damage human nervous system, decrease the hemameba, and trigger the increasing of blood clotting and hyperglycemia. Radon is the decay product of 238U, whose one main source is the granite. Granite is the main constituent of continental crust of the Earth, occupying the 22% on volume. Lots of studies on granite origin have been implemented among geological community, however, the relationship of human lung cancer and the granite hasn't got enough attentions from geologists. In contrast, the medical and health community know much about the radon gas, but they don't understand the original source of radon gas and its closeness with granite. In the present study, we would like to address the linkage between granite and radon, shed light on the damage of radon gas for public.
Keywords
radon gas ; granite ; geological process ; lung cancer ; human health