en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

林承焰,男,1963年生。教授,主要从事沉积学、储层地质学与油气藏描述、开发地质学等研究。E-mail:lincy@upc.edu.cn。

参考文献
Alsalmi M, John C M, Hawie N. 2019. Quantitative controls on the regional geometries and heterogeneities of the Rayda to Shu'aiba formations (Northern Oman) using forward stratigraphic modelling. Marine and Petroleum Geology, 99: 45~60.
参考文献
Balazs A, Granjeon D, Matenco L, Sztano O, Cloetingh S. 2017. Tectonic and climatic controls on asymmetric half-graben sedimentation: Inferences from 3-d numerical modeling. Tectonics, 36(9-10): 2123~2141.
参考文献
Begin Z B. 1988. Application of a diffusion-erosion model to alluvial channels which degrade due to base-level lowering. Earth Surface Processes and Landforms, 13(6): 487~500.
参考文献
Bergen K J, Johnson P A, De Hoop M D, Beroza G C. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433): 1299~1309.
参考文献
Bitzer K, Harbaugh J W. 1987. DEPOSIM: A Macintosh computer model for two-dimensional simulation of transport, deposition, erosion, and compaction of clastic sediments. Computers & Geosciences, 13(6): 611~637.
参考文献
Bruneau B, Chauveau B, Baudin F, Moretti I. 2017. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities. Marine and Petroleum Geology, 82: 1~20.
参考文献
Burgess P M, Emery D J. 2004. Sensitive dependence, divergence and unpredictable behaviour in a stratigraphic forward model of a carbonate system. Geological Society, London, Special Publications, 239(1): 77~94.
参考文献
Burgess P M, Lammers H, Van Oosterhout C, Granjeon D. 2006. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12): 1883~1901.
参考文献
Burgess P M, Steel R J, Granjeon D. 2008. Stratigraphic forward modeling of basin-margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf-edge deltas. SEPM Special Publications, 35~45.
参考文献
Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. Regional Geology & Tectonics Principles of Geologic Analysis, 378~404.
参考文献
Burgess, P M. 2013. CarboCAT: A cellular automata model of heterogeneous carbonate strata. Computers & Geoscience, 53: 129~140.
参考文献
Burgess P M, Masiero I, Toby S C, Duller R A. 2019. A big fan of signals? Exploring autogenic and allogenic process and product in a numerical stratigraphic forward model of submarine-fan development. Journal of Sedimentary Research, 89(1): 1~12.
参考文献
Busson J, Joseph P, Mulder T, Teles V, Borgomano J, Granjeon D, Betzler C, Poli E, Wunsch M. 2019. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: Controls and dynamic of the progradation. Sedimentary Geology, 379: 77~96.
参考文献
Chen Bingyi, Lin Chengyan, Ma Cunfei, Ren Lihua, Wang Jun, Li Zhipeng. 2019. Types, characteristics and sedimentary model of deep-water gravity flow deposition in the steep slope zone of terrestrial faulted lacustrine basin: A case study of the Es4s submember in the Shengtuo area of Dongying depression. Acta Geologica Sinica, 93(11): 2921~2933 (in Chinese with English abstract).
参考文献
Csato I, Granjeon D, Catuneanu O, Baum G R. 2013. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary. Basin Research, 25(2): 121~148.
参考文献
Csato I, Catuneanu O, Granjeon D. 2014. Millennial-scale sequence stratigraphy: numerical simulation with Dionisos. Journal of Sedimentary Research, 84(5): 394~406.
参考文献
Culling W E. 1960. Analytical theory of erosion. The Journal of Geology, 68(3): 336~344.
参考文献
Duan Taizhong. 2017. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling. Petroleum Science, 14(3): 484~492.
参考文献
Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).
参考文献
Fuhrmann. A, Kane I A, Clare M A, Ferguson R A, Schomacker E, Bonamini E, Contreras F A. 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale mode. Geology, 48(6), 562~568.
参考文献
Gervais V, Ducros M, Granjeon D. 2018. Probability maps of reservoir presence and sensitivity analysis in stratigraphic forward modeling. AAPG Bulletin, 102(4): 613~628.
参考文献
Granjeon D, Joseph P. 1999. Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. Tulsa: SEPM Special Publication, 62: 197~210.
参考文献
Granjeon D. 2014. 3D forward modelling of theimpact of sediment transport and base level cycles on continental margins and incised valleys. International Association of Sedimentolology. Special Publication, John Wiley & Sons, Ltd, 46: 453~472.
参考文献
Gregorio D S, Kongo R, Siciliano C, Sorrisovalvo M, Spataro W. 1999. Mount ontake landslide simulation by the Cellular Automata model SCIDDICA-3. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(2): 131~137.
参考文献
Griffiths C M, Dyt C, Paraschivoiu E, Liu Keyu. 2001. SEDSIM in Hydrocarbon Exploration. New York: Kluwer Academic: 71~97.
参考文献
Grigoryev Y N, Vshykov V A, Fedoruk M P. 2002. Numerical Particle-in-cell Methods: Theory and Applications. Berlin: De Gruyter.
参考文献
Gu Xiaozhong, Ma Liqiao. 1993. Numerical simulation of a delta depositional system and its application. Acta Petrolei Sinica, 14(2): 1~11 (in Chinese with English abstract).
参考文献
Harris A D, Covault J A, Baumgardner S, Sun Tao, Granjeon D. 2020. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: Sea-level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111: 807~814.
参考文献
Hawie N, Deschamps R, Granjeon D, Nader F H, Gorini C, Carla M, Montadert L, Baudin F. 2017. Multi-scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the Levant region. Basin Research, (28): 418~445.
参考文献
Hawie N, Covault J A, Sylvester Z. 2019. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models. Frontiers in Earth Science, 7: 334.
参考文献
Huang Xiu. 2012. A multi-scale analysis of microbialite facies of Shark Bay, West Australia, with numerical forward modeling. Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Huang Xiu, Liu Keyu, Wu Songtao, Du Jiali. 2015. Quantitative analysis of sedimentary heterogeneities. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 61~69 (in Chinese with English abstract).
参考文献
Huang Xiu, Griffiths C M, Liu J. 2016. Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62(8): 903~919.
参考文献
Hutton E. W H, Syvitski J P M. 2008. Sedflux 2. 0: An advanced process-response model that generates three-dimensional stratigraphy. Computers & Geosciences, 34(10): 1319~1337.
参考文献
Jia Zhenzhen. 2016. Study on fan delta reservoir architecture and numerical simulation. Doctor degree thesis of China University of Petroleum (East China)(in Chinese with English abstract).
参考文献
Lanteaume C, Fournier F, Pellerin M, Borgomano J. 2018. Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling. Leading Edge, 37(9): 672~680.
参考文献
Lesser G, Roelvink J A, Van Kester J A, Stelling G. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8): 883~915.
参考文献
Liu Keyu, Liang T, Paterson L, Kendall C. 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sedimentary Geology, 122(1-4): 181~191.
参考文献
Liu Jianliang, Liu Keyu. 2021. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Scientia Sinica (Terrae), 51(1): 150~158 (in Chinese with English abstract).
参考文献
Madhoo H A, Acevedo A, Tetzlaff D, Tveiten J. 2016. Combining forward stratigraphic modelling with seismic reconstruction to improve reservoir characterization. Second Conference on Forward Modelling of Sedimentary Systems. Trondheim, Norway.
参考文献
Masalimova U L, Lowe R D, Sharman R G. 2016. Outcrop characterization of a submarine channel-lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand. Marine & Petroleum Geology, 71: 360~390.
参考文献
Nordlund U. 1999. FUZZIM: Forward stratigraphic modeling made simple. Computers & Geosciences, 25(4): 449~456.
参考文献
Ravestein J J, Griffiths C M, Dyt C P, Michael K. 2015. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2. Terra Nova, 27(5): 346~355.
参考文献
Schuurman F, Kleinhans M G, Middelkoop H. 2016. Network response to disturbances in large sand-bed braided rivers. Earth Surface Dynamics, 4(1): 25~45.
参考文献
Schwarzacher W. 1966. Sedimentation in a subsiding basin. Nature, (5043): 1349~1350.
参考文献
Sloss L L. 1962. Stratigraphic models in exploration. Journal of Sedimentary Petrology, (32): 415~422.
参考文献
Strobel J, Cannon R, Christopher G, Kendall C S, Biswas G, Bezdek J. 1989. Interactive (SEDPAK) simulation of clastic and carbonate sediments in shelf to basin settings. Computers & Geosciences, 15(8): 1279~1290.
参考文献
Teles V, Benoît C, Joseph P, Weill P, Maktouf F. 2016. CATS: A process-based model for turbulent turbidite systems at the reservoir scale. Comptes Rendus, 348(7): 489~498.
参考文献
Tetzlaff D M, Harbaugh J W. 1989. Simulating Clastic Sedimentation. Computer Methods in the Geosciences. New York: Van Nostrand Reinhold.
参考文献
Tetzlaff D, Tveiten J, Salomonsen P. 2014. Geologic Process Modeling. IX Conference of Hydrocarbon Exploration & Development.
参考文献
Wang Xingxing, Wang Yingmin, Gao Shengmei, Mao Peixiao, Zhou Jiawei. 2018. Advancements of the deep-water gravity flow simulations and their implications for exploitation of marine petroleum. Journal of China University of Mining and Technology, 222(3): 133~147 (in Chinese with English abstract).
参考文献
Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information. 35(1): 44~52 (in Chinese with English abstract).
参考文献
Willgoose G, Bras R L, Rodrigueziturbe I. 1991. A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27(7): 1671~1684.
参考文献
Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).
参考文献
Yeste L M, Henares S, Mcdougall N. 2018. Towards the multi-scale characterization of braided fluvial geobodies from outcrop, core, ground-penetrating radar and well log data. Geological Society London Special Publications, 488.
参考文献
Yin Xiangdong, Lu Shuangfang, Wang Pengfei, Wang Qiming, Wang Wei, Yao Tongyun. 2017. A three-dimensional high-resolution reservoir model of the Eocene Shahejie Formation in Bohai Bay Basin, integrating stratigraphic forward modeling and geostatistics. Marine & Petroleum Geology, 82: 362~370.
参考文献
Young A, Carson M A, Kirkby M J. 1973. Hillslope Form and Process. Geographical Journal, 139(1): 140.
参考文献
Zhang Chunsheng. 2003. Depositional Simulation Technology of Clastic Rock. Beijing: Petroleum Industry Press, 23~40 (in Chinese with English abstract).
参考文献
Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018. Discussion on evolution of bar in sandy braided river: Insights from sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~89 (in Chinese with English abstract).
参考文献
Zhang Wenbiao, Duan Taizhong, Liu Yanfeng, Wang Mingchuan, Lian Peiqing, Zhao Lei. 2019. Application status and development trend of quantitative geological modeling. Geological Science and Technology Information, 38(3): 270~281 (in Chinese with English abstract).
参考文献
Zhu Hongtao, Li U Keyu, Du Yuansheng, He Sheng. 2007. Progress and developing tendency of sequence stratigraphy simulation. Geological Science and Technology Information, 26(5): 27~34 (in Chinese with English abstract).
参考文献
Zhu Hongtao, Liu Keyu, Du Yuansheng, Li Min, Wang Jili. 2009. Quantitative simulation and new consideration on the transformation system of the accommodation space. Earth Science, 34(5): 819~828 (in Chinese with English abstract).
参考文献
陈柄屹, 林承焰, 马存飞, 任丽华, 王军, 李志鹏. 2019. 陆相断陷湖盆陡坡带深水重力流沉积类型、特征及模式: 以东营凹陷胜坨地区沙四段上亚段为例. 地质学报, 93(11): 2921~2933.
参考文献
冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.
参考文献
顾晓忠, 马立桥. 1993. 三角洲沉积体系的数值模拟及其应用. 石油学报, 14(2): 1~11.
参考文献
黄秀. 2012. 澳大利亚鲨鱼湾微生物席沉积相多尺度正演模拟研究. 北京: 中国地质大学(北京)博士学位论文.
参考文献
黄秀, 刘可禹, 吴松涛, 桂丽黎. 2015. 沉积体系非均质性对致密油气储集层控制及其定量评价方法. 矿物岩石地球化学通报, 34(1): 61~69.
参考文献
贾珍臻. 2016. 扇三角洲储层构型及数值模拟研究. 青岛: 中国石油大学(华东)博士学位论文.
参考文献
刘建良, 刘可禹. 2021. 碳酸盐岩地层完整性分析及其影响因素定量评价: 来自地层正演模拟的启示. 中国科学: 地球科学, 51(1): 150~158.
参考文献
王星星, 王英民, 高胜美, 毛佩筱, 卓海腾, 王明晗, 周家伟. 2018. 深水重力流模拟研究进展及对海洋油气开发的启示. 中国矿业大学学报, 222(03): 133~147.
参考文献
王杨君, 尹太举, 邓智浩, 程钊. 2022. 水动力数值模拟的河控三角洲分支河道演化研究. 2016. 地质科技情报. 35(1): 44~52.
参考文献
杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.
参考文献
张春生. 2003. 碎屑岩沉积模拟技术. 北京: 石油工业出版社, 23~40.
参考文献
张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示简. 沉积学报, 36(1): 81~89.
参考文献
张文彪, 段太忠, 刘彦锋, 王鸣川, 廉培庆, 赵磊. 2019. 定量地质建模技术应用现状与发展趋势. 地质科技情报, 38(03): 270~281.
参考文献
朱红涛, 刘可禹, 杜远生, 何生. 2007. 层序地层学模拟研究进展及趋势. 地质科技情报, 26(5): 27~34.
参考文献
朱红涛, 刘可禹, 杜远生, 李敏, 王继立. 2009. 可容纳空间转换系统的定量模拟. 地球科学(中国地质大学学报), 34(5): 820~827.
目录contents

    摘要

    沉积数值模拟是开展沉积学定量研究的重要手段,在油气地质学、水利工程等领域中发挥着重要作用。本文基于大量国内外文献调研,结合实际研究工作,系统概述了沉积数值模拟的发展历程及模型分类;归纳了几何规则、水动力方程、扩散方程、元胞自动机和模糊逻辑5种沉积数值模拟方法;对比了不同方法的基本原理、优、缺点以及与其相对应的代表性模拟软件的特点;总结了沉积数值模拟在层序地层学,沉积过程及沉积机理,“源-汇”系统和油气地质学4个研究领域中的应用现状及独特优势;并结合东营凹陷北部陡坡带断层控制背景下两种湖相重力流沉积数值模拟研究实例,进一步说明了沉积数值模拟在沉积学研究中的有效性与重要性,探索不同沉积机制数值模拟新方法。多地质过程耦合数值模拟与地质建模一体化、基于人工智能驱动的沉积过程反演数值模拟以及在非常规油气资源勘探开发中的深入应用是该领域未来的发展方向。

    Abstract

    sedimentary numerical simulation, which is of great significance in fields such as petroleum geology as well as hydraulic engineering, is a fundamental method to quantitatively study sedimentology. In this comprehensive review of the up-to-date literatures and review of relevant research, the development process and classification of sedimentary numerical simulation is systematically summarized. Five simulation methods are categorized: geometrical rule based simulation, hydrodynamic equation based simulation, diffusion equation based simulation, cellular automata based simulation, and fuzzy logic based simulation. The basic principles, advantages and drawbacks of each theory as well as the representative simulation software platforms based on them are introduced. The status quo of sedimentary numerical simulation applied in sequence stratigraphy, sedimentary process and mechanism, source to sink system, petroleum geology along with its advantages compared to traditional methods are summarized. Its validity and unique advantage is further illustrated by a case study, which is a forward modeling practice of lacustrine gravity driven flow deposition under fault-controlled settings in the northern steep-slope zone of the Dongying Depression. Finally, it is suggested that exploring novel simulation methods for different depositional mechanisms, coupling numerical simulation and geometrical modeling of multiple geological processes, inverse numerical simulation driven by artificial intelligence, further applications in the unconventional oil and gas resource exploration and development are deemed to be the future development directions in this field.

  • 定性描述与定量表征、现象刻画与机理探究是沉积学研究中的重要内容,随着沉积学在深度和广度上的发展以及相关学科相互促进,国内外学者对沉积学中定量表征和机理探究的重视程度也逐渐提高。近年来,定量表征方法在沉积学研究中得到了良好应用,如利用卫星照片或自主式水下航行器(AUV)(Fuhrmann et al.,2020)刻画沉积物展布形态、建立定量沉积模式;应用探地雷达构建浅层地下沉积体的定量构型模式(Yeste et al.,2018);通过野外露头实地探测(Masalimova et al.,2016)定量刻画沉积要素等。但沉积学定量研究除了以上基于沉积结果的定量表征方法之外,基于沉积过程的沉积模拟也是其中一个重要研究手段,后者因其充分考虑沉积作用机理,能再现完整沉积过程而受到了越来越多的学者关注。沉积模拟分为以“水槽实验”为基础的物理模拟和以“控制方程”为基础的数值模拟两大类,随着数学、地球科学以及计算机技术的迅猛发展,沉积数值模拟在沉积学研究中也开始发挥着愈发重要的作用(Liu Keyu et al.,1998; 朱红涛等,2007; 张文彪等,2019)。

  • 沉积数值模拟指的是用数学方法描述和归纳在形成某种沉积体系过程中各因素的相互作用关系,由此建立其确定的数学模型,然后求解此模型(顾晓忠等,1993张春生,2003)。沉积数值模拟可定量描述自然界中的沉积机理与沉积过程,还能记录沉积地层时空演化以及沉积体的时空展布在石油勘探开发领域,该技术为揭示沉积机理,定量描述地下储集体及隔夹层的分布状况,明确其空间展布范围,进一步预测储集体“甜点”分布等问题提供了新的方法思路。

  • 自20世纪60年代沉积数值模拟的初级模型被提出,经过数十年的探索,该技术取得较大进展,其应用也充分渗透到石油工业、水利工程等许多领域,并还将持续发挥其定量研究的独特优势(Lesser et al.,2004; Burgess et al.,2006; Bruneau et al.,2017; Yin et al.,2017; 王星星等,2018; Lanteaume et al.,2018)。相较于国外,国内相关研究起步较晚且研究基础相对薄弱。但是,近十几年该技术在国内受到了越来越多的重视,特别是在油气勘探开发领域愈发凸显其重要的应用价值(黄秀等,2015; Huang et al.,2016; Yin et al.,2017; 王星星等,2018; Liu et al.,2021)。本文在大量国内外文献调研基础上,概述了沉积数值模拟的发展历程及模型分类,归纳5种模拟方法的基本原理及其对应主流模拟软件特点,总结沉积数值模拟在层序地层学研究,沉积过程及沉积机理分析,“源-汇”系统研究和油气地质学这4个领域的应用现状及最新进展。本研究结合在东营凹陷北部陡坡带开展的湖相重力流沉积数值模拟研究实例,进一步说明沉积数值模拟方法的有效性与特色优势,最后展望了沉积数值模拟的发展方向,以期为沉积学和油气勘探开发等领域的相关研究提供理论基础。

  • 1 发展历程

  • 国外对沉积数值模拟的研究起步较早。在1962年,Sloss等人在物源供给量、沉降量、沉积物逸散量、沉积物成分及组成的相互关系之上,建立了不同沉积环境下的沉积概念模型(Sloss et al.,1962)。虽然该模型并非真正意义上的定量模型(Huang et al.,2016),但却从沉积过程定量参数角度探讨了其对沉积地层发育的控制作用,打开了定量沉积模拟的大门。Schwarzacher等在Sloss等概念模型的基础上,重点考虑“构造沉降-沉积”的相互关系,建立了一维碎屑岩和碳酸盐岩沉积数值模型(Schwarzacher et al.,1966)。1970年Harbaugh等人建立了首个沉积模拟计算机系统,但由于一维沉积模型存在很大的局限性,二维模型随之产生,其中DEPOSIM(Bitzer et al.,1987),SEDPAK(Strobel et al.1989)是二维模拟软件的代表,这些软件为模拟二维地震数据、连井剖面所得到的地层几何形态提供了有效手段。

  • 20 世纪80年代,随着美国Exxon-Mobil公司层序地层学理论的诞生,沉积数值模拟进入新的发展阶段。针对描述沉积过程的数学物理方程与沉积作用主控参数的深入研究,推动数值模拟技术逐渐成为沉积学研究的一个重要分支。随着计算机技术与数学理论的发展,从二维到三维的沉积数值模型,也应运而生。1989年,斯坦福大学的Tetzlaff and Harbaugh等人研发了SEDSIM软件(Tetzlaff et al.,1989),标志着沉积数值模拟从层序地层模拟走向颗粒的沉积过程模拟具有里程碑意义。在此之后由澳大利亚CSRIO(Australia's Commonwealth Scientific and Industrial Research Organization)的Griffiths et al.(2001)继续深入优化,逐渐形成一款基于水动力过程的三维沉积数值模拟软件。1998年,海相盆地充填模拟软件Sedflux由科罗拉多矿业学院Syvitski等人研发,并逐渐完成了由2D到3D沉积模拟的发展(Hutton et al.,2008)。除此之外,同一时期由法国石油研究院(IFP)的Granjeon et al.(1999)开发的Dionisos软件是基于扩散理论三维沉积数值模拟软件的代表,至今在石油行业中应用广泛。2004年,荷兰三角洲研究院(Deltares)Lesser等人开发的Delft3D软件是计算流体力学中泥沙水动力学三维沉积数值模拟软件的代表,被广泛应用于水利工程及沉积过程机理研究(Lesser et al.,2004; Schuurman et al.,2016; 冯文杰等,2017; 张可等,2018)。

  • 2007年以来,科罗拉多矿业大学的Syvitski等人设立CSDMS(Community surface dynamics modeling system)研究项目,创建集合各类沉积数值模拟最新算法研究的开源平台。此外,各油气公司也逐渐发展各自的模拟软件:如Exxo-Mobil公司的EMstrata软件,Schlumberger公司的GPM软件(Tetzlaff et al.,2014Madhoo et al.,2016),IFP公司的Dionisos软件和英国Petroleum Experts公司的MOVE软件等。如今在国际上,沉积数值模拟软件逐渐也呈现出向专门针对某一特定沉积环境或沉积相类型发展的趋势,法国石油研究院(IFP)的CATS软件(Teles et al.,2016)主要针对于浊流系统的数值模拟研究;Exxon公司的EMstrata以及Lobyte3D软件(Burgess et al.,2019)主要针对海底扇沉积模拟。

  • 我国沉积数值模拟技术研究起步较晚,在沉积学与油气勘探开发领域,主要侧重于在国外已有模拟理论与软件平台基础上,解决沉积学与油气勘探开发中的实际问题。近十年来在诸如利用沉积数值模拟开展储层非均质(黄秀等,2015)、储层构型(贾珍臻等,2016)、地质建模(Yin et al.,2017)、碳酸盐岩地层沉积(刘建良等,2021)研究;利用沉积数值模拟开展针对辫状河、浅水三角洲等的沉积过程及机理研究(冯文杰等,2017; 张可等,2018);以及沉积反演数值模拟等方面的研究(Duan,2017)均取得一些实践经验与成果。

  • 2 沉积数值模拟分类

  • 依据不同原则和标准,沉积数值模拟可分为不同种类(图1)。按模拟尺度大小可分为:宏观尺度模拟,模拟时间跨度从年到百万年,模拟空间范围从数百米到数百千米;微观尺度模拟,主要针对沉积作用机理研究,模拟时间单位为秒,空间单位为毫米(Balazs et al.,2017)。按照模拟依据的理论方法可分为:基于几何规则的模拟;基于扩散方程的模拟;基于水动力学的模拟;基于模糊逻辑理论的模拟;基于元胞自动机的模拟等。按照模拟数据流向分为正演模拟、反演模拟和混合模拟等。

  • 图1 沉积数值模拟分类

  • Fig.1 Classification of sedimentary numerical simulation

  • 3 模拟理论方法与模拟软件

  • 本文重点阐述以下5种沉积数值模拟模型:几何规则、扩散方程、水动力学、元胞自动机和模糊逻辑理论(表1),并对基于这些模型的主要模拟软件及其特点进行介绍。

  • 3.1 基于几何规则的模型(Geometric models)

  • 该类模型旨在通过相对简单的几何规则重建沉积地层叠置关系,表达代表性沉积系统的关键地层特征,模拟目的是为再现沉积过程的结果(Burgess et al.,2012; Huang Xiu 2016)。SEDPAK是基于几何规则的沉积模拟软件代表,由南卡罗莱纳大学的Strobel等人研发,可模拟百万年尺度的碎屑岩和碳酸盐岩沉积,包括碎屑沉积物在盆地的充填以及沉积楔状体和扇体的形成,水平面变化影响碳酸盐岩产率导致碳酸盐岩的生长与消退等(Strobel et al.,1989)(图2)。SEDPAK软件能比较清楚地再现在不同海平面变化条件、不同构造沉降等条件下,盆地层序地层充填模式及过程,能直观地表达各外界因素对层序发育的控制作用。

  • 基于几何规则的模型,其优点为模拟规则简单,运算速度快,缺点则是该类模拟只实现了几何形状的匹配,而缺乏力学方程约束,不能真实反映沉积搬运过程,难以验证其结果的准确性和预测性。

  • 3.2 基于水动力方程的模型(Hydraulic models)

  • 该模型是以流体力学方程中的Navier-Stokes方程为核心,使用数值方法求解二维或三维的Navier-Stokes方程组,通过预测流场的流动,来描述沉积物颗粒与流体之间的相互作用。这类模型是建立在水动力—沉积物运输、沉积、侵蚀—地貌变化这一完整的物理过程之上,可以较好地反演水流对地貌的改造以及地貌改变后对水流的动态反馈过程(Lesser et al.,2004;王杨君et al.,2016)。但应用该模型求解长时间、大空间尺度水体的数值全解存在诸多困难,需要结合模拟需求引入假设,对方程进行简化。不同的模拟软件,根据其应用领域与主要解决的问题不同,对Navier-Stokes方程的简化也有所差异。

  • 图2 基于几何规则模拟的流程示意图(据Strobel et al.,1989; Liu et al.,1998修改)

  • Fig.2 Workflow diagram based on geometric rule simulation (modified after Strobel et al., 1989; Liu et al., 1998)

  • SEDSIM软件由斯坦福大学研发,属于地层正演数值模拟软件,模拟考虑了流体运动,沉积物搬运,波浪作用,构造沉降,压实作用,负载与地壳均衡,重力流以及碳酸盐岩和有机物沉积等因素,可进行厘米至千米级范围的模拟,被广泛应用于油气勘探预测。SEDSIM软件中关于碎屑岩模拟在以Navier-Stokes方程为核心的基础上,结合欧拉方程和拉格朗日方程的优点,使用“网格标记法”,用孤立流体元素代表连续流体,简化后方程为:

  • q=0
    (1)
  • qt+(q)q=-ϕ+ν2+g
    (2)
  • 方程(1)(2)分别为连续性方程和动量守恒方程。根据流体与河道底部摩擦力与平均流速的关系(Griffiths et al.,2001; 黄秀,2012),再经过拉格朗日变换得:

  • Qt=-gH+c2ρ2Q-c1Q|Q|h
    (3)
  • (1)~(3)方程中q为流体运动向量(m/s),t为时间(s),ρ为流体密度(kg/m3),φ为压力与流体密度比值,υ为运动黏度(m2/s),c1为摩擦系数,Q为流体平均速率(m/s),h为流体深度(m),c2为剪切力摩擦系数,g为重力加速度(m/s2),为拉普拉斯算子,H为水面高程(m)。

  • SEDSIM软件可稳定、准确地计算每个网格中沉积物的体积,捕获一定地质时期内的平均结果,展现沉积物分布的一般规律,较好地模拟出三维沉积体的形态特征与分布规律(图3)。

  • Delft 3D软件由荷兰三角洲研究院(Deltares)Lesser等人开发,是一款泥沙水动力-水质数值模拟软件,模拟空间尺度1 km以内,模拟时空尺度小于SEDSIM软件,主要应用于河流、河口、海岸以及海洋数值模拟。其中,水动力模块是该软件的主要计算模块,建立在“浅水方程”的基础上,由水平动量方程、连续性方程、物质传输方程以及用于闭合方程的湍流模型组成(Lesser et al.,2004),化简后方程如下:

  • Ut+UUx+VUy+ωhUσ-fV=-1ρ0Px+Fx+Mx+1h2σνvUσ
    (4)
  • Vt+UVx+VVy+ωhVσ-fU=-1ρ0Py+Fy+My+1h2σνvVσ
    (5)
  • 图3 利用SEDSIM模拟澳大利亚Surat盆地侏罗系Precipice砂岩、Evergreen砂岩和Hutton砂岩沉积与埋藏(据Ravestein et al.,2015修改)

  • Fig.3 Deposition and burial model of the Jurassic Precipice sandstone, Evergreen sandstone and Hutton sandstone basedon SEDSIM (modifiedafter Ravestein et al., 2015)

  • (a)—25 km网格下的初始模型;(b)—10 km网格下的“盆地范围模型”栅状图;(c)—过“盆地范围模型”中心的东西走向剖面图;(d)—包含全部沉积物的嵌套模拟模型

  • (a) —initial model with 25 km grid size; (b) —basin-wide model displaying every eighth fence in 10 km gridsize; (c) —east-west cross-section through the center of the basin-scale model; (d) —nested model with the complete sediment volume

  • ζt+[hU-]x+[hV-]y=S
    (6)
  • [hc]t+hUcx+hVcy+[ωc]σ=hxDHcx+yDHcy+1hσDVcσ+hS
    (7)
  • 其中方程(4)(5)分别为xy方向的水平动量方程,(6)为连续性方程,(7)为物质传输搬运方程。

  • (4)~(7)式中UVxy方向的速度(m/s),f为科里奥利参数(s-1),c为沉积物浓度(kg/m3),νv为运动黏度(m2/s),ρ0为水的参考密度(kg/m3),P为压强(Pa),F为雷诺水平应力,M为其他外力,h为水深(m),ζ为水面相对于参考深度高程(m),S为盐度(ng/L),U-V-为深度平均后的xy方向的速度(m/s),ω为σ坐标系中的垂直速度分量(s-1),DHDV为水平和垂直方向的扩散系数。

  • Delft 3D软件除使用交替隐式ADI法使其计算稳定、快速、有效,其网格处理、编辑生成功能也很强大,但由于它主要针对于浅水环境,故在应用范围上存在一定局限性。

  • 基于水动力方程的模拟能更准确地描述沉积过程,模拟结果也更符合自然界实际情况(图4),但由于方程求解的复杂性,该软件从模拟速度和模拟时空尺度上要小于其他模拟方法。

  • 3.3 基于扩散理论的模型(Diffusion models)

  • 扩散理论是模拟沉积物搬运过程简单但有效的一种方法,其基本假设为流体中的沉积物与坡度成比例的速率沿斜坡向下运动(Granjeon et al.,1999; Tetzlaff et al.,2014),被称为“动态斜坡模型”。通过基于Fick第二扩散定律的沉积物搬运经验公式与连续性方程,在三维空间中模拟沉积物搬运沉积过程。早在20世纪60年代,地貌学家和水动力学家就开始从扩散理论角度研究沉积物搬运过程。Culling(1960)提出沉积物搬运率Qsed与坡度成正比,即:

  • 图4 基于Delft-3D模拟辫状河心滩坝发育演化过程(据张可等,2018

  • Fig.4 Simulation of the evolution of braide driverbar based on Delft-3D (after Zhang et al., 2018)

  • Qsed=KS=-Khx
    (8)
  • 地貌高程随时间的变化可表示为:

  • ht=-Qsedx=K2yx2
    (9)
  • 这也是最初的二维线性沉积物扩散方程。随着研究的深入,学者们发现当坡度小于10°时,沉积物搬运并不符合线性方程,于是将其改进为非线性方程(Young et al.,1973):

  • Qsed=KSn
    (10)
  • 1988年Begin在研究河流搬运时,建立了扩散系数K与水流量qwater的经验关系:

  • qwater =0.035K1.10K=21.1qwater 0.91
    (11)
  • 根据上述方程与经验关系,便得到一个更为普遍的基于扩散理论的经典二维沉积物搬运方程(Willgoose et al.,1991):

  • Qsed =Kqwater mSn
    (12)
  • 在三维空间中,该方程则可表示为:

  • Qsed =Kqwater h
    (13)
  • 式中,Qsed为沉积物流量(m3/s),h代表高程或深度(m),K为扩散系数,t为时间(s),qwater为水流量(m3/s),S为坡度,m n为经验系数,为拉普拉斯算子。

  • 法国石油研究院(IFP)Dionisos软件是基于扩散理论的沉积模拟软件代表(Granjeon et al.,1999; Burgess et al.,2008; Csato et al.,2014; Hawie et al.,2019; Busson et al.,2019)。Dionisos软件可模拟碎屑岩和碳酸盐岩沉积。其中,碎屑岩模拟综合考虑了盆地沉降、水平面变化、沉积物供应、压实、生长断层、沉积物搬运参数等的相互作用对地层沉积的影响;碳酸盐岩模拟则重点考虑水深、波浪对碳酸盐岩生长沉积的作用,适用于几万年到几十个百万年,几千米到几百千米的大尺度模拟。碎屑岩沉积模块包含3种沉积物搬运机制:① 长期低能搬运;② 短期高能搬运;③ 灾变性事件。

  • 斯伦贝谢公司的GPM也是基于扩散理论的模拟软件,模拟范围涵盖盆地尺度到油藏尺度(模拟的单层厚度小于1m)。但与Dionisos软件不同,GPM软件模拟中将流体分为两类并采用不同方法进行模拟(Grigoryev et al.,2002),以期更接近实际描述不同流体环境中的沉积搬运过程。两种流体类型分别是: ① 稳态流(如稳定流动的河流),采用有限差分法进行模拟;② 非稳态流(如洪水期河流,浊流等),采用质点网格法(particle-in-cell)进行模拟(图5)。

  • 此外,基于扩散理论的模拟软件还包括DEMOSTRAT、STRATA和DIBAFILL等。需要注意的是,虽然扩散方程能较好地模拟较大尺度的沉积过程与地层建造,但模拟结果是所有过程响应的平均体现而非沉积物颗粒的各自单一路径的叠加,是一种平均化的结果。因此,模拟结果需要与实际测井、地震等实测数据进行对比以验证其可靠性,但两者之间通常会存在差异,且模拟结果也非唯一,需要结合区域地质特征以得到最佳模拟结果。

  • 3.4 基于元胞自动机的模型(Cellular automata models)

  • 该模型采用“基于规则”的算法,生成相对复杂的模拟结果,是一种离散型数值模型。元胞自动机由一系列置于规则网格中的元胞组成,每个模拟步长中,单个元胞处于多个可能状态中的一种,而元胞下一时间步长的状态由其当前阶段周围邻近元胞的状态,或者由该元胞前一时间步长的状态确定。元胞自动机能有效模拟碳酸盐岩台地内部的非均质特征(Burgess et al.,20042013),同时在碎屑岩重力流沉积中也有越来越多的应用(Teles et al.,2016; Burgess et al.,2019)。

  • CarboCAT由利物浦大学Peter Burgess团队开发,目前已成为CSDMS平台新一代的碳酸盐岩地层模拟软件代表,可模拟出碳酸盐岩台地内部丰富的沉积建造和非均质性。CarboCAT软件使用三维数组(岩性,厚度,水深)储存每个元胞的地层数据。对于原位生长的碳酸盐岩,需预先设定生产碳酸盐的有机体种类,每个元胞在下一时间步长将被哪类有机体占据,取决于与该元胞(Mij)相邻的24个元胞内有机体类型分布情况(图6)。

  • CATS软件(Cellular Automatafor Turbidite Systems)是法国石油研究院开发用于浊流体系的模拟软件。CATS的模拟对象为低密度浊流,模拟考虑了浑水重力流中的湍流扰动、沉积物悬浮、水体卷吸以及剥蚀搬运等过程。其中在重力和动能影响下的流体运动与分布状态,由相邻元胞的状态决定,流体分布模拟采用“高程差最小化”算法(minimizationof height differences)(Gregorio et al.,1999)。CATS软件能在短时间内(模拟单一流体过程仅需几分钟)模拟出复杂的浊流流动特征,重建符合实际的浊积岩储层内部沉积建造与沉积相空间展布。除了CATS,Lobyte3D也是基于该理论的软件,主要应用于海底扇沉积模拟。

  • 图5 GPM中采用非稳态流模型的模拟结果图(据Tetzlaff et al.,2014修改)

  • Fig.5 Simulation results of “unsteady flow” model in GPM (after Tetzlaff et al., 2014)

  • (a)—模拟结果中出现水道下切谷和前端浊积扇;(b)—沿A—B作扇体横剖面,显示非稳态流作用下扇体内部的多期摆动与叠置

  • (a) —model results shows carved valley and entire fan; (b) —detailed transversal section along A—B, exhibiting shifting and stacking patterns of multiple unsteady-flow derived fans

  • 图6 CarboCAT模拟碳酸盐岩沉积原理示意图,其中Mij为目标元胞,r为相邻元胞影响目标元胞的半径范围(据Burgess et al.,2013修改)

  • Fig.6 Principles of carbonate simulation in CarbonCAT Mi, j is the target cell, and r is radius range Mi, j is influence by the surrounding cells (modified after Burgess et al., 2013)

  • 基于元胞自动机的模拟,无需求解复杂的水动力方程,模拟时间较短,能接近实际地表达沉积物搬运,碳酸盐生长等物理、生物化学过程,同时模拟结果能表现出沉积体内部的复杂结构与非均质性。但模拟过程对于初始条件的设定有较高敏感性,初始条件的微小变化可能导致模拟结果具有较大差异。此外,由于模拟过程基于较多当地经验公式,因此在适用范围上存在比较大的局限性。

  • 3.5 基于模糊逻辑的模型(Fuzzy logic models)

  • 模糊逻辑理论是布尔逻辑理论的推广,可解决地质模拟中随机不确定性问题,并能将定性地质数据定量化,同时为模拟复杂非线性方程提供有效替代方法。模糊逻辑系统由两个主要部分组成:① 模糊集(fuzzy set),由归类函数(membership function)表示;② 模糊规则(fuzzy rule),为定性规则,主要基于专家经验、经验数据或专家观点等,决定模拟质量。模糊逻辑能将定性数据结合进模拟过程,而非通过传统数学表达来控制沉积物的时空展布,其结果更契合常识和地质经验。

  • FUZZIM(Nordlund et al.,1994)最初是1994年由瑞典乌普萨拉大学的U.Nordlund和M. Silfversparre开发,基于模糊控制系统,考虑初始地形、水平面变化、沉降、温度、沉积供应、扇体摆动、重力流、均衡作用等,用于模拟地质时间尺度的盆地边缘沉积、剥蚀和层序地层研究。SEDSIM软件的碳酸盐岩模拟同样基于模糊逻辑理论,充分考虑水深、温度、盐度、水动力、沉积物输入等多种控制因素,是碳酸盐岩模拟中相对灵活且高效的模拟方法(图7)。

  • 基于模糊逻辑理论的模拟操作简单、速度快,但 “模糊规则”的定义对于操作者的地质知识与经验有较高要求。该方法是利用定性规则解决实际地质问题的有效手段,在油气勘探预测领域也有成功的应用。5种模拟理论方法优缺点对比及代表模拟软件介绍详见表1。

  • 表1 5种模拟理论方法优缺点及代表模拟软件

  • Table1 Advantages, disadvantages and representative software of five simulation theories

  • 4 沉积数值模拟的应用现状及优势

  • 近年来,沉积数值模拟在地学领域的应用愈发广泛,下面总结了其在层序地层学、沉积过程及沉积机理、“源-汇”系统和油气地质学4个研究方向的应用现状及优势。

  • 4.1 层序地层学研究

  • 层序地层具有形成过程的复杂性和控制因素的多样性、不确定性,而传统层序地层学主要基于岩芯、露头、测井、地震资料和已有概念模型对地层进行分析,但概念模型在实际使用上存在如下问题:① 模型本身具有推测性,难以反映真实地层发育过程的复杂性;② 层序概念模型过分强调了可容纳空间变化的影响,而简化或忽略了其他同等重要的控制因素如沉积物供应变化、构造活动、古地貌等;③ 地质过程本身存在复杂性;④ 概念模型一直停留在定性描述阶段而无法将诸多控制参数定量化。

  • 沉积数值模拟中的地层正演模拟(SFM)能很好地弥补概念模型的上述缺陷,可同时定量探究影响层序发育的多种内因和外因共同作用,考虑沉积层序控制因素的多样性,开展控制因素影响其结果的敏感性分析,并且可将准层序组叠加样式、体系域演化过程等通过沉积数值模拟模型直观展现出来,提高层序模型的可靠性和预测性。

  • 图7 SEDSIM中内嵌的基于模糊逻辑理论的碳酸盐岩沉积模拟(据刘建良等,2021

  • Fig.7 Carbonate sedimentary simulation based on fuzzy logic theory embedded in SEDSIM (after Liu et al., 2021)

  • (a)—包含4种类型的碳酸盐岩三维岩相模拟结果;(b)—盆地西-东向二维岩相模拟结果;(c)—盆地西-东向二维古水深模拟结果

  • (a) —SEDSIM model showing spatial distribution of four types of carbonate lithofacies; (b) —W-E cross section of model results showing carbonate facies types; (c) —cross section showing palaeo-water depths

  • 4.2 沉积过程及沉积机理分析

  • 传统沉积学研究主要依靠野外实测、地下钻探和物理模拟,侧重于沉积现象的描述、表征以及由沉积结果定性反推沉积过程,而在沉积动力学机制等沉积作用机理研究方面略显薄弱。物理模拟虽然能弥补传统方法的一些不足,也能与数值模拟相辅相成,但主要应用于小范围、短时间的沉积搬运过程,难以与长时间跨度,盆地范围尺度相匹配,且物理模拟过程中难以人为控制多种复杂参数,整个过程很难复制,局限性较为明显。而沉积数值模拟能克服时空尺度匹配问题,具有操作可重复性,可有效捕捉实际观测中难以观测到的沉积过程,方便分析控制方程中诸多参数的控制作用,深化对不同沉积过程及沉积机理的认识和理解。

  • 目前通过沉积数值模拟已开展了针对三角洲、辫状河等外部形态及内部沉积结构发育演化的机理研究。此外,随着深水重力流沉积在油气勘探领域日益成为热点,重力流也逐渐成为沉积数值模拟的重要研究对象(王星星等,2018;杨茜等,2022)。在浊流数值模拟方法上,已从基于深度平均简化(depth-averaged)的Navier-Stokes方程发展到直接数值模拟(DNS)、大涡模拟(LES)、基于雷诺平均(Reynold-Averaged)的Navier-Stokes方程等多方法综合运用。目前重力流沉积数值模拟主要应用体现在:① 低密度浊流流动规律及主控因素分析;② 重力流与沉积地貌的相互作用;③ 重力流沉积模式的建立等方面。

  • 4.3 “源-汇”系统研究

  • 为了系统地揭示沉积盆地在地质历史中的演化规律,自20世纪70年代起,开始有关沉积盆地从“源”到“汇”的研究。传统沉积学方法通常立足于分散、小尺度的局部研究,综合推测整个“源-汇”系统的情况。而利用盆地尺度的地层正演模拟(如借助Dionisos,SEDSIM软件平台等),则可不受时空尺度限制,将“源-汇”系统中从剥蚀、搬运到沉积的所有沉积环境以及整个沉积动力学过程作为整体考虑,关注 “源-汇”系统内部或者系统之间的相互作用(Hawie et al.,2017; Harris et al.,2020),定量再现“源-汇”系统中一系列复杂的沉积演化过程,直观地显示“源-汇”系统中各沉积要素在地质历史过程中的变化。除此之外,沉积模拟还可用于“源-汇”系统中区域性沉积大事件的成因分析(Csato et al.,2013)。而对于国内更为复杂的陆相湖盆,同样可以通过沉积数值模拟,从“源-汇”系统角度,来探究沉积物在湖盆中的分布规律,提高储层及烃源岩预测的成功率。

  • 4.4 油气地质学研究

  • 沉积数值模拟在油气地质学特别是储层和烃源岩研究中有着重要的应用。基于目标的储层地质建模是进行储层分布及属性参数预测较为实用的方法之一,但该方法很大程度上依赖于井点控制和地震约束,对于少井或井资料品质不高的地区,建模难度和模型不确定性会显著增加。而基于过程的沉积数值模拟不仅能克服对于井点信息的过渡依赖,其模拟结果还可作为储层地质建模的约束条件(如作为训练图像)(Madhoo et al.,2016; Yin et al.,2017),弥补了单纯利用地质统计学进行井间预测不确定性较大的问题,提高储层预测的准确性、可靠性。除此之外,目前,Dionisos中还加入了有机质沉积与保存部分,能对烃源岩分布进行研究(Bruneau et al.,2017),进一步拓宽了沉积数值模拟在石油地质领域中的应用,助推非常规油气地质学的发展。

  • 虽然沉积数值模拟结果同样存在不确定性,但其不确定性因素可被定量化分析研究:如基于沉积数值模拟结果制作的“储层条件频率图”(Burgess et al.,2006;Tetzlaff etal.,2014;Gervais et al.,2018)(“conditional frequency map”或者“reservoir preference probability map”),可优化模型对储层“甜点”分布的预测功能。

  • 地层正演模拟软件如SEDSIM、GPM、Dionisos能涵盖从盆地尺度到油藏尺度的模拟,而在油藏尺度模拟结果的垂向分辨率能比地震资料高10倍左右(Huang et al.,2016)。因此,借助数值模拟,还可开展储层非均质性研究,对地下储层沉积相、渗透层和隔夹层的空间展布以及储层连通性都能进行有效预测(黄秀等,2015Bruneau et al.,2017Alsalmi et al.,2019)。

  • 5 研究实例

  • 经过多年来的研究与探索,以东营凹陷北部陡坡带古近系沙河街组沙四上亚段L563和T764区块为例,阐述断陷湖盆陡坡带断层控制背景下的两种不同水下重力流沉积数值模拟研究成果。由于研究区目的层埋深较大导致地震和测井资料质量较差,且井点资料有限,基于传统方法刻画目的层水下重力流沉积空间展布特征难度较大。本实例是在传统地下地质资料分析的基础上,借助沉积数值模拟技术,通过定性认识和定量模拟相结合,开展多维度分析,探究了陡坡带断控背景下两种水下重力沉积的特征及差异,证明了沉积数值模拟不仅在海相地层而且在陆相沉积学研究中也具有有效性与特色优势。

  • 研究区位于渤海湾盆地东营凹陷北部陡坡带,其中L563区块位于北部陡坡带西段,北接陈家庄凸起,西邻滨县凸起,沙四段上亚段沉积时期,来自北面陈家庄凸起的物源经“坨-胜-永断裂带”近源堆积于边界断层斜坡及上升盘(“一台阶”),沉积物岩性普遍偏粗,以砾岩、含砾砂岩、中—粗砂岩为主,指示近源搬运特征,为近岸水下扇沉积;T764区块位于北部陡坡带东段,来自北面陈家庄凸起的物源,经过陈南断层和胜北断层,沉积于胜北断层上升盘(“二台阶”),与L563区块相比沉积物岩性相对较细,砾石含量减少,岩性主要是大套暗色泥岩中夹有砂岩和砂砾岩,指示远源搬运特征,为远源深水浊积扇沉积(陈柄屹等,2019)(图8)。

  • 综合岩芯、测井、地震等资料,恢复了研究区的古地貌、湖平面变化曲线、构造沉降量、古物源区位置、沉积物粒度组成、沉积物供应速率以及搬运系数和水动力条件等,利用法国石油研究院(IFP)Dionisos软件平台,基于非线性斜坡-水流驱动“扩散模型”,同时考虑代表稳定斜坡、水流搬运的“长期低能搬运过程”与代表事件性沉积的“短期高能搬运过程”,分别建立了东营凹陷沙四上亚段L563区块近岸水下扇和T764区块远源深水浊积扇沉积数值模型,扇体模型的垂向剖面叠置特征与平面展布特征分别与地震剖面和基于地震振幅切片、测井相标定的平面相展布特征有良好的吻合关系(图9、12)。

  • 图8 东营凹陷北部陡坡带地区基本地质概况图

  • Fig.8 Geological background of northern steep slope area of Dongying depression

  • (a)—研究区位置图;(b)—过T764区块地震剖面;(c)—过L563区块地震剖面

  • (a) —location of study area; (b) —seismic cross section intersect T764 area; (c) —seismic cross section intersect L563 area

  • 5.1 L563区块近岸水下扇模拟结果

  • 该地区扇体垂向上以退积样式叠加,剖面上可观察到“砂多泥少”的特征,从扇根至扇端沉积厚度显示出由薄到厚再变薄的特点(图9);平面上具有明显的扇体形态,主水道在扇根位置下切明显,向前逐渐过渡成典型的扇中辫状水道,到扇端形成薄层粒度较细的砂泥互层沉积。通过分别显示砾质和砂质沉积物分布,可以看出不同粒度沉积物在扇体中分布情况,其中砾质主要分布于主水道和辫状水道上游,砂质主要分布于辫状水道下游,而水道间以及扇端沉积物粒度更细(图10)。在垂向上,近岸水下扇不同期次扇体还展现出明显的补偿叠加(Compensational-stacking)特征(图11),造成了辫状水道的侧向摆动与迁移,但是扇主体位置未发生明显位移。

  • 5.2 T764区块远源深湖浊积扇模拟结果

  • 垂向上扇体呈现退积特征,剖面中可看出浊积扇体发育于大套的深湖泥岩之间,呈现“泥多砂少”的特征(图12);平面形态比近岸水下扇更为分散,不同扇体横向部分互相连接;主水道延伸距离短,向前过渡为扇中朵叶体,辫状水道不发育,继续向前则会出现断续分布的远端朵叶体。通过砾质和砂质沉积物分布可看出,与L563区块相比,砾质沉积明显减少且分布紧靠断层斜坡,主要沉积于主水道。砂质主要沉积于扇中朵叶体和远端朵叶体。深湖浊积扇在平面上表现出较强的侧向摆动能力,从模拟结果中能观察到不同扇体在不同时期的合并与分离(图13)。

  • 5.3 模拟结果对比与讨论

  • 模拟结果很好地展现了断陷湖盆陡坡带近源和远源2种构造背景下湖相重力流沉积特征差异:二者除了由于搬运距离远近造成了沉积物粒度差别之外,在水道发育特征和扇体侧向摆动能力上也表现出明显的差异。

  • 通过对L563区块近岸水下扇和T764区块远源浊积扇沉积数值模拟结果分析,对两种扇体水道发育特征差异的解释如下:① 通过单位步长模拟的地貌特征分析可看出近岸水下扇在单期次重力流沉积后,沉积地貌高低起伏更大,有利于在地势低洼处形成“限制型”水道,并逐渐形成辫状水道(图14a~c),而远源浊积扇在单次重力流沉积后仍保持较为平缓的地形起伏,因此沉积物主要形成“开阔型”朵叶体(图14 d~f);② 造成两者地貌起伏差异的原因还可能是由于粗粒沉积物“休止角”大(发生堆积的最大角度),故容易沉积形成较大地形起伏,而较细颗粒沉积物则情况相反;③ 此外,近物源水流强度大,沉积物粒度相对较粗,重力流密度较大,更容易侵蚀下伏地层形成辫状水道,而远物源水流强度减弱,沉积物粒度变细,重力流密度变低,对下伏地层侵蚀能力减弱,不利于辫状水道形成。

  • 图9 东营凹陷L563区块近岸水下扇模拟结果与地震资料对比

  • Fig.9 Comparison between model result and seismic data of nearshore subaqueous fan deposition of L563 area in Dongying depression

  • (a)—过L563区块地震剖面;(b)—L563区块沙四段上亚段振幅属性切片;(c)—模拟结果顺物源剖面图;(d)模拟结果平面图

  • (a) —seismic cross section intersect L563 area; (b) —amplitude slice of lower part of Es4 Member in L563 area; (c) —down-dip cross section of model result; (d) —planar view of model result

  • 图10 东营凹陷L563区块近岸水下扇模拟结果中不同粒度沉积物分布特征

  • Fig.10 Grain size distribution pattern of nearshore subaqueous fan model of L563 areain Dongying depression

  • (a)—44.28 Ma砾质沉积分布图;(b)—44.28 Ma砂质沉积分布图;(c)—44.46 Ma砾质沉积分布图;(d)—44.46 Ma砂质沉积分布图

  • (a) —gravel distribution at 44.28 Ma; (b) —sand distribution at 44.28 Ma; (c) —gravel distribution at 44.46 Ma; (d) —sand distribution at 44.46 Ma

  • 图11 东营凹陷L563区块不同期次近岸水下扇扇体垂向“补偿叠置”特征

  • Fig.11 Compensation alstacking patterns of nearshore subaqueous fans model of L563 area in Dongying depression

  • (a)—L563区块近岸水下扇模型垂物源切片;(b)—不同期次扇体界面垂向叠置

  • (a) —along-strike section of L563 near shore subaqueous fan model; (b) —vertical stacking pattern of contact surfaces from different fan deposition events

  • 造成两者侧向摆动能力差异通过模拟,分析原因可能是:近岸水下扇扇体直接与物源供给点连接,且主水道下切形成古冲沟,限制了主水流的改道,所以即便前端辫状水道摆动频繁,整个扇体位置仍然相对固定。而远源浊积扇由于位于“二台阶”,并不直接与“一台阶”下盘的物源供给点相连,在沉积物搬运经过“一台阶”时,会由于沉积地貌或者水流强度的改变而发生侧向改道,进一步造成直接受其供给的“二台阶”扇体的位置随之改变(图13)。

  • 该实例通过沉积数值模拟与传统方法相结合,优势互补,实现了对断陷湖盆陡坡带两种不同构造背景下的水下重力流沉积展布规律、演化特征以及沉积机制的多维度分析,直观再现了沉积物时空演化过程,弥补传统沉积学研究的不足,显示其在沉积学研究中的独特的优势。

  • 6 展望

  • 在综合调研国内外研究现状基础上,结合实际研究工作,展望了以下4个沉积数值模拟发展方向:

  • (1)探索不同沉积机制的数值模拟新方法:目前针对不同沉积类型如牵引流、重力流,碎屑岩、碳酸盐岩的沉积数值模拟,由于受限于不同沉积机制研究深入程度和模拟软件限制,多数模型是得到一种简化和平均化的模拟结果,而难以做到对诸多沉积要素以及沉积特征的准确刻画。DNS模拟虽然无需简化Navier-Stokes方程,但也仅限于实验室小尺度浊流模拟,且难以考虑实际沉积环境中古地形的影响以及其他流体的作用。因此,深入开展牵引流、重力流,碎屑岩、碳酸盐岩等不同沉积机制下的沉积机理研究,在此基础上优化相应数学表达与求解方法(如将自适应网格引入浊流数值模拟),探索数值模拟新方法,来平衡计算时间与模拟精确度的关系,使在可接受的计算时间内,得到的模拟结果能最大程度与实际沉积过程与沉积结果相吻合,提高数值模拟的可靠性。

  • (2)多地质过程耦合数值模拟与地质建模一体化:沉积数值模拟只考虑沉积物的搬运沉积过程,但沉积物在经历地质历史时期后所呈现的最终状态及内部性质是多种地质过程共同作用的结果,如成岩改造作用、构造作用等。特别对于油气勘探开发来讲,成岩作用以及构造裂缝对储层性质的改造不可忽视。因此,将沉积、成岩、构造等不同内涵,不同成因机制的地质过程数值模拟相耦合,对于还原地下真实储层性质有重要的意义。在此基础上,充分利用地质过程数值模拟提供的多维信息,开展基于沉积成因的地质建模研究,实现基于沉积、成岩、构造综合成因的地质建模与数值模拟一体化研究,以期最大限度降低地质模型的不确定性,提高对油气储层评价及预测的准确性。

  • 图12 东营凹陷T764区块远源浊积扇模拟结果与地震资料对比

  • Fig.12 Comparison between model result and seismic data of distal turbidity fan deposition of T764 areain Dongying depression

  • (a)—过T764区块地震剖面;(b)—T764区块纯下次亚段振幅属性切片;(c)—模拟结果顺物源剖面图;(d)—模拟结果平面图

  • (a) —seismic cross section intersect T764 area; (b) —amplitude slice of lower part of Es4 Member in T764 area; (c) —down-dip cross section of model result; (d) —planar view of model result

  • 图13 东营凹陷T764区块远源浊积扇模拟结果中不同粒度沉积物分布特征

  • Fig.13 Grain size distribution pattern of distal turbidity fan model of T764 area in Dongying depression

  • (a)—44.3 Ma砾质沉积分布图;(b)—44.3 Ma砂质沉积分布图;(c)—44.8 Ma砾质沉积分布图;(d)—44.8 Ma砂质沉积分布图

  • (a) —gravel distribution at 44.3 Ma; (b) —sand distribution at 44.3 Ma; (c) —gravel distribution at 44.8 Ma; (d) —sand distribution at 44.8 Ma

  • 图14 东营凹陷近岸水下扇与远源浊积扇在单位时间步长内模拟地形及沉积微相差异

  • Fig.14 Difference in microfacies and variation in topography patterns after one model time-step between nearshore subaqueous fan and distal turbidity fan in Dongying depression

  • (a)—L563区块近岸水下扇模拟平面图;(b)—L563区块近岸水下扇单位模拟步长的古地貌变化;(c)—L563区块近岸水下扇沉积相模式图;(d)—T764区块远源浊积扇模拟平面图;(e)—T764区块远源浊积扇单位模拟步长的古地貌变化;(f)—T764区块远源浊积扇沉积相模式图

  • (a) —planar view of L563 nearshore subaqueous fan model; (b) —topographic relief of nearshore subaqueous fan model after one model time-step; (c) —schematic sedimentary facies model of nearshore subaqueous fan; (d) —planar view of T764 distal turbidity fan model; (e) —topographic relief of distal turbidity fan model after one model time-step; (f) —schematic sedimentary facies model of distal turbidity fan

  • (3)基于人工智能驱动的沉积反演数值模拟:近年来兴起的人工智能技术,在地学众多分支领域逐渐发挥出明显优势(Bergen et al.,2019)。如何将大数据、人工智能技术应用到沉积反演数值模拟中,例如充分利用现代沉积、野外露头资料以及已有的研究成果,建立沉积数据库和知识库,利用机器学习方法深度挖掘沉积结果与沉积过程的内在关系,最终实现沉积数值模拟的智能化,这是未来沉积数值模拟的发展方向。

  • (4)在非常规油气资源勘探开发中深入应用:非常规油气资源正逐渐成为油气勘探开发的接替领域,如何更加准确的揭示地下非常规储层演化规律及成因机制,对于非常规油气资源勘探开发具有重要的意义。目前Dionisos软件最新版本已经嵌入有机质沉积模拟模块,说明与生油岩以及泥页岩相关的沉积数值模拟在油气勘探中也受到越来越多的关注。此外,利用沉积数值模拟探究细粒沉积物与沉积事件之间的成因关系及耦合作用,也是非常规油气储层成因机制与勘探开发中十分具有重要价值的研究方向。

  • 致谢:感谢审稿专家对文章提出的宝贵建议,同时感谢法国石油研究院(IFP Beicip-Franlab)为本文提供的Dionisos Openflow模拟软件平台支持。

  • 参考文献

    • Alsalmi M, John C M, Hawie N. 2019. Quantitative controls on the regional geometries and heterogeneities of the Rayda to Shu'aiba formations (Northern Oman) using forward stratigraphic modelling. Marine and Petroleum Geology, 99: 45~60.

    • Balazs A, Granjeon D, Matenco L, Sztano O, Cloetingh S. 2017. Tectonic and climatic controls on asymmetric half-graben sedimentation: Inferences from 3-d numerical modeling. Tectonics, 36(9-10): 2123~2141.

    • Begin Z B. 1988. Application of a diffusion-erosion model to alluvial channels which degrade due to base-level lowering. Earth Surface Processes and Landforms, 13(6): 487~500.

    • Bergen K J, Johnson P A, De Hoop M D, Beroza G C. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433): 1299~1309.

    • Bitzer K, Harbaugh J W. 1987. DEPOSIM: A Macintosh computer model for two-dimensional simulation of transport, deposition, erosion, and compaction of clastic sediments. Computers & Geosciences, 13(6): 611~637.

    • Bruneau B, Chauveau B, Baudin F, Moretti I. 2017. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities. Marine and Petroleum Geology, 82: 1~20.

    • Burgess P M, Emery D J. 2004. Sensitive dependence, divergence and unpredictable behaviour in a stratigraphic forward model of a carbonate system. Geological Society, London, Special Publications, 239(1): 77~94.

    • Burgess P M, Lammers H, Van Oosterhout C, Granjeon D. 2006. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12): 1883~1901.

    • Burgess P M, Steel R J, Granjeon D. 2008. Stratigraphic forward modeling of basin-margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf-edge deltas. SEPM Special Publications, 35~45.

    • Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. Regional Geology & Tectonics Principles of Geologic Analysis, 378~404.

    • Burgess, P M. 2013. CarboCAT: A cellular automata model of heterogeneous carbonate strata. Computers & Geoscience, 53: 129~140.

    • Burgess P M, Masiero I, Toby S C, Duller R A. 2019. A big fan of signals? Exploring autogenic and allogenic process and product in a numerical stratigraphic forward model of submarine-fan development. Journal of Sedimentary Research, 89(1): 1~12.

    • Busson J, Joseph P, Mulder T, Teles V, Borgomano J, Granjeon D, Betzler C, Poli E, Wunsch M. 2019. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: Controls and dynamic of the progradation. Sedimentary Geology, 379: 77~96.

    • Chen Bingyi, Lin Chengyan, Ma Cunfei, Ren Lihua, Wang Jun, Li Zhipeng. 2019. Types, characteristics and sedimentary model of deep-water gravity flow deposition in the steep slope zone of terrestrial faulted lacustrine basin: A case study of the Es4s submember in the Shengtuo area of Dongying depression. Acta Geologica Sinica, 93(11): 2921~2933 (in Chinese with English abstract).

    • Csato I, Granjeon D, Catuneanu O, Baum G R. 2013. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary. Basin Research, 25(2): 121~148.

    • Csato I, Catuneanu O, Granjeon D. 2014. Millennial-scale sequence stratigraphy: numerical simulation with Dionisos. Journal of Sedimentary Research, 84(5): 394~406.

    • Culling W E. 1960. Analytical theory of erosion. The Journal of Geology, 68(3): 336~344.

    • Duan Taizhong. 2017. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling. Petroleum Science, 14(3): 484~492.

    • Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).

    • Fuhrmann. A, Kane I A, Clare M A, Ferguson R A, Schomacker E, Bonamini E, Contreras F A. 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale mode. Geology, 48(6), 562~568.

    • Gervais V, Ducros M, Granjeon D. 2018. Probability maps of reservoir presence and sensitivity analysis in stratigraphic forward modeling. AAPG Bulletin, 102(4): 613~628.

    • Granjeon D, Joseph P. 1999. Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. Tulsa: SEPM Special Publication, 62: 197~210.

    • Granjeon D. 2014. 3D forward modelling of theimpact of sediment transport and base level cycles on continental margins and incised valleys. International Association of Sedimentolology. Special Publication, John Wiley & Sons, Ltd, 46: 453~472.

    • Gregorio D S, Kongo R, Siciliano C, Sorrisovalvo M, Spataro W. 1999. Mount ontake landslide simulation by the Cellular Automata model SCIDDICA-3. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(2): 131~137.

    • Griffiths C M, Dyt C, Paraschivoiu E, Liu Keyu. 2001. SEDSIM in Hydrocarbon Exploration. New York: Kluwer Academic: 71~97.

    • Grigoryev Y N, Vshykov V A, Fedoruk M P. 2002. Numerical Particle-in-cell Methods: Theory and Applications. Berlin: De Gruyter.

    • Gu Xiaozhong, Ma Liqiao. 1993. Numerical simulation of a delta depositional system and its application. Acta Petrolei Sinica, 14(2): 1~11 (in Chinese with English abstract).

    • Harris A D, Covault J A, Baumgardner S, Sun Tao, Granjeon D. 2020. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: Sea-level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111: 807~814.

    • Hawie N, Deschamps R, Granjeon D, Nader F H, Gorini C, Carla M, Montadert L, Baudin F. 2017. Multi-scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the Levant region. Basin Research, (28): 418~445.

    • Hawie N, Covault J A, Sylvester Z. 2019. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models. Frontiers in Earth Science, 7: 334.

    • Huang Xiu. 2012. A multi-scale analysis of microbialite facies of Shark Bay, West Australia, with numerical forward modeling. Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Huang Xiu, Liu Keyu, Wu Songtao, Du Jiali. 2015. Quantitative analysis of sedimentary heterogeneities. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 61~69 (in Chinese with English abstract).

    • Huang Xiu, Griffiths C M, Liu J. 2016. Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62(8): 903~919.

    • Hutton E. W H, Syvitski J P M. 2008. Sedflux 2. 0: An advanced process-response model that generates three-dimensional stratigraphy. Computers & Geosciences, 34(10): 1319~1337.

    • Jia Zhenzhen. 2016. Study on fan delta reservoir architecture and numerical simulation. Doctor degree thesis of China University of Petroleum (East China)(in Chinese with English abstract).

    • Lanteaume C, Fournier F, Pellerin M, Borgomano J. 2018. Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling. Leading Edge, 37(9): 672~680.

    • Lesser G, Roelvink J A, Van Kester J A, Stelling G. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8): 883~915.

    • Liu Keyu, Liang T, Paterson L, Kendall C. 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sedimentary Geology, 122(1-4): 181~191.

    • Liu Jianliang, Liu Keyu. 2021. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Scientia Sinica (Terrae), 51(1): 150~158 (in Chinese with English abstract).

    • Madhoo H A, Acevedo A, Tetzlaff D, Tveiten J. 2016. Combining forward stratigraphic modelling with seismic reconstruction to improve reservoir characterization. Second Conference on Forward Modelling of Sedimentary Systems. Trondheim, Norway.

    • Masalimova U L, Lowe R D, Sharman R G. 2016. Outcrop characterization of a submarine channel-lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand. Marine & Petroleum Geology, 71: 360~390.

    • Nordlund U. 1999. FUZZIM: Forward stratigraphic modeling made simple. Computers & Geosciences, 25(4): 449~456.

    • Ravestein J J, Griffiths C M, Dyt C P, Michael K. 2015. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2. Terra Nova, 27(5): 346~355.

    • Schuurman F, Kleinhans M G, Middelkoop H. 2016. Network response to disturbances in large sand-bed braided rivers. Earth Surface Dynamics, 4(1): 25~45.

    • Schwarzacher W. 1966. Sedimentation in a subsiding basin. Nature, (5043): 1349~1350.

    • Sloss L L. 1962. Stratigraphic models in exploration. Journal of Sedimentary Petrology, (32): 415~422.

    • Strobel J, Cannon R, Christopher G, Kendall C S, Biswas G, Bezdek J. 1989. Interactive (SEDPAK) simulation of clastic and carbonate sediments in shelf to basin settings. Computers & Geosciences, 15(8): 1279~1290.

    • Teles V, Benoît C, Joseph P, Weill P, Maktouf F. 2016. CATS: A process-based model for turbulent turbidite systems at the reservoir scale. Comptes Rendus, 348(7): 489~498.

    • Tetzlaff D M, Harbaugh J W. 1989. Simulating Clastic Sedimentation. Computer Methods in the Geosciences. New York: Van Nostrand Reinhold.

    • Tetzlaff D, Tveiten J, Salomonsen P. 2014. Geologic Process Modeling. IX Conference of Hydrocarbon Exploration & Development.

    • Wang Xingxing, Wang Yingmin, Gao Shengmei, Mao Peixiao, Zhou Jiawei. 2018. Advancements of the deep-water gravity flow simulations and their implications for exploitation of marine petroleum. Journal of China University of Mining and Technology, 222(3): 133~147 (in Chinese with English abstract).

    • Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information. 35(1): 44~52 (in Chinese with English abstract).

    • Willgoose G, Bras R L, Rodrigueziturbe I. 1991. A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27(7): 1671~1684.

    • Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).

    • Yeste L M, Henares S, Mcdougall N. 2018. Towards the multi-scale characterization of braided fluvial geobodies from outcrop, core, ground-penetrating radar and well log data. Geological Society London Special Publications, 488.

    • Yin Xiangdong, Lu Shuangfang, Wang Pengfei, Wang Qiming, Wang Wei, Yao Tongyun. 2017. A three-dimensional high-resolution reservoir model of the Eocene Shahejie Formation in Bohai Bay Basin, integrating stratigraphic forward modeling and geostatistics. Marine & Petroleum Geology, 82: 362~370.

    • Young A, Carson M A, Kirkby M J. 1973. Hillslope Form and Process. Geographical Journal, 139(1): 140.

    • Zhang Chunsheng. 2003. Depositional Simulation Technology of Clastic Rock. Beijing: Petroleum Industry Press, 23~40 (in Chinese with English abstract).

    • Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018. Discussion on evolution of bar in sandy braided river: Insights from sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~89 (in Chinese with English abstract).

    • Zhang Wenbiao, Duan Taizhong, Liu Yanfeng, Wang Mingchuan, Lian Peiqing, Zhao Lei. 2019. Application status and development trend of quantitative geological modeling. Geological Science and Technology Information, 38(3): 270~281 (in Chinese with English abstract).

    • Zhu Hongtao, Li U Keyu, Du Yuansheng, He Sheng. 2007. Progress and developing tendency of sequence stratigraphy simulation. Geological Science and Technology Information, 26(5): 27~34 (in Chinese with English abstract).

    • Zhu Hongtao, Liu Keyu, Du Yuansheng, Li Min, Wang Jili. 2009. Quantitative simulation and new consideration on the transformation system of the accommodation space. Earth Science, 34(5): 819~828 (in Chinese with English abstract).

    • 陈柄屹, 林承焰, 马存飞, 任丽华, 王军, 李志鹏. 2019. 陆相断陷湖盆陡坡带深水重力流沉积类型、特征及模式: 以东营凹陷胜坨地区沙四段上亚段为例. 地质学报, 93(11): 2921~2933.

    • 冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.

    • 顾晓忠, 马立桥. 1993. 三角洲沉积体系的数值模拟及其应用. 石油学报, 14(2): 1~11.

    • 黄秀. 2012. 澳大利亚鲨鱼湾微生物席沉积相多尺度正演模拟研究. 北京: 中国地质大学(北京)博士学位论文.

    • 黄秀, 刘可禹, 吴松涛, 桂丽黎. 2015. 沉积体系非均质性对致密油气储集层控制及其定量评价方法. 矿物岩石地球化学通报, 34(1): 61~69.

    • 贾珍臻. 2016. 扇三角洲储层构型及数值模拟研究. 青岛: 中国石油大学(华东)博士学位论文.

    • 刘建良, 刘可禹. 2021. 碳酸盐岩地层完整性分析及其影响因素定量评价: 来自地层正演模拟的启示. 中国科学: 地球科学, 51(1): 150~158.

    • 王星星, 王英民, 高胜美, 毛佩筱, 卓海腾, 王明晗, 周家伟. 2018. 深水重力流模拟研究进展及对海洋油气开发的启示. 中国矿业大学学报, 222(03): 133~147.

    • 王杨君, 尹太举, 邓智浩, 程钊. 2022. 水动力数值模拟的河控三角洲分支河道演化研究. 2016. 地质科技情报. 35(1): 44~52.

    • 杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.

    • 张春生. 2003. 碎屑岩沉积模拟技术. 北京: 石油工业出版社, 23~40.

    • 张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示简. 沉积学报, 36(1): 81~89.

    • 张文彪, 段太忠, 刘彦锋, 王鸣川, 廉培庆, 赵磊. 2019. 定量地质建模技术应用现状与发展趋势. 地质科技情报, 38(03): 270~281.

    • 朱红涛, 刘可禹, 杜远生, 何生. 2007. 层序地层学模拟研究进展及趋势. 地质科技情报, 26(5): 27~34.

    • 朱红涛, 刘可禹, 杜远生, 李敏, 王继立. 2009. 可容纳空间转换系统的定量模拟. 地球科学(中国地质大学学报), 34(5): 820~827.

  • 参考文献

    • Alsalmi M, John C M, Hawie N. 2019. Quantitative controls on the regional geometries and heterogeneities of the Rayda to Shu'aiba formations (Northern Oman) using forward stratigraphic modelling. Marine and Petroleum Geology, 99: 45~60.

    • Balazs A, Granjeon D, Matenco L, Sztano O, Cloetingh S. 2017. Tectonic and climatic controls on asymmetric half-graben sedimentation: Inferences from 3-d numerical modeling. Tectonics, 36(9-10): 2123~2141.

    • Begin Z B. 1988. Application of a diffusion-erosion model to alluvial channels which degrade due to base-level lowering. Earth Surface Processes and Landforms, 13(6): 487~500.

    • Bergen K J, Johnson P A, De Hoop M D, Beroza G C. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433): 1299~1309.

    • Bitzer K, Harbaugh J W. 1987. DEPOSIM: A Macintosh computer model for two-dimensional simulation of transport, deposition, erosion, and compaction of clastic sediments. Computers & Geosciences, 13(6): 611~637.

    • Bruneau B, Chauveau B, Baudin F, Moretti I. 2017. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities. Marine and Petroleum Geology, 82: 1~20.

    • Burgess P M, Emery D J. 2004. Sensitive dependence, divergence and unpredictable behaviour in a stratigraphic forward model of a carbonate system. Geological Society, London, Special Publications, 239(1): 77~94.

    • Burgess P M, Lammers H, Van Oosterhout C, Granjeon D. 2006. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12): 1883~1901.

    • Burgess P M, Steel R J, Granjeon D. 2008. Stratigraphic forward modeling of basin-margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf-edge deltas. SEPM Special Publications, 35~45.

    • Burgess P M. 2012. A brief review of developments in stratigraphic forward modelling, 2000—2009. Regional Geology & Tectonics Principles of Geologic Analysis, 378~404.

    • Burgess, P M. 2013. CarboCAT: A cellular automata model of heterogeneous carbonate strata. Computers & Geoscience, 53: 129~140.

    • Burgess P M, Masiero I, Toby S C, Duller R A. 2019. A big fan of signals? Exploring autogenic and allogenic process and product in a numerical stratigraphic forward model of submarine-fan development. Journal of Sedimentary Research, 89(1): 1~12.

    • Busson J, Joseph P, Mulder T, Teles V, Borgomano J, Granjeon D, Betzler C, Poli E, Wunsch M. 2019. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: Controls and dynamic of the progradation. Sedimentary Geology, 379: 77~96.

    • Chen Bingyi, Lin Chengyan, Ma Cunfei, Ren Lihua, Wang Jun, Li Zhipeng. 2019. Types, characteristics and sedimentary model of deep-water gravity flow deposition in the steep slope zone of terrestrial faulted lacustrine basin: A case study of the Es4s submember in the Shengtuo area of Dongying depression. Acta Geologica Sinica, 93(11): 2921~2933 (in Chinese with English abstract).

    • Csato I, Granjeon D, Catuneanu O, Baum G R. 2013. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary. Basin Research, 25(2): 121~148.

    • Csato I, Catuneanu O, Granjeon D. 2014. Millennial-scale sequence stratigraphy: numerical simulation with Dionisos. Journal of Sedimentary Research, 84(5): 394~406.

    • Culling W E. 1960. Analytical theory of erosion. The Journal of Geology, 68(3): 336~344.

    • Duan Taizhong. 2017. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling. Petroleum Science, 14(3): 484~492.

    • Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).

    • Fuhrmann. A, Kane I A, Clare M A, Ferguson R A, Schomacker E, Bonamini E, Contreras F A. 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale mode. Geology, 48(6), 562~568.

    • Gervais V, Ducros M, Granjeon D. 2018. Probability maps of reservoir presence and sensitivity analysis in stratigraphic forward modeling. AAPG Bulletin, 102(4): 613~628.

    • Granjeon D, Joseph P. 1999. Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. Tulsa: SEPM Special Publication, 62: 197~210.

    • Granjeon D. 2014. 3D forward modelling of theimpact of sediment transport and base level cycles on continental margins and incised valleys. International Association of Sedimentolology. Special Publication, John Wiley & Sons, Ltd, 46: 453~472.

    • Gregorio D S, Kongo R, Siciliano C, Sorrisovalvo M, Spataro W. 1999. Mount ontake landslide simulation by the Cellular Automata model SCIDDICA-3. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(2): 131~137.

    • Griffiths C M, Dyt C, Paraschivoiu E, Liu Keyu. 2001. SEDSIM in Hydrocarbon Exploration. New York: Kluwer Academic: 71~97.

    • Grigoryev Y N, Vshykov V A, Fedoruk M P. 2002. Numerical Particle-in-cell Methods: Theory and Applications. Berlin: De Gruyter.

    • Gu Xiaozhong, Ma Liqiao. 1993. Numerical simulation of a delta depositional system and its application. Acta Petrolei Sinica, 14(2): 1~11 (in Chinese with English abstract).

    • Harris A D, Covault J A, Baumgardner S, Sun Tao, Granjeon D. 2020. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: Sea-level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111: 807~814.

    • Hawie N, Deschamps R, Granjeon D, Nader F H, Gorini C, Carla M, Montadert L, Baudin F. 2017. Multi-scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the Levant region. Basin Research, (28): 418~445.

    • Hawie N, Covault J A, Sylvester Z. 2019. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models. Frontiers in Earth Science, 7: 334.

    • Huang Xiu. 2012. A multi-scale analysis of microbialite facies of Shark Bay, West Australia, with numerical forward modeling. Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Huang Xiu, Liu Keyu, Wu Songtao, Du Jiali. 2015. Quantitative analysis of sedimentary heterogeneities. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 61~69 (in Chinese with English abstract).

    • Huang Xiu, Griffiths C M, Liu J. 2016. Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62(8): 903~919.

    • Hutton E. W H, Syvitski J P M. 2008. Sedflux 2. 0: An advanced process-response model that generates three-dimensional stratigraphy. Computers & Geosciences, 34(10): 1319~1337.

    • Jia Zhenzhen. 2016. Study on fan delta reservoir architecture and numerical simulation. Doctor degree thesis of China University of Petroleum (East China)(in Chinese with English abstract).

    • Lanteaume C, Fournier F, Pellerin M, Borgomano J. 2018. Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling. Leading Edge, 37(9): 672~680.

    • Lesser G, Roelvink J A, Van Kester J A, Stelling G. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8): 883~915.

    • Liu Keyu, Liang T, Paterson L, Kendall C. 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sedimentary Geology, 122(1-4): 181~191.

    • Liu Jianliang, Liu Keyu. 2021. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Scientia Sinica (Terrae), 51(1): 150~158 (in Chinese with English abstract).

    • Madhoo H A, Acevedo A, Tetzlaff D, Tveiten J. 2016. Combining forward stratigraphic modelling with seismic reconstruction to improve reservoir characterization. Second Conference on Forward Modelling of Sedimentary Systems. Trondheim, Norway.

    • Masalimova U L, Lowe R D, Sharman R G. 2016. Outcrop characterization of a submarine channel-lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand. Marine & Petroleum Geology, 71: 360~390.

    • Nordlund U. 1999. FUZZIM: Forward stratigraphic modeling made simple. Computers & Geosciences, 25(4): 449~456.

    • Ravestein J J, Griffiths C M, Dyt C P, Michael K. 2015. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2. Terra Nova, 27(5): 346~355.

    • Schuurman F, Kleinhans M G, Middelkoop H. 2016. Network response to disturbances in large sand-bed braided rivers. Earth Surface Dynamics, 4(1): 25~45.

    • Schwarzacher W. 1966. Sedimentation in a subsiding basin. Nature, (5043): 1349~1350.

    • Sloss L L. 1962. Stratigraphic models in exploration. Journal of Sedimentary Petrology, (32): 415~422.

    • Strobel J, Cannon R, Christopher G, Kendall C S, Biswas G, Bezdek J. 1989. Interactive (SEDPAK) simulation of clastic and carbonate sediments in shelf to basin settings. Computers & Geosciences, 15(8): 1279~1290.

    • Teles V, Benoît C, Joseph P, Weill P, Maktouf F. 2016. CATS: A process-based model for turbulent turbidite systems at the reservoir scale. Comptes Rendus, 348(7): 489~498.

    • Tetzlaff D M, Harbaugh J W. 1989. Simulating Clastic Sedimentation. Computer Methods in the Geosciences. New York: Van Nostrand Reinhold.

    • Tetzlaff D, Tveiten J, Salomonsen P. 2014. Geologic Process Modeling. IX Conference of Hydrocarbon Exploration & Development.

    • Wang Xingxing, Wang Yingmin, Gao Shengmei, Mao Peixiao, Zhou Jiawei. 2018. Advancements of the deep-water gravity flow simulations and their implications for exploitation of marine petroleum. Journal of China University of Mining and Technology, 222(3): 133~147 (in Chinese with English abstract).

    • Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information. 35(1): 44~52 (in Chinese with English abstract).

    • Willgoose G, Bras R L, Rodrigueziturbe I. 1991. A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27(7): 1671~1684.

    • Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).

    • Yeste L M, Henares S, Mcdougall N. 2018. Towards the multi-scale characterization of braided fluvial geobodies from outcrop, core, ground-penetrating radar and well log data. Geological Society London Special Publications, 488.

    • Yin Xiangdong, Lu Shuangfang, Wang Pengfei, Wang Qiming, Wang Wei, Yao Tongyun. 2017. A three-dimensional high-resolution reservoir model of the Eocene Shahejie Formation in Bohai Bay Basin, integrating stratigraphic forward modeling and geostatistics. Marine & Petroleum Geology, 82: 362~370.

    • Young A, Carson M A, Kirkby M J. 1973. Hillslope Form and Process. Geographical Journal, 139(1): 140.

    • Zhang Chunsheng. 2003. Depositional Simulation Technology of Clastic Rock. Beijing: Petroleum Industry Press, 23~40 (in Chinese with English abstract).

    • Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018. Discussion on evolution of bar in sandy braided river: Insights from sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~89 (in Chinese with English abstract).

    • Zhang Wenbiao, Duan Taizhong, Liu Yanfeng, Wang Mingchuan, Lian Peiqing, Zhao Lei. 2019. Application status and development trend of quantitative geological modeling. Geological Science and Technology Information, 38(3): 270~281 (in Chinese with English abstract).

    • Zhu Hongtao, Li U Keyu, Du Yuansheng, He Sheng. 2007. Progress and developing tendency of sequence stratigraphy simulation. Geological Science and Technology Information, 26(5): 27~34 (in Chinese with English abstract).

    • Zhu Hongtao, Liu Keyu, Du Yuansheng, Li Min, Wang Jili. 2009. Quantitative simulation and new consideration on the transformation system of the accommodation space. Earth Science, 34(5): 819~828 (in Chinese with English abstract).

    • 陈柄屹, 林承焰, 马存飞, 任丽华, 王军, 李志鹏. 2019. 陆相断陷湖盆陡坡带深水重力流沉积类型、特征及模式: 以东营凹陷胜坨地区沙四段上亚段为例. 地质学报, 93(11): 2921~2933.

    • 冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.

    • 顾晓忠, 马立桥. 1993. 三角洲沉积体系的数值模拟及其应用. 石油学报, 14(2): 1~11.

    • 黄秀. 2012. 澳大利亚鲨鱼湾微生物席沉积相多尺度正演模拟研究. 北京: 中国地质大学(北京)博士学位论文.

    • 黄秀, 刘可禹, 吴松涛, 桂丽黎. 2015. 沉积体系非均质性对致密油气储集层控制及其定量评价方法. 矿物岩石地球化学通报, 34(1): 61~69.

    • 贾珍臻. 2016. 扇三角洲储层构型及数值模拟研究. 青岛: 中国石油大学(华东)博士学位论文.

    • 刘建良, 刘可禹. 2021. 碳酸盐岩地层完整性分析及其影响因素定量评价: 来自地层正演模拟的启示. 中国科学: 地球科学, 51(1): 150~158.

    • 王星星, 王英民, 高胜美, 毛佩筱, 卓海腾, 王明晗, 周家伟. 2018. 深水重力流模拟研究进展及对海洋油气开发的启示. 中国矿业大学学报, 222(03): 133~147.

    • 王杨君, 尹太举, 邓智浩, 程钊. 2022. 水动力数值模拟的河控三角洲分支河道演化研究. 2016. 地质科技情报. 35(1): 44~52.

    • 杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.

    • 张春生. 2003. 碎屑岩沉积模拟技术. 北京: 石油工业出版社, 23~40.

    • 张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示简. 沉积学报, 36(1): 81~89.

    • 张文彪, 段太忠, 刘彦锋, 王鸣川, 廉培庆, 赵磊. 2019. 定量地质建模技术应用现状与发展趋势. 地质科技情报, 38(03): 270~281.

    • 朱红涛, 刘可禹, 杜远生, 何生. 2007. 层序地层学模拟研究进展及趋势. 地质科技情报, 26(5): 27~34.

    • 朱红涛, 刘可禹, 杜远生, 李敏, 王继立. 2009. 可容纳空间转换系统的定量模拟. 地球科学(中国地质大学学报), 34(5): 820~827.