-
非常规油气在我国能源结构中占据重要地位,尤其是致密砂岩气,在鄂尔多斯盆地、准噶尔盆地和四川盆地均有大量开采,已成为油气产量的重要组成部分,为保障国家能源安全提供重要支持(邹才能等,2008;魏新善等,2017;何登发等,2021a)。致密砂岩气藏多具有典型的低孔、低渗、强非均质性特点,随着致密储层开采技术的不断进步,已克服早期开采难的问题,成为油气开采领域重点关注对象(邹才能等,2015)。致密砂岩储层在空间上具有渗透率各向异性和砂岩内部物性的不均一,影响油气充注、成藏、储层分布等,控制储层质量和流体运移,并导致致密储层气水分布的差异,形成气水混存局面,使得相邻井位产水、产气具有明显差异(孟德伟等,2016),这严重影响了油气采收率的提高,制约了油气田的高效开发。因此,储层非均质性对天然气成藏、气水分布的影响是致密砂岩气藏开发中值得深入探索的科学问题之一。加强非均质性成因及对成藏影响的研究对寻找油气甜点区、提高采收率、指导油气田开发具有一定现实意义。
-
作为最重要的致密气产区之一,鄂尔多斯盆地在二叠系山西组、石盒子组发育致密砂岩储层,尤其是苏里格气田,油气资源极为丰富(赵靖舟等,2012)。前人对该区储层已进行了深入研究,多集中在生烃演化(杨华等,2012)、成藏模式(赵靖舟等,2013;肖正录等,2020;何登发等,2021b;李勇根等,2021)、成岩作用(祝海华等,2015;樊爱萍等,2016;钟大康,2017)、致密成因(郭轩豪等,2021;庞军刚等,2021)、砂体构型(崔明明等,2019a;李柱正等,2020;卢志远等,2021)等方面,并取得了深入认识,但是少见有该区储层非均质性特征的专项研究,尤其是针对非均质性对天然气成藏的影响探讨较少。为进一步明确苏里格气田致密储层的非均质特征及对成藏的影响,笔者选择具有典型强非均质性特征的苏里格气田西南部山西组1段(山1段)和石盒子组8段(盒8段)致密储层为研究对象,通过生产、测试、试气等资料,在储层非均质性特征研究的基础上,深化对非均质性成因的认识,探讨非均质性对成藏的影响,为致密气藏高效开发提供参考。
-
1 地质概况
-
鄂尔多斯盆地在构造位置上属于华北陆块,是一个大型多旋回克拉通叠合盆地,基底为太古宇及元古宇变质岩(郭轩豪等,2021)。盆地东缘和西缘发育较多褶皱、断裂,盆地内构造简单(樊爱萍等,2016)。盆地晚古生代以来发育海陆过渡相—陆相沉积体系,其广泛分布的石炭系—二叠系煤系地层与暗色泥岩是良好的烃源岩,而山西组和石盒子组可作为储层,形成优良的生储盖组合(赵靖舟等,2012; He Jinxian et al.,2018; Zou Caineng et al.,2018;刘洪林等,2022)。在鄂尔多斯盆地中分布着苏里格气田、乌审旗气田、榆林气田等大型天然气田,均为目前中国重要的致密气田(图1)。
-
研究区位于苏里格气田西南部,构造上整体为平缓的西倾单斜(樊爱萍等,2016)。山1段和盒8段沉积期构造稳定,地形平缓,以远离物源的浅水辫状河三角洲前缘和曲流河三角洲前缘为主,并有少量的滨浅湖沉积。储层砂体厚度大,叠置模式多样,泥质等不渗透层保存在厚层砂岩之中,成为致密气运移的隔挡,增强了储层非均质性。致密气充注受非均质性和原始地层水影响,存在气水分异,试气结果也显示生产层段气、水同产,根据产水和产气情况可细分为气层、差气层、干层、水层、气水同层等(Cui Mingming et al.,2019b)。目前气田已处于高速开发期,具有充足的岩芯、测井、生产等资料,可以保障储层非均质性研究的数据需求。
-
2 样品和方法
-
本文主要基于岩芯观察、镜下鉴定、孔渗分析和测井等生产资料分析,研究山1段和盒8段致密储层的层内、层间和平面非均质性特征。采集苏里格气田西南部14口井126块岩芯样品,用于普通薄片、铸体薄片、孔渗测试、扫描电镜分析等,从微观角度揭示储层微观特征、孔喉特征和成岩演化。收集112口井的测井资料和生产数据,分析储层砂体分布,结合取芯井沉积构造,确定储层的沉积环境和宏观非均质性特征。
-
图1 鄂尔多斯盆地苏里格气田位置(a)和钻井分布(b)及综合柱状图(c)(据崔明明等,2019a修改)
-
Fig.1 Location (a) , well distribution (b) , and synthetic histogram (c) of the study area in Sulige gas field, Ordos basin (modified from Cui Mingming et al., 2019a)
-
将所采岩芯样品制作成直径 25 mm的圆柱,清洗、烘干后在真空条件下注入蓝色环氧树脂和染色剂,磨制成厚度为0.03 mm的薄片,粘片制成铸体薄片后,与普通薄片一起,观察孔隙类型、孔喉结构、碎屑组成和成岩特征。在统计碎屑组成时,采用Gazzi-Dickson统计方法,细化碎屑颗粒的统计方式,并尽可能提高统计点数,以增加精度。将样品制成小于60 mm的块状,镀金、制样完成后,用SYKY-2800B SEM显微镜观察矿物组成、黏土矿物形态特征。
-
3 致密储层特征
-
3.1 沉积背景
-
鄂尔多斯盆地在山西组和石盒子组沉积期以陆相沉积为主,顺物源方向发育大范围的冲积扇—河流—三角洲沉积体系,形成宽厚砂体,是良好的油气储集体(操应长等,2018;李克永等,2020)。通过岩芯观察发现,山1段和盒8段的岩性多为灰白色、浅灰绿色砂岩和深灰色泥岩,发育交错层理、平行层理、植物碎屑等代表不同水动力条件的沉积构造(图2)。根据岩性组合、沉积构造、测井曲线形态,结合前人研究,认为研究区该时期为辫状河三角洲前缘和曲流河三角洲前缘沉积,并可能存在滨浅湖沉积,这也与宏观沉积背景相符合(田景春等,2011;杨华等,2012;赵靖舟等,2012;李克永等,2020;马瑶等,2021)。
-
3.2 岩石学特征
-
储层岩石类型以石英砂岩、岩屑石英砂岩为主,极少见长石砂岩(图3)。为使碎屑组分的统计更加精确,在原有镜下鉴定的基础上(樊爱萍等,2016;崔明明等,2019a),增加了薄片鉴定数量。结果显示,砂岩较为纯净,杂基含量较低,介于1%~9%。岩石粒度为中—粗粒,碎屑颗粒分选中等,磨圆度为次棱角状—次圆状,支撑方式为颗粒支撑(图4a)。
-
碎屑颗粒多为石英、岩屑,石英含量可达71%~92%,岩屑以沉积岩岩屑为主,包括燧石、硅质岩屑等,长石和云母含量较少,长石多被溶蚀成为高岭石。大量石英颗粒构成了骨架颗粒,有利于原生孔隙保存,充填颗粒之间的黏土矿物多堵塞孔隙(图4b),但其发育的晶间孔隙提高了储层孔隙度。这些黏土矿物多为高岭石、伊利石、绿泥石等,其中高岭石多呈书页状或蠕虫状(图4c),伊利石多为丝发状,绿泥石多为薄膜孔隙衬里和针叶状(图4d)。碎屑颗粒之间也常见有嵌晶状方解石、硅质胶结物(图4a),后者多以石英加大边的形式充填于颗粒之间。
-
图2 苏里格气田西南部典型岩芯照片
-
Fig.2 Typical core photos in southwestern Sulige gas field
-
(a)—平行层理,S163井,3687.0 m;(b)—平行层理,S163井, 3615.8 m;(c)—下部小型板状交错层理,上部块状构造,S334井, 3617.7 m;(d)—小型低角度交错层理,S315井, 3753.9 m;(e)—楔状交错层理,S315井, 3670.0 m;(f)—植物碎屑化石,S163井, 3687.7 m
-
(a) —parallel bedding, well S163, 3687.0 m; (b) —parallel bedding, well S163, 3615.8 m; (c) —small tabular cross bedding in the lower part and massive structure in the upper part, well S334, 3617.7 m; (d) —small low angle cross bedding, well S315, 3753.9 m; (e) —wedge cross bedding, well S315, 3670.0 m; (f) —fossil plant debris, well S163, 3687.7 m
-
图3 苏里格气田西南部山1段和盒8段储层砂岩组分三角图
-
Fig.3 Detrital composition of the1st Member of Shanxi Formation and 8th Member of Shihezi Formation sandstones in southwestern Sulige gas field
-
Ⅰ—石英砂岩;Ⅱ—长石石英砂岩;Ⅲ—岩屑长石砂岩;Ⅳ—长石砂岩;Ⅴ—岩屑长石砂岩;Ⅵ—长石岩屑砂岩;Ⅶ—岩屑砂岩
-
Ⅰ—quartzose sandstone; Ⅱ—feldspathic quartz sandstone; Ⅲ—lithic feldspathic sandstone; Ⅳ—feldspar sandstone; Ⅴ—lithic feldspathic sandstone; Ⅵ—feldspathic lithic sandstone; Ⅶ—lithic sandstone
-
3.3 储层物性及孔喉特征
-
研究区储层低孔低渗,孔渗测试显示山1段孔隙度为2.1%~14.6%,平均为7.1%,渗透率为0.01×10-3~1.92×10-3 μm2,平均为0.42×10-3 μm2。盒8段孔隙度为2.2%~13.1%,平均为8.7%,渗透率为0.10×10-3~2.86×10-3 μm2,平均为0.56×10-3 μm2。盒8段储层孔渗稍好于山1段,但都较为致密。镜下鉴定显示储层孔隙类型多样,以晶间孔、残余粒间孔为主,粒间孔隙构成了骨架孔隙结构(图4e),晶间孔较多,溶蚀孔隙有限(图4f)。储层孔喉较小,孔喉配位数较低,一般为1~3,排驱压力0.5~5.9 MPa,喉道多以孔隙缩小型喉道和缩颈型喉道为主。
-
图4 苏里格气田西南部山1段和盒8段储层微观特征
-
Fig.4 Microscopic characteristics of the1st Member of Shanxi Formation and 8th Member of Shihezi Formation reservoir in southwestern Sulige gas field
-
(a)—次棱角状—次圆状石英颗粒,分选中等,颗粒间充填方解石及黏土矿物,S309井,3652.10 m,(+);(b)—伊利石和高岭石等黏土矿物,S161井,3621.30 m,(+);(c)—书页状高岭石,Z31井,3004.47 m, SEM;(d)—针叶状绿泥石,T29井,2779.22 m, SEM;(e)—粒间孔、缩颈型喉道、粒内孔,S161井,3614.50 m(-);(f)—晶间孔和溶蚀孔隙,S163井,3685.65 m(-);(+)—正交偏光;(—)—单偏光
-
(a) —subangular to subrounded quartz particles of medium sorting, filling with calcite and clay minerals, well S309, 3652.10 m, (+) ; (b) —illite and kaolinite, well S161, 3621.30 m, (+) ; (c) —book-shaped kaolinite, well Z31, 3004.47 m, SEM; (d) —japanite, well T29, 2779.22 m, SEM; (e) —intergranular pores, constricted throat, and intragranular pores, well S161, 3614.50 m, (-) ; (f) —intergranular pores and dissolution pores, well S163, 3685.65 m, (-) ; (+) —orthogonal polarized light; (-) —plane polarized light
-
4 非均质性特征
-
苏里格气田储层砂体中普遍存在泥质夹层,同一套砂体存在孔渗差异。在精细地层对比的基础上,确定不同小层之间的孔渗对比,探讨层内、层间、平面非均质性特征。
-
4.1 层内非均质性
-
层内非均质性是指单砂体内储层孔渗在垂向上的变化,表征为储层层内粒度的垂向韵律性、渗透率差异和夹层的不均匀分布等(田景春等,2011;龙盛芳等,2021)。
-
4.1.1 垂向粒度变化
-
砂体垂向粒度变化受沉积分异作用控制,并受水体能量周期性变化和多期、多相砂体叠加影响。厚层复合砂体由多个正韵律、反韵律组成复合韵律,夹杂有不渗透隔挡。不同微相砂体的粒度变化在垂向上也具有一定差异。
-
水下分流河道砂体粒度一般为正韵律,底部可见冲刷面和含砾砂岩,向上逐渐变细,受强水动力淘洗较为纯净,GR曲线多为箱型或高幅钟型,存在单河道侧向迁移和多期河道纵向拼贴、叠置,常形成厚层砂体,中间夹有薄层泥岩,成为泥质夹层隔挡。河口坝多发育在水下分流河道的前方和侧缘,受河水冲刷而分布有限,岩性以灰色中—细砂岩为主,夹少量深灰色泥岩,砂岩颗粒分选好,磨圆好,一般为逆粒序,测井相GR、AC曲线呈中幅漏斗型,河口砂坝多被分流间湾泥岩包裹,存在较多隔层(图5)。席状砂岩性多为粉砂岩,夹杂大量泥岩,可见水平层理、脉状层理、碳屑,其GR、AC曲线呈齿型,由于粒度较细,存在渗透率较低的层位,成为物性夹层。分流间湾多为厚层泥岩,为多层砂岩之间的隔层。
-
4.1.2 厚层砂岩中泥岩夹层分布
-
夹层是指位于单砂体或厚层砂体内部的非渗透层或低渗透层,前人一般将其细分为物性夹层和泥质夹层(叶成林等,2011;杨丽莎等,2013;龙盛芳等,2021)。研究区泥质夹层厚度多小于2 m,一般为厘米级至分米级,山1段和盒8段砂岩中均存在较多泥质夹层(图5、6),泥岩夹层频率分别为0.14层/m 和0.21层/m,夹层密度分别为0.11和0.21,盒8段要多于山1段。相对于山1段的曲流河三角洲前缘沉积,盒8段的辫状河三角洲前缘具有更为频繁的水动力变化,形成的夹层更为广泛,因此夹层频率和夹层密度的差异可能与沉积环境和水动力条件的变化有关。
-
在辫状河或曲流河沉积三角洲前缘沉积中,河流入湖后受水下分流河道迁移和河道局限性影响,多期河道之间以及河道与河口砂坝之间,可叠置形成多相复合砂体(图6)。其中多期河道砂体相互切割、叠置,使相邻河道之间存在泥质沉积物,成为厚层砂体之中的薄夹层,例如X3井与S163井之间的厚层砂体中所夹泥岩薄层(图6)。另外,河道砂体和河口砂坝之间也存在一些泥岩。除了上述泥岩夹层外,在砂体中尤其是席状砂体中,还存在少量低渗透砂岩层,其碎屑颗粒间充填大量杂基和胶结物,喉道细小甚至堵塞,限制了天然气运移,难以形成良好含气层段。
-
4.1.3 层内非均质性定量评价
-
目前已有较多参数来定量评价储层非均质强度,包括渗透率的变异系数(Vk)、突进系数(Tk)以及均质系数(Tp)等(叶成林等,2011;田景春等,2014;龙盛芳等,2021),计算公式如下:
-
式中,Vk为变异系数;Tk为突进系数;Tp为均质系数;ki为层内某样品的渗透率值(×10-3 μm2);为层内所有渗透率的均值(×10-3 μm2);n为样品个数;Kmax为层内最大渗透率(×10-3 μm2)。
-
统计并计算研究区储层渗透率的非均质性参数(表1),结果揭示了研究区储层的强非均质性。其中,盒8段下亚段的渗透率好于盒8段上亚段和山1段,变异系数中盒8段下亚段低于山1段,山1段低于盒8段上亚段,均质系数中盒8段下亚段高于山1段和盒8段上亚段,突进系数中盒8段下亚段低于山1段,山1段稍低于盒8段上亚段。总体来看,盒8段下亚段的储层质量要好于山1段,山1段好于盒8段上亚段。
-
4.2 层间非均质性
-
层间非均质性指相邻储层在垂向上孔渗、岩性、结构等方面的差异,通常用砂地比、夹隔层厚度、分层系数等来表征这一属性(田景春等,2014)。砂地比是指某一层段储层中砂岩总厚度与地层厚度的比值,砂体越发育,其厚度和砂地比越大。分层系数代表某一层段内砂岩的层数,分层系数越大,表明砂体被泥岩分割越严重,泥质隔层越多,层间非均质性也越严重(龙盛芳等,2021)。
-
图5 苏里格气田西南部典型井综合柱状图
-
Fig.5 Synthetic histogram of typical well in southwestern Sulige gas field
-
注: “/”后为平均值。
-
通过对研究区112口井的砂岩厚度分析(表2),盒8段下亚段的砂地比为44.1%,要高于盒8段上亚段的31.2%和山1段的28.2%,并且其厚层砂体较为发育,分层系数要低于两者,说明盒8段下亚段的砂体较厚,为多套厚层砂岩的叠合体,其层间非均质性稍弱。山1段平均地层厚度为27.1 m,砂地比最低,其砂体厚度较薄,分层系数也较高,反映砂体多呈孤立的薄层产出,具有较强的层间非均质性。
-
图6 苏里格气田西南部典型砂体对比剖面(剖面位置见图7)
-
Fig.6 Typical comparative sand body section in southwestern Sulige gas field (location of the section showed in Fig.7)
-
4.3 平面非均质性
-
沉积分异影响了砂体厚度和平面展布形态,造成不同微相砂体在平面上的孔隙度、渗透率和含气饱和度差异,因此可以通过沉积相分布、砂体几何形态和渗透率分布来反映储层的平面非均质性特征。研究区砂体发育受物源影响明显,沿南北方向呈条带状分布,在垂直物源方向上砂体厚度波动较大,不同砂体之间发育分流间湾泥岩,形成较强的平面非均质性。
-
将渗透率等值线叠合在沉积相底图上(图7),可以看出渗透率较高的砂体多集中于水下分流河道以及河道边部的砂坝中,其渗透率最高可大于1.1×10-3 μm2,向外部的席状砂和分流间湾延伸,物性逐渐变差,可低于0.1×10-3 μm2,沿垂直物源方向变化明显,呈现出从河道中心到边部、分流间湾,渗透率逐渐降低的特征。但是在有河口砂坝拼贴的地方或者单独的河口砂坝中,也可能存在高孔渗部位,例如X4井和X1井,渗透率均大于0.8×10-3 μm2。总体而言,储层渗透率受砂体展布影响,具有垂直物源方向上的平面非均质性。
-
5 储层非均质性成因
-
储层非均质性本质是储层砂体及其孔渗空间分布的差异,其形成受砂体展布、储层孔喉性质、岩矿组构等多因素影响(罗晓容等,2016;吴靖等,2017;朱筱敏等,2017;王杰青等,2021)。然而三角洲前缘沉积背景下的砂体叠置模式、岩性变化、碎屑组分变化在根本上决定了孔渗分布,而储层孔喉和岩矿组构在成岩期的微观演化影响了后期成藏。
-
图7 苏里格气田西南部沉积相和渗透率叠合图
-
Fig.7 Sedimentary facies and permeability superposition map in southwestern Sulige gas field
-
5.1 沉积作用对砂体空间展布和储层物性的控制
-
鄂尔多斯盆地二叠系的物源来自北部的阿拉善古陆和阴山古陆,远离物源的苏里格地区多为浅水三角洲沉积(崔明明等,2018;马瑶等,2021)。河控型浅水三角洲向湖泊中心推进时,河道频繁横向迁移(操应长等,2018),并受地形变缓和湖水顶托影响,流速变缓,在河口处形成河口砂坝,河口砂坝受水体冲刷侵蚀,残留少量砂体,可与后期河道砂体叠加形成分流河道-河口坝复合砂体。水下分流河道受河道侧向摆动迁移影响,后期河道可切割、冲刷早期河道并形成叠加、堆积叠置的河道复合砂体(图8a)。这些复合砂体的形成增加了砂体厚度和横向延展性,同时也带来砂体孔渗空间上的差异。
-
在完整水下分流河道砂体中,例如S161井的3612~3616.5 m井段,单砂体多以灰白色、浅灰绿色中—粗砂岩为主,底部存在冲刷面和砾石,向上逐渐变细,呈正韵律,测井曲线多为箱形(图8b);在S161井3626 m 处可见楔状交错层理,两者均代表了较强的水动力条件。
-
在岩矿组构上,碎屑颗粒淘洗较为纯净,石英含量较高,抗压实能力强,有利于原始孔隙保存(图4e);颗粒间泥质杂基较少,喉道多为孔隙缩小型,为成岩期的流体流动提供通道,形成溶蚀孔隙,因此孔隙度、渗透率较好。
-
在垂向上,砂岩粒度逐渐变细,泥岩夹层开始出现,石英含量降低,填隙物、塑性岩屑增多,抗压实能力减弱,从而导致原始粒间孔隙和喉道变差。在平面上,河道横向延伸范围有限,河道边缘处砂体的厚度变薄,逐渐尖灭(图6),不同河道之间夹杂分流间湾泥岩,降低了渗透率,阻隔油气运移。河道边部的砂体原始孔隙欠发育,受周围泥岩压实排出的流体影响,易形成钙质胶结,影响孔渗,从而形成越远离河道,渗透率越差的局面(图7)。
-
对复合砂体而言,多期分流河道在横向上摆动迁移,垂向上叠加,后期河道底部可冲刷早期河道上部,或直接叠置在后期河道的中—细砂岩之上(图8c)。堆叠型河道砂体受旋回韵律影响,在垂向上存在多个孔隙度和渗透率由好到坏的正旋回变化,在横向上受河道侧向连通影响,砂体厚度发生变化,进而形成孔渗的不规律变化。河道砂体与坝砂体或席状砂体在横向或侧向上拼贴形成多相复合砂体时,可导致砂体空间展布规模增大(图8d、e),中间夹有薄层泥岩。其中,河口砂坝多为下细上粗的逆粒序,河道砂体为正粒序,因此两者叠合时,受叠置方式控制,可形成孔渗垂向和横向的多期变化,当河口砂坝叠置在河道之上时,孔渗形成正旋回和反旋回的变化,而其上再叠加河道砂体时,形成相反的孔渗变化(图8d、e),从而造成垂向非均质性。
-
图8 苏里格气田西南部砂体叠置示意图和典型实例(剖面位置见图7)
-
Fig.8 Schematic diagram and typical examples of sand body superposition in southwestern Sulige gas field (location of the section showed in Fig.7)
-
(a)—砂体垂向叠置示意图;(b)—S161井局部柱状图;(c)—S161井局部柱状图;(d)—S183井局部柱状图;(e)—S184井局部柱状图
-
(a) —schematic vertical overlaying histogram of sand body; (b) —part synthetic histogram of well S161; (c) —part synthetic histogram of well S161; (d) —part synthetic histogram of well S183; (e) —part synthetic histogram of well S184
-
不同构型的砂体呈现不同空间展布形态,并对孔渗产生重要影响,通过以上分析,笔者认为砂体厚度和叠置方式影响了砂体粒度的垂向变化和隔夹层分布,决定了储层垂向分布,因此沉积作用是控制储层孔隙度和渗透率变化的关键,并影响了储层展布。此外,砂体中的碎屑组分变化、粒度差异、胶结物类型及组合也会影响储层孔隙演化和成岩特征,从微观角度影响储层的非均质性。
-
5.2 岩矿组构和成岩演化决定储层微观非均质性
-
5.2.1 砂岩组分对储层孔渗的影响
-
刚性石英颗粒在强压实作用下可保留部分原始粒间孔隙,形成的孔隙缩小型喉道可成为良好的油气运移通道(图9a、b),形成较好的渗透率(刘占良等,2015;郭轩豪等,2021),例如S315井3676~3689 m 处,高石英含量砂岩的孔渗较好。部分石英颗粒外围存在加大边等硅质胶结,镜下观察可见硅质胶结阻塞部分孔隙,分隔孔喉,降低孔隙连通性(图9c),从而使储层孔渗变差,也有观点认为石英加大边所遗留的残余粒间孔和颗粒之间的扁平喉道可为后期溶蚀流体提供通道,形成大型铸模孔,对改善储层有利,虽然还存在争议(刘曦翔等,2016;庞军刚等,2021),但是硅质胶结物对残余粒间孔和喉道具有重要影响,其机制可能会成为未来储层孔渗研究的重要科学问题。
-
图9 苏里格气田西南部S315井孔渗、砂岩组分垂向分布和微观特征
-
Fig.9 Vertical distribution of porosity, permeability, detrital composition, and microscopic characteristics in well S315 in southwestern Sulige gas field
-
(a)—石英颗粒之间的残余粒间孔隙,铸体薄片(+);(b)—残余粒间孔隙,铸体薄片(+);(c)—石英加大边和伊利石等阻塞孔隙(+)
-
(a) —residual intergranular pores between quartz grains, cast thin sections (+) ; (b) —residual intergranular pores, cast thin sections (+) ; (c) —quartz cement and illite block the pores (+)
-
钙质胶结物多为方解石和铁方解石,充填于颗粒之间,阻塞孔隙(图9)。岩屑砂岩中云母等塑性岩屑多被弯折充填于颗粒之间,阻塞粒间孔隙和喉道,其孔隙度和渗透率较石英砂岩稍差(图10a、b),但是受后期流体影响可形成大量岩屑溶孔,对孔渗有利。
-
长石在搬运和成岩过程中多发生溶蚀形成高岭石,造成山1段和盒8段长石含量普遍较低(图3),并且高岭石多结合流体中的钾离子向伊利石转化,此外还有绿泥石、蒙脱石、伊蒙混层等黏土矿物。这些黏土矿物具有不同形态,早期研究多将其分为分散质点式、薄膜式和搭桥式等,其含量、类型、产出形态影响了孔隙结构和渗流能力(王行信,1985)。
-
扫描电镜显示高岭石多呈书页状充填并分割原始粒间孔(图4c),但其具有细小的微米级晶间孔隙,可占自身体积的43%(刘占良等,2015;刘曦翔等,2016),晶间孔隙彼此连通,当其具有一定规模时可改善孔隙度(图10c)。伊利石具有长石转化、高岭石转化、蒙脱石化等多种成因,形态上多为片状、纤维状或搭桥状的集合体(郭轩豪等,2021)。其中片状伊利石多充填于颗粒之间,阻塞孔隙,也可能存在少量晶间孔隙(图10d),对改善孔隙度有利;片状或纤维状伊利石可充填于石英颗粒之间,其本身也发育有晶间微孔,改善孔渗(图10e);搭桥状伊利石多切割粒间孔隙,使孔隙变得迂回弯折,成为受束缚的孔隙,纤维状伊利石受冲刷后可阻断原始粒间孔,严重降低渗透率(王行信,1985)。
-
图10 苏里格气田西南部砂岩碎屑组分和胶结物对孔渗的影响
-
Fig.10 Affection of clastic components and cements on porosity and permeability of sandstone in southwestern Sulige gas field
-
(a)—云母充填于颗粒之间,S163井,3621.5 m,(+);(b)—岩屑砂岩中的塑性岩屑和胶结物充填,S334井,3560.2 m,(+);(c)—高岭石晶间孔隙,S315井,3672.2 m,(-);(d)—晶间孔隙,S315井,3754.1 m,(+);(e)—片状伊利石,S315井,3671.4 m, SEM;(f)—孔隙衬里绿泥石,S174井,3655.4 m,(-)
-
(a) —mica is packed between grains, well S163, 3621.5 m, (+) ; (b) —plastic debris and cement filled in the lithic sandstone, well S334, 3560.2 m, (+) ; (c) —kaolinite intercrystalline pores, well S315, 3672.2 m, (-) ; (d) —intercrystalline pores, well S315, 3754.1 m, (+) ; (e) —scaly illite, well S315, 3671.4 m, SEM; (f) —pore lining chlorite, well S174, 3655.4 m, (-)
-
黏土矿物中的绿泥石多呈孔隙衬里(薄膜状绿泥石)和孔隙充填形式存在,其中孔隙衬里绿泥石较为常见,多贴附于颗粒表面或孔隙壁,可阻塞狭小喉道,降低渗透率,但由于分布有限,所造成的影响也有限,也有观点认为此类绿泥石可阻止硅质胶结,提高岩石的抗压实能力,具有与石英、刚性岩屑颗粒等保护原生孔隙类似的作用(祝海华等,2015;樊爱萍等,2016)。因此绿泥石薄膜在孔隙演化中的作用还存在较多争议,针对研究区细致的镜下观察发现,在绿泥石出现的地方,不存在硅质胶结(图10f),也不存在方解石胶结,通过占据和挤压胶结物空间的形式来抑制胶结作用的发生,并能增强石英颗粒的抗压实能力,因此绿泥石薄膜可能有利于保存孔隙。
-
5.2.2 孔隙结构和成岩演化对微观非均质性的影响
-
苏里格气田山1段和盒8段储层埋深为3400~3950 m,最大古地温超过150℃(田景春等,2014)。在深埋藏和强压实背景下,成岩作用和演化过程控制了孔隙结构,形成微观非均质性。结合古地温、成岩矿物序列、前人研究(刘占良等,2015;樊爱萍等,2016;刘曦翔等,2016;Fan Aiping et al.,2017; Li Zhen et al.,2017)和碎屑岩成岩阶段划分标准(SY/T5477—2003),将成岩阶段划定为中成岩B期,主要成岩作用包括机械压实、胶结作用和溶蚀作用等。鉴于前人已对不同类型成岩作用对孔渗影响的研究较多,且不同类型成岩作用随成岩进程而产生的影响程度不同,成岩进程可以更好地揭示孔喉演化过程,因此本文以薄片鉴定、扫描电镜、孔渗分析资料为基础,根据成岩演化过程中不同矿物及其成岩作用对储层孔隙的影响,建立孔隙演化模式图,进而探讨对孔渗的影响(图11)。
-
在同生期—早成岩期阶段,随埋深增大,压实作用占据主导,塑性岩屑被压实变形,颗粒紧密排列,少量点状接触,原始粒间孔隙缩小,喉道多为孔隙缩小型喉道(图11a)。随成岩作用进行,绿泥石薄膜出现,增强了抗压实能力,同时出现方解石和少量高岭石胶结,阻塞孔隙并形成缩颈型喉道,此阶段的压实作用和胶结作用可减孔30%~45%(曹江骏等,2021)。少量岩屑因溶蚀作用形成次生孔隙,对改善孔喉有利,但是规模有限。
-
图11 苏里格气田西南部盒8段和山1段成岩演化对储层孔隙度和渗透率的影响(据李进步等,2020修改)
-
Fig.11 Affection of diagenesis on porosity and permeability of reservoir in the8th Member of Shihezi Formation and 1st Member of Shanxi Formation reservoir in southwestern Sulige gas field (modified from Li Jinbu et al., 2020)
-
(a)—同生—早成岩阶段;(b)—中成岩A期;(c)—中成岩B期; Qtz—石英;RF—岩屑;Qo—石英加大边;Ms—白云母;Cal—方解石;Kln—高岭石;Ill—伊利石;Chl—绿泥石
-
(a) —syngenetic—early diagenetic stage; (b) —middle diagenetic stage A; (c) —middle diagenetic stage B; Qtz—quartz; RF—rock fragment; Qo—quartz overgrowth; Ms—muscovite; Cal—calcite; Kln—kaolinite; Ill—illite; Chl—chlorite
-
在中成岩期A期,随压实进一步增强,颗粒间点状—线状接触(图11b),受挤压应力和矿物充填影响,喉道逐渐变为片状、弯片状;地层中出现酸性流体(祝海华等,2015),促进长石、岩屑等易溶组分的溶蚀,产生大量溶蚀孔隙;此阶段仍然存在一定规模的胶结作用,阻塞粒间孔隙。在中成岩期B期,颗粒间线状—缝合状接触,发育纤维状伊利石、斑点状钙质胶结,渗透率进一步降低,增强了储层非均质性。在中成岩期阶段,受强大地层压力和构造活动影响,碎屑颗粒可破碎形成裂缝,有利于致密气的运移,可提高渗透率。
-
综合上述分析,笔者认为石英、岩屑等碎屑组分和高岭石等黏土矿物的含量对砂岩孔隙结构的改造和孔隙演化带来了深远影响,并受成岩演化过程影响,形成了储层微观非均质性。
-
6 对致密气开发的制约
-
研究区山1段和盒8段储层的烃源岩为石炭系含煤层系,具有广覆式、持续生烃的特点,天然气充注时储层已经致密并形成非均质性(窦伟坦等,2010;孟德伟等,2016)。超压压差和源储压差为成藏动力,天然气沿渗透率相对较高的优势通道运移,进入高孔隙砂体形成气藏,而相对低渗透和非均质性强的砂岩含气丰度较低(Meckel and Thomasson,2008; 张福东等,2018),因此充注过程具有典型的选择性充注特征。若充注时存在地层水影响,距烃源岩较近的部位优先赋存天然气,距烃源岩较远的部位因气驱水不彻底而相对赋存较多地层水,从而形成致密气低效充注的局面(代金友等,2012;刘曦翔等,2016;孟德伟等,2016),并导致致密砂岩空间上的含气性差异(图12)。上述因素共同造成了苏里格地区复杂的气水关系,这也契合了现有研究所揭示的成藏过程中近源运聚、持续充注、非达西渗流特征(樊阳等,2014;赵子龙等,2015)。因此,储层含气性受充注过程影响较大,并在一定程度上受储层非均质性和地层水的影响。
-
砂体厚度和不同期次河道的彼此改造明显控制了砂体渗透能力和气水分布(代金友等,2012;田景春等,2014;马立元等,2020)。本次研究也认为沉积作用影响了砂体发育,对储层渗透率有重要影响,即优势疏导体系多集中于河道砂体中,这主要受辫状河沉积中较强的水动力条件影响,淘洗了纯净的粗碎屑颗粒,有利于流体运移。在这些粗粒、高石英含量、较为纯净的河道砂体中,天然气多驱替地层水向下运移,在渗透率较好的砂体上部形成甜点区。同时,在厚度稍薄的河口砂坝和叠加形成的复合砂体中也有少量高孔渗部位,其分布范围有限,难以形成大规模的片状分布,但也可成为良好的透镜状致密气储集体。因此,笔者认为非均质性对油气富集的制约不能单纯以砂体厚度来衡量,还需要考虑砂体叠置模式和砂岩组构等因素。
-
而对于砂体叠置模式,研究区储层多为致密层—有效储层的垂向叠加,厚层砂体中局部高孔渗的构造高部位常作为甜点区开发,例如多期叠置的水下分流河道、分流河道与河口砂坝复合发育的主砂带,往往是高渗带,也是致密气富集的有利区带,并存在天然气的尖灭、与下部底水的复合(图12)。而在透镜状砂岩中,孔隙度和渗透率要差于这些复合砂体,砂体可能整体含气,但含气丰度较低(张福东等,2018)。厚度较薄或规模较小的河道砂体或坝砂体多被泥岩围限,呈孤立状产出,在致密气充注时受边缘砂体低渗透率控制,气体不易流动而封闭形成良好的产气层段,在没有致密气充注时多形成产水层,且多为孤立的透镜体水。在单独的河道砂体或坝砂体中,受层内非均质性影响不能将全部地层水排出,成为局部成藏滞留水,也就是气藏边底水。因此,砂体厚度和叠置模式共同影响了储层渗透率和地层水分布,进而影响了储层含气性。
-
致密气的选择性充注,不同厚度和构型的复合砂体,砂岩岩矿组分、孔隙结构差异,共同造成了苏里格地区储层的非均质性。油气充注最具规模的砂体应位于厚层复合砂体中高孔隙度部位,这与目前学界主流观点相一致(Ozkan et al.,2011; 赵靖舟等,2013;魏国齐等,2016;Yang Zhi et al.,2017; 操应长等,2018;李进步等,2020),但是在研究区的透镜状砂岩,例如孤立的河口砂坝中,也存在致密气易于充注的良好层段(图12)。目前也有观点认为,在致密砂岩油气成藏过程中多存在充注动力有限的地质背景,此时优选有利区不应只关注厚层高孔渗砂体,而应重点关注规模小、非均质性强的“差砂带”,因为这些砂体往往更利于充注动力有限背景下的油气封堵和成藏(肖正录等,2020)。显然,对强非均质性致密砂岩储层优选目标区还存在较多争议,这也是致密气开发中亟待解决的科学问题之一。因此在致密气藏开发过程中,应充分考虑到储层非均质性对气水分布、油气成藏的影响,以便合理开发。
-
图12 苏里格气田西南部致密气藏气水关系影响因素
-
Fig.12 Influencing factors of gas-water relationship in tight gas reservoir in southwestern Sulige gas field
-
Qtz—石英;RF—岩屑;Qo—石英加大边;Ms—白云母;Cal—方解石;Kln—高岭石;Ill—伊利石
-
Qtz—quartz; RF—rock fragment; Qo—quartz overgrowth; Ms—muscovite; Cal—calcite; Kln—kaolinite; Ill—illite
-
7 结论
-
(1)苏里格气田西南部致密砂岩储层非均质性表现为层内粒度的垂向韵律性、夹层的不均匀分布、渗透率的平面分布差异三个特征。
-
(2)储层非均质性受砂体展布、储层孔喉性质、岩矿组构等多因素影响,其中沉积作用控制了砂体展布、厚度和砂体构型,影响了储层渗透率和地层水分布,进而影响了储层含气性;成岩作用控制了岩矿组构、孔隙结构和孔隙演化,造成了微观上的非均质性。
-
(3)储层非均质性和选择性充注过程共同造成了含气性差异,进而形成气水混存的复杂局面。优选有利区时不应只关注厚层的高孔渗砂体,也应关注规模小、非均质性稍强的透镜状砂体,需要充分考虑到储层非均质性对气水分布、油气成藏的复合影响。
-
参考文献
-
Cao Jiangjun, Chen Chaobing, Cheng Huanghui, Zhu Yujie, Luo Jinglan, Wang Xi, Ma Dina·Ma Wutihan. 2021. Effect of diagenesis on microheterogeneity of deepwater tight sandstone reservoirs: A case study from the Triassic Chang 7 oil-bearing formation in Heshui area, Ordos basin, NW China. Acta Sedimentologica Sinica, 39(4): 1031~1046 (in Chinese with English abstract).
-
Cao Yingchang, Yang Tian, Song Mingshui, Wang Yanzhong, Ma Benben, Wang Jian, Yuan Guanghui, Xi Kelai. 2018. Characteristics of low-permeability clastic reservoirs and genesis of relatively high-quality reservoirs in the continental rift lake basin: A cases study of Paleogene in the Dongying sag, Jiyang depression. Acta Petrolei Sinica, 39(7): 727~743 (in Chinese with English abstract).
-
Cui Mingming, Wang Zongxiu, Fan Aiping, Gao Wanli. 2018. Characteristics of formation water and gas-water relation in southwest Sulige gasfield, Ordos basin. Natural Gas Geoscience, 29(9): 1364~1375 (in Chinese with English abstract).
-
Cui Mingming, Li Jinbu, Wang Zongxiu, Fan Aiping, Gao Wanli, Li Yijun. 2019a. Characteristics of tight sand reservoir and controlling factors of high quality reservoir at braided delta front: A case study from member 8 of Shihezi Formation in southwestern Sulige gas field. Acta Petrolei Sinica, 40(3): 279~294 (in Chinese with English abstract).
-
Cui Mingming, Wang Zongxiu, Fan Aiping, Gao Wanli, Li Jinbu. 2019b. A volumetric model for evaluating tight sandstone gas reserve in the Permian Sulige gas field, Ordos basin, Central China. Acta Geologica Sinica (English Edition), 93(2): 386~399.
-
Dai Jinyou, Li Jiantin, Wang Baogang, Pan Rui. 2012. Distribution regularity and formation mechanism of gas and water in the western area of Sulige gas field, NW China. Petroleum Exploration and Development, 39(5): 524~529 (in Chinese with English abstract).
-
Dou Weitan, Liu Xinshe, Wang Tao. 2010. The origin of formation on water and the regularity of gas and water distribution for the Sulige gas field, Ordos basin. Acta Petrolei Sinica, 31(5): 767~773 (in Chinese with English abstract).
-
Fan Aiping, Wu Xiaoning, Wang Long, Zhang Chunyang, Guo Junfeng. 2016. Diagenetic mineral transformations and reservoir properties in the southwestern Sulige gasfield, Ordos basin, China. Natural Gas Geoscience, 27(7): 1190~1201 (in Chinese with English abstract).
-
Fan Aiping, Yang Renchao, Li Jinbu, Zhao Zhongjun, van Loon A J. 2017. Siliceous cementation of chlorite-coated grains in the Permian sandstone gas reservoirs, Ordos basin. Acta Geologica Sinica (English Edition), 91(3): 1147~1148.
-
Fan Yang, Zha Ming, Jiang Lin, Zhang Shaopeng, Zhang Hong. 2014. Charging mechanism of tight sandstone gas reservoir and its pattern of accumulation and enrichment. Fault-Block Oil & Gas Field, 21(1): 1~6 (in Chinese with English abstract).
-
Guo Xuanhao, Tan Chengqian, Zhao Junhui, Zhao Xin, Wang Jin. 2021. Different influence of diagenesis on micro pore-throat characteristics of tight sandstone reservoirs: Case study of the Triassic Chang 7 member in Jiyuan and Zhenbei areas, Ordos basin. Natural Gas Geoscience, 32(6): 826~835 (in Chinese with English abstract).
-
He Dengfa, Li Desheng, Tong Xiaoguang, Wu Xiaozhi. 2021a. Integrated 3D hydrocarbon exploration in sedimentary basins of China. Oil & Gas Geology, 42(2): 265~284 (in Chinese with English abstract).
-
He Dengfa, Sun Fangyuan, Zhai Yonghe, Bao Hongping, Ma Jinghui, Kai Baize. 2021b. Syncline development and tight sandstone gas accumulation model in Shigouyi area at western margin of Ordos basin. Oil & Gas Geology, 42(2): 370~390 (in Chinese with English abstract).
-
He Jinxian, Zhang Xiaoli, Wu Caifang. 2018. Geochemical characteristics and their geological significance of the sterane in the crude oil of Chang 2 oil group in Yanchang Formation in Xifeng area, Ordos basin. Acta Geologica Sinica (English Edition), 92(supp. 2): 68~70.
-
Li Jinbu, Li Ya, Zhang Ji, Yang Tebo, Fan Aiping, Yang Renchao, Cui Mingming. 2020. Resource evaluation method and influence factors of its parameters for tight sand gas reservoir in southwestern Sulige gas field. Oil & Gas Geology, 41(4): 730~743 (in Chinese with English abstract).
-
Li Keyong, Li Wenhou, Ning Zhenkun, Liang Jiwei. 2020. Spatial-temporal coupling sand control mechanism of Permian source-to-sink system in Ordos basin. Journal of Northwest University (Natural Science Edition), 50(2): 183~192 (in Chinese with English abstract).
-
Li Yonggen, Zhang Chaojun, Zeng Qingcai, Sun Dianxin. 2021. Identification method of gas bearing property of thin tight sandstone based on comprehensive analysis of geology and geophysics: A case study on the 1st Member of Shanxi Formation in North Qingcheng area of Ordos basin. Acta Geologica Sinica, 95(8): 2628~2640 (in Chinese with English abstract).
-
Li Zhen, Wu Shengli, Xia Dongling, Zhang Xiaofang, Huang Mei. 2017. Diagenetic alterations and reservoir heterogeneity within the depositional facies: A case study from distributary-channel belt sandstone of Upper Triassic Yanchang Formation reservoirs (Ordos basin, China). Marine and Petroleum Geology, 86: 950~971.
-
Li Zhuzheng, Li Kaijian, Li Bo, Wang Jiahui, Zhong Jinyin, Wang Haifeng, Yao Wujun. 2020. An internal structure anatomy method for braided-river sandstone reservoirs and its application in the Sulige gas field of the Ordos basin. Natural Gas Industry, 40(4): 30~39 (in Chinese with English abstract).
-
Liu Honglin, Zou Chen, Mei Jue, Zhang Jiehui, Li Xiaobo. 2022. Genesis and geological significance of organic matter nanopores in transitional facie strata: Taking Shanxi Formation in eastern Ordos basin as an example. Acta Geologica Sinica, 96(7): 2562~2572 (in Chinese with English abstract).
-
Liu Xixiang, Ding Xiaoqi, Wang Jia, Liu Xuan, Zhang Yongmei, Gong Yiming. 2016. Influence of sandstone composition on pore structures and gas enrichment degree: A case study on the 8th member of Permian Shihezi Fm in the western Sulige gas field, Ordos basin. Natural Gas Industry, 36(7): 27~32 (in Chinese with English abstract).
-
Liu Zhanliang, Fan Aiping, Li Yijun, Du Zhiwen, Zhao Zhongjun, Zhang Tao. 2015. Constraints of clastic component difference on diagenesis: A case study of sandstone reservoirs in Dong-2 block of the Sulige gas field, Ordos basin. Natural Gas Industry, 35(8): 30~38 (in Chinese with English abstract).
-
Long Shengfang, Wang Yushan, Li Guoliang, Duan Chuanli, Shao Yingming, He Yongmei, Chen Lingyun, Jiao Xu. 2021. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block, Sulige gas field. Lithologic Reservoirs, 33(2): 59~69 (in Chinese with English abstract).
-
Lu Zhiyuan, He Zhiliang, Ma Shizhong, He Yu, Niu Dongliang, Nie Haikuan, Zhu Jie. 2021. Characteristics and sand distribution of high-energy braided river deposits: A case study of X tight well area in eastern Sulige region. Acta Petrolei Sinica, 42(8): 1003~1014 (in Chinese with English abstract).
-
Luo Xiaorong, Wang Zhongnan, Lei Yuhong, Hu Caizhi, Wang Xiangzeng, Zhang Lixia, He Yonghong, Zhang Likuan, Cheng Ming. 2016. Heterogeneity characteristics and accumulation model of ultra-low permeability sandstone reservoirs: A case study of the lower part of Yanchang Formation in the western Ordos basin, China. Acta Petrolei Sinica, 37(S1): 87~98 (in Chinese with English abstract).
-
Ma Liyuan, Hu Mingcai, Qiu Guiqiang, Chen Chunfang, Gao Jinhui, Xu Shilin. 2020. Heterogeneity and structural pattern of Chang 8 reservoir in Zhenjing area, Ordos basin. Acta Sedimentologica Sinica, 38(5): 1088~1098 (in Chinese with English abstract).
-
Ma Yao, Li Wenhou, Zhang Qian, Guo Yanqin, Yuan Zhen, Liao Yun. 2021. Sedimentary characteristics of the middle Permian in Ordos basin and its adjacent areas. Journal of Palaeogeography, 23(1): 81~92 (in Chinese with English abstract).
-
Meckel L D, Thomasson M R. 2008. Pervasive tight-gas sandstone reservoirs: An overview. AAPG Bulletin, (Special Volumes): 13~27.
-
Meng Dewei, Jia Ailin, Ji Guang, He Dongbo. 2016. Water and gas distribution and its controlling factors of large scale tight sand gas: A case study of western Sulige gas field, Ordos basin, NW China. Petroleum Exploration and Development, 43(4): 607~615 (in Chinese with English abstract).
-
Ozkan A, Cumella S P, Milliken K L, Laubach S E. 2011. Prediction of litho facies and reservoir quality using well logs, Late Cretaceous Williams Fork Formation, Mamm Creek field, Piceancebasin, Colorado. AAPG Bulletin, 95(10): 1699~1723.
-
Pang Jungang, Li Wenhou, Guo Jian, Ma Zhiguo, Dong Yu, Chang Liangjie. 2021. Diagenesis characteristics and difference analysis of ultra-low permeability and tight sandstone: Taking Yanchang Formation in Longdong area of Ordos basin as an example. Chinese Journal of Geology, 56(1): 121~135 (in Chinese with English abstract).
-
Tian Jingchun, Wu Qi, Wang Feng, Lin Xiaobing, Zhang Jinquan, Cao Tongsheng. 2011. Research on development factors and the deposition model of large area reservoir sandstones of He8 section of Xiashihezi Formation of Permian in Ordos basin. Acta Petrologica Sinica, 27(8): 2403~2412 (in Chinese with English abstract).
-
Tian Jingchun, Liu Weiwei, Wang Feng, Chen Rong, Lin Xiaobing. 2014. Heterogeneity of the Paleozoic tight sandstone reservoirs in Gaoqiao area of Ordos basin. Oil & Gas Geology, 35(2): 183~189 (in Chinese with English abstract).
-
Wang Jieqing, Xu Shumei, Ren Xincheng, Chi Xinqi, Shu Pengcheng, Liu Xian. Kong Jiahao. 2021. Diageneses and controlling factors of Jurassic Sangonghe Formation reservoirs on the west side of the hinterland of Junggar basin. Acta Petrolei Sinica, 42(3): 319~331 (in Chinese with English abstract).
-
Wang Xingxin. 1985. The effect of clay mineral occurrence on pore structures and production capacity of sandstone in Taikang and Gulong areas. Oil & Gas Geology, (2): 187~196 (in Chinese with English abstract).
-
Wei Guoqi, Zhang Fudong, Li Jun, Yang Shen, Huang Chaoyong, She Yuanqi, Ju Xiujuan, Zhao Lihua. 2016. New progress of tight sand gas accumulation theory and favorable exploration zones in China. Natural Gas Geoscience, 27(2): 199~210 (in Chinese with English abstract).
-
Wei Xinshan, Hu Aiping, Zhao Huitao, Kang Rui, Shi Xiaoying, Liu Xiaopeng. 2017. New geological understanding of tight sandstone gas. Lithologic Reservoirs, 29(1): 11~20 (in Chinese with English abstract).
-
Wu Jing, Jiang Zaixing, Liang Chao. 2017. Lithofacies characteristics of fine grained sedimentary rocks in the upper submember of Member 4 of Shahejie Formation, Dongying sag and their relationship with sedimentary environment. Acta Petrolei Sinica, 38(10): 1110~1122 (in Chinese with English abstract).
-
Xiao Zhenglu, Chen Shijia, Liu Guanglin, Wang Pan, Tang Longxiang, Liu Zhanghao. 2020. Further understanding of differential accumulations of oil and water in tight sandstones with limited charging power: A case study of Chang 8 member in Huachi area, Ordos basin, China. Oil & Gas Geology, 41(6): 15~24 (in Chinese with English abstract).
-
Yang Hua, Fu Jinhua, Liu Xinshe, Meng Peilong. 2012. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos basin. Petroleum Exploration and Development, 39(3): 295~303 (in Chinese with English abstract).
-
Yang Lisha, Chen Bintao, Li Shunli, Yu Xinghe. 2013. Pattern of genesis-based mudstone distribution for sandy braided river: A case study of sandy braided-river outcrop, Datong, Shanxi Province, China. Natural Gas Geoscience, 24(1): 93~98 (in Chinese with English abstract).
-
Yang Zhi, Li Qiyan, Wu Songtao, Lin Senhu, Liu Xinshe. 2017. Evidence of the near-source accumulation of the tight sandstone gas in northern Ordos basin, North-Central China. Acta Geologica Sinica (English Edition), 91(5): 1820~1835.
-
Ye Chenglin, Wang Guoyong, He Kai, Xu Zhongbo. 2011. Macro heterogeneity of reservoirs in Sulige gas field: A case study of the 8th member of the Shihezi Formation and the 1st member of the Shanxi Formation in the Su 53 block. Oil & Gas Geology, 32(2): 236~244 (in Chinese with English abstract).
-
Zhang Fudong, Li Jun, Wei Guoqi, Liu Xinshe, Guo Jianying, Li Jian, Fan Zhiyong, She Yuanqi, Guan Hui, Yang Shen, Shao Liyan. 2018. Formation mechanism of tight sandstone gas in areas of low hydrocarbon generation intensity: A case study of the Upper Paleozoic in North Tianhuan depression in Ordos basin, NW China. Petroleum Exploration and Development, 45(1): 73~81 (in Chinese with English abstract).
-
Zhao Jingzhou, Fu Jinhua, Yao Jingli, Liu Xinshe, Wang Honge, Cao Qing, Wang Xiaomei, Ma Yanping, Fan Yuanfang. 2012. Quasi-continuous accumulation model of large tight sandstone gas field in Ordos basin. Acta Petrolei Sinica, 33(1): 37~53 (in Chinese with English abstract).
-
Zhao Jingzhou, Li Jun, Cao Qing, Bai Yubin, Er Chuang, Wang Xiaomei, Xiao Hui, Wu Weitao. 2013. Hydrocarbon accumulation patterns of large tight oil and gas fields. Oil & Gas Geology, 34(5): 573~583 (in Chinese with English abstract).
-
Zhao Zilong, Zhao Jingzhou, Cao Lei, Wang Jiangtao. 2015. Accumulation process analysis on tight sandstone gas based on charging simulation experiment: An example of Ordos basin. Xinjiang Petroleum Geology, 36(5): 583~587 (in Chinese with English abstract).
-
Zhong Dakang. 2017. Micro petrology, pore throat characteristics and genetic mechanism of tight oil reservoirs: A case from the 6th and 7th members of Triassic Yanchang Formation in the Ordos basin. Oil & Gas Geology, 38(1): 49~61 (in Chinese with English abstract).
-
Zhu Haihua, Zhong Dakang, Yao Jingli, Sun Haitao, Niu Xiaobing, Liang Xiaowei, You Yuan, Li Xin. 2015. Alkaline diagenesis and its effects on reservoir porosity: A case study of Upper Triassic Chang 7 tight sandstones in Ordos basin, NW China. Petroleum Exploration and Development, 42(1): 51~59 (in Chinese with English abstract).
-
Zhu Xiaomin, Ge Jiawang, Zhao Hongchao, Yuan Lizhong, Liu Jun. 2017. Development of shelf-edge delta researches and typical case analyses. Acta Sedimentologica Sinica, 35(5): 945~957 (in Chinese with English abstract).
-
Zou Caineng, Zhao Wenzhi, Zhang Xingyang, Luo Ping, Wang Lan, Liu Liuhong, Xue Shuhao, Yuan Xuanjun, Zhu Rukai, Tao Shizhen. 2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813~825 (in Chinese with English abstract).
-
Zou Caineng, Yang Zhi, Zhu Rukai, Zhang Guosheng, Hou Lianhua, Wu Songtao, Tao Shizhen, Yuan Xuanjun, Dong Dazhong, Wang Yuman. 2015. Progress in China's unconventional oil & gas exploration and development and theoretical technologies. Acta Geologica Sinica, 89(6): 979~1007 (in Chinese with English abstract).
-
Zou Caineng, Tao Shizhen, Han Wenxue, Ma Weijiao, Li Changwei, Bai Bin, Gao Xiaohui. 2018. Geological and geochemical characteristics and exploration prospect of coal-derived tight sandstone gas in China: Case study of the Ordos, Sichuan, and Tarim basins. Acta Geologica Sinica (English Edition), 92(4): 1609~1626.
-
曹江骏, 陈朝兵, 程皇辉, 朱玉杰, 罗静兰, 王茜, 马迪娜·马吾提汗. 2021. 成岩作用对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地合水地区长7油层组为例. 沉积学报, 39(4): 1031~1046.
-
操应长, 杨田, 宋明水, 王艳忠, 马奔奔, 王健, 远光辉, 葸克来. 2018. 陆相断陷湖盆低渗透碎屑岩储层特征及相对优质储层成因——以济阳坳陷东营凹陷古近系为例. 石油学报, 39(7): 727~743.
-
崔明明, 王宗秀, 樊爱萍, 高万里. 2018. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系. 天然气地球科学, 29(9): 1364~1375.
-
崔明明, 李进步, 王宗秀, 樊爱萍, 高万里, 李义军, 王一. 2019a. 辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素——以苏里格气田西南部石盒子组8段为例. 石油学报, 40(3): 279~294.
-
代金友, 李建霆, 王宝刚, 潘瑞. 2012. 苏里格气田西区气水分布规律及其形成机理. 石油勘探与开发, 39(5): 524~529.
-
窦伟坦, 刘新社, 王涛. 2010. 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律. 石油学报, 31(5): 767~773.
-
樊爱萍, 吴小宁, 王龙, 张春阳, 郭俊锋. 2016. 鄂尔多斯盆地苏里格气田西南部成岩矿物转化与储层物性. 天然气地球科学, 27(7): 1190~1201.
-
樊阳, 查明, 姜林, 张少鹏, 张洪. 2014. 致密砂岩气充注机制及成藏富集规律. 断块油气田, 21(1): 1~6.
-
郭轩豪, 谭成仟, 赵军辉, 赵信, 王进. 2021. 成岩作用对致密砂岩储层微观结构的影响差异——以鄂尔多斯盆地姬塬和镇北地区长7段为例. 天然气地球科学, 32(6): 826~835.
-
何登发, 李德生, 童晓光, 吴晓智. 2021a. 中国沉积盆地油气立体综合勘探论. 石油与天然气地质, 42(2): 265~284.
-
何登发, 孙方源, 翟咏荷, 包洪平, 马静辉, 开百泽. 2021b. 鄂尔多斯盆地西缘石沟驿向斜的形成演化与致密砂岩气成藏模式. 石油与天然气地质, 42(2): 370~390.
-
李进步, 李娅, 张吉, 杨特波, 樊爱萍, 杨仁超, 崔明明. 2020. 苏里格气田西南部致密砂岩气藏资源评价方法及评价参数的影响因素. 石油与天然气地质, 41(4): 730~743.
-
李克永, 李文厚, 宇振昆, 梁积伟. 2020. 鄂尔多斯盆地二叠系盒8期源-汇系统时空耦合控砂机制. 西北大学学报(自然科学版), 50(2): 183~192.
-
李勇根, 张朝军, 曾庆才, 孙殿新. 2021. 薄层砂岩含气性多维信息加权约束地震反演判识方法及应用——以鄂尔多斯盆地陇东地区山西组一段为例. 地质学报, 95(8): 2628~2640.
-
李柱正, 李开建, 李波, 王家辉, 钟金银, 王海峰, 姚武君. 2020. 辫状河砂岩储层内部结构解剖方法及其应用——以鄂尔多斯盆地苏里格气田为例. 天然气工业, 40(4): 30~39.
-
刘洪林, 邹辰, 梅珏, 张介辉, 李晓波. 2022. 海陆过渡相地层有机质纳米孔成因及地质意义——以鄂尔多斯盆地东部山西组为例. 地质学报, 96(7): 2562~2572.
-
刘曦翔, 丁晓琪, 王嘉, 刘璇, 张咏梅, 贡一鸣. 2016. 砂岩成分对储层孔隙结构及天然气富集程度的影响——以苏里格气田西区二叠系石盒子组8段为例. 天然气工业, 36(7): 27~32.
-
刘占良, 樊爱萍, 李义军, 杜支文, 赵忠军, 张涛. 2015. 碎屑组分差异对成岩作用的约束——以苏里格气田东二区砂岩储层为例. 天然气工业, 35(8): 30~38.
-
龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 2021. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征. 岩性油气藏, 33(2): 59~69.
-
卢志远, 何治亮, 马世忠, 何宇, 牛东亮, 聂海宽, 朱杰. 2021. 高能辫状河沉积特征及砂体分布——以苏东X密井网区为例. 石油学报, 42(8): 1003~1014.
-
罗晓容, 王忠楠, 雷裕红, 胡才志, 王香增, 张丽霞, 贺永红, 张立宽, 程明. 2016. 特超低渗砂岩油藏储层非均质性特征与成藏模式——以鄂尔多斯盆地西部延长组下组合为例. 石油学报, 37(S1): 87~98.
-
马立元, 胡才志, 邱桂强, 陈纯芳, 高金慧, 徐士林. 2020. 鄂尔多斯盆地镇泾地区长8段储层非均质性及其结构模式. 沉积学报, 38(5): 1088~1098.
-
马瑶, 李文厚, 张倩, 郭艳琴, 袁珍, 廖芸. 2021. 鄂尔多斯盆地及周缘地区中二叠统沉积特征. 古地理学报, 23(1): 81~92.
-
孟德伟, 贾爱林, 冀光, 何东博. 2016. 大型致密砂岩气田气水分布规律及控制因素——以鄂尔多斯盆地苏里格气田西区为例. 石油勘探与开发, 43(4): 607~615.
-
庞军刚, 李文厚, 国吉安, 马治国, 东玉, 常梁杰. 2021. 特低渗透-致密砂岩成岩作用特征及其差异性分析——以鄂尔多斯盆地陇东地区延长组为例. 地质科学, 56(1): 121~135.
-
田景春, 吴琦, 王峰, 林小兵, 张锦泉, 曹桐生. 2011. 鄂尔多斯盆地下石盒子组盒8段储集砂体发育控制因素及沉积模式研究. 岩石学报, 27(8): 2403~2412.
-
田景春, 刘伟伟, 王峰, 陈蓉, 林小兵. 2014. 鄂尔多斯盆地高桥地区上古生界致密砂岩储层非均质性特征. 石油与天然气地质, 35(2): 183~189.
-
王杰青, 许淑梅, 任新成, 池鑫琪, 舒鹏程, 刘弦, 孔家豪. 2021. 准噶尔盆地腹部西侧侏罗系三工河组储层成岩作用及控制因素. 石油学报, 42(3): 319~331.
-
王行信. 1985. 泰康和古龙地区粘土矿物对砂岩储层孔隙结构及产能的影响. 石油与天然气地质, (2): 187~196.
-
魏国齐, 张福东, 李君, 杨慎, 黄朝勇, 佘源琦, 鞠秀娟, 赵丽华. 2016. 中国致密砂岩气成藏理论进展. 天然气地球科学, 27(2): 199~210.
-
魏新善, 胡爱平, 赵会涛, 康锐, 石晓英, 刘晓鹏. 2017. 致密砂岩气地质认识新进展. 岩性油气藏, 29(1): 11~20.
-
吴靖, 姜在兴, 梁超. 2017. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系. 石油学报, 38(10): 1110~1122.
-
肖正录, 陈世加, 刘广林, 王攀, 唐隆祥, 刘章昊. 2020. 有限充注动力背景下致密储层油水差异成藏再认识——以鄂尔多斯盆地华池地区延长组8段为例. 石油与天然气地质, 41(6): 15~24.
-
杨华, 付金华, 刘新社, 孟培龙. 2012. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发. 石油勘探与开发, 39(3): 295~303.
-
杨丽莎, 陈彬滔, 李顺利, 于兴河. 2013. 基于成因类型的砂质辫状河泥岩分布模式: 以山西大同侏罗系砂质辫状河露头为例. 天然气地球科学, 24(1): 93~98.
-
叶成林, 王国勇, 何凯, 徐中波. 2011. 苏里格气田储层宏观非均质性: 以苏53区块石盒子组8段和山西组1段为例. 石油与天然气地质, 32(2): 236~244.
-
张福东, 李君, 魏国齐, 刘新社, 国建英, 李剑, 范志勇, 佘源琦, 关辉, 杨慎, 邵丽艳. 2018. 低生烃强度区致密砂岩气形成机制: 以鄂尔多斯盆地天环坳陷北段上古生界为例. 石油勘探与开发, 45(1): 73~81.
-
赵靖舟, 付金华, 姚泾利, 刘新社, 王宏娥, 曹青, 王晓梅, 马艳萍, 凡元芳. 2012. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式. 石油学报, 33(1): 37~53.
-
赵靖舟, 李军, 曹青, 白玉彬, 耳闯, 王晓梅, 肖晖, 吴伟涛. 2013. 论致密大油气田成藏模式. 石油与天然气地质, 34(5): 573~583.
-
赵子龙, 赵靖舟, 曹磊, 王江涛. 2015. 基于充注模拟实验的致密砂岩气成藏过程分析——以鄂尔多斯盆地为例. 新疆石油地质, 36(5): 583~587.
-
钟大康. 2017. 致密油储层微观特征及其形成机理——以鄂尔多斯盆地长6—长7段为例. 石油与天然气地质, 38(1): 49~61.
-
祝海华, 钟大康, 姚泾利, 孙海涛, 牛小兵, 梁晓伟, 尤源, 李鑫. 2015. 碱性环境成岩作用及对储集层孔隙的影响——以鄂尔多斯盆地长7段致密砂岩为例. 石油勘探与开发, 42(1): 51~59.
-
朱筱敏, 葛家旺, 赵宏超, 袁立忠, 刘军. 2017. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 35(5): 945~957.
-
邹才能, 赵文智, 张兴阳, 罗平, 王岚, 刘柳红, 薛叔浩, 袁选俊, 朱如凯, 陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813~825.
-
邹才能, 杨志, 朱如凯, 张国生, 侯连华, 吴松涛, 陶士振, 袁选俊, 董大忠, 王玉满. 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979~1007.
-
摘要
致密砂岩气藏是我国非常规油气资源的重要组成,其储层非均质性严重影响了致密气成藏和甜点区优选,进而制约了气田高效开发。为进一步揭示储层非均质性成因及对致密气成藏的影响,选取鄂尔多斯盆地苏里格气田西南部山1段和盒8段致密储层为例,通过岩芯观察、扫描电镜、薄片鉴定、生产和测井分析等技术手段,研究储层非均质特征,探讨沉积作用和微观孔隙演化对非均质性和成藏的影响。结果表明,储层非均质性多表现为层内粒度的垂向韵律性、夹层的不均匀分布、渗透率的平面分布差异等;储层非均质性受沉积作用和成岩作用共同影响,沉积作用控制了水动力条件、砂体展布、厚度和砂体构型,储层微观非均质性受岩矿组构和孔隙演化影响;不同厚度和构型的复合砂体,多样的矿物组分、孔隙结构,致密气的选择性充注,共同造成了苏里格地区致密储层的非均质性及含气性差异。复合砂体的高孔渗部位是致密气开采的甜点区,但是在优选有利区时不应只关注这些厚层的高孔渗砂体,也应关注规模小、非均质性稍强的透镜状砂体,需要充分考虑到储层非均质性对致密气成藏的影响。
Abstract
Tight sandstone gas reservoirs are important component of unconventional oil and gas resources in China. Tight gas accumulation and key target optimization are affected by reservoir heterogeneity, which in turn restricts the efficient development of gas field. This study aims to investigate the characteristics and formation of reservoir heterogeneity. Taking reservoirs of the 1st Member of Shanxi Formation and the 8th Member of Shihezi Formation in the southwestern Sulige gas field as examples, based on core analysis, scanning electron microscopy analysis, thin section identification, production data, and logging data analysis, the heterogeneity characteristics and gas-water distribution are analyzed, and the influences of sedimentation and microscopic pore evolution on tight gas reservoir are discussed. The results show that reservoirs in southwestern Sulige gas field have strong heterogeneity. Heterogeneity is mainly manifested by vertical rhythm of grain size, uneven distribution of interlayer, and permeability differences in reservoir. Heterogeneity is also influenced by sedimentation and diagenesis. Sedimentation controls the hydrodynamic condition, distribution, thickness and superimposition patterns of sand bodies. Microscopic heterogeneity is influenced by sandstone composition and pore evolution. The heterogeneity and gas-bearing distribution of tight reservoirs in the Sulige area are controlled by the composite sand body with different thickness and superimposition patterns, the sandstone composition, pore-throat structure, and the selective charging of tight gas. The high porosity and permeability of the composite sand body is the sweet spot of tight gas. However, attention should not only be paid to the thick sand body with high porosity and permeability, but also to the small-scaled lenticular sand body with strong heterogeneity when optimizing target area. The influence of reservoir heterogeneity on gas-water distribution and hydrocarbon accumulation should be fully considered in tight gas production.