en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张海桃,男,1987年生。工程师,主要从事国际海域矿产资源调查与海底岩石学研究。E-mail:zht@fio.org.cn。

参考文献
Ballmer M D, van Keken P E, Ito G. 2015. Hotspots, large igneous provinces, and melting anomalies. In: Holland H, Turekian K, eds. Treatise on Geophysics (Second Edition). Oxford: Elsevier, 393~459.
参考文献
Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1): 79~93.
参考文献
Chauvel C, Blichert-Toft J. 1998. New hafnium isotopic constraints on the source of MORB, Mineral Magazine, 62A: 310~311.
参考文献
Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205: 295~308.
参考文献
Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344(6179): 80~83.
参考文献
Douglass J, Schilling J G. 2000. Systematic of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chemical Geology, 163: 1~23.
参考文献
Faul U H, Jackson I. 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1): 119~134.
参考文献
Faure G, Hurley P M. 1963. The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. Journal of Petrology, 4: 31~50.
参考文献
Fontignie D, Schilling J G. 1996. Mantle heterogeneities beneath the South Atlantic: a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S~46°S). Earth and Planetary Science Letters, 142(1): 209~221.
参考文献
French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95~99.
参考文献
Gast P W. 1960. Limitations on the composition of the upper mantle. Journal of Geophysical Research, 65: 1287~1297.
参考文献
Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181~1185.
参考文献
Georgen J E. 2014. Interaction of a mantle plume and a segmented mid-ocean ridge: results from numerical modeling. Earth and Planetary Science Letters, 392: 113~120.
参考文献
Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3): 283~300.
参考文献
Graham D W, Jenkins W J, Schilling J G, Thompson G, Kurz M D, Humphris S E. 1992. Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth and Planetary Science Letters, 110(1-4): 133~147.
参考文献
Graham D W, Castillo P R, Lupton J E, Batiza R. 1996. Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth and Planetary Science Letters, 144: 491~503.
参考文献
Guan Yili, Shi Xuefa, Yan Quanshu, Wei Xun, Zhang Yan. 2019. Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts. Acta Oceanologica Sinca, 38: 35~42.
参考文献
Hammond W C, Humphreys E D. 2000. Upper mantle seismic wave velocity-effects of realistic partial melt geometries. Journal of Geophysical Research, 105(B5): 10975~10986.
参考文献
Hanan B B, Kingsley R H, Schilling J G. 1986. Pb isotope evidence in the South Atlantic for migrating ridge-hotspot interactions. Nature, 322(6075): 137~144.
参考文献
Hart S R. 1971. The geochemistry of basaltic rocks. Carnegie Institution of Washington Yearbook, 70: 353~355.
参考文献
Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273~296.
参考文献
Hart S R, Zindler A. 1986. In search of bulk-Earth composition. Chemical Geology, 57: 247~267.
参考文献
Hedge C E. 1966. Variations in radiogenic strontium found in volcanic rocks. Journal of Geophysical Research, 71: 6119~6126.
参考文献
Hill R I, Campbell I H, Davies G F. 1992. Mantle plumes and continental tectonics. Science, 256(5054): 186~193.
参考文献
Ito G. 2011. Reykjanes ‘V’-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411(6838): 681~684.
参考文献
Ito G, Lin J, Graham D. 2003. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Reviews of Geophysics, 41(4): 1017.
参考文献
Ito G, Keken P E V. 2007. 7. 09-hot spots and melting anomalies. Treatise on Geophysics, 17(6): 371~435.
参考文献
Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3): 193~207.
参考文献
Kawabata H, Hanyu T, Chang Q, Kimura J I, Nichols A R L, Tatsumi Y. 2011. The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceaniccrust-recycling model for HIMU OIB. Journal of Petrology, 52(4): 791~838.
参考文献
Kelley K A, Kingsley R, Schilling J G. 2013. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14: 223~242.
参考文献
Kincaid C, Gable C, Ito G. 1995. Laboratory investigation of the interaction of off-axis mantle plumes and spreading centers. Nature, 376(6543): 758~761.
参考文献
Lee C T A. 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. Journal of Geophysical Research: Solid Earth, (1978-2012): 108(B9).
参考文献
Li Jianghai, Zhang Huatian, Li honglin, Liu Zhonglan. 2016. Mid-ocean ridge jump and extension in the context of hotspots: discussion on the tectonic evolution of Indian Ocean. Geological Journal of Chinese Universities, 22(1): 74~80 (in Chinese with English abstract).
参考文献
Li Jianghai, Liu Chiheng, Han Xiqiu. 2019. Tectonic characteristics and kinematic significance for the global mid-ocean ridge system. Earth Science Frontiers, 26(3): 154~162 (in Chinese with English abstract).
参考文献
Li Sanzhong, Hou Fanghui, Li Haiqing, Guo Xiaoyu, Jin Chong, Liu Baohua. 2004. Interactions of ridge-plume, plume-trench and trench-ridge. Marine Geology Letters, 20(11): 1~5 (in Chinese with English abstract).
参考文献
Li Sanzhong, Zhang Guowei, Liu Baohua. 2009. Marine geodynamics: from mid-oceanic ridge system to subduction factory. Journal of Northwest University (Natural Science Edition), 39(3): 434~443 (in Chinese with English abstract).
参考文献
Liang Yuyang, Li Jiabiao. 2015. Is the volcanic eruption high the production of hotspot and mid-ocean ridge interaction? Marine Geology & Quaternary Geology, 35(1): 71~79 (in Chinese with English abstract).
参考文献
Matos R M D, Krueger A, Norton I, Casey K. 2021. The fundamental role of the Borborema and Benin-Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. Marine and Petroleum Geology, 127: 104872.
参考文献
Meibom A, Anderson D L. 2003. The statistical upper mantle assemblage. Earth and Planetary Science Letters, 217: 123~139.
参考文献
McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625~679.
参考文献
Michael P J, Cornell W C. 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103(B8): 18325~18356.
参考文献
Mittelstaedt E, Ito G. 2005. Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge volcanic lineaments. Geochemistry, Geophysics, Geosystems, 6: Q06002, doi: 10. 1029/2004GC000860.
参考文献
Mittelstaedt E, Ito G, Behn M. 2008. Mid-ocean ridge jumps associated with hotspot magmatism. Earth and Planetary Science Letters, 266(3-4): 256~270.
参考文献
Mittelstaedt E, Soule S, Harpp K, Fornari D, McKee C, Tivey M, Geist D, Kurz M D, Sinton C, Mello C. 2012. Multiple expressions of plume-ridge interaction in the Galápagos: volcanic lineaments and ridge jumps. Geochemistry, Geophysics, Geosystems, 13: Q05018, doi: 10. 1029/2012GC004093.
参考文献
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42~43.
参考文献
Morgan W J. 1972. Deep mantle convection plumes and plate motion. The American Association of Petroleum Geologists Bulletin, 56(2): 203~213.
参考文献
Pearce J A. 2005. Mantle preconditioning by melt extraction during flow: theory and petrogenetic implication. Journal of Petrology, 46(5): 973~997.
参考文献
Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, doi: 10. 1016/j. lithos. 2012. 06. 018.
参考文献
Ribe N M, Christensen U R. 1994. Three-dimensional modeling of plume-lithosphere interaction. Journal of Geophysical Research, 99: 669~682.
参考文献
Ribe N M, Christensen U R, Theissing J. 1995. The dynamics of plume-ridge interaction, 1: ridge-centered plumes. Earth and Planetary Science Letters, 134(1): 155~168.
参考文献
Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246: 103~107.
参考文献
Santiago-Ramos D P, Coogan L A, Murphy J G, Higgins J A. 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth and Planetary Science Letters, 541: 116290.
参考文献
Schilling J G. 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242: 565~571.
参考文献
Schilling J G. 1985. Upper mantle heterogeneities and dynamics. Nature, 314(6006): 62~67.
参考文献
Schilling J G. 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352(6334): 397~403.
参考文献
Stracke A. 2012. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.
参考文献
Torsvik T H, van der Voo R, Doubrovine P V. 2014. Deep mantle structure as a referenceframe for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111(24): 8735~8740.
参考文献
Whittaker J M, Afonso J C, Masterton S, Müller R D, Wessel P, Williams S E, Seton M. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6): 479~483.
参考文献
Wilson M. 1992. Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of lower cretaceous super-plume activity? Geological Society of London Special Publication, 68(1): 241~255.
参考文献
Yan Quanshu, Shi Xuefa. 2006. Advance and perspective of Mantle plume (hotspot) and ridge interaction. Marine Geology & Quaternary Geology, 26(5): 131~138 (in Chinese with English abstract).
参考文献
Yan Quanshu, Shi Xuefa, Zhang Haitao. 2015. Advance and perspective of study on seafloor volcanic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(5): 920~930 (in Chinese with English abstract).
参考文献
Zhang Haitao. 2015. Mid-oceanic ridge basalts (MORBS) chemistry and characteristics of plagioclase-hosted melt inclusions in the South Atlantic ridge 19°S and implications for magmatic processes. Master thesis of First Institute of Oceanography SOA, Qingdao (in Chinese with English abstract).
参考文献
Zhang Haitao, Yang Yaomin, Yan Quanshu, Shi Xuefa, Zhu Zhiwei, Su Wenchao, Qin Chaojian, Ye Jun. 2016. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges? Geologica Acta, 14(1): 1~12.
参考文献
Zhang Haitao, Yan Quanshu, Li Chuanshun, Zhu Zhiwei, Zhao Renjie, Shi Xuefa. 2019. Geochemistry of diverse lava types from the Lau basin (South West Pacific): implications for complex back-arc mantle dynamics. Geological Journal, 54: 3643~3659.
参考文献
Zhang Haitao, Shi Xuefa, Li Chuanshun, Yan Quanshu, Yang Yaomin, Zhu Zhiwei, Zhang Hui, Wang Sai, Guan Yili, Zhao Renjie. 2020. Petrology and geochemistry of South Mid-Atlantic Ridge (19°S) lava flows: implications for magmatic processes and possible plume-ridge interactions. Geoscience Frontiers, 11: 1953~1973.
参考文献
Zhang Haitao, Yan Quanshu, Li Chuanshun, Shi Xuefa, Yang Yaomin, Wang Guozhi, Hua Qingfeng, Zhu Zhiwei, Zhang Hui, Zhao Renjie. 2021. Tracing material contributions from Saint Helena plume to the South Mid-Atlantic ridge system. Earth and Planetary Science Letters, 572: 117130.
参考文献
Zhong Yun, Liu Weiliang, Sun Zhilei, Yakymchuk Chris, Ren Kefa, Liu Jinnan, Li Wei, Ma Yaoliang, Xia Bin. 2019. Geochemistry andmineralogy of basalts from the South Mid-Atlantic Ridge (18. 0~20. 6°S): evidence of a heterogeneous mantle source. Minerals, 9: 659.
参考文献
Zhong Yun, Zhang Xu, Sun Zhilei, Liu Jinnan, Li Wei, Ma Yaoliang, Liu Weiliang, Xia Bin, Guan Yao. 2020. Sr-Nd-Pb-Hfisotopic constraints on the mantle heterogeneities beneath the South Mid-Atlantic Ridge at 18~21°S. Minerals, 10: 1010. doi: 10. 3390/min10111010.
参考文献
Zhou Bin, Yan Quanren, Deng Li, Jiang Wen, Hou Quanlin, Cheng Nannan, Zhao Tengge. 2020. Clinopyroxene-hosted melt inclusion in seamount basalts in the Muli mélange in Sichuan, SW China: tracks of hotspot-ridge interaction in the Ganzi-Litang Paloetethys Ocean. Acta Petrologica Sinica, 36(3): 925~947 (in Chinese with English abstract).
参考文献
Zindler A, Hart S R. 1986. Chemical geodynamics. Annual Review of Earth Planetary Science, 14: 493~571.
参考文献
李江海, 张华添, 李洪林, 刘仲兰. 2016. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨. 高校地质学报, 22(1): 74~80.
参考文献
李江海, 刘持恒, 韩喜球. 2019. 全球洋中脊系统的构造特征及其运动学意义. 地学前沿, 26(3): 154~162.
参考文献
李三忠, 侯方辉, 吕海青, 郭晓玉, 金宠, 刘保华. 2004. 洋中脊-地幔柱、地幔柱-海沟与海沟-洋中脊相互作用. 海洋地质动态, 20(11): 1~5.
参考文献
李三忠, 张国伟, 刘保华. 2009. 洋底动力学——从洋脊增生系统到俯冲消减系统. 西北大学学报, 39(3): 434~443.
参考文献
梁裕扬, 李家彪. 2015. 西南印度洋脊50. 5°E火山喷发高地是热点与洋中脊相互作用的产物吗?海洋地质与第四纪地质, 35(1): 71~79.
参考文献
鄢全树, 石学法. 2006. 地幔柱(热点)-洋脊相互作用研究进展. 海洋地质与第四纪地质, 26(5): 131~138.
参考文献
鄢全树, 石学法, 张海桃. 2015. 中国海底火山岩研究进展及展望. 矿物岩石地球化学通报, 34(5): 920~930.
参考文献
张海桃. 2015. 南大西洋中脊19°S附近玄武岩与斜长石斑晶熔体包裹体特征及其对岩浆作用的指示意义. 国家海洋局第一海洋研究所硕士学位论文.
参考文献
周斌, 闫全人, 邓莉, 江文, 侯泉林, 程南南, 赵腾格. 2020. 四川木里混杂带海山玄武岩辉石斑晶中的熔体包裹体: 甘孜-理塘古特提斯洋内热点与洋中脊相互作用的记录. 岩石学报, 36(3): 925~947.
目录contents

    摘要

    揭示洋中脊与地幔柱(脊-柱)之间的可能联系为认识地球深部物质组成与深部地幔动力学过程提供了重要窗口,也是过去40多年以来固体地球科学研究领域的前沿与热点。在绵延八万多千米的全球洋中脊系统中,部分洋脊片段会受到地幔柱作用不同程度的影响。研究显示,大西洋的形成演化与地幔柱作用之间具有密切联系,尤其在南大西洋的裂解、打开演化过程中,南大西洋中脊系统始终与其周围地幔柱(如圣赫勒拿、阿森松、特里斯坦、高夫、发现等地幔柱)之间具有不同程度的相互作用关系,导致沿脊出露玄武岩在地球化学组成上呈现出明显的不均一性特征。本文在系统性总结脊-柱相互作用研究现状与南大西洋地区地质构造演化特征的基础上,详细阐述了南大西洋中脊13.2°S~24.2°S地区玄武岩的岩石地球化学特征;揭示了南大西洋中脊研究区的岩浆演化、地幔源区性质;指示出圣赫勒拿地幔柱物质向南大西洋中脊系统传播的主要方向;圈定了圣赫勒拿地幔柱对南大西洋中脊系统地幔源区性质在沿脊方向的影响范围(14.2°S~20.4°S);同时推测了南大西洋中脊系统与圣赫勒拿地幔柱之间受地幔柱影响的软流圈地幔物质在大洋岩石圈底部的空间展布。最后本文提出了关于南大西洋地区脊-柱相互作用领域现存的科学问题与未来的研究方向。

    Abstract

    Revealing the possible connection between mid-ocean ridge (MOR) and mantle plume would provide an important way with us to know the material components and dynamics of the Earth mantle, which has been the frontier and focus of solid earthscience research for more than forty years. The global MOR system is as long as more than eighty thousand kilometers, and a significant fraction of MOR segments has been influenced by their adjacent mantle plumes. Previous studies have shown that the formation and evolution of the Atlantic Ocean are closely associated with mantle plume. Especially, during the opening of the South Atlantic Ocean (SAO), the South Mid-Atlantic ridge (SMAR) system has been interacted with its nearby mantle plumes (e.g., Saint Helena, Ascension, Tristan da Cunha, Gough, Discovery mantle plume) with different extents, which lead the mid-ocean ridge basalts (MORBs) along the SMAR system keep a significant compositional heterogeneity. In this paper, we systemically reviewed the characteristics of global ridge and plume (ridge-plume) interaction, and the tectonic evolution and mantle source nature of the SAO. Further, we summarized the geochemistry features of MORBs sampled from SMAR 13.2°S to 24.2°S segments, which have indicated that ① the magma evolution and the nature of mantle source of the SMAR system; ② the main direction of the Saint Helena plume materials propagating to the SMAR system; ③ the influence scope of Saint Helena plume on the SMAR system (14.2°S~20.4°S segments); ④ the spatial distribution of plume-affected asthenosphere mantle between the SMAR system and the Saint Helena plume. Finally, we raised several important scientific questions and proposed some future perspectives in this study field to scholars.

  • 洋中脊和热点分别是板块构造与地幔柱作用的产物(Hill et al.,1992; Dalton et al.,2014)。洋中脊系统通常会受到其周围地幔柱作用的影响(Ito et al.,2003),同时地幔柱物质也更倾向于向洋中脊地区的伸展、断裂环境迁移(Georgen et al.,2001; 李三忠等,2004; 鄢全树等,2006)。地幔柱物质的流动方向会受到上覆岩石圈板块作用的影响,当在适当的流变条件下,地幔柱物质可沿岩石圈地幔底部流变边界层传输、运移至洋中脊轴部,即洋中脊发生熔融的熔体三角地区(Ito et al.,2003; 李三忠等,2009; 鄢全树等,2015)。在洋脊轴部相对地幔柱所在位置发生相对迁移的情况下,部分沿脊的火山活动可能会受到离脊几百千米的地幔柱成因物质的影响(Schilling1991; Kincaid et al.1995)。在地幔柱作用的影响下,洋中脊系统的亏损地幔源区将受到来自深部地幔柱富集组分的影响,使其地幔源区呈现出明显的组分不均一性特征(张海桃,2015; Guan Yili et al.,2019; Zhang Haitao et al.,2020; 周斌等,2022)。因此,洋中脊与地幔柱之间的相互作用是导致洋中脊地幔具有不均一性特征的重要原因之一,这也是固体地球两大动力系统共同作用的结果。

  • 洋中脊玄武岩是深部地幔物质熔融的直接产物,是认识深部地幔过程的“探针”,其组分代表了洋中脊系统下伏地幔的物质组成(Michael and Cornell,1998; Zhang Haitao et al.,2016),对研究地幔源区不均一性与探索地球深部物质的组成与演化具有重要意义(Meibom and Anderson,2003; Rampone and Hofmann,2012)。因此,通过对洋中脊岩石开展元素地球化学与同位素地球化学研究已成为了解地球内部物质组成,揭示洋中脊与地幔柱两大动力系统相互作用的重要工具,也是目前固体地球科学研究领域的前沿与热点(Zhang Haitao et al.,2019; Santiago-Ramos et al.,2020)。在绵延八万多千米的海底洋中脊系统中(李江海等,2019),多数洋中脊片段都受到了其周围地幔柱作用不同程度的影响(Kelley et al.,2013)。在全球洋中脊系统中,慢速扩张的南大西洋中脊与快速扩张的东太平洋海隆、中-慢速扩张的北大西洋中脊、超慢速扩张的西南印度洋中脊相比较,在南大西洋中脊系统周围(离轴距离小于800 km范围内)地区分布有数量最多的热点型火山(梁裕扬等,2015)。因此,南大西洋地区绵长的洋中脊系统与其周围众多的热点成因海岛/海山,是研究洋中脊地幔不均一性特征与脊-柱相互作用的重要场所。

  • 近年来随着我国大洋科考调查能力的增强,我国科学家在南大西洋中脊地区获取到了海底玄武岩样品。通过对海底玄武岩开展矿物岩石学与地球化学的测试研究,目前科学家在揭示南大西洋地区脊-柱相互作用研究领域取得了创新性成果(张海桃,2015; Zhang Haitao et al.,201620202021)。本研究在详细阐述脊-柱相互作用机制、南大西洋地质构造演化以及地幔源区性质的基础上,进一步论述了我国近年来在南大西洋地区脊-柱相互作用研究领域取得最新成果,这将为全面揭示南大西洋中脊地区上地幔不均一性及其成因机制提供制约,也将为探索南大西洋地区地幔柱与洋中脊两大系统之间的地幔动力学性质提供新的线索。

  • 1 洋中脊与地幔柱相互作用的研究现状

  • 地幔地球化学研究的发展、板块构造理论的建立与地幔柱假说的提出是开展洋中脊与地幔柱相互作用机制研究的基础。20世纪60年代,海底玄武岩不相容元素与锶同位素的组成研究发现了地幔物质组成具有不均一性特征,自此拉开了地幔地球化学研究的帷幕(Gast,1960; Faure and Hurley,1963; Gast et al.,1964; Hedge,1966)。冰岛与雷克雅尼斯洋脊地区的玄武岩研究指示地幔柱与洋中脊地幔源区之间可能存在某种相互作用关系(Hart,1971)。随后,摩根对夏威夷-皇帝火山岛链中的年龄变化趋势提出地幔柱模型理论,并正式提出了地幔柱与洋中脊之间具有相互作用这一重要概念(Morgan,19711972)。早期的脊-柱相互作用研究指出洋中脊地幔物质的上涌是由于板块分离作用在洋脊轴部形成的压力梯度致使了软流圈物质向洋脊扩张中心的运动(Mckenzie and Bickle,1988)。地幔柱物质自地球深部上涌至浅表之后,其流动方向将受上覆岩石圈板块的影响,同时脊-柱相互作用的动力过程数值模型显示地幔柱物质呈柱状上升流运输的热量不足深部地幔热量的10%,但这对地球表面的地质作用、生物活动仍产生重要影响(Richards et al.,1989; Ribe and Christensen,1994; Courtillot et al.,2003)。近年来通过进一步数值模拟建立了地幔柱状上升流的物质与能量模型(Ito,2011; 鄢全树等,2015),指示出在地幔柱与洋中脊系统之间的地幔物质流通道的存在与否,及其规模大小将会主要受到岩石圈底部流变边界层上涌的坡度与地幔岩的浮力大小等因素的控制(Ito et al.,2003; Ito and Keken,2007)。

  • 另一方面,不同的地幔柱具有不同的物理学性质,其对洋中脊的影响程度也具有显著差异(Faul and Jackson,2005)。如果地幔柱物质的挥发分含量越高、温度越高、化学组分富集程度越高、黏度系数越低,那么将致使地幔柱物质流动运移的范围越广,在洋中脊与地幔柱相互作用过程中对洋中脊轴部岩浆的改造作用越显著(Karato and Jung,1998; Lee,2003)。同时上地幔的部分熔融程度越高可导致洋中脊地区对地幔熔融的岩浆抽取量越高,也将可能促使洋中脊与地幔柱之间的相互作用程度越高(Hammond and Humphreys,2000)。另外,由于局部构造环境因素的差异,即使在同一洋中脊系统内的不同脊段,其与相同地幔柱之间的相互作用程度也不尽相同(Campell and Griffiths,1990)。地幔柱在软流圈地幔顶部发生部分熔融,熔融物质沿岩石圈地幔底部横向流动(Hill et al.,1992),洋中脊与地幔柱相距越近,地幔柱在物质和能量方面对洋中脊的影响越大,从而洋中脊与地幔柱之间的相互作用越强烈(Schilling,1973; Ribe et al.,1995)。洋中脊下伏地幔域形成的“脊吸力”可促使地幔柱成因软流圈物质向洋脊轴部地区迁移(Mckenzie and Bickle,1988),从而洋中脊的扩张速率越快,洋中脊地区所形成的脊吸力越大,对地幔柱物质的吸收量也越大(Ribe et al.,1995)。此外,洋中脊的构造形态越简单,地幔柱物质沿洋中脊轴部方向的传播距离越远、延伸范围越广,从而地幔柱对洋中脊的影响程度也越显著(Georgen,2014)。

  • 图1 南大西洋研究区的地质背景图

  • Fig.1 Geologic background and study areas at South Atlantic Ocean

  • (a)—南大西洋中脊的展布与周围地幔柱成因火山的分布特征;(b)—我国近年来在南大西洋地区的研究区,研究区根据主要断裂带的分布共被划分为7个主要洋脊段; 样品数据位置下载自PetDB数据库(http://www.earthchem.org/petdb)与Zhang Haitao et al.(2020,2021); 地图地形数据引自GEBCO 2019数据库(https://doi.org/10/c33m)

  • (a) —The distribution characteristics of South Mid-Atlantic ridge (SMAR) and the nearby plume-related volcanos; (b) —our study area at SMAR system is subdivided into seven segments; the cited SMAR MORB and Island/seamount basalts data are from the Petrological Database of the Ocean Floor (PetDB: http://www.earthchem.org/prtdb) and Zhang Haitao et al. (2020, 2021) ; schematic maps (a) and (b) are modified from GEBCO 2019 database (https://doi.org/10/c33m)

  • 目前科学家们对地幔柱的深部结构,包括其源区的物质组成、起源深度,以及其上升至岩石圈底部后的地球动力学特征的认识还尤为不足(Torsvik et al.,2014; French and Romanowicz,2015)。然而对具有慢速迁移速率的洋中脊地区开展脊-柱相互作用研究可为揭示地幔柱深部及其上升至浅部后的动力学特征提供有效途径(Whittaker et al.,2015)。同时,在洋中脊轴部相对地幔柱所在位置发生迁移的情况下,部分沿脊的火山活动将可能会受到离脊几百千米的地幔柱成因物质的影响(Schilling,1991; Kincaid et al.,1995),而目前的地震成像技术还不能对源自地球深部的地幔柱物质上升至岩石圈地幔底部时的空间展布特征提供有效制约(French and Romanowicz,2015)。但目前发现受地幔柱影响后具有特殊地球化学组分的洋中脊玄武岩在空间上的分布特征,可为揭示源自地球深部的地幔柱物质上升至岩石圈底部时的空间分布特征提供重要窗口(Zhang Haitao et al.,2021)。

  • 2 南大西洋的构造演化过程

  • 南大西洋中脊的形成始于西冈瓦纳大陆的裂解。西冈瓦纳大陆于晚侏罗纪(~145 Ma)时期在西非、亚马逊与圣弗朗西斯科三大元古宙克拉通之间发生裂解。随着大陆板块裂解作用的持续增强与各断裂带分支的逐渐出现,在~135 Ma西冈瓦纳大陆上形成了南亚特兰蒂斯白垩纪断裂系统,将大陆自西非南部与南美洲东北部分裂开来。自早白垩纪(~126 Ma)开始,该断裂系统的南向分支将南美洲与非洲板块逐渐分离,并在二者分裂板块之间形成广阔的盐卤盆地。与此同时,西冈瓦纳大陆最南端在早白垩纪(~134 Ma)时期开始出现海底扩张活动。随着断裂系统将大陆不断分离、海底扩张系统自南向北逐渐传播,南大西洋中脊系统在~113 Ma自南向北纵穿盐卤盆地,传播至博德沃德断裂带。之后随着新生洋壳的不断增加以及洋脊的持续扩张,南、北大西洋中脊在~100 Ma时于赤道地区相贯通,自此整个大西洋中脊系统形成并持续扩张至今(Matos et al.,2021)。南大西洋的形成演化过程的主要阶段如图2所示。

  • 分布在南大西洋地区的地幔柱,如阿森松(Ascension)、圣赫勒拿(Saint Helena)、特里斯坦(Tristan da Cunha)、高夫(Gough)、发现(Discovery)、修纳(Shona)与布维特(Bouvet)等(Ballmer et al.,2015)(图1),在目前或历史上均与南大西洋中脊系统具有不同程度的相互作用关系(Schilling et al.,1985; Hanan et al.,1986)。早在西冈瓦纳大陆裂解与南大西洋打开之前,南大西洋地区的圣赫勒拿(~145 Ma)与特里斯坦(~135 Ma)地幔柱已经与大陆岩石圈下伏软流圈地幔发生了相互作用(Graham et al.,19921996; Fontignie and Schilling,1996; Douglass and Schilling,2000)。而且,在冈瓦纳大陆逐渐裂解分离(即南大西洋持续打开)的过程中,南大西洋中脊系统在扩张的同时也持续性地自东向西地进行着迁移,使得南大西洋中脊系统与周围地幔柱的空间关系在不断发生改变,这致使了洋中脊与地幔柱之间的软流圈地幔动力学过程也处于动态演变中(Whittaker et al.,2015; Zhang Haitao et al.,2021)。因此南大西洋地区为深入了解板块构造与地幔柱这两大地球动力学系统之间的相互作用关系提供了有利场所。

  • 根据迁移的洋中脊系统与地幔柱相互作用的空间关系可将南大西洋地区脊-柱相互作用的历史过程概括性地划分为四个阶段:① 脊-柱相互作用逐渐增强阶段:新生南大西洋中脊系统向西迁移,洋脊轴部逐渐接近地幔柱所在位置,在洋脊的迁移过程中脊-柱相互作用逐渐增强(图3a)。 ② 地幔柱与洋中脊直接作用阶段:西移的南大西洋中脊迁至地幔柱头正上方,该阶段洋脊段下伏地幔的性质受到来自地幔柱物质与能量的直接影响,具有最强的脊-柱相互作用程度,例如80~70 Ma时期的南大西洋中脊与圣赫勒拿地幔柱(图3b),以及如今的冰岛地幔柱与北大西洋中脊。在该阶段,以热点为中心的脊-柱直接作用带的最大半径可达1400 km。③ 脊-柱相互作用逐渐减弱阶段:迁移洋脊段逐渐远离地幔柱所在位置,但其下伏洋脊仍受到了来自地幔柱的间接影响。在该阶段中受地幔柱影响的软流圈物质(或热量)可通过地幔柱与洋脊系统之间连续或不连续的通道传播至洋脊地区(图3c),从而致使新生洋壳具有地幔柱物质组成的信号,如目前的南大西洋中部洋脊段与圣赫勒拿地幔柱之间的相互作用特征。④ 脊-柱无相互作用阶段:迁移洋脊段远离地幔柱影响范围。该阶段由于地幔柱与洋脊系统之间相距的距离足够远,来自地幔柱的物质与能量无法再影响到洋中脊系统。此时该洋中脊系统通常被称为远离地幔柱影响的正常洋脊系统,相比较而言其将具有更低地幔潜在温度,例如目前的南大西洋2°S~7°S脊段(图3d)。综上所述,南大西洋中脊系统的扩张、迁移与其周围地幔柱、大陆板块分离特征之间的相互作用特征在不断发生变化。同时南大西洋地区地幔柱的规模与形成时间不同,进一步促使南大西洋具有复杂的构造演化历史、洋壳增生过程以及脊-柱相互作用特征(Zhang Haitao et al.,20202021)。

  • 图2 南大西洋地区自晚侏罗纪至白垩纪的构造演化历史

  • Fig.2 Tectonic evolution history of South Atlantic Ocean from Late Jurassic to Early Cretaceous

  • 克拉通板块包括:AM—Amazon; WA—西非+Sao Luiz; S—Saharan Metacraton; SF—Sao Francisco; C—Congo; RA—Rio Apla+Pampia; RP—Rio da Plata; 主要断裂带/缝合线:GSAN—Gabon-SE-AL thru Santos Namibia; CPWA—Carri-Potiguar/西非; OZ—直方带; CA—中非缝合线(据Matos et al.,2021

  • Craton blocks: AM—Amazon; WA—West Africa+Sao Luiz; S—Saharan Metacraton; SF—Sao Francisco; C—Congo; RA—Rio Apla+Pampia; RP—Rio da Plata; fracture zones/stylolites: GSAN—Gabon-SE-AL thru Santos Namibia; CPWA—Carri-Potiguar/West Africa; OZ—orthogonal zone; CA—Central Africa suture (after Matos et al., 2021)

  • 图3 南大西洋中脊系统与地幔柱相互作用的四阶段示意图

  • Fig.3 Cartogram of four-stage model for the interaction between SMAR system and mantle plumes

  • (a)—第一阶段:脊-柱相互作用逐渐增强阶段;(b)—第二阶段:洋中脊与地幔柱直接作用阶段;(c)—第三阶段:脊-柱相互作用逐渐减弱阶段;(d)—第四阶段:脊-柱之间相互作用消失阶段

  • (a) —First stage: indirect ridge-plume interaction gradually enhances; (b) —second stage: direct ridge-plume interaction; (c) —third stage: indirect ridge-plume interaction gradually weakens; (d) —fourth stage: ridge-plume interaction disappears at last

  • 3 南大西洋地区的地幔源区性质

  • 南大西洋不同时空分布的地幔柱具有不同的Sr-Nd-Pb-Hf放射性成因同位素组成。根据放射性Sr-Nd-Pb同位素划分的地幔端元体系(Hart and Zinder,1986; Stracke,2012),南大西洋地区北部的阿森松地幔柱源区具有较高的208Pb/204Pb,207Pb/204Pb比值与较低的87Sr/86Sr比值,位于亏损型地幔端元(DMM)与HIMU型地幔端元之间(图4)。圣赫勒拿地幔柱具有最高的208Pb/204Pb、207Pb/204Pb比值,属于HIMU型地幔端元。特里斯坦与高夫地幔柱具有相似的放射性同位素比值特征,均具有较低的207Pb/204Pb比值,接近于富集型地幔源区II(EM2)端元(图4)。但最南部的探索地幔柱源区具有最低的143Nd/144Nd、176Hf/177Hf比值与最高的87Sr/86Sr比值,接近于富集型地幔源区I(EM1)端元(图4)。这表明南大西洋地区的地幔柱具有不同的端元组分特征,其中南大西洋中北部地区的地幔柱(圣赫勒拿和阿森松地幔柱)以HIMU型地幔源区为主,而南大西洋南部地区的地幔柱(特里斯坦、高夫和发现地幔柱)以EM型地幔源区为主。

  • 南大西洋的地幔源区(包括洋中脊系统与地幔柱系统)整体特征表现为南大西洋北部地区(纬度小于30°S)相比南大西洋南部地区(30°S~56°S)具有更低的87Sr/86Sr同位素比值,更高的143Nd/144Nd、206Pb/204Pb与176Hf/177Hf同位素比值(图5)。同时,南大西洋中脊系统南部的地幔组成比其北部的地幔组成中具有更高的87Sr/86Sr同位素比值与更低的143Nd/144Nd、176Hf/177Hf的同位素比值,这与南大西洋地区南部的地幔柱(如特里斯坦、高夫与发现地幔柱)的同位素组成比南大西洋北部的地幔柱(如阿森松、圣赫勒拿地幔柱)的同位素组成具有更高的87Sr/86Sr比值与更低的143Nd/ 144Nd、176Hf/177Hf的比值特征保持一致(图5)。南大西洋地区各地幔柱与玄武岩在沿脊方向上的Sr-Nd-Pb-Hf放射性成因同位素比值变化特征指示南大西洋中脊系统下伏地幔域的源区组成具有明显的不均一性,并与其各自周围的地幔柱之间存在显著的相关性(图5)。

  • 图4 南大西洋地区各地幔柱与洋中脊地幔源区的放射性同位素组成特征(a~d)

  • Fig.4 The radiogenic isotope characteristics of mantle plume source regions and mid-ocean ridge mantle source regions at South Atlantic Ocean (a~d)

  • 南大西洋中脊玄武岩数据引自PetDB数据库(http://www.earthchem.org/petdb); 洋岛、海山玄武岩数据下载自GeoROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc); 各地幔端元的组成数据引自Zindler and Hart(1986)Stracke et al.(2012); 北半球相关线引自Hart(1988); Nd-Hf相关线引自Chauvel and Blichert-Toft(1998)

  • SMAR basalts data were cited from the PetDB database (http://www.earthchem.org/petdb) ; oceanic island and seamount basalts data were cited from GeoROC database (http://georoc.mpch-mainz.gwdg.de/georoc) ; mantle end-member components are from Zindler and Hart (1986) , Stracke et al. (2012) ; northern hemisphere reference line (NHRL) follows Hart (1988) ; Nd-Hf array line follows Chauvel and Blichert-Toft (1998)

  • 图5 南大西洋中脊玄武岩的Sr-Nd-Pb-Hf放射性同位素在沿洋脊方向上的变化规律及其与周围地幔柱成因洋岛玄武岩之间的相关性特征(a~f)

  • Fig.5 Along-ridge variation of radiogenic Sr-Nd-Pb-Hf isotope components in SMAR MORBs and their relationships with the nearby plume-related ocean island basalts (a~f)

  • 蓝色直线代表未受地幔柱影响的南大西洋中脊玄武岩地幔源区的端元值; 白色圆点代表南大西洋中脊玄武岩数据

  • Blue lines denote the mantle source components of plume-free SMAR MORB; white cycles denote SMAR MORB data

  • 南大西洋中脊2°S~56°S地区玄武岩的同位素组成在沿脊方向上的变化规律,并与其周围离脊地幔柱的同位素组成相对比,显示出整个南大西洋地区目前未受明显地幔柱作用影响的洋中脊地区空间非常有限,可能仅为SMAR 2°S~6.7°S脊段地区。同时,在南大西洋南部的3个地幔柱系统中,特里斯坦地幔柱具有最高的206Pb/204Pb、208Pb/204Pb、 143Nd/144Nd、176Hf/177Hf同位素比值与最低的87Sr/ 86Sr同位素比值,发现地幔柱具有最低的206Pb/204Pb、208Pb/204Pb、143Nd/144Nd、176Hf/177Hf同位素比值与最高的87Sr/86Sr比值。然而就207Pb/204Pb而言具有与之相反的规律:特里斯坦地幔柱具有最低的207Pb/204Pb比值,而最南部的发现地幔柱具有最高的207Pb/204Pb比值(图5)。此外,纬度空间位置位于特里斯坦与发现地幔柱中间的高夫地幔柱,其同位素系统的比值也正好位于特里斯坦与发现地幔柱同位素比值之间。该特征可能指示出在南大西洋南部地区经地幔柱上涌的、来自深部的地幔物质在组成上具有相关性,并且三个地幔柱自南向北的放射性成因同位素富集程度逐渐降低。但同时,在特里斯坦、高夫、发现岛玄武岩中的206Pb/204Pb、208Pb/204Pb比值随纬度的增加而降低(图5c、e),而207Pb/204Pb比值随纬度的增加而增加(图5d),显示235U分别与238U、232Th之间可能出现了解耦效应,这可能进一步指示出该三个地幔柱源区之间虽然存在相关性,但同时也存在明显不同的物质组成。

  • 目前大量研究将全球洋中脊亏损地幔组分作为南大西洋中脊的亏损地幔端元组分,并开展各类模拟混合计算。但由于地球地幔演化的复杂性与组分的不均一性,致使全球各大洋中脊下伏亏损地幔具有不同的组分特征(Rampone and Hofmann,2012)。因此,在讨论南大西洋中脊系统地幔源区性质之前,应先建立独立的、未受地幔柱作用影响的南大西洋中脊地幔端元组分,这将是研究南大西洋各脊段地区地幔源区组分不均一性特征的前提。与正常洋中脊玄武岩的Pb-Hf-He同位素体系相比较,离脊的圣赫勒拿、阿森松与特里斯坦地幔柱具有更低的3He/4He[RA]Graham et al.,1996)与176Hf/177Hf比值和更高的206Pb/204Pb比值(Zhang Haitao et al.,2021)。同时,南大西洋中脊2.1°S~6.7°S地区玄武岩在整个南大西洋中脊系统中具有最高的3He/4He、176Hf/177Hf比值,与最低的206Pb/204Pb比值,其放射性同位素与离轴地幔柱保持相反的特征。更重要的是,南大西洋中脊玄武岩中3He/4He[RA]206Pb/204Pb、176Hf/177Hf之间的相关性指示出南大西洋中脊地幔源区的同位素富集组成可与其周围地幔柱经混染而形成。因此,目前研究已将南大西洋中脊2.1°S~6.7°S地区具有最低地幔柱信号的玄武岩组分作为未受地幔柱影响的南大西洋中脊玄武岩组分(表1)(Zhang Haitao et al.,20202021)。

  • 表1 南大西洋地区未受地幔柱影响的南大西洋中脊玄武岩、圣赫勒拿与特里斯坦地幔源区中Sr-Nd-Pb-Hf 放射性同位素与微量元素含量特征(据Zhang Haitao et al.,20202021

  • Table1 The end-member components for the binary mixing calculation in this study including plume-free SMAR MORB, Saint Helena Island basalts and Tristan da Cunha Island basalts (after Zhang Haitao et al., 2020, 2021)

  • 4 我国在南大西洋地区的脊-柱相互作用研究

  • 目前基于我国大洋调查航次在南大西洋地区所获取的海底岩石样品和地球物理数据,我国科学家已在南大西洋地区开展了洋中脊系统岩石学成因与脊-柱相互作用等研究(张海桃,2015; Zhong Yun et al.,20192020; Zhang Haitao et al.,20202021)。目前已分别在对南大西洋中脊18°S~20.6°S脊段的精细调查,与13.2°S~24.2°S地区大范围的区域性调查中获取到了海底玄武岩样品,并在南大西洋地区的脊-柱相互作用研究领域取得了最新的认识。

  • 首先是针对南大西洋中脊18°S~20.6°S脊段小范围内的脊-柱相互作用研究。该脊段位于Martin Vaz转换断层与Trinidade转换断层之间,与其东部的圣赫勒拿地幔柱相距约750 km(图1),其地幔源区可能受到了具高87Sr/86Sr、206Pb/204Pb比值和低143Nd/144Nd比值地幔源区物质的混染(张海桃,2015)。南大西洋中脊18°S~20.6°S脊段玄武岩与未受地幔柱影响的南大西洋中脊玄武岩相比具有更高的87Sr/86Sr、206Pb/204Pb、207Pb/204Pb与208Pb/204Pb比值,与更低的143Nd/144Nd比值(图6)。

  • 图6 SMAR 18°S~20.6°S脊段玄武岩放射性同位素所指示的脊-柱相互作用过程(a~c)(样品数据引自Zhong Yun et al.,2020; Zhang Haitao et al.,2020; 各地幔端元组分与混合曲线数据引自Zhang Haitao et al.,2020

  • Fig.6 The interaction between SMAR 18°S to 20.6°S segments and plume indicated by radiogenic isotopes (a~c) (samples data were cited from Zhong Yun et al., 2020; Zhang Haitao et al., 2020; mantle end-member components and binary mixing curves follows Zhang Haitao et al., 2020)

  • 在端元混合模型中,随着206Pb/204Pb比值的增加,87Sr/86Sr与208Pb/204Pb比值增加,而143Nd/ 144Nd 比值降低(图6)。研究区内208Pb/204Pb比值低于18.7的样品在87Sr/86Sr-206Pb/204Pb、143Nd/ 144Nd-206Pb/204Pb与208Pb/204Pb-206Pb/204Pb图解中的分布平行于未受地幔柱影响的南大西洋中脊玄武岩-特里斯坦玄武岩的混合曲线(图6),这指示了在研究区地幔源区可能具有两个明显不同的混合作用过程。另一方面,当206Pb/204Pb比值大于18.7,南大西洋中脊18°S~20.6°S脊段的样品倾向于符合未受地幔柱影响的南大西洋中脊玄武岩——圣赫勒拿玄武岩混合曲线特征(图6),指示出洋脊下伏亏损地幔源区受到了具高206Pb/204Pb、143Nd/144Nd比值与低87Sr/86S比值的圣赫勒拿地幔柱物质的混染。从而,南大西洋中脊19°S下伏地幔源区的物质可由亏损地幔源区与圣赫勒拿、特里斯坦地幔柱物质经不同比例混合而成。

  • 进一步,研究区内玄武岩倾向于接近未受地幔柱影响的南大西洋中脊玄武岩——圣赫勒拿玄武岩混合曲线特征,且混合进入的圣赫勒拿地幔柱物质含量为5%~10%,混合进入的特里斯坦地幔柱物质的含量低于5%(图6)。从而这可能指示出在南大西洋中脊18°S~20.6°S研究区下伏的软流圈地幔中,混合进入的圣赫勒拿地幔柱物质含量高于特里斯坦地幔柱。因此,尽管研究区地幔内混合进入的圣赫勒拿与特里斯坦地幔柱物质不明显,但经过我国科学家对该脊段精细地采样与分析,仍识别出了目前南大西洋中脊18°S~20.6°S研究区下伏地幔源区可能受到了圣赫勒拿与特里斯坦地幔柱物质的混染。到目前为止,部分来自圣赫勒拿地幔柱(<5%~10%)与特里斯坦地幔柱(<5%)的物质仍残留在研究区下伏被混染的地幔源区内(Zhang Haitao et al.,2020)。

  • 更进一步地,近期针对南大西洋中脊13.2°S~24.2°S脊段大范围地区开展了脊-柱相互作用研究。该脊段地区的北部接近Bode verde转换断层,南部接近于本研究中的段7转换断层(图1)。根据研究区内的转换断层与非转换断层的空间分布,南大西洋中脊13.2°S~24.2°S脊段研究区共被划分7个洋脊片段(脊段1~脊段7)(图1)。前人对南大西洋地区的地幔柱作用的研究指出:在南大西洋打开之前该地区的地幔柱已对冈瓦纳大陆下伏岩石圈地幔产生了作用,随后在南大西洋打开后地幔柱对大洋岩石圈、洋中脊系统产生了进一步的影响(“二阶段”模式)。从而在南大西洋打开之前,来自圣赫勒拿与特里斯坦地幔柱的富集物质已与南大西洋亏损的软流圈物质发生了混合(Hanan et al.,1986; Wilson,1992; Fontignie and Schilling,1996)。在我国近期的研究中发现,当南大西洋玄武岩组分呈现富集特征((La/Sm)N>0.63)时,随着(La/Sm)N比值的增加,岩浆中的206Pb/204Pb比值在未受地幔柱影响的南大西洋中脊玄武岩分别与圣赫勒拿地幔柱、特里斯坦地幔柱的二单元混合曲线空间里逐渐升高(圣赫勒拿地幔柱比特里斯坦地幔柱、未受地幔柱影响的南大西洋中脊玄武岩具有明显更高的206Pb/204Pb比值与Pb元素含量)。同时176Hf/ 177Hf比值沿未受地幔柱影响的南大西洋中脊玄武岩与圣赫勒拿地幔柱、特里斯坦地幔柱的二单元混合曲线方向逐渐降低(圣赫勒拿地幔柱与特里斯坦地幔柱具有相似的176Hf/177Hf比值与Hf元素含量),指示出研究区地幔源区的富集程度可能是受到了圣赫勒拿与特里斯坦地幔柱作用的影响(图7)。另一方面,岩浆中的87Sr/86Sr与143Nd/ 144Nd比值沿未受地幔柱影响的南大西洋中脊玄武岩与圣赫勒拿地幔柱混合曲线方向分别表现出逐渐增加与降低的趋势,这指示出不相容元素的富集程度与圣赫勒拿物质混合进入亏损地幔中的含量呈正相关关系,而非特里斯坦地幔柱(图7)。因此,富集的不相容元素与放射性成因同位素之间的特征系统性地指示出南大西洋中脊13.2°S~24.2°S脊段下伏地幔源区的富集组分是受到了来自于其东部圣赫勒拿地幔柱相关物质输入影响的结果。

  • 在Sr-Nd-Pb同位素体系的进一步研究中发现:当206Pb/204Pb<18.4时,87Sr/86Sr-206Pb/204Pb与143Nd/144Nd-206Pb/204Pb的相关性趋势线更倾向于PREMA端元值方向(图8); 而当206Pb/204Pb>18.4时,87Sr/86Sr-206Pb/204Pb与143Nd/144Nd-206Pb/ 204Pb的相关性趋势线逐渐向圣赫勒拿地幔柱端元值的方向转变(图8)。在南大西洋早期具PREMA特征的地幔端元组分中,与特里斯坦地幔柱(EM1)与DM、圣赫勒拿地幔柱(HIMU)物质相比较而言,具有明显更高的87Sr/86Sr和更低的143Nd/144Nd比值,以及中等的206Pb/204Pb比值。当混合地幔组分中以DM占主导,且特里斯坦含量大于圣赫勒拿地幔柱物质含量(206Pb/204Pb<18.4)时,混合组分中87Sr/86Sr、143Nd/144Nd比值的变化特征将主要受特里斯坦组分的控制。相反地,与DM和特里斯坦地幔柱相比较而言,圣赫勒拿地幔柱具有更高的206Pb/204Pb比值,与中等的87Sr/86Sr、143Nd/144Nd比值特征。随着混合地幔中来自圣赫勒拿地幔柱物质组分的增加,圣赫勒拿地幔柱物质含量大于或远大于特里斯坦含量(206Pb/204Pb比值增加>18.4)时,与206Pb/204Pb<18.4期间相比,随着圣赫勒拿含量的逐渐增加,混合组分中的87Sr/86Sr和143Nd/144Nd比值的变化速率保持稳定,而206Pb/204Pb比值增大的变化速率明显加快(图8)。从而图8中浅蓝色区域向浅绿色区域的转变是南大西洋中脊13.2°S~24.2°S脊段的下伏混合地幔中来自圣赫勒拿地幔柱物质逐渐增多的结果(Zhang Haitao et al.,2021)。此外,在特里斯坦地幔组分中,Δ8/4(高的U/Th比值)与ΔεHf值(高的Lu/Hf比值)均大于零,而在圣赫勒拿地幔组分中二者均小于零。南大西洋中脊13°S~30°S脊段在空间上位于特里斯坦与圣赫勒拿地幔柱之间,在该地区玄武岩的组分中Δ8/4、ΔεHf值更接近于零(Zhang Haitao et al.,2021),这指示位于特里斯坦与圣赫勒拿地幔柱空间过渡带的南大西洋中脊玄武岩,其组分中的Pb-Nd-Hf同位素组成也位于二者地幔之间的物质过渡带(图8d)。

  • 同时,南大西洋中脊7°S~30°S脊段玄武岩中的ΔεHf值代表其受到循环洋壳的影响强于受到大陆岩石圈地幔的影响,从而指示出该地区受圣赫勒拿地幔柱作用的影响强于特里斯坦地幔柱。更为重要的是,与南大西洋中脊1,6~7脊段以及南大西洋中脊25°S~30°S脊段地区相比较,在空间上与圣赫勒拿地幔柱更为接近的脊段2~脊段5地区玄武岩中的Pb同位素(232Th/238U)与Hf同位素(ΔεHf)组分与圣赫勒拿地幔柱物质组成更为接近(图8)。阿森松与圣赫勒拿地幔柱在约1000 km的深度附近处相连(Zhang Haitao et al.,20202021),从而受到阿森松地幔柱作用影响的南大西洋中脊7°S~12°S脊段玄武岩也表现出了与圣赫勒拿地幔柱相似的同位素组成(图8)。因此,上述Sr-Nd-Pb-Hf同位素体系指示出目前南大西洋中脊7°S~30°S地区的地幔组成位于特里斯坦与圣赫勒拿地幔柱之间的过渡带源区,其形成过程符合“二阶段”模型。同时,也揭示了在南大西洋的打开演化过程中,南大西洋中脊7°S~30°S脊段逐渐远离特里斯坦地幔柱的作用范围,与圣赫勒拿地幔柱之间的距离也逐渐增加,但直至目前在大西洋中脊与圣赫勒拿地幔柱有着更近空间距离的洋脊段仍依旧持续性的受到了来自圣赫勒拿地幔柱作用的影响,如脊段2~脊段5地区(Zhang Haitao et al.,2021)。

  • 图7 南大西洋中脊各脊段玄武岩中(La/Sm)N与放射性成因Pb-Hf-Sr-Nd同位素相关性与未受地幔柱影响的南大西洋中脊玄武岩分别与圣赫勒拿、特里斯坦地幔柱之间的二端元混合计算图解(a~d)(据Zhang Haitao et al.,2021修改)

  • Fig.7 Correlations between (La/Sm) N and radiogenic Pb-Hf-Sr-Nd isotope data and the binary mixing curves calculated by the mantle source components of plume-free SMAR MORB, Saint Helena Island and Tristan da Cunha Island (a~d) (modified after Zhang Haitao et al., 2021)

  • 总结而言,南大西洋中脊下伏地幔源区目前仍受到了圣赫勒拿地幔柱作用的影响,并且南大西洋中脊14.2°S~20.4°S脊段地区的玄武岩中含有来自受圣赫勒拿地幔柱相关物质影响的地球化学证据。

  • 图8 南大西洋中脊13.2°S~24.2°S脊段玄武岩的Sr-Nd-Pb-Hf放射性同位素特征(a~d)(据Zhang Haitao et al.,2021修改)

  • Fig.8 Sr-Nd-Pb-Hf isotopes signals in the MORBs along the SMAR 13.2°S~24.2°S segments (a~d) (modified after Zhang Haitao et al., 2021)

  • 5 南大西洋中脊与地幔柱相互作用对上地幔软流圈动力学的指示

  • 地幔柱上升与上覆冷的、刚性的岩石圈地幔相遇以后,地幔柱头物质将在岩石圈底部呈放射状沿水平方向传播(Ito et al.,2003)。同时自地幔柱头中心向外,地幔柱头物质对周围软流圈地幔的影响程度逐渐降低,可由直接连续影响逐渐变为间接不连续的影响(Ito et al.,2003; Whittaker et al.,2015)。在南大西洋中脊13.2°S~24.2°S研究区中,离圣赫勒拿最近的洋脊段地区玄武岩具有最强烈的脊-柱相互作用特征。在该脊段南、北两侧的洋脊,随着与圣赫勒拿地幔柱之间距离的逐渐增加,其玄武岩具有的脊-柱相互作用程度也逐渐降低,这可能指示了在洋脊与地幔柱之间的受地幔柱影响作用的软流圈地幔整体呈放射状分布与传播,离地幔柱越远的洋脊下伏软流圈受到来自地幔柱的影响越弱。另一方面,南大西洋中脊14.2°S~15.5°S脊段比15.5°S~18°S脊段地区具有更快的脊-柱相互作用强度的变化速率,且南大西洋中脊18°S~20.4°S脊段内具有更微弱、更不连续的脊-柱相互作用特征(Zhang Haitao et al.,2021)。这可能指示了受地幔柱影响的软流圈物质在上伏岩石圈地幔的影响下整体呈放射状分布、传播,同时还受到了来自其西侧具扩张(扩张方向呈西西南—东东北)与迁移(向西)速率洋中脊系统的影响,最终使得在地幔柱与洋脊之间受地幔柱影响的软流圈地幔物质呈现出向西西南方向传播的特征,地幔柱软流圈物质在该方向上呈放射状型向其西南向传播至南大西洋中脊系统。

  • 虽然目前普遍认为大洋板块内部的转换断层或断裂带对洋壳与岩石圈地幔圈层内的岩浆形成与上升演化具有重要影响(Georgen,2014),但对软流圈地幔的物质循环是否具有相同的影响,现在仍缺乏相关证据。圣赫勒拿地幔柱对南大西洋中脊地区在沿脊方向上的影响变化特征及其边界范围均与南大西洋板块内部的大型转换断层或断裂带有关:受地幔柱作用影响的洋脊段位于Cardno转换断层与Trinidade断裂带之间(脊段2~脊段5地区),其中在Cardno转换断层与Martin Vaz转化断层之间玄武岩组分具有连续的变化特征,而Martin Vaz转化断层至Trinidade断裂带之间(包含南大西洋中脊19°S附近的非转换不连续带)的玄武岩组分具有不连续、更低程度的变化特征。同时,断裂带与转换断层的存在可能会阻隔软流圈地幔部分熔融形成的熔体在沿洋中脊方向的传播与流动,从而如果在断裂带两端的洋中脊玄武岩具有受到了地幔柱作用的物质组成特征,那么这可能指示了地幔柱作用物质进入到了该洋中脊下伏的软流圈地幔域内。因此,本研究区内圣赫勒拿地幔柱对南大西洋中脊下伏软流圈的作用范围其北端至少到达了圣赫勒拿转换断层以北的脊段地区,其南端至少到达了非转换不连续带以南的脊段地区(Zhang Haitao et al.,2021),并可能在岩浆的后期流动过程中逐渐传播到了Carndo转换断层与Trinidade断裂带附近。然而南大西洋中脊属于典型的慢速洋中脊,其洋中脊系统普遍缺失大型岩浆房或被小型岩浆透镜体所取代,岩浆在岩浆房或岩浆透镜体之间的流动性低,岩浆沿洋中脊方向实现大于100 km迁移距离的可能性低。从而在慢速扩张洋中脊地区具有地幔柱特征组分玄武岩的空间分布范围可为指示洋中脊下伏受地幔柱影响的软流圈范围提供重要线索。

  • 同时,如果断裂带深度达到软流圈层顶部,那么其可能将对软流圈顶部物质的流动产生阻隔影响,这与南大西研究区受地幔柱作用的洋中脊范围以大型断裂带为界的特征相符。但同时在地幔柱与南大西洋之间的圣赫勒拿断裂带和Martin Vaz断裂带将地幔柱软流圈物质传播至洋中脊系统之前可能就对其流动产生了影响,从而使得研究区内各断裂带之间的软流圈地幔物质与动力学特征保持相对独立,但这与目前揭示的地幔柱与南大西洋中脊之间受地幔柱影响的软流圈在水平方向整体呈放射状的特征相悖。南大西洋研究区内地幔柱物质在岩石圈地幔底部整体呈向西南方向的放射状型传播,离地幔柱越近的地方受到的影响越大,且在洋脊段逐渐远离地幔柱位置以后,受地幔柱影响的软流圈物质将以不连续的形态传播至南大西洋中脊系统,这与本文研究中地幔柱对洋脊下伏软流圈的影响范围,以及洋脊地区具有脊-柱相互作用特征的玄武岩空间分布特征一致。此外,由于地幔柱物质呈西南方向的放射状流动对大西洋中脊下地幔源区的影响达到了南大西洋中脊20.4°S地区(图1),这指示出圣赫勒拿地幔柱物质对其周围软流圈地幔物质组成的影响距离大于800 km。因此,上述脊-柱相互作用研究结果指示南大西洋具慢速扩张、向西迁移速率的洋中脊系统是形成圣赫勒拿地幔柱物质在岩石圈底部的分布特征,以及沿流变边界层呈放射状传播至南大西洋中脊系统的主要原因,而受海底扩张板块内部转换断层与大型断裂的影响还需进一步的验证。

  • 6 南大西洋地区脊-柱相互作用研究未来展望

  • 目前南大西洋地区的脊-柱相互作用研究仍存在需进一步解决的重要科学问题,主要总结为以下方面:

  • (1)南大西洋地区近脊线性火山的成因研究:在地幔物质上涌对岩石圈地幔圈层具有应力的作用下,在脊-柱间距低于1250 km或者岩石圈年龄小于25 Ma地区的近脊线性火山,通常是脊-柱相互作用的结果(Pearce,2005; Mittelstaedt and Ito,2005)。南大西洋中脊与圣赫勒拿地幔柱的间距小于800 km,同时估算出二者之间岩石圈的年龄低于6~5 Ma(Zhang Haitao et al.,2021),并且圣赫勒拿海山的年龄范围14~7 Ma(Kawabata et al.,2011),均远低于25 Ma。因此,对南大西洋中脊13°S~20°S脊段与圣赫勒拿地幔柱之间的相互作用研究将可能为二者之间的线性海山链的成因与演化研究提供重要线索。

  • (2)非转换断层错断作用与洋脊跳跃行为之间的相关性分析:地幔柱附近的洋中脊在非转换断层的错断作用下出现洋脊跃迁行为,最有可能是热点岩浆作用对洋脊的加热过程所致(Mittelstaedt et al.,20082012; 李江海等,2016)。南大西洋中脊系统内存在明显的洋中脊跳跃脊段,如13.0°S~13.2°S脊段与18.5°S~18.8°S脊段地区(图1b),该地区将为慢速洋中脊地区的洋脊跃迁机制与上地幔动力学特征研究提供重要场所。

  • (3)转换断层对上地幔动力学性质的影响:在岩石圈应力场对洋中脊附近呈线性分布的火山喷发作用进行控制的同时,还存在其他许多为火山喷发提供岩浆的作用过程,如地幔柱物质在不同厚度岩石圈之间(以转换断层为界)通过软流圈物质在上涌的减压过程中发生熔融向岩石圈边部火山喷发地区提供岩浆供给(Mittelstaedt et al.,2012)。同时,洋脊片段与地幔柱相互作用的数值模拟研究指示转换断层可能会减弱地幔信号在沿轴方向上的强度,从而在具有转换断层的地区开展脊-柱相互作用研究将有可能揭示转换断层对地球上地幔动力学的影响(Georgen,2014)。而南大西洋中脊系统与周围地幔柱之间存在诸多转换断层,例如正在活动的圣赫勒拿热点火山与南大西洋中脊17.5°S脊段通过Martin Vaz断裂带直接相连。因此进一步开展南大西洋中脊与其周围地幔柱之间的相互作用研究可为揭示转换断层对上地幔动力学的影响机制提供证据。

  • (4)地幔柱的起源深度研究:目前对大西洋地区部分近脊地幔柱的起源深度仍存在广泛争议。近年全地幔地震层析成像技术对全球主要热点进行的研究显示:南大西洋地区的地幔柱源自于地幔底部,且地幔柱物质的上涌通道长期存在,但圣赫勒拿地幔柱的确切起源深度仍存在争议(下地幔中部或是更浅部位)(French and Romanowicz,2015)。深部或浅部地幔在地表所形成的热点火山成因物质是地幔熔融物质在上涌过程中与上覆岩石圈地幔发生复杂作用后的产物(Georgen et al.,2001),从而其反映的地幔源区性质可能存在偏差。因此,运用受地幔柱影响的洋中脊玄武岩对脊-柱作用进行研究,可为揭示洋脊地区地幔柱起源深度提供新的线索。

  • 面对上述待进一步解决的科学问题,未来可进一步对洋中脊玄武岩开展以非传统稳定同位素、稀有气体同位素为主的地球化学研究,并同时结合地球物理调查所获取到的数据与资料,进一步厘清南大西洋慢速洋中脊系统的岩浆作用过程、地幔组成性质,及其与周围地幔柱之间的相互作用关系,以期更好地揭示地球地幔的动力学机制。

  • 参考文献

    • Ballmer M D, van Keken P E, Ito G. 2015. Hotspots, large igneous provinces, and melting anomalies. In: Holland H, Turekian K, eds. Treatise on Geophysics (Second Edition). Oxford: Elsevier, 393~459.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1): 79~93.

    • Chauvel C, Blichert-Toft J. 1998. New hafnium isotopic constraints on the source of MORB, Mineral Magazine, 62A: 310~311.

    • Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205: 295~308.

    • Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344(6179): 80~83.

    • Douglass J, Schilling J G. 2000. Systematic of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chemical Geology, 163: 1~23.

    • Faul U H, Jackson I. 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1): 119~134.

    • Faure G, Hurley P M. 1963. The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. Journal of Petrology, 4: 31~50.

    • Fontignie D, Schilling J G. 1996. Mantle heterogeneities beneath the South Atlantic: a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S~46°S). Earth and Planetary Science Letters, 142(1): 209~221.

    • French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95~99.

    • Gast P W. 1960. Limitations on the composition of the upper mantle. Journal of Geophysical Research, 65: 1287~1297.

    • Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181~1185.

    • Georgen J E. 2014. Interaction of a mantle plume and a segmented mid-ocean ridge: results from numerical modeling. Earth and Planetary Science Letters, 392: 113~120.

    • Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3): 283~300.

    • Graham D W, Jenkins W J, Schilling J G, Thompson G, Kurz M D, Humphris S E. 1992. Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth and Planetary Science Letters, 110(1-4): 133~147.

    • Graham D W, Castillo P R, Lupton J E, Batiza R. 1996. Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth and Planetary Science Letters, 144: 491~503.

    • Guan Yili, Shi Xuefa, Yan Quanshu, Wei Xun, Zhang Yan. 2019. Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts. Acta Oceanologica Sinca, 38: 35~42.

    • Hammond W C, Humphreys E D. 2000. Upper mantle seismic wave velocity-effects of realistic partial melt geometries. Journal of Geophysical Research, 105(B5): 10975~10986.

    • Hanan B B, Kingsley R H, Schilling J G. 1986. Pb isotope evidence in the South Atlantic for migrating ridge-hotspot interactions. Nature, 322(6075): 137~144.

    • Hart S R. 1971. The geochemistry of basaltic rocks. Carnegie Institution of Washington Yearbook, 70: 353~355.

    • Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273~296.

    • Hart S R, Zindler A. 1986. In search of bulk-Earth composition. Chemical Geology, 57: 247~267.

    • Hedge C E. 1966. Variations in radiogenic strontium found in volcanic rocks. Journal of Geophysical Research, 71: 6119~6126.

    • Hill R I, Campbell I H, Davies G F. 1992. Mantle plumes and continental tectonics. Science, 256(5054): 186~193.

    • Ito G. 2011. Reykjanes ‘V’-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411(6838): 681~684.

    • Ito G, Lin J, Graham D. 2003. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Reviews of Geophysics, 41(4): 1017.

    • Ito G, Keken P E V. 2007. 7. 09-hot spots and melting anomalies. Treatise on Geophysics, 17(6): 371~435.

    • Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3): 193~207.

    • Kawabata H, Hanyu T, Chang Q, Kimura J I, Nichols A R L, Tatsumi Y. 2011. The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceaniccrust-recycling model for HIMU OIB. Journal of Petrology, 52(4): 791~838.

    • Kelley K A, Kingsley R, Schilling J G. 2013. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14: 223~242.

    • Kincaid C, Gable C, Ito G. 1995. Laboratory investigation of the interaction of off-axis mantle plumes and spreading centers. Nature, 376(6543): 758~761.

    • Lee C T A. 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. Journal of Geophysical Research: Solid Earth, (1978-2012): 108(B9).

    • Li Jianghai, Zhang Huatian, Li honglin, Liu Zhonglan. 2016. Mid-ocean ridge jump and extension in the context of hotspots: discussion on the tectonic evolution of Indian Ocean. Geological Journal of Chinese Universities, 22(1): 74~80 (in Chinese with English abstract).

    • Li Jianghai, Liu Chiheng, Han Xiqiu. 2019. Tectonic characteristics and kinematic significance for the global mid-ocean ridge system. Earth Science Frontiers, 26(3): 154~162 (in Chinese with English abstract).

    • Li Sanzhong, Hou Fanghui, Li Haiqing, Guo Xiaoyu, Jin Chong, Liu Baohua. 2004. Interactions of ridge-plume, plume-trench and trench-ridge. Marine Geology Letters, 20(11): 1~5 (in Chinese with English abstract).

    • Li Sanzhong, Zhang Guowei, Liu Baohua. 2009. Marine geodynamics: from mid-oceanic ridge system to subduction factory. Journal of Northwest University (Natural Science Edition), 39(3): 434~443 (in Chinese with English abstract).

    • Liang Yuyang, Li Jiabiao. 2015. Is the volcanic eruption high the production of hotspot and mid-ocean ridge interaction? Marine Geology & Quaternary Geology, 35(1): 71~79 (in Chinese with English abstract).

    • Matos R M D, Krueger A, Norton I, Casey K. 2021. The fundamental role of the Borborema and Benin-Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. Marine and Petroleum Geology, 127: 104872.

    • Meibom A, Anderson D L. 2003. The statistical upper mantle assemblage. Earth and Planetary Science Letters, 217: 123~139.

    • McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625~679.

    • Michael P J, Cornell W C. 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103(B8): 18325~18356.

    • Mittelstaedt E, Ito G. 2005. Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge volcanic lineaments. Geochemistry, Geophysics, Geosystems, 6: Q06002, doi: 10. 1029/2004GC000860.

    • Mittelstaedt E, Ito G, Behn M. 2008. Mid-ocean ridge jumps associated with hotspot magmatism. Earth and Planetary Science Letters, 266(3-4): 256~270.

    • Mittelstaedt E, Soule S, Harpp K, Fornari D, McKee C, Tivey M, Geist D, Kurz M D, Sinton C, Mello C. 2012. Multiple expressions of plume-ridge interaction in the Galápagos: volcanic lineaments and ridge jumps. Geochemistry, Geophysics, Geosystems, 13: Q05018, doi: 10. 1029/2012GC004093.

    • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42~43.

    • Morgan W J. 1972. Deep mantle convection plumes and plate motion. The American Association of Petroleum Geologists Bulletin, 56(2): 203~213.

    • Pearce J A. 2005. Mantle preconditioning by melt extraction during flow: theory and petrogenetic implication. Journal of Petrology, 46(5): 973~997.

    • Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, doi: 10. 1016/j. lithos. 2012. 06. 018.

    • Ribe N M, Christensen U R. 1994. Three-dimensional modeling of plume-lithosphere interaction. Journal of Geophysical Research, 99: 669~682.

    • Ribe N M, Christensen U R, Theissing J. 1995. The dynamics of plume-ridge interaction, 1: ridge-centered plumes. Earth and Planetary Science Letters, 134(1): 155~168.

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246: 103~107.

    • Santiago-Ramos D P, Coogan L A, Murphy J G, Higgins J A. 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth and Planetary Science Letters, 541: 116290.

    • Schilling J G. 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242: 565~571.

    • Schilling J G. 1985. Upper mantle heterogeneities and dynamics. Nature, 314(6006): 62~67.

    • Schilling J G. 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352(6334): 397~403.

    • Stracke A. 2012. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.

    • Torsvik T H, van der Voo R, Doubrovine P V. 2014. Deep mantle structure as a referenceframe for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111(24): 8735~8740.

    • Whittaker J M, Afonso J C, Masterton S, Müller R D, Wessel P, Williams S E, Seton M. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6): 479~483.

    • Wilson M. 1992. Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of lower cretaceous super-plume activity? Geological Society of London Special Publication, 68(1): 241~255.

    • Yan Quanshu, Shi Xuefa. 2006. Advance and perspective of Mantle plume (hotspot) and ridge interaction. Marine Geology & Quaternary Geology, 26(5): 131~138 (in Chinese with English abstract).

    • Yan Quanshu, Shi Xuefa, Zhang Haitao. 2015. Advance and perspective of study on seafloor volcanic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(5): 920~930 (in Chinese with English abstract).

    • Zhang Haitao. 2015. Mid-oceanic ridge basalts (MORBS) chemistry and characteristics of plagioclase-hosted melt inclusions in the South Atlantic ridge 19°S and implications for magmatic processes. Master thesis of First Institute of Oceanography SOA, Qingdao (in Chinese with English abstract).

    • Zhang Haitao, Yang Yaomin, Yan Quanshu, Shi Xuefa, Zhu Zhiwei, Su Wenchao, Qin Chaojian, Ye Jun. 2016. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges? Geologica Acta, 14(1): 1~12.

    • Zhang Haitao, Yan Quanshu, Li Chuanshun, Zhu Zhiwei, Zhao Renjie, Shi Xuefa. 2019. Geochemistry of diverse lava types from the Lau basin (South West Pacific): implications for complex back-arc mantle dynamics. Geological Journal, 54: 3643~3659.

    • Zhang Haitao, Shi Xuefa, Li Chuanshun, Yan Quanshu, Yang Yaomin, Zhu Zhiwei, Zhang Hui, Wang Sai, Guan Yili, Zhao Renjie. 2020. Petrology and geochemistry of South Mid-Atlantic Ridge (19°S) lava flows: implications for magmatic processes and possible plume-ridge interactions. Geoscience Frontiers, 11: 1953~1973.

    • Zhang Haitao, Yan Quanshu, Li Chuanshun, Shi Xuefa, Yang Yaomin, Wang Guozhi, Hua Qingfeng, Zhu Zhiwei, Zhang Hui, Zhao Renjie. 2021. Tracing material contributions from Saint Helena plume to the South Mid-Atlantic ridge system. Earth and Planetary Science Letters, 572: 117130.

    • Zhong Yun, Liu Weiliang, Sun Zhilei, Yakymchuk Chris, Ren Kefa, Liu Jinnan, Li Wei, Ma Yaoliang, Xia Bin. 2019. Geochemistry andmineralogy of basalts from the South Mid-Atlantic Ridge (18. 0~20. 6°S): evidence of a heterogeneous mantle source. Minerals, 9: 659.

    • Zhong Yun, Zhang Xu, Sun Zhilei, Liu Jinnan, Li Wei, Ma Yaoliang, Liu Weiliang, Xia Bin, Guan Yao. 2020. Sr-Nd-Pb-Hfisotopic constraints on the mantle heterogeneities beneath the South Mid-Atlantic Ridge at 18~21°S. Minerals, 10: 1010. doi: 10. 3390/min10111010.

    • Zhou Bin, Yan Quanren, Deng Li, Jiang Wen, Hou Quanlin, Cheng Nannan, Zhao Tengge. 2020. Clinopyroxene-hosted melt inclusion in seamount basalts in the Muli mélange in Sichuan, SW China: tracks of hotspot-ridge interaction in the Ganzi-Litang Paloetethys Ocean. Acta Petrologica Sinica, 36(3): 925~947 (in Chinese with English abstract).

    • Zindler A, Hart S R. 1986. Chemical geodynamics. Annual Review of Earth Planetary Science, 14: 493~571.

    • 李江海, 张华添, 李洪林, 刘仲兰. 2016. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨. 高校地质学报, 22(1): 74~80.

    • 李江海, 刘持恒, 韩喜球. 2019. 全球洋中脊系统的构造特征及其运动学意义. 地学前沿, 26(3): 154~162.

    • 李三忠, 侯方辉, 吕海青, 郭晓玉, 金宠, 刘保华. 2004. 洋中脊-地幔柱、地幔柱-海沟与海沟-洋中脊相互作用. 海洋地质动态, 20(11): 1~5.

    • 李三忠, 张国伟, 刘保华. 2009. 洋底动力学——从洋脊增生系统到俯冲消减系统. 西北大学学报, 39(3): 434~443.

    • 梁裕扬, 李家彪. 2015. 西南印度洋脊50. 5°E火山喷发高地是热点与洋中脊相互作用的产物吗?海洋地质与第四纪地质, 35(1): 71~79.

    • 鄢全树, 石学法. 2006. 地幔柱(热点)-洋脊相互作用研究进展. 海洋地质与第四纪地质, 26(5): 131~138.

    • 鄢全树, 石学法, 张海桃. 2015. 中国海底火山岩研究进展及展望. 矿物岩石地球化学通报, 34(5): 920~930.

    • 张海桃. 2015. 南大西洋中脊19°S附近玄武岩与斜长石斑晶熔体包裹体特征及其对岩浆作用的指示意义. 国家海洋局第一海洋研究所硕士学位论文.

    • 周斌, 闫全人, 邓莉, 江文, 侯泉林, 程南南, 赵腾格. 2020. 四川木里混杂带海山玄武岩辉石斑晶中的熔体包裹体: 甘孜-理塘古特提斯洋内热点与洋中脊相互作用的记录. 岩石学报, 36(3): 925~947.

  • 参考文献

    • Ballmer M D, van Keken P E, Ito G. 2015. Hotspots, large igneous provinces, and melting anomalies. In: Holland H, Turekian K, eds. Treatise on Geophysics (Second Edition). Oxford: Elsevier, 393~459.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1): 79~93.

    • Chauvel C, Blichert-Toft J. 1998. New hafnium isotopic constraints on the source of MORB, Mineral Magazine, 62A: 310~311.

    • Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205: 295~308.

    • Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344(6179): 80~83.

    • Douglass J, Schilling J G. 2000. Systematic of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chemical Geology, 163: 1~23.

    • Faul U H, Jackson I. 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1): 119~134.

    • Faure G, Hurley P M. 1963. The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. Journal of Petrology, 4: 31~50.

    • Fontignie D, Schilling J G. 1996. Mantle heterogeneities beneath the South Atlantic: a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S~46°S). Earth and Planetary Science Letters, 142(1): 209~221.

    • French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95~99.

    • Gast P W. 1960. Limitations on the composition of the upper mantle. Journal of Geophysical Research, 65: 1287~1297.

    • Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181~1185.

    • Georgen J E. 2014. Interaction of a mantle plume and a segmented mid-ocean ridge: results from numerical modeling. Earth and Planetary Science Letters, 392: 113~120.

    • Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3): 283~300.

    • Graham D W, Jenkins W J, Schilling J G, Thompson G, Kurz M D, Humphris S E. 1992. Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth and Planetary Science Letters, 110(1-4): 133~147.

    • Graham D W, Castillo P R, Lupton J E, Batiza R. 1996. Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth and Planetary Science Letters, 144: 491~503.

    • Guan Yili, Shi Xuefa, Yan Quanshu, Wei Xun, Zhang Yan. 2019. Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts. Acta Oceanologica Sinca, 38: 35~42.

    • Hammond W C, Humphreys E D. 2000. Upper mantle seismic wave velocity-effects of realistic partial melt geometries. Journal of Geophysical Research, 105(B5): 10975~10986.

    • Hanan B B, Kingsley R H, Schilling J G. 1986. Pb isotope evidence in the South Atlantic for migrating ridge-hotspot interactions. Nature, 322(6075): 137~144.

    • Hart S R. 1971. The geochemistry of basaltic rocks. Carnegie Institution of Washington Yearbook, 70: 353~355.

    • Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273~296.

    • Hart S R, Zindler A. 1986. In search of bulk-Earth composition. Chemical Geology, 57: 247~267.

    • Hedge C E. 1966. Variations in radiogenic strontium found in volcanic rocks. Journal of Geophysical Research, 71: 6119~6126.

    • Hill R I, Campbell I H, Davies G F. 1992. Mantle plumes and continental tectonics. Science, 256(5054): 186~193.

    • Ito G. 2011. Reykjanes ‘V’-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411(6838): 681~684.

    • Ito G, Lin J, Graham D. 2003. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Reviews of Geophysics, 41(4): 1017.

    • Ito G, Keken P E V. 2007. 7. 09-hot spots and melting anomalies. Treatise on Geophysics, 17(6): 371~435.

    • Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3): 193~207.

    • Kawabata H, Hanyu T, Chang Q, Kimura J I, Nichols A R L, Tatsumi Y. 2011. The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceaniccrust-recycling model for HIMU OIB. Journal of Petrology, 52(4): 791~838.

    • Kelley K A, Kingsley R, Schilling J G. 2013. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14: 223~242.

    • Kincaid C, Gable C, Ito G. 1995. Laboratory investigation of the interaction of off-axis mantle plumes and spreading centers. Nature, 376(6543): 758~761.

    • Lee C T A. 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. Journal of Geophysical Research: Solid Earth, (1978-2012): 108(B9).

    • Li Jianghai, Zhang Huatian, Li honglin, Liu Zhonglan. 2016. Mid-ocean ridge jump and extension in the context of hotspots: discussion on the tectonic evolution of Indian Ocean. Geological Journal of Chinese Universities, 22(1): 74~80 (in Chinese with English abstract).

    • Li Jianghai, Liu Chiheng, Han Xiqiu. 2019. Tectonic characteristics and kinematic significance for the global mid-ocean ridge system. Earth Science Frontiers, 26(3): 154~162 (in Chinese with English abstract).

    • Li Sanzhong, Hou Fanghui, Li Haiqing, Guo Xiaoyu, Jin Chong, Liu Baohua. 2004. Interactions of ridge-plume, plume-trench and trench-ridge. Marine Geology Letters, 20(11): 1~5 (in Chinese with English abstract).

    • Li Sanzhong, Zhang Guowei, Liu Baohua. 2009. Marine geodynamics: from mid-oceanic ridge system to subduction factory. Journal of Northwest University (Natural Science Edition), 39(3): 434~443 (in Chinese with English abstract).

    • Liang Yuyang, Li Jiabiao. 2015. Is the volcanic eruption high the production of hotspot and mid-ocean ridge interaction? Marine Geology & Quaternary Geology, 35(1): 71~79 (in Chinese with English abstract).

    • Matos R M D, Krueger A, Norton I, Casey K. 2021. The fundamental role of the Borborema and Benin-Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. Marine and Petroleum Geology, 127: 104872.

    • Meibom A, Anderson D L. 2003. The statistical upper mantle assemblage. Earth and Planetary Science Letters, 217: 123~139.

    • McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625~679.

    • Michael P J, Cornell W C. 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103(B8): 18325~18356.

    • Mittelstaedt E, Ito G. 2005. Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge volcanic lineaments. Geochemistry, Geophysics, Geosystems, 6: Q06002, doi: 10. 1029/2004GC000860.

    • Mittelstaedt E, Ito G, Behn M. 2008. Mid-ocean ridge jumps associated with hotspot magmatism. Earth and Planetary Science Letters, 266(3-4): 256~270.

    • Mittelstaedt E, Soule S, Harpp K, Fornari D, McKee C, Tivey M, Geist D, Kurz M D, Sinton C, Mello C. 2012. Multiple expressions of plume-ridge interaction in the Galápagos: volcanic lineaments and ridge jumps. Geochemistry, Geophysics, Geosystems, 13: Q05018, doi: 10. 1029/2012GC004093.

    • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42~43.

    • Morgan W J. 1972. Deep mantle convection plumes and plate motion. The American Association of Petroleum Geologists Bulletin, 56(2): 203~213.

    • Pearce J A. 2005. Mantle preconditioning by melt extraction during flow: theory and petrogenetic implication. Journal of Petrology, 46(5): 973~997.

    • Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, doi: 10. 1016/j. lithos. 2012. 06. 018.

    • Ribe N M, Christensen U R. 1994. Three-dimensional modeling of plume-lithosphere interaction. Journal of Geophysical Research, 99: 669~682.

    • Ribe N M, Christensen U R, Theissing J. 1995. The dynamics of plume-ridge interaction, 1: ridge-centered plumes. Earth and Planetary Science Letters, 134(1): 155~168.

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246: 103~107.

    • Santiago-Ramos D P, Coogan L A, Murphy J G, Higgins J A. 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth and Planetary Science Letters, 541: 116290.

    • Schilling J G. 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242: 565~571.

    • Schilling J G. 1985. Upper mantle heterogeneities and dynamics. Nature, 314(6006): 62~67.

    • Schilling J G. 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352(6334): 397~403.

    • Stracke A. 2012. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.

    • Torsvik T H, van der Voo R, Doubrovine P V. 2014. Deep mantle structure as a referenceframe for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111(24): 8735~8740.

    • Whittaker J M, Afonso J C, Masterton S, Müller R D, Wessel P, Williams S E, Seton M. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6): 479~483.

    • Wilson M. 1992. Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of lower cretaceous super-plume activity? Geological Society of London Special Publication, 68(1): 241~255.

    • Yan Quanshu, Shi Xuefa. 2006. Advance and perspective of Mantle plume (hotspot) and ridge interaction. Marine Geology & Quaternary Geology, 26(5): 131~138 (in Chinese with English abstract).

    • Yan Quanshu, Shi Xuefa, Zhang Haitao. 2015. Advance and perspective of study on seafloor volcanic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(5): 920~930 (in Chinese with English abstract).

    • Zhang Haitao. 2015. Mid-oceanic ridge basalts (MORBS) chemistry and characteristics of plagioclase-hosted melt inclusions in the South Atlantic ridge 19°S and implications for magmatic processes. Master thesis of First Institute of Oceanography SOA, Qingdao (in Chinese with English abstract).

    • Zhang Haitao, Yang Yaomin, Yan Quanshu, Shi Xuefa, Zhu Zhiwei, Su Wenchao, Qin Chaojian, Ye Jun. 2016. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges? Geologica Acta, 14(1): 1~12.

    • Zhang Haitao, Yan Quanshu, Li Chuanshun, Zhu Zhiwei, Zhao Renjie, Shi Xuefa. 2019. Geochemistry of diverse lava types from the Lau basin (South West Pacific): implications for complex back-arc mantle dynamics. Geological Journal, 54: 3643~3659.

    • Zhang Haitao, Shi Xuefa, Li Chuanshun, Yan Quanshu, Yang Yaomin, Zhu Zhiwei, Zhang Hui, Wang Sai, Guan Yili, Zhao Renjie. 2020. Petrology and geochemistry of South Mid-Atlantic Ridge (19°S) lava flows: implications for magmatic processes and possible plume-ridge interactions. Geoscience Frontiers, 11: 1953~1973.

    • Zhang Haitao, Yan Quanshu, Li Chuanshun, Shi Xuefa, Yang Yaomin, Wang Guozhi, Hua Qingfeng, Zhu Zhiwei, Zhang Hui, Zhao Renjie. 2021. Tracing material contributions from Saint Helena plume to the South Mid-Atlantic ridge system. Earth and Planetary Science Letters, 572: 117130.

    • Zhong Yun, Liu Weiliang, Sun Zhilei, Yakymchuk Chris, Ren Kefa, Liu Jinnan, Li Wei, Ma Yaoliang, Xia Bin. 2019. Geochemistry andmineralogy of basalts from the South Mid-Atlantic Ridge (18. 0~20. 6°S): evidence of a heterogeneous mantle source. Minerals, 9: 659.

    • Zhong Yun, Zhang Xu, Sun Zhilei, Liu Jinnan, Li Wei, Ma Yaoliang, Liu Weiliang, Xia Bin, Guan Yao. 2020. Sr-Nd-Pb-Hfisotopic constraints on the mantle heterogeneities beneath the South Mid-Atlantic Ridge at 18~21°S. Minerals, 10: 1010. doi: 10. 3390/min10111010.

    • Zhou Bin, Yan Quanren, Deng Li, Jiang Wen, Hou Quanlin, Cheng Nannan, Zhao Tengge. 2020. Clinopyroxene-hosted melt inclusion in seamount basalts in the Muli mélange in Sichuan, SW China: tracks of hotspot-ridge interaction in the Ganzi-Litang Paloetethys Ocean. Acta Petrologica Sinica, 36(3): 925~947 (in Chinese with English abstract).

    • Zindler A, Hart S R. 1986. Chemical geodynamics. Annual Review of Earth Planetary Science, 14: 493~571.

    • 李江海, 张华添, 李洪林, 刘仲兰. 2016. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨. 高校地质学报, 22(1): 74~80.

    • 李江海, 刘持恒, 韩喜球. 2019. 全球洋中脊系统的构造特征及其运动学意义. 地学前沿, 26(3): 154~162.

    • 李三忠, 侯方辉, 吕海青, 郭晓玉, 金宠, 刘保华. 2004. 洋中脊-地幔柱、地幔柱-海沟与海沟-洋中脊相互作用. 海洋地质动态, 20(11): 1~5.

    • 李三忠, 张国伟, 刘保华. 2009. 洋底动力学——从洋脊增生系统到俯冲消减系统. 西北大学学报, 39(3): 434~443.

    • 梁裕扬, 李家彪. 2015. 西南印度洋脊50. 5°E火山喷发高地是热点与洋中脊相互作用的产物吗?海洋地质与第四纪地质, 35(1): 71~79.

    • 鄢全树, 石学法. 2006. 地幔柱(热点)-洋脊相互作用研究进展. 海洋地质与第四纪地质, 26(5): 131~138.

    • 鄢全树, 石学法, 张海桃. 2015. 中国海底火山岩研究进展及展望. 矿物岩石地球化学通报, 34(5): 920~930.

    • 张海桃. 2015. 南大西洋中脊19°S附近玄武岩与斜长石斑晶熔体包裹体特征及其对岩浆作用的指示意义. 国家海洋局第一海洋研究所硕士学位论文.

    • 周斌, 闫全人, 邓莉, 江文, 侯泉林, 程南南, 赵腾格. 2020. 四川木里混杂带海山玄武岩辉石斑晶中的熔体包裹体: 甘孜-理塘古特提斯洋内热点与洋中脊相互作用的记录. 岩石学报, 36(3): 925~947.