-
中国海包括渤海、黄海、东海、南海四大海域。中国海及邻区发育众多盆地,主要包括渤海盆地(属渤海湾盆地的海上部分)、北黄海盆地、南黄海盆地、东海盆地、台西盆地、台西南盆地、珠江口盆地、北部湾盆地、琼东南盆地和莺歌海盆地等(图1a),蕴含着丰富的油气资源(张功成等,2014; 陈建文等,2019)。中国海域处于欧亚板块、印度-澳大利亚板块和太平洋板块三大板块相互作用的结合部位(图1b),大地构造背景以及岩石圈深部过程十分复杂。多个活动板块的复合作用、海盆的扩张以及软流圈热物质上涌等过程会造成热岩石圈厚度的增减和结构与性质的变化,而海域盆地的现今地温场特征是构造作用、岩石圈热状态和热物质流变性质的综合反映(Yan Pin et al.,2001; Furlong and Chapman,2013; Sibuet et al.,2016)。此外,“热”是油气形成的外因,与潜在烃源岩相互耦合作用控制了含油气区内油气的生成与否、生烃规模、相态(石油或天然气)类型与区域分布模式(张功成,2012)。
-
大地热流和地温梯度是刻画现今地温场的主要物理量,也是反映地球内部热状态的重要参数。前者可以通过实测钻孔温度计算得到; 后者则是一个考虑地温梯度和岩石热导率的综合性参数,是目前国际上用于表示一个地区热状况的标准参数(汪集暘等,2017)。同时,热流是约束岩石圈热结构和地球动力学过程,评价地热资源潜力和油气成熟度的关键参数(Smith,1983; Furlong and Chapman,2013)。继Pollack等1993年汇编全球热流数据之后,各国学者不断更新着全球热流库的数据。国际热流委员会(International Heat Flow Commission,IHFC)2021年发布了最新的全球热流数据库,该数据库汇编了74548个热流数据,其中55%来自陆域,其余45%来自海洋(Fuchs,2021)。我国热流测试工作开始于20世纪50年代末,1988年中国科学院地质研究所(今中国科学院地质与地球物理研究所)地热组正式公布了我国华北地区第一批热流数据25个。迄今,我国热流已进行了四次汇编并公开发表了1230个大地热流数据(汪集旸和黄少鹏,1988,1990; 胡圣标等,2001; 姜光政等,2016)。中国大陆地区热流值范围30~140 mW/m2,平均值60.4±12.3 mW/m2,热流分布格局总体表现为东高、中低,西南高、西北低的特征(姜光政等,2016; Jiang Guangzheng et al.,2019)。虽然前人针对中国海域盆地发表过地热数据及地温场的研究成果,但主要是针对单个盆地(杨树春等,2003; Yuan Yusong et al.,2009; 彭波和邹华耀,2013; 唐晓音等,2014,2016; Zuo Yinhui et al.,2017)或者单个海域(何丽娟等,1998; Shi Xiaobin et al.,2003; 施小斌等,2003)的报道,中国海域及邻区盆地地热数据未曾经过系统整理汇编,也缺乏对其现今地温场特征的整体认识。
-
图1 中国海及邻区盆地分布及区域构造图(板块边界数据引自Peter,2003)
-
Fig.1 Distribution and regional tectonic map for China's offshore and adjacent areas (plate boundary data from Peter, 2003)
-
(1)—渤海盆地;(2)—北黄海盆地;(3)—南黄海盆地;(4)—东海陆架盆地;(5)—冲绳海槽盆地;(6)—台西盆地;(7)—台西南盆地;(8)—珠江口盆地;(9)—笔架南盆地;(10)—北部湾盆地;(11)—莺歌海盆地;(12)—琼东南盆地;(13)—中沙西盆地;(14)—中建南盆地;(15)—湄公盆地;(16)—万安盆地;(17)—南薇西盆地;(18)—南薇东盆地;(19)—九章盆地;(20)—礼乐盆地;(21)—安渡北盆地;(22)—北康盆地;(23)—曾母盆地;(24)—北巴拉望盆地;(25)—南巴拉望盆地;(26)—南沙海槽盆地;(27)—北苏禄海盆地;(28)—文莱沙巴盆地
-
(1) —Bohai basin; (2) —North Yellow Sea basin; (3) —South Yellow Sea basin; (4) —East China Sea shelf basin; (5) —Okinawa Trough basin; (6) —West Taiwan basin; (7) —Southwest Taiwan basin; (8) —Pearl River Mouth basin; (9) —South Bijia basin; (10) —Beibuwan basin; (11) —Yinggehai basin; (12) —Qiongdongnan basin; (13) —Zhongshaxi basin; (14) —Zhongjiannan basin; (15) —Mekong basin; (16) —Wanan basin; (17) —Nanweixi basin; (18) —Nanweidong basin; (19) —Jiuzhang basin; (20) —Reed Bank basin; (21) —Andubei basin; (22) —Beikang basin; (23) —Zengmu basin; (24) —North Palawan basin; (25) —South Palawan basin; (26) —Nansha trough basin; (27) —North Sulu Sea basin; (28) —Brunei Sabah basin
-
本文新增了810个地温梯度数据,并首次整理汇编了中国海域及其邻区的地温梯度与大地热流数据,绘制了中国海域及其邻区盆地大地热流和地温梯度等值线图,分析了其现今地温场特征,并探讨了其影响因素。相关结果不仅能加深对区域构造和深部岩石圈的理解,而且对了解海域盆地烃源岩热演化过程、生烃状况以及对油气资源评价和降低钻探风险具有重要意义。
-
1 基础数据和方法
-
考虑到中国海及邻区盆地地热基础数据覆盖率偏低以及绘图时的边界效应的问题,本文从最新全球热流数据库筛选了位于东经102°~135°、北纬0°~42°范围内的地温梯度数据1418个,大地热流数据2517个(Fuchs et al.,2021); 收集了该区域前人发表的但未被收录到全球热流库中的地温梯度数据814个,大地热流数据769个。除此之外,整理了渤海盆地、东海陆架盆地、珠江口盆地、北部湾盆地、莺歌盆地和琼东南盆地近年来新增钻井的温度数据,并通过最小二乘法进行线性拟合,获得了研究区810个地温梯度数据。新增钻井温度数据包括地层试油温度(DST)、孔底温度(BHT)、地层随压测试温度(MDT)三种类型。其中,DST、MDT被认为是较可靠的温度数据类型,可直接用于计算地温。由于BHT受到泥浆、静井时间等因素的影响,在计算地温梯度之前,所有的BHT数据均经过了校正(Waples et al.,2004; 唐晓音等,2016)。
-
东经102°~135°、北纬0°~42°范围内共有3042个地温梯度数据,3286个大地热流数据(图2)。值得注意的是,相对大陆地热数据而言,海域地热数据,尤其是海底探针数据由于测量深度浅,极易受到浅层因素的干扰; 另外,钻井测量数据多是石油钻孔,测温时间(泥浆停止循环之后)一般在5~6个小时,最长20个小时,钻孔温度尚未与围岩温度达到稳定。因此,海域地热数据质量相对偏低,但从多地热数据的统计和趋势分析仍可反映其区域地热特征(何丽娟等,1998)。
-
为了更好地呈现中国海及邻区盆地的现今地温场特征,本文基于以上数据,利用Kriging插值方法绘制了地温梯度与大地热流等值线图。为了便于后续讨论,本文将中国海及邻区盆地大致分为东部海域盆地与南部海域盆地,其中东部海域盆地包括渤海盆地、北黄海盆地、南黄海盆地、东海陆架盆地、冲绳海槽盆地,南部海域盆地主要是南海大陆边缘盆地,包括台西南盆地等其他盆地,该划分不一定具有严格的构造意义(图1)。
-
2 结果
-
2.1 中国海及邻区主要盆地热状态
-
如果只考虑位于中国海及邻区盆地范围内的数据,其地温梯度介于15.1~224℃/km之间,算术平均值43.2±25.7℃/km; 大地热流介于22.1~231 mW/m2之间,算术平均值74.4±26.6 mW/m2,地热数据相当分散(图3)。研究区从南到北,主要盆地的大地热流与地温梯度值统计情况见表1。根据Wang Jiyang et al.(1996) 对沉积盆地“热状态”的划分,平均大地热流大于65 mW/m2的盆地为“热盆”。因此,中国海及邻区主要盆地均属于“热盆”。
-
2.2 现今地温场特征
-
中国海及邻区盆地地温梯度与大地热流等值线图显示,研究区的现今地温场整体呈现较为明显的“两带性”,其中近岸带较冷,远岸带较热,局部地区存在热异常(图4)。
-
图2 中国海及邻区地温梯度数据分类散点图(a)与大地热流数据分类散点图(b)
-
Fig.2 Scatter plot of geothermal gradient data (a) and heat flow data (b) in China's offshore and adjacent areas
-
图3 中国海及邻区盆地地温梯度直方图(a)与大地热流直方图(b)
-
Fig.3 Histogram of the geothermal gradient (a) and heat flow data for basins in China's offshore and adjacent areas
-
东部海域盆地群整体地温场整体特征表现为“东南高西北低”的特征。渤海盆地内,济阳坳陷和黄骅坳陷呈现高热流分布,渤中凹陷次之,辽东湾坳陷南缘大地热流值相对较低(图5a1)。北黄海盆地中部大地热流值略低于外部,盆地整体热流值偏低; 现今地温梯度值呈北低南高的趋势(图4)。南黄海盆地整体处于低热状态,北部次级构造单元的热流值低于南部(图5b1),地温梯度值呈现由南到北逐渐增高的特征趋势(图5b2)。东海陆架盆地热流呈东南高西北低的变化趋势,东南缘(浙东坳陷南)出现了高热异常(图5c1),地温梯度呈北低南高的分布特征(图5c2)。冲绳海槽盆地最热(图4),热流值很高,尤其是海槽中部,平均热流值超过240 mW/m2。
-
在南部海域盆地群中,距离南海中央海盆越近的区域越热,地温场由陆坡向海盆中心逐渐变热,呈现外冷内热的准“环带状”特征。高大地热流值(高地温梯度)区域主要集中分布在珠江口盆地珠二坳陷以南、琼东南盆地、莺歌海盆地、中建南盆地和曾母盆地,部分盆地的次级构造单元内可见热异常(图4)。台西和台西南盆地同属陆缘裂谷盆地,高热流值主要集中在盆地的东北缘,低热流值主要集中在西缘和南缘,盆地南缘地温梯度值很高,在东南缘出现了小面积的高热异常(图4)。珠江口盆地的大地热流与地温梯度分布整体由陆架到陆坡增高,但在珠三坳陷北部存在高热异常区(图6a)。莺歌盆地的中央坳陷内为高热异常区(图6b)。琼东南盆地中央坳陷以南表现为高热流特征(图6c)。曾母盆地的大地热流值最高,盆地南缘东巴林坚坳陷、西巴林坚隆起以及康西坳陷北缘的热流值可以高达120 mW/m2以上(Fuchs,2021; 图6d1)。南部海域盆地群中,珠江口盆地珠二坳陷以北、北部湾盆地、万安盆地西部、文莱沙巴盆地、南巴拉望盆地构成的“外环”相对较冷(图4)。南沙海槽盆地东南缘与文莱巴沙盆地西北缘的交界处、礼乐盆地的北部坳陷均出现了低热异常体,大地热流分别低至27.2 mW/m2、24.5 mW/m2(Fuchs,2021)。
-
图4 中国海及邻区盆地地温梯度等值线图(a)与大地热流等值线图(b)
-
Fig.4 Contour maps of geothermal gradient (a) and heat flow (b) for basins in China's offshore and adjacent areas
-
A—A’—南海北部地学断面(据姚伯初,1998)
-
A—A’—one geoscience section across northern South China Sea (after Yao Bochu, 1998)
-
3 现今地温场影响因素分析
-
盆地现今地温场受许多因素的控制和影响,如最后一次热事件发生的时间、岩石圈伸展拉张程度、地壳厚度、高导层埋深、地下水活动等(袁玉松等,2006)。而这些因素都直接或间接受控于区域构造活动。新生代以来,中国海域周缘板块经历了多次运动重组事件,控制了海域盆地的形成和演化过程。晚始新世之前,中国海域的构造演化处于欧亚板块和太平洋板块“双板块”动力体制之下。太平洋板块的俯冲后撤作用是这个时期中国大陆东部和海域盆地发育的主要动力机制(Engebretson et al.,1985; Northrup et al.,1995)。晚始新世全球板块运动事件发生,以太平洋板块俯冲方向改变和新特提斯域关闭,印度和欧亚大陆硬碰撞为标志(Patriat and Achache,1984; Tapponnier et al.,1990; Maruyama et al.,1997)。这一板块运动重组事件极大地改变了亚洲大陆东部的动力边界条件。在此之后,印度板块开始影响和控制中国大陆的构造变形,加上后来菲律宾海板块的形成、顺时针旋转和向北运动,中国东部进入“多板块”动力体制阶段,海域盆地的构造演化发生了显著的变化(任建业,2018)。板间或板内的挤压、碰撞以及伸展作用通常影响着岩石圈结构、地幔物质的流动性质、岩浆或断裂活动等区域性变化,而现今地温场正是对这些变化的最终响应。
-
3.1 东部海域盆地
-
晚始新世—渐新世,太平洋板块俯冲由北北西转为北西西方向(Koppers and Staudigel,2005),中新世印度板块继续向北挤压发生碰撞,并以滑脱线方式作用于中国东部(Molnar and Tapponnier,1977; Li Hongyan et al.,2017),导致华北克拉通向东逃逸和边缘海盆的张开(日本海、东海等)。这一活动使得我国东部边缘发生了岛弧火山作用、弧后扩张和大陆岩石圈减薄的过程,形成了一系列的沟-弧-盆系统和裂谷盆地(Ju Yiwen et al.,2021)。在地幔上拱、岩浆热源、海底热液循环的共同作用下,位于弧后区域的冲绳海槽盆地具有非常高的热流值和地温梯度值,平均值远超过大洋中脊和成熟弧后盆地的热值(李乃胜,1992; Glasby and Notsu,2003; 李西双等,2004; 张玉祥等,2020)。受弧后扩张的影响,东海陆架盆地东南部的岩石圈强度小于西北部(徐杰等,2012),岩石圈热状态明显高于西北部(周海廷等,2017)。因而盆地现今地温场呈现东南高,西北低的特点(图4)。南黄海盆地处于较弱的拉张应力环境,岩石圈地幔伸展系数低、岩石圈减薄弱以及莫霍面非镜像分布等原因导致成盆过程中软流圈热物质向岩石圈热传导的贡献不强,因而盆地始终处于低热状态(李志强等,2022; 图4)。由于渤海盆地处于远离太平洋板块俯冲边缘,晚始新世板块运动重组件对渤海盆地的影响是通过基底走滑断裂,即郯庐断裂和兰聊断裂传递和转变的(任建业,2018)。渤海盆地现今地温场空间展布特征总体上反映了断裂构造的控制作用。太平洋板块对欧亚大陆的俯冲转向必然造成郯庐断裂和兰聊断裂右旋走滑延伸,走滑作用加剧地壳不稳定性,地幔热隆升。断裂沟通深部热源,导致火山、岩盐、热流等壳幔交互作用显著增加,从而形成高热区域(薛永安,2018),因此靠近郯庐断裂的济阳坳陷和靠近兰聊断裂的黄骅坳陷大地热流值高(图5a1)。
-
图5 中国东部海域及邻区部分盆地大地热流与地温梯度等值线图
-
Fig.5 Heat flow and geothermal gradient contour maps of some basins in eastern China sea and adjacent areas
-
(a1)—渤海盆地大地热流等值线图;(a2)—渤海盆地地温梯度等值线图;(b1)—南黄海盆地大地热流等值线图;(b2)—南黄海盆地地温梯度等值线图;(c1)—东海陆架盆地大地热流等值线图;(c2)—东海陆架盆地地温梯度等值线图
-
(a1) —heat flow contour map of the Bohai basin; (a2) —geothermal gradient contour map of the Bohai basin; (b1) —heat flow contour map of the South Yellow Sea basin; (b2) —geothermal gradient contour map of the South Yellow Sea basin; (c1) —heat flow contour map of the East China Sea shelf basin; (c2) —geothermal gradient contour map of the East China Sea shelf basin
-
图6 中国南部海域及邻区部分盆地大地热流与地温梯度等值线图
-
Fig.6 Heat flow and geothermal gradient contour maps of some basins in southern China sea and adjacent areas
-
(a1)—珠江口盆地大地热流等值线图;(a2)—珠江口盆地地温梯度等值线图;(b1)—莺歌海盆地大地热流等值线图;(b2)—莺歌海盆地地温梯度等值线图;(c1)—琼东南盆地大地热流等值线图;(c2)—琼东南盆地温梯度等值线图;(d1)—曾母盆地大地热流等值线图;(d2)—曾母盆地大地地温梯度等值线图
-
(a1) —heat flow contour map of the Pearl River Mouth basin; (a2) —geothermal gradient contour map of Pearl River Mouth basin; (b1) —heat flow contour map of the Yinggehai basin; (b2) —geothermal gradient contour map of the Yinggehai basin; (c1) —heat flow contour map of the Qiongdongnan basin; (c2) —geothermal gradient contour map of the Qiongdongnan basin; (d1) —heat flow contour map of the Zengmu basin; (d2) —geothermal gradient contour map of Zengmu basin
-
3.2 南部海域盆地
-
始新世时期,印度-欧亚板块碰撞导致印支地块向南东方向逃逸。红河断裂带及其海域的延伸区段莺歌海盆地1号断裂及越东-万安断裂构成其逃逸的东部边界。该边界将南海及其周缘地区划分为盆地结构样式和动力学变形机制显著不同的两个区域,即“挤出逃逸构造区”和“俯冲拖曳构造区”(Morley,2002; Clift et al.,2008; 任建业和雷超,2011)。挤出逃逸构造区与欧亚和印度-澳大利亚板块之间的碰撞作用密切相关,形成一系列断裂控制的盆地,如莺歌海盆地、中建南盆地等。受莺歌海1号断裂、越东-万安断裂活动影响,南海西部边缘盆地总体上具有高热特征(施小斌等,2003)。如莺歌海盆地,新生代经历过多幕式张裂活动,并且在中央坳陷带中部发育泥底辟构造群,是一典型的高温高压盆地(He Lijuan et al.,2002; 吴迅达等,2021)。
-
图7 南海北部地学断面二维地壳结构剖面(据姚伯初,1998修改; 剖面位置见图4a)
-
Fig.7 A geoscience section showing the two-dimensional crust structure of the northern South China Sea (modified after Yao Bochu, 1998; see Fig.4a for the section location)
-
俯冲拖曳构造区主要受古南海向婆罗洲之下俯冲作用控制(Sibuet et al.,2016),其西部边界为卢帕尔断裂和廷贾-西巴兰断裂。古南海向南俯冲,南海北部陆缘岩石圈遭受拖曳,并处于多期拉伸减薄的状态(何丽娟等,1998; He Lijuan et al.,2001; Tang Xiaoyin et al.,2017,2018)。岩石圈与地壳厚度以及新生代岩石圈拉张程度控制了南海北部陆缘现今地温场总体变化趋势。南海北部从大陆架—上陆坡—下陆坡—大洋盆地区的地壳逐渐变薄,大陆架和上陆坡的地壳厚度为30~26 km,下陆坡为22~13 km,洋壳的厚度为~8 km(姚伯初,1998; 图7)。岩石圈厚度与地壳厚度变化趋势一致,热岩石圈在大陆架厚度为~90 km,往陆坡方向减薄,在下陆坡、西沙海槽和洋壳区热岩石圈厚度减薄至60~65 km(施小斌等,2000),对应大地热流(地温梯度)由陆向海增高(图4)。然而,各个盆地的温度场分布也存在横向差异。这种横向差异形成的原因可能是由各盆地先存构造及基底差异等不均一性造成的岩石圈拉张减薄差异以及拉张时间先后导致的。比如,华南大陆边缘新生代期间发生多期张裂作用,逐渐形成多个断陷盆地,其中,北部湾盆地最早形成,随后依次拉张形成琼东南、莺歌海和珠江口等盆地(姚伯初,1993)。因此,相比其他盆地,北部湾的热流也偏低(图4)。除了上述的岩石圈差异减薄引起的热流整体分布差异之外,局部地区断裂活动和水热作用也是造成南海北部地温梯度和大地热流平面分布出现局部高异常区的原因。比如珠江口盆地珠三坳陷北部的高热异常区位于北部边界断裂之上,断裂带可作为深部热流体向浅部输送的管道,同时可形成强烈的水热循环或其他热液作用,从而将深部热量转移到浅部地表,最终形成高热异常区(饶春涛和李平鲁,1991)。
-
南海南部陆缘热流分布明显以廷贾-西巴兰断裂为界,东区作为古南海已消亡的海沟体系或前陆盆地,处于从低热流向中热流的热恢复阶段,具有中低热流特征。西区的曾母盆地位于万安断裂和李准-廷贾断裂之间,晚期边界断裂的走滑活动使其处于拉张环境。并且该盆地恰好位于西婆罗洲-巽他陆架的面波低速区以及软流圈上隆区(曾维军和李振五,1997; 吴能友等,1999)。因此,曾母盆地具有高热流特征。
-
4 结论
-
本文通过对中国海及其邻区地热数据的汇编,现今地温场特征的分析及其成因探讨,形成如下结论:
-
(1)中国海及其邻区盆地平均地温梯度43.2±25.7℃/km,平均大地热流74.4±26.6 mW/m2,多数盆地平均大地热流值大于65 mW/m2,属于“热盆”。
-
(2)中国海及其邻区盆地现今地温场分布整体呈现较为明显的“两带性”,其中近岸带较冷,远岸带较热。在东部海域的盆地群中,地温场整体呈“东南高西北低”的特征。在南部海域盆地群中,从陆缘向海盆方向变热,呈现“外冷内热”的环带状特征。
-
(3)中国海及其邻区盆地现今地温场分布受控于区域构造环境,总体上是欧亚板块、印-澳板块、太平洋板块和菲律宾板块共同作用下岩石圈伸展减薄的结果,局部地区的热异常还可能与断裂活动、岩浆活动、泥-热流底辟活动等因素有关。
-
致谢:感谢论文评审专家提出的修改意见,感谢本文编辑对论文的修改。
-
参考文献
-
Chen Jianwen, Liang Jie, Zhang Yinguo, Yang Changqing, Yuan Yong, Xu Ming, Wang Jianqiang, Lei Baohua, Li Gang, Yang Yanqiu, Yang Chuansheng, Sun Jing. 2019. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea. Marine Geology & Quaternary Geology, 39(6): 1~29 (in Chinese with English abstract).
-
Clift P, Lee G H, Duc N A, Barckhausen U, Van Long H, Zhen S. 2008. Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27(3): http: //ir. scsio. ac. cn/handle/344004/871.
-
Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America, Boulder, Colorado, 1~59.
-
Fuchs S, Norden B. 2021. International Heat Flow Commission (2021): The global heat flow database: Release 2021. GFZ Data Services, https: //doi. org/10. 5880/fidgeo. 2021. 014.
-
Furlong K P, Chapman D S. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Auual Review of Earth and Planetary Sciences, 41(1): 385~410.
-
Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geology Reviews, 23(3-4): 299~339.
-
He Lijuan, Xiong Liangping, Wang Jiyang. 1998. The geothermal characteristics in South China Sea. China Offshore Oil and Gas (Geology), 12(2): 87~90 (in Chinese with English abstract).
-
He Lijuan, Wang Kelin, Xiong Liangping, Wang Jiyang. 2001. Heat flow and thermal history of the South China Sea. Physics of the Earth and Planetary Interiors, 126(3-4): 211~220.
-
He Lijuan, Xiong Liangping, Wang Jiyang. 2002. Heat flow and thermal modeling of the Yinggehai basin, South China Sea. Tectonophysics, 351(3): 245~253.
-
Hu Shengbiao, He Lijuan, Wang Jiyang. 2001. Compilation of heat flow data in the China continental area (3rd Edition). Chinese Journal of Geophysics, 44(5): 611~626 (in Chinese with English abstract).
-
Jiang Guangzheng, Gao Peng, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu Shengbiao. 2016. Compilation of heat flow data in the continental area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892~2910 (in Chinese with English abstract).
-
Jiang Guangzheng, Hu Shengbiao, Shi Yizuo, Zhang Chao, Wang Zhuting, Hu Di. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753: 36~48.
-
Ju Yiwen, Yu Kun, Wang Guangzeng, Li Wuyang, Zhang Kaijun, Li Shihu, Guo Lingli, Sun Ying, Feng Hongye, Qiao Peng, Raza A. 2021. Coupling response of the Meso-Cenozoic differential evolution of the North China Craton to lithospheric structural transformation. Earth Science Review, 223: 103859.
-
Koppers A, Staudigel H. 2005. Asynchronous bends in Pacific seamount trails: A case for extensional volcanism? Science, 307(5711): 904~907.
-
Li Hongyan, Xu Yigang, Ryan Jeffrey G, Whattam Scott A. 2017. Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations. Journal of Geophysical Research-Solid Earth, 122(1): 224~246.
-
Li Naisheng. 1992. Study on heat flow in the Okinawa Trough. Acta Oceanologica Sinica (Chinese Edition), 14(4): 78~83 (in Chinese with English abstract).
-
Li Xishuang, Zhao Yuexia, Liu Baohua, Liu Chenguang, Zheng Yanpeng, Wan Kuiyang. 2004. Spatio-temporal characteristics of depositional evolution of the Okinawa Trough. Advances in Marine Science, 22(4): 472~479 (in Chinese with English abstract).
-
Li Zhiqiang, Yang Bo, Han Zijun, Huang Zhen, Wu Qingxun. 2022. Tectonic-thermal evolution of Meso-Cenozoic rift basin in the South Yellow Sea, offshore eastern China: Implications for basin-forming mechanism and thermal evolution of source rocks. Earth Science, 47(5): 1652~1668 (in Chinese with English abstract).
-
Maruyama S, Isozaki Y, Kimura G, Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Platetectonic synthesis from 750 Ma to the present. The Island Arc, 6(1): 121~142.
-
Molnar Peter, Tapponnier Paul. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics. Geology, 5(4): 212~216.
-
Morley C K. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189~215.
-
Northrup C J, Royden L H, Burchfiel B C. 1995. Motion of the Pacific Plate relative to Eurasia and its potential relation to cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719~722.
-
Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311(5987): 615~621.
-
Peng Bo, Zou Huanyao. 2013. Present-day geothermal structure of lithosphere and the Cenozoic tectono-thermal evolution of Bohai basin. Geoscience, 27(6): 1399~1406 (in Chinese with English abstract).
-
Peter B. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1~52.
-
Rao Chuntao, Li Pinglu. 1991. Study of heat flow in Pearl River Mouth basin. China Offshore Oil and Gas (Geology), 5(6): 7~18 (in Chinese with English abstract).
-
Ren Jianye. 2018. Genetic dynamics of China offshore Cenozoic basins. Earth Science, 43(10): 3337~3361 (in Chinese with English abstract).
-
Ren Jianye, Lei Chao. 2011. Tectonic stratigraphic frame work of Yinggeha-Qiongdongnan basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303~3314 (in Chinese with English abstract).
-
Shi Xiaobin, Zhou Di, Zhang Yixiang. 2000. Lithosphere thermal-rheological structure of the continental margin in the northern South China Sea. Chinese Science Bulletin, 45(15): 1660~1665 (in Chinese with English abstract).
-
Shi Xiaobin, Qiu Xuelin, Xia Kanyuan. 2003. Heat flow characteristics and its tectonic significance of South China Sea. Journal of Tropical Oceanography, 22(2): 63~73 (in Chinese with English abstract).
-
Shi Xiaobin, Qiu Xuelin, Xia Kanyuan, Zhou Di. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3): 265~277.
-
Sibuet J, Yeh Y, Lee C. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.
-
Smith C. 1983. Thermal hydrology and heat-flow of beowawe geothermal area, nevada. Geophysics, 48(5): 618~626.
-
Tang Xiaoyin, Hu Shengbiao, Zhang Gongcheng, Yang Shuchun, Shen Huailei, Rao Song, Li Weiwei. 2014. Characteristic of surface heat flow in the Pearl River Mouth basin and its relationship with thermal lithosphere thickness. Chinese Journal of Geophysics, 57(6): 1857~1867 (in Chinese with English abstract).
-
Tang Xiaoyin, Huang Shaopeng, Yang Shuchun, Jiang Guangzheng, Hu Shengbiao. 2016. Correcting on logging-derived temperatures of the Pearl River Mouth basin and characteristics of its present temperature field. Chinese Journal of Geophysics, 59(8): 2911~2921 (in Chinese with English abstract).
-
Tang Xiaoyin, Yang Shuchun, Zhu Junzhang, Long Zulie, Jiang Guangzheng, Huang Shaopeng, Hu Shengbiao. 2017. Tectonic subsidence of the Zhu 1 Sub-basin in the Pearl River Mouth basin, northern South China Sea. Frontiers of Earth Science, 11(4): 729~739.
-
Tang Xiaoyin, Yang Shuchun, Hu Shengbiao. 2018. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth basin, northern South China Sea. Frontiers of Earth Science, 12(3): 532~544.
-
Tapponnier P, Lacassin R, Leloup P H, Scharer U, Zhong D L, Wu H W, Liu X H, Ji S C, Zhang L S, Zhong J Y. 1990. The Ailao Shan Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257): 431~437.
-
Wang Jiyang. 1996. Geothermics in China. Beijing: Seismological Press.
-
Wang Jiyang, Huang Shaopeng. 1988. Compilation of heat flow data for continental area of China. Scientia Geologica Sinica, 23(2): 196~204 (in Chinese with English abstract).
-
Wang Jiyang, Huang Shaopeng. 1990. Compilation of heat flow data for continental area of China (2nd Edition). Seismology and Geology, 12(4): 351~363+366 (in Chinese with English abstract).
-
Waples D W, Pacheco J, Vera A. 2004. A method for correcting log-derived temperatures in deep wells, calibrated in the Gulf of Mexico. Petroleum Geoscience, 10(3): 239~245.
-
Wu Nengyou, Zeng Weijun, Du Deli, Li Zhenwu, Wu Xinlin. 1999. Crust-mantle coupling model and vertical evolution of lithosphere of South China Sea region. Marine Geology & Quaternary Geology, 19(1): 31~38 (in Chinese with English abstract).
-
Wu Xunda, Liao Jin, Sun Wenzhao, Liu Ping, Li Chunlei. 2021. Natural gas distribution and reservoir-forming law of the Yinggehai basin, China. Journal of Geomechanic, 27(6): 963~974 (in Chinese with English abstract).
-
Xu Jie, Zhou Bengang, Xu Jifeng, Zhou Qing, Gao Xianglin, Lu Yuejun, Chen Guoguang. 2012. The recent tectonic stress field of offshore of China mainland and adjacent areas. Earth Science Frontiers, 19(4): 1~7 (in Chinese with English abstract).
-
Xue Yong'an. 2018. New breakthroughs in hydrocarbon exploration in the Bohai sea area driven by understanding innovation: A review of major exploration progresses of Bohai sea area in recent years. China Offshore Oil and Gas, 30(2): 1~8 (in Chinese with English abstract).
-
Yan Pin, Zhou Di, Liu Zhaoshu. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1): 1~21.
-
Yang Shuchun, Hu Shengbiao, Cai Dongsheng, Feng Xiaojie, Gao Le, Lu Jingmei. 2003. Geothermal field and thermotectonic evolution in Southern South Yellow Sea basin. Chinese Science Bulletin, 48(14): 1564~1569 (in Chinese with English abstract).
-
Yao Bochu. 1993. Probing into Cenozoic tectonic movemetns of the continental margin in northern South China Sea. Geological Research of South China Sea, 5: 1~12 (in Chinese with English abstract).
-
Yao Bochu. 1998. Crust structure of the northern margin of the South China Sea and its tectonic significance. Marine Geology & Quaternary Geology, 18(2): 1~16 (in Chinese with English abstract).
-
Yuan Yushong, Ma Yongsheng, Hu Shengbiao, Guo Tonglou, Fu Xiaoyue. 2006. Present-day geothermal characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118~1126 (in Chinese with English abstract).
-
Yuan Yusong, Zhu Weilin, Mi Lijun, Zhang Gongcheng, Hu Shengbiao, He Lijuan. 2009. “Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth basins of the South China Sea. Marine and Petroleum Geology, 26(7): 1152~1162.
-
Zeng Weijun, Li Zhenwu. 1997. The upper mantle activation in South China Sea and the indosinian mantle plume. Geological Research of South China Sea, 97(9): 1~19 (in Chinese with English abstract).
-
Zhang Gongcheng. 2012. Co-control of source rock and heat: The generation and distribution of hydrocarbons controlled by source rocks and heat. Acta Petrolei Sinica, 33(5): 723~738 (in Chinese with English abstract).
-
Zhang Gongcheng, Li Youchuan, Liu Shixiang, Zhao Zhao. 2014. “Co-control of source rock and heat” in orderly distribution of “near-shore oil and far-shore gas” in China's offshore and adjacent area. China Petroleum Exploration, 19(5): 1~22 (in Chinese with English abstract).
-
Zhang Yuxiang, Zeng Zhigang, Wang Xiaoyuan, Chen Shuai, Yin Xuebo, Chen Zuguang. 2020. Geologic control on hydrothermal activities in the Okinawa Trough. Advances in Earth Science, 35(7): 678~690 (in Chinese with English abstract).
-
Zhou Haiting, Jiang Xiaodian, Li Deyong, Xing Junhui, Gong Wei. 2017. Thermal-rheological property of lithosphere beneath Xihu sag, East China Sea shelf basin. Geotectonica et Metallogenia, 41(3): 481~490 (in Chinese with English abstract).
-
Zuo Yinhui, Ye Bin, Wu Wenting, Zhang Yunxian, Ma Wenxin, Tang Shilin, Zhou Yongshui. 2017. Present temperature field and Cenozoic thermal history in the Dongpu depression, Bohai Bay basin, North China. Marine and Petroleum Geology, 88(Supplement C): 696~711.
-
陈建文, 梁杰, 张银国, 杨长清, 袁勇, 许明, 王建强, 雷宝华, 李刚, 杨艳秋, 杨传胜, 孙晶. 2019. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展. 海洋地质与第四纪地质, 39(6): 1~29.
-
何丽娟, 熊亮萍, 汪集旸. 1998. 南海盆地地热特征. 中国海上油气(地质), 12(2): 87~90.
-
胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611~626.
-
姜光政, 高堋, 饶松, 张林友, 唐晓音, 黄方, 赵平, 庞忠和, 何丽娟, 胡圣标. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892~2910.
-
李乃胜. 1992. 冲绳海槽海底热流的研究. 海洋学报(中文版), 14(4): 78~83.
-
李西双, 赵月霞, 刘保华, 刘晨光, 郑彦鹏, 王揆洋. 2004. 冲绳海槽沉积演化的时空特征. 海洋科学进展, 22(4): 472~479.
-
李志强, 杨波, 韩自军, 黄振, 吴庆勋. 2022. 南黄海中—新生代裂谷盆地构造-热演化: 对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652~1668.
-
彭波, 邹华耀. 2013. 渤海盆地现今岩石圈热结构及新生代构造-热演化史. 现代地质, 27(6): 1399~1406.
-
饶春涛, 李平鲁. 1991. 珠江口盆地热流研究. 中国海上油气(地质), 5(6): 7~18.
-
任建业. 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337~3361.
-
任建业, 雷超. 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303~3314.
-
施小斌, 周蒂, 张毅祥. 2000. 南海北部陆缘岩石圈热-流变结构. 科学通报, 45(15): 1660~1665.
-
施小斌, 丘学林, 夏戡原, 周蒂. 2003. 南海热流特征及其构造意义. 热带海洋学报, 22(2): 63~73.
-
唐晓音, 胡圣标, 张功成, 杨树春, 沈怀磊, 饶松, 李卫卫. 2014. 珠江口盆地大地热流特征及其与热岩石圈厚度的关系. 地球物理学报, 57(6): 1857~1867.
-
唐晓音, 黄少鹏, 杨树春, 姜光政, 胡圣标. 2016. 南海珠江口盆地钻井BHT温度校正及现今地温场特征. 地球物理学报, 59(8): 2911~2921.
-
汪集旸, 黄少鹏. 1988. 中国大陆地区大地热流数据汇编. 地质科学, 23(2): 196~204.
-
汪集旸, 黄少鹏. 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351~363+366.
-
吴能友, 曾维军, 杜德莉, 李振五, 吴新林. 1999. 南海区域岩石圈的壳-幔耦合关系和纵向演化. 海洋地质与第四纪地质, 19(1): 31~38.
-
吴迅达, 廖晋, 孙文钊, 刘平, 李春雷. 2021. 莺歌海盆地天然气运聚成藏条件与分布富集规律. 地质力学学报, 27(6): 963~974.
-
徐杰, 周本刚, 计凤桔, 周庆, 高祥林, 吕悦军, 陈国光. 2012. 中国东部海域及其邻区现代构造应力场研究. 地学前缘, 19(4): 1~7.
-
薛永安. 2018. 认识创新推动渤海海域油气勘探取得新突破——渤海海域近年主要勘探进展回顾. 中国海上油气, 30(2): 1~8.
-
杨树春, 胡圣标, 蔡东升, 冯晓杰, 高乐, 卢景美. 2003. 南黄海南部盆地地温场特征及热-构造演化. 科学通报, 48(14): 1564~1569.
-
姚伯初. 1993. 南海北部陆缘新生代构造运动初探. 南海地质研究, 5: 1~12.
-
姚伯初. 1998. 南海北部陆缘的地壳结构及构造意义. 海洋地质与第四纪地质, 18(2): 1~16.
-
袁玉松, 马永生, 胡圣标, 郭彤楼, 付孝悦. 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118~1126.
-
曾维军, 李振五. 1997. 南海区域的上地幔活动特征及印支地幔柱. 南海地质研究, 97(9): 1~19. 张功成. 2012. 源热共控论. 石油学报, 33(5): 723~738.
-
张功成, 李友川, 刘世翔, 赵钊. 2014. “源热共控”中国海油气田“近岸油、远岸气”有序分布. 中国石油勘探, 19(5): 1~22.
-
张玉祥, 曾志刚, 王晓媛, 陈帅, 殷学博, 陈祖兴. 2020. 冲绳海槽地质构造对热液活动的控制机理. 地球科学进展, 35(7): 678~690.
-
周海廷, 姜效典, 李德勇, 邢军辉, 宫伟. 2017. 东海陆架盆地西湖凹陷岩石圈热流变性质. 大地构造与成矿学, 41(3): 481~490.
-
摘要
现今地温场是构造活动、岩石圈热状态的综合反应,对研究盆地的区域构造演化、深部岩石圈结构和评估油气潜力具有重要意义。地温梯度和大地热流是表征沉积盆地热状况的两个基本参数。虽然我国大陆地区地热数据较丰富,并已经过四次系统汇编,但中国海及邻区盆地地热数据报道较少,且未经过系统整理。本文基于近年来新增的钻井温度数据,新增计算研究区810个地温梯度数据,并收集了国内外数据库、期刊的地热数据,在此基础上,首次系统整理了中国海及邻区盆地地温梯度数据和大地热流数据,绘制了其等值线图,分析了研究区现今地温场特征并讨论了其影响因素。研究结果表明,中国海及邻区盆地平均地温梯度43.2±25.7 ℃/km,平均大地热流74.4±26.6 mW/m2,多数盆地平均大地热流高于65 mW/m2,属于“热盆”;地温场分布总体呈现较为明显的“两带性”,其中近岸带较冷,远岸带较热;研究区现今地温场特征直接或间接地受控于其所处的构造环境,整体上是太平洋板块等多板块作用下岩石圈伸展减薄的结果,局部地区的热异常可能与断裂活动、岩浆活动、泥-热流底辟活动等因素有关。
Abstract
The present geothermal field is a comprehensive reaction of tectonic activity and lithospheric thermal state, which is of great significance to the study of regional tectonic evolution, deep lithospheric structure, and hydrocarbon potential evaluation of basins. Geothermal gradient and heat flow are two basic physical parameters to characterize the thermal status of sedimentary basins. Although geothermal data in mainland China is abundant and has been compiled four times, geothermal data for basins in China's offshore and adjacent areas are rarely reported and have not even been systematically sorted out. In this paper, we calculated 810 geothermal gradient data based on newly added drilling temperature of offshore basins in recent years and collected the geothermal data from published databases and journals. With these data, we firstly compiled the geothermal gradient and heat flow in China seas and adjacent areas, and then, draw the geothermal gradient and heat flow contour maps for basins in China's offshore and adjacent areas. Moreover, we summed up the present geothermal field characteristics and analyzed its influence factor. The results show that the average geothermal gradient and heat flow of basins in China's offshore and adjacent areas are 43.2±25.7 ℃/km and 74.4±26.6 mW/m2, respectively. Most of those basins have an average heat flow higher than 65 mW/m2, thus can be sorted into the “hot basin”. Generally, the present geothermal field of offshore basins is characterized by “two zones”, in which the nearshore zone is cold and the far shore zone is relatively hot. The regional tectonic setting influenced the present geothermal field in the study area. The Lithosphere extension and thinning resulted from the interaction of the Eurasian Plate, Indo-Australian plate, Pacific plate, and Philippine Plate multiple control the overall characteristics, while the local thermal anomalies might be ascribed to fault activity, magmatic activity, and mud-heat flow diapir activities.
Keywords
offshore basins ; heat flow ; geothermal gradient ; present geothermal field ; influence factors