en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王贵云,男,1996年生。硕士研究生,主要从事深时地理环境研究。E-mail:1539190763@qq.com。

通讯作者:

周明忠,男。教授,博士生导师,主要从事深时地理环境研究。E-mail:mingzhongzhou@126.com。

参考文献
Anderson T F, Raiswell R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science, 304(3): 203~233.
参考文献
Cai C, Xiang L, Yuan Y, He X, Chu X, Chen Yan, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean. Journal of the Geological Society, 172(3): 390~406.
参考文献
Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149~155.
参考文献
Canfield D E, Poullton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Struass H. 2008. Ferruginous conditions dominated later Neoproterozoic deep water chemistry. Science, 321(5891): 949~952.
参考文献
Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing. 2010. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55(20): 2010~2017 (in Chinese with English abstract).
参考文献
Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing, Chen Yali. 2018. Marine redox stratification on the earliest Cambrian (ca. 542-529Ma) Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 75~85.
参考文献
Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Ye Detian. 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27(1): 62~68.
参考文献
Chen Nansheng, Yang Xiuzhen, Liu Dehan, Xiao Xuejun, Fan Delian, Wang Lianfang. 1982. Lower Cambrian black argillaceous and arenaceous rock series in South China and its associated stratiform deposits. Mineral Deposits, (2): 39~51 (in Chinese with English abstract).
参考文献
Chen Xi, Ling Hongfei, Vance D, Shield-Zhou G A, Zhu Maoyan, Poulton S W, Och L M, Jiang Shaoyong, Li Da, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature communications, 6(1): 1~7.
参考文献
Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo T J, Lyons T W, Zhang Feifei, Anbar A. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.
参考文献
Compston W, Zhang Zichao, Cooper J A, Ma Guogan, Jenkins R J F. 2008. Further SHRIMP geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399~420.
参考文献
Coveney R M, Murowchick J B, Grauch R I, Michael D, Glascock D, Denison J D. 1992. Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99(1-3): 101~114.
参考文献
Cowie J W. 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes Journal of International Geoscience, 8(2): 93~97.
参考文献
Darroch S A F, Sperling E A, Boag T H, Racicot R A, Mason S J, Morgan A S, Tweedt S, Myrow P, Johnston D T, Erwin D H, Laflamme M. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society Biological Sciences, 282: 20151003.
参考文献
Darroch S A F, Smith E F, Laflamme M, Erwin D H. 2018. Ediacaran Extinction and Cambrian Explosion. Trends Ecology & Evolution, 33(9): 653~663.
参考文献
Fan Delian, Yang Xiuzhen, Wang Yufang, Chen Nansheng. 1973. Petrological and geochemical characteristics of a nickly-molybdenum-multe-element-bearing lower cambrian black shale from a certain district in South China. Geochimica, (3): 143~163 (in Chinese with English abstract).
参考文献
Feng Lianjun, Li Chao, Huang Jing, Chang Huajin, Chu Xuelei. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521Ma) Yangtze platform, South China. Precambrian Research, 246: 123~133.
参考文献
Frei R, Xu Lingang, Frederiksen J A, Lehmann B. 2021. Signals of combined chromium-cadmium isotopes in basin waters of the Early Cambrian—Results from the Maoshi and Zhijin sections, Yangtze Platform, South China. Chemical Geology, 563: 120061.
参考文献
Fu Yong, Dong Lin, Li Chao, Qu Wenjun, Pei Haoxiang, Qiao Wenlang, Shen Bing. 2016. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271~281.
参考文献
Jiang Shaoyong, Yang Jinghong, Ling Hongfei, Feng Hongzhen, Chen Yongquan, Chen Jianhua, 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13(10): 788~794.
参考文献
Jiang Shaoyong, Ling Hongfei, Zhao Kuidong, Zhu Maoyan, Yang Jinghong, Chen Yongquan. 2008. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China. Acta Petrologica et Mineralogica, 27(4): 341~345 (in Chinese with English abstract).
参考文献
Jiang Shaoyong, Pi Daohui, Heubeck C, Frimmel H, Liu Yuping, Deng Hailin, Ling Hongfei, Yang Jinghong. 2009. Early Cambrian ocean anoxia in South China. Nature, 459(7248): E5~E6.
参考文献
Jin Chengsheng, Li Chao, Peng Xingfang, Cui Hao, Shi Wei, Zhang Zihu, Luo Gengming, Xie Shucheng. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Science China Earth Sciences, 44(5): 851~863 (in Chinese with English abstract).
参考文献
Jin Chengsheng, Li Chao, Algeo T J, Planavsky N J, Cui Hao, Yang Xinglian, Zhao Yuanlong, Zhang Xingliang, Xie Shucheng. 2016. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441: 38~51.
参考文献
Lan Zhongwu, Li Xianhua, Chu Xuelei, Tang Guoqiang, Yang Saihong, Yang Hongwei, Liu Hai, Jiang Tao, Wang Teng. 2017. SIMS U-Pb zircon ages and Ni-Mo-PGE geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE mineralization and stratigraphic correlations. Journal of Asian Earth Sciences, 137: 141~162.
参考文献
Lehmann B, Nägler, T F, Holland H D, Wille M, Mao Jingwen, Pan Jiayong, Ma Dongsheng, Dulski P. 2007. Highly metalliferous carbonaceous shale and early Cambrian seawater. Geology, 35(5): 403~406.
参考文献
Lehmann B, Pašava J, Šebek O, Andronikov A, Frei B, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.
参考文献
Liang Youbin, Zhu Wenfeng. 1995. Enrichment characteristics and genesis of platinum group elements in Ni-Mo deposits in Tianmenshan area, northwestern Hunan. Contributions to Geology and Mineral Resources, (1): 55~65 (in Chinese with English abstract).
参考文献
Li Chao, Love G D, Lyons T W, Fike D A, Sessions A L, Chu Xuelei . 2010. A stratified redox model for the Ediacaran ocean. Science, 328(5974): 80~83.
参考文献
Li Chao, Shi Wei, Cheng Meng, Jin Chengsheng, Algeo T J. 2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Science Bulletin, 65(24): 2141~2149.
参考文献
Li Dandan, Zhang Xiaolin, Hu Dongping, Li Da, Zhang Guijie, Zhang Xu, Ling Hongfei, Xu Yilun, Shen Yanan. 2020. Multiple S-isotopic constraints on paleo-redox and sulfate concentrations across the Ediacaran-Cambrian transition in South China. Precambrian Research, 349: 105500.
参考文献
Li Hongfu, Han Shanchu. 2018. Mineralogical characteristics of Ni-Mo polymetallic deposits in Sancha, Hunan Province. Science Technology and Engineering, 18(5): 156~163 (in Chinese with English abstract).
参考文献
Li Shengrong, Xiao Qiyun, Shen Junfeng, Sun Li, Liu Bo, Yan Bokun. 2002. Re-Os isotope constraint on the source and mineralization age of PGE in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China. Science China D-Earth Sciences, 32(7): 569~575 (in Chinese with English abstract).
参考文献
Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Elemental Geochemistry. Science Press, 1~548 (in Chinese with English abstract).
参考文献
Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1984. The Sinian-Cambrian boundary straotype section at Meishucun, Jinning, Yunnan, China. Kunming: People's Publishing House, 1~156 (in Chinese with English abstract).
参考文献
Luo Taiyi, Zhang Huang, Li Xiaobiao, Zhu Dan. 2003. Mineralization characteristic of the multi-element-rich strata in the Niutitang Formation black shales series, Zunyi, Guizhou, China. Acta Mineralogica Sinica, 23(3): 296~302 (in Chinese with English abstract).
参考文献
Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23): 5698~5722.
参考文献
Mao Jingwen, Zhang Guangdi, Du Andao, Wang Yitian, Zeng Mingguo. 2001. Geology, geochemistry, and Re-Os isotopic dating of the Huangjiawan Ni-Mo-PGE deposit, Zunyi, Guizhou Province—with a discussion of the polymetallic mineralization of basal Cambrian black shales in South China. Acta Geologica Sinica, 75(2): 234~243 (in Chinese with English abstract).
参考文献
Mao Jingwen, Lehmann B, Du Andao, Zhang Guangdi, Ma Dongsheng, Wang Yitian, Zeng Mingguo, Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97(5): 1051~1061.
参考文献
März C, Poulton S W, Beckmann B, Küster K, Wagner T, Kasten S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72(15): 3703~3717.
参考文献
Och L M, Shields-Zhou G A, Poulton S W, Poulton S W, Manning C, Thirlwall M F, Li Da, Chen Xi, Ling Hongfei, Osborn T, Cremonese L. 2013. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225: 166~189.
参考文献
Pan Jiayong, Ma Dongsheng, Cao Shuanglin. 2004. Trace element geochemistry of the Lower Cambrian black rock series from northwestern Hunan, South China. Progress in Natural Science, 14(1): 64~70.
参考文献
Pan Jiayong, Ma Dongsheng, Xia Fei, Chen Shaohua, Cao Shuanglin, Guo Guolin, Xie Guizhen. 2005. Study on nickel and molybdenum minerals in Ni-Mo sulfide layer of the Low Cambrian black rock series northwestern Hunnan. Acta Mineralogica Sinica, (3): 283~288 (in Chinese with English abstract).
参考文献
Peng Jin, Yuan Jinliang, Zhao Yuanlong, Yang Rongjun. 2004. Discovery of trilobite genus Zhenbaspis from the Lower Cambrian Niutitang Formation biota at Heishapo, Songlin, Zunyi, Guizhou, China. Acta Palaeontologica Sinica, 43(3): 407~415 (in Chinese with English abstract).
参考文献
Pi Daohui, Liu Conqiang, Shields-Zou G A, Jiang Shaoyong. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225: 218~229.
参考文献
Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214: 209~221.
参考文献
Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1. 8 billion years ago. Nature Geoscience, 3(7): 486~490.
参考文献
Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements 7, 107~112.
参考文献
Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3): 219~245.
参考文献
Shu Degan. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Research, 14(1-2): 219~240.
参考文献
Shu Degan, Isozaki Y, Zhang Xingliang, Han Jan, Maruyama S. 2014. Birth and early evolution of metazoans. Gondwana Research, 25(3): 884~895.
参考文献
Steiner M, Wallis E, Erdtmann B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeography Palaeoclimatology Palaeoecology, 169(3-4): 165~191.
参考文献
Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1-4): 141~158.
参考文献
Wang Jianguo, Chen Daizhao, Yan Detian, Wei Hengye, Xiang Lei. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chemical Geology, 306: 129~138.
参考文献
Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, Zhang Wenhao. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. Journal of Asian Earth Sciences, 48: 1~8.
参考文献
Wang Wei, Zhou Mingzhong, Chu Zhuyin, Xu Junjie, Li Chaofeng, Luo Taiyi, Guo Jinghui. 2020. Constraints on the Ediacaran-Cambrian boundary in deep-water realm in South China: Evidence from zircon CA-ID-TIMS U-Pb ages from the topmost Liuchapo Formation. Science China Earth Sciences, 50(6): 819~831 (in Chinese with English abstract).
参考文献
Wedepohl K H. 1995. The composition of the continental. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.
参考文献
Wei Shuaichao, Fu Yong, Liang Houpeng, Ge Zhihua, Zhou Wenxi, Wang Guangzhe. 2017. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323~333.
参考文献
Wen Hanjie, Fan Haifeng, Zhang Yuxu, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164: 1~16.
参考文献
Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453(7196): 767~769.
参考文献
Xu Lingang, Lehmann B, Mao Jingwen, Qu Wenjun, Du Andao. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment. Economic Geology, 106(3): 511~522.
参考文献
Xu Lingang, Lehmann B, Mao Jingwen, Nägler T F, Neubert N, Böttcher M E, Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319(1): 45~59.
参考文献
Xu Lingang, Mao Jingwen. 2021. Trace element and C-S-Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni-Mo sulfide and vanadium mineralization, South China: Implications for paleoceanic redox variation. Ore Geology Reviews, 135: 104210.
参考文献
Yang Hua, Yang Liansheng, Zhou Mingzhong. 2022. Expanded deepwater euxinia recorded in the Ediacaran-Cambrian boundary interval in South China. Journal of Asian Earth Sciences, 230: 105192.
参考文献
Yang Xinglian, Zhu Mingjin, Zhu Luyan, Cui Tao. 2009. The Bradoriida of the Niutitang Formation from traditional Lower Cambrian in Jinsha County, Guizhou Province. Geological Journal of China Universities, 15(3): 296~303 (in Chinese with English abstract).
参考文献
Yuan Jinliang, Zhao Yuanlong. 1999. Subdivision and correlation of Lower Cambrian in Southwest China with a discussion of the age of early Cambrian series biota. Acta Palaeontologica Sinica, (S1): 116~131 (in Chinese with English abstract).
参考文献
Yuan Yuyang, Cai Chunfang, Wang Tiankai, Xiang Lei, Jia Lianqi, Chen Yan. 2014. Redox condition during Ediacaran-Cambrian transition in the Lower Yangtze deep water basin, South China: Constraints from iron speciation and δ13Corg in the Diben section, Zhejiang. Chinese Science Bulletin, 59(23): 2278~2290 (in Chinese with English abstract).
参考文献
Zhang Wentang. 1987. Early Cambrian Chengjiang fauna and its trilobites. Acta Palaeontologica Sinica, 26(3): 223~235 (in Chinese with English abstract).
参考文献
Zhou Mingzhong. 2008. A preliminary stratigraphic framework for the Lower Cambrian in South China: A case study for the Songlin area, Zunyi. Doctoral disseration of Institute of Geochemistry Chinese Academy Sciences (in Chinese with English abstract).
参考文献
Zhou Mingzhong, Luo Taiyi, Li Zhengxiang, Zhao Hui, Long Hansheng, Yang Yong. 2008. SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, China. Chinese Science Bulletin, 53(1): 104~110 (in Chinese with English abstract).
参考文献
Zhou Mingzhong, Luo Taiyi, Liu Shirong, Qian Zhikuan, Xing Leicai. 2013. SHRIMP zircon age of for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China. Science China Earth Sciences, 43(7): 1195~1206 (in Chinese with English abstract).
参考文献
Zhou Mingzhong, Luo Taiyi, Huff W D, Liu Shirong. 2014. Prominent Lower Cambrian K-Bentonites in South China: Distribution, mineralogy, and geochemistry. Journal of Sedimentary Research, 84(10): 842~853.
参考文献
Zhou Mingzhong, Luo Taiyi, Huff W D, Yang Zhiqing, Zhou Guanghong, Gan Tian, Yang Hua, Zhang Di. 2018. Timing the termination of the Doushantuo negative carbon isotope excursion: Evidence from U-Pb ages from the Dengying and Liuchapo formations, South China. Science Bulletin, 63(21): 1431~1438.
参考文献
Zhou Mingzhong, Wan Bin, Zhou Li, Yang Enlin, Yang Liansheng, Luo Taiyi. 2021. Origin of K-bentonites in the Doushantuo cap dolostones from South China and its potential link with the sedimentary model of the Marinoan cap dolostones. Precambrian Research, 366: 106416.
参考文献
Zhu Maoyan. 2010. The origin and Cambrian explosion of animals: Fossil evidences from China. Acta Palaeontologica Sinica, 49(3): 269~287 (in Chinese with English abstract).
参考文献
Zhu Maoyan, Li Guoxiang, Zhang Junming, Steiner M, Qian Yi, Jiang Zhiwen. 2001. Early Cambrian stratigraphy of East Yunnan, southwestern China: A synthesis. Acta Palaeontologica Sinica, 40(Supplementary Issue): 4~39 (in Chinese with English abstract).
参考文献
Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow to deep water environments of the Yangtze Platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.
参考文献
Zhu Maoyan, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 0~6.
参考文献
Zhu Maoyan, Zhao Fangchen, Yin Zongjun, Zeng Han, Li Guoxiang. 2019. The Cambrian explosion: Advances and perspectives from China. Science China Earth Sciences, 49(10): 1455~1490 (in Chinese with English abstract).
参考文献
Zhu Rixiang, Li Xianhua, Hou Xianguang, Pan Yongxin, Wang Fei, Deng Chenglong, He Huaiyu. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science China, Earth Sciences, 39(8): 1105~1111 (in Chinese with English abstract).
参考文献
常华进, 储雪蕾, 冯连君, 黄晶. 2010. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010~2017.
参考文献
陈南生, 杨秀珍, 刘德汉, 肖学军, 范德廉, 王连芳. 1982. 我国南方下寒武纪黑色页岩系及其中的层控矿床. 矿床地质, (2): 39~51.
参考文献
范德廉, 杨秀珍, 王玉芳, 陈南生. 1973. 某地下寒武统镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, (3): 143~163.
参考文献
蒋少涌, 凌洪飞, 赵葵东, 朱茂炎, 杨竞红, 陈永权. 2008. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论. 岩石矿物学杂志, 27(4): 341~345.
参考文献
金承胜, 李超, 彭兴芳, 崔豪, 石炜, 张子虎, 罗根明, 谢树成. 2014. 华南寒武纪早期海洋化学状态的时空波动. 中国科学: 地球科学, 44(5): 851~863.
参考文献
梁有彬, 朱文凤. 1995. 湘西北天门山地区镍钼矿床铂族元素富集特征及成因探讨. 地质找矿论丛, (1): 55~65.
参考文献
李鸿福, 韩善楚. 2018. 湖南三岔镍钼多金属矿床矿物学特征. 科学技术与工程, 18(5): 156~163.
参考文献
李胜荣, 肖启云, 申俊峰, 孙丽, 刘波, 阎柏琨. 2002. 湘黔下寒武统铂族元素来源与矿化年龄的同位素制约. 中国科学(D辑: 地球科学), 32(7): 569~575.
参考文献
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 科学出版社: 1~548.
参考文献
罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1984. 中国云南晋宁梅树村震旦系—寒武系界线层型剖面. 昆明: 云南人民出版社: 1~154.
参考文献
罗泰义, 张欢, 李晓彪, 朱丹. 2003. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征. 矿物学报, 23(3): 296~302.
参考文献
毛景文, 张光弟, 杜安道, 王义天, 曾明果. 2001. 遵义黄家湾镍钼铂族元素矿床地质, 地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用. 地质学报, 75(2): 234~243.
参考文献
潘家永, 马东升, 夏菲, 陈少华, 曹双林, 郭国林, 谢贵珍. 2005. 湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态. 矿物学报, (3): 283~288.
参考文献
彭进, 袁金良, 赵元龙, 杨荣军. 2004. 贵州遵义松林黑沙坡早寒武世牛蹄塘生物群中镇巴虫的发现. 古生物学报, 43(3): 407~415.
参考文献
王伟, 周明忠, 储著银, 许俊杰, 李潮峰, 罗泰义, 郭敬辉. 2020. 华南深水区埃迪卡拉系-寒武系界线制约: 来自留茶坡组顶部锆石CA-ID-TIMS U-Pb年龄证据. 中国科学: 地球科学, 50(6): 819~831.
参考文献
杨兴莲, 祝明金, 朱露艳, 崔滔. 2009. 贵州金沙下寒武统牛蹄塘组中的高肌虫. 高校地质学报, 15(3): 296~303.
参考文献
袁金良, 赵元龙. 1999. 西南地区下寒武统划分与对比——兼论早寒武世系列生物群的时代. 古生物学报, (S1): 116~131.
参考文献
袁余洋, 蔡春芳, 汪天凯, 向雷, 贾连奇, 陈妍. 2014. 埃迪卡拉纪-寒武纪过渡时期下扬子深水盆地氧化还原性质: 来自浙西底本剖面铁组分及有机碳同位素的约束. 科学通报, 59(23): 2278~2290.
参考文献
张文堂. 1987. 澄江动物群及其中的三叶虫. 古生物学报, 26(3): 223~235.
参考文献
周明忠. 2008. 华南下寒武统层序框架的初步构建——以遵义松林地区为例. 中国科学院地球化学研究所博士学位论文.
参考文献
周明忠, 罗泰义, 李正祥, 赵辉, 龙汉生, 杨勇. 2008. 遵义牛蹄塘组底部凝灰岩SHRIMP U-Pb年龄及其地质意义. 科学通报, 53(1): 104~110.
参考文献
周明忠, 罗泰义, 刘世荣, 钱志宽, 邢乐才. 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学: 地球科学, 43(7): 1195~1206.
参考文献
朱茂炎. 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269~287.
参考文献
朱茂炎, 李国祥, 张俊明, Steiner M, 钱逸, 蒋志文. 2001. 云南东部早寒武世地层学. 古生物学报, 40(增刊): 4~39.
参考文献
朱茂炎, 赵方臣, 殷宗军, 曾晗, 李国祥. 2019. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学, 49(10): 1455~1490.
参考文献
朱日祥, 李献华, 侯先光, 潘永信, 王非, 邓成龙, 贺怀宇. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界线的年代制约. 中国科学(D辑: 地球科学), 39(8): 1105~1111.
目录contents

    摘要

    华南下寒武统牛蹄塘组底部及其相当地层发育一层Ni-Mo多金属层,被当作华南下寒武统区域对比的标志层。然而,目前华南部分重要剖面的Ni-Mo多金属层位置依然没有明确,妨碍了基于精确地层对比的寒武纪早期海洋环境信息的揭示。本研究中,我们对云南梅树村剖面和贵州平引剖面地层进行采样,采用电感耦合等离子质谱仪(ICP-MS)对样品微量元素含量进行分析,以确定这两条剖面的Ni-Mo多金属层位置。在此基础上,进一步对平引剖面牛蹄塘组底部样品进行Fe组分分析,结合前人数据,初步揭示华南下寒武统Ni-Mo多金属层沉积时期(~521 Ma)南华盆地海水的氧化还原信息。微量元素含量结果显示,梅树村剖面玉案山组底界之上3 m的地层(Ni: 135×10-6,Mo: 583×10-6)和平引剖面牛蹄塘组底界之上2.5 m的地层(Ni: 2480×10-6,Mo: 16341×10-6)记录了各自剖面的Ni、Mo、As、Tl等元素含量的峰值。因此,我们认为梅树村剖面Ni-Mo多金属层应位于该剖面玉案山组底界之上3 m层位,平引剖面Ni-Mo多金属层应位于该剖面牛蹄塘组底界之上2.5 m层位。平引剖面牛蹄塘组底部样品Fe组分数据表明,该剖面Ni-Mo多金属层及其附近地层记录了海水硫化信息(FeHR/FeT>0.38,FePy/FeHR>0.80)。结合已有的华南其他代表性剖面Ni-Mo多金属层及其附近层位(或相当层位)的Fe组分数据,我们对南华盆地(包括台地带、斜坡带和盆地带)Ni-Mo多金属层沉积时期的海水氧化还原状态进行重建,结果表明该时期南华盆地发生了一次深层海水硫化扩张事件。这一事件可能对寒武纪生命幕式辐射产生了重要影响。

    Abstract

    A polymetallic Ni-Mo layer at the base of the Niutitang Formation (and its equivalents) in the lower Cambrian of South China, serves as a marker bed for regional correlation of lower Cambrian strata. However, up to now, the precise stratigraphic position of polymetallic Ni-Mo layer is uncertain for some sections in South China, which hinders the precise correlation of stratigraphic and makes our interpretation of the paleo-ocean changes unsolid. In this study, we collected rock samples from the Meishucun and the Pingyin section and conducted trace element analysis using inductively coupled plasma mass spectrometer (ICP-MS) with identifying of the precise position of polymetallic Ni-Mo layer in two sections. Furthermore, the samples from the base of the Niutitang Formation in the Pingyin section were analyzed for Fe speciation. Combined with previous data, our data reveal the redox condition of the seawater in Nanhua basin during the deposition of polymetallic Ni-Mo layer (~521 Ma). Trace-element content results show: Ni, Mo peaks (Ni: 135×10-6, Mo: 583×10-6) with the basal Yu'anshan Formation (3 m above the base boundary) at the Meishucun section and maximum Ni, Mo concentrations (Ni: 2480×10-6, Mo: 16341×10-6) at the base of the Niutitang Formation (2.5 m above the base boundary) at the Pingyin section. Therefore, we suggest that the polymetallic Ni-Mo layer should lie within the basal of the Yu'anshan Formation (3 m above the lower boundary) at the Meishucun section, and the polymetallic Ni-Mo layer should lie within the base of the Niutitang Formation (2.5 m above the lower boundary) at the Pingyin section. Fe speciation of samples from the Pingyin section indicates that the seawater euxinia information (FeHR/FeT>0.38, FePy/FeHR>0.80) was recorded in the polymetallic Ni-Mo layer (or near strata) at the Pingyin. Combination with previously published Fe speciation data from the polymetallic Ni-Mo layer (and near strata, or its equivalents) of representative sections in South China, reconstructing the redox condition of seawater during the deposition of polymetallic Ni-Mo layer in Nanhua basin (including the platform, slope and basin zone). Indicating that an extensification of euxinia deep seawater occurred in Nanhua basin during this period. This event may have a profound impact on Cambrian life episodic radiation.

  • 华南下寒武统记录了寒武纪生命大爆发的第一幕和第二幕及二者之间的小壳动物灭绝事件,因而成为研究寒武纪早期生命与古海洋环境演化的重要窗口之一。其中,牛蹄塘组底部及其相当地层产出一层富集Ni、Mo和PGE等多种元素的Ni-Mo多金属层(范德廉等,1973; Zhu Maoyan et al.,2003; 罗泰义等,2003; 蒋少涌等,2008; 周明忠等,20082013; Pi Daohui et al.,2013; Zhou Mingzhong et al.,2014; Xu Lingang and Mao Jingwen,2021)。由于该Ni-Mo多金属层可作为华南下寒武统区域对比的地球化学标志层(Zhu Maoyan et al.,2003; 周明忠等,20082013; Zhou Mingzhong et al.,2014),且其所处地层段分隔了记录寒武纪生命大爆发第一幕和第二幕的地层,因此,该Ni-Mo多金属层是区域地层对比及古海洋环境-生命协同演化研究不可替代的载体,其在各剖面精确位置的确定具有极为重要的科学意义。基于上述原因,华南下寒武统Ni-Mo多金属层一直是地质学家们关注的焦点之一。迄今,前人从矿床成因和同位素年代学等方面对Ni-Mo多金属层开展了研究并取得了诸多重要研究成果(Steiner et al.,2001; 罗泰义等,2003; Lehmann et al.,2007; Wille et al.,2008; 周明忠等,20082013; Jiang Shaoyong et al.,2009; Xu Lingang et al.,2011; Zhou Mingzhong et al.,2014; Lan Zhongwu et al.,2017; Frei et al.,2021; Lehmann et al.,2022)。

  • 尽管关于华南下寒武统Ni-Mo多金属层的研究已取得了一系列成果,但是华南一些剖面Ni-Mo多金属层的位置至今尚不清晰。例如,处于台地边缘带的贵州北部及湖南西部的一些剖面,由于其Ni-Mo多金属层极度富集Ni、Mo、PGE等元素,因而其Ni-Mo多金属层位置较易于确定; 而对于内部台地带及斜坡-盆地带的一些代表性剖面,其Ni-Mo多金属层的Ni、Mo、PGE等元素的富集并不显著,因而其Ni-Mo多金属层准确位置至今尚未得到清晰的揭示。Steiner et al.(2001)发现内部台地带云南梅树村剖面石岩头组底部存在Cr-Ni富集层,并初步将其与贵州和湖南地区牛蹄塘组底部Ni-Mo多金属层对比。金承胜等(2014)亦认为贵州和湖南地区牛蹄塘组底部Ni-Mo多金属层层位相当于梅树村剖面石岩头组底部。与此不同的是,Zhu Maoyan et al.(2003)周明忠等(2008)初步认为梅树村剖面Ni-Mo多金属层位于该剖面玉案山组底部,但是,他们尚未提供详细的地球化学数据; Och et al.(2013)提供的数据显示内部台地带云南肖滩剖面石岩头组顶部和玉案山组底部分别存在Ni和Mo的异常。上述可见,关于内部台地带剖面Ni-Mo多金属层的具体位置还存在不确定性。关于斜坡-盆地带的一些剖面Ni-Mo多金属层位置,前人已进行初步报道(Wang Xinqiang et al.,2012; 周明忠等,2013; 王伟等,2020)。但是,上述学者亦未提供详细的地球化学数据。由于一些剖面Ni-Mo多金属层位置尚未得到精确确定,导致基于可靠地层对比的寒武纪早期海洋环境信息的解译存在不确定性。部分学者认为Ni-Mo多金属层沉积时期南华盆地的海水化学结构存在高度不均一性,即海洋表层为氧化水体,深部为缺氧含铁水体,二者之间存在一个位于陆架-斜坡带的“动态的硫化楔”(金承胜等,2014; Jin Chengsheng et al.,2016; Li Chao et al.,2020)。然而,一些学者认为该时期南华盆地的海水化学结构与现代海洋相似,即海洋表层和底层海水已全部氧化,仅在局部受限盆地和边缘海存在缺氧环境(Wen Hanjie et al.,2015; Chen Xi et al.,2015)。

  • 本研究中,我们采集扬子板块内部台地带云南梅树村剖面和斜坡-盆地带贵州平引剖面岩石样品,对样品进行微量元素含量分析,以确定两条剖面的Ni-Mo多金属层位置。在此基础上,对平引剖面样品进行Fe组分分析,将所获数据与已报道的部分剖面(台地带至盆地带)Fe组分数据相结合,对Ni-Mo多金属层沉积时期南华盆地深层海水氧化还原信息进行揭示。

  • 1 地质背景

  • 在埃迪卡拉纪—寒武纪过渡时期,华南地区由裂谷盆地向被动大陆边缘演化,扬子板块处于演化后的被动大陆边缘环境(Wang Jian et al.,2003)。在这一时期,扬子板块不同区域的海水深度不同,从西北向东南海水深度呈不断加深趋势(周明忠等,2013; 王伟等,2020; Yang Hua et al.,2022)。按岩相古地理环境,该时期扬子板块可分为三个带,自西北向东南依次为台地带、斜坡带和盆地带(图1; 周明忠等,20082013; Zhou Mingzhong et al.,2018)。由于海水深度的不同导致沉积环境存在差异,台地带主要发育碳酸盐岩和磷块岩地层,斜坡及盆地带主要产出碳质页岩及硅质岩地层(周明忠等,2013; 王伟等,2020)。扬子板块台地带的前寒武纪—寒武纪过渡地层序列由老至新包括灯影组、朱家箐组、石岩头组和玉案山组。其斜坡及盆地带发育连续的前寒武纪—寒武纪过渡地层序列由老至新包括陡山沱组、灯影组和/或留茶坡组(老堡组或皮园村组)、牛蹄塘组(小烟溪组或荷塘组)(周明忠等,20082013; Zhou Mingzhong et al.,2014; Lan Zhongwu et al.,2017)。

  • 梅树村剖面位于云南省晋宁县境内(Zhou Mingzhong et al.,2014)。在早寒武世梅树村剖面处于扬子板块西南缘的内部台地带(图1)。该剖面曾经是全球前寒武系—寒武系界线层型剖面候选剖面之一(Cowie et al.,1985; 朱日祥等,2009)。梅树村剖面出露的地层由老至新依次为:灯影组顶部白岩哨段、朱家箐组、石岩头组和玉案山组(图2; 罗惠麟等,1984; 朱茂炎等,2001)。灯影组顶部白岩哨段岩性为白云岩。朱家箐组包括中谊村段和大海段。其中,中谊村段岩性主要为磷块岩,该段中部保存1层钾质斑脱岩(Compston et al.,2008; 周明忠等,2013; Zhou Mingzhong et al.,2014); 大海段岩性为白云岩。石岩头组主要由黑色页岩和粉砂岩组成,其底部保存至少1层钾质斑脱岩(Compston et al.,2008; 周明忠等,20082013; Zhou Mingzhong et al.,2014)。玉案山组岩性主要为黑色页岩和粉砂岩; 华南最老的三叶虫Parabadiella发现于该剖面玉案山组底部(罗惠麟等,1984; Zhu Maoyan et al.,2003)。

  • 图1 埃迪卡拉纪—寒武纪过渡时期扬子板块古地理图(据Zhu Maoyan et al.,2003Zhou Mingzhong et al.,2018修改)

  • Fig.1 Paleogeographic map of the Yangtze block in South China during the Ediacaran-Cambrian transition (modified after Zhu Maoyan et al., 2003 and Zhou Mingzhong et al., 2018)

  • 贵州平引剖面位于贵州省江口县桃映镇以东约2 km处。岩相古地理研究表明,在早寒武世平引剖面处于扬子板块东南缘斜坡与盆地的过渡地带(图1; 周明忠等,2013; 王伟等,2020; Yang Hua et al.,2022)。该剖面出露地层由老至新依次为留茶坡组顶部和牛蹄塘组(图3)。留茶坡组顶部的岩性主要为硅质岩; 该剖面留茶坡组—牛蹄塘组界线之下1.2 m和2.4 m处分别保存一层钾质斑脱岩(图3; 周明忠等,2013; Zhou Mingzhong et al.,2014; 王伟等,2020)。牛蹄塘组整合上覆于留茶坡组,其岩性主要为黑色页岩,其底界发育一层约0.5 m厚灰黑色磷块岩(周明忠等,2013)。

  • 2 样品采集与分析方法

  • 本研究采集了梅树村剖面灯影组顶部至玉案山组底部地层样品35件,同时采集平引剖面牛蹄塘组底部地层样品16件。对样品首先进行粗碎,挑选出新鲜且无后期脉体穿插的样品碎块,将其研磨至200目粉末。粉末样品用于开展微量元素含量及Fe组分分析。

  • 两条剖面样品的微量元素含量分析在中国科学院地球化学研究所国家重点实验室完成。称取样品粉末50 mg,置于带有螺旋盖的聚四氟乙烯坩埚中,加入1 mL的 HF和1 mL的 HNO3,将坩埚加盖后放入钢套中密封,置入温度为190℃的电烤箱中加热24 h。冷却后取出坩埚开盖置于电热板上蒸至近干,之后向坩埚中加入1 mL的 HNO3再蒸至近干。然后加入2 mL的 HNO3 和3 mL 的蒸馏水,再加入1 mL 500 ng/mL Rh内标溶液,再将坩埚加盖后放入钢套中密封,置入温度为140℃的电烤箱中加热5 h。冷却后取出,取0.4 mL溶液至15 mL离心管内,用蒸馏水稀释至10 mL。然后用雾化器雾化稀释的样品溶液,再通过喷雾室将样品气溶胶引入电感耦合等离子体质谱仪(ICP-MS)进行测定。吸液速率为0.33±0.02 mL/min。微量元素含量测定使用仪器型号为ELAN DRC-e ICP-MS(PerkinElmer公司)。通过平行样品控制分析精度,结果表明,所测元素的相对标准差均优于10%。根据岩石标准评估(OU-6,AGV-2,AMH-1,GBPG-1),大多数元素的精度优于5%。详细分析流程见Zhou Mingzhong et al.(2021)的总结。

  • 平引剖面牛蹄塘组底部样品的Fe组分分析在贵州省山地喀斯特生态环境国家重点实验室培育基地完成。岩石样品Fe组分分析包括总铁(FeT)和高活性铁(FeHR),其中高活性铁(FeHR)主要包括碳酸盐矿物中的铁(FeCarb)、氢氧化铁和氧化铁(FeOX)、磁铁矿的铁(FeMag)、黄铁矿铁(FePy),即FeHR=FeCarb+FeOX+FeMag+FePy(Poulton and Canfield,2005,2011)。其含量分析方法参考Poulton et al.(2005)袁余洋等(2014)采用的方法,具体步骤如下:① 提取FeT:将洗净的瓷坩埚置入马弗炉内灼烧1 h(T=1000℃),取出放入干燥器中冷却后称量瓷坩埚质量并记录。精确称取3 g岩石粉末样品,置于灼烧过的瓷坩埚中,再放入马弗炉中灼烧1 h(T=1000℃),取出放入干燥器中冷却后称量瓷坩埚和样品的总质量并记录,利用两次称量记录计算出烧失量。称取瓷坩埚中灼烧过的0.1 g样品,置于离心管内,加入10 mL 6 mol/L盐酸溶液,之后放入水浴摇床中震荡加热至沸腾,并保持沸腾时间为48 h。② 提取FeCarb:精确称取100 mg岩石粉末样品,置于离心管内,并加入10 mL pH=4.5的1 mol/L醋酸钠溶液,将其放入水浴摇床中震荡加热48 h(T=50℃)。③ 提取FeOX:向提取过FeCarb之后的残渣中加入10 mL pH=4.8的50 g/L连二亚硫酸钠溶液,将其放入水浴摇床中震荡加热2 h(T=50℃)。④ 提取FeMag:向提取过FeOX的残渣中加入10 mL 0.2 mol/L草酸铵和0.17 mol/L草酸混合溶液,将其放入水浴摇床中震荡加热6 h(T=50℃)。将上述每一步水浴加热后的样品用离心机离心15 min,取1~3 mL上清液于干净离心管中,用2%的HNO3进行稀释,超声震荡均匀后,使用GGX-800火焰原子吸收光谱仪(北京海光仪器公司)测定其各Fe组分溶液中Fe离子浓度,根据稀释浓度比例与称取的岩石粉末样品质量回算岩石样品中FeT、FeCarb、FeOX、FeMag含量(实验标准偏差均<5%)。⑤ FePy含量测定:岩石样品中FePy含量采用化学计量法测定。使用锌粒与盐酸反应产生H2将CrCl3中的Cr3+还原成Cr2+; 在酸性条件下用热的Cr2+溶液将粉末样品中黄铁矿中的S-还原成S2-; 使用硝酸银(AgNO3)溶液将S2-转化成Ag2S沉淀,利用过滤和烘干后的Ag2S质量回算岩石样品中FePy含量(Canfield et al.,1986; 袁余洋等,2014)。

  • 3 结果

  • 3.1 云南梅树村剖面样品微量元素含量

  • 云南梅树村剖面样品的微量元素含量分析结果列于表1。表1的数据显示,云南梅树村剖面灯影组顶部至玉案山组底部35件样品的Ni含量范围为5.37×10-6~135×10-6,As含量范围为13.4×10-6~81.9×10-6,Mo含量范围为0.65×10-6~583×10-6,Tl含量范围为0.02×10-6~19.6×10-6。其中,该剖面地层Ni、Mo、As、Tl的含量峰值出现于玉案山组底界之上3 m层位,分别为135×10-6、583×10-6、81.9×10-6、19.6×10-6。梅树村剖面样品微量元素富集系数列于表2。

  • 3.2 贵州平引剖面牛蹄塘组底部样品微量元素含量

  • 平引剖面牛蹄塘组底部样品的微量元素含量分析结果列于表3。平引剖面牛蹄塘组底部11件样品Ni含量范围为48.9×10-6~2480×10-6,As含量范围为21.3×10-6~846×10-6,Mo含量范围为37.0×10-6~16341×10-6,Tl含量范围为1.87×10-6~52.3×10-6。其中,该剖面地层Ni、Mo、As、Tl的含量峰值出现于牛蹄塘组底界之上2.5 m层位,分别为2840×10-6、16341×10-6、846×10-6、52.3×10-6。平引剖面样品微量元素富集系数列于表4。

  • 3.3 贵州平引剖面牛蹄塘组底部样品Fe组分

  • 平引剖面牛蹄塘组底部样品Fe组分数据列于表5。该剖面样品总铁(FeT)含量范围为1.86%~6.58%,平均值为3.70%; 高活性铁(FeHR)含量范围为0.78%~2.81%,平均值为1.90%; 黄铁矿铁(FePy)含量范围为0.24%~2.48%,平均值为1.42%; FeHR/FeT比值范围为0.42~0.72,均大于0.38; FePy/FeHR比值范围为0.31~0.88,其中3件样品FePy/FeHR比值大于0.80。

  • 表1 云南梅树村剖面样品微量元素含量(×10-6

  • Table1 Trace-element contents (×10-6) of samples from in the Meishucun section in Yunnan

  • 注:采样距离以朱家箐组底界为基准; 表示低于检测线。

  • 4 讨论

  • 4.1 梅树村和平引剖面Ni-Mo多金属层位置的厘定

  • 华南下寒武统牛蹄塘组底部及其相当层位赋存一层富Ni、Mo等多种元素的硫化物层,被学者们称为Ni-Mo多金属层(范德廉等,1973; 李胜荣等,2002; 罗泰义等,2003)。Ni-Mo多金属层产出于云南、贵州、湖南、江西及浙江等地区(范德廉等,1973; 陈南生等,1982; Coveney et al.,1992),其中在湘黔地区局部地段的Ni-Mo多金属层可作为具开采价值的Ni-Mo矿床(毛景文等,2001; 李鸿福等,2018)。罗泰义等(2003)对贵州松林剖面下寒武统牛蹄塘组底部Ni-Mo多金属层进行微量元素地球化学研究,结果显示,Ni-Mo多金属层高度富集Ni、Mo、As、Tl等元素。前人们对湖南柑子坪和天门山地区Ni-Mo多金属层进行微量元素地球化学研究发现,Ni-Mo多金属层除了Ni、Mo含量为剖面峰值外,As和Tl含量也在该层位达到峰值(梁有彬等,1995; Pan Jiayong et al.,2004)。周明忠(2008)对湘黔地区Ni-Mo多金属层的微量元素含量特征进行对比研究,结果显示,Ni-Mo多金属层中最典型的富集元素为Ni和Mo。由于Ni主要赋存于针镍矿、方硫镍矿等Ni的硫化物矿物中,且多金属层中黄铁矿也含有较高的Ni,所以Ni-Mo多金属层富集Ni元素(潘家永等,2005); 由于Mo主要赋存在Ni-Mo多金属层中大量的碳硫钼矿中,所以Ni-Mo多金属层中亦富集Mo元素(潘家永等,2005)。As可以阴离子的形式(As3-或Asn-),替代硫化物矿物(如黄铁矿)中的S2-刘英俊等,1984),这是存在大量硫化物矿物的Ni-Mo多金属层富集As的主要原因。Tl能够以类质同象的形式进入铁的二硫化物(如黄铁矿)中,占据这些矿物的阳离子位置(刘英俊等,1984),这导致通常含有较多黄铁矿的Ni-Mo多金属层富集Tl元素。基于上述分析,Ni、Mo、As、Tl可作为从地球化学角度识别Ni-Mo多金属层的标志性元素。

  • 图2 梅树村剖面Ni、Mo、As、Tl含量及富集系数变化曲线

  • Fig.2 Variation curve of Ni, Mo, As, Tl content and enrichment factor in the Meishucun section

  • 梅树村剖面灯影组顶部样品Ni、Mo、As、Tl含量分别是上地壳相应元素丰度(Wedepohl,1995)的0.43~1.07倍、0.81~1.49倍、7.75~14.65倍、0.19~0.60倍,表明该地层段不存在这几种元素的同时富集(表2,图2)。朱家箐组样品Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的0.58~2.78倍、0.46~7.21倍、7.40~12.80倍、0.03~0.71倍,表明该地层段未发生这几种元素的同时富集(表2,图2); 石岩头组样品Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的0.29~4.58倍、0.67~15.21倍、6.70~31.05倍、0.08~4.41倍,显示这几种元素含量在该地层段的初步增加(表2,图2)。玉案山组底部样品Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的0.36~7.26倍、1.34~416.43倍、7.85~40.95倍、0.10~26.13倍,表明该地层段已发生了这几种元素的明显富集(表2,图2)。玉案山组底界之上3 m层位样品的Ni含量为135×10-6、Mo含量为583×10-6、As含量为81.9×10-6、Tl含量为19.6×10-6,均为梅树村剖面相应元素含量的峰值(表1,图2)。该层位Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的7.26倍、416.43倍、40.95倍、26.13倍(表2,图2),表明该层位同时高度富集了这几种Ni-Mo多金属层的标志性元素,与湘黔地区Ni-Mo多金属层微量元素地球化学特征相一致。因此,我们认为梅树村剖面的Ni-Mo多金属层的准确位置应位于该剖面玉案山组底界之上3 m层位(图2,图4)。

  • 表2 云南梅树村剖面样品微量元素富集系数(EF)

  • Table2 Trace-element enrichment factors (EF) of samples from the Meishucun section in Yunnan

  • 注:元素X富集系数(EF元素X)=(元素X含量)样品/(元素X含量)上地壳,上地壳元素含量数据引自Wedepohl,1995。样品在剖面上的位置同表1。

  • 图3 平引剖面Ni、Mo、As、Tl含量及富集系数变化曲线

  • Fig.3 Variation curve of Ni, Mo, As, Tl content and enrichment factor in the Pingyin section

  • 表3 贵州平引剖面牛蹄塘组底部样品微量元素含量(×10-6

  • Table3 Trace-elements contents (×10-6) of samples from the base Niutitang Formation in the Pingyin section in Guizhou

  • 注:采样距离以牛蹄塘组底界为基准。

  • 平引剖面牛蹄塘组底部样品Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的2.63~133.33倍、26.43~11700倍、10.65~423倍、2.49~69.73倍,表明该地层段同时富集了这些元素(表4,图3)。该剖面Ni、Mo、As、Tl含量峰值同时出现在牛蹄塘组底界之上2.5 m层位(表3,图3),Ni含量为2480×10-6、Mo含量为16341×10-6、As含量为846×10-6、Tl含量为52.3×10-6(表3,图3),该层位Ni、Mo、As、Tl含量分别是上地壳相应元素丰度的133.33倍、11700倍、423倍、69.73倍(表4,图3),表明该层位同时高度富集了这几种Ni-Mo多金属层的标志性元素,与湘黔地区Ni-Mo多金属层微量元素地球化学特征相一致。因此,我们将平引剖面Ni-Mo多金属层确定在该剖面牛蹄塘组底界之上2.5 m层位(图3,图4)。

  • 4.2 Ni-Mo多金属层的绝对年龄及等时性

  • 对于华南下寒武统Ni-Mo多金属层的绝对年龄,目前学者们已获得一些同位素年龄数据。李胜荣等(2002)对湘西地区Ni-Mo多金属层开展Re-Os定年研究,获得的年龄为542±11 Ma。Mao Jingwen et al.(2002)Jiang Shaoyong et al.(2003)先后对贵州遵义地区的Ni-Mo多金属层进行Re-Os定年,获得的年龄分别为541±16 Ma和537±10 Ma。受测试条件的限制,这些早期的年龄数据精度较低。Xu Lingang et al.(2011)报道的贵州和湖南地区Ni-Mo多金属层的Re-Os等时线年龄为521±5 Ma。该年龄是至今获得的精度最高的Ni-Mo多金属层Re-Os年龄。周明忠(2008)等报道的贵州松林剖面Ni-Mo多金属层之下钾质斑脱岩锆石SHRIMP U-Pb年龄为518±5 Ma。Compston et al.(2008)报道的云南梅树村剖面Ni-Mo多金属层之下钾质斑脱岩锆石SHRIMP U-Pb年龄526±1.1 Ma。Wang Xinqiang et al.(2012)报道的贵州桃映剖面Ni-Mo多金属层之下钾质斑脱岩锆石SHRIMP U-Pb年龄为522.7±4.9 Ma。Chen Daizhao et al.(2015)报道的贵州坝黄和盘闷剖面钾质斑脱岩锆石SIMS U-Pb年龄分别为522.3±3.7 Ma和524.2±5.1 Ma。Lan Zhongwu et al.(2017)报道的湖北青林口剖面Ni-Mo多金属层之上凝灰质粉砂岩锆石SIMS U-Pb年龄为526.5±5.6 Ma。上述数据表明,Ni-Mo多金属层附近层位的锆石U-Pb年龄与Xu Lingang et al.(2011)报道的Ni-Mo多金属层Re-Os等时线年龄521±5 Ma是相互支持的。最近,Fu Yong et al.(2016)Wei Shuaichao et al.(2017)对贵州及湖南地区多条剖面Ni-Mo多金属层进行Re-Os定年,所获年龄与Xu Lingang et al.(2011)报道的Ni-Mo多金属层Re-Os等时线年龄521±5 Ma相一致。因此,现有与Ni-Mo多金属层相关的同位素年龄数据从同位素年代学角度支持华南下寒武统Ni-Mo多金属层的等时性。

  • 表4 贵州平引剖面牛蹄塘组底部样品微量元素富集系数(EF

  • Table4 Trace-element enrichment factor (EF) of the samples from the bottom of the Niutitang Formation in the Pingyin section of Guizhou

  • 注:元素X富集系数(EF元素X)=(元素X含量)样品/(元素X含量)上地壳,上地壳元素含量数据引自Wedepohl,1995; 样品在剖面上的位置同表3。

  • 图4 梅树村及平引剖面野外照片及平引剖面Ni-Mo多金属层光学显微照片(反射光)

  • Fig.4 Field photos of the Meishucun, Pingyin section and optical micrograph of polymetallic Ni-Mo layer of the Pingyin section (reflected light)

  • (a)、(b)—梅树村剖面玉案山组底部照片;(c)—平引剖面牛蹄塘组底部照片;(d)—平引剖面Ni-Mo多金属层光学显微照片

  • (a) , (b) —photos of the basal of the Yu'anshan Formation in the Meishucun section; (c) —photos of the basal of the Niutitang Formation in the Pingyin section; (d) —optical micrograph of the polymetallic Ni-Mo layer in the Pingyin section

  • 生物地层学方面,学者们于云南梅树村剖面Ni-Mo多金属层附近层位发现了华南最老三叶虫Parabadiella化石(罗惠麟等,1984; Zhu Maoyan et al.,2003); 彭进等(2004)于贵州松林剖面Ni-Mo多金属层之上2 m处发现三叶虫Zhenbaspis化石; 杨兴莲等(2009)于贵州金沙剖面Ni-Mo多金属层之上2 m处发现三叶虫BradoriidsTsunyidiscusMianxiandiscus化石,其中Mianxiandiscus被认为是华南最老三叶虫之一(张文堂,1987; 袁金良等,1999)。上述生物化石证据表明,Ni-Mo多金属层位于华南最老三叶虫化石层位附近。火山灰地层学方面,Zhou Mingzhong et al.(2014)对云南梅树村剖面石岩头组底部钾质斑脱岩和贵州松林剖面牛蹄塘组底部钾质斑脱岩进行地球化学对比研究,认为二者为同一期火山喷发的沉积记录,该层位钾质斑脱岩可作为华南下寒武统对比的标志层之一。华南不同剖面Ni-Mo多金属层均位于这一层位钾质斑脱岩之上覆地层。因此,上述生物地层学及火山灰地层学证据亦支持华南下寒武统Ni-Mo多金属层的等时性。

  • 4.3 Ni-Mo多金属层沉积时期华南海洋的氧化还原状态

  • Fe组分地球化学手段可以有效地评价海洋的氧化还原状态(Raiswell et al.,1998; Poulton et al.,2005; Lyons and Severmann,2006),该方法在页岩、泥岩等碎屑岩及硅质岩中得到应用(Li Chao et al.,2010; Wang Jianguo et al.,2012; Chang Huajin et al.,2018; Yang Hua et al.,2022)。前人研究发现形成在氧化水体环境下的沉积物,其高活性铁(FeHR)含量最高占总铁(FeT)的 38%(Raiswell and Canfield,1998); 形成在缺氧水体环境下的沉积物,其高活性铁(FeHR)含量均高于38%(Raiswell and Canfield,1998)。因此,可以利用沉积岩FeHR/FeT比值来识别其沉积环境。当沉积岩FeHR/FeT>0.38,指示其沉积环境为缺氧环境; 当沉积岩FeHR/FeT<0.38,指示其沉积环境为氧化环境(Raiswell and Canfield,1998)。当确定沉积岩的沉积环境为缺氧环境,可依据沉积岩FePy/FeHR比值进一步确定其沉积环境是缺氧含铁还是硫化环境。当沉积岩FePy/FeHR<0.80,指示其沉积环境为缺氧含铁环境; 当沉积岩FePy/FeHR>0.80,指示其沉积环境为硫化环境(Raiswell and Canfield,1998; Canfield et al.,2008)。这里的FePy/FeHR阈值(0.80)是通过统计方法确定的,而在Fe组分分析过程中FeCarb和FeMag可能没有完全被萃取(Anderson et al.,2004),因此,这个FePy/FeHR阈值会有些偏大。随后,学者们将FePy/FeHR的阈值修定在为0.70。当沉积岩FePy/FeHR<0.70,指示其沉积环境为缺氧含铁环境; 当沉积岩FePy/FeHR=0.70~0.80,指示其沉积环境为可能硫化环境; 当沉积岩FePy/FeHR>0.80,指示其沉积环境为硫化环境(März et al.,2008)。

  • 基于前述Ni-Mo多金属层的等时性及Fe组分氧化还原指标的确定,我们可以使用扬子板块不同带剖面的Fe组分数据揭示Ni-Mo多金属层沉积时期南华盆地的深层海水氧化还原信息。从表5和图5可以看出,平引剖面(斜坡带)牛蹄塘组底部所有样品的FeHR/FeT比值都大于0.38,Ni-Mo多金属层(21PY-3)及其紧邻上覆层位样品(21PY-4、21PY-5)的FePy/FeHR比值大于0.80,而Ni-Mo多金属层之下样品的FePy/FeHR比值小于0.70。这些Fe组分数据表明在Ni-Mo多金属层沉积时期扬子板块斜坡带深层海水为硫化状态。内部台地带的梅树村剖面玉案山组底部Ni-Mo多金属层附近样品(13-5)和外陆架(台地边缘带)的贵州松林剖面牛蹄塘组底部Ni-Mo多金属层及其附近地层样品(ZN05和ZN06)的FeHR/FeT>0.38,FePy/FeHR> 0.70,以及外陆架(台地边缘带)的遵义大竹流水和织金马路河剖面Ni-Mo多金属层附近地层样品(DZLS-9,MLH-4和MLH-6)的FeHR/FeT>0.38,DOP(黄铁矿矿化度)>0.70(图5、6; Wen Hanjie et al.2015; Och et al.2013; Xu Lingang et al.,2012)。这些证据表明Ni-Mo多金属层沉积时期扬子板块浅水台地带深层海水为硫化状态。Ni-Mo多金属层沉积时期深层海水的硫化信号,不仅在上述斜坡带和台地带被揭示,亦在盆地带被发现。湖南龙鼻嘴剖面(盆地带)与Ni-Mo多金属层相当层位附近样品(LBZ-57和LBZ-63)和湖南袁家剖面(盆地带)Ni-Mo多金属层附近样品(NTT-6)的FeHR/FeT>0.38,FePy/FeHR>0.80(图5、6; Wang Jianguo et al.2012; Cheng Meng et al.2020); 浙西底本剖面(盆地带)与Ni-Mo多金属层相当层位附近样品(DH-3)和贵州渣拉沟剖面(盆地带)Ni-Mo多金属层附近样品(ZN11和ZN12)的FeHR/FeT>0.38,FePy/FeHR>0.70(图5、6; 袁余洋等2014; Cai et al.2015)。上述4条深水盆地带剖面均记录了Ni-Mo多金属层沉积时期深层海水硫化信号(图5、6)。现有的Fe组分数据显示,海洋曾长期处于硫化状态(1840~740 Ma)或存在一个“动态的硫化楔”(Canfield et al.,2008; Poulton et al.,2010),直至晚新元古代特别是埃迪卡拉纪末期,深层海水的氧化还原状态转变为以缺氧含铁为主(Canfield et al.,2008; 常华进等,2010)。最近,一些学者认为寒武纪早期华南海洋深层海水仍然以缺氧含铁状态为主,在陆架—斜坡地带发育一个“动态的硫化楔”(金承胜等,2014; Feng Lianjun et al.,2014; Jin Chengsheng et al.,2016; Li Chao et al.,2020)。因此,我们认为在华南下寒武统Ni-Mo多金属层沉积时期,南华盆地硫化深层海水的范围可能发生了短暂且迅速的扩张,涵盖了台地带、斜坡带及盆地带(图7),可视为一次南华盆地深层海水硫化扩张事件。

  • 埃迪卡拉纪—寒武纪过渡时期是地球生物演化的重要时期。在埃迪卡拉纪—寒武纪转折时期发生了埃迪卡拉生物的灭绝事件(Darroch et al.,20152018),而进入寒武纪之后发生了多幕式的生命辐射事件,且不同幕生物辐射事件之间被生物灭绝事件间隔(Zhu Maoyan et al.,2007; 朱茂炎,2010; 朱茂炎等,2019)。学者们认为寒武纪生命大爆发开始于埃迪卡拉纪末期,并分别将埃迪卡拉纪生物群和以梅树村动物群为代表的寒武纪早期小壳生物群当作寒武纪生命大爆发的序幕(570~539 Ma)和第一幕辐射(539~521 Ma),小壳生物在Ni-Mo多金属层附近完全消失,随后发生以澄江生物群为代表的第二幕辐射(521~515 Ma)(Shu Degan 2008; 朱茂炎,2010; Shu Degan et al.,2014; 朱茂炎等,2019)。我们对华南埃迪卡拉纪—寒武纪转折时期(约539 Ma)的海洋氧化还原状态研究发现,在该时期南华盆地海洋发生了一次深层海水硫化扩张事件,且认为这一事件可能是导致埃迪卡拉生物灭绝的重要原因之一(Yang Hua et al.,2022)。本研究的Fe组分数据与前人数据相结合表明,南华盆地继埃迪卡拉纪—寒武纪转折时期发生的深层海水硫化扩张事件之后,在华南下寒武统Ni-Mo多金属层沉积时期(521 Ma左右)又发生了一次类似事件,而这次事件发生的时间刚好对应着小壳生物化石在Ni-Mo多金属层附近完全消失的时间。由于硫化水体大范围的扩张,将相应地缩小有利于生物生存的水体范围,且有利于深层硫化海水上涌至浅层海水并释放H2S这一过程的发生(Wille et al.,2008; Li Dandan et al.,2020),因而深层海水硫化扩张事件对生物可能是致命的(Wille et al.,2008),所以,我们认为这次深层海水硫化扩张事件,可能是导致小壳生物消失的重要原因之一。上述两次事件恰好介于寒武纪生命大爆发的不同幕之间,因此,我们初步认为埃迪卡拉纪—寒武纪转折时期和寒武纪早期Ni-Mo多金属层沉积时期于华南盆地发生的两次深层海水硫化扩张事件可能对早期生命的幕式辐射产生了深远影响。

  • 表5 贵州平引剖面牛蹄塘组底部样品Fe组分数据

  • Table5 Fe speciation data of the samples from the base Niutitang Formation in the Pingyin section in Guizhou

  • 注:采样距离以牛蹄塘组底界为基准。

  • 图5 梅树村、松林、平引、龙鼻嘴、底本剖面Fe组分数据对比图(椭圆代表Ni-Mo多金属层沉积时期硫化事件)

  • Fig.5 Comparison of Fe speciation data in the Meishucun, Songlin, Pingyin, Longbizui and Diben sections in South China (circles represent sulphidic events during polymetallic Ni-Mo layer deposition)

  • 数据来源: 华南梅树村(Wen Hanjie et al.,2015); 松林(Och et al.,2013); 龙鼻嘴(Wang Jianguo et al.,2012); 底本(袁余洋等,2014

  • Data sources: Meishucun from Wen Hanjie et al., 2015; Songlin from Och et al., 2013; Longbizui from Wang Jianguo et al., 2012; Diben from Yuan Yuyang et al., 2014

  • 图6 梅树村、松林、平引、龙鼻嘴、底本剖面FeHR/FeT与FePy/FeHR的二元图(数据来源:同图5; 图中样品为各剖面Ni-Mo多金属层及其附近地层样品)

  • Fig.6 Crossplots of the FeHR/FeT and FePy/FeHR from the Meishucun, Songlin, Pingyin, Longbizui, Diben section (data sources: the same as Fig.5; the samples from the polymetallic Ni-Mo layer and near strata in each section)

  • 图7 Ni-Mo多金属层沉积期(约521 Ma)南华盆地深层海水氧化还原结构

  • Fig.7 Redox structure of deep seawater in Nanhua basin during polymetallic Ni-Mo layer deposition (around 521 Ma)

  • 5 结论

  • (1)扬子板块内部台地带的梅树村剖面Ni-Mo多金属层应位于该剖面玉案山组底界之上3 m层位,其Ni-Mo多金属层标志性元素Ni、Mo、As、Tl含量为该剖面的峰值,分别为135×10-6、583×10-6、81.9×10-6、19.6×10-6; 斜坡至盆地过渡地带的平引剖面Ni-Mo多金属层应位于该剖面牛蹄塘组底界之上2.5 m层位,其Ni-Mo多金属层标志性元素Ni、Mo、As、Tl含量分别为2480×10-6、16341×10-6、846×10-6、52.3×10-6

  • (2)扬子板块斜坡至盆地过渡地带的平引剖面牛蹄塘组底部Ni-Mo多金属层及其附近地层的样品记录了深层海水硫化信号。结合已有的华南其它代表性剖面Ni-Mo多金属层及其附近层位(或相当层位)的Fe组分数据,表明Ni-Mo多金属层沉积时期,南华盆地发生了一次深层海水硫化扩张事件。这一事件可能对寒武纪生命幕式辐射产生了深远的影响。

  • 致谢:中国地质大学(北京)徐林刚教授及一位匿名审稿人提出使本文质量获得明显提升的建设性意见,中国科学院地球化学研究所罗泰义研究员对As和Tl的地球化学行为给予启发性指导,在此一并表示衷心的感谢。

  • 参考文献

    • Anderson T F, Raiswell R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science, 304(3): 203~233.

    • Cai C, Xiang L, Yuan Y, He X, Chu X, Chen Yan, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean. Journal of the Geological Society, 172(3): 390~406.

    • Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149~155.

    • Canfield D E, Poullton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Struass H. 2008. Ferruginous conditions dominated later Neoproterozoic deep water chemistry. Science, 321(5891): 949~952.

    • Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing. 2010. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55(20): 2010~2017 (in Chinese with English abstract).

    • Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing, Chen Yali. 2018. Marine redox stratification on the earliest Cambrian (ca. 542-529Ma) Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 75~85.

    • Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Ye Detian. 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27(1): 62~68.

    • Chen Nansheng, Yang Xiuzhen, Liu Dehan, Xiao Xuejun, Fan Delian, Wang Lianfang. 1982. Lower Cambrian black argillaceous and arenaceous rock series in South China and its associated stratiform deposits. Mineral Deposits, (2): 39~51 (in Chinese with English abstract).

    • Chen Xi, Ling Hongfei, Vance D, Shield-Zhou G A, Zhu Maoyan, Poulton S W, Och L M, Jiang Shaoyong, Li Da, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature communications, 6(1): 1~7.

    • Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo T J, Lyons T W, Zhang Feifei, Anbar A. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.

    • Compston W, Zhang Zichao, Cooper J A, Ma Guogan, Jenkins R J F. 2008. Further SHRIMP geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399~420.

    • Coveney R M, Murowchick J B, Grauch R I, Michael D, Glascock D, Denison J D. 1992. Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99(1-3): 101~114.

    • Cowie J W. 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes Journal of International Geoscience, 8(2): 93~97.

    • Darroch S A F, Sperling E A, Boag T H, Racicot R A, Mason S J, Morgan A S, Tweedt S, Myrow P, Johnston D T, Erwin D H, Laflamme M. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society Biological Sciences, 282: 20151003.

    • Darroch S A F, Smith E F, Laflamme M, Erwin D H. 2018. Ediacaran Extinction and Cambrian Explosion. Trends Ecology & Evolution, 33(9): 653~663.

    • Fan Delian, Yang Xiuzhen, Wang Yufang, Chen Nansheng. 1973. Petrological and geochemical characteristics of a nickly-molybdenum-multe-element-bearing lower cambrian black shale from a certain district in South China. Geochimica, (3): 143~163 (in Chinese with English abstract).

    • Feng Lianjun, Li Chao, Huang Jing, Chang Huajin, Chu Xuelei. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521Ma) Yangtze platform, South China. Precambrian Research, 246: 123~133.

    • Frei R, Xu Lingang, Frederiksen J A, Lehmann B. 2021. Signals of combined chromium-cadmium isotopes in basin waters of the Early Cambrian—Results from the Maoshi and Zhijin sections, Yangtze Platform, South China. Chemical Geology, 563: 120061.

    • Fu Yong, Dong Lin, Li Chao, Qu Wenjun, Pei Haoxiang, Qiao Wenlang, Shen Bing. 2016. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271~281.

    • Jiang Shaoyong, Yang Jinghong, Ling Hongfei, Feng Hongzhen, Chen Yongquan, Chen Jianhua, 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13(10): 788~794.

    • Jiang Shaoyong, Ling Hongfei, Zhao Kuidong, Zhu Maoyan, Yang Jinghong, Chen Yongquan. 2008. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China. Acta Petrologica et Mineralogica, 27(4): 341~345 (in Chinese with English abstract).

    • Jiang Shaoyong, Pi Daohui, Heubeck C, Frimmel H, Liu Yuping, Deng Hailin, Ling Hongfei, Yang Jinghong. 2009. Early Cambrian ocean anoxia in South China. Nature, 459(7248): E5~E6.

    • Jin Chengsheng, Li Chao, Peng Xingfang, Cui Hao, Shi Wei, Zhang Zihu, Luo Gengming, Xie Shucheng. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Science China Earth Sciences, 44(5): 851~863 (in Chinese with English abstract).

    • Jin Chengsheng, Li Chao, Algeo T J, Planavsky N J, Cui Hao, Yang Xinglian, Zhao Yuanlong, Zhang Xingliang, Xie Shucheng. 2016. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441: 38~51.

    • Lan Zhongwu, Li Xianhua, Chu Xuelei, Tang Guoqiang, Yang Saihong, Yang Hongwei, Liu Hai, Jiang Tao, Wang Teng. 2017. SIMS U-Pb zircon ages and Ni-Mo-PGE geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE mineralization and stratigraphic correlations. Journal of Asian Earth Sciences, 137: 141~162.

    • Lehmann B, Nägler, T F, Holland H D, Wille M, Mao Jingwen, Pan Jiayong, Ma Dongsheng, Dulski P. 2007. Highly metalliferous carbonaceous shale and early Cambrian seawater. Geology, 35(5): 403~406.

    • Lehmann B, Pašava J, Šebek O, Andronikov A, Frei B, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.

    • Liang Youbin, Zhu Wenfeng. 1995. Enrichment characteristics and genesis of platinum group elements in Ni-Mo deposits in Tianmenshan area, northwestern Hunan. Contributions to Geology and Mineral Resources, (1): 55~65 (in Chinese with English abstract).

    • Li Chao, Love G D, Lyons T W, Fike D A, Sessions A L, Chu Xuelei . 2010. A stratified redox model for the Ediacaran ocean. Science, 328(5974): 80~83.

    • Li Chao, Shi Wei, Cheng Meng, Jin Chengsheng, Algeo T J. 2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Science Bulletin, 65(24): 2141~2149.

    • Li Dandan, Zhang Xiaolin, Hu Dongping, Li Da, Zhang Guijie, Zhang Xu, Ling Hongfei, Xu Yilun, Shen Yanan. 2020. Multiple S-isotopic constraints on paleo-redox and sulfate concentrations across the Ediacaran-Cambrian transition in South China. Precambrian Research, 349: 105500.

    • Li Hongfu, Han Shanchu. 2018. Mineralogical characteristics of Ni-Mo polymetallic deposits in Sancha, Hunan Province. Science Technology and Engineering, 18(5): 156~163 (in Chinese with English abstract).

    • Li Shengrong, Xiao Qiyun, Shen Junfeng, Sun Li, Liu Bo, Yan Bokun. 2002. Re-Os isotope constraint on the source and mineralization age of PGE in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China. Science China D-Earth Sciences, 32(7): 569~575 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Elemental Geochemistry. Science Press, 1~548 (in Chinese with English abstract).

    • Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1984. The Sinian-Cambrian boundary straotype section at Meishucun, Jinning, Yunnan, China. Kunming: People's Publishing House, 1~156 (in Chinese with English abstract).

    • Luo Taiyi, Zhang Huang, Li Xiaobiao, Zhu Dan. 2003. Mineralization characteristic of the multi-element-rich strata in the Niutitang Formation black shales series, Zunyi, Guizhou, China. Acta Mineralogica Sinica, 23(3): 296~302 (in Chinese with English abstract).

    • Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23): 5698~5722.

    • Mao Jingwen, Zhang Guangdi, Du Andao, Wang Yitian, Zeng Mingguo. 2001. Geology, geochemistry, and Re-Os isotopic dating of the Huangjiawan Ni-Mo-PGE deposit, Zunyi, Guizhou Province—with a discussion of the polymetallic mineralization of basal Cambrian black shales in South China. Acta Geologica Sinica, 75(2): 234~243 (in Chinese with English abstract).

    • Mao Jingwen, Lehmann B, Du Andao, Zhang Guangdi, Ma Dongsheng, Wang Yitian, Zeng Mingguo, Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97(5): 1051~1061.

    • März C, Poulton S W, Beckmann B, Küster K, Wagner T, Kasten S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72(15): 3703~3717.

    • Och L M, Shields-Zhou G A, Poulton S W, Poulton S W, Manning C, Thirlwall M F, Li Da, Chen Xi, Ling Hongfei, Osborn T, Cremonese L. 2013. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225: 166~189.

    • Pan Jiayong, Ma Dongsheng, Cao Shuanglin. 2004. Trace element geochemistry of the Lower Cambrian black rock series from northwestern Hunan, South China. Progress in Natural Science, 14(1): 64~70.

    • Pan Jiayong, Ma Dongsheng, Xia Fei, Chen Shaohua, Cao Shuanglin, Guo Guolin, Xie Guizhen. 2005. Study on nickel and molybdenum minerals in Ni-Mo sulfide layer of the Low Cambrian black rock series northwestern Hunnan. Acta Mineralogica Sinica, (3): 283~288 (in Chinese with English abstract).

    • Peng Jin, Yuan Jinliang, Zhao Yuanlong, Yang Rongjun. 2004. Discovery of trilobite genus Zhenbaspis from the Lower Cambrian Niutitang Formation biota at Heishapo, Songlin, Zunyi, Guizhou, China. Acta Palaeontologica Sinica, 43(3): 407~415 (in Chinese with English abstract).

    • Pi Daohui, Liu Conqiang, Shields-Zou G A, Jiang Shaoyong. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225: 218~229.

    • Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214: 209~221.

    • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1. 8 billion years ago. Nature Geoscience, 3(7): 486~490.

    • Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements 7, 107~112.

    • Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3): 219~245.

    • Shu Degan. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Research, 14(1-2): 219~240.

    • Shu Degan, Isozaki Y, Zhang Xingliang, Han Jan, Maruyama S. 2014. Birth and early evolution of metazoans. Gondwana Research, 25(3): 884~895.

    • Steiner M, Wallis E, Erdtmann B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeography Palaeoclimatology Palaeoecology, 169(3-4): 165~191.

    • Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1-4): 141~158.

    • Wang Jianguo, Chen Daizhao, Yan Detian, Wei Hengye, Xiang Lei. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chemical Geology, 306: 129~138.

    • Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, Zhang Wenhao. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. Journal of Asian Earth Sciences, 48: 1~8.

    • Wang Wei, Zhou Mingzhong, Chu Zhuyin, Xu Junjie, Li Chaofeng, Luo Taiyi, Guo Jinghui. 2020. Constraints on the Ediacaran-Cambrian boundary in deep-water realm in South China: Evidence from zircon CA-ID-TIMS U-Pb ages from the topmost Liuchapo Formation. Science China Earth Sciences, 50(6): 819~831 (in Chinese with English abstract).

    • Wedepohl K H. 1995. The composition of the continental. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.

    • Wei Shuaichao, Fu Yong, Liang Houpeng, Ge Zhihua, Zhou Wenxi, Wang Guangzhe. 2017. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323~333.

    • Wen Hanjie, Fan Haifeng, Zhang Yuxu, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164: 1~16.

    • Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453(7196): 767~769.

    • Xu Lingang, Lehmann B, Mao Jingwen, Qu Wenjun, Du Andao. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment. Economic Geology, 106(3): 511~522.

    • Xu Lingang, Lehmann B, Mao Jingwen, Nägler T F, Neubert N, Böttcher M E, Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319(1): 45~59.

    • Xu Lingang, Mao Jingwen. 2021. Trace element and C-S-Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni-Mo sulfide and vanadium mineralization, South China: Implications for paleoceanic redox variation. Ore Geology Reviews, 135: 104210.

    • Yang Hua, Yang Liansheng, Zhou Mingzhong. 2022. Expanded deepwater euxinia recorded in the Ediacaran-Cambrian boundary interval in South China. Journal of Asian Earth Sciences, 230: 105192.

    • Yang Xinglian, Zhu Mingjin, Zhu Luyan, Cui Tao. 2009. The Bradoriida of the Niutitang Formation from traditional Lower Cambrian in Jinsha County, Guizhou Province. Geological Journal of China Universities, 15(3): 296~303 (in Chinese with English abstract).

    • Yuan Jinliang, Zhao Yuanlong. 1999. Subdivision and correlation of Lower Cambrian in Southwest China with a discussion of the age of early Cambrian series biota. Acta Palaeontologica Sinica, (S1): 116~131 (in Chinese with English abstract).

    • Yuan Yuyang, Cai Chunfang, Wang Tiankai, Xiang Lei, Jia Lianqi, Chen Yan. 2014. Redox condition during Ediacaran-Cambrian transition in the Lower Yangtze deep water basin, South China: Constraints from iron speciation and δ13Corg in the Diben section, Zhejiang. Chinese Science Bulletin, 59(23): 2278~2290 (in Chinese with English abstract).

    • Zhang Wentang. 1987. Early Cambrian Chengjiang fauna and its trilobites. Acta Palaeontologica Sinica, 26(3): 223~235 (in Chinese with English abstract).

    • Zhou Mingzhong. 2008. A preliminary stratigraphic framework for the Lower Cambrian in South China: A case study for the Songlin area, Zunyi. Doctoral disseration of Institute of Geochemistry Chinese Academy Sciences (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Li Zhengxiang, Zhao Hui, Long Hansheng, Yang Yong. 2008. SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, China. Chinese Science Bulletin, 53(1): 104~110 (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Liu Shirong, Qian Zhikuan, Xing Leicai. 2013. SHRIMP zircon age of for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China. Science China Earth Sciences, 43(7): 1195~1206 (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Huff W D, Liu Shirong. 2014. Prominent Lower Cambrian K-Bentonites in South China: Distribution, mineralogy, and geochemistry. Journal of Sedimentary Research, 84(10): 842~853.

    • Zhou Mingzhong, Luo Taiyi, Huff W D, Yang Zhiqing, Zhou Guanghong, Gan Tian, Yang Hua, Zhang Di. 2018. Timing the termination of the Doushantuo negative carbon isotope excursion: Evidence from U-Pb ages from the Dengying and Liuchapo formations, South China. Science Bulletin, 63(21): 1431~1438.

    • Zhou Mingzhong, Wan Bin, Zhou Li, Yang Enlin, Yang Liansheng, Luo Taiyi. 2021. Origin of K-bentonites in the Doushantuo cap dolostones from South China and its potential link with the sedimentary model of the Marinoan cap dolostones. Precambrian Research, 366: 106416.

    • Zhu Maoyan. 2010. The origin and Cambrian explosion of animals: Fossil evidences from China. Acta Palaeontologica Sinica, 49(3): 269~287 (in Chinese with English abstract).

    • Zhu Maoyan, Li Guoxiang, Zhang Junming, Steiner M, Qian Yi, Jiang Zhiwen. 2001. Early Cambrian stratigraphy of East Yunnan, southwestern China: A synthesis. Acta Palaeontologica Sinica, 40(Supplementary Issue): 4~39 (in Chinese with English abstract).

    • Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow to deep water environments of the Yangtze Platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.

    • Zhu Maoyan, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 0~6.

    • Zhu Maoyan, Zhao Fangchen, Yin Zongjun, Zeng Han, Li Guoxiang. 2019. The Cambrian explosion: Advances and perspectives from China. Science China Earth Sciences, 49(10): 1455~1490 (in Chinese with English abstract).

    • Zhu Rixiang, Li Xianhua, Hou Xianguang, Pan Yongxin, Wang Fei, Deng Chenglong, He Huaiyu. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science China, Earth Sciences, 39(8): 1105~1111 (in Chinese with English abstract).

    • 常华进, 储雪蕾, 冯连君, 黄晶. 2010. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010~2017.

    • 陈南生, 杨秀珍, 刘德汉, 肖学军, 范德廉, 王连芳. 1982. 我国南方下寒武纪黑色页岩系及其中的层控矿床. 矿床地质, (2): 39~51.

    • 范德廉, 杨秀珍, 王玉芳, 陈南生. 1973. 某地下寒武统镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, (3): 143~163.

    • 蒋少涌, 凌洪飞, 赵葵东, 朱茂炎, 杨竞红, 陈永权. 2008. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论. 岩石矿物学杂志, 27(4): 341~345.

    • 金承胜, 李超, 彭兴芳, 崔豪, 石炜, 张子虎, 罗根明, 谢树成. 2014. 华南寒武纪早期海洋化学状态的时空波动. 中国科学: 地球科学, 44(5): 851~863.

    • 梁有彬, 朱文凤. 1995. 湘西北天门山地区镍钼矿床铂族元素富集特征及成因探讨. 地质找矿论丛, (1): 55~65.

    • 李鸿福, 韩善楚. 2018. 湖南三岔镍钼多金属矿床矿物学特征. 科学技术与工程, 18(5): 156~163.

    • 李胜荣, 肖启云, 申俊峰, 孙丽, 刘波, 阎柏琨. 2002. 湘黔下寒武统铂族元素来源与矿化年龄的同位素制约. 中国科学(D辑: 地球科学), 32(7): 569~575.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 科学出版社: 1~548.

    • 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1984. 中国云南晋宁梅树村震旦系—寒武系界线层型剖面. 昆明: 云南人民出版社: 1~154.

    • 罗泰义, 张欢, 李晓彪, 朱丹. 2003. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征. 矿物学报, 23(3): 296~302.

    • 毛景文, 张光弟, 杜安道, 王义天, 曾明果. 2001. 遵义黄家湾镍钼铂族元素矿床地质, 地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用. 地质学报, 75(2): 234~243.

    • 潘家永, 马东升, 夏菲, 陈少华, 曹双林, 郭国林, 谢贵珍. 2005. 湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态. 矿物学报, (3): 283~288.

    • 彭进, 袁金良, 赵元龙, 杨荣军. 2004. 贵州遵义松林黑沙坡早寒武世牛蹄塘生物群中镇巴虫的发现. 古生物学报, 43(3): 407~415.

    • 王伟, 周明忠, 储著银, 许俊杰, 李潮峰, 罗泰义, 郭敬辉. 2020. 华南深水区埃迪卡拉系-寒武系界线制约: 来自留茶坡组顶部锆石CA-ID-TIMS U-Pb年龄证据. 中国科学: 地球科学, 50(6): 819~831.

    • 杨兴莲, 祝明金, 朱露艳, 崔滔. 2009. 贵州金沙下寒武统牛蹄塘组中的高肌虫. 高校地质学报, 15(3): 296~303.

    • 袁金良, 赵元龙. 1999. 西南地区下寒武统划分与对比——兼论早寒武世系列生物群的时代. 古生物学报, (S1): 116~131.

    • 袁余洋, 蔡春芳, 汪天凯, 向雷, 贾连奇, 陈妍. 2014. 埃迪卡拉纪-寒武纪过渡时期下扬子深水盆地氧化还原性质: 来自浙西底本剖面铁组分及有机碳同位素的约束. 科学通报, 59(23): 2278~2290.

    • 张文堂. 1987. 澄江动物群及其中的三叶虫. 古生物学报, 26(3): 223~235.

    • 周明忠. 2008. 华南下寒武统层序框架的初步构建——以遵义松林地区为例. 中国科学院地球化学研究所博士学位论文.

    • 周明忠, 罗泰义, 李正祥, 赵辉, 龙汉生, 杨勇. 2008. 遵义牛蹄塘组底部凝灰岩SHRIMP U-Pb年龄及其地质意义. 科学通报, 53(1): 104~110.

    • 周明忠, 罗泰义, 刘世荣, 钱志宽, 邢乐才. 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学: 地球科学, 43(7): 1195~1206.

    • 朱茂炎. 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269~287.

    • 朱茂炎, 李国祥, 张俊明, Steiner M, 钱逸, 蒋志文. 2001. 云南东部早寒武世地层学. 古生物学报, 40(增刊): 4~39.

    • 朱茂炎, 赵方臣, 殷宗军, 曾晗, 李国祥. 2019. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学, 49(10): 1455~1490.

    • 朱日祥, 李献华, 侯先光, 潘永信, 王非, 邓成龙, 贺怀宇. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界线的年代制约. 中国科学(D辑: 地球科学), 39(8): 1105~1111.

  • 参考文献

    • Anderson T F, Raiswell R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science, 304(3): 203~233.

    • Cai C, Xiang L, Yuan Y, He X, Chu X, Chen Yan, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean. Journal of the Geological Society, 172(3): 390~406.

    • Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149~155.

    • Canfield D E, Poullton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Struass H. 2008. Ferruginous conditions dominated later Neoproterozoic deep water chemistry. Science, 321(5891): 949~952.

    • Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing. 2010. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55(20): 2010~2017 (in Chinese with English abstract).

    • Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing, Chen Yali. 2018. Marine redox stratification on the earliest Cambrian (ca. 542-529Ma) Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 75~85.

    • Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Ye Detian. 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27(1): 62~68.

    • Chen Nansheng, Yang Xiuzhen, Liu Dehan, Xiao Xuejun, Fan Delian, Wang Lianfang. 1982. Lower Cambrian black argillaceous and arenaceous rock series in South China and its associated stratiform deposits. Mineral Deposits, (2): 39~51 (in Chinese with English abstract).

    • Chen Xi, Ling Hongfei, Vance D, Shield-Zhou G A, Zhu Maoyan, Poulton S W, Och L M, Jiang Shaoyong, Li Da, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature communications, 6(1): 1~7.

    • Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo T J, Lyons T W, Zhang Feifei, Anbar A. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.

    • Compston W, Zhang Zichao, Cooper J A, Ma Guogan, Jenkins R J F. 2008. Further SHRIMP geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399~420.

    • Coveney R M, Murowchick J B, Grauch R I, Michael D, Glascock D, Denison J D. 1992. Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99(1-3): 101~114.

    • Cowie J W. 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes Journal of International Geoscience, 8(2): 93~97.

    • Darroch S A F, Sperling E A, Boag T H, Racicot R A, Mason S J, Morgan A S, Tweedt S, Myrow P, Johnston D T, Erwin D H, Laflamme M. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society Biological Sciences, 282: 20151003.

    • Darroch S A F, Smith E F, Laflamme M, Erwin D H. 2018. Ediacaran Extinction and Cambrian Explosion. Trends Ecology & Evolution, 33(9): 653~663.

    • Fan Delian, Yang Xiuzhen, Wang Yufang, Chen Nansheng. 1973. Petrological and geochemical characteristics of a nickly-molybdenum-multe-element-bearing lower cambrian black shale from a certain district in South China. Geochimica, (3): 143~163 (in Chinese with English abstract).

    • Feng Lianjun, Li Chao, Huang Jing, Chang Huajin, Chu Xuelei. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521Ma) Yangtze platform, South China. Precambrian Research, 246: 123~133.

    • Frei R, Xu Lingang, Frederiksen J A, Lehmann B. 2021. Signals of combined chromium-cadmium isotopes in basin waters of the Early Cambrian—Results from the Maoshi and Zhijin sections, Yangtze Platform, South China. Chemical Geology, 563: 120061.

    • Fu Yong, Dong Lin, Li Chao, Qu Wenjun, Pei Haoxiang, Qiao Wenlang, Shen Bing. 2016. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271~281.

    • Jiang Shaoyong, Yang Jinghong, Ling Hongfei, Feng Hongzhen, Chen Yongquan, Chen Jianhua, 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13(10): 788~794.

    • Jiang Shaoyong, Ling Hongfei, Zhao Kuidong, Zhu Maoyan, Yang Jinghong, Chen Yongquan. 2008. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China. Acta Petrologica et Mineralogica, 27(4): 341~345 (in Chinese with English abstract).

    • Jiang Shaoyong, Pi Daohui, Heubeck C, Frimmel H, Liu Yuping, Deng Hailin, Ling Hongfei, Yang Jinghong. 2009. Early Cambrian ocean anoxia in South China. Nature, 459(7248): E5~E6.

    • Jin Chengsheng, Li Chao, Peng Xingfang, Cui Hao, Shi Wei, Zhang Zihu, Luo Gengming, Xie Shucheng. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Science China Earth Sciences, 44(5): 851~863 (in Chinese with English abstract).

    • Jin Chengsheng, Li Chao, Algeo T J, Planavsky N J, Cui Hao, Yang Xinglian, Zhao Yuanlong, Zhang Xingliang, Xie Shucheng. 2016. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441: 38~51.

    • Lan Zhongwu, Li Xianhua, Chu Xuelei, Tang Guoqiang, Yang Saihong, Yang Hongwei, Liu Hai, Jiang Tao, Wang Teng. 2017. SIMS U-Pb zircon ages and Ni-Mo-PGE geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE mineralization and stratigraphic correlations. Journal of Asian Earth Sciences, 137: 141~162.

    • Lehmann B, Nägler, T F, Holland H D, Wille M, Mao Jingwen, Pan Jiayong, Ma Dongsheng, Dulski P. 2007. Highly metalliferous carbonaceous shale and early Cambrian seawater. Geology, 35(5): 403~406.

    • Lehmann B, Pašava J, Šebek O, Andronikov A, Frei B, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.

    • Liang Youbin, Zhu Wenfeng. 1995. Enrichment characteristics and genesis of platinum group elements in Ni-Mo deposits in Tianmenshan area, northwestern Hunan. Contributions to Geology and Mineral Resources, (1): 55~65 (in Chinese with English abstract).

    • Li Chao, Love G D, Lyons T W, Fike D A, Sessions A L, Chu Xuelei . 2010. A stratified redox model for the Ediacaran ocean. Science, 328(5974): 80~83.

    • Li Chao, Shi Wei, Cheng Meng, Jin Chengsheng, Algeo T J. 2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Science Bulletin, 65(24): 2141~2149.

    • Li Dandan, Zhang Xiaolin, Hu Dongping, Li Da, Zhang Guijie, Zhang Xu, Ling Hongfei, Xu Yilun, Shen Yanan. 2020. Multiple S-isotopic constraints on paleo-redox and sulfate concentrations across the Ediacaran-Cambrian transition in South China. Precambrian Research, 349: 105500.

    • Li Hongfu, Han Shanchu. 2018. Mineralogical characteristics of Ni-Mo polymetallic deposits in Sancha, Hunan Province. Science Technology and Engineering, 18(5): 156~163 (in Chinese with English abstract).

    • Li Shengrong, Xiao Qiyun, Shen Junfeng, Sun Li, Liu Bo, Yan Bokun. 2002. Re-Os isotope constraint on the source and mineralization age of PGE in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China. Science China D-Earth Sciences, 32(7): 569~575 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Elemental Geochemistry. Science Press, 1~548 (in Chinese with English abstract).

    • Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1984. The Sinian-Cambrian boundary straotype section at Meishucun, Jinning, Yunnan, China. Kunming: People's Publishing House, 1~156 (in Chinese with English abstract).

    • Luo Taiyi, Zhang Huang, Li Xiaobiao, Zhu Dan. 2003. Mineralization characteristic of the multi-element-rich strata in the Niutitang Formation black shales series, Zunyi, Guizhou, China. Acta Mineralogica Sinica, 23(3): 296~302 (in Chinese with English abstract).

    • Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23): 5698~5722.

    • Mao Jingwen, Zhang Guangdi, Du Andao, Wang Yitian, Zeng Mingguo. 2001. Geology, geochemistry, and Re-Os isotopic dating of the Huangjiawan Ni-Mo-PGE deposit, Zunyi, Guizhou Province—with a discussion of the polymetallic mineralization of basal Cambrian black shales in South China. Acta Geologica Sinica, 75(2): 234~243 (in Chinese with English abstract).

    • Mao Jingwen, Lehmann B, Du Andao, Zhang Guangdi, Ma Dongsheng, Wang Yitian, Zeng Mingguo, Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97(5): 1051~1061.

    • März C, Poulton S W, Beckmann B, Küster K, Wagner T, Kasten S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72(15): 3703~3717.

    • Och L M, Shields-Zhou G A, Poulton S W, Poulton S W, Manning C, Thirlwall M F, Li Da, Chen Xi, Ling Hongfei, Osborn T, Cremonese L. 2013. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225: 166~189.

    • Pan Jiayong, Ma Dongsheng, Cao Shuanglin. 2004. Trace element geochemistry of the Lower Cambrian black rock series from northwestern Hunan, South China. Progress in Natural Science, 14(1): 64~70.

    • Pan Jiayong, Ma Dongsheng, Xia Fei, Chen Shaohua, Cao Shuanglin, Guo Guolin, Xie Guizhen. 2005. Study on nickel and molybdenum minerals in Ni-Mo sulfide layer of the Low Cambrian black rock series northwestern Hunnan. Acta Mineralogica Sinica, (3): 283~288 (in Chinese with English abstract).

    • Peng Jin, Yuan Jinliang, Zhao Yuanlong, Yang Rongjun. 2004. Discovery of trilobite genus Zhenbaspis from the Lower Cambrian Niutitang Formation biota at Heishapo, Songlin, Zunyi, Guizhou, China. Acta Palaeontologica Sinica, 43(3): 407~415 (in Chinese with English abstract).

    • Pi Daohui, Liu Conqiang, Shields-Zou G A, Jiang Shaoyong. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225: 218~229.

    • Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214: 209~221.

    • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1. 8 billion years ago. Nature Geoscience, 3(7): 486~490.

    • Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements 7, 107~112.

    • Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3): 219~245.

    • Shu Degan. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Research, 14(1-2): 219~240.

    • Shu Degan, Isozaki Y, Zhang Xingliang, Han Jan, Maruyama S. 2014. Birth and early evolution of metazoans. Gondwana Research, 25(3): 884~895.

    • Steiner M, Wallis E, Erdtmann B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeography Palaeoclimatology Palaeoecology, 169(3-4): 165~191.

    • Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1-4): 141~158.

    • Wang Jianguo, Chen Daizhao, Yan Detian, Wei Hengye, Xiang Lei. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chemical Geology, 306: 129~138.

    • Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, Zhang Wenhao. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. Journal of Asian Earth Sciences, 48: 1~8.

    • Wang Wei, Zhou Mingzhong, Chu Zhuyin, Xu Junjie, Li Chaofeng, Luo Taiyi, Guo Jinghui. 2020. Constraints on the Ediacaran-Cambrian boundary in deep-water realm in South China: Evidence from zircon CA-ID-TIMS U-Pb ages from the topmost Liuchapo Formation. Science China Earth Sciences, 50(6): 819~831 (in Chinese with English abstract).

    • Wedepohl K H. 1995. The composition of the continental. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.

    • Wei Shuaichao, Fu Yong, Liang Houpeng, Ge Zhihua, Zhou Wenxi, Wang Guangzhe. 2017. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323~333.

    • Wen Hanjie, Fan Haifeng, Zhang Yuxu, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164: 1~16.

    • Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453(7196): 767~769.

    • Xu Lingang, Lehmann B, Mao Jingwen, Qu Wenjun, Du Andao. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment. Economic Geology, 106(3): 511~522.

    • Xu Lingang, Lehmann B, Mao Jingwen, Nägler T F, Neubert N, Böttcher M E, Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319(1): 45~59.

    • Xu Lingang, Mao Jingwen. 2021. Trace element and C-S-Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni-Mo sulfide and vanadium mineralization, South China: Implications for paleoceanic redox variation. Ore Geology Reviews, 135: 104210.

    • Yang Hua, Yang Liansheng, Zhou Mingzhong. 2022. Expanded deepwater euxinia recorded in the Ediacaran-Cambrian boundary interval in South China. Journal of Asian Earth Sciences, 230: 105192.

    • Yang Xinglian, Zhu Mingjin, Zhu Luyan, Cui Tao. 2009. The Bradoriida of the Niutitang Formation from traditional Lower Cambrian in Jinsha County, Guizhou Province. Geological Journal of China Universities, 15(3): 296~303 (in Chinese with English abstract).

    • Yuan Jinliang, Zhao Yuanlong. 1999. Subdivision and correlation of Lower Cambrian in Southwest China with a discussion of the age of early Cambrian series biota. Acta Palaeontologica Sinica, (S1): 116~131 (in Chinese with English abstract).

    • Yuan Yuyang, Cai Chunfang, Wang Tiankai, Xiang Lei, Jia Lianqi, Chen Yan. 2014. Redox condition during Ediacaran-Cambrian transition in the Lower Yangtze deep water basin, South China: Constraints from iron speciation and δ13Corg in the Diben section, Zhejiang. Chinese Science Bulletin, 59(23): 2278~2290 (in Chinese with English abstract).

    • Zhang Wentang. 1987. Early Cambrian Chengjiang fauna and its trilobites. Acta Palaeontologica Sinica, 26(3): 223~235 (in Chinese with English abstract).

    • Zhou Mingzhong. 2008. A preliminary stratigraphic framework for the Lower Cambrian in South China: A case study for the Songlin area, Zunyi. Doctoral disseration of Institute of Geochemistry Chinese Academy Sciences (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Li Zhengxiang, Zhao Hui, Long Hansheng, Yang Yong. 2008. SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, China. Chinese Science Bulletin, 53(1): 104~110 (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Liu Shirong, Qian Zhikuan, Xing Leicai. 2013. SHRIMP zircon age of for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China. Science China Earth Sciences, 43(7): 1195~1206 (in Chinese with English abstract).

    • Zhou Mingzhong, Luo Taiyi, Huff W D, Liu Shirong. 2014. Prominent Lower Cambrian K-Bentonites in South China: Distribution, mineralogy, and geochemistry. Journal of Sedimentary Research, 84(10): 842~853.

    • Zhou Mingzhong, Luo Taiyi, Huff W D, Yang Zhiqing, Zhou Guanghong, Gan Tian, Yang Hua, Zhang Di. 2018. Timing the termination of the Doushantuo negative carbon isotope excursion: Evidence from U-Pb ages from the Dengying and Liuchapo formations, South China. Science Bulletin, 63(21): 1431~1438.

    • Zhou Mingzhong, Wan Bin, Zhou Li, Yang Enlin, Yang Liansheng, Luo Taiyi. 2021. Origin of K-bentonites in the Doushantuo cap dolostones from South China and its potential link with the sedimentary model of the Marinoan cap dolostones. Precambrian Research, 366: 106416.

    • Zhu Maoyan. 2010. The origin and Cambrian explosion of animals: Fossil evidences from China. Acta Palaeontologica Sinica, 49(3): 269~287 (in Chinese with English abstract).

    • Zhu Maoyan, Li Guoxiang, Zhang Junming, Steiner M, Qian Yi, Jiang Zhiwen. 2001. Early Cambrian stratigraphy of East Yunnan, southwestern China: A synthesis. Acta Palaeontologica Sinica, 40(Supplementary Issue): 4~39 (in Chinese with English abstract).

    • Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow to deep water environments of the Yangtze Platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.

    • Zhu Maoyan, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 0~6.

    • Zhu Maoyan, Zhao Fangchen, Yin Zongjun, Zeng Han, Li Guoxiang. 2019. The Cambrian explosion: Advances and perspectives from China. Science China Earth Sciences, 49(10): 1455~1490 (in Chinese with English abstract).

    • Zhu Rixiang, Li Xianhua, Hou Xianguang, Pan Yongxin, Wang Fei, Deng Chenglong, He Huaiyu. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science China, Earth Sciences, 39(8): 1105~1111 (in Chinese with English abstract).

    • 常华进, 储雪蕾, 冯连君, 黄晶. 2010. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010~2017.

    • 陈南生, 杨秀珍, 刘德汉, 肖学军, 范德廉, 王连芳. 1982. 我国南方下寒武纪黑色页岩系及其中的层控矿床. 矿床地质, (2): 39~51.

    • 范德廉, 杨秀珍, 王玉芳, 陈南生. 1973. 某地下寒武统镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, (3): 143~163.

    • 蒋少涌, 凌洪飞, 赵葵东, 朱茂炎, 杨竞红, 陈永权. 2008. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论. 岩石矿物学杂志, 27(4): 341~345.

    • 金承胜, 李超, 彭兴芳, 崔豪, 石炜, 张子虎, 罗根明, 谢树成. 2014. 华南寒武纪早期海洋化学状态的时空波动. 中国科学: 地球科学, 44(5): 851~863.

    • 梁有彬, 朱文凤. 1995. 湘西北天门山地区镍钼矿床铂族元素富集特征及成因探讨. 地质找矿论丛, (1): 55~65.

    • 李鸿福, 韩善楚. 2018. 湖南三岔镍钼多金属矿床矿物学特征. 科学技术与工程, 18(5): 156~163.

    • 李胜荣, 肖启云, 申俊峰, 孙丽, 刘波, 阎柏琨. 2002. 湘黔下寒武统铂族元素来源与矿化年龄的同位素制约. 中国科学(D辑: 地球科学), 32(7): 569~575.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 科学出版社: 1~548.

    • 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1984. 中国云南晋宁梅树村震旦系—寒武系界线层型剖面. 昆明: 云南人民出版社: 1~154.

    • 罗泰义, 张欢, 李晓彪, 朱丹. 2003. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征. 矿物学报, 23(3): 296~302.

    • 毛景文, 张光弟, 杜安道, 王义天, 曾明果. 2001. 遵义黄家湾镍钼铂族元素矿床地质, 地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用. 地质学报, 75(2): 234~243.

    • 潘家永, 马东升, 夏菲, 陈少华, 曹双林, 郭国林, 谢贵珍. 2005. 湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态. 矿物学报, (3): 283~288.

    • 彭进, 袁金良, 赵元龙, 杨荣军. 2004. 贵州遵义松林黑沙坡早寒武世牛蹄塘生物群中镇巴虫的发现. 古生物学报, 43(3): 407~415.

    • 王伟, 周明忠, 储著银, 许俊杰, 李潮峰, 罗泰义, 郭敬辉. 2020. 华南深水区埃迪卡拉系-寒武系界线制约: 来自留茶坡组顶部锆石CA-ID-TIMS U-Pb年龄证据. 中国科学: 地球科学, 50(6): 819~831.

    • 杨兴莲, 祝明金, 朱露艳, 崔滔. 2009. 贵州金沙下寒武统牛蹄塘组中的高肌虫. 高校地质学报, 15(3): 296~303.

    • 袁金良, 赵元龙. 1999. 西南地区下寒武统划分与对比——兼论早寒武世系列生物群的时代. 古生物学报, (S1): 116~131.

    • 袁余洋, 蔡春芳, 汪天凯, 向雷, 贾连奇, 陈妍. 2014. 埃迪卡拉纪-寒武纪过渡时期下扬子深水盆地氧化还原性质: 来自浙西底本剖面铁组分及有机碳同位素的约束. 科学通报, 59(23): 2278~2290.

    • 张文堂. 1987. 澄江动物群及其中的三叶虫. 古生物学报, 26(3): 223~235.

    • 周明忠. 2008. 华南下寒武统层序框架的初步构建——以遵义松林地区为例. 中国科学院地球化学研究所博士学位论文.

    • 周明忠, 罗泰义, 李正祥, 赵辉, 龙汉生, 杨勇. 2008. 遵义牛蹄塘组底部凝灰岩SHRIMP U-Pb年龄及其地质意义. 科学通报, 53(1): 104~110.

    • 周明忠, 罗泰义, 刘世荣, 钱志宽, 邢乐才. 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学: 地球科学, 43(7): 1195~1206.

    • 朱茂炎. 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269~287.

    • 朱茂炎, 李国祥, 张俊明, Steiner M, 钱逸, 蒋志文. 2001. 云南东部早寒武世地层学. 古生物学报, 40(增刊): 4~39.

    • 朱茂炎, 赵方臣, 殷宗军, 曾晗, 李国祥. 2019. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学, 49(10): 1455~1490.

    • 朱日祥, 李献华, 侯先光, 潘永信, 王非, 邓成龙, 贺怀宇. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界线的年代制约. 中国科学(D辑: 地球科学), 39(8): 1105~1111.