en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王岳军,男,1969年生。教授,主要从事构造地质学与大地构造学研究。E-mail:wangyuejun@mail.sysu.edu.cn。

参考文献
Advokaat E L, Marshall N T, Li S H, Spakman W, Krijgsman W, van Hinsbergen D J J. 2018. Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics, 37(8): 2486~2512.
参考文献
Alfing J, Brocker M, Setiawan N I. 2021. Rb-Sr geochronology of metamorphic rocks from the Central Indonesian accretionary collision complex: additional age constraints for the Meratus and Luk Ulo complexes (South Kalimantan and Central Java). Lithos, 388~389.
参考文献
Basir J. 1996. Late Jurassic to Early Cretaceous radiolaria from chert blocks in the Lubok Antu mélange, Sarawak, Malaysia. Journal of Southeast Asian Earth Sciences, 13(1): 1~11.
参考文献
Basir J. 2000. Significance of Mesozoic radiolarian chert in Sabah and Sarawak. Proceedings Proceedings Geological Society of Malaysia Annual Conference, 123~130.
参考文献
Basir J, Aziman M. 1996. Some Lower Cretaceous radiolaria from the Serabang complex, Sarawak. Warta Geologi, 22(2): 61~65.
参考文献
Basir J, Uyop S. 1999. Significance of Early Jurassic Radiolaria from West Sarawak, Malaysia. Bulletin of the Geological Society of Malaysia, 43.
参考文献
Breitfeld H T, Hall R. 2018. The eastern Sundaland margin in the latest Cretaceous to Late Eocene: sediment provenance and depositional setting of the Kuching and Sibu Zones of Borneo. Gondwana Research, 63: 34~64.
参考文献
Breitfeld H T, Hall R, Galin T, Forster M A, BouDagher-Fadel M K. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35~56.
参考文献
Breitfeld H T, Hall R, Galin T, BouDagher-Fadel M K. 2018. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200~223.
参考文献
Breitfeld H T, Macpherson C, Hall R, Thirlwall M, Ottley C J, Hennig-Breitfeld J. 2019. Adakites without a slab: remelting of hydrous basalt in the crust and shallow mantle of Borneo to produce the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak. Lithos, 344: 100~121.
参考文献
Breitfeld H T, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig-Breitfeld J, van Hattum M W A. 2020. Mesozoic Paleo-Pacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh metamorphic Group. Frontiers in Earth Science, 8: 536.
参考文献
Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J. 2014. The configuration of Greater Gondwana—evidence from LA-ICPMS, U-Pb geochronology of detrital zircons from the Paleozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31~51.
参考文献
Burton-Johnson A, Macpherson C G, Millar I L, Whitehouse M J, Ottley C J, Nowell G M. 2020. A Triassic to Jurassic arc in north Borneo: geochronology, geochemistry, and genesis of the Segama Valley felsic intrusions and the Sabah ophiolite. Gondwana Research, 84: 229~244.
参考文献
Cai G Q, Wan Z F, Yao Y J, Zhong L F, Zheng H, Kapsiotis A, Zhang C. 2019. Mesozoic northward subduction along the SE Asian continental margin inferred from magmatic records in the South China Sea. Minerals, 9(10): 598.
参考文献
Charvet J. 2013. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: a review-reappraisal of the accretionary orogeny and revalidation of the collisional model. Journal of Asian Earth Sciences, 72: 88~101.
参考文献
Cui Y, Shao L, Li Z-X, Zhu W, Qiao P, Zhang X. 2021. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36~52.
参考文献
Davies L, Hall R, Armstrong R. 2014. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains. Indonesian Petroleum Association.
参考文献
Davies L, Hall R, Marnie F. 2015. Age and character of basement rocks in SW Borneo: new insights from Ar-Ar dating of Pinoh metamorphic group rocks. Indonesian Petroleum Association, 52~54.
参考文献
De Keyser F, Rustandi E. 1993. Geology of the Ketapang sheet area, Kalimantan, 1∶250000. Geological Research Development Centre.
参考文献
Dimalanta C B, Faustino-Eslava D V, Gabo-Ratio J A S, Marquez E J, Padrones J T, Payot B D, Queano K L, Ramos N T, Yumul Jr G P. 2020. Characterization of the proto-Philippine Sea Plate: evidence from the emplaced oceanic lithospheric fragments along eastern Philippines. Geoscience Frontiers, 11(1): 3~21.
参考文献
Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206(9): 1~60.
参考文献
Fang Xudong, Zhang Aimei, Wang Yuejun, Hu Xiangyun, Qian Xin, He Huiying, Chen Min. 2021. Geochronoloy and geochemical characteristics of Lundu mafic rocks in Kuching area, Sarawak. Earth Science, 46 (6): 2133~2144 (in Chinese with English abstract).
参考文献
Fuller M, Ali J R, Moss S J, Frost G M, Richter B, Mahfi A. 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17 (1-2): 3~24.
参考文献
Galin T, Breitfeld H T, Hall R, Sevastjanova I. 2017. Provenance of the Cretaceous-Eocene Rajang Group submarine fan, Sarawak, Malaysia from light and heavy mineral assemblages and U-Pb zircon geochronology. Gondwana Research, 51: 209~233.
参考文献
Gan C S, Wang Y J, Barry T L, Zhang Y Z, Qian X. 2020. Spatial and temporal influence of Pacific subduction on South China: geochemical migration of Cretaceous mafic-intermediate rocks. Journal of the Geological Society, 177 (5): 1013~1024.
参考文献
Gan C S, Zhang Y Z, Wang Y J, Qian X, Wang Y. 2021. Reappraisal of the Mesozoic tectonic transition from the Paleo-Tethyan to Paleo-Pacific domains in South China. Geological Society of America Bulletin, 133 (11-12): 2582~2590.
参考文献
Gan C S, Qian X, Wang Y J, Feng Q L, Zhang Y Z, Asis J B, Ao S J. 2022. Late Cretaceous granitoids along the northern Kuching Zone: implications for the Paleo-Pacific Subduction in Borneo. Lithosphere, 2022 (1).
参考文献
Guo F, Wu Y M, Zhang B, Zhang X B, Zhao L, Liao J. 2021. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth-Science Reviews, 212: 103448.
参考文献
Haile N S. 1954. The geology and mineral resources of the Strap and Sadong Valleys, west Sarawak, including the Klingkang Range coal. US Government Printing Office.
参考文献
Haile N S. 1974. Borneo. Geological Society, London, Special Publications, 4 (1): 333~347.
参考文献
Haile N S, McElhinny M W, McDougall I. 1977. Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan (Borneo), and their significance in interpreting regional structure. Journal of the Geological Society, 133 (2): 133~144.
参考文献
Hall R. 2009. Southeast Asia's changing palaeogeography. Blumea, 54 (1-2): 148~161.
参考文献
Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570: 1~41.
参考文献
Hall R, Clements B, Smyth H R. 2009. Sundaland: basement character, structure and plate tectonic development, Proceedings Indonesian Petroleum Association 33rd Annual.
参考文献
Hamilton W B. 1979. Tectonics of the Indonesian region. Washington, US Government Printing Office.
参考文献
Hart S R. 1984. A large-scale isotope anomaly in the Southern hemisphere mantle. Nature, 309 (5971): 753~757.
参考文献
Hartono U. 2012. Magmatism in Kalimantan, Bandung. Centre for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources.
参考文献
Hashimoto W, Aliate E, Aoki N, Balce G, Ishibashi T, Kitamura N, Matsumoto T, Tamura M, Yanagida J. 1975. Cretaceous system of Southeast Asia. Geology Paleontology of SE Asia, 145: 219~287.
参考文献
Hennig J, Hall R, Armstrong R A. 2016. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Research, 32: 41~63.
参考文献
Hennig J, Breitfeld H T, Hall R, Nugraha A M S. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292~310.
参考文献
Hoffmann J, Brocker M, Setiawan N I, Klemd R, Berndt J, Maulana A, Baier H. 2019. Age constraints on high-pressure/low-temperature metamorphism and sedimentation in the Luk Ulo Complex (Java, Indonesia). Lithos, 324: 747~762.
参考文献
Hutchison C S. 1989. Geological Evolution of South-east Asia. Oxford: Clarendon Press.
参考文献
Hutchison C S. 2005. Geology of North-West Borneo: Sarawak, Brunei and Sabah, Oxford University Press.
参考文献
Jaya A, Nishikawa O, Hayasaka Y. 2017. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia. Lithos, 292: 96~110.
参考文献
Katili J A. 1971. A review of the geotectonic theories and tectonic maps of Indonesia. Earth-Science Reviews, 7 (3): 143-163.
参考文献
Kon'no E. 1972. Some Late Triassic plants from the southwestern border of Sarawak, East Malaysia. Geological and Palaeontology of South Asia, 10: 125~178.
参考文献
Koolhoven W C B. 1933. Geological Map of Java, Explanatory Notes to Sheet 14 (Bayah), 1∶100, 000. Mining Bureau of the Netherlands Indies.
参考文献
La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.
参考文献
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179~182.
参考文献
Liu J L, Tran M D, Tang Y, Nguyen Q L, Tran T H, Wu W B, Chen J F, Zhang Z C, Zhao Z D. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628~644.
参考文献
Lu Baoliang, Wang Pujun, Liang Jianshe, Sun Xiaomeng, Wang Wanyin. 2014. Structural properties of Paleo-South China Sea and their relationship with the Tethys and the Paleo-Pacific tectonic domain. Journal of Jilin University: Earth Science Edition, 44(5): 1441~1450 (in Chinese with English abstract).
参考文献
Luhr J F, Haldar D. 2006. Barren Island Volcano (NE Indian Ocean): island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177~212.
参考文献
Mazumder R, Anthony F B M, Teo B S S, Roy S, Hajri A A, Ohta T, De S, Catuneanu O. 2021. Cretaceous fore arc sedimentation and contemporary basin tectonics in northwestern Borneo: new sedimentological insights from Pedawan Formation, Kuching Zone, east Malaysia. The Journal of Geology, 129(4): DOI: 10. 1086/715790.
参考文献
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.
参考文献
Metcalfe I. 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9(1-2): 24~46.
参考文献
Metcalfe I. 2012. Changhsingian (Late Permian) conodonts from Son La, northwest Vietnam and their stratigraphic and tectonic implications. Journal of Asian Earth Sciences, 50: 141~149.
参考文献
Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.
参考文献
Miao X Q, Huang X L, Yan W, Yang F, Zhang W F, Cai Y X, Yu Y, He P L. 2021. Late Triassic dacites from well NK-1 in the Nansha Block: constraints on the Mesozoic tectonic evolution of the southern South China Sea margin. Lithos, 398: 106337.
参考文献
Ng S W P, Chung S L, Robb L J, Searle M P, Ghani A A, Whitehouse M J, Oliver G J H, Sone M, Gardiner N J, Roselee M H. 2015. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Geological Society of America Bulletin, 127(9-10): 1209~1237.
参考文献
Nguyen T T B, Satir M, Siebel W, Chen F K. 2004. Granitoids in the Dalat zone, southern Vietnam: age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, 93(3): 329~340.
参考文献
Nuraiteng T A, Kushairi H A. 1987. Pedawan Formation of the Penrissen area, Sarawak: a revision of its upper age limit. Warta Geologi, 13(2): 43~50.
参考文献
Parkinson C. 1998. An outline of the petrology, structure and age of the Pompangeo schist complex of Central Sulawesi, Indonesia. Island Arc, 7(1-2): 231~245.
参考文献
Pieters P E, Sanyoto P. 1989. Geological data record Nangataman and Pontianak 1∶250000 Quadrayles, West Kalimantan. Geological Research Development Center, 55.
参考文献
Pieters P E, Sanyoto P. 1993. Geology of the Pontianak/Nangataman sheet area, Kalimantan 1∶250000. Geological Research Development Centre.
参考文献
Pieters P E, Abidin H Z, Sudana D. 1993. Geology of the Long Pahangai sheet area, Kalimantan, Quadrangle. Geological Research Development Centre.
参考文献
Pimm A C. 1965. Serian area, west Sarawak, Malaysia. Geological Survey Borneo Region, Malaysia.
参考文献
Qian X, Feng Q L, Wang Y J, Chonglakmani C, Monjai D. 2016. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in northwest Laos. Lithos, 245: 60~75.
参考文献
Qian X, Wang Y, Zhang Y, Wang Y, Senebouttalath V. 2020. Late Triassic post-collisional granites related to Paleotethyan evolution in northwestern Lao PDR: geochronological and geochemical evidence. Gondwana Research, 84: 163~176.
参考文献
Qian X, Yu Y Q, Wang Y J, Gan C S, Zhang Y Z, Asis J B. 2022. Late Cretaceous nature of SW Borneo and Paleo-Pacific subduction: new insights from the granitoids in the Schwaner Mountains. Lithosphere, doi: 10. 2113/2022/8483732.
参考文献
Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3. 8 GPa. Chemical Geology, 160(4): 335~356.
参考文献
Schairer G, Zeiss A. 1992. First record of Callovian ammonites from West Kalimantan (Middle Jurassic, Kalimantan Barat, Borneo, Indonesia). Journal of Australian Geology Geophysics, 13(3): 229~236.
参考文献
Schmidtke E A, Fuller M D, Haston R B. 1990. Paleomagnetic data from Sarawak, Malaysian Borneo, and the late Mesozoic and Cenozoic tectonics of Sundaland. Tectonics, 9(1): 123~140.
参考文献
Setiawan N I, Osanai Y, Nakano N, Adachi T, Setiadji L D, Wahyudiono J. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 12(28): 4~12.
参考文献
Setiawan N I, Osanai Y, Nakano N, Adachi T, Hendratno A, Sasongko W, Ansori C. 2020. Peak metamorphic conditions of garnet amphibolite from Luk Ulo complex, Central Java, Indonesia: implications for medium-pressure/high-temperature metamorphism in the Central Indonesian accretionary collision complex. Indonesian Journal on Geoscience, 7(3): 225~239.
参考文献
Sevastjanova I, Clements B, Hall R, Belousova E A, Griffin W L, Pearson N. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Research, 19(4): 1024~1039.
参考文献
Shellnutt J G, Lan C Y, Long T V, Usuki T, Yang H J, Mertzman S A, Iizuka Y, Chung S L, Wang K L, Hsu W Y. 2013. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: tectonic implications for the evolution of Southeast Asia. Lithos, 182: 229~241.
参考文献
Shinjo R, Chung S L, Kato Y, Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591~10608.
参考文献
Soeria-Atmadja R, Noeradi D, Priadi B. 1999. Cenozoic magmatism in Kalimantan and its related geodynamic evolution. Journal of Asian Earth Sciences, 17(1-2): 25~45.
参考文献
Supriatna S, Margono U, de Keyser F, Langford R P, Trail D S. 1993. Geology of the Sanggau sheet area, Kalimantan, 1∶250000. Geological Research Development Center.
参考文献
Suwarna N, Langford R P, Geologi P P D P. 1993. Peta Geologi Lembar Singkawang, Kalimantan 1∶250000. Pusat Penelitian dan Pengembangan Geologi.
参考文献
Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annual Reviewof Earth and Planetary Sciences, 29: 109~134.
参考文献
Tan D N K. 1978. Lower Cretaceousage for the chert is the Lupar Valley, West Sarawak. Warta Geologi, 4: 173~176.
参考文献
Tan D N K. 1982. The Lubok Antu melange, Lupar Valley, west Sarawak: a Lower Tertiary subduction complex. Bulletin of the Geological Society of Malaysia, (15): 31~46.
参考文献
Tang J, Xu W L, Wang F, Ge W C. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, 61(5): 527~559.
参考文献
Tate R B. 1991. Cross-border correlation of geological formation in Sarawak and Kalimantan. Geological Society of Malaysia Bulletin, 28: 63~95.
参考文献
Tate R B, Hon V. 1991. The oldest rocks in Borneo: a note on the Tuang Formation, west Sarawak and its importance in relation to the presence of a Basement in west Borneo. Warta Geologi, 17(5): 221~224.
参考文献
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. Washington DC American Geophysical Union Geophysical Monograph Series, 27: 23~56.
参考文献
van Emmichoven C P A Z. 1939. The geology of the central and eastern part of the western division of Borneo. In: Geological Acaounts of West Borne. Geol. Survey Departement of British Terr. in Borneo, Bulltin, 2: 159~272.
参考文献
van Hattum M W A, Hall R, Pickard A L, Nichols G J. 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76: 266~282.
参考文献
Wakita K, Munasri, Widoyako B. 1994. Cretaceous radiolarians from the Luk-Ulo Melange Complex in the Karangsambung area, central Java, Indonesia. Journal of Southeast Asian Earth Sciences, 9(1-2): 29~43.
参考文献
Wakita K, Miyazaki K, Zulkarnain I, Sopaheluwakan J, Sanyoto P. 1998. Tectonic implications of new age data for the Meratus complex of South Kalimantan, Indonesia. Island Arc, 7(1-2): 202~222.
参考文献
Wang P C, Li S Z, Guo L L, Jiang S H, Somerville I D, Zhao S J, Zhu B D, Chen J, Dai L M, Suo Y H. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51: 464~489.
参考文献
Wang W, Zhou M F, Yan D P, Li L, Malpas J. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1~19.
参考文献
Wang Y J, Qian X, Cawood P A, Liu H C, Feng Q L, Zhao G C, Zhang Y H, He H Y, Zhang P Z. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195~230.
参考文献
Wang Y J, Yang T X, Zhang Y Z, Qian X, Gan C S, Wang Y K, Wang Y, Senebouttalath V. 2020a. Late Paleozoic back-arc basin in the Indochina block: constraints from the mafic rocks in the Nan and Luang Prabang tectonic zones, Southeast Asia. Journal of Asian Earth Sciences, 195.
参考文献
Wang Y J, Zhang Y Z, Qian X, Senebouttalath V, Wang Y, Wang Y K, Gan C S, Zaw K. 2020b. Ordo-Silurian assemblage in the Indochina interior: geochronological, elemental, and Sr-Nd-Pb-Hf-O isotopic constraints of early Paleozoic granitoids in South Laos. Geological Society of America Bulletin, 133(1-2): 325~346.
参考文献
Wang Y J, Qian X, Zhang Y Z, Gan C S, Zhang A M, Zhang F F, Feng Q L, Cawood P A, Zhang P Z. 2021a. Southern extension of the Paleotethyan zone in SE Asia: evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 398: 106336.
参考文献
Wang Y J, Zhang A M, Qian X, Asis J B, Feng Q L, Gan C S, Zhang Y Z, Cawood P A, Wang W T, Zhang P Z. 2021b. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 400-401: 106425.
参考文献
Wang Y J, Wang Y, Zhang Y Z, Cawood P A, Qian X, Gan C S, Zhang F F, Zhang P Z. 2021c. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks. Journal of Asian Earth Sciences, 206: 104648.
参考文献
Wang Y J, Zhang Y Z, Qian X, Wang Y, Cawood P A, Gan C S, Senebouttalath V. 2021d. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: constraints from igneous and sedimentary rocks. Lithos, 382.
参考文献
Wang Y J, Wu S N, Qian X, Cawood P A, Lu X H, Gan C S, Bin Asis J, Zhang P Z. 2022a. Early Cretaceous subduction in NW Kalimantan: geochronological and geochemical constraints from the Raya and Mensibau igneous rocks. Gondwana Research, 101: 243~256.
参考文献
Wang Y J, Qian X, Cawood P A, Ghani A, Gan C S, Wu S N, Zhang Y Z, Wang Y, Zhang P Z. 2022b. Cretaceous Tethyan subduction in SE Borneo: geochronological and geochemical constraints from the igneous rocks in the Meratus complex. Journal of Asian Earth Sciences, 105084.
参考文献
Wang Y J, Liu Z, Murtadha S, Cawood P A, Qian X, Ghani A, Gan C S, Zhang Y Z, Wang Y, Li S. 2022c. Jurassic subduction of the Paleo-Pacific plate in Southeast Asia: new insights from the igneous and sedimentary rocks in West Borneo. Journal of Asian Earth Sciences, 105111.
参考文献
Wang Yiwen, Chen Xinyue, Gan Chengshi. 2022. Zircon U-Pb dating and tectonic significance of the plagiogranite in the Meratus ophiolitic mélange of SE Kalimantan. Geotectonica et Metallogenia, 46(3): 622~632 (in Chinese with English abstract).
参考文献
Wilford G E, Kho C H. 1965. Penrissen area, west Sarawak, US Government Printing Office.
参考文献
Wolfenden E B, Haile N S. 1963. Sematan and Lundu area. West Sarawak. Geological Survey Department. British Territories in Borneo, Report, 1.
参考文献
Wu S N, Wang Y J, Qian X, Asis J B, Lu X H, Zhang Y Z, Gan C S. 2022. Discovery of the Late Cretaceous Barru adakite in SW Sulawesi and slab break-off beneath the Central Indonesian Accretionary complex. Journal of Asian Earth Sciences, 105214.
参考文献
Xu C H, Shi H S, Barnes C G, Zhou Z Y. 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58(1): 71~94.
参考文献
Xu C H, Zhang L, Shi H S, Brix M R, Huhma H, Chen L H, Zhang M Q, Zhou Z Y. 2017. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics, 36(3): 466~492.
参考文献
Yan Q S, Shi X F, Liu J H, Wang K S, Bu W R. 2010. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: constraints on the basement nature. Journal of Asian Earth Sciences, 37(2): 130~139.
参考文献
Yen T P. 1953. On the occurrence of the late Paleozoic fossils in the metamorphic complex of Taiwan. Bulletin of the Geological Survey of Taiwan, 4: 23~26.
参考文献
Yui T F, Okamoto K, Usuki T, Lan C Y, Chu H T, Liou J G. 2009. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China--evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304~328.
参考文献
Yui T F, Chu H T, Suga K, Lan C Y, Chung S H, Wang K L, Grove M. 2017. Subduction-related 200 Ma Talun metagranite, SE Taiwan: an age constraint for palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. International Geology Review, 59(3): 333~346.
参考文献
Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227~273.
参考文献
Zhou Di, Sun Zhen. 2017. Plate evolution in the Pacific domain since Late Mesozoic and its inspiration to tectonic research of East Asia margin. Journal of Tropical Oceanography, 36(3): 1~19 (in Chinese with English abstract).
参考文献
Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269~287.
参考文献
Zimmermann S, Hall R. 2016. Provenance of Triassic and Jurassic sandstones in the Banda Arc: petrography, heavy minerals and zircon geochronology. Gondwana Research, 37: 1~19.
参考文献
Zimmermann S, Hall R. 2019. Provenance of Cretaceous sandstones in the Banda Arc and their tectonic significance. Gondwana Research, 67: 1~20.
参考文献
Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth And Planetary Sciences, 14(1): 493~571.
参考文献
Zhu S, Yao Y J, Li X J, Gao H F, Zhang J Y, Xu Z Y, Wang J. 2022. Spatio-temporal distribution and mechanism of Cenozoic magmatism in the South China Sea and adjacent areas: insight from seismic, geochemical and geochronological data. International Geology Review, 1~28.
参考文献
房旭东, 张爱梅, 王岳军, 胡祥云, 钱鑫, 何慧莹, 陈敏. 2020. 沙捞越古晋地区伦杜基性岩的形成时代、地球化学特征及其地质意义. 地球科学, 46(6): 2133~2144.
参考文献
鲁宝亮, 王璞珺, 梁建设, 孙晓猛, 王万银. 2014. 古南海构造属性及其与特提斯和古太平洋构造域的关系. 吉林大学学报, 44(5): 1441~1450.
参考文献
王逸文, 陈新跃, 甘成势. 2022. 加里曼丹东南部梅拉图斯斜长花岗岩的锆石U-Pb年代学及其地质意义. 大地构造与成矿学, 46(3): 622~632.
参考文献
周蒂, 孙珍. 2017. 晚中生代以来太平洋域板块过程及其对东亚陆缘构造研究的启示. 热带海洋学报, 36(3): 1~19.
目录contents

    摘要

    古太平洋俯冲作用在婆罗洲如何表现,有何地质记录?西北婆罗洲与西南婆罗洲是否属于以板块缝合线分割的不同陆块,中生代时期婆罗洲西部与我国东南沿海存在何种关联?回答上述科学问题是揭秘中生代古太平洋俯冲体系的关键一环。本文系统综合了近年笔者在西北和西南婆罗洲所开展的野外调查和代表性火成岩的主微量元素和Sr-Nd-Pb同位素组成、以及锆石U-Pb年代学和Hf-O同位素数据。研究表明,西北婆罗洲发育三叠纪(约256~216 Ma)由少量新生地壳物质参与的基底熔融而成花岗质岩石。沙捞越古晋带(Sarawak Kuching zone)卢帕线(Lupar Line)的帕控(Pakong)和萨拉邦(Sarabang)镁铁质岩石形成于约98~84 Ma,以卢帕线所代表的洋盆主要发育于白垩纪。沙捞越古晋带内前人划属的三叠纪西连组(Serian)火山岩中至少有相当部分与佩达万(Pedawan)组沉积岩系和诗马丹-伦杜-诗里阿曼(Sematan-Lundu-Sri Aman)花岗质岩石同期,为晚白垩世(约95~77 Ma)产物。加里曼丹西北地区原定义为上三叠统—下侏罗统的孟嘉影(Bengkayang)组沉积岩属上侏罗统,莱雅(Raya)组火山岩形成于早白垩世(约144~130 Ma)。同时在加里曼丹西北定义的孟嘉影花岗岩和门西堡(Mensibau)花岗岩基分别为晚侏罗世(~155 Ma)和早白垩世(约140~130 Ma)产物。在西南婆罗洲,以往认为属上古生界的夸扬(Kuayan)组和吉打邦(Ketapan)组为上三叠统—下侏罗统或下侏罗统沉积,其物源为巽他古陆活动大陆边缘产物。原划属变质基底的帕诺杂岩(Pinoh Complex)及默努努(Menunuk)组变火山岩主体形成于早白垩世(约135~120 Ma)。以往填图为喀拉巴(Kerabai)组的火山岩可进一步细分为早侏罗世(~190 Ma)贝特农(Betenung)火山岩组、晚侏罗世(~155 Ma)库达根(Kudamgan)火山岩组和晚白垩世(约102~85 Ma)喀拉巴火山岩组。作为西南婆罗洲主体的苏卡达纳(Sukadana)岩基并非前人划属的晚白垩世,而是至少包含了早侏罗世(~190 Ma)贝拉班(Belaban)岩体、晚侏罗世(约160~150 Ma)门腾巴(Mentembah)岩体和晚白垩世(约87~72 Ma)苏卡达纳岩体的复式岩基。由西北婆罗洲和西南婆罗洲构成的婆罗洲西部至少发育了约200~190 Ma、~155 Ma、约140~125 Ma和约99~77 Ma四期岩浆作用,且空间上自西而东依次年轻,与我国东南沿海地区和南海北部陆架具高度一致性。不论在西北婆罗洲还是西南婆罗洲,其早、晚侏罗世和早白垩世镁铁质和长英质火成岩均有着相似Sr-Nd-Pb-Hf-O同位素组成,以正的或接近零的εNd(t)、太平洋型Pb同位素组成、正的锆石εHf(t)和地幔型δ18O值为特征,他们分别起源于受俯冲组分改造的地幔楔或其新生镁质地壳。沙捞越古晋带晚白垩世卢帕线帕控-萨拉邦镁铁质岩石以高度亏损εNd(t)的MORB型岩石为特征,分布于沙捞越古晋带和南施瓦纳山的晚白垩世镁铁质和长英质火成岩均显示出弧型地球化学属性。研究表明:西南婆罗洲与西北婆罗洲之间缺乏早中生代板块缝合边界,两者一起构成婆罗洲西部,呈北北东向位于巽他古陆印支-东马来陆块之东南缘。进一步的综合对比表明,早侏罗世—晚白垩世期间婆罗洲西部经历了自内而外向东扩展的俯冲增生造山作用,其晚白垩世俯冲边界发育于古晋带卢帕线—中加里曼丹帕朗卡拉亚(Palangkaraya)一带。从婆罗洲西部经我国东南沿海进入日本一线的东亚陆缘发育了中生代的长寿命(>120 Ma)巨型古太平洋安第斯型增生造山带,其俯冲作用于三叠纪—侏罗纪之交(~200 Ma)或更老(早三叠世)即已启动、且具“多阶段俯冲-后撤”特点,直至晚白垩世末期方才转换为现今西太平洋俯冲体系。

    Abstract

    What are the Paleo-Pacific subduction-related geological signatures preserved in Borneo? Whether are the NW and SW Borneo fragments separated by an unknown suture? Whether do the Mesozoic igneous rocks in West Borneo resemble those in South China Coastal Province? Answering these queries are the keys for better understanding the Mesozoic Paleo-Pacific arc-trench system in East Asia continental margin. This paper synthetically presented the field observations and whole-rock elemental and Sr-Nd-Pb isotopic compositions, along with zircon U-Pb geochronological and Hf-O isotopic data for the Mesozoic igneous rocks from NW and SW Borneo. These data reveal the development of Triassic (ca. 256~216 Ma) granitoids in NW Borneo with the derivation of the metamorphic basement with the input of the juvenile crustal materials. In the Sarawak Kuching zone, the Pakong and Sarabang mafic rocks in the Lupar Line, also Lupar ophibolite mélange, the previously-mapped Triassic Serian volcanics and the Sematan, Lundu and Sri Aman granitoids are dated at ca. 98~84 Ma, ca. 95~77 Ma and 82~77 Ma, respectively, also synchronous with the deposition time of the Pedawan sedimentary sequence. The Late Cretaceous Pakong-Serabang mafic rocks are characterized by high MORB-like εNd(t) values. The Late Cretaceous Serian volcanics and associated granitoids in the Sarawak Kuching zone show arc-like elemental and isotopic signatures. Such data suggest a Cretaceous arc-trench system along the Lupar Line. In NW Kalimantan of Indonesia, the Bengkayang Formation, previously mapped as Upper Triassic-Lower Jurassic sedimentary sequence, is constrained to be Late Jurassic in age. The Raya volcanics was dated at ca. 144~130 Ma. In addition, this study also reveals development of Late Jurassic (~155 Ma) Bengkayang granitoids and Early Cretaceous (ca. 140~130 Ma) Mensibau batholith in NW Kalimantan. In SW Borneo, the Kuayan and Ketapan meta-sedimentary sequences are re-constrained at Upper Triassic-Lower Jurassic or Lower Jurassic rather than previously-considered Upper Paleozoic sequences at which the sedimentary debris were from the Indochina-East Malaya active continental margin. The Pinoh metamorphic Complex and associated Menunuk volcanics, originally-mapped Paleozoic metamorphic basement, were dated at Early Cretaceous (mainly ca. 135~120 Ma). In the previous-mapped Kerabai volcanics, three U-Pb age-groups of ~190 Ma, ~155 Ma and ~90 Ma are recently identified, re-defined aso the early Jurassic (~190 Ma) Betenung, Late Jurassic (~155 Ma) Kudamgan and Lare Cretaceous (ca. 102~85 Ma) Kerabai volcanic sequences. New data indicated that the Sukadana batholith in SW Borneo might be constituted by the Early Jurassic (~190 Ma) Belaban, Late Jurassic (ca. 160~150 Ma) Mentembah and Late Cretaceous (ca. 87~72 Ma) Sukadana batholith, rather than previously-defined Late Cretaceous batholith. All data collectively suggest the development of four igneous events of ca. 200~190 Ma, ca. 155 Ma, ca. 140~125 Ma and ca. 99~77 Ma) in NW and SW Bormeo, respectively. These events spatially show a propagating trend from west to east, resembling those in the Southeast China Coastal Provinces. Whether in NW Borneo or SW Borneo, the Early-Late Jurassic and Early Cretaceous intermediate-mafic and felsic igneous rocks have similar Sr-Nd-Pb-Hf-O isotopic compositions, positive or near to zero εNd(t) values, Pacific-like Pb isotopic signatures, and positive zircon in-situ εHf(t) and mantle-like δ18O values,suggesting the derivation of the subduction-related mantel wedge or juvenile mafic crust, respectively. These data consistently indicate that the NW and SW Borneo were located at the southeast margin of the Indochina-East Malay fragment of the Sundaland old-land at Early Mesozoic. An easterly-propagating Andean-type accretionary orogenesis occurred in West Borneo during the Earliest Jurassic (likely Triassic)-Late Cretaceous period, with the suture boundary along the Lupar Line and Palangkaraya of Central Kalimantan at Late Cretaceous. As a result, a long-lived (>120 Ma) Paleo-Pacific Andean-type accretionary orogen has been created along the East Asian continental margin, from West Borneo, northerly into Southeast China Coastal Province and SW Japan across SE Vietnam and northern South China Sea. Such an orogenesis initiated at the Earliest Jurassic (~200 Ma) or earlier, and ended at the Latest Cretaceous and was controlled by the “multiple subduction and rollback” of Paleo-Pacific Ocean.

  • 东亚大陆由一系列从东冈瓦纳北缘分离的陆块构成,在中新生代期间成为环太平洋俯冲带的重要一环。自中生代以来受古太平洋板块俯冲的显著影响,在日本、韩国、我国东南沿海保留有丰富的地质记录,并经南海北部进一步延伸至越南东南部或菲律宾地区(图1; 如Metcalfe,19962021; Nguyen et al.,2004; Li and Li,2007; Wang et al.,201320182020a2021a2021b2021c2021d; 2022a,2022b,2022c; Tang et al.,2018; Dimalanta et al.,2020; Qian et al.,2022; Gan et al.,20202021; Guo et al.,2021)。但迄今为止,对古太平洋俯冲作用的阐明更多是基于对中国东部沿海地区中生代火成岩的研究,而对东南亚巽他古陆东缘的南向延伸尚不清晰,其是否延入马来西亚和印尼西部?有何表现?其俯冲时序、样式及其机制如何等,均亟待探讨(如Hall,20092012; Xu et al.,20162017; Hennig et al.,2017; Cui et al.,2021)。

  • 婆罗洲是亚洲最大的岛屿,位于印度-澳大利亚板块、欧亚板块和菲律宾板块的交汇处,是追踪古太平洋俯冲体系内岛弧岩浆作用南延的理想地区(图1、2)。它经苏禄海、西里伯斯海和望加锡海峡与苏拉威西相连,南部和西南部与爪哇岛和苏门答腊相隔,西邻巽他古陆,北接中国南海和菲律宾巴拉望岛(Haile,1974; Hutchison,2005)。该岛由被认为亲澳大利亚和亲印支/华夏的多个微陆块沿一系列俯冲带或者碰撞带拼贴而成,发育有多条属性与时代均不清晰的蛇绿岩或岛弧火成岩带(图2; 如Hutchison,2005; Hall.,2012; Breitfeld et al.,201720182020; Gan et al.,2022)。现有研究可将婆罗洲分为东南婆罗洲(SE Borneo)、诗巫-米里带(Sibu-Miri zone)、东北婆罗洲(NE Borneo)、西南婆罗洲(SW Borneo)和西北婆罗洲(NW Borneo)等五个构造单元(图2,Hutchison,2005; Breitfeld et al.,2019)。其东南婆罗洲绝大部分地区为新生代沉积岩所覆盖,以近南北向带状展布的中生代梅拉图斯(Meratus)蛇绿混杂岩为其特征标志(Parkinson,1998; Wakita et al.,19941998; Wang et al.,2022b; Wu et al.,2022; 王逸文等,2022)。诗巫-米里带主要由诗巫地区晚白垩世—古近纪深海—半深海复理石让江群和米里地区不整合上覆于让江群之上的新近纪陆源碎屑岩和碳酸盐岩组成(如Haile,1974; Hutchison,19892005; Galin et al.,2017)。东北婆罗洲主要指马来西亚沙巴地区,以出露新生代沉积岩和特鲁比(Telupid)蛇绿混杂岩等为特征,其向西和向北被认为分别与沙捞越古晋(Kuching)和巴拉望一带相接(Hutchison,19892005; Hall,2012; 鲁宝亮等,2014; 周蒂和孙珍,2017)。西北婆罗洲包括传统上划属的沙捞越古晋带和印尼加里曼丹西北部,由于其复杂的构造叠加和地层出露的局限,关于其构造归属上有巽他古陆、古太平洋或中特提斯域等不同观点(Haile,1974; Hutchison,2005; Hall,2012; Davies et al.,2015; Hennig et al.,2016; Breitfeld et al.,20182020; Wang et al.,2021a2021c)。现有资料大多认为沙捞越古晋带是婆罗洲中部一条重要的北西西向或近东西向构造混杂带和中生代构造岩浆带,是古太平洋板块向婆罗洲俯冲作用的产物(Katili,1971; Breitfeld et al.,2017; Hennig et al.,2017; Wang et al.,2021c)。但对该带的西侧边界尚不清楚,也未定义,其东侧则普遍以卢帕线(Lupar Line)为边界而分割巽他古陆和新生代诗巫-米里带浊积岩。加里曼丹西北部作为西北婆罗洲的印尼部分,区内广泛发育如莱雅(Raya)火山岩和门西堡(Mensibau)花岗岩基等在内的火成岩,由于其与沙捞越古晋带具有相似的动植物群区系而被认为代表巽他古陆的东缘。但时至今日,对西北婆罗洲所发育岩浆岩的年代学和地球化学数据报道甚少,带内构造过程尚未得到有限约束。

  • 传统上以西北婆罗洲南侧的施瓦纳山(Schwaner Mountain)为界将该山及其以南地区划属为西南婆罗洲; 也有研究者以施瓦纳山北部的帕诺(Pinoh)变质杂岩作为缝合边界,以此为界将杂岩之北划属西北婆罗洲、将该杂岩及其以南称为西南婆罗洲(图2)。另有学者提议西北施瓦纳山之间可能存在一条未知的缝合带,该缝合带穿越北西施瓦纳山而进入加里曼丹西北或沙捞越地区,以此缝合线(见图2中的Hennig线)为界将缝合带之西的北西施瓦纳山地区(NW Schwaner)作为巽他古陆的东缘部分而划入西北婆罗洲,将该未知缝合带之东的北施瓦纳山地区(North Schwaner)和南施瓦纳山地区(South Schwaner)定义为西南婆罗洲(图2; Hennig et al.,2017; Breitfeld et al.,2020)。本文为叙述上的方便以Hennig线作为单元边界,将该线以北的沙捞越古晋带、西北加里曼丹和北西施瓦纳山地区称为西北婆罗洲,将帕诺变质杂岩及其以南的北施瓦纳山和南施瓦纳山地区划为西南婆罗洲。现今大多数学者将西南婆罗洲解释为晚侏罗世从东冈瓦纳澳大利亚北西边缘裂离出来的班达(Banda)弧碎块(Metcalfe,20122021; Hennig et al.,2017; Breitfeld et al.,20172020)。已有资料显示在西南婆罗洲广泛发育中生代火成岩及相关沉积岩,如吉打邦(Ketapan)变火山沉积岩组、喀拉巴(Kerabai)火山岩组和苏卡达纳(Sukadana)花岗岩基。总体而言,迄今为止,对西北婆罗洲和西南婆罗洲地区所出露火成岩和关键沉积地层等均缺乏精细年代学和地球化学研究,特别是系统的Sr-Nd-Pb-Hf-O数据近乎缺失。对西北婆罗洲与西南婆罗洲之间是否存在板块缝合线及可能发育在哪等基础科学问题尚无认识,对其与古太平洋或古特提斯俯冲体系的关联关系也被长期忽略。而这些资料又恰恰是破解其构造归属与演变的关键一环,是追踪中生代俯冲方式及其延伸的关键要素。

  • 图1 东南亚地区主要构造单元分布图(据Wang et al.,2022c

  • Fig.1 Simplified geological map in SE Asia showing the major tectonic units (after Wang et al., 2022c)

  • 图2 婆罗洲构造单元的已有划分方案(据Hennig et al.,2017; Breitfeld et al.,2020修改)

  • Fig.2 Tectonic division in Borneo previously-defined by Hennig et al. (2017) and Breitfeld et al. (2020)

  • 该文综合了当前、特别是笔者课题组近年在马来西亚沙捞越古晋带内帕控(Pakong)-萨拉邦(Serabang)镁铁质-超镁铁质岩石,西连(Serian)火山岩组,加里曼丹西北坤甸(Pontianak)-孟嘉影(Bengkayang)、北西施瓦纳山地区的莱雅(Raya)组火山岩和门西堡(Mensibau)岩基,西南婆罗洲施瓦纳山南部喀拉巴火山岩组和苏卡达纳岩基等的锆石U-Pb年代学和Hf-O同位素数据及全岩主-微量元素和Sr-Nd-Pb同位素组成等。以此为基础,综合前人资料及相关沉积岩岩相学与碎屑锆石U-Pb 年代学数据等(如Wang et al.,2021b2021c2022a2022b2022c; Qian et al.,2022; Gan et al.,2022),确证了中生代时期由西北和西南婆罗洲构成的婆罗洲西部经历了约200~190 Ma、~155 Ma、约135~125 Ma和约102~77 Ma四期主要的岩浆事件,与中国东南沿海及南海北部等地在形成时代上具高度一致性。确立了西南婆罗洲具类似西北婆罗洲的构造亲缘性,即位于巽他古陆东缘,其构造演化自三叠纪—侏罗纪之交或更早期即已受控于古太平洋板块俯冲的控制,代表了东亚中生代活动陆缘的南延。由此揭示出自东南沿海至西南婆罗洲发育数千千米长、经历了长达超120 Ma的长寿命安第斯型古太平洋增生造山作用,古太平洋板块俯冲自晚三叠世末期—早侏罗世(~200 Ma)即已启动,至少持续到晚白垩世。

  • 图3 沙捞越古晋带地质图及火成岩锆石U-Pb年龄(数据源自Wang et al.,2021b; Gan et al.,2022及相关文献)

  • Fig.3 Geological map of the Sarawak Kuching zone in East Malaysia showing the reported zircon U-Pb ages of igneous rocks (data from Wang et al., 2021b; Gan et al., 2022 and references therein)

  • 1 不同地质单元的地质观察与时代限定

  • 1.1 西北婆罗洲火成岩及相关沉积岩系

  • 1.1.1 西北婆罗洲代表性火成岩及相关沉积地层

  • 西北婆罗洲的沙捞越古晋带以卢帕线为界与东侧诗巫带相连,而加里曼丹西北以帕诺变质杂岩和西北施瓦纳山为界与南侧的西南婆罗洲相接。在西北婆罗洲内变质岩主要有千枚岩、片岩、大理岩、变杂砂岩、变火山岩、片麻岩和混合岩等,它们呈构造窗出露于中生代萨东(Sadong)组和佩达万(Pedawan)组,被解释为前三叠系基底岩石(如Pimm,1965; Tate,1991; Tate and Hon,1991; Hutchison,2005)。沙捞越古晋带主要变质岩系有被萨东组砾岩不整合上覆的凯莱特(Kerait)片岩和屯(Tuang)组(Metcalfe,2006; Tate,1991)。在伦杜—西连一线可见Ar-Ar年龄为二叠纪—三叠纪的绿片岩相片岩(如Hutchison,2005),在恩布伊(Embuoi)杂岩中获得了可类比于印支陆块的奥陶纪锆石U-Pb年龄(462~453 Ma)(Zhu et al.,2022)。

  • 沙捞越古晋带内中生代地层主要有萨东组、雪兰凯(Selangkai)组、佩达万组、科达多(Kedadom)组或卡杨(Kayan)组及其相当地层(图3),以长石质砂岩、岩屑砂岩、页岩、泥岩、粉砂岩、砾岩和薄层灰岩等为其主要岩性(如Supriatna et al.,1993; Pieters et al.,1993)。萨东组和巴南(Banan)/孟嘉影组因见晚三叠世—早侏罗世“Krusin florula”华夏型植物群落而认为其为上三叠统—下侏罗统(如Hutchison,2005)。中侏罗统出露有限、也有研究者认为是缺失的。科达多组、巴乌(Bau)灰岩及其相当地层被认为不整合上覆于萨东组,由浅海砂岩、泥岩、粉砂岩、灰岩、板岩和凝灰岩组成,根据其化石组合而划属上侏罗统—中下白垩统(如Hutchison,19892005)。佩达万组以砂岩、泥岩、石灰岩和凝灰岩为特征,整合上覆于科达多组而下伏于晚白垩世—早始新世(甚至更年轻)的卡杨组及相当地层,被认为是一套具浅海向深海过渡的弧前上白垩统沉积建造(Tan,19781982; Nuraiteng and Kushairi,1987; Hutchison,19892005; Basir and Uyop,1999; Breitfeld et al.,2017; Mazumder et al.,2021)。

  • 沿沙捞越古晋带发育现今呈近北西西向展布的卢帕线,该线自沙捞越西北角之萨拉邦向东延入卢博安图(Lubok Antu)和博杨(Boyan)-恩布伊等地区(图1、3),常被理解为以卢帕、萨拉邦、卢帕和博杨安等蛇绿混杂岩带为基础构成婆罗洲最为关键的缝合边界(如Hall,2012; Breitfeld and Hall,2018; Wang et al.,2021b)。带内主要由板岩、杂砂岩、透镜状硅质岩、泥岩和泥质角岩,变玄武岩、变辉长岩、蛇纹岩及少量砾岩等组成,其形成时代有晚侏罗世、晚侏罗世—早白垩世或晚白垩世等不同观点,也有人根据其构造角砾岩中灰岩团块的化石时代而认为其形成于始新世(如Tan,1978; Basir,19962000; Hutchison,2005)。其中卢帕杂岩最初被定义为达瑙(Danau)组(Molengraaf,1902),由卢帕组复理石沉积、帕控镁铁质-超镁铁质岩石和含放射虫硅质岩的卢博安图混杂岩构成(Tan,1978; Basir,1996; Basir and Uyop,1999; Hutchison,2005)。萨拉邦蛇绿混杂岩(也称为萨拉邦组或萨拉邦杂岩)主要出露于沙捞越北西的瓜拉沙汶萨姆、世京喀和塞班甘地区,主要以变玄武岩、条带状角闪岩和变辉长岩夹蛇纹岩、角闪岩、辉石岩和云母橄榄岩及安山岩,也称世京喀(Sejingkat)组,和千枚岩、透镜状硅质岩和片理化泥岩、片岩和杂砂岩等,也称为塞班甘(Sebangan)组,及相关闪长质侵入岩为特征(如Hutchison,2005),野外可见岩屑砂岩、杂砂岩及凝灰质砂岩等呈夹层产出于镁铁质-超镁铁质岩石之中。

  • 为了更好地约束沙捞越古晋带卢帕线的形成时代,笔者及团队近年对带内帕控和萨拉邦镁铁质岩石开展了系统定年研究(图3),从萨拉邦镁铁质岩石中的两个辉长岩(样品17MY-55A1和17MY-61A14)中获得了表观年龄为2373~114 Ma的捕获锆石年龄,以及97±2 Ma和96±1 Ma的结晶锆石U-Pb加权平均年龄。其中两个玄武岩(样品17MY-54A2和17MY-61B1)分别给出了97.6±0.7 Ma(MSWD=1.7)和85.0±0.6 Ma(MSWD=0.6)的全岩Ar-Ar坪年龄。为进一步约束卢帕杂岩的形成年龄,在卢帕组复理石建造中的杂砂岩中获得了2515~88 Ma的碎屑锆石U-Pb年龄,峰值年龄有~122 Ma、~260 Ma、450 Ma、~1850 Ma和~2500 Ma。对沙捞越古晋带诗马丹地区萨拉邦杂岩中变玄武岩(样品18KU-1A1)的锆石U-Pb定年得到93±2 Ma(Th/U=0.5~1.6,MSWD=0.03)的加权平均年龄和给出了2451~157 Ma(峰值为~159 Ma、~254 Ma和~1866 Ma)的表观年龄。侵入萨拉邦杂岩的变辉长岩(样品18KU-2A1)给出的锆石U-Pb加权平均年龄为90±1 Ma(MSWD=1.6)。房旭东等(2020)报道沙捞越古晋带之伦杜辉绿岩锆石U-Pb年龄为83.4±0.9 Ma。夹层于萨拉邦蛇绿混杂岩中的杂砂岩(样品18KU-1B1、18KU-1B2和18KU-1B3)给出了2622~93 Ma的碎屑锆石U-Pb年龄,峰值为~120 Ma、~155 Ma、~245 Ma和~1850 Ma,最年轻碎屑锆石限定萨拉邦混杂岩最大沉积年龄在99~93 Ma。我们的资料限定卢帕带内帕控和萨拉邦镁铁质岩石形成于约97~85 Ma。结合带内阿普第阶(Aptian)到Santonian阶放射虫化石和孔虫组合(如Wolfenden and Haile,1963; Tan,19781982; Hutchison,2005),可判断由卢帕带所代表的洋盆时代很可能介于白垩纪约125~85 Ma之间。

  • 现有资料表明,西北婆罗洲火山岩主要有沙捞越古晋带西连组和印尼加里曼丹西北的莱雅组及与之相当的塞卡道(Sekadau)组。其中沙捞越古晋带西连组火山岩主要以玄武岩、安山岩、英安岩、流纹岩、凝灰岩和集块岩为特征,被认为与加里曼丹北西塞卡道火山岩组相当,也同期于马来半岛东部彭亨(Pahang)火山岩组。但由于其与上三叠统三角洲至浅海沉积的萨东组地理上紧密相连而长期被划属为三叠系(如Wilford and Kho,1965; Hutchison,19892005)。我们对前人填图为西连组的玄武安山岩和安山岩样品获得了95~80 Ma的锆石U-Pb年龄(图3),同时也获得了2408~172 Ma的捕获锆石U-Pb表观年龄(大于1.0 Ga的表观年龄以207Pb/206Pb为准,<1.0 Ga的表观年龄以206Pb/238U为准,下同)。另外西连组玄武岩(样品17MY-71A1)也给出了77.1±2.4 Ma的Ar-Ar坪年龄。上述年龄(95~77 Ma)与Breitfeld et al.(2017)报道的佩达万组中火山碎屑岩年龄(~88 Ma)总体一致。因此,前人划属的三叠纪西连组火山岩应归属为晚白垩世“西连火山岩组”、或至少有相当部分喷发于晚白垩世(约95~77 Ma)。依据现有资料,也考虑对西连组火山岩的年代学资料尚有不全面和系统的情况下,建议将前人填图的西连组火山岩系分解归属于“上白垩统西连组火山岩”和“上三叠统萨东组”(Wang et al.,2022a2022c)。

  • 印尼加里曼丹西北的坤甸和孟嘉影地区发育以玄武岩、安山岩、英安岩、流纹岩和角砾状熔岩为特征的莱雅组火山岩系(图4),它与岩屑凝灰岩、杂砂岩、火山碎屑粉砂岩、泥岩和砾岩互层产出或上覆于原定义为上三叠统—下侏罗统的孟嘉影组沉积岩系(Suwarna et al.,1993; Pieters and Sanyoto,1993; Davies et al.,2015)。以往的地质图将莱雅组划属三叠纪、三叠纪—侏罗纪或侏罗纪—白垩纪等不同时代,但均缺乏精细年代学数据约束。Wang et al.(2022a)对该火山岩组玄武质安山岩和安山岩进行的锆石U-Pb定年获得了130±4 Ma(样品18JV-40B2)、138±5 Ma(样品18JV-58-1)和134±1 Ma(样品18JV-60-1)的加权平均年龄(图3)。侵入该火山岩系中的辉长岩得到了134±1 Ma(样品18JV-41-1)的锆石U-Pb年龄,属同期异相产物。由此限定莱雅组火山岩组喷发于~135 Ma(Wang et al.,2022a)。同时,在上述火山岩系样品中也获得了2241~150 Ma的捕获锆石U-Pb表观年龄,其相应年龄峰值为~237 Ma、~750 Ma、~1860 Ma,~2135 Ma和~2360 Ma。

  • 图4 印尼加里曼丹西北的地质图及火成岩锆石U-Pb年龄(据Wang et al.,2022a

  • Fig.4 Geological map of NW Kalimantan in Indonesia showing the reported zircon U-Pb ages of igneous rocks (after Wang et al., 2022a)

  • 1.1.2 西北婆罗洲代表性花岗质侵入岩的形成时代限定

  • 西北婆罗洲侵入岩多为形成于三叠纪—新近纪的孤立花岗质深成岩体,Breitfeld et al.(2017)报道了区内最老的侵入体,即晚三叠世(208 Ma)的贾戈伊(Jagoi)花岗闪长岩。出露于坤甸—孟嘉影地区的花岗岩主要以门西堡、塞帕克(Sepauk)和山口洋(Singakawang)岩基为代表,以往的研究认为其形成于白垩纪。第三纪花岗质岩石则主要出露于新塘、马苏帕里亚、布桑和塞萨亚普等地(如Soeria-Atmadja et al.,1999)。Wang et al.(2021)从马来西亚沙捞越古晋带的三个花岗岩样品(17MY-81B1、17MY-81A1和17MY-84A1)中获得了207 Ma、212 Ma和256 Ma的三叠纪锆石U-Pb年龄(图3)。Breitfeld et al.(2017)也报道沙捞越石英云母片岩216~220 Ma的Ar-Ar年龄。最近Wang et al.(2021a)在加里曼丹西北桑高地区获得了214 Ma的花岗岩(样品18JV-67-1)锆石U-Pb年龄,在北西施瓦纳山的坤甸东南识别出227 Ma的花岗片麻岩(样品18JV-73A4),同期Setiawan et al.(2013)报道坤甸东南施瓦纳山213 Ma的变石英闪长岩。另外加里曼丹北西地区的恩布伊和布桑(Busang)杂岩也给出有263~201 Ma的K-Ar年龄(Pieters and Sanyoto,1993)。这些资料表明西北婆罗洲发育有三叠纪(256~208 Ma)花岗质岩石或变质作用(图3、4; Wang et al.,2021a)。

  • 前人认为西北婆罗洲缺乏中晚侏罗世火成岩及相应沉积地层(如Hutchison,2005)。通过对加里曼丹西北的孟嘉影地区原划属的门西堡岩基和原划为新生代花岗岩体的定年表明:18JV-47和18JV-54样品分别给出了154±2 Ma(MSWD=0.5)和166±1 Ma(MSWD=0.1)的锆石U-Pb加权平均年龄(图4)。对应的锆石εHft)、δ18O和TDM值分别为+1.7~+15.5、+4.93‰~+5.33‰和1.11~0.21 Ga(Wang et al.,2022c)。以往的研究将加里曼丹西北地区侵入于莱雅组火山岩或被莱雅组火山岩所上覆的大多数花岗岩体均填图为白垩纪门西堡岩基(如Haile et al.,1977; Setiawan et al.,2013),对如图4所示位置出露的花岗质岩石(样品18JV-40A-4、18JV-44-1、18JV-46-3、18JV-63A-1和18JV-65-1)的锆石U-Pb定年得到了133±1 Ma、144±2 Ma、130±1 Ma、135±1 Ma和136±1 Ma的加权平均年龄,其相应锆石原位εHft)、δ18O值和TDM值分别为+9.1~+16.3、5.06‰~5.61‰和0.55~0.20 Ga。这些早白垩世花岗岩有着与莱雅组火山岩一致的形成时代和相似的Hf-O同位素组成。同时,对与莱雅火山岩系有紧密地理关系、原划属三叠系或上三叠统—下侏罗统的孟嘉影组沉积岩的野外观察和碎屑锆石U-Pb定年发现,该组主要由火山碎屑岩、粉砂岩、泥岩、砂岩、岩屑杂砂岩和凝灰质砂岩组成,分选差,岩屑丰富,其碎屑锆石U-Pb表观年龄变化于2700~153 Ma,年龄峰值主要有~155 Ma、~180 Ma、~227 Ma和~1853 Ma。<200 Ma的侏罗纪锆石颗粒,εHft)范围为+0.8~+16.9,而表观年龄>200 Ma的颗粒εHft)变化于-13.3~+14.9,这表明该火山碎屑岩系存在中晚侏罗世的近源火山碎屑物源供给,其沉积时间与区内中—晚侏罗世花岗岩形成时间一致。由此表明,西北婆罗洲的加里曼丹地区广泛发育有晚侏罗世和早白垩世火山-侵入岩和相应的沉积岩系。在原划属上述岩系中至少有相当部分为早白垩世(约145~130 Ma)产物(Wang et al.,2022a),门西堡岩基与莱雅组火山岩形成时代相当,也与帕诺杂岩和默努努组火山岩形成时代相近。因而建议命名晚侏罗世花岗岩为孟嘉影花岗岩、早白垩世花岗岩为门西堡岩基。孟嘉影组至少有相当部分岩石沉积于晚侏罗世而整合下伏于莱雅组火山岩组(Wang et al.,2021a2022a2022c)。

  • 在沙捞越古晋带的诗马丹—伦杜—诗里阿曼地区出露有丰富的花岗闪长岩和花岗岩,但以往同样缺失对他们的精细年代限定。笔者课题组对图3所示位置的诗马丹(样品17MY-50A1)和伦杜(样品17MY-46A1、17MY-47B1、17MY-47C1和17MY-48A1)地区花岗质岩石的定年结果表明,其锆石U-Pb形成年龄分别为83.1±0.5 Ma、79.9±0.7 Ma、83.6±0.5 Ma、77.5±0.5 Ma和83.0±1.0 Ma。诗里阿曼(样品17MY-67A1)花岗岩的结晶年龄为80.1±0.8 Ma。其中诗马丹和诗里阿曼花岗质岩石的锆石εHft)值分别为-0.9~+3.4和+1.9~+9.5,伦杜花岗闪长岩的锆石εHft)值主要介于-1.2~+8.0,个别达+12.4。这表明沙捞越古晋地区发育一系列约84~78 Ma的花岗质岩石(Gan et al.,2022)。他们与卢帕带帕控-萨拉邦基性-超基性岩、西连组火山岩等一起构成了沙捞越古晋带最重要的晚白垩世(约98~77 Ma)岩浆事件。这些花岗岩所侵入的围岩多为分选较差、含丰富火山碎屑的杂砂岩、变砂岩或火山碎屑岩,对应的碎屑锆石U-Pb年龄峰值主要有~122 Ma、~156 Ma、~250 Ma和~1850 Ma(Gan et al.,2022; Wang et al.,2022c),表明上述碎屑岩地层主要沉积于早白垩世晚期,在其邻近或就近地区发育有早白垩世、晚侏罗世和三叠纪岩浆作用物源区,这与西北婆罗洲主要岩浆作用事件的时序相一致。

  • 1.2 西南婆罗洲(北施瓦纳山和南施瓦纳山)

  • 1.2.1 西南婆罗洲代表性火山岩和沉积岩系

  • 西南婆罗洲主要指南施瓦纳和北施瓦纳带(图2; Hennig et al.,2017; Breitfeld et al.,2020),长期被认为自侏罗纪从冈瓦纳北缘分离而来且于晚白垩世拼贴于巽他古陆的微陆块,是班达弧的一部分(如Haile,1974; Hall et al.,2009; Metcalfe,2021; Hall,2012; Davies et al.,2014)。区内岩石单元以变质岩和广泛分布的火成岩为特征,其沉积岩系除新生代地层以外,主要有分布于施瓦纳山南侧、长期认为沉积于石炭纪—二叠纪的吉打邦组(如De Keyser and Rustandi,1993; Breitfeld et al.,2020)。我们的研究显示该组岩系以含丰富火山碎屑、分选较差的变质杂砂岩、粉砂岩、砂岩、页岩和凝灰质碎屑岩为特征,其代表性样品(18JV-85)的碎屑锆石定年结果显示其锆石206Pb/238U表观年龄集中于215~184 Ma,呈单一年龄峰,峰值为~197 Ma,很可能源自邻近岛弧的下侏罗统、而不是以往认为的上古生界。在南施瓦纳山出露有夸扬组和Kuarsit组变质岩,该组岩系主要有变安山岩、玄武岩、凝灰质砂岩、凝灰岩、变质杂砂岩或变沉积岩等(van Emmichoven,1939; Pieters and Sanyoto,1993; Hartono,2012)。该组凝灰质砂岩(18JV-93-1)的碎屑锆石定年得到其表观年龄变化于2544~180 Ma,峰值为~231 Ma、~453 Ma和~1853 Ma。结合组内所发现的三叠纪化石(如van Emmichoven,1939),推断夸扬组为上三叠统—下侏罗统产物,这从另一个侧面也反映当时西南婆罗洲很可能邻近巽他古陆东缘或东南缘,并接受了巽他古陆三叠纪活动大陆边缘的物源碎屑。但由于当前对南施瓦纳山定年数据有限,现有研究尚不足以排除该区发育三叠纪或更古老火成岩或和沉积岩的可能性。

  • 西南婆罗洲的火成岩极为发育,但相应的精细年代学和地球化学数据极为匮乏。在北部施瓦纳山脉之东北出露有默努努组变火山岩和火山碎屑岩,也有人将其划属莱雅组,但大多数研究者将其定义为帕诺杂岩的一部分而将其归属于西南婆罗洲(如Breitfeld et al.,2020),本文依据其产出特征及空间分布也将帕诺变质杂岩归入西南婆罗洲(图2、5)。我们的研究在坤甸东南侵入于帕诺变质杂岩的辉长辉绿岩(样品18JV-69-1)中获得了134±1 Ma的锆石U-Pb加权平均年龄。Breitfeld et al.(2017,2020)从帕诺杂岩中得到了131±1 Ma和132±2 Ma的火山岩锆石U-Pb年龄。对采自北西施瓦纳山地质图上划为帕诺杂岩变砂岩样品(18JV-73E)获得了2352~129 Ma的碎屑锆石U-Pb表观年龄,年龄峰值分别为~138 Ma、~181 Ma、~231 Ma、~414 Ma和~1851 Ma,上述资料限定帕诺杂岩中变沉积岩的最大沉积年龄为~135 Ma。Davies et al.(2015)Breitfeld et al.(2020)也认为帕诺杂岩中的变泥质岩和变火成岩形成于~130 Ma,经历了约120~80 Ma的变质作用。因此,从现有资料可判断出:帕诺杂岩至少有相当部分岩石形成于早白垩世(约135~130 Ma),而不是前人所认为的古生代变质基底,其中默努努组与莱雅组火山岩有着相似的元素-同位素地球化学特征。

  • 现有地质图上笼统地将西南婆罗洲的火山岩划属喀拉巴组,将花岗质岩石填图为苏卡达纳岩基(图5; 如Pieters and Sanyoto,1993; De Keyse and Rustandi,1993)。主要分布于施瓦纳山脉西南部的原喀拉巴火山岩以玄武岩、安山岩、英安岩、流纹岩、火山角砾岩及火山碎屑岩夹沉积夹层和相关辉长辉绿岩为特征(如De Keyser and Rustandi,1993; Pieters and Sanyoto 1993; Breitfeld et al.,2020),以往依矿物K-Ar测年结果而认为其属晚白垩世产物(如Breitfeld et al.,2017)。对吉打邦东贝特农地区安山岩样品(18JV-75-8和18JV-83-1)的定年发现,除少量捕获锆石给出了294~240 Ma的表观年龄以外,其结晶锆石加权平均年龄分别为183±2 Ma和199±1 Ma,相应的εHft)值为+0.9~+9.8。顺层产出于该安山岩中的辉长岩(18JV-87-1)样品给出了195±2 Ma的锆石加权平均年龄,εHft)值为+0.5~+10.4。位于马劳北部库达根地区的原喀拉巴火山岩组流纹岩和玄武安山岩(18JV-87-9和18JV-91B-1)分别给出了153±2 Ma和156±2 Ma的加权平均年龄,对应εHft)和δ18O值为+2.3~+11.28和4.97‰~6.01‰(Wang et al.,2022c)。另外区域上靠近帕朗卡拉亚原喀拉巴火山岩组的玄武安山岩、安山岩和辉长辉绿岩锆石U-Pb年龄介于102~82 Ma(图5)。因此新的研究表明,西南婆罗洲以往填图为喀拉巴组的火山岩系中,至少包含了早侏罗世(~190 Ma)、晚侏罗世(~155 Ma)和晚白垩世(约102~85 Ma)火山岩,且不能排除其他中生代时期(如早白垩世)火山岩的存在。在此建议将原喀拉巴组分解并单独建组命名为早侏罗世贝特农火山岩组、晚侏罗世库达根火山岩组和晚白垩世喀拉巴火山岩组。

  • 图5 西南婆罗洲地质图及火成岩相关年龄数据(数据源自Wang et al.,2022c; Qian et al.,2022及其相关文献)

  • Fig.5 Geological map of SW Borneo showing the zircon U-Pb ages of igneous rocks (data from Wang et al., 2022c; Qian et al., 2022 and references therein)

  • 1.2.2 西南婆罗洲主要花岗质岩基的形成时代限定

  • 位于施瓦纳山南部的西南婆罗洲发育巨量的中生代侵入岩,除少许辉长辉绿岩(如比瓦辉长岩)外,主要有二长花岗岩、花岗岩、花岗闪长岩和闪长岩(Pieters and Sanyoto,1989)。而新生代火成岩主要分布于施瓦纳山南部和东部,包括新塘中性-长英质侵入岩和少量镁铁质侵入岩(Breitfeld et al.,2020)。现有地质图普遍将西南婆罗洲中生代花岗质岩石定义为苏卡达纳岩基,个别岩体也被称为巴都安或与西北婆罗洲同名的劳尔(Laur)和塞帕克花岗岩基,认为其形成时代为晚白垩世(如De Keyser and Rustandi,1993)。最近有研究者将西南婆罗洲花岗岩细分为贝拉班、苏卡达纳和三木洋(Sangiyang)花岗岩单元,并认为贝拉班岩体为侏罗纪岩石,苏卡达纳岩体以钾质花岗岩和正长花岗岩为主,锆石U-Pb年龄介于约85~79 Ma,而三木洋花岗岩岩体的锆石年龄为~72 Ma。Hennig et al.(2017)Breitfeld et al.(2020)从西南婆罗洲划属为劳尔和塞帕克花岗岩基得到了约101~81 Ma的锆石U-Pb年龄,并认为其形成于岛弧环境(van Hattum et al.,2013; Breitfeld et al.,2020)。Wang et al.(2022a)对以英云闪长岩-花岗岩为特征、原填图为苏卡达纳岩基的代表性样品开展的锆石U-Pb定年研究表明(图5):来自吉打邦东部席杜克(Siduk)一带英云闪长岩(样品18JV-82-1和18JV-89-7)给出的加权平均年龄为189±1 Ma和200±2 Ma,对应的εHft)和δ18O分别为+6.2~+11.6和4.97‰~5.61‰。来自马劳北部库达根地区的样品18JV-89-1、18JV-90A-1和18JV-91B-1给出了160±1 Ma、158±2 Ma和154±1 Ma的锆石结晶年龄,相应的εHft)和tDM变化于+1.7~+7.7和1.10~0.72 Ga之间。另外,在原划为苏卡达纳岩基的八个位置(具体位置见图5)获得了~85 Ma的锆石U-Pb 年龄。如吉打邦北东黑云母花岗岩(18JV-70A-4和18JV-74A-2)和花岗闪长岩样品(18JV-72-2和18JV-74B-2)的形成年龄为86±1 Ma、85±1 Ma、87±1 Ma和85±1 Ma,均具正的锆石εHft)值(+4.8~+14.5)和低的δ18O(5.3‰~6.0‰)。在吉打邦东侧贝特农地区的花岗闪长岩(样品18JV-86-1和18JV-88-1)锆石加权平均年龄为92±1 Ma和85±1 Ma,εHft)值为+1.2~+8.0,δ18O值为5.2‰~6.6‰(图6)。来自帕朗卡拉亚地区塞利科(Salilkoed)之东的二长花岗岩样品(18JV-98-5和18JV-99-4)除给出少量1720~104 Ma的继承锆石年龄以外,其结晶年龄为81~80 Ma,εHft)和δ18O值分别为-1.5~+5.9和6.1‰~6.6‰(图6)。随着未来年代学数据的丰富,我们相信西南婆罗洲中生代花岗质岩石将会有更明晰的时序结构。但现有资料表明在西南婆罗洲至少发育有晚侏罗世(约160~150 Ma)花岗岩岩基,在此命名为门腾巴岩体。结合前人少量的锆石U-Pb年代学数据(van Hattum et al.,2013; Breitfeld et al.,2020),原划为晚白垩世的巨型苏卡达纳岩基应为复式岩基,至少包含了早侏罗世(~190 Ma)贝拉班岩体、晚侏罗世(约160~150 Ma)门腾巴岩体和晚白垩世(约92~72 Ma)苏卡达纳/三木洋岩体。

  • 图6 西南及西北婆罗洲火成岩锆石的εHft)与年龄(a)和δ18O(b)图解(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及其相关文献)

  • Fig.6 Age-εHf (t) (a) and εHf (t) -δ18O (b) diagrams for the igneous rocks in SW and NW Borneo (data from Wang et al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 2 三叠纪—白垩纪火成岩的地球化学特征及其成因约束

  • 2.1 三叠纪(约256~208 Ma)花岗质岩石

  • 如前所述,现有资料表明马来西亚沙捞越和印尼施瓦那山西部发育锆石U-Pb年龄约为256~208 Ma的三叠纪花岗质岩石(图3、4)。这些岩石SiO2=59.67%~78.12%,Al2O3 =12.53%~18.57%,TFeO=0.92%~7.87%,MgO=0.17%~3.05%和K2O+Na2O=3.58%~8.77%。A/CNK大部分集中在0.98~1.05,A/NK=1.16~3.02,以I型花岗质岩石为主,(La/Yb)N=1.17~34.3,(Gd/Yb)N=0.60~4.32,Eu/Eu*=0.01~1.31。普遍具Sr、P、Ti、Ba和Nb-Ta负异常,Nb/La=0.16~0.88,εNdt)变化于-6.4~-0.1,高于马来西亚东部花岗岩(-9.1~-3.8),明显高于马来西亚中部花岗岩省、中国华南三叠纪花岗岩和澳大利亚奥陶纪沉积物。(206Pb/204Pb)i=18.64~19.49,(207Pb/204Pb)i=15.61~15.78,(208Pb/204Pb)i=38.56~39.47,落于北半球参考线左侧,类似南海海山玄武岩,也介于印度洋浊积岩和特提斯洋之间(如Cai et al.,2019; Wang et al.,2021a)。另外,尽管印尼施瓦那山西部晚三叠世(214 Ma)桑高花岗岩给出了负εHft)值(-0.7~-9.5),但沙捞越古晋带三叠纪花岗岩(256~207 Ma)普遍给出了正εHft)值(+1.9~+8.1)。如此εNdt)-εHft)值表明其源区为古老变质地壳和年轻地壳组分的混合物,即源区存在新生基性组分的加入,反映其三叠纪时期已发育有活动大陆边缘背景。

  • 图7 西南及西北婆罗洲侏罗纪—早白垩世(a)和晚白垩世(b)火成岩的TAS图解(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及相关文献)

  • Fig.7 TAS diagrams for the Earliest Jurassic-Early Cretaceous (a) and Late Cretaceous (b) igneous rocks in SW and NW Borneo (data from Wang et al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 2.2 早、晚侏罗世(~190 Ma和~155 Ma)岩浆作用

  • 如前所述,西南婆罗洲原喀拉巴组火山岩包含有早、晚侏罗世(~190 Ma和~155 Ma)玄武岩和安山岩,它与西北婆罗洲古晋带和南海北部闪长岩同期(图3~5)。综合原喀拉巴组和南海北部同期镁铁质岩石的元素-同位素地球化学发现(图7~9):上述岩石SiO2=48.57%~64.30%、MgO=0.31%~8.27%、Al2O3=14.05%~21.87%和TFeO=2.22%~12.24%,TiO2=0.44%~1.94%,P2O5=0.06%~0.62%,属于钙碱性玄武岩、安山岩及相应侵入岩。无论是西南婆罗洲还是西北婆罗洲/南海北部侏罗纪中基性岩石均具相似元素-同位素组成(图7~9)。(La/Yb)N=1.83~12.1,(Dy/Yb)N=1.03~2.10,大离子亲石元素(LILEs)强烈富集、高场强元素(HFSEs)明显亏损。初始(87Sr/86Sr)i比值变化于0.70398~0.70732,εNdt)=-2.5~+2.4,比晚白垩世帕控-萨拉邦和早白垩世莱雅镁铁质岩石及新生代南海海山玄武岩明显富集(如Hart,1984; Zindle and Hart,1986; Cai et al.,2019)。他们的初始(206Pb/204Pb)i=18.71~19.37,(207Pb/204Pb)i=15.64~15.71和(208Pb/204Pb)i=38.75~39.58,落在北半球参考线左侧,相似于源区高Th/U值的南海海山玄武岩(Cai et al.,2019)。已有的数据表明西南婆罗洲侏罗纪中基性岩石(如吉打邦东—马劳一带)具地幔型锆石εHft)-δ18O值(图6,分别为+0.5~+11.3和4.97‰~6.01‰)。不论是西北婆罗洲还是西南婆罗洲,其侏罗纪中基性火成岩均高Al2O3(14.1%~21.9%)、La/Nb(1.78~5.88)和Ba/Nb(16.7~261),低Nb/La(0.17~0.56)。Nb/Yb=0.52~5.71,Pb/Nd=0.15~3.13,Ce/Pb=0.72~11.8,Nb/U=1.98~9.88,Ti/V=13.0~133。他们较MORB-型源区岩石具有更高的Th/Sm、Th/Ce和Th/Yb,更低的εNdt)。它们的(Ta/La)N=0.22~0.69,(Hf/Sm)N=0.79~2.02,表明其地幔源区有着沉积物流体组分的加入。通常沉积物派生组分的加入可导致Th/Ce升高、Th和LREEs富集,而俯冲板片派生组分以低Th/La、Th/Nb和Th/Yb为特征(如Rapp et al.,1999)。由此,Wang et al.(2022c)认为婆罗洲西部早、晚侏罗世镁铁质岩石源自加入了少量(约2%~6%)再循环沉积物派生流体的地幔楔源区。

  • 如前研究所述,西南婆罗洲(如贝拉班和门腾巴岩体)、西北婆罗洲(如孟嘉影岩体)发育了与南海北部相似元素-同位素组成的早、晚侏罗世低钾至高钾钙碱性二长花岗岩、英云闪长岩和花岗闪长岩及相关长英质火山岩(图7~9)。他们SiO2=67.65%~78.50%,Al2O3=11.26%~16.39%,TFeO=0.37%~4.66%,MgO=0.04%~1.35%,K2O+Na2O=4.05%~9.64%、A/CNK=0.92~1.62,低10000×Ga/Al(1.62~2.97)和Zr+Nb+Ce+Y(110×10-6~701×10-6),少见S型花岗岩所具有的富铝矿物,主要落在I型或高分异I型花岗岩区域。另外,在西南婆罗洲见非常低P2O5和MgO含量的高硅花岗岩(样品18JV-90B和18JV-91B的SiO2达78%),其Eu/Eu*低至~0.06,高Ba和Sr,相对高TFeO/MgO和Zr,且具REE四分组配分效应,类似于台湾东部早侏罗世塔伦变花岗岩(Yui et al.,20092017),代表了高分异I型花岗岩。与区内同期中基性火成岩相比,这些样品有着更为陡立的REE配分曲线和更明显的Nb-Ta、Ba-Sr和P-Ti负异常。同时有着与区内同期镁铁质岩石相似的略亏损的εNdt)值(-1.1~+4.2)、相似的初始(87Sr/86Sr)i(0.7036~0.7093)和(206Pb/204Pb)i(18.92~19.60)、(207Pb/204Pb)i(15.61~15.74)和(208Pb/204Pb)i比值(38.87~39.68)。该Sr-Nd-Pb同位素组成也总体类似西北婆罗洲早白垩世莱雅组镁铁质火山岩(Wang et al.,201320182022a)。上述花岗质岩石的锆石εHft)(+1.7~+15.5)和δ18O值(4.93‰~5.61‰)明显有别于源于变沉积岩的东南亚中部花岗岩省、中国华南三叠纪花岗岩、印度洋浊积岩和澳大利亚奥陶系沉积岩等(图6,如Wang et al.,201320182020a2020b2021a2021b2021c2021d)。综上所述,包括西北和西南婆罗洲在内的婆罗洲西部侏罗纪花岗质岩石是新生陆壳熔融产物,该新生陆壳有着与区内同期中-基性镁铁质岩石一致的地幔楔源区。

  • 2.3 早白垩世(~135 Ma)岩浆作用

  • 如前所述,西北和西南婆罗洲地区早白垩世火成岩主要有加里曼丹西北的莱雅火山岩组、帕诺杂岩及其相关的默努努火山岩组、门西堡花岗岩及相关岩石。莱雅组镁铁质火山岩和相关辉长辉绿岩SiO2=49.27%~58.18%,Al2O3=15.56%~22.45%,TFeO=8.79%~11.34%,MgO=2.64%~8.69%,K2O<Na2O,为拉斑质到低钾钙碱性岛弧型玄武岩-玄武安山岩-安山岩岩石组合(图7)。与MORB和冲绳弧后盆地玄武岩相比,上述镁铁质岩石具低TFeO和高Al2O3。他们的(La/Yb)N=1.96~7.41,(Gd/Yb)N=0.69~1.84,高场强元素亏损(Nb/La=0.16~0.50),(87Sr/86Sr)i=0.70187~0.70484,εNdt)=+2.3~+4.3,较区内晚白垩世帕控-萨拉邦镁铁质岩石富集,但比东古特提斯弧火山岩和中国东南沿海白垩纪镁铁质岩石更为亏损(图9a~c; Wang et al.,20182021a2021b2021c2021d; Wu et al.,2022)。(206Pb/204Pb)i=18.49~18.61,(208Pb/204Pb)i=38.38~38.62,(207Pb/204Pb)i=15.57~15.62,与南海新生代海山玄武岩相似,但不同于特提斯洋MORB型岩石(图9b、c; Cai et al.,2019; Wang et al.,2021a2021b2021c2021d)。莱雅组镁铁质火山岩的(Ta/La)N=0.07~0.50,(Hf/Sm)N=0.41~1.96。其La/Nb、Ba/Nb、Th/Yb和Nb/Y比值等落在弧火山岩范围。其锆石εHft)值变化于+4.1~+16.1,峰值为+5.5和+11,δ18O值变化于5.36‰~6.05‰,全岩Sr-Nd-Pb同位素组成沿着壳幔阵列展布(图6~9),暗示源区存在“地壳”成分输入(如La Fleche et al.,1998; Qian et al.,2016; Wang et al.,2020a2020b)。由此推断,早白垩世莱雅组或默努努组镁铁质火山岩源自再循环沉积物派生组分交代的MORB源区或其衍生物(Luhr and Haldar,2006)。

  • 早白垩世门西堡花岗岩SiO2=64.49%~75.25%,MgO=0.31%~2.58%,A/CNK=0.93~1.25和A/NK=1.36~2.58(图7b),属于钙碱性I型花岗闪长岩和花岗岩。代表性样品Sr、Ba、Y和Yb、Sr/Y和La/Yb等明显不同于高硅埃达克岩,其(La/Yb)N=1.96~14.8,(Gd/Yb)N=0.63~1.93,Rb/Sr=0.01~0.88,Rb/Ba=0.02~0.32。(87Sr/86Sr)i=0.7026~0.7054,εNdt)=+1.5~+4.4,(206Pb/204Pb)i=18.55~19.25,(208Pb/204Pb)i=38.50~38.94和(207Pb/204Pb)i=15.60~15.64,相应锆石εHft)=+9.1~+16.5和δ18O=5.06‰~5.61‰(图6~9)。以上同位素组成和原始地幔标准化曲线均类似莱雅组镁铁质火山岩(图8a、b),也可类比于南海地区早白垩世(~124 Ma)埃达克质花岗闪长岩(εNdt)=+3.62~+3.52,(206Pb/204Pb)i=18.77~18.78,(207Pb/204Pb)i=15.64~15.65,(208Pb/204Pb)i=38.89~38.89,锆石εHft)=+3.8~+5.2),但较沙捞越古晋带晚白垩世西连组火山岩和中国东南沿海早白垩世基性岩明显亏损(如Cai et al.,2019; Gan et al.,2020; Wang et al,2021d)。结合同期莱雅组镁铁质火山岩的元素-同位素组成特征,认为沉积物交代改造地幔楔源区形成莱雅组镁铁质岩石的同时,部分岩浆底侵于地壳,该新生地壳部分熔融形成了区内早白垩世花岗质岩石。

  • 图8 西南及西北婆罗洲侏罗纪—早白垩世(a、b)和晚白垩世(c、d)中基性镁铁质和中酸性花岗质岩石的微量元素配分图(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及其相关文献)

  • Fig.8 Primitive mantle-normalized diagrams for the Earliest Jurassic-Early Cretaceous (a, b) and Late Cretaceous (c, d) mafic-intermediate and intermediate-felsic igneous rocks in SW and NW Borneo (data from Wang et al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 2.4 晚白垩世(~85 Ma)岩浆作用

  • 2.4.1 卢帕线帕控-萨拉邦MORB型镁铁质岩浆作用

  • 卢帕带蛇绿混杂岩帕控和萨拉邦镁铁质岩石的SiO2=46.22%~51.75%,Al2O3=12.72%~19.83%,TiO2=0.49%~2.42%,TFeO=8.27%~17.67%,MgO=6.30%~10.54%,K2O+Na2O=1.91%~4.05%(图7b)。相比马里亚纳海沟和冲绳弧后盆地玄武岩,上述岩石具更高TiO2和TFeO、更低Al2O3含量。其Cr=29×10-6~1390×10-6,Ni=29×10-6~226×10-6,(La/Yb)N=0.30~1.02,(Gd/Yb)N=0.70~1.06,有着类似N-MORB、小高加索和劳(Lau)洋内弧的稀土和微量元素标准化配分模式(图8b),初始Sr同位素比值0.70285~0.70728,εNdt)=+7.4~+9.4。(Nb/La)N=0.33~0.76,Hf/Ta=12.2~42.0,Ce/Nb=3.55~12.7,(Ta/La)N=0.39~0.93,(Hf/Sm)N=0.97~1.32。他们的Th/Yb、Ba/Nb、Zr/Nb、Th/Ta、Tb/Ta和Th/Zr较N-MORB高,但其正锶异常、相对高Al2O3,表明源区可能含斜长石。以上资料表明该MORB源区可能存在辉长质板片或其派生俯冲流体加入。

  • 2.4.2 晚白垩世“弧型”镁铁质岩浆作用

  • 西北婆罗洲西连组弧火山岩:如上所述原划属早中生代的西连组火山岩至少有部分形成于晚白垩世(89~78 Ma)。该晚白垩世西连组玄武安山岩SiO2=51.52%~57.90%,MgO=3.50%~5.06%,Al2O3=13.62%~15.19%,K2O+Na2O=2.82%~6.14%,Cr=3.0×10-6~16.4×10-6,Ni=3.0×10-6~16.0×10-6。(La/Yb)N=6.41~8.16,(Gd/Yb)N=1.58~1.89,Eu/Eu*=0.74~0.91,LILEs富集、HFSEs亏损,(Nb/La)N=0.37~0.47。Th/Ce=0.11~0.15,Th/Nb=0.51~0.74,Sr/Ce=3.15~9.91,Ba/Th=19.0~88.3,Ce/Pb=3.78~8.22,Pb/Nd=0.27~0.53,Sr/Y=6.29~16.9,(Ta/La)N=0.44~0.57,(Hf/Sm)N=1.01~1.24。其(87Sr/86Sr)i=0.71188~0.71417,εNdt)=-11.1~-7.3,明显有别于帕控-萨拉邦镁铁质岩石,而类似岛弧火山岩(图7~9)。另外研究表明西连组95~91 Ma的镁铁质样品有着-3~+2之间的εNdt)值,相似于西南婆罗洲侏罗纪贝特农和库达根火山岩组、及晚白垩世喀拉巴组镁铁质岩石和南海北部同期闪长质岩石。Wang et al.(2021c)的模拟计算表明西连组镁铁质火山岩源于经再循环沉积物或其派生流体组分交代的地幔楔源区,其加入的再循环沉积物占比约5%~15%。

  • 图9 西南及西北婆罗洲侏罗纪—早白垩世(a~c)和晚白垩世(d~f)火成岩的Sr-Nd-Pb同位素组成图解(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及其相关文献)

  • Fig.9 Sr-Nd-Pb isotopic compositions for the Earliest Jurassic-Early Cretaceous (a~c) and Late Cretaceous (d~f) igneous rocks in SW and NW Borneo (data from Wang et al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 西南婆罗洲喀拉巴组弧火山岩:该套火成岩主要分布在西南婆罗洲马劳—帕朗卡拉亚一带,也包括邦喀(Bunga)组玄武岩。其岩性主要有玄武岩、玄武安山岩、安山岩及相当的辉长岩-闪长岩侵入体。该套火成岩的形成年龄为103~82 Ma,地球化学研究表明该套火成岩的SiO2=49.39%~66.72%,MgO=0.77%~6.11%,Al2O3=15.40%~18.95%,K2O+Na2O=3.69%~9.46%,Cr=3.9×10-6~121×10-6,Ni=2.0×10-6~138×10-6,其Mg#为23~61。(La/Yb)N=3.27~11.69,(Gd/Yb)N=1.25~2.32,Eu/Eu*=0.52~1.10,(Nb/La)N=0.16~0.58,以富集LILEs、亏损HFSEs的岛弧型地球化学属性为特征。其初始(87Sr/86Sr)i和εNdt)值分别为0.70449~0.708015和-2.3~+1.7,(206Pb/204Pb)i=18.77~18.78,(207Pb/204Pb)i=15.64~15.65,(208Pb/204Pb)i=38.89~38.89,锆石原位εHft)=+3.8~+5.2,为受俯冲沉积物流体/熔体交代的地幔楔部分熔融产物(图7~9)。

  • 2.4.3 晚白垩世“弧型”花岗质岩浆作用

  • 该期花岗岩不仅发育于西北婆罗洲的诗马丹—伦杜—诗里阿曼地区,也广布于西南婆罗洲。西北婆罗洲上述花岗质岩石的地球化学特征如图6~9所示。他们有着变化于-1.2~+9.5的锆石εHft)值。SiO2、Al2O3、CaO、TFeO和TiO2分别变化于64.86%~77.37%、11.99%~15.36%、0.53%~6.26%、1.16%~9.25%和0.14%~1.59%,属花岗闪长岩和花岗岩。K2O+Na2O=4.21%~7.97%,A/CNK=0.7~1.5,A/NK=1.2~2.2,落入准铝质—过铝质区域。以强烈富集LILEs而亏损HFSEs、具显著Ba-Sr、Nb-Ta和Ti负异常为特征。由于其低Sr(20.2×10-6~198×10-6)和Sr/Y(0.3~7.2),高Y(25.7×10-6~73.8×10-6)和Yb(2.09×10-6~8.60×10-6)特征而不同于埃达克质岩石。它们的(La/Yb)N、(Dy/Yb)N和Eu/Eu*比值分别为1.94~11.1、0.80~2.14和0.17~0.78,(87Sr/86Sr)i=0.70656~0.71208,εNdt)=-4.4~+0.9,低于沙捞越古晋带内帕控-萨拉、但相似或高于西连组晚白垩世镁铁质火山岩。其(206Pb/204Pb)i=18.78~19.74、(207Pb/204Pb)i=15.66~15.71和(208Pb/204Pb)i=38.93~39.62(Gan et al.,2022)。

  • 西南婆罗洲晚白垩世花岗岩浆作用包括了92~81 Ma的黑云母花岗岩、花岗闪长岩和二长花岗岩,以苏卡达纳/三木洋花岗岩基为代表。其地球化学研究表明(图6~9),SiO2=64.36%~77.41%,Al2O3=12.39%~17.78%,TFeO=1.12%~5.75%。A/CNK=0.92~1.64和A/NK=1.37~2.23。(La/Yb)N=2.82~21.99,(Gd/Yb)N=0.70~4.41。富集LILEs、亏损HFSEs,Eu、Sr和Ti负异常,且Ba和Sr与Eu/Eu*呈正相关。(87Sr/86Sr)i=0.70467~0.70769,εNdt)=-1.9~+1.7,(206Pb/204Pb)i=18.63~19.29,(207Pb/204Pb)i=15.62~15.69和(208Pb/204Pb)i=38.67~39.49(Qian et al.,2022),与西北婆罗洲诗马丹—伦杜—诗里阿曼的晚白垩世I型花岗岩类似(Gan et al.,2022; Qian et al.,2022)。正常情况下只有在富玄武质岩浆时才能通过结晶分异形成一定量长英质岩浆。但在婆罗洲西部的晚白垩世中基性火成岩分布有限,而同期花岗质岩石则广为发育、且以岩基为主要表现。样品结晶锆石普遍具正的εHft)(+1.2~+14.5)和地幔型δ18O值(5.2‰~6.6‰),相似于汇聚板块边缘火山岩和地幔捕虏体δ18O值,但明显低于高δ18O值S型花岗岩。这表明西北和西南婆罗洲地区晚白垩世花岗质岩石均源于俯冲过程中地幔楔熔融产物底侵于地壳而形成的新生镁质岩石,有着一致的岩石成因或源区经历过相似的交代改造过程。个别样品具相对较高的Rb/Sr、Rb/Ba、(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i和相对较低的εHft)或较高δ18O值,表明部分样品的源区存在相对较高比例的变沉积组分参与。

  • 3 中生代构造归属及古太平洋安第斯型俯冲模式

  • 3.1 西南婆罗洲与西北婆罗洲的构造对比及其亲缘性

  • 现有的古生物学资料表明西北婆罗洲晚古生代纺锤-和晚三叠世动物群与亲华夏古生物学区系的马来半岛东部、泰国东部和越南东南部类似,而与亲冈瓦纳的滇缅马陆块之泰国半岛古生物学特征差异明显(如van Emmichoven,1939; Haile,19541974; Kon'no,1972; Tan,19781982; Schairer and Zeiss,1992; Basir and Aziman,1996)。区内不整合上覆于上古生界Terbat组的上三叠统萨东组与越南东南部Nongson组类似,以发育Norian-Rhaetic化石组合为特征(如Nguyen et al.,2004)。沙捞越卢帕线帕控-萨拉邦镁铁质岩石的捕获锆石年龄峰值以约123~120 Ma、约163~153 Ma、约255~246 Ma和约1885~1846 Ma为特征,相似于东马来和越南东南部白垩系砂岩碎屑锆石年龄谱系(Sevastjanova et al.,2011; Burrett et al.,2014; Breitfeld et al.,2017; Wang et al.,2021b2022a)。古晋带上白垩统卢帕组砂岩、萨拉邦混杂岩中杂砂岩夹层及相当地层的碎屑锆石年龄谱系峰值以~90 Ma、~120 Ma、~155 Ma、~190 Ma、~250 Ma、~440 Ma、~1850 Ma和~2500 Ma为特征(如Wang et al.,2021b)。西北婆罗洲下白垩统莱雅组镁铁质岩石的捕获锆石U-Pb年龄峰值为~237 Ma、~750 Ma、~1860 Ma、~2135 Ma和~2360 Ma。佩达万组砂岩的碎屑锆石年龄峰值为~125 Ma、~155 Ma、~190 Ma、~250 Ma、~440 Ma和~1850 Ma。同样侏罗系(如孟嘉影组)砂岩的碎屑锆石年龄峰值主要有~155 Ma、~180 Ma、~227 Ma和~1853 Ma。因此,西北婆罗洲不同地区的侏罗系—白垩系总体上有着类似印支-东马来陆块碎屑锆石或捕获锆石年龄谱系。

  • Wang et al.(2021b,2022a)报道沙捞越古晋带和加里曼丹西北的侏罗系—白垩系沉积岩多以分选较差的岩屑杂砂岩和凝灰质砂岩为特征,主要岩屑有燧石、长英质火山岩、粉砂岩、泥岩和砂岩,且石英和斜长石颗粒呈棱角状—次棱角状。古晋带卢帕组、佩达万组和卡杨组砂岩的古流向观测和重矿物分析,揭示出碎屑物自西而东输送、其物源区位于西南(Hutchison,2005; Breitfeld et al.,2018; Breitfeld and Hall,2018; Wang et al.,2021b)。另外恩布伊片岩给出的462~453 Ma锆石U-Pb年龄,可类比于印支陆块早古生代火成岩(Zhu et al.,2022; Wang et al.,2021a)。如上所述,卢帕线以西的沙捞越古晋带和西北施瓦纳山地区识别有三叠纪(256~208 Ma)花岗岩(图3,Setiawan et al.,2013; Hennig et al.,2017; Breitfeld et al.,20172020; Wang et al.,2021b,c),这些花岗岩中有着丰富的古元古代和新太古代继承锆石,其源区为混合新生地壳的变沉积岩和火成岩(Setiawan et al.,2013; Wang et al.,2022a)。如此εNdt)-εHft)值相似于素可泰、庄他武里、马来半岛东部三叠纪花岗岩和印支陆块长山带二叠纪—三叠纪花岗质岩石,明显有别于东南亚之中部花岗岩省和滇缅泰陆块的花岗岩(Wang et al.,201620182020a2020b2021a2021c2021d; Qian et al.,2020)。以上资料综合表明,西北婆罗洲三叠纪花岗岩源区的陆壳性质与印支-马来半岛东部具有相似性。西北婆罗洲碎屑物源系活动大陆边缘近距离搬运而来,其物源指向位于其西南或西侧的印支-马来半岛东部陆块、即巽他古陆东南缘(图1,如Burrett et al.,2014; Hennig et al.,2017; Breitfeld et al.,20172020; Qian et al.,2020; Wang et al.,2021c2022a2022c; Gan et al.,2022)。

  • 对西南婆罗洲,尽管早期曾有研究者提出它可能如西北婆罗洲一样为印支陆块的一部分,但更多研究者认为其自侏罗纪以来,自冈瓦纳澳大利亚分离而来,并于晚白垩世拼贴至巽他古陆,属于班达弧的一部分(如Hall et al.,2009; Hall,2012; Metcalfe,20122021)。但如上所述,施瓦纳山西南的上三叠统或下侏罗统夸扬组和吉打邦组变砂岩均含丰富火山碎屑、分选差,以近距离搬运为特征,其碎屑锆石U-Pb年龄谱系主要峰值在~198 Ma和/或~232 Ma,次要峰值在~481 Ma和~1863 Ma,来自施瓦纳山白垩系变质砂岩的碎屑锆石年龄峰值为~130 Ma、~185 Ma、~240 Ma、~454 Ma和~1850 Ma(Breitfeld et al.,20172020; Wang et al.,2022a)。如此谱系特征类似沙捞越古晋带帕控-萨拉邦和加里曼丹孟嘉影地区砂岩碎屑锆石U-Pb年龄峰值(Wang et al.,2021a2021c),而与东南婆罗洲默拉图斯、苏拉威西和澳大利亚北西碎屑锆石年龄谱系差异明显(如Sevastjanova et al.,2011; Burrett et al.,2014; Hennig et al.,2016; Zimmermann and Hall,20162019; Breitfeld et al.,201720182020; Jaya et al.,2017; Wang et al.,2021b2022a2022b2022c; Gan et al.,2022)。同时,Wang et al.(2022a,2022b,2022c)的研究表明,无论是西北婆罗洲(古晋带)还是西南婆罗洲(施瓦纳山南西),上三叠统—下侏罗统和上侏罗统沉积岩均以岩屑杂砂岩为主,发育丰富的棱角状—次棱角状石英、斜长石颗粒和火山碎屑,源自邻近活动边缘陆源物质的短距离搬运。而碎屑颗粒普遍具正的、与邻近侏罗纪火成岩结晶锆石相似的εHft)值,显示为大陆弧属性(如Cui et al.,2021)。另外,在西南婆罗洲和西北婆罗洲(含南海北部)地区均发育早、晚侏罗世(约200~183 Ma和约166~153 Ma)和早、晚白垩世(~135 Ma和103~78 Ma)中—基性岩石和花岗质岩石及其相当岩性(图10)。在西南婆罗洲和西北婆罗洲相应时代的镁铁质或长英质岩石有着相似的元素和Sr-Nd-Hf-O同位素地球化学特征(图7~9)。如西南婆罗洲的中基性和中酸性火成岩与沙捞越古晋带早白垩世莱雅组或相当时代火山岩组和门西堡岩基以及南海海山玄武岩等有着相似的,明显不同于源自新特提斯班达弧的东南婆罗洲早白垩世梅拉图斯镁铁质-超镁铁质岩石(其地球化学特征描述见后)的地球化学特征(如Wang et al.,2022b及参考文献)。因此,以上资料表明西北和西南婆罗洲之间在侏罗纪—白垩纪期间或更早时期缺乏分割板块性质的俯冲缝合边界,西南婆罗洲很可能与西北婆罗洲同处于印支陆块东部、即越南东南—马来半岛东部或巽他古陆东南缘,均经历了早、晚侏罗世和早、晚白垩世岩浆事件,接受了巽他古陆活动大陆边缘碎屑物源,有着相似的中生代构造背景(图10~12; 如Cui et al.,2021; Wang et al.,2021b; 2022a,2022b,2022c)。现有古地磁资料显示,东南亚大陆自晚三叠世以来总体处于现今位置,而婆罗洲西部自晚白垩世以来有着~90°的逆时针旋转(Schmidtke et al.,1990; Fuller et al.,1999; Hutchison,2005; Hennig et al.,2016)。因此,现今NWW-SEE向延伸的沙捞越古晋带及卢帕线等在侏罗纪—白垩纪时期应呈NNE-SSW走向,西北婆罗洲和西南婆罗洲均以NE/NNE走向位于印支陆块越南东南—东马来之东南侧(图12)。

  • 3.2 婆罗洲西部三叠纪—早白垩世岩浆源区的时空对比及背景重塑

  • 除桑高花岗岩以外(Setiawan et al.,2013),西北婆罗洲三叠纪(256~216 Ma)花岗岩普遍具正的εHft)值(+1.9~+8.1),很显然其源区有新生或新近地幔物质的参与。Wang et al.(2021a)将其与东南亚三叠纪东部花岗岩省进行对比而认为其属马来西亚东部花岗岩省的一部分,是东古特提斯洋盆向东俯冲的产物。尽管目前的资料尚不足以排除上述的可能性,但同时必须看到的是,上述花岗岩εNdt)变化于-6.4~-0.1之间,略高于马来西亚东部同期花岗岩(-9.1~-3.8)。另外,Miao et al.(2021)在南沙群岛南科一井(NK-1)识别出了具A型地球化学属性的晚三叠世(218~217 Ma)英安岩,全岩εNdt)=-6.2~-4.8,(206Pb/204Pb)i=18.57~18.66,(208Pb/204Pb)i=38.79~38.96和(207Pb/204Pb)i=15.74~15.75,锆石εHft)变化于-2.7~-1.8之间,被解释为古太平洋俯冲作用导致华南古老陆壳部分熔融的产物。Burton-Johnson et al.(2020)在马来西亚沙巴的西加麦(Segama)和普鲁特(Purut)地区识别出了251~241 Ma和178 Ma的埃达克质英云闪长岩和玄武岩。这些岩石具LILEs富集、HFSEs亏损的弧型微量元素配分型式和MORB型Sr-Nd-Pb同位素组成,其εNdt)=+6.5~+9.8,(206Pb/204Pb)i=18.73~19.32,(208Pb/204Pb)i=38.38~38.95和(207Pb/204Pb)i=15.55~15.59,锆石δ18O和176Hf/177Hf 分别为4.74‰~5.04‰和0.28303~0.28305。如此同位素组成有别于构造属性为新特提斯域的东南婆罗洲早白垩世梅拉图斯镁铁质-超镁铁质岩石(地球化学特征见后),相反,类似于南海中部三叠纪花岗质岩石和越南东南部中生代火山-侵入杂岩,因此被解释为古太平洋俯冲于巽他古陆东缘的记录。在沙巴东部仙本那地区上新世—更新世玄武岩也捕获有亲华南或印支陆块的新元古代—太古宙锆石年龄。如果考虑新生代的南海打开和婆罗洲晚白垩世以来的旋转效应等,那么西北婆罗洲地区三叠纪(256~208 Ma)的I型花岗质岩石很可能是古太平洋俯冲体系的一部分或古特提斯与古太平洋俯冲汇聚的叠合部位。如此则古太平洋板块的西向俯冲自三叠纪早期(~250 Ma)即已启动。

  • 图10 西南及西北婆罗洲中生代火成岩现有锆石U-Pb年龄总结(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及其相关文献)

  • Fig.10 Summary of zircon U-Pb ages for the Mesozoic igneous rocks in SW and NW Borneo (data from Wanget al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 图11 西南及西北婆罗洲中生代镁铁质火成岩(a、b)和中酸性花岗质岩石(c、d)的构造环境判别图解(数据源自Wang et al.,2021b2022a2022b2022c; Gan et al.,2022; Qian et al.,2022及其相关文献)

  • Fig.11 Tectonic discriminations for the Mesozoic mafic-intermediate igneous rocks (a, b) and intermediate-felsic granitoids (c, d) and their equivalents in SW and NW Borneo (data from Wang et al., 2021b, 2022a, 2022b, 2022c; Gan et al., 2022; Qian et al., 2022 and references therein)

  • 在西北和西南婆罗洲均发育早、晚侏罗世(~190 Ma和~155 Ma)中基性镁铁质和中酸性花岗质岩石,他们以LILEs强烈富集,Nb-Ta、Ba-Sr和P-Ti明显负异常和相似Sr-Nd-Pb-Hf-O同位素组成为特征,εNdt)变化于-2.5~+4.2。其中-基性岩石源于再循环沉积组分交代改造的地幔楔源区,花岗质岩石源区为该地幔楔派生而来的新生地壳。西北婆罗洲侏罗纪火成岩以辉长辉绿岩和花岗质岩石为主,而西南婆罗洲喀拉巴火山岩组以玄武岩-安山岩-英安岩-流纹岩组合为特征,在不同的地球化学判别图解中均落于弧火山岩区域(图11)。与之同期的沉积岩以火山碎屑岩或者分选较差的杂砂岩为主,也呈现为活动大陆边缘属性特征。因此西北和西南婆罗洲至少自三叠纪—侏罗纪之交(~200 Ma)开始到早—晚侏罗世均发生了与俯冲消减直接相关的岛弧岩浆作用。

  • 在西北婆罗洲加里曼丹西北地区和西南婆罗洲帕诺杂岩一带发育了早白垩世(~135 Ma)的莱雅组和默努努组火山岩系,以玄武岩-安山岩-英安岩-流纹岩为其岩石组合。其中镁铁质岩石源自再循环沉积物交代改造的地幔楔,其TiO2=0.61%~1.84%,Ti/V=3.6~7.8,(Th/La)N=0.44~4.71,Al2O3含量较高,(La/Yb)N=1.96~7.41、Ba/La=6.72~29.1、Sm/Nd=0.19~0.29,落在N-MORB和OIB混合端元左侧或岛弧玄武岩区域,处于陆缘弧而非大洋弧构造背景(图11,如Shinjo et al.,1999)。他们与浅海相砂岩、砾岩和深海浊积岩共存,以富含火山岩屑杂砂岩为特征,其碎屑锆石(2361~132 Ma)年龄谱系中最年轻峰值在~135 Ma,近似火山岩形成年龄,如此特征更趋向于其形成于弧前盆地沉积背景。同时,门西堡岩基以I型花岗闪长岩和花岗岩为主,与莱雅组火山岩形成时间相近(~135 Ma)、空间重叠,且有着相似的同位素组成,源自与莱雅组镁铁质火山岩相似地幔楔派生的底侵岩浆。因此西北婆罗洲莱雅组火山岩、门西堡岩基及同期碎屑岩很可能代表了早白垩世岛弧-弧前盆地的活动陆缘构造背景。

  • 3.3 古晋带晚白垩世构造属性及在西南婆罗洲的南延

  • 沙捞越古晋带以卢帕蛇绿混杂岩带分隔了巽他古陆与新生代诗巫带,但古晋带形成于何种构造背景,代表了古太平洋西向俯冲带的南向延伸还是代表了特提斯俯冲带的东延部分仍有不同看法。卢帕带沿卢博安图延入印尼博杨地区后是进一步东延至沙巴地区还是至此戛然而止?或者能否延入以施瓦纳山岩基为标志的西南婆罗洲而有着不同于现有认识的其他走向?

  • 如前所述,卢博安图和萨拉邦蛇绿混杂岩中镁铁质岩石及西连组火山岩近于同时形成于晚白垩世(98~77 Ma; Wang et al.,2022a2022b2022c)。其中卢帕带中卢博安图和萨拉邦蛇绿混杂岩的镁铁质岩石相对于典型N-MORB玄武岩具低SiO2、高MgO和Al2O3,源自受俯冲板片流体交代影响的MORB源区,在构造环境判别图上落于N-MORB或弧火山岩区域(图11)。在卢帕线西侧发育的晚白垩世西连组玄武岩-安山岩-流纹岩中的中-基性镁铁质岩石以强烈富集LILEs、亏损HSFEs为特征,Th/Yb、Th/Ta和Ta/Yb高,Tb/Ta低,同位素组成富集,εNdt)集中于-3~+2和-11~-9两个区间,表明其源区受俯冲沉积物派生组分不同程度的交代改造,为岛弧火山岩。同时,西连组岛弧火山岩(La/Yb)N、Ba/La和Sm/Nd比值分别为0.30~1.02(< 3)、1.17~27.9(> 10)和0.31~0.38(> 0.3),明显不同于洋内弧火山岩(如Shinjo et al.,1999)。另外,沙捞越古晋带内火山岩与深海浊积岩、浅海沉积岩共存(如Wilford and Kho,1965; Hutchison,2005),其中的杂砂岩以分选磨圆差、含丰富的近源搬运火山碎屑,且碎屑锆石U-Pb年龄谱系中"古老”碎屑锆石少,其中佩达万组的最年轻年龄峰值与地层沉积时代、弧火山岩形成时代相近,有着与弧火山岩结晶锆石相似的εHft)值。它整合上覆于科达多组、下伏于晚白垩世—早始新世卡杨组,以砂岩、泥岩、石灰岩和凝灰岩为特征,其最年轻碎屑锆石U-Pb年龄为102~86 Ma,凝灰质火山岩年龄为88.5±1.5 Ma。尽管目前还没有在带内识别出玻安岩和高镁安山岩等弧前环境的特征岩石,但上述特征更可能表明沙捞越古晋带形成于弧前构造背景,相应的沉积建造可解释为由浅海向深海过渡的晚白垩世弧前沉积(Hutchison,19892005; Basir and Uyop,1999; Breitfeld et al.,20172020; Mazumder et al.,2021)。

  • 古生物研究表明,卢帕线卢博安图混杂岩中的页岩和硅质岩发育了三个不同时期的生物种群,分别为Kimmeridgian—Tithonian(约157~145 Ma)、Valanginian—Barremian(约135~125 Ma)和Albian—Cenomanian(约110~93 Ma)(Wilford and Kho,1965; Kon'no,1972; Tan,1978; Tate,1991; Basir and Aziman,1996; Hutchison,2005)。在萨拉邦、世京喀和塞班甘蛇绿混杂岩的页岩和硅质岩中鉴别出了Valanginian—Aptian(约140~110 Ma)放射虫种属(如Basir and Aziman,1996; Hutchison,2005)。在Tuang变质岩中获得了早白垩世的白云母40Ar/39Ar变质年龄,在帕诺变泥质岩中锆石边部的U-Pb变质年龄约为120~80 Ma(Davies et al.,2014),早于或同期于卢帕线帕控-萨拉邦镁铁质岩石和西连组火山岩形成年龄。因此沙捞越古晋带所代表的弧前构造背景很可能自晚侏罗世即已发育,直至晚白垩世仍处于活动大陆边缘俯冲环境,带内代表大洋环境的侏罗纪—早白垩世MORB型或OIB型火成岩可能因为持续的长寿命俯冲而“抹失”,古晋沟-弧体系的俯冲消减持续到晚白垩世。卢帕带混杂岩中所保存的含晚白垩世藻类及中古新世—中始新世化石的少量外来灰岩团块(Hutchison,2005)是始新世以后逆冲堆叠过程中被构造带入的结果。

  • 现有观点认为沙捞越古晋带沿卢帕线向东延入博杨地区后进一步延入马来西亚沙巴地区,构成总体走向东西并向南呈弧形凸出的空间展布(图2)。但事实上沙巴地区发育于古达、特鲁比和仙本那一线的蛇绿混杂岩形成时代尚未确定,且构造走向总体以向西南弧形凸出的近北北西走向展布,显示出明显的空间不协调性。另外,由于长期认为“西南婆罗洲是侏罗纪自澳大利亚裂离而来、有别于亲印支陆块的西北婆罗洲”,也由此提出了将帕诺杂岩作为西南和西北婆罗洲的缝合界线、或认为在北西施瓦纳山和北东、东南施瓦纳山之间存在一条未知缝合边界。但如前所述,帕诺杂岩形成于早白垩世、变质于晚白垩世,其中默努努变火山岩组有着与西北婆罗洲莱雅组火山岩相似的元素-同位素组成。同时如图10综合所示,不论西南婆罗洲、还是西北婆罗洲均经历了早、晚侏罗世和早、晚白垩世岩浆事件,其侏罗纪和早白垩世镁铁质岩石或同期长英质岩石均具弧型微量元素地球化学特征,有着相似的Sr-Nd-Pb-Hf-O同位素组成,落于火山弧构造环境(图8、9、11),分别起源于俯冲组分交代改造的地幔楔或其派生岩浆底侵于地壳的新生镁质组分。相反,在东南婆罗洲发育有被新生代巴里托(Barito)盆地和阿森(Asem)盆地所包围的、以镁铁质-超镁铁质岩及相关火成岩、变质岩和沉积岩(如含放射虫硅质岩)等组成的梅拉图斯混杂岩。它与苏拉威西的班迪马拉、爪哇中部的卢克乌璐一起构成了印尼中部增生碰撞杂岩带(CIACC)。在该混杂岩中潘诺甘(Paniungan)组保存有晚侏罗世—早白垩世亲冈瓦纳Cylindrites化石(Koolhoven,1933; Wakita et al.,19941998),早白垩世圆笠虫属可对比于东爪哇(Hashimoto et al.,1975)。在梅拉图斯混杂岩内,斜长花岗岩形成于~143 Ma(王逸文等,2022),镁铁质和长英质岩石,如哈鲁严(Haruyan)火山岩、贝拉湾雅(Belawayan)花岗岩,同时形成于140~107 Ma,其中-基性火成岩和花岗质岩石的εNdt)变化于+4.6~+7.7之间,源于与板片交代之地幔楔或其新生镁质地壳(Wang et al.,2022c; Wu et al.,2022)。(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i 分别为18.15~18.61、15.41~15.63和38.03~38.63,明显不同于西南婆罗洲、西北婆罗洲和沙巴西麦加地区中生代火成岩,具类似特提斯但不同于太平洋域的铅同位素组成(图9,Wang et al.,2021; Wu et al.,2022)。同时在CIACC苏拉威西班迪马拉、爪哇中部卢克乌璐混杂岩也有着类似的岩石组合和含早白垩世放射虫硅质岩,代表了早白垩世(140~100 Ma)的增生碰撞带。相关研究表明CIACC带的放射虫消失于~93 Ma、经历了具顺时针P-T轨迹的早白垩世(119~110 Ma)高压/低温变质作用(如Parkinson,1998; Hoffmann et al.,2019; Setiawan et al.,2020; Alfing et al.,2021)。最近研究表明带内~87 Ma的巴鲁(Baru)埃达克岩上覆于下白垩统Balangbaru组深海浊积岩之上,且为含~83 Ma化石的陆源红色页岩所上覆(如Zahirovic et al.,2014; Jaya et al.,2017; Wu et al.,2022)。也就是说该俯冲带的俯冲启动于~140 Ma,并持续至~85 Ma结束。进一步的综合分析发现,东南婆罗洲变沉积岩的碎屑锆石U-Pb年龄谱系类似苏拉威西、爪哇岛和澳大利亚,显示其亲缘澳大利亚北西(Hamilton,1979; Parkinson,1998; Metcalfe,2021; Hennig et al.,2017; Hoffmann et al.,2019)。因此白垩纪时期,东南婆罗洲的梅拉图斯与苏拉威西班迪马拉和爪哇卢克乌璐增生碰撞带属于特提斯沟-弧体系的弧前构造背景,属于亲澳大利亚的班达弧,起到分离印支-东马来陆块和班达弧的板块边界作用(Wang et al.,2022a2022b2022c)。

  • 图12 西北和西南婆罗洲中生代火成岩年龄向东迁移及岩浆岩前锋(a),侏罗纪、早白垩世和晩白垩世古太平洋向印支-东马来陆块俯冲消减及增生后撤模式图(b d)及中生代古太平洋向西俯冲于东亚安第斯型大陆边缘延伸图(e)(据Wang et al.,2021b2022c等修改)

  • Fig.12 Tectonic map for Borneo showing the easterly propagating trend of the Mesozoic igneous rocks in NW and SW Borneo (a) , showing the tectonic evolution for West Borneo at Jurassic, early Cretaceous and late Cretaceous periods, respectively (b d) , southward extension of Paleo-Pacific Andean-like orogenesis along the SE Asia (e) (after Wang et al, , 2021b, 2022c)

  • 西南婆罗洲的沉积学和碎屑锆石年代学研究表明,区内白垩系沉积岩以岩屑砂岩和杂砂岩为主,分选差,磨圆度差,含丰富火山岩屑,碎屑锆石年龄谱系多呈单一主峰,碎屑锆石年龄主峰也多近似碎屑岩沉积时代,代表近距离搬运的弧前复理石沉积建造。西南婆罗洲地区马劳以东地区的巨量中酸性花岗质岩基(如苏卡达纳)和中基性镁铁质火成岩集中形成于103~72 Ma的晚白垩世,其源区为受到俯冲组分明显改造的地幔楔或其衍生的新生地壳,与沙捞越古晋带一样形成于火山弧环境(图11)。因此,基于上述资料及区域岩浆、地层和构造区划的现有认识,认为西南和西北婆罗洲之间不存在板块分割性质的俯冲缝合边界,侏罗纪—白垩世时期它们同处于巽他古陆东南缘,接收了巽他古陆活动大陆边缘碎屑物质,是古太平洋体系的主要组成部分(图12)。而东南婆罗洲梅拉图斯属于特提斯弧-盆体系的产物。作为分割巽他古陆与诗巫-米里带的沙捞越卢帕线并未向东延入沙巴地区,而是向南东延入西南婆罗洲的伯努阿马蒂罗斯-普图西包、并进一步向南延入中加里曼丹之帕朗卡拉亚一线。西南婆罗洲马劳-帕诺帕以东的帕朗卡拉亚地区很可能可类比于沙捞越古晋带,由此构成婆罗洲晚白垩世古晋-帕朗卡拉亚增生构造带,如图12a所示。

  • 3.4 东亚中生代古太平洋安第斯型俯冲模型

  • 综上所述,以西北和西南婆罗洲构成的婆罗洲西部广泛发育中生代火成岩,其中西北婆罗洲发育的三叠纪花岗质岩石主要由少量新生地壳物质加入的变质基底熔融而来,沙捞越古晋带晚白垩世西连组中基性火山岩高度富集εNdt)、卢帕线蛇绿混杂岩中卢博安图和萨拉邦镁铁质岩石高度亏损εNdt)。其他西北婆罗洲和西南婆罗洲的早、晚侏罗世镁铁质或长英质火成岩均具弧型微量元素地球化学特征和相似Sr-Nd-Pb-Hf-O同位素组成,均起源于俯冲组分改造的地幔楔或其衍生的新生镁质地壳,反映其形成于弧或弧前构造背景。这些中生代火成岩具有正的或接近为零的εNdt)、太平洋域的Pb同位素组成、正的锆石εHft)和地幔型δ18O,较华南沿海地区同期火成岩具更高的εNdt)-εHft)和低δ18O值,表明西部婆罗洲中基性火成岩石的地幔楔源区较华南沿海地区同期火成岩石更为亏损或更接近俯冲带和俯冲前缘,而花岗质岩石源区含更多年轻或新生基性地壳组分(如Shellnutt et al.,2013)。空间上婆罗洲西部的中生代火成岩总体上呈现出自西而东依次年轻的趋势(图12a)。早、晚侏罗世(约200~190 Ma和约160~150 Ma)火成岩主要分布于坤甸和西北施瓦那山一带,早白垩世(~135 Ma)火成岩主要分布于孟嘉影、北施瓦那山和吉打邦一线,而晚白垩世(约102~77 Ma)岩浆作用广泛分布于沙捞越古晋带和马劳以东的南施瓦纳山地区。因此,三叠纪位于印支-东马来半岛东南缘的婆罗洲西部表现为自三叠纪—侏罗纪之交(约200~190 Ma)至晚白垩世(~85 Ma)、自内(北西加里曼丹-北西施瓦纳山)而外(古晋-帕朗卡拉亚)依次扩展的俯冲增生型造山作用(图12a~d)。如此年龄迁移趋势与华南陆块东部中生代长英质岩石自北西而南东依次年轻的趋势相一致(如Wang et al.,2013; Gan et al.,20202021),因此婆罗洲西部在中生代时期同属古太平洋俯冲体系的一部分,其向北可与我国东南沿海等相对比(图12e)。

  • 已有资料表明日本太平洋俯冲体系始于早侏罗世(如Taira,2001; Charvet,2013)。台湾东部塔纳瑙(Tananao)变质杂岩中的古生物和沉积建造显示早侏罗世至晚白垩世发育弧前增生带(如Yen,1953; Yui et al.,20092017)。婆罗洲西部的加里曼丹西北和施瓦纳山西北早、晚侏罗世(~195 Ma和~155 Ma)火成岩在形成时代和地球化学上与南沙-东沙-塔伦火成岩带具可比性。已有资料表明沿南沙—东沙—塔伦发育有形成于活动大陆边缘的侏罗纪高εNdt)-εHft)岩浆作用。如Yui et al.(2009,2017)报道了约200~191 Ma的高钾钙碱性I型塔伦变花岗岩,(87Sr/86Sr)i=0.7059~0.7047,εNdt)=+2.4~+3.6,锆石εHft)=+4.5~+12.9。在南海北部和东海西南部识别有(87Sr/86Sr)i=0.7052~0.7066、εNdt)=-0.9~+2.2、锆石εHft)=+2.2~+6.5的早侏罗世(约198~187 Ma)低温(675~696°C)岛弧型闪长岩和花岗岩(Liu et al.,2012; Xu et al.,2017; Cui et al.,2021)。南海北部珠江口盆地和南海南部南沙岛礁晚侏罗世(162~149 Ma)的I型闪长岩和花岗岩均含丰富三叠纪(257~211 Ma)和早侏罗世(193~181 Ma)继承性锆石,其εNdt)=-4.6~+0.2,(87Sr/86Sr)i =0.7038~0.7068(Yan et al.,2010; Xu et al.,2016; Cai et al.,2019)。

  • 沿中国华南东南沿海经南海北部至越南东南部广泛发育形成于~125 Ma和约95~88 Ma的白垩纪火成岩,大致同期于婆罗洲西部沙捞越古晋带和南施瓦纳山地区白垩纪火成岩(如Taylor and Hayes,1983; Nguyen et al.,2004; Metcalfe,2006,2017; Hall,2012; Shellnutt et al.,2013; Hennig et al.,2017; Breitfeld et al.,2020; Gan et al.,2020)。但相对而言中国东南沿海、南海北部和越南东南部白垩纪火成岩主要以中酸性火成岩、I型和A型花岗岩为特征,其Nd-Hf同位素比值相对较低(如Nguyen et al.,2004; Hall,2012; Shellnutt et al.,2013; van Hattum et al.,2013)。在巽他古陆东侧的马来半岛东部斯东-诺林(Stong-Noring)地区、刁曼(Tioman)岛和新加坡等同样发育有晚白垩世(约95~76 Ma)花岗质岩石(如Ng et al.,2015),代表了婆罗洲西部弧型花岗岩的西延,是古太平洋向西俯冲或后缘裂解作用的产物(Hutchison,2005; Ng et al.,2015)。大量研究资料已揭示出中南半岛地区古特提斯洋盆已于中三叠世(~237 Ma)关闭,其造山作用结束于~200 Ma(如Wang et al.,2018),古特提斯与古太平洋构造域的转换时间在三叠纪—侏罗纪之交。同时考虑到婆罗洲西部晚白垩世以来的90°逆时针旋转和东亚陆缘侏罗纪—白垩纪弧后盆地的缺失(如Engebretson et al.,1985; Schmidtke et al.,1990; Fuller et al.,1999; Zhou and Li,2000; Hutchison,2005; Advokaat et al.,2018),我们认为包括西北婆罗洲和西南婆罗洲在内的婆罗洲西部于侏罗纪—白垩纪或更早时期呈北北东向位于印支-东马来陆块之东南缘。自婆罗洲西部向北经越南东南部、南海北部相接于我国东南沿海及台湾塔伦,并北延进入日本,发育了巨型古太平洋俯冲带(图1、12d)。该俯冲体系至少自三叠纪—侏罗纪之交(~200 Ma)(很可能于三叠纪~250 Ma即已启动)持续至晚白垩世(~80 Ma),以自西而东增生发展的安第斯型增生造山作用为特征(图12b~d)。自婆罗洲西部至中国东南沿海的岩浆作用代表了东亚陆缘活动大陆边缘产物,是古太平洋于中生代长寿命(>120 Ma)俯冲作用的直接结果(Wang et al.,2021c)。上述资料也暗示该增生造山作用至少经历了早、晚侏罗世(~195 Ma和~155 Ma)和早、晚白垩世(约135~125 Ma和~85 Ma)四次强烈的岩浆事件,表明了中生代古太平洋安第斯型俯冲的“多阶段前进-后撤”的特点(图12a~d)。由此也推断侏罗纪—早白垩世俯冲带可能位于婆罗洲西部西北施瓦纳山—加里曼丹孟嘉影—南海北部陆坡—中国台湾塔伦一线; 而晚白垩世俯冲边界位于婆罗洲沙捞越古晋带卢帕线-中加里曼丹帕朗卡拉亚,向北接现今菲律宾巴拉望—吕宋岛一线。该增生造山作用被上白垩统—古近系让江群不整合覆盖,中生代古太平洋的安第斯型造山作用于晚白垩世末期结束,新生代开启西太平洋边缘海盆地形成与演化历程而表现为现今西太平洋俯冲体系。

  • 4 结论

  • (1)婆罗洲西部发育了约200~190 Ma、约155 Ma、约140~125 Ma和约99~77 Ma四期岩浆作用,且空间上自西而东依次年轻,与我国东南沿海地区和南海北部陆架区高度一致。

  • (2)西北婆罗洲和西南婆罗洲出露的早侏罗世—早白垩世的镁铁质和长英质火成岩均具相似Sr-Nd-Pb-Hf-O同位素组成,以正的或接近零的εNdt)、太平洋型Pb同位素组成和正的锆石εHft)和地幔型δ18O值为特征,并分别起源于受俯冲组分改造的地幔楔或其新生镁质地壳。

  • (3)沙捞越古晋带出露的晚白垩世帕控-萨拉邦镁铁质岩石以高度亏损εNdt)的MORB型岩石为特征,而分布于沙捞越古晋带和南施瓦纳山的晚白垩世镁铁质和长英质火成岩均显示出弧型地球化学属性。

  • (4)西南婆罗洲与西北婆罗洲之间缺乏早中生代板块缝合边界,两者构成的婆罗洲西部呈北北东向位于巽他古陆印支-东马来陆块之东南缘。且在早侏罗世—晚白垩世期间经历了自内而外向东扩展的俯冲增生造山作用,其晚白垩世俯冲边界发育于古晋带卢帕线至中加里曼丹帕朗卡拉亚一带。

  • (5)从婆罗洲西部经我国东南沿海至日本一线发育了中生代的长寿命古太平洋安第斯型增生带,其俯冲作用于早三叠世或更早即已启动、具“多阶段俯冲-后撤”特点,直至晚白垩世末期才转换为现今西太平洋俯冲体系。

  • 致谢:感谢中山大学张培震、王伟涛、张玉芝、甘成势、王洋、王玉琨、卢向红和刘梓,中国地质大学冯庆来,莫纳什大学P-A Cawood,印尼Murtadha和Joni,马来西亚A. Ghani等老师在野外和室内研究等方面给予的支持与帮助。

  • 参考文献

    • Advokaat E L, Marshall N T, Li S H, Spakman W, Krijgsman W, van Hinsbergen D J J. 2018. Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics, 37(8): 2486~2512.

    • Alfing J, Brocker M, Setiawan N I. 2021. Rb-Sr geochronology of metamorphic rocks from the Central Indonesian accretionary collision complex: additional age constraints for the Meratus and Luk Ulo complexes (South Kalimantan and Central Java). Lithos, 388~389.

    • Basir J. 1996. Late Jurassic to Early Cretaceous radiolaria from chert blocks in the Lubok Antu mélange, Sarawak, Malaysia. Journal of Southeast Asian Earth Sciences, 13(1): 1~11.

    • Basir J. 2000. Significance of Mesozoic radiolarian chert in Sabah and Sarawak. Proceedings Proceedings Geological Society of Malaysia Annual Conference, 123~130.

    • Basir J, Aziman M. 1996. Some Lower Cretaceous radiolaria from the Serabang complex, Sarawak. Warta Geologi, 22(2): 61~65.

    • Basir J, Uyop S. 1999. Significance of Early Jurassic Radiolaria from West Sarawak, Malaysia. Bulletin of the Geological Society of Malaysia, 43.

    • Breitfeld H T, Hall R. 2018. The eastern Sundaland margin in the latest Cretaceous to Late Eocene: sediment provenance and depositional setting of the Kuching and Sibu Zones of Borneo. Gondwana Research, 63: 34~64.

    • Breitfeld H T, Hall R, Galin T, Forster M A, BouDagher-Fadel M K. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35~56.

    • Breitfeld H T, Hall R, Galin T, BouDagher-Fadel M K. 2018. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200~223.

    • Breitfeld H T, Macpherson C, Hall R, Thirlwall M, Ottley C J, Hennig-Breitfeld J. 2019. Adakites without a slab: remelting of hydrous basalt in the crust and shallow mantle of Borneo to produce the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak. Lithos, 344: 100~121.

    • Breitfeld H T, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig-Breitfeld J, van Hattum M W A. 2020. Mesozoic Paleo-Pacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh metamorphic Group. Frontiers in Earth Science, 8: 536.

    • Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J. 2014. The configuration of Greater Gondwana—evidence from LA-ICPMS, U-Pb geochronology of detrital zircons from the Paleozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31~51.

    • Burton-Johnson A, Macpherson C G, Millar I L, Whitehouse M J, Ottley C J, Nowell G M. 2020. A Triassic to Jurassic arc in north Borneo: geochronology, geochemistry, and genesis of the Segama Valley felsic intrusions and the Sabah ophiolite. Gondwana Research, 84: 229~244.

    • Cai G Q, Wan Z F, Yao Y J, Zhong L F, Zheng H, Kapsiotis A, Zhang C. 2019. Mesozoic northward subduction along the SE Asian continental margin inferred from magmatic records in the South China Sea. Minerals, 9(10): 598.

    • Charvet J. 2013. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: a review-reappraisal of the accretionary orogeny and revalidation of the collisional model. Journal of Asian Earth Sciences, 72: 88~101.

    • Cui Y, Shao L, Li Z-X, Zhu W, Qiao P, Zhang X. 2021. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36~52.

    • Davies L, Hall R, Armstrong R. 2014. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains. Indonesian Petroleum Association.

    • Davies L, Hall R, Marnie F. 2015. Age and character of basement rocks in SW Borneo: new insights from Ar-Ar dating of Pinoh metamorphic group rocks. Indonesian Petroleum Association, 52~54.

    • De Keyser F, Rustandi E. 1993. Geology of the Ketapang sheet area, Kalimantan, 1∶250000. Geological Research Development Centre.

    • Dimalanta C B, Faustino-Eslava D V, Gabo-Ratio J A S, Marquez E J, Padrones J T, Payot B D, Queano K L, Ramos N T, Yumul Jr G P. 2020. Characterization of the proto-Philippine Sea Plate: evidence from the emplaced oceanic lithospheric fragments along eastern Philippines. Geoscience Frontiers, 11(1): 3~21.

    • Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206(9): 1~60.

    • Fang Xudong, Zhang Aimei, Wang Yuejun, Hu Xiangyun, Qian Xin, He Huiying, Chen Min. 2021. Geochronoloy and geochemical characteristics of Lundu mafic rocks in Kuching area, Sarawak. Earth Science, 46 (6): 2133~2144 (in Chinese with English abstract).

    • Fuller M, Ali J R, Moss S J, Frost G M, Richter B, Mahfi A. 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17 (1-2): 3~24.

    • Galin T, Breitfeld H T, Hall R, Sevastjanova I. 2017. Provenance of the Cretaceous-Eocene Rajang Group submarine fan, Sarawak, Malaysia from light and heavy mineral assemblages and U-Pb zircon geochronology. Gondwana Research, 51: 209~233.

    • Gan C S, Wang Y J, Barry T L, Zhang Y Z, Qian X. 2020. Spatial and temporal influence of Pacific subduction on South China: geochemical migration of Cretaceous mafic-intermediate rocks. Journal of the Geological Society, 177 (5): 1013~1024.

    • Gan C S, Zhang Y Z, Wang Y J, Qian X, Wang Y. 2021. Reappraisal of the Mesozoic tectonic transition from the Paleo-Tethyan to Paleo-Pacific domains in South China. Geological Society of America Bulletin, 133 (11-12): 2582~2590.

    • Gan C S, Qian X, Wang Y J, Feng Q L, Zhang Y Z, Asis J B, Ao S J. 2022. Late Cretaceous granitoids along the northern Kuching Zone: implications for the Paleo-Pacific Subduction in Borneo. Lithosphere, 2022 (1).

    • Guo F, Wu Y M, Zhang B, Zhang X B, Zhao L, Liao J. 2021. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth-Science Reviews, 212: 103448.

    • Haile N S. 1954. The geology and mineral resources of the Strap and Sadong Valleys, west Sarawak, including the Klingkang Range coal. US Government Printing Office.

    • Haile N S. 1974. Borneo. Geological Society, London, Special Publications, 4 (1): 333~347.

    • Haile N S, McElhinny M W, McDougall I. 1977. Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan (Borneo), and their significance in interpreting regional structure. Journal of the Geological Society, 133 (2): 133~144.

    • Hall R. 2009. Southeast Asia's changing palaeogeography. Blumea, 54 (1-2): 148~161.

    • Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570: 1~41.

    • Hall R, Clements B, Smyth H R. 2009. Sundaland: basement character, structure and plate tectonic development, Proceedings Indonesian Petroleum Association 33rd Annual.

    • Hamilton W B. 1979. Tectonics of the Indonesian region. Washington, US Government Printing Office.

    • Hart S R. 1984. A large-scale isotope anomaly in the Southern hemisphere mantle. Nature, 309 (5971): 753~757.

    • Hartono U. 2012. Magmatism in Kalimantan, Bandung. Centre for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources.

    • Hashimoto W, Aliate E, Aoki N, Balce G, Ishibashi T, Kitamura N, Matsumoto T, Tamura M, Yanagida J. 1975. Cretaceous system of Southeast Asia. Geology Paleontology of SE Asia, 145: 219~287.

    • Hennig J, Hall R, Armstrong R A. 2016. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Research, 32: 41~63.

    • Hennig J, Breitfeld H T, Hall R, Nugraha A M S. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292~310.

    • Hoffmann J, Brocker M, Setiawan N I, Klemd R, Berndt J, Maulana A, Baier H. 2019. Age constraints on high-pressure/low-temperature metamorphism and sedimentation in the Luk Ulo Complex (Java, Indonesia). Lithos, 324: 747~762.

    • Hutchison C S. 1989. Geological Evolution of South-east Asia. Oxford: Clarendon Press.

    • Hutchison C S. 2005. Geology of North-West Borneo: Sarawak, Brunei and Sabah, Oxford University Press.

    • Jaya A, Nishikawa O, Hayasaka Y. 2017. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia. Lithos, 292: 96~110.

    • Katili J A. 1971. A review of the geotectonic theories and tectonic maps of Indonesia. Earth-Science Reviews, 7 (3): 143-163.

    • Kon'no E. 1972. Some Late Triassic plants from the southwestern border of Sarawak, East Malaysia. Geological and Palaeontology of South Asia, 10: 125~178.

    • Koolhoven W C B. 1933. Geological Map of Java, Explanatory Notes to Sheet 14 (Bayah), 1∶100, 000. Mining Bureau of the Netherlands Indies.

    • La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.

    • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179~182.

    • Liu J L, Tran M D, Tang Y, Nguyen Q L, Tran T H, Wu W B, Chen J F, Zhang Z C, Zhao Z D. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628~644.

    • Lu Baoliang, Wang Pujun, Liang Jianshe, Sun Xiaomeng, Wang Wanyin. 2014. Structural properties of Paleo-South China Sea and their relationship with the Tethys and the Paleo-Pacific tectonic domain. Journal of Jilin University: Earth Science Edition, 44(5): 1441~1450 (in Chinese with English abstract).

    • Luhr J F, Haldar D. 2006. Barren Island Volcano (NE Indian Ocean): island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177~212.

    • Mazumder R, Anthony F B M, Teo B S S, Roy S, Hajri A A, Ohta T, De S, Catuneanu O. 2021. Cretaceous fore arc sedimentation and contemporary basin tectonics in northwestern Borneo: new sedimentological insights from Pedawan Formation, Kuching Zone, east Malaysia. The Journal of Geology, 129(4): DOI: 10. 1086/715790.

    • Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.

    • Metcalfe I. 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9(1-2): 24~46.

    • Metcalfe I. 2012. Changhsingian (Late Permian) conodonts from Son La, northwest Vietnam and their stratigraphic and tectonic implications. Journal of Asian Earth Sciences, 50: 141~149.

    • Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.

    • Miao X Q, Huang X L, Yan W, Yang F, Zhang W F, Cai Y X, Yu Y, He P L. 2021. Late Triassic dacites from well NK-1 in the Nansha Block: constraints on the Mesozoic tectonic evolution of the southern South China Sea margin. Lithos, 398: 106337.

    • Ng S W P, Chung S L, Robb L J, Searle M P, Ghani A A, Whitehouse M J, Oliver G J H, Sone M, Gardiner N J, Roselee M H. 2015. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Geological Society of America Bulletin, 127(9-10): 1209~1237.

    • Nguyen T T B, Satir M, Siebel W, Chen F K. 2004. Granitoids in the Dalat zone, southern Vietnam: age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, 93(3): 329~340.

    • Nuraiteng T A, Kushairi H A. 1987. Pedawan Formation of the Penrissen area, Sarawak: a revision of its upper age limit. Warta Geologi, 13(2): 43~50.

    • Parkinson C. 1998. An outline of the petrology, structure and age of the Pompangeo schist complex of Central Sulawesi, Indonesia. Island Arc, 7(1-2): 231~245.

    • Pieters P E, Sanyoto P. 1989. Geological data record Nangataman and Pontianak 1∶250000 Quadrayles, West Kalimantan. Geological Research Development Center, 55.

    • Pieters P E, Sanyoto P. 1993. Geology of the Pontianak/Nangataman sheet area, Kalimantan 1∶250000. Geological Research Development Centre.

    • Pieters P E, Abidin H Z, Sudana D. 1993. Geology of the Long Pahangai sheet area, Kalimantan, Quadrangle. Geological Research Development Centre.

    • Pimm A C. 1965. Serian area, west Sarawak, Malaysia. Geological Survey Borneo Region, Malaysia.

    • Qian X, Feng Q L, Wang Y J, Chonglakmani C, Monjai D. 2016. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in northwest Laos. Lithos, 245: 60~75.

    • Qian X, Wang Y, Zhang Y, Wang Y, Senebouttalath V. 2020. Late Triassic post-collisional granites related to Paleotethyan evolution in northwestern Lao PDR: geochronological and geochemical evidence. Gondwana Research, 84: 163~176.

    • Qian X, Yu Y Q, Wang Y J, Gan C S, Zhang Y Z, Asis J B. 2022. Late Cretaceous nature of SW Borneo and Paleo-Pacific subduction: new insights from the granitoids in the Schwaner Mountains. Lithosphere, doi: 10. 2113/2022/8483732.

    • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3. 8 GPa. Chemical Geology, 160(4): 335~356.

    • Schairer G, Zeiss A. 1992. First record of Callovian ammonites from West Kalimantan (Middle Jurassic, Kalimantan Barat, Borneo, Indonesia). Journal of Australian Geology Geophysics, 13(3): 229~236.

    • Schmidtke E A, Fuller M D, Haston R B. 1990. Paleomagnetic data from Sarawak, Malaysian Borneo, and the late Mesozoic and Cenozoic tectonics of Sundaland. Tectonics, 9(1): 123~140.

    • Setiawan N I, Osanai Y, Nakano N, Adachi T, Setiadji L D, Wahyudiono J. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 12(28): 4~12.

    • Setiawan N I, Osanai Y, Nakano N, Adachi T, Hendratno A, Sasongko W, Ansori C. 2020. Peak metamorphic conditions of garnet amphibolite from Luk Ulo complex, Central Java, Indonesia: implications for medium-pressure/high-temperature metamorphism in the Central Indonesian accretionary collision complex. Indonesian Journal on Geoscience, 7(3): 225~239.

    • Sevastjanova I, Clements B, Hall R, Belousova E A, Griffin W L, Pearson N. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Research, 19(4): 1024~1039.

    • Shellnutt J G, Lan C Y, Long T V, Usuki T, Yang H J, Mertzman S A, Iizuka Y, Chung S L, Wang K L, Hsu W Y. 2013. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: tectonic implications for the evolution of Southeast Asia. Lithos, 182: 229~241.

    • Shinjo R, Chung S L, Kato Y, Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591~10608.

    • Soeria-Atmadja R, Noeradi D, Priadi B. 1999. Cenozoic magmatism in Kalimantan and its related geodynamic evolution. Journal of Asian Earth Sciences, 17(1-2): 25~45.

    • Supriatna S, Margono U, de Keyser F, Langford R P, Trail D S. 1993. Geology of the Sanggau sheet area, Kalimantan, 1∶250000. Geological Research Development Center.

    • Suwarna N, Langford R P, Geologi P P D P. 1993. Peta Geologi Lembar Singkawang, Kalimantan 1∶250000. Pusat Penelitian dan Pengembangan Geologi.

    • Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annual Reviewof Earth and Planetary Sciences, 29: 109~134.

    • Tan D N K. 1978. Lower Cretaceousage for the chert is the Lupar Valley, West Sarawak. Warta Geologi, 4: 173~176.

    • Tan D N K. 1982. The Lubok Antu melange, Lupar Valley, west Sarawak: a Lower Tertiary subduction complex. Bulletin of the Geological Society of Malaysia, (15): 31~46.

    • Tang J, Xu W L, Wang F, Ge W C. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, 61(5): 527~559.

    • Tate R B. 1991. Cross-border correlation of geological formation in Sarawak and Kalimantan. Geological Society of Malaysia Bulletin, 28: 63~95.

    • Tate R B, Hon V. 1991. The oldest rocks in Borneo: a note on the Tuang Formation, west Sarawak and its importance in relation to the presence of a Basement in west Borneo. Warta Geologi, 17(5): 221~224.

    • Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. Washington DC American Geophysical Union Geophysical Monograph Series, 27: 23~56.

    • van Emmichoven C P A Z. 1939. The geology of the central and eastern part of the western division of Borneo. In: Geological Acaounts of West Borne. Geol. Survey Departement of British Terr. in Borneo, Bulltin, 2: 159~272.

    • van Hattum M W A, Hall R, Pickard A L, Nichols G J. 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76: 266~282.

    • Wakita K, Munasri, Widoyako B. 1994. Cretaceous radiolarians from the Luk-Ulo Melange Complex in the Karangsambung area, central Java, Indonesia. Journal of Southeast Asian Earth Sciences, 9(1-2): 29~43.

    • Wakita K, Miyazaki K, Zulkarnain I, Sopaheluwakan J, Sanyoto P. 1998. Tectonic implications of new age data for the Meratus complex of South Kalimantan, Indonesia. Island Arc, 7(1-2): 202~222.

    • Wang P C, Li S Z, Guo L L, Jiang S H, Somerville I D, Zhao S J, Zhu B D, Chen J, Dai L M, Suo Y H. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51: 464~489.

    • Wang W, Zhou M F, Yan D P, Li L, Malpas J. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1~19.

    • Wang Y J, Qian X, Cawood P A, Liu H C, Feng Q L, Zhao G C, Zhang Y H, He H Y, Zhang P Z. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195~230.

    • Wang Y J, Yang T X, Zhang Y Z, Qian X, Gan C S, Wang Y K, Wang Y, Senebouttalath V. 2020a. Late Paleozoic back-arc basin in the Indochina block: constraints from the mafic rocks in the Nan and Luang Prabang tectonic zones, Southeast Asia. Journal of Asian Earth Sciences, 195.

    • Wang Y J, Zhang Y Z, Qian X, Senebouttalath V, Wang Y, Wang Y K, Gan C S, Zaw K. 2020b. Ordo-Silurian assemblage in the Indochina interior: geochronological, elemental, and Sr-Nd-Pb-Hf-O isotopic constraints of early Paleozoic granitoids in South Laos. Geological Society of America Bulletin, 133(1-2): 325~346.

    • Wang Y J, Qian X, Zhang Y Z, Gan C S, Zhang A M, Zhang F F, Feng Q L, Cawood P A, Zhang P Z. 2021a. Southern extension of the Paleotethyan zone in SE Asia: evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 398: 106336.

    • Wang Y J, Zhang A M, Qian X, Asis J B, Feng Q L, Gan C S, Zhang Y Z, Cawood P A, Wang W T, Zhang P Z. 2021b. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 400-401: 106425.

    • Wang Y J, Wang Y, Zhang Y Z, Cawood P A, Qian X, Gan C S, Zhang F F, Zhang P Z. 2021c. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks. Journal of Asian Earth Sciences, 206: 104648.

    • Wang Y J, Zhang Y Z, Qian X, Wang Y, Cawood P A, Gan C S, Senebouttalath V. 2021d. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: constraints from igneous and sedimentary rocks. Lithos, 382.

    • Wang Y J, Wu S N, Qian X, Cawood P A, Lu X H, Gan C S, Bin Asis J, Zhang P Z. 2022a. Early Cretaceous subduction in NW Kalimantan: geochronological and geochemical constraints from the Raya and Mensibau igneous rocks. Gondwana Research, 101: 243~256.

    • Wang Y J, Qian X, Cawood P A, Ghani A, Gan C S, Wu S N, Zhang Y Z, Wang Y, Zhang P Z. 2022b. Cretaceous Tethyan subduction in SE Borneo: geochronological and geochemical constraints from the igneous rocks in the Meratus complex. Journal of Asian Earth Sciences, 105084.

    • Wang Y J, Liu Z, Murtadha S, Cawood P A, Qian X, Ghani A, Gan C S, Zhang Y Z, Wang Y, Li S. 2022c. Jurassic subduction of the Paleo-Pacific plate in Southeast Asia: new insights from the igneous and sedimentary rocks in West Borneo. Journal of Asian Earth Sciences, 105111.

    • Wang Yiwen, Chen Xinyue, Gan Chengshi. 2022. Zircon U-Pb dating and tectonic significance of the plagiogranite in the Meratus ophiolitic mélange of SE Kalimantan. Geotectonica et Metallogenia, 46(3): 622~632 (in Chinese with English abstract).

    • Wilford G E, Kho C H. 1965. Penrissen area, west Sarawak, US Government Printing Office.

    • Wolfenden E B, Haile N S. 1963. Sematan and Lundu area. West Sarawak. Geological Survey Department. British Territories in Borneo, Report, 1.

    • Wu S N, Wang Y J, Qian X, Asis J B, Lu X H, Zhang Y Z, Gan C S. 2022. Discovery of the Late Cretaceous Barru adakite in SW Sulawesi and slab break-off beneath the Central Indonesian Accretionary complex. Journal of Asian Earth Sciences, 105214.

    • Xu C H, Shi H S, Barnes C G, Zhou Z Y. 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58(1): 71~94.

    • Xu C H, Zhang L, Shi H S, Brix M R, Huhma H, Chen L H, Zhang M Q, Zhou Z Y. 2017. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics, 36(3): 466~492.

    • Yan Q S, Shi X F, Liu J H, Wang K S, Bu W R. 2010. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: constraints on the basement nature. Journal of Asian Earth Sciences, 37(2): 130~139.

    • Yen T P. 1953. On the occurrence of the late Paleozoic fossils in the metamorphic complex of Taiwan. Bulletin of the Geological Survey of Taiwan, 4: 23~26.

    • Yui T F, Okamoto K, Usuki T, Lan C Y, Chu H T, Liou J G. 2009. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China--evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304~328.

    • Yui T F, Chu H T, Suga K, Lan C Y, Chung S H, Wang K L, Grove M. 2017. Subduction-related 200 Ma Talun metagranite, SE Taiwan: an age constraint for palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. International Geology Review, 59(3): 333~346.

    • Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227~273.

    • Zhou Di, Sun Zhen. 2017. Plate evolution in the Pacific domain since Late Mesozoic and its inspiration to tectonic research of East Asia margin. Journal of Tropical Oceanography, 36(3): 1~19 (in Chinese with English abstract).

    • Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269~287.

    • Zimmermann S, Hall R. 2016. Provenance of Triassic and Jurassic sandstones in the Banda Arc: petrography, heavy minerals and zircon geochronology. Gondwana Research, 37: 1~19.

    • Zimmermann S, Hall R. 2019. Provenance of Cretaceous sandstones in the Banda Arc and their tectonic significance. Gondwana Research, 67: 1~20.

    • Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth And Planetary Sciences, 14(1): 493~571.

    • Zhu S, Yao Y J, Li X J, Gao H F, Zhang J Y, Xu Z Y, Wang J. 2022. Spatio-temporal distribution and mechanism of Cenozoic magmatism in the South China Sea and adjacent areas: insight from seismic, geochemical and geochronological data. International Geology Review, 1~28.

    • 房旭东, 张爱梅, 王岳军, 胡祥云, 钱鑫, 何慧莹, 陈敏. 2020. 沙捞越古晋地区伦杜基性岩的形成时代、地球化学特征及其地质意义. 地球科学, 46(6): 2133~2144.

    • 鲁宝亮, 王璞珺, 梁建设, 孙晓猛, 王万银. 2014. 古南海构造属性及其与特提斯和古太平洋构造域的关系. 吉林大学学报, 44(5): 1441~1450.

    • 王逸文, 陈新跃, 甘成势. 2022. 加里曼丹东南部梅拉图斯斜长花岗岩的锆石U-Pb年代学及其地质意义. 大地构造与成矿学, 46(3): 622~632.

    • 周蒂, 孙珍. 2017. 晚中生代以来太平洋域板块过程及其对东亚陆缘构造研究的启示. 热带海洋学报, 36(3): 1~19.

  • 参考文献

    • Advokaat E L, Marshall N T, Li S H, Spakman W, Krijgsman W, van Hinsbergen D J J. 2018. Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics, 37(8): 2486~2512.

    • Alfing J, Brocker M, Setiawan N I. 2021. Rb-Sr geochronology of metamorphic rocks from the Central Indonesian accretionary collision complex: additional age constraints for the Meratus and Luk Ulo complexes (South Kalimantan and Central Java). Lithos, 388~389.

    • Basir J. 1996. Late Jurassic to Early Cretaceous radiolaria from chert blocks in the Lubok Antu mélange, Sarawak, Malaysia. Journal of Southeast Asian Earth Sciences, 13(1): 1~11.

    • Basir J. 2000. Significance of Mesozoic radiolarian chert in Sabah and Sarawak. Proceedings Proceedings Geological Society of Malaysia Annual Conference, 123~130.

    • Basir J, Aziman M. 1996. Some Lower Cretaceous radiolaria from the Serabang complex, Sarawak. Warta Geologi, 22(2): 61~65.

    • Basir J, Uyop S. 1999. Significance of Early Jurassic Radiolaria from West Sarawak, Malaysia. Bulletin of the Geological Society of Malaysia, 43.

    • Breitfeld H T, Hall R. 2018. The eastern Sundaland margin in the latest Cretaceous to Late Eocene: sediment provenance and depositional setting of the Kuching and Sibu Zones of Borneo. Gondwana Research, 63: 34~64.

    • Breitfeld H T, Hall R, Galin T, Forster M A, BouDagher-Fadel M K. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35~56.

    • Breitfeld H T, Hall R, Galin T, BouDagher-Fadel M K. 2018. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200~223.

    • Breitfeld H T, Macpherson C, Hall R, Thirlwall M, Ottley C J, Hennig-Breitfeld J. 2019. Adakites without a slab: remelting of hydrous basalt in the crust and shallow mantle of Borneo to produce the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak. Lithos, 344: 100~121.

    • Breitfeld H T, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig-Breitfeld J, van Hattum M W A. 2020. Mesozoic Paleo-Pacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh metamorphic Group. Frontiers in Earth Science, 8: 536.

    • Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J. 2014. The configuration of Greater Gondwana—evidence from LA-ICPMS, U-Pb geochronology of detrital zircons from the Paleozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31~51.

    • Burton-Johnson A, Macpherson C G, Millar I L, Whitehouse M J, Ottley C J, Nowell G M. 2020. A Triassic to Jurassic arc in north Borneo: geochronology, geochemistry, and genesis of the Segama Valley felsic intrusions and the Sabah ophiolite. Gondwana Research, 84: 229~244.

    • Cai G Q, Wan Z F, Yao Y J, Zhong L F, Zheng H, Kapsiotis A, Zhang C. 2019. Mesozoic northward subduction along the SE Asian continental margin inferred from magmatic records in the South China Sea. Minerals, 9(10): 598.

    • Charvet J. 2013. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: a review-reappraisal of the accretionary orogeny and revalidation of the collisional model. Journal of Asian Earth Sciences, 72: 88~101.

    • Cui Y, Shao L, Li Z-X, Zhu W, Qiao P, Zhang X. 2021. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36~52.

    • Davies L, Hall R, Armstrong R. 2014. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains. Indonesian Petroleum Association.

    • Davies L, Hall R, Marnie F. 2015. Age and character of basement rocks in SW Borneo: new insights from Ar-Ar dating of Pinoh metamorphic group rocks. Indonesian Petroleum Association, 52~54.

    • De Keyser F, Rustandi E. 1993. Geology of the Ketapang sheet area, Kalimantan, 1∶250000. Geological Research Development Centre.

    • Dimalanta C B, Faustino-Eslava D V, Gabo-Ratio J A S, Marquez E J, Padrones J T, Payot B D, Queano K L, Ramos N T, Yumul Jr G P. 2020. Characterization of the proto-Philippine Sea Plate: evidence from the emplaced oceanic lithospheric fragments along eastern Philippines. Geoscience Frontiers, 11(1): 3~21.

    • Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206(9): 1~60.

    • Fang Xudong, Zhang Aimei, Wang Yuejun, Hu Xiangyun, Qian Xin, He Huiying, Chen Min. 2021. Geochronoloy and geochemical characteristics of Lundu mafic rocks in Kuching area, Sarawak. Earth Science, 46 (6): 2133~2144 (in Chinese with English abstract).

    • Fuller M, Ali J R, Moss S J, Frost G M, Richter B, Mahfi A. 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17 (1-2): 3~24.

    • Galin T, Breitfeld H T, Hall R, Sevastjanova I. 2017. Provenance of the Cretaceous-Eocene Rajang Group submarine fan, Sarawak, Malaysia from light and heavy mineral assemblages and U-Pb zircon geochronology. Gondwana Research, 51: 209~233.

    • Gan C S, Wang Y J, Barry T L, Zhang Y Z, Qian X. 2020. Spatial and temporal influence of Pacific subduction on South China: geochemical migration of Cretaceous mafic-intermediate rocks. Journal of the Geological Society, 177 (5): 1013~1024.

    • Gan C S, Zhang Y Z, Wang Y J, Qian X, Wang Y. 2021. Reappraisal of the Mesozoic tectonic transition from the Paleo-Tethyan to Paleo-Pacific domains in South China. Geological Society of America Bulletin, 133 (11-12): 2582~2590.

    • Gan C S, Qian X, Wang Y J, Feng Q L, Zhang Y Z, Asis J B, Ao S J. 2022. Late Cretaceous granitoids along the northern Kuching Zone: implications for the Paleo-Pacific Subduction in Borneo. Lithosphere, 2022 (1).

    • Guo F, Wu Y M, Zhang B, Zhang X B, Zhao L, Liao J. 2021. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth-Science Reviews, 212: 103448.

    • Haile N S. 1954. The geology and mineral resources of the Strap and Sadong Valleys, west Sarawak, including the Klingkang Range coal. US Government Printing Office.

    • Haile N S. 1974. Borneo. Geological Society, London, Special Publications, 4 (1): 333~347.

    • Haile N S, McElhinny M W, McDougall I. 1977. Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan (Borneo), and their significance in interpreting regional structure. Journal of the Geological Society, 133 (2): 133~144.

    • Hall R. 2009. Southeast Asia's changing palaeogeography. Blumea, 54 (1-2): 148~161.

    • Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570: 1~41.

    • Hall R, Clements B, Smyth H R. 2009. Sundaland: basement character, structure and plate tectonic development, Proceedings Indonesian Petroleum Association 33rd Annual.

    • Hamilton W B. 1979. Tectonics of the Indonesian region. Washington, US Government Printing Office.

    • Hart S R. 1984. A large-scale isotope anomaly in the Southern hemisphere mantle. Nature, 309 (5971): 753~757.

    • Hartono U. 2012. Magmatism in Kalimantan, Bandung. Centre for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources.

    • Hashimoto W, Aliate E, Aoki N, Balce G, Ishibashi T, Kitamura N, Matsumoto T, Tamura M, Yanagida J. 1975. Cretaceous system of Southeast Asia. Geology Paleontology of SE Asia, 145: 219~287.

    • Hennig J, Hall R, Armstrong R A. 2016. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Research, 32: 41~63.

    • Hennig J, Breitfeld H T, Hall R, Nugraha A M S. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292~310.

    • Hoffmann J, Brocker M, Setiawan N I, Klemd R, Berndt J, Maulana A, Baier H. 2019. Age constraints on high-pressure/low-temperature metamorphism and sedimentation in the Luk Ulo Complex (Java, Indonesia). Lithos, 324: 747~762.

    • Hutchison C S. 1989. Geological Evolution of South-east Asia. Oxford: Clarendon Press.

    • Hutchison C S. 2005. Geology of North-West Borneo: Sarawak, Brunei and Sabah, Oxford University Press.

    • Jaya A, Nishikawa O, Hayasaka Y. 2017. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia. Lithos, 292: 96~110.

    • Katili J A. 1971. A review of the geotectonic theories and tectonic maps of Indonesia. Earth-Science Reviews, 7 (3): 143-163.

    • Kon'no E. 1972. Some Late Triassic plants from the southwestern border of Sarawak, East Malaysia. Geological and Palaeontology of South Asia, 10: 125~178.

    • Koolhoven W C B. 1933. Geological Map of Java, Explanatory Notes to Sheet 14 (Bayah), 1∶100, 000. Mining Bureau of the Netherlands Indies.

    • La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.

    • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179~182.

    • Liu J L, Tran M D, Tang Y, Nguyen Q L, Tran T H, Wu W B, Chen J F, Zhang Z C, Zhao Z D. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628~644.

    • Lu Baoliang, Wang Pujun, Liang Jianshe, Sun Xiaomeng, Wang Wanyin. 2014. Structural properties of Paleo-South China Sea and their relationship with the Tethys and the Paleo-Pacific tectonic domain. Journal of Jilin University: Earth Science Edition, 44(5): 1441~1450 (in Chinese with English abstract).

    • Luhr J F, Haldar D. 2006. Barren Island Volcano (NE Indian Ocean): island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177~212.

    • Mazumder R, Anthony F B M, Teo B S S, Roy S, Hajri A A, Ohta T, De S, Catuneanu O. 2021. Cretaceous fore arc sedimentation and contemporary basin tectonics in northwestern Borneo: new sedimentological insights from Pedawan Formation, Kuching Zone, east Malaysia. The Journal of Geology, 129(4): DOI: 10. 1086/715790.

    • Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.

    • Metcalfe I. 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9(1-2): 24~46.

    • Metcalfe I. 2012. Changhsingian (Late Permian) conodonts from Son La, northwest Vietnam and their stratigraphic and tectonic implications. Journal of Asian Earth Sciences, 50: 141~149.

    • Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.

    • Miao X Q, Huang X L, Yan W, Yang F, Zhang W F, Cai Y X, Yu Y, He P L. 2021. Late Triassic dacites from well NK-1 in the Nansha Block: constraints on the Mesozoic tectonic evolution of the southern South China Sea margin. Lithos, 398: 106337.

    • Ng S W P, Chung S L, Robb L J, Searle M P, Ghani A A, Whitehouse M J, Oliver G J H, Sone M, Gardiner N J, Roselee M H. 2015. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Geological Society of America Bulletin, 127(9-10): 1209~1237.

    • Nguyen T T B, Satir M, Siebel W, Chen F K. 2004. Granitoids in the Dalat zone, southern Vietnam: age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, 93(3): 329~340.

    • Nuraiteng T A, Kushairi H A. 1987. Pedawan Formation of the Penrissen area, Sarawak: a revision of its upper age limit. Warta Geologi, 13(2): 43~50.

    • Parkinson C. 1998. An outline of the petrology, structure and age of the Pompangeo schist complex of Central Sulawesi, Indonesia. Island Arc, 7(1-2): 231~245.

    • Pieters P E, Sanyoto P. 1989. Geological data record Nangataman and Pontianak 1∶250000 Quadrayles, West Kalimantan. Geological Research Development Center, 55.

    • Pieters P E, Sanyoto P. 1993. Geology of the Pontianak/Nangataman sheet area, Kalimantan 1∶250000. Geological Research Development Centre.

    • Pieters P E, Abidin H Z, Sudana D. 1993. Geology of the Long Pahangai sheet area, Kalimantan, Quadrangle. Geological Research Development Centre.

    • Pimm A C. 1965. Serian area, west Sarawak, Malaysia. Geological Survey Borneo Region, Malaysia.

    • Qian X, Feng Q L, Wang Y J, Chonglakmani C, Monjai D. 2016. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in northwest Laos. Lithos, 245: 60~75.

    • Qian X, Wang Y, Zhang Y, Wang Y, Senebouttalath V. 2020. Late Triassic post-collisional granites related to Paleotethyan evolution in northwestern Lao PDR: geochronological and geochemical evidence. Gondwana Research, 84: 163~176.

    • Qian X, Yu Y Q, Wang Y J, Gan C S, Zhang Y Z, Asis J B. 2022. Late Cretaceous nature of SW Borneo and Paleo-Pacific subduction: new insights from the granitoids in the Schwaner Mountains. Lithosphere, doi: 10. 2113/2022/8483732.

    • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3. 8 GPa. Chemical Geology, 160(4): 335~356.

    • Schairer G, Zeiss A. 1992. First record of Callovian ammonites from West Kalimantan (Middle Jurassic, Kalimantan Barat, Borneo, Indonesia). Journal of Australian Geology Geophysics, 13(3): 229~236.

    • Schmidtke E A, Fuller M D, Haston R B. 1990. Paleomagnetic data from Sarawak, Malaysian Borneo, and the late Mesozoic and Cenozoic tectonics of Sundaland. Tectonics, 9(1): 123~140.

    • Setiawan N I, Osanai Y, Nakano N, Adachi T, Setiadji L D, Wahyudiono J. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 12(28): 4~12.

    • Setiawan N I, Osanai Y, Nakano N, Adachi T, Hendratno A, Sasongko W, Ansori C. 2020. Peak metamorphic conditions of garnet amphibolite from Luk Ulo complex, Central Java, Indonesia: implications for medium-pressure/high-temperature metamorphism in the Central Indonesian accretionary collision complex. Indonesian Journal on Geoscience, 7(3): 225~239.

    • Sevastjanova I, Clements B, Hall R, Belousova E A, Griffin W L, Pearson N. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Research, 19(4): 1024~1039.

    • Shellnutt J G, Lan C Y, Long T V, Usuki T, Yang H J, Mertzman S A, Iizuka Y, Chung S L, Wang K L, Hsu W Y. 2013. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: tectonic implications for the evolution of Southeast Asia. Lithos, 182: 229~241.

    • Shinjo R, Chung S L, Kato Y, Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591~10608.

    • Soeria-Atmadja R, Noeradi D, Priadi B. 1999. Cenozoic magmatism in Kalimantan and its related geodynamic evolution. Journal of Asian Earth Sciences, 17(1-2): 25~45.

    • Supriatna S, Margono U, de Keyser F, Langford R P, Trail D S. 1993. Geology of the Sanggau sheet area, Kalimantan, 1∶250000. Geological Research Development Center.

    • Suwarna N, Langford R P, Geologi P P D P. 1993. Peta Geologi Lembar Singkawang, Kalimantan 1∶250000. Pusat Penelitian dan Pengembangan Geologi.

    • Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annual Reviewof Earth and Planetary Sciences, 29: 109~134.

    • Tan D N K. 1978. Lower Cretaceousage for the chert is the Lupar Valley, West Sarawak. Warta Geologi, 4: 173~176.

    • Tan D N K. 1982. The Lubok Antu melange, Lupar Valley, west Sarawak: a Lower Tertiary subduction complex. Bulletin of the Geological Society of Malaysia, (15): 31~46.

    • Tang J, Xu W L, Wang F, Ge W C. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, 61(5): 527~559.

    • Tate R B. 1991. Cross-border correlation of geological formation in Sarawak and Kalimantan. Geological Society of Malaysia Bulletin, 28: 63~95.

    • Tate R B, Hon V. 1991. The oldest rocks in Borneo: a note on the Tuang Formation, west Sarawak and its importance in relation to the presence of a Basement in west Borneo. Warta Geologi, 17(5): 221~224.

    • Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. Washington DC American Geophysical Union Geophysical Monograph Series, 27: 23~56.

    • van Emmichoven C P A Z. 1939. The geology of the central and eastern part of the western division of Borneo. In: Geological Acaounts of West Borne. Geol. Survey Departement of British Terr. in Borneo, Bulltin, 2: 159~272.

    • van Hattum M W A, Hall R, Pickard A L, Nichols G J. 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76: 266~282.

    • Wakita K, Munasri, Widoyako B. 1994. Cretaceous radiolarians from the Luk-Ulo Melange Complex in the Karangsambung area, central Java, Indonesia. Journal of Southeast Asian Earth Sciences, 9(1-2): 29~43.

    • Wakita K, Miyazaki K, Zulkarnain I, Sopaheluwakan J, Sanyoto P. 1998. Tectonic implications of new age data for the Meratus complex of South Kalimantan, Indonesia. Island Arc, 7(1-2): 202~222.

    • Wang P C, Li S Z, Guo L L, Jiang S H, Somerville I D, Zhao S J, Zhu B D, Chen J, Dai L M, Suo Y H. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51: 464~489.

    • Wang W, Zhou M F, Yan D P, Li L, Malpas J. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1~19.

    • Wang Y J, Qian X, Cawood P A, Liu H C, Feng Q L, Zhao G C, Zhang Y H, He H Y, Zhang P Z. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195~230.

    • Wang Y J, Yang T X, Zhang Y Z, Qian X, Gan C S, Wang Y K, Wang Y, Senebouttalath V. 2020a. Late Paleozoic back-arc basin in the Indochina block: constraints from the mafic rocks in the Nan and Luang Prabang tectonic zones, Southeast Asia. Journal of Asian Earth Sciences, 195.

    • Wang Y J, Zhang Y Z, Qian X, Senebouttalath V, Wang Y, Wang Y K, Gan C S, Zaw K. 2020b. Ordo-Silurian assemblage in the Indochina interior: geochronological, elemental, and Sr-Nd-Pb-Hf-O isotopic constraints of early Paleozoic granitoids in South Laos. Geological Society of America Bulletin, 133(1-2): 325~346.

    • Wang Y J, Qian X, Zhang Y Z, Gan C S, Zhang A M, Zhang F F, Feng Q L, Cawood P A, Zhang P Z. 2021a. Southern extension of the Paleotethyan zone in SE Asia: evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 398: 106336.

    • Wang Y J, Zhang A M, Qian X, Asis J B, Feng Q L, Gan C S, Zhang Y Z, Cawood P A, Wang W T, Zhang P Z. 2021b. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 400-401: 106425.

    • Wang Y J, Wang Y, Zhang Y Z, Cawood P A, Qian X, Gan C S, Zhang F F, Zhang P Z. 2021c. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks. Journal of Asian Earth Sciences, 206: 104648.

    • Wang Y J, Zhang Y Z, Qian X, Wang Y, Cawood P A, Gan C S, Senebouttalath V. 2021d. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: constraints from igneous and sedimentary rocks. Lithos, 382.

    • Wang Y J, Wu S N, Qian X, Cawood P A, Lu X H, Gan C S, Bin Asis J, Zhang P Z. 2022a. Early Cretaceous subduction in NW Kalimantan: geochronological and geochemical constraints from the Raya and Mensibau igneous rocks. Gondwana Research, 101: 243~256.

    • Wang Y J, Qian X, Cawood P A, Ghani A, Gan C S, Wu S N, Zhang Y Z, Wang Y, Zhang P Z. 2022b. Cretaceous Tethyan subduction in SE Borneo: geochronological and geochemical constraints from the igneous rocks in the Meratus complex. Journal of Asian Earth Sciences, 105084.

    • Wang Y J, Liu Z, Murtadha S, Cawood P A, Qian X, Ghani A, Gan C S, Zhang Y Z, Wang Y, Li S. 2022c. Jurassic subduction of the Paleo-Pacific plate in Southeast Asia: new insights from the igneous and sedimentary rocks in West Borneo. Journal of Asian Earth Sciences, 105111.

    • Wang Yiwen, Chen Xinyue, Gan Chengshi. 2022. Zircon U-Pb dating and tectonic significance of the plagiogranite in the Meratus ophiolitic mélange of SE Kalimantan. Geotectonica et Metallogenia, 46(3): 622~632 (in Chinese with English abstract).

    • Wilford G E, Kho C H. 1965. Penrissen area, west Sarawak, US Government Printing Office.

    • Wolfenden E B, Haile N S. 1963. Sematan and Lundu area. West Sarawak. Geological Survey Department. British Territories in Borneo, Report, 1.

    • Wu S N, Wang Y J, Qian X, Asis J B, Lu X H, Zhang Y Z, Gan C S. 2022. Discovery of the Late Cretaceous Barru adakite in SW Sulawesi and slab break-off beneath the Central Indonesian Accretionary complex. Journal of Asian Earth Sciences, 105214.

    • Xu C H, Shi H S, Barnes C G, Zhou Z Y. 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58(1): 71~94.

    • Xu C H, Zhang L, Shi H S, Brix M R, Huhma H, Chen L H, Zhang M Q, Zhou Z Y. 2017. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics, 36(3): 466~492.

    • Yan Q S, Shi X F, Liu J H, Wang K S, Bu W R. 2010. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: constraints on the basement nature. Journal of Asian Earth Sciences, 37(2): 130~139.

    • Yen T P. 1953. On the occurrence of the late Paleozoic fossils in the metamorphic complex of Taiwan. Bulletin of the Geological Survey of Taiwan, 4: 23~26.

    • Yui T F, Okamoto K, Usuki T, Lan C Y, Chu H T, Liou J G. 2009. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China--evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304~328.

    • Yui T F, Chu H T, Suga K, Lan C Y, Chung S H, Wang K L, Grove M. 2017. Subduction-related 200 Ma Talun metagranite, SE Taiwan: an age constraint for palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. International Geology Review, 59(3): 333~346.

    • Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227~273.

    • Zhou Di, Sun Zhen. 2017. Plate evolution in the Pacific domain since Late Mesozoic and its inspiration to tectonic research of East Asia margin. Journal of Tropical Oceanography, 36(3): 1~19 (in Chinese with English abstract).

    • Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269~287.

    • Zimmermann S, Hall R. 2016. Provenance of Triassic and Jurassic sandstones in the Banda Arc: petrography, heavy minerals and zircon geochronology. Gondwana Research, 37: 1~19.

    • Zimmermann S, Hall R. 2019. Provenance of Cretaceous sandstones in the Banda Arc and their tectonic significance. Gondwana Research, 67: 1~20.

    • Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth And Planetary Sciences, 14(1): 493~571.

    • Zhu S, Yao Y J, Li X J, Gao H F, Zhang J Y, Xu Z Y, Wang J. 2022. Spatio-temporal distribution and mechanism of Cenozoic magmatism in the South China Sea and adjacent areas: insight from seismic, geochemical and geochronological data. International Geology Review, 1~28.

    • 房旭东, 张爱梅, 王岳军, 胡祥云, 钱鑫, 何慧莹, 陈敏. 2020. 沙捞越古晋地区伦杜基性岩的形成时代、地球化学特征及其地质意义. 地球科学, 46(6): 2133~2144.

    • 鲁宝亮, 王璞珺, 梁建设, 孙晓猛, 王万银. 2014. 古南海构造属性及其与特提斯和古太平洋构造域的关系. 吉林大学学报, 44(5): 1441~1450.

    • 王逸文, 陈新跃, 甘成势. 2022. 加里曼丹东南部梅拉图斯斜长花岗岩的锆石U-Pb年代学及其地质意义. 大地构造与成矿学, 46(3): 622~632.

    • 周蒂, 孙珍. 2017. 晚中生代以来太平洋域板块过程及其对东亚陆缘构造研究的启示. 热带海洋学报, 36(3): 1~19.