-
青藏高原隆升是新生代以来最重要的地质事件之一(Tapponnier et al.,2001; Royden et al.,2008)。高原的隆升不仅巨大地改变了中国地貌,形成西高东低的地形格局(汪品先,1998; Wang,2005; Zheng et al.,2013,2015),还改变了整个亚洲的大气循环系统(An et al.,2001; Guo et al.,2002)和水系格局分布(Clark et al.,2004; Zheng et al.,2013; Yang et al.,2015)。青藏高原东南缘是高原东向扩展的前锋地带,经历了长期的构造地貌演化过程,而区域地形地貌演化是岩石圈构造运动、大气圈以及地表过程联合作用的结果(Willett,1999; 刘静等,2018a)。利用低温热年代学方法量化地表剥蚀过程为深入了解高原边界构造活动或气候变化对地貌演化的影响提供了良好视角(Nie et al.,2018; Wang et al.,2018,2020; Shen et al.,2019; Ge et al.,2020; Zhang et al.,2022)。目前,多数研究表明晚始新世—早中新世和晚中新世以来的快速剥蚀在青藏高原东南缘广泛存在(图1)。然而,该区域早新生代甚至晚白垩世时期的剥蚀演化记录却仅有少数报道(Liu Zeng et al.,2018b; Cao et al.,2021),这阻碍了我们对早期高原边界地表剥蚀过程及构造地貌演化历史的认识。
-
另外,在低温热年代学研究中,通常将地质体的冷却历史直接转换为剥露历史。然而,低温热年代学年龄代表的冷却历史可能不仅仅由地表剥蚀造成,浅层侵入岩的岩浆冷却也会影响低温热年代学年龄的解释。因此,将冷却历史直接转换为剥露历史可能会造成剥蚀速率和剥蚀总量的高估,进而影响我们准确认识地表剥蚀过程及其深部动力学过程的意义。岩体侵位深度的合理估计是有效约束剥蚀总量和解决上述问题的关键。角闪石或黑云母全铝压力计等是估算岩体侵位深度的常用方法(Hammarstron and Zen,1986; Hollister et al.,1987; Johnson and Rutherford,1989; Schmidt,1992; Uchida et al.,2007),然而该方法的有效应用受限于严格的岩石、矿物与地球化学条件(Stein et al.,2001)。因此,如何利用简单有效的方法合理估计岩体的侵位深度成为目前的挑战。
-
图1 青藏高原东南缘构造和地貌简图
-
Fig.1 Simplified tectonic and geomorphic map of the southeastern Tibetan Plateau
-
资料来源:[1]肖萍等, 2015;[2]Ouimet et al.,2010;[3]Shen et al.,2021;[4]Replumaz et al.,2020;[5]Liu-Zeng et al.,2018b;[6]Gourbet et al.,2019; [7]Tian et al.,2014;[8]Zhang et al.,2016;[9]Zhang et al.,2017;[10]Clark et al.,2005 ;[11]Zhu et al.,2021;[12]Deng et al.,2018;[13]Wang et al.,2022;[14]Cao et al.,2021 ;[15]McPhillips et al.,2016;[16]Shen et al.,2016;[17]Cao et al.,2019;[18]Ge et al.,2020 ;[19]Zhang et al.,2022)
-
Reference codes are:[1]Xiao et al.,2015;[2]Ouimet et al.,2010;[3]Shen et al.,2021;[4]Replumaz et al.,2020;[5]Liu-Zeng et al.,2018b;[6]Gourbet et al.,2019; [7]Tian et al.,2014;[8]Zhang et al.,2016;[9]Zhang et al.,2017;[10]Clark et al.,2005;[11]Zhu et al.,2021;[12]Deng et al.,2018;[13]Wang et al.,2022;[14]Cao et al.,2021;[15]McPhillips et al.,2016;[16]Shen et al.,2016;[17]Cao et al.,2019;[18]Ge et al.,2020;[19]Zhang et al.,2022)
-
次林错花岗岩体位于青藏高原东南缘金沙江流域(图2、3),已有的低温热年代学数据覆盖了整个新生代时期(67 Ma至今,Gourbet et al.,2019),可能为探索该区域早新生代时期的剥露演化历史提供了可能。同时,前人研究表明该岩体形成于83~79 Ma左右(Fei et al.,2015; Gourbet et al.,2019),与锆石(U-Th)/He(ZHe)年龄较为接近,QTQt热历史模拟揭示出了一期晚白垩世—早新生代的快速冷却事件(Gourbet et al.,2019)。然而,Gourbet et al.(2019)对该期冷却事件的解释简单归因于岩浆冷却,缺乏定量研究。因此,为解决上述问题,本研究提出了约束岩体最小侵位深度的新方法:综合利用锆石饱和温度计(Watson and Harrison,1983; Miller et al.,2003; Boehnke et al.,2013)、一维岩浆冷却模拟(Ehlers,2005; Ehlers et al.,2005)并结合已有的锆石U-Pb与低温热年代学数据(Fei et al.,2015; Gourbet et al.,2019),合理估计岩浆侵位时的最小围岩温度及深度。该方法的应用有效约束了次林错岩体的最小侵入深度和晚白垩世—早新生代时期的最小剥蚀总量,并提升了我们对早期高原边界构造地貌演化历史的认识。
-
图2 青藏高原东南缘地质图(据Liu Zeng et al.,2018b修改)
-
Fig.2 Simplified geological map of the southeastern Tibetan Plateau (after Liu Zeng et al., 2018b)
-
1 地质背景
-
青藏高原东南缘主要由拉萨地体、羌塘地体、义敦岛弧和松潘甘孜地体组成(图2,Burchfiel and Chen,2012)。该区域地质构造演化历史极为复杂,经历了早期的洋-陆俯冲,后期的陆陆碰撞以及之后的陆内变形过程(Yin and Harrison,2000; Tapponnier et al.,2001; 潘桂棠等,2004)。新生代以来,伴随着新特提斯洋向北俯冲闭合与印-亚板块的持续汇聚,该区域构造活动非常活跃,地壳增厚抬升和剪切走滑构造作用叠加明显。鲜水河断裂和哀牢山-红河断裂是区域内主要走滑断裂,同时也控制了高原边界向东南方向的运移挤出(Leloup et al.,1995,2001)。
-
图3 乡城地区地质简图(据Burchfiel and Chen,2012修改)
-
Fig.3 Simplified geological map of the Xiangcheng area (after Burchfiel and Chen, 2012)
-
次林错花岗岩地处义敦岛弧,义敦岛弧西以金沙江缝合带为界与羌塘地体相隔,东以甘孜-理塘缝合带为界与松潘-甘孜地体相隔。岛弧西侧主要由变质的元古宙、古生代碳酸盐岩、碎屑岩和少量火山岩组成,其岩相学和地层学证据表明,该地块可能是晚二叠世时期西扬子陆块分离出来的微陆块(吕伯西等,1993; 侯增谦等,2001,2004); 东义敦岛弧主要由弱变质的三叠系复理石沉积和晚三叠世到晚白垩世时期的花岗岩组成,缺失侏罗纪和白垩纪沉积地层。新生代沉积物发育较少,局部山间盆地或断陷盆地发育古近系紫红色砂砾岩,部分低洼地区分布有少量第四系河湖相沉积物。依据Gourbet et al.(2019)和Fei et al.(2015)对次林错花岗岩体进行的锆石U-Pb定年研究结果,该岩体结晶年龄为83~79 Ma左右,属晚白垩世花岗岩。Gourbet et al.(2019)在该岩体采集了三个剖面的低温热年代学样品(图3),ZHe加权平均年龄分布在67~49 Ma之间,磷灰石(U-Th)/He(AHe)加权平均年龄分布在40~8 Ma之间。QTQt热历史模拟研究显示该岩体的快速冷却时间分别为晚白垩世—早新生代和中中新世两个阶段。Gourbet et al.(2019)将早期冷却事件解释为岩浆的冷却效应,本研究认为应该对该岩体的冷却历史进行定量研究以确定早期冷却事件是岩浆冷却单一作用的结果,还是受快速剥蚀作用的影响。
-
2 研究方法
-
为深入了解次林错花岗岩体侵位后的冷却历史及最小侵位深度,本研究首先利用锆石饱和温度计(Watson and Harrison,1983; Miller et al.,2003; Boehnke et al.,2013)计算了岩浆结晶温度。然后,利用了一维岩浆冷却模拟(Ehlers,2005; Ehlers et al.,2005),并结合已有的年代学数据(Fei et al.,2015; Gourbet et al.,2019)对岩体冷却历史及最小侵位深度进行了估计。
-
2.1 锆石饱和温度计
-
锆元素(Zr)在硅酸质熔体的溶解度受控于岩浆温度和岩浆成分(Watson and Harrison,1983; Boehnke et al.,2013),可以利用锆石饱和温度计估算锆石结晶时的岩浆温度(Watson and Harrison,1983; Miller et al.,2003; Boehnke et al.,2013)。其基本原理是:锆石中 Zr 在岩浆开始结晶状态下固液两相中的分配系数是温度和组分的函数,经整理并换算成摄氏度(℃)之后,计算公式如下:
-
式中,T zr为绝对温度(℃),M是全岩岩石化学参数,计算时,令 Si+Ti+Al+Fe+ Mn+Mg+Ca+Na+K+P=1(原子分数),则全岩岩石化学参数M=[(Na+K+2×Ca)/(Al×Si)],Zrmelt是指熔体中的Zr含量,未进行Zr和Hf 校正时,常用全岩中的 Zr 含量近似代表熔体中 Zr 的含量。
-
2.2 一维岩浆冷却模拟
-
岩浆体的几何形状可能比较复杂,但是仍然可以通过几个简单的假设在一维上量化岩浆体及其围岩的热演化历史(Peacock,1989; Furlong et al.,2018)。首先,与侵位后的热平衡时间相比,岩浆体侵位后的结晶时间较短; 其次,相对于围岩来说,侵入体的体积较小; 最后,岩浆结晶时的熔化潜热可以忽略不计。在一维模拟中,假定侵入体为一矩形,坐标轴原点为侵入体中心,通过求解岩浆侵位后的热扩散传导方程计算岩浆冷却历史(Ehlers,2005)。热扩散传导方程如下:
-
式中,z是指距侵入体中心的距离,t是时间,是指t时刻距中心距离为z的温度,Tb是围岩温度,Ti是侵入体温度,erf是误差函数,L是侵入体宽度,α是热扩散系数,通常设置为32 km2/Ma。
-
由图3可知,次林错岩体平面形状为不规则几何形状,南北较长,东西较窄,已有的热年代学数据几乎分布在岩体的边缘位置(宽度不超过7 km)。所以在模拟过程中,设定岩体宽度为7 km,侵入体温度分别为700℃和650℃(依据3.1节计算所得岩浆结晶温度)。次林错花岗岩的锆石U-Pb年龄为83~79 Ma左右(Fei et al.,2015; Gourbet et al.,2019),而最老的ZHe加权平均年龄小于67 Ma(Gourbet et al.,2019),模拟结果应满足在岩浆侵位后的12~16 Ma左右通过ZHe封闭温度区间(180±20℃,Reiners et al.,2004)。同时,本研究假设ZHe年龄是由于岩浆冷却效应导致的,即岩体侵入较浅,围岩温度应小于ZHe封闭温度区间,且岩浆侵入后冷却至ZHe封闭温度区间这一时间段,上覆围岩不发生剥蚀(岩浆体原位冷却)。依据上述条件,可以通过设定不同的围岩温度(200~100℃)来寻找符合ZHe年代学记录的围岩温度范围及侵入深度。该侵入深度是最小估计量,因为如果ZHe年龄代表的是剥蚀冷却信号,那么侵入深度明显大于6~7 km。
-
3 结果
-
3.1 岩浆结晶温度
-
本研究收集了前人已发表的次林错花岗岩的主微量元素数据(Fei et al.,2015),利用锆石饱和温度计(Watson and Harrison,1983; Miller et al.,2003; Boehnke et al.,2013)计算得出次林错花岗岩锆石饱和温度介于647~705℃之间,平均温度为683℃,属低温花岗岩。前人对该岩体进行的锆石阴极发光研究发现,多个锆石颗粒存在明显内核(Fei et al.,2015),表明在花岗岩的源区Zr是饱和的,所以计算得出的锆石饱和温度可以代表岩浆源区的初始温度。具体结果见表1。
-
注:氧化物含量为%,Zr含量为×10-6。
-
3.2 一维岩浆冷却模拟结果
-
在ZHe年龄是由岩浆冷却效应导致的假设条件下,依据模拟结果(图4a~d),当围岩温度设为200℃或180℃ 时,不管侵入体温度为700℃还是650℃,岩浆侵入16 Ma之后,岩体温度远未冷却到ZHe封闭温度区间,所以围岩温度设为200℃或180℃不符合ZHe的年代学记录。随后,围岩温度设为160℃,当侵入体温度为700℃时,16 Ma之后岩体仍未冷却至200℃以内(图4e); 当侵入体温度为650℃时,16 Ma之后的岩体温度也未冷却至200℃以内,但已非常接近ZHe封闭温度区间(图4f),考虑到ZHe封闭温度区间(180±20℃)可能存在上下浮动,此时ZHe封闭体系可能开始计时,所以围岩温度设为160℃可能符合ZHe年代学记录但已接近围岩温度上限。之后,设定围岩温度为140℃时(图4g~h),不管侵入体温度为700℃还是650℃,12~16 Ma之后岩体均冷却至ZHe封闭温度区间,但8 Ma时岩体温度已接近200℃,考虑到ZHe年龄存在的误差,所以围岩温度设为140℃仍然符合ZHe年代学记录。接着,设定围岩温度为120℃时(图4i~j),12~16 Ma之后均冷却至ZHe封闭温度区间,但8 Ma时已经冷却至接近180℃,所以围岩设为120℃时可能仍然符合ZHe年代学记录但已接近围岩温度下限。最后,设定围岩温度为100℃(图4k~l),4 Ma时岩体已经冷却至ZHe封闭温度区间,不符合ZHe的年代学记录。因此,考虑到ZHe年龄存在的误差(误差可能由多种因素造成)及ZHe封闭温度区间可能存在的上下浮动,本研究保守估计围岩温度设为160℃和120℃大概是岩浆侵入时围岩温度的上限和下限。
-
另外,由模拟结果可知,岩浆侵入围岩后,初始冷却速率很快,但是随时间推移,岩体与围岩之间的温差逐渐缩小,冷却速率会逐渐放缓。同时,围岩受岩浆侵入影响会发生先短暂升温后长时间降温的变化,且距离侵入体中心距离越远,所受热扰动越小。值得注意的是,围岩温度介于160~120℃时,岩浆在完成侵入后经16 Ma冷却仍然未与围岩完成温度平衡,但温差已经较小。
-
4 讨论
-
4.1 次林错岩体晚白垩世—早新生代快速剥蚀
-
本研究通过设定岩浆体侵入时不同的围岩温度(对应深度)来寻找符合ZHe年代学记录的围岩温度范围并据此估算侵位深度。模拟结果显示,当围岩温度小于120℃时,岩体将在侵入后小于8 Ma时间内开始ZHe封闭体系的计时,不符合现有的ZHe年代学记录(图5)。当围岩温度设定在160~120℃区间内,岩体可能在12~16 Ma左右冷却至ZHe封闭温度区间(图5)。因此,假定地温梯度为30℃/km,地表平均温度为10℃时,岩体的侵位深度估计在3.7~5.0 km之间。该侵位深度可能形成花岗斑岩或潜火山岩,Fei et al.(2015)对该岩体鉴别为二长花岗岩和斑状黑云母花岗岩,其中斑状黑云母花岗岩可能指示侵位深度较浅,与模拟研究约束的侵位深度可以对应。该侵位深度的估计是最小估计值,因为本研究已经假定岩体侵位较浅,ZHe年龄是由岩浆冷却效应导致的。如果ZHe年龄代表的完全是剥蚀冷却信号,那么围岩温度应大于200℃,岩体的侵入深度应大于6~7 km,之后经过大量的剥蚀才能陆续通过ZHe和AHe封闭温度区间(图5)。AHe封闭温度大概为60±20℃(Farley,2002),所以67~40 Ma之间岩体要经历至少约2 km的剥蚀才能到达AHe封闭温度区间。显然,如果岩体侵位深度更深,则剥蚀量将大于2 km。值得注意的是,67 Ma并不一定代表快速剥蚀的起始时间,因为如果ZHe年龄代表的完全是剥蚀冷却信号,那么岩体可能在67 Ma之前已经开始快速剥蚀,本研究暂时无法限定快速剥蚀的起始时间。因此,本研究认为次林错岩体在晚白垩世—早新生代时期(67~40 Ma)经历了一期快速剥蚀事件,剥蚀量至少约2 km。
-
快速剥蚀的诱导因素可能是气候因素或者是构造因素。青藏高原东南缘在晚白垩世—早新生代时期以“风成沉积”和“红层”沉积为主,气候特征则以炎热干旱为主(Xiong et al.,2020; Zheng et al.,2022)。因此,该时期气候因素不太可能导致强烈的剥蚀,构造因素可能才是驱动此次快速剥蚀事件的主要因素。 Liu Zeng et al.(2018b)在德钦和维西地区的研究表明三江地区经历了一期60~40 Ma的快速构造剥蚀事件,并认为该期快速剥蚀事件是对新生代早期构造变形的响应。之后,Cao et al.(2021)在剑川盆地附近的低温热年代学模拟揭示出一期50~39 Ma的构造剥蚀事件,可能指示鲁甸-中和江褶皱逆冲带的新生代早期活动。同时,剑川盆地宝相寺组底部发育的一套快速堆积的磨拉石沉积建造,可能是对该时期强烈挤压环境下的沉积响应(沈青强等,2017)。地层学和低温热年代学研究均表明兰坪-思茅盆地与楚雄盆地在始新世—渐新世可能发生了显著的缩短变形和区域剥蚀(Burchfiel and Chen,2012; Wang et al.,2020)。点苍山-哀牢山变质杂岩中识别出典型的陆-陆碰撞顺时钟P-T-t轨迹,其中早期进变质阶段(65~55 Ma; 550~600℃,520~620 MPa)和峰期角闪岩—麻粒岩相阶段(44~37 Ma; 720~760℃,800~960 MPa)记录了新生代早期的碰撞挤压过程(Liu et al.,2013)。区域上,青藏高原东南缘囊谦盆地和贡觉盆地均记录了新生代早期NE-SW 方向的构造挤压与缩短(Horton et al.,2002; Spurlin et al.,2005; Studnicki-Gizbert et al.,2008)。古地磁定年研究显示,贡觉盆地的沉积时代被约束在69~41.5 Ma之间(Li et al.,2020),可能是对晚白垩世—早新生代构造剥蚀的沉积响应。古高程研究结果也显示,青藏高原东南缘在渐新世之前已基本接近现今高度(Hoke et al.,2014; Li et al.,2015; Tang et al.,2017; Su et al.,2019; Xiong et al.,2020),这同样指示了新生代早期该区域存在强烈的构造抬升作用。距离次林错岩体西南方向约30 km的河谷两侧沉积有一套古近系红色砂砾岩(图3),磨圆分选均较差,应为近源堆积(Gourbet et al.,2019)。但是该地层成岩的绝对年代暂时未知,后续对该地层进行详细的地层年代学研究可能是验证本结论的关键。
-
图4 岩浆冷却历史模拟与锆石(U-Th)/He封闭温度对比图
-
Fig.4 Comparison between magma cooling modelling and zircon (U-Th) /He closure temperature
-
(a∼d)一围岩温度为 200 或 180° C 时,侵入体经历16 Ma冷却之后仍末开始ZHe封闭体系计时;(e∼j)围岩温度介于 160∼120°C 之间,经12 16 Ma冷却之后,可能开始ZHe封闭体系计时;(k∼l)一围岩温度为 100°C 时,侵入体可能在4 8Ma 冷却之后开始ZHe封闭体系计时
-
(a∼d) —When the surrounding rock temperature is 200° C or 180° C, the intrusion has not started the ZHe closure system timing after 16 Ma cooling; (e∼j) -when the surrounding rock temperature is between 160° C and 120° C, after 12∼16Ma cooling, the ZHe closure system timing may start; ( k∼l) -when the surrounding rock temperature is 100°C, the intrusion may start the ZHe closure system
-
图5 次林错岩体不同侵入深度及剥蚀量对比图
-
Fig.5 Comparison of different emplacement depths with exhumation amounts of Cilincuo granite
-
4.2 晚白垩世—早新生代区域构造剥露事件
-
晚白垩世—早新生代的构造剥蚀事件,不仅发生在青藏高原东南缘,而且在整个青藏高原多个地区广泛存在(图6)。在青藏高原东缘,Tian et al.(2016)利用云母40Ar/39Ar定年研究显示,龙门山在晚白垩世—早古近纪时期经历了强烈的剪切与逆冲推覆作用,而在龙门山前缘、四川盆地西南部沉积的一套厚度约2~3 km的沉积层可能是对该期构造变形事件的响应。在青藏高原北缘,祁连山肃北盆地的磷灰石裂变径迹研究同样指示了一期早新生代(60~50 Ma)的快速剥蚀事件(He et al.,2020)。在远离高原边界的内陆,则广泛记录了一期晚白垩世—早新生代的快速剥露事件。例如,Hetzel et al.(2011)和 Haider et al.(2013)在拉萨地体北部的研究显示,高原中部在70~55 Ma左右经历了一期剥蚀速率约300 m/Ma的快速剥蚀事件,而50 Ma之后的剥蚀速率可能只有10 m/Ma。Rohrmann et al.(2012)的研究也指示了青藏高原中部经历了一期85~45 Ma的中等—快速剥蚀阶段,45 Ma之后的剥蚀速率小于50 m/Ma,并认为印-亚板块碰撞之前的构造运动可能已经导致了局部地区高原的生长发育。最近,Li et al.(2022)和Xue et al.(2022)在改则盆地和尼玛盆地附近的低温热年代学研究分别揭示出了一期85~55 Ma和70~40 Ma的快速剥蚀事件,可能指示班公-怒江缝合带的强烈挤压剥蚀,这与构造地质学研究指示的拉萨地体和羌塘地体之间在白垩纪—早新生代时期吸收了约50%以上的南北向地壳缩短是一致的(Kapp et al.,2003,2005,2007)。在羌塘地体北部,磁性地层学及低温热年代学研究同样表明该地区存在显著的晚白垩世—早新生代的快速剥蚀与沉积记录。可可西里盆地为唐古拉逆冲推覆构造系统的前陆盆地(Li et al.,2012),该盆地良好地记录了逆冲断裂的活动时限。Jin et al.(2018)利用磁性地层学约束了盆地内风火山群的地层年代为72~51 Ma,其中快速堆积发生在72~64 Ma与54~51 Ma(与贡觉盆地几乎一致(Li et al.,2020)),反映了晚白垩世和早始新世唐古拉逆冲推覆系统对盆地沉积的控制作用。其中早期活动可能与拉萨地体和羌塘地体的持续汇聚及新特提斯洋的向北俯冲有关,晚期活动可能与印-亚板块的初始碰撞有关。另外,唐古拉山基岩磷灰石裂变径迹研究揭示出60~50 Ma的快速冷却,也指示该时期逆冲断裂的活动(Wang et al.,2008)。同时,玉树—囊谦逆冲带剖面及年代学分析结果表明,东羌塘地块在51 Ma之前已经历了北东—南西向的地壳缩短变形(Horton et al.,2002; Spurlin et al.,2005),这与Li et al.(2019)在东羌塘地体和松潘-甘孜地体进行的AFT研究揭示出的62~40 Ma的快速剥蚀是吻合的。
-
图6 青藏高原地区晚白垩世—早新生代快速剥蚀事件
-
Fig.6 Map showing the phases of rapid exhumation during Late Cretaceous-early Cenozoic in the Tibetan plateau
-
已发表成果来源于:[1]Tian et al.,2016;[2]Liu-Zeng et al.,2018b;[3]Cao et al.,2021;[4]He et al.,2020;[5]Li et al.,2019;[6]Li et al.,2022;[7]Xue et al.,2022;[8]Rohrmann et al.,2012;[9]Hetzel et al.,2011;[10]Haider et al.,2013;[11]Jin et al.,2018;[12]Wang et al.,2008;[13]Li et al.,2020
-
Reference codes are: [1]Tian et al.,2016;[2]Liu-Zeng et al.,2018b;[3]Cao et al.,2021;[4]He et al.,2020;[5]Li et al.,2019;[6]Li et al.,2022;[7]Xue et al.,2022;[8]Rohrmann et al.,2012;[9]Hetzel et al.,2011;[10]Haider et al.,2013;[11]Jin et al.,2018;[12]Wang et al.,2008;[13]Li et al.,2020
-
综上所述,本研究认为晚白垩世—早新生代时期,青藏高原大部分地区均经历了强烈的上地壳构造挤压缩短与剥蚀沉积,涉及区域可远至高原边界如龙门山、祁连山和青藏高原东南缘。高原内部如松潘-甘孜地体、羌塘地体、拉萨地体均经历了一期晚白垩世—早新生代的构造剥露事件。同时期、大规模、区域性的构造剥露事件只能从板块尺度的构造运动进行解释。因此,本研究认为新特提斯洋的俯冲闭合和印亚板块的初始碰撞造成的上地壳的构造挤压与缩短变形可能是触发此次大规模剥蚀的主要原因。
-
5 结论
-
(1)本研究首次提出了综合利用锆石饱和温度计、一维岩浆冷却模拟和年代学数据对岩浆侵入的最小围岩温度及侵入深度进行估计的新方法。
-
(2)依据锆石饱和温度计法计算次林错花岗岩的岩浆结晶温度介于647~705℃之间,平均温度为683℃,属低温花岗岩。利用一维岩浆冷却模拟和已发表的年代学数据对次林错花岗岩最小侵位深度进行估计,结果显示侵位深度在3.7~5.0 km之间。次林错花岗岩在晚白垩世—早新生代时期(67~40 Ma)经历了一期快速的构造剥露事件,剥蚀量至少为2 km。
-
(3)晚白垩世—早新生代快速剥露事件在青藏高原不同地区广泛存在。新特提斯洋的俯冲闭合与印亚板块的初始碰撞造成的上地壳的构造挤压与缩短变形可能是触发此次大规模区域剥蚀的主要原因。
-
致谢:衷心感谢编辑和两位匿名审稿人的细心审阅和非常宝贵且有针对性的意见与建议。
-
参考文献
-
An Zhisheng, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62~66.
-
Boehnke P, Watson E B, Trail D, Harrison T M, Schmitt A K. 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324~334.
-
Burchfiel B C, Chen Z. 2012. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland (Vol. 210). Geological Society of America.
-
Cao Kai, Wang Guocan, Leloup P H, Maheo G, Xu Yadong, van der Beek P, Replumaz A, Zhang Kexin. 2019. Oligocene-Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics, 38(1): 374~391.
-
Cao Kai, Leloup P H, Wang Guocan, Liu Wei, Maheo G, Shen Tianyi, Xu Yadong, Sorrel P, Zhang Kexin. 2021. Thrusting, exhumation, and basin fill on the western margin of the South China block during the India-Asia collision. Geological Society of America Bulletin, 133(1-2): 74~90.
-
Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006.
-
Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525~528.
-
Deng Bin, Liu Shugen, Jiang Lei, Zhao Gaoping, Huang Rui, Li Zhiwu, Li Jinxi, Jansa L. 2018. Tectonic uplift of the Xichang basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data. Basin Research, 30(1): 75~96.
-
Ehlers T A. 2005. Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58(1): 315~350.
-
Ehlers T A, Chaudhri T, Kumar S, Fuller C W, Willett S D, Ketcham R A, Brandon M T, Belton D X, Kohn B P, Gleadow A J W, Dunai T J, Fu F Q. 2005. Computational tools for low-temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1): 589~622.
-
Farley K A. 2002. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1): 819~844.
-
Fei Guangchun, Li Youguo, Chen Jin, Luo Wei. 2015. Zircon U-Pb geochronology and geochemistry of copper-bearing monzogranite in the Rexiang hydrothermal Cu deposit in the central Yidun Island Arc, northeastern Tibet. Geochemical Journal, 49(2): 195~205.
-
Furlong K P, Hanson R B, Bowers J R. 2018. Modeling thermal regimes. In: Contact Metamorphism. De Gruyter, 437~506.
-
Ge Yukui, Liu-Zeng Jing, Zhang Jinyu, Wang Wei, Tian Yuntao, Fox M, Zeng Lingsen, Shen Xiaoming, Wang Hen, Su Ze, Xie K. 2020. Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau. Science China Earth Sciences, 63(4): 512~532.
-
Gourbet L, Yang R, Fellin M G, Paquette J L, Willett S D, Gong J F, Maden C. 2019. Evolution of the Yangtze River network, southeastern Tibet: insights from thermochronology and sedimentology. Lithosphere, 12(1): 3~18.
-
Guo Zhengtang, Ruddiman W F, Hao Qingzhen, Wu Huilan, Qiao Yansong, Zhu Rixiang, Peng Shuzhen, Wei Jia, Yuan B Y, Liu Tungsheng. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877): 159~163.
-
Haider V L, Dunkl I, Eynatten H von, Ding L, Frei D, Zhang L Y. 2013. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70: 79~98.
-
Hammarstron J M, Zen E-an. 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71: 1297~1313.
-
He Pengju, Song Chunhui, Wang Yadong, Meng Qingquan, Wang Daichun, Feng Ying, Chen Lihao, Feng Wei. 2020. Early Cenozoic exhumation in the Qilian Shan, northeastern margin of the Tibetan Plateau: insights from detrital apatite fission track thermochronology. Terra Nova, 32(6): 415~424.
-
Hetzel R, Dunkl I, Haider V, Strobl M, Eynatten H von, Ding L, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10): 983~986.
-
Hoke G D, Liu-Zeng J, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 394: 270~278.
-
Hollister L S, Grissom G C, Peters E K, Stowell H H, Sisson V B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4): 231~239.
-
Horton B K, Yin A, Spurlin M S, Zhou J Y, Wang J H. 2002. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geological Society of America Bulletin, 114(7): 771~786.
-
Hou Zengqian, Qu Xiaoming, Zhou Jirong, Yang Yueqing, Huang Dianhao, Lu Qingtian, Tang Shaohua, Yu Jinjie, Wang Haiping, Zhao Jinhua. 2001. Collision-orogenic process of the Yidun Arc in Sanjiang region: record of granites. Acta Geologica Sinica, 75(4): 484~497 (in Chinese with English abstract).
-
Hou Zengqian, Yang Yueqing, Qu Xiaoming, Huang Dianhao, Lu Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004. Tectonic evolution and mineralization systems of the Yidun Arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109~120 (in Chinese with English abstract).
-
Jin Chunsheng, Liu Qingsong, Liang Wentian, Roberts A P, Sun Jimin, Hu Pengxiang, Zhao Xiangyu, Su Youliang, Jiang Zhaoxia, Liu Zhifeng, Duan Zongqi, Yang Huihui, Yuan Sihua. 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil basin and its tectonic implications for India-Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters, 486: 41~53.
-
Johnson, M C, Rutherford M J. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837~841.
-
Kapp P, Murphy M A, Yin A, Harrison T M, Ding L, Guo J H. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029.
-
Kapp P, Yin A, Harrison T M, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8): 865~878.
-
Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~933.
-
Leloup P H, Lacassin R, Tapponnier P, Schaerer U, Zhong D L, Liu X H, Zhang L S, Ji S C, Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3~84.
-
Leloup P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4): 6683~6732.
-
Li Chao, Zhao Zhongbao, Lu Haijian, Li Haibin. 2022. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang Suture, Central Tibet. Tectonophysics, 827: 229268.
-
Li Hanao, Dai Jingen, Xu Shiying, Liu Borong, Han Xu, Wang Yanan, Wang Chengshan. 2019. The formation and expansion of the eastern Proto-Tibetan Plateau: insights from low-temperature thermochronology. Journal of Asian Earth Sciences, 183: 103975.
-
Li Shanying, Currie B S, Rowley D B, Ingalls M. 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432: 415~424.
-
Li Shishu, van Hinsbergen D J, Najman Y, Liu-Zeng Jing, Deng Chenglong, Zhu Rixiang. 2020. Does pulsed Tibetan deformation correlate with Indian plate motion changes? Earth and Planetary Science Letters, 536: 116144.
-
Li Yalin, Wang Chengshan, Zhao Xixi, Yin An, Ma Chao. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22(2): 482~492.
-
Liu Fangbin, Danisik M, Zheng Dewen, Gallagher K, Nie Junsheng. 2021. Distinguishing tectonic versus climatic forcing on landscape evolution: an example from SE Tibetan Plateau. Geological Society of America Bulletin, 133(1-2): 233~242.
-
Liu Fulai, Wang Fang, Liu Pinghua, Liu Chaohui. 2013. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429~450.
-
Liu-Zeng Jing, Zhang Jinyu, Ge Yukui, Wang Wei, Zeng Lingsen, Li Gen, Lin Xu. 2018a. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes. Chinese Science Bulletin, 63(30): 3070~3088 (in Chinese with English abstract).
-
Liu-Zeng Jing, Zhang Jinyu, McPhillips D, Reiners P, Wang Wei, Pik R, Zeng Linsen, Hoke G, Xie Kejia, Xiao Ping, Zheng Dewen, Ge Yukui. 2018b. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 490: 62~76.
-
Lü Boxi, Wang Zeng, Zhang Nengde. 1993. Granitoids in the Sanjiang Region and Their Metallogenic Specialization. Beijing: Geological Publishing House (in Chinese).
-
McPhillips D, Hoke G D, Liu-Zeng J, Bierman P R, Rood D H, Niedermann S. 2016. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophysical Research Letters, 43(1): 101~110.
-
Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529~532.
-
Nie Junsheng, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang Weitao, Stockli D, Hu Xiaofei, Wang Zhao, Wang Ying, Stevens T, Danisik M, Liu Shanpin. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11(12): 944~948.
-
Ouimet W, Whipple K, Royden L, Reiners P, Hodges K, Pringle M. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2(1): 50~63.
-
Pan Guitang, Ding Jun, Yao Dongsheng. 2004. Geological Map of the Tibetan Plateau and Its Neighboring Areas (1∶1500000 with instructions). Chengdu: Chengdu Map Publishing House (in Chinese).
-
Peacock S M. 1989. Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism. Geological Society of America Bulletin, 101(4): 476~485.
-
Reiners P W, Spell T L, Nicolescu S, Zanetti K A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857~1887.
-
Replumaz A, San José M, Margirier A, van der Beek P, Gautheron C, Leloup P H, Ou X, Cao K, Wang G C, Zhang Y, Valla P G, Balvay M. 2020. Tectonic control on rapid late Miocene—Quaternary incision of the Mekong River Knickzone, southeast Tibetan Plateau. Tectonics, 39(2): e2019TC005782.
-
Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, M Heizler. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.
-
Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054~1058.
-
Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2): 304~310.
-
Shen Qingqiang, Cao Kai, Wang Guocan, Xu Yadong, Zhang Kexin. 2017. Paleogene sedimentary and structural evolution of the Jianchuan-Lanping basins, western Yunnan and its regional tectonic implications. Geotectonica et Metallogenia, 41(1): 23~41 (in Chinese with English abstract).
-
Shen Xiaoming, Tian Yuntao, Li Dewen, Qin Siwei, Vermeesch P, Schwanethal J. 2016. Oligocene-Early Miocene river incision near the first bend of the Yangze River: insights from apatite (U-Th-Sm)/He thermochronology. Tectonophysics, 687: 223~231.
-
Shen Xiaoming, Tian Yuntao, Zhang Guihong, Zhang Shimin, Carter A, Kohn B, Vermeesch P, Liu Rui, Li Wei. 2019. Late Miocene hinterland crustal shortening in the Longmen Shan thrust belt, the eastern margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 124(11): 11972~11991.
-
Shen Xiaoming, Tian Yuntao, Wang Ying, Wu Lin, Jia Yingying, Tang Xiudang, Lei Haijia, Yuan Xiaoping, Ge Yukui, Liu-Zeng Jing. 2021. Enhanced Quaternary exhumation in the central Three Rivers Region, southeastern Tibet. Frontiers of Earth Science, 9: 741491.
-
Spurlin M S, Yin A, Horton B K, Zhou J Y, Wang J H. 2005. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geological Society of America Bulletin, 117(9-10): 1293~1317.
-
Stein E, Dietl C. 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1): 185~207.
-
Studnicki-Gizbert C, Burchfiel B C, Li Z, Chen Z. 2008. Early Tertiary Gonjo basin, eastern Tibet: sedimentary and structural record of the early history of India-Asia collision. Geosphere, 4(4): 713~735.
-
Su Tao, Spicer R A, Li Shihu, Xu He, Huang Jian, Sherlock S, Huang Yongjiang, Li Shufeng, Wang Li, Jia Linbo, Deng Weiyudong, Liu Jia, Deng Chenglong, Zhang Shitao, Valdes P J, Zhou Zhekun. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review, 6(3): 495~504.
-
Tang Maoyun, Liu-Zeng Jing, Hoke G D, Xu Qiang, Wang Weitao, Li Zhanfei, Zhang Jinyu, Wang Wei. 2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin, SE-central Tibet. Tectonophysics, 712: 170~181.
-
Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671~1677.
-
Tian Yuntao, Kohn B P, Gleadow A J, Hu Shengbiao. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676~698.
-
Tian Yuntao, Kohn B P, Phillips D, Hu Shengbiao, Gleadow A J, Carter A. 2016. Late Cretaceous-earliest Paleogene deformation in the Longmen Shan fold-and-thrust belt, eastern Tibetan Plateau margin: Pre-Cenozoic thickened crust?. Tectonics, 35(10): 2293~2312.
-
Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1): 47~56.
-
Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987~4992.
-
Wang Hu, Li Kaijin, Tian Yuntao, Zhang Guihong. 2022. Oligocene-Early Miocene exhumation and shortening along the Anninghe fault in the southeastern Tibetan Plateau: insights from zircon and apatite (U-Th)/He thermochronology. International Geology Review, 64(3): 390~404.
-
Wang Pinxian. 1998. Asian deformation and global cooling: exploring the relationship between climate and tectonics. Quaternary Sciences, (3): 213~221 (in Chinese with English abstract).
-
Wang Pinxian. 2005. Cenozoic deformation and history of sealand interactions in Asia. Earth Sci. -J. China Univ. Geosci. , 30(1): 1~18.
-
Wang Yang, Zhang Peizhen, Schoenbohm L M, Zheng Wenjun, Zhang Bo, Zhang Jinjiang, Zheng Dewen, Zhou Renjie, Tian Yuntao. 2018. Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the late Cenozoic. Tectonics, 37(8): 2675~2694.
-
Wang Yang, Wang Yuejun, Schoenbohm L M, Zhang Peizhen, Zhang Bo, Sobel E R, Zhou Renjie, Shi Xuhua, Zhang Jinjiang, Stockli D F, Guo Xiaofei. 2020. Cenozoic exhumation of the Ailaoshan-Red River shear zone: new insights from low-temperature thermochronology. Tectonics, 39(9): e2020TC006151.
-
Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.
-
Willett S D. 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957~28981.
-
Xiao Ping, Liu Jing, Wang Wei, Zhong Ning, Zeng Lingsen, Pik R, Xie KeJia. 2015. The evolution of fluvial geomorphology of Mangkang area (southeastern Tibetan Plateau) recorded by apatite U-Th/He thermochronology. Quaternary Sciences, 35(2): 433~444 (in Chinese with English abstract).
-
Xiong Zhongyu, Ding Lin, Spicer R A, Farnsworth A, Wang Xu, Valdes P J, Su Tao, Zhang Qinghai, Zhang Liyun, Cai Fulong, Wang Houqi, Li Zhenyu, Song Peiping, Guo Xudong, Yue Yahui. 2020. The early Eocene rise of the Gonjo basin, SE Tibet: from low desert to high forest. Earth and Planetary Science Letters, 543: 116312.
-
Xue Weiwei, Najman Y, Hu Xiumian, Persano C, Stuart F M, Li Wei, Ma Anlin, Wang Ying. 2022. Late Cretaceous to late Eocene exhumation in the Nima area, central Tibet: implications for development of low relief topography of the Tibetan Plateau. Tectonics, 41(3): e2021TC006989.
-
Yang Rong, Willett S D, Goren L. 2015. In situ low-relief landscape formation as a result of river network disruption. Nature, 520(7548): 526~529.
-
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
-
Zhang Bo, Chen Siyu, Wang Yang, Reiners P W, Cai Fulong, Speranza F, Zhang Jingjiang, Zhong Dalai, Liu K. 2022. Crustal deformation and exhumation within the India-Eurasia oblique convergence zone: new insights from the Ailao Shan-Red River shear zone. Geological Society of American Bulletin, 134(5-6): 1443~1467.
-
Zhang Guihong, Tian Yuntao, Li Rui, Shen Xiaoming, Zhang Zengjie, Sun Xxilin, Chen Dongxu. 2022. Progressive tectonic evolution from crustal shortening to mid-lower crustal expansion in the southeast Tibetan Plateau: a synthesis of structural and thermochronological insights. Earth-Science Reviews, 226: 103951.
-
Zhang Huiping, Oskin M E, Liu-Zeng Jing, Zhang Peizhen, Reiners P W, Xiao Ping. 2016. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth and Planetary Science Letters, 449: 176~185.
-
Zhang Yuanze, Replumaz A, Leloup P H, Wang Guochan, Bernet M, van der Beek P, Paquette J L, Chevalier M L. 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters, 465: 1~15.
-
Zheng Hongbo. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications. National Science Review, 2(4): 438~453.
-
Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.
-
Zheng Hongbo, Yang Qing, Cao Shuo, Clift P D, He Mengying, Kano A, Sakuma A, Xu Huan, Tada R, Jourdan F. 2022. From desert to monsoon: irreversible climatic transition at ~36 Ma in southeastern Tibetan Plateau. Progress in Earth and Planetary Science, 9(1): 1~14.
-
Zhu Chengyu, Wang Guochan, Leloup P H, Cao Kai, Mahéo G, Chen Yue, Zhang Pan, Shen Tianyi, Wu Guilin, Sotiriou P, Wu Bo. 2021. Role of the early Miocene Jinhe-Qinghe thrust belt in the building of the southeastern Tibetan Plateau topography. Tectonophysics, 811: 228871.
-
侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余今杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484~497.
-
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109~120.
-
刘静, 张金玉, 葛玉魁, 王伟, 曾令森, 李根, 林旭. 2018a. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070~3088.
-
吕伯西, 王增, 张能德. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版社.
-
潘桂棠, 丁俊, 姚冬生. 2004. 青藏高原及邻区地质图(1∶1500000附说明书). 成都: 成都地图出版社.
-
沈青强, 曹凯, 王国灿, 徐亚东, 张克信. 2017. 剑川-兰坪盆地古近纪沉积-构造变革及其区域构造意义. 大地构造与成矿学, 41(1): 23~41.
-
汪品先. 1998. 亚洲形变与全球变冷——探索气候与构造的关系. 第四纪研究, (3): 213~221.
-
肖萍, 刘静, 王伟, 钟宁, 曾令森, Raphael Pik, 谢克家. 2015. 青藏高原东南缘芒康地区河流地貌演化的磷灰石U-Th/He记录. 第四纪研究, 35(2): 433~444.
-
摘要
青藏高原东南缘是研究构造、地貌演化和气候变化相互作用的理想场所,前人研究主要揭示了晚始新世—早中新世和晚中新世以来的快速剥蚀事件,缺乏晚白垩世—早新生代时期地貌演化过程的研究。次林错花岗岩已有的低温热年代学数据覆盖了整个新生代时期,为探索该区域新生代早期的剥露演化历史提供了重要资料。该岩体新生代早期冷却事件是岩浆冷却单一作用的结果,还是受快速剥蚀作用的影响,目前仍然存疑,需要定量研究。因此,本文结合已有的岩石地化和年代学数据,对次林错花岗岩开展了锆石饱和温度和一维岩浆冷却模拟研究。锆石饱和温度计算结果表明次林错花岗岩的岩浆结晶温度介于647~705℃之间,属低温花岗岩。一维岩浆冷却模拟结果显示岩体侵位时的最小围岩温度为160~120℃,对应深度约为3.7~5.0 km。结合锆石和磷灰石(U-Th)/He年代学数据,本文认为该岩体在晚白垩世—早新生代时期(67~40 Ma)经历了一期剥蚀量至少为2 km的快速剥蚀事件。已发表成果的综合分析表明,此次快速剥露事件可能是整个青藏高原地区广泛存在的构造剥蚀事件,新特提斯洋的俯冲闭合与印亚板块的初始碰撞可能是触发此次大规模区域剥蚀的主要原因。
Abstract
The southeastern Tibetan Plateau is an ideal place to study the interactions among tectonics, geomorphic evolution and climate. Previous studies have mainly revealed two rapid exhumation phases during late Eocene-early Miocene and late Miocene to present, but the evolution process during Late Cretaceous-Early Cenozoic remain unclear. The Cilincuo granite with entire Cenozoic thermochronology data provide important reference for exploring the exhumation evolution history during the early Cenozoic in SE Tibet. However, the cooling event of Cilincuo granite during Early Cenozoic, resulting from magma cooling or rapid exhumation, remains questionable, which needs studying quantitatively. In this study, we review published chronological data, and use zircon saturation thermometers and 1-D magma cooling modelling to constrain the crystallization temperature, minimum emplacement depth and minimum exhumation amount of the Cilincuo granite during the Late Cretaceous-Early Cenozoic. The results of zircon saturation temperatures for Cilincuo granite suggest that the magma crystallization temperature of Cilincuo granite is between 647℃ and 705℃, belonging to low temperature granite. 1-D magma cooling modelling results suggest that the minimum surrounding rock temperature is 160~120℃, and the corresponding depth is about 3.7~5.0 km. Combining zircon and apatite (U-Th)/He thermochronology data, we suggest that the intrusion experienced a rapid exhumation event of at least 2 km during the Late Cretaceous-Early Cenozoic (67~40 Ma). Our results combined with prevoious published results suggest that this rapid exhumation phase may be a widespread tectonic exhumation event in the Tibetan Plateau, which is probably triggered by the subduction and closure of the New Tethys ocean and the initial collision of the Indo-Asian plate.