en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杜文波,男,1986年生。硕士,高级工程师,主要从事层序地层学和海洋地质等研究。E-mail:superdwb@outlook.com。

通讯作者:

朱荣伟,男,1988年生。博士,高级工程师,主要从事海洋地质与油气地质方面研究。E-mail:zhurongwei1209@126.com。

参考文献
Bai Zhenhua, Li Shengli, Su Yan, Ma Xing, Li Maowen. 2011. Provenance analysis of 3rd member of Oligocene Lingshui Formation in the Yacheng13-1 Gasfield, Qiongdongnan basin. Geology in China, 38(2): 384~392 (in Chinese with English abstract).
参考文献
Cui Yuchi, Cao Licheng, Qiao Peijun, Chen Shuhui, Pang Xiong, Shao Lei. 2018. Provenance evolution of Paleogene sequence (northern South China Sea) based on detrital zircon U-Pb dating analysis. Earth Science, 43(11): 4169~4179 (in Chinese with English abstract).
参考文献
Du Jiayuan, Zhang Xiangtao, Liu Pei, Luo Ming, Zhang Qin, Yao Jiali, Wang Xuchen, Liang Jie. 2021. Classification of the Paleogene source-to-sink system and its petroleum geological significance in the Zhuyi depression of the Pearl River Mouth basin. Earth Science, 46(10): 3690~3706 (in Chinese with English abstract).
参考文献
Du Wenbo, Sun Guihua, Huang Yongjian, Shu Yu, Nie Xin. 2015a. Reservoir prediction based on seismic multi-attributes analysis: an example from Paleogene Enping Formation of Enping sag in the Pearl River Mouth basin. Marine. Geology Frontiers, 31(8): 62~70 (in Chinese with English abstract).
参考文献
Du Wenbo, Sun Guihua, Shu Yu. 2015b. Seismic sedimentology of Paleogene Enping Formation in Enping sag, Pearl River Mouth basin. Geological Science and Technology Information, 34(3): 220~229 (in Chinese with English abstract).
参考文献
Du Wenbo, Huang Wenkai, Zhu Hongtao, Zhang Lu, Jakub Miluch. 2020. Sedimentary system, stratigraphic architecture, and petroleum exploration prospect in the western Taiwan Strait. Geology in China, 47(5): 1542~1553 (in Chinese with English abstract).
参考文献
Du Wenbo, Qiu Yan, Huang Wenkai, Han Bing. 2021. Zengmu Xi fault on the western-border of South China Sea and its control over the sedimentation of the basin. Marine Geologogy & Quaternary Geology, 41(2): 100~108 (in Chinese with English abstract).
参考文献
Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping. 2021. Variability in sequence stratigraphic architectures of lower-middle Miocene Pearl River delta, northern Enping sag, Pearl River Mouth basin: implications for lithological trap development. Earth Science, 46(5): 1758~1770 (in Chinese with English abstract).
参考文献
Gong Li, Zhu Hongtao, Shu Yu, Fu Xin, Yang Xianghua. 2014. Distribution of middle-deep lacustrine source rocks within sequence stratigraphic framework of Wenchang Formation in Enping depression, the Pearl River Mouth basin. Earth Science, 39(5): 546~556 (in Chinese with English abstract).
参考文献
Han Yinxue, Chen Ying, Yang Haichang, Wang Longying, Shen Huailei, Guo Shuai, Ji Mo, Zeng Zhiwei. 2017. “Source to sink” of Enping Formation and its effects on oil and gas exploration in Baiyun sag, Pearl River Mouth basin. China Petroleum Exploration, 22(2): 25~34 (in Chinese with English abstract).
参考文献
Harms U, Koeberl C, Zobac K M D. 2007. Continental Scientific Drilling. Berlin: Springer.
参考文献
Lin Changsong, He Min, Steel R J, Zhang Zhongtao, Li Hao, Zhang Bo, Wu Wei, Shu Liangfeng, Tian Hongxun, Zhang Xin, Xing Zuochang, Wang Siqi, Zhang Manli. 2018. Changes in inner- to outer-shelf delta architecture, Oligocene to Quaternary Pearl River shelf-margin prism, northern South China Sea. Marine Geology, 404: 187~204.
参考文献
Lin Jian, Li Jiabiao, Xu Yigang, Sun Zhen, Xia Shaohong, Huang Xiaolong, Xie Xinong, Li Chunfeng, Ding Weiwei, Zhou Zhiyuan, Zhang Fan, Luo Yiming. 2019. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao, 41(10): 125~140 (in Chinese with English abstract).
参考文献
Liu An, Wu Shimin. 2011. A discussion on the formation of granite in the Pearl River Mouth basin and its implication to hydrocarbon resource. Earth Science Frontier, 18(1): 141~148 (in Chinese with English abstract).
参考文献
Liu Qianghu, Zhu Hongtao, Yang Xianghua, Shu Yu, Huang Zhong. 2013. Quantitative recognition of seismic sequence stratigraphic unit in Wenchang Formation, Paleogene, Enping sag, Pearl River Mouth basin. Journal of Central South University (Science and Technology), 44(3): 1076~1082 (in Chinese with English abstract).
参考文献
Liu Qianghu, Zhu Hongtao, Shu Yu, Zhu Xiaomin, Yang Xianghua, Chen Liang, Tan Mingxuan, Geng Mingyang. 2016. Provenance identification and sedimentary analysis of the beach and bar systems in the Paleogene of the Enping sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 70: 251~272.
参考文献
Liu Zhongqiang, Suo Yanhui, Du Xiaodong, Cai Guofu, Cheng Haohao, Wang Guangzeng, Zhou Jie, Diao Yixiao, Fu Xinjian, Li Sanzhong. 2022. Scientific drilling sites of the northern South China Sea margin: insights from sediment source-to-sink in the Pearl River Mouth basin. Acta Geologica Sinica, 96(8): 2775~2787.
参考文献
Long Hoang, Wu Yuanfu, Clift P D, Wysocka A. 2009. Evaluating the evolution of the red river system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): 292~310.
参考文献
Shao Lei, Cao Licheng, Pang Xiong, Jiang Tao, Qiao Peijun, Zhao Meng. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255~269.
参考文献
Sun Zhen, Xu Ziying, Sun Longtao, Pang Xiong, Yan Chengzhi, Li Yuanping, Zhao Zhongxian, Wang Zhangwen, Zhang Cuimei. 2014. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin. Asian Earth Science, 89: 76~87.
参考文献
Vail P R. 1983. Seismic stratigraphy and the evaluation of depositional sequences facies. Geophysical Journal of the Royal Astronomical Society, 73: 278.
参考文献
Wang Jiahao, Liu Lihua, Chen Shenhong, Shang Yale. 2011. Tectonic-sedimentary responses to the second episode of the Zhu-Qiong movement in the Enping depression, Pearl River Mouth basin and its regional tectonic significance. Acta Petrolei Sinica, 32(4): 588~595 (in Chinese with English abstract).
参考文献
Yang Tian, Cao Yingchang, Tian Jingchun, Niu Xiaobing, Li Shixiang, Zhou Xinping, Jin Jiehua, Zhang Yian. 2021. Deposition of deep-water gravity-flow hybrid event beds in lacustrine basins and their sedimentological significance. Acta Geological Sinica, 95(12): 3842~3857 (in Chinese with English abstract).
参考文献
Zeng Zhiwei, Yang Xianghua, Shu Yu, Chen Shenghong, Wu Jing, Wang Wei, Xia Chenchen. 2015. Structure palaeogeomorphology characteristics and sand bodies distribution regularities of Paleogene Wenchang Formation in Enping sag: under the conditions of lack of drilling data to predict and evaluate the reservoir sand bodies. Geoscience, 29(4): 804~815 (in Chinese with English abstract).
参考文献
Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Xia Chenchen, Chen Ying, Han Yinxue. 2017. Provenance transformation and sedimentary evolution of Enping Formation, Baiyun sag, Pearl River Mouth basin. Earth Science: Journal of China University of Geosciences, 42(11): 1936~1954 (in Chinese with English abstract).
参考文献
Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Zeng Hongliu, Zhang Gongcheng. 2020. Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 112: 104048.
参考文献
Zhang Jinyu, Kim W, Olariu C, Steel R. 2019. Accommodation- versus supply-dominated systems for sediment partitioning to deep water. Geology, 47: 1~4.
参考文献
Zhu Dingwei, Peng Guangrong, Zhang Zhongtao, Yu Shuiming, Wu Jing, Xu Xinming, Li Kongsen. 2022. Hydrocarbon accumulation conditions in drape structure zone north of Enpingsag, Pearl River Mouth basin. China Offshore Oil and Gas, 34(1): 36~44 (in Chinese with English abstract).
参考文献
Zhu Hongtao, Yang Xianghua, Zhou Xinhuai, Li Jianping, Wang Deying, Li Min. 2013. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag. Earth Science: Journal of China University of Geosciences, 38(1): 121~129 (in Chinese with English abstract).
参考文献
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).
参考文献
白振华, 李胜利, 苏燕, 马行陟, 李茂文. 2011. 琼东南盆地崖城13-1气田渐新统陵三段沉积物源综合分析. 中国地质, 38(2): 384~392.
参考文献
崔宇驰, 曹立成, 乔培军, 陈淑慧, 庞雄, 邵磊. 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169~4179.
参考文献
杜家元, 张向涛, 刘培, 罗明, 张琴, 姚佳利, 王绪诚, 梁杰. 2021. 珠江口盆地珠一坳陷古近系“源-汇”系统分类及石油地质意义. 地球科学, 46(10): 3690~3706.
参考文献
杜文波 , 孙桂华, 黄永健, 舒誉, 聂鑫. 2015a. 基于地震多属性的储层预测——以珠江口盆地恩平凹陷古近系恩平组为例. 海洋地质前沿, 31(8): 62~70.
参考文献
杜文波, 孙桂华, 舒誉. 2015b. 珠江口盆地恩平凹陷古近系恩平组地震沉积学研究. 地质科技情报, 34(3): 220~229.
参考文献
杜文波, 黄文凯, 朱红涛, 张璐, Jakub Miluch. 2020. 台湾海峡西部海域沉积体系、地层架构与油气勘探前景. 中国地质, 47(5): 1542~1553.
参考文献
杜文波, 邱燕, 黄文凯, 韩冰. 2021. 南海西缘曾母西断裂构造特征及其对盆地沉积发育的控制作用. 海洋地质与第四纪地质, 41(2): 100~108.
参考文献
高阳东, 张向涛, 李智高, 丁琳, 李小平. 2021. 珠江口盆地恩平凹陷北带下-中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758~1770.
参考文献
龚丽, 朱红涛, 舒誉, 付鑫, 杨香华. 2014. 珠江口盆地恩平凹陷文昌组层序格架中中- 深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546~556.
参考文献
韩银学, 陈莹, 杨海长, 王龙颖, 沈怀磊, 郭帅, 纪沫, 曾智伟. 2017. 白云凹陷恩平组“源-汇”体系及其对油气勘探的影响. 中国石油勘探, 22(2): 25~34.
参考文献
林间, 李家彪, 徐义刚, 孙珍, 夏少红, 黄小龙, 解习农, 李春峰, 丁巍伟, 周志远, 张帆, 罗怡鸣. 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125~140.
参考文献
刘安, 吴世敏. 2011. 珠江口盆地花岗岩成因探讨及其对油气资源指示意义. 地学前缘, 18(1): 141~148.
参考文献
刘强虎, 朱红涛, 杨香华, 舒誉, 黄众. 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3): 1076~1082.
参考文献
刘仲强, 索艳慧, 杜晓东, 蔡国富, 程昊皞, 王光增, 周洁, 刁一笑, 付新建, 李三忠. 2022. 南海北部陆缘大陆架科学钻探选址: 珠江口盆地沉积源汇启示. 地质学报, 96(8): 2775~2787.
参考文献
王家豪, 刘丽华 , 陈胜红, 尚亚乐. 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588~595.
参考文献
杨田, 操应长, 田景春, 牛小兵, 李士祥, 周新平, 金杰华, 张倚安. 2021. 陆相湖盆深水重力流混合事件层沉积及沉积学意义. 地质学报, 95(12): 3842~3857.
参考文献
曾智伟, 杨香华, 舒誉, 陈胜红, 吴静, 王维, 夏晨晨. 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律. 现代地质, 29(4): 804~815.
参考文献
曾智伟, 朱红涛, 杨香华, 夏晨晨, 陈莹, 韩银学. 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936~1954.
参考文献
朱定伟, 彭光荣, 张忠涛, 于水明, 吴静, 许新明, 李孔森. 2022. 珠江口盆地恩平凹陷北部披覆带油气成藏条件. 中国海上油气, 34(1): 36~44.
参考文献
朱红涛, 杨香华, 周心怀, 李建平, 王德英, 李敏. 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学: 中国地质大学学报, 38(1): 121~129.
参考文献
朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相湖盆源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.
目录contents

    摘要

    物源体系分析是沉积盆地特征分析的重要内容,为进一步阐明珠江口盆地恩平凹陷恩平组的沉积特征和物源体系,本文拟利用恩平凹陷的三维地震资料和钻井数据,通过古生物环境分析和锆石U-Pb定年等方法,并借助地震剖面中古沟谷的识别、前积反射结构、地震多属性分析结果和沉积相带平面分布特征,对恩平凹陷恩平组物源体系特征进行综合分析。研究结果表明,恩平组PSQ1~PSQ2时期表现位明显的陆相湖盆特征,物源主要为珠江口盆地内隆起的古生代变质岩和中生代火成岩基底,少量来源于北部华南褶皱带的元古宙变质岩;随着PSQ3时期断层活动逐渐停止,湖平面不断上升,华南褶皱带物源供给能力明显增强,逐渐成为恩平凹陷主要物源。鉴于目前南海北部缺少陆相湖盆地层的完整岩芯剖面,制约了南海北部裂陷期构造-沉积耦合研究并影响了该地区的油气勘探,建议下一步在南海北部陆相沉积盆地(如珠江口盆地)开展大洋钻探工作,以便获取更连续、时间精度更高,受风化作用影响更小的陆相湖盆地层的完整岩芯剖面。这不仅有利于指导下一步油气勘探,也可通过重建陆相沉积盆地不同地质历史时期的沉积变化过程,为了解古气候状态和预测未来气候变化提供重要依据。

    Abstract

    Provenance systems analysis are important part of sedimentary basin characterisation. A comprehensive analysis of the provenance systems characteristics of the Enping Formation in the Enping sag was undertaken based on 3D seismic data and drilling data from the Enping sag, and paleontological environment analysis, zircon U-Pb dating, identification of ancient valleys, progradation reflection, seismic multi-attribute and characteristics of sedimentary facies. The research results show that the PSQ1-PSQ2 of the Enping Formation exhibits obvious lacustrine rift basin characteristics, and the provenance is dominated by Paleozoic metamorphic and Mesozoic igneous rocks in the uplift region of the Pearl River Mouth basin, and a small amount of Proterozoic metamorphic rocks in the northern South China fold belt.During the PSQ3, the fault activity gradually ceased, the lake level continued to rise, and the provenance supply capacity of the South China fold belt increased and gradually became the main provenance of the Enping sag. The lack of complete core profiles of continental basins in the northern South China Sea limits the structural-sedimentary coupling research during the rifting period and affects the next oil and gas exploration in this area. Therefore,it is suggested that ocean drilling should be carried out in continental sedimentary basins (such as the Pearl River Mouth basin) in the northern South China Sea,in order to obtain core section which are continuous, undisturbed and chronologically well constrained. This is not only beneficial to guide the next hydrocarbon exploration, but also provides an important basis for understanding the paleoclimate and predicting future climate change by reconstructing the sedimentary change process of the continental sedimentary basin in a different geological period.

  • 物源体系分析成已为确定物源区位置、性质、沉积物搬运路径、预测古水流体系的形态、判断沉积相带分布位置、再现沉积盆地演化、恢复古环境和古气候的重要依据,是沉积盆地特征分析的重要内容(朱红涛等, 2013;杜文波等, 2015b)。陆相沉积盆地对应的沉积体系相对被动大陆边缘盆地来说更加复杂,在不同的构造背景及地形边界控制下,形成不同的沉积体系,且陆相盆地物源体系到沉积体系的过程中受多种因素控制。因此,开展陆相沉积盆地物源体系分析具有重要的科学意义和商业价值。

  • 珠江口盆地在文昌组沉积时期,珠一坳陷各凹陷为典型的断陷湖盆沉积特征及多幕裂陷演化阶段,到了恩平组时期,随着相对湖平面上升,珠一坳陷各凹陷开始连片沉积。已有研究表明,南海北部陆缘存在多期裂陷作用和古珠江三角洲提供的充足的物源,使该地区新生代接受了厚达万米的沉积层(韩银学等, 2017),但有关南海北部在裂陷阶段初期的主要物源方向还缺乏系统分析,主要表现在断陷盆地在形成早期呈现出断坳相间的地貌格局,部分凹陷的沉积物为相邻古隆起剥蚀的产物,由于构造运动或相对海平面上升,这些古隆起被后期的沉积物覆盖,在物源体系研究中极易被忽略(崔宇驰等, 2018)。位于珠江口盆地古珠江三角洲主体沉积区西翼的恩平凹陷在恩平组沉积时期处于断陷阶段,其沉积作用呈现多物源、相变快、沉积过程复杂的特征,导致对恩平凹陷沉积体的分布规律认识还不清楚,有关恩平组沉积时期的主要物源供给方向及范围也不明确。鉴此,本文基于珠江口盆地恩平凹陷已有钻井与三维地震数据,在高精度等时地层格架内通过古生物环境分析、碎屑锆石U-Pb定年物源示踪、古沟谷物源通道识别、地震多属性分析等研究方法和技术手段对恩平凹陷恩平组沉积环境和物源体系开展研究,重点分析恩平组不同沉积时期的物源体系特征,探讨恩平组沉积时期的沉积格局,从而为陆相沉积盆地物源体系分析和储层预测提供重要依据。另外,针对目前南海北部陆相湖盆缺少的完整岩芯剖面导致未成功获取更连续、时间精度更高,受风化作用影响更小的连续沉积记录,进而影响了该地区下一步油气勘探。本文为我国未来大洋钻探选址提供了钻探井位初步建议方向。

  • 1 地质背景

  • 珠江口盆地位于南海北部大陆边缘,是在燕山期花岗岩及第三系褶皱基底上发育起来的一个中—新生代大型沉积盆地,油气资源异常丰富,面积约为18×104 km2(刘仲强等,2022)。珠江口盆地的形成过程中受到太平洋板块、欧亚板块以及印度洋板块交汇作用的影响,具有“下断上拗”、“下陆上海”的双层结构(杜文波等, 2015a, 2015b; Liu Qianghu et al., 2016)。在NE向基底控凹断裂和NW向走滑调节两组共轭断裂的控制作用下,珠江口盆地总体具有南北分带、东西分块的构造格局(曾智伟等, 2015; Zeng Zhiwei et al., 2020;朱定伟等,2022)。其中,恩平凹陷位于珠江口盆地珠一坳陷西部,整体呈NE—SW走向,大致与海岸线平行,西接阳江凹陷,东北与西江凹陷连接,东南接番禺低隆起和东沙隆起,由EP17洼、EP18洼和EP12洼三个北断南超的半地堑次级洼陷组成(图1a;杜文波等, 2015a, 2015b)。恩平凹陷经历了3个构造演化阶段:晚白垩世至早渐新世的断陷阶段、晚渐新世至中中新世的坳陷阶段及晚中新世至今的新构造运动阶段(Shao Lei et al., 2016;高阳东等,2021)。恩平凹陷恩平组早期主要发育半地堑构造,地层主要受控于凹陷北部的低角度正断层F1以及18洼北部断裂系F2(图1b),其空间几何形态,横向活动强弱变化以及两者的协调演化等因素造成了恩平凹陷古近系独特的结构特征(王家豪等, 2011;Sun Zhen et al., 2014)。恩平组沉积时期,恩平凹陷断坳转换特征明显,其底界面为区域不整合T80,南海运动使珠江口盆地整体发生抬升,导致恩平组遭受剥蚀,导致其顶部为广泛发育的不整合面T70。恩平凹陷恩平组与我国东部陆相断陷盆地具有相似的演化过程,均具有由断陷向断坳转化的沉积充填序列(刘强虎等, 2013;杨田等, 2021)。恩平组沉积期北部隆起带和南部番禺低隆起开始沉降,成为水下隆起,该时期北部断裂带的活动性较弱,导致番禺低隆起开始沉降的时间早于北部隆起带,呈现出“北高南低”的古地貌格局,随着湖平面开始扩大,逐渐在南部番禺低隆起沉积。

  • 图1 珠江口盆地恩平凹陷构造单元划分图

  • Fig.1 Location and the main structural units of the Enping sag of Pearl River Mouth basin

  • 2 恩平组层序地层划分及特征

  • 目前,研究区钻遇古近系恩平组的钻井仅8口,且分布不均,其中凹陷北部隆起区E4、E5和E8三口钻井钻遇到恩平组,E1和E3两口钻井钻遇到恩平组,E4、E5和E8三口钻井钻遇到恩平组,且大多数钻井位于恩平凹陷的边缘位置,只有E1和E2井钻遇到PSQ3层序。地震资料是开展层序地层学研究的重要资料,可有效揭示钻井之间的层序发育样式,并可对精细的等时地层格架、层序界面及高级别层序单元内部结构进行识别(Vail et al., 1983; 杜文波等, 2020)。本文基于研究区内8口钻井和高分辨三维地震资料,通过地层不整合面,地震反射接触关系、沉积体系的突变等标志识别层序界面等建立研究区高分辨率层序地层格架。基于以上方法,可将恩平凹陷恩平组划分为1个二级层序,3个三级层序,自下而上分别为PSQ1、PSQ2和PSQ3,为一幕完整的裂陷旋回(图2、图3),其中PSQ3发育范围达到最大,而PSQ1和PSQ2发育范围基本相同(图4)。

  • PSQ1层序为恩平组裂陷初始期,北部控凹断裂活动较大,底界面T80,是珠江口盆地珠琼二幕构造运动的产物,界面上下岩性特征截然不同,在T80界面以上为大段砂岩夹薄层泥岩,而界面以下则是大段泥岩夹薄层砂岩或砂岩。在地震剖面上表现为上超下削的特征(图3)。该层序地层厚度具有北厚南薄特点,沉积中心主要发育在靠近北部断裂带的下盘,该处沉积厚度最大,向南地层逐渐减薄(图4a)。

  • PSQ2层序为恩平组裂陷扩张期,控凹断裂活动速率相对减弱。其底界面为局部不整合SB2,表现为明显的上超特征(图3)。凹陷北部隆起带作为主要的物源区遭受强烈的剥蚀,为凹陷提供了大量的碎屑沉积物。该层序地层厚度具有北厚南薄特点,靠近北部断裂带附近的沉积厚度最大,向南地层逐渐减薄(图4b)。

  • PSQ3层序处于恩平组断-坳转换期,构造活动稳定,湖盆整体处于沉降阶段。底界面SB3与下伏地层接触关系为整合接触,局部具有上超和下超现象,顶界面T70为一套区域不整合界面,在界面之上地震剖面表现为正相位、平行连续、中强振幅反射的特征。界面之下多为杂乱或空白反射,连续性相对界面之上较差(图3)。该层序地层全区发育,层序厚度具有北厚南薄特点,靠近北部断裂带的附近沉积厚度最大,向南地层逐渐减薄(图4c)。

  • 图2 珠江口盆地恩平凹陷恩平组层序地层综合柱状图

  • Fig.2 Sequence stratigraphic framework consolidated figure of Enping Formation in Enping sag of Pearl River Mouth basin

  • 图3 珠江口盆地恩平凹陷恩平组地震反射界面和层序划分(剖面位置见图1b)

  • Fig.3 Divisions of seismic interfaces and seismic sequences of Enping Formation in Enping sag of Pearl River Mouth basin (the location of profile shown in Fig.1b)

  • 图4 珠江口盆地恩平凹陷恩平组PSQ1~PSQ3(a~c)层序厚度

  • Fig.4 The thickness maps of PSQ1~PSQ3 (a~c) sequences of the Enping Formation in Enping sag of Pearl River Mouth basin

  • 3 恩平组沉积环境判别

  • 由于盆地不同构造位置的水体深度等条件存在较大的差异,其沉积记录的生物种类、数量等也差异较大。另外,孢粉受气候与水介质影响较大,不同裂陷旋回的孢粉组合可以在垂向上形成特征性的孢粉序列;细粒沉积物中的浮游藻类含量也是判断富营养水系与还原环境的有效标志,较高的浮游藻类丰度是盆地内水体富营养、生产力较高且有机质保存条件好的标志,浮游藻类高含量反映水动力较强;沟鞭藻是一种广泛分布于海洋的低等浮游植物,少量分布在内陆咸水湖泊。通过古生物化石组合中孢粉、浮游藻类和沟鞭藻的含量分析,不仅可以识别层序界面,也能判断其沉积环境(曾智伟等, 2017)。EP-1井位于恩平凹陷内部,已钻穿恩平组至文昌组。EP-1井古生物含量的分析结果表明(图5a~d)中,由文昌组至恩平组,浮游藻类数量发生明显减少,反映了T80界面前后的沉积环境发生了变化,推断是由于该时期北部隆起和南部番禺低隆起开始沉降,形成水下低隆起,导致湖盆范围迅速扩大。此外由恩平组至珠海组海相沟鞭藻从无到有(图5c),反映恩平组沉积受海水的影响逐渐增强,沉积环境由陆相逐渐过渡到海相。综合以上分析可知,恩平凹陷恩平组沉积期整体为断坳转化阶段,并且海水的影响范围不断扩大。

  • 4 物源体系分析

  • 物源分析是沉积盆地分析中的重要组成部分,是确定盆地沉积体系的物源供给方式、性质以及搬运路径,最终判断有利储集相带分布位置及砂体分散体系的重要依据(白振华等, 2011; 朱红涛等, 2013)。通常,断陷湖盆四周均可提供物源,但湖盆砂体一般发育在特定的古地理背景中,这表明断陷湖盆物源供给差异十分大。因此,在没有钻井的情况下,若要提高沉积相时空分布规律和准确预测砂体展布范围,就必须明确主物源供给方向(Zhang Jinyu et al., 2019)。

  • 图5 珠江口盆地恩平凹陷EP-1井古生物含量的变化(a~d)

  • Fig.5 Changes in paleontological content of EP-1well (a~d) in Enping sag of Pearl River Mouth basin

  • 4.1 基于锆石的沉积物源体系分析

  • 前人研究结果表明,珠江口盆地北部华南褶皱带与盆内珠一坳陷、番禺低隆起、东沙隆起、云开低凸起及南部隆起带的基底岩性、地质年代和母岩类型存在明显差异(Liu Qianghu et al., 2016),这为物源定量示踪提供了良好的地质条件(图6)。华南褶皱带的基底岩性及主要年龄分布较为复杂,以太古宙—古生代等相对古老的变质岩、岩浆岩为主,仅含少量的中生代基岩(曾智伟等, 2017; 崔宇驰等, 2018; 杜家元等, 2021)。通过珠江口盆地钻遇古近系基底的100多口钻井锆石U-Pb统计分析可知,珠江口盆地隆起区域约90%的基岩为燕山期中酸性火成岩,年龄集中在153~70.5Ma之间,而神狐隆起区主要为中生代变质岩基底,年代主要为侏罗纪—白垩纪(图6;Long Hoang et al.,2009; 刘安等, 2011)。总体来看,恩平凹陷周缘隆起的基底年龄相对较年轻,恩平凹陷北部华南褶皱带基底的年龄相对古老(韩银学等, 2017),从而为恩平凹陷恩平组锆石U-Pb定年物源示踪分析提供了有利条件。

  • 为更好地开展恩平凹陷恩平组的物源体系分析,本文选取EP-1井、EP-4井和EP-5井3口钻井的砂岩样品进行分析,其中EP-5井PSQ1层序,深度为3673.2~3674.9m的33样品数、EP-4井PSQ1层序,深度为3652m的28样品数、EP-1井PSQ2层序,深度为4153.8m的22样品数和EP-1井PSQ3层序,深度为3428m的32样品数。样品点数量相对充足,具备好的统计分析基础。碎屑锆石U-Pb年龄分析结果显示(图7),恩平凹陷恩平组地层地质年代跨度较大,物源主要为珠江口盆地内的中生代火成岩母岩和华南褶皱带的太古宙—古生代的变质岩和岩浆岩,且以太古宙—古生代的变质岩和岩浆岩为主。锆石U-Pb年龄结果显示,EP-4和EP-5井中PSQ1砂岩碎屑中的中生代锆石为33.3%和42.9%(图7a、b)以古生代变质成因锆石和中生代岩浆成因锆石为主,反映了物源是盆内和华南褶皱带混合母岩,这也与两口井位的位置有关,都主要分布在北部隆起带,而不是分布在盆地内部的原因。EP-1井位于盆地内部,PSQ2砂岩碎屑中的中生代锆石含量为31.8%,能明显地反映同时受盆内和华南褶皱带混合物源影响(图7d),EP-1井PSQ3中砂岩碎屑中的中生代锆石含量明显地降到9.7%,主要为古生代和元古代变质成因锆石为主(图7d),表明该时期物源主要来自北部华南褶皱带。整体来说恩平组PSQ1~PSQ3时期中生代锆石颗粒含量由42.9%迅速降低至9.7%,前寒武纪—古生代锆石颗粒含量迅速增加(图7),可知PSQ1~PSQ3沉积时期,海平面不断上升(图2),恩平凹陷逐渐被水淹没,沉积范围较大。在PSQ1时期,主要受珠江口盆地东沙隆起、北部隆起带和番禺低隆起等周缘近物源为主,受华南褶皱带的太古代—古生代物源较少。在PSQ3时期,由于湖平面不断上升,恩平组的主物源发生明显变化,华南褶皱带物源供给能力明显增强,占据主导作用。

  • 图6 珠江口盆地恩平凹陷周缘基底岩性分布图(据曾智伟等,2017)

  • Fig.6 The distribution map of basement around Enping sag of Pearl River Mouth basin (after Zeng Zhiwei et al.,2017)

  • 图7 珠江口盆地恩平凹陷恩平组碎屑锆石U-Pb年龄分布图(a~d)

  • Fig.7 The U-Pb age dating analysis of detrital zircon of Enping Formation in Enping sag of Pearl River Mouth basin (a~d)

  • 4.2 基于地震资料的沉积物源体系分析

  • 本文基于地震资料的沉积物源分析主要表现在:① 古沟谷的识别,这是判识物源通道最直接的标志;② 利用前积反射结构可指示物源方向;③ 利用地震多属性指示的沉积体系发育位置,结合构造和古地貌来判断物源方向;④ 通过地震多属性反映的富砂区、富泥区的岩性变化可指示物源方向;⑤ 通过地震多属性指示的沉积相带(砂体)平面分布形态可反映物源方向。

  • 4.2.1 通过古沟谷识别分析物原体系

  • 在陆相盆地的沉积搬运通道中,古沟谷物源通道是比较普遍的类型。通过分析古沟谷的分布和发育特征,可以识别判断物源方向(朱红涛等, 2013, 2017)。恩平凹陷北部隆起区的基底主要为中生代的花岗岩(图6),断层比较发育,主要受F1断裂控制,古沟谷在地震剖面上主要表现为底界面呈下凹充填状,内部为典型的双向上超反射特征。研究发现,在垂直物源方向可以识别出规模较大的古沟谷(图8),在地震剖面主要呈“V”和“U”型分布。综合以上分析可推测,北部的物源主要沿着古沟谷通道进入恩平凹陷内部沉积。

  • 4.2.2 利用前积特征指示物源方向

  • 前积反射结构主要由沉积物定向进积作用产生的,为一套倾斜的反射层。地震剖面上,前积方向指示沉积物主要推进方向,其反方向可近似指示物源方向。根据地震剖面解释结果(图9)可知,在PSQ1和PSQ2时期,北部隆起带同生控凹断裂活动强烈,沉积物的地震响应特征为典型的楔状前积反射特征,一般呈斜交型前积结构,指示该时期水动力较强、物源供应充足的沉积环境。根据钻井资料可知,该区域主要发育的是近源、快速堆积的扇三角洲(图9)。其中PSQ2较PSQ1时期相对海平面上升,PSQ2时期扇三角洲的发育范围较大。综合以上分析可知,在平行物源方向上,过扇体的地震剖面上可见非常典型的前积特征,且向凹陷中心不断进积,表明物源主要来自北部隆起带。

  • 4.3 通过地震多属性反映的富砂区、富泥区的岩性变化可指示物源方向

  • 地震多属性综合分析一般是在三维地震资料和钻井、测井等资料的综合解释基础上,通过构造解释拾取层位,提取和优化地震属性,使地震属性与岩性之间存在对应关系,将地震信息转化为地质岩性信息,从而完成对储层空间展布形态,分布范围和储层岩石物理特征参数的描述与预测。通过恩平组进行相关性分析,选取BW、IF、RMS三种单属性督导聚类,得到恩平组PSQ1、PSQ2、PSQ3多属性地震相图,其中多属性异常可分为3种类型,分别以红色、黄色和蓝色表示。基于单井中岩性组合及含砂率与井附近地震属性间的非线性关系(表1),红色代表富砂沉积,黄色代表富砂程度次之,蓝色表示富泥沉积(杜文波等, 2015a; 曾智伟等, 2017)。一般情况下红色区域的富砂程度要高于黄色和蓝色区域,确定红色区域到黄色区域再到蓝色区域的变化方向,即可判断物源方向是从红色区域到黄色区域。地震多属性平面异常变化,表明岩性的变化,一般越靠近物源方向,岩性越粗,连片性好,向凹陷内岩性变细,连片性变差,根据这些变化,可以有效判断物源方向。

  • 图8 珠江口盆地恩平凹陷垂直物源方向地震测线指示的古沟谷充填反射特征(剖面位置见图1b)

  • Fig.8 Seismic section of vertical the source direction, showing ancient valley filling reflection characteristics in Enping sag of Pearl River Mouth basin (the location of profile shown in Fig.1b)

  • 图9 珠江口盆地恩平凹陷平行物源方向地震测线指示的前积反射特征(剖面位置见图1b)

  • Fig.9 Seismic section of parallel to the source direction, showing progradation seismic reflection characteristics in Enping sag of Pearl River Mouth basin (the location of profile see Fig.1b)

  • 表1 珠江口盆地恩平凹陷钻井岩性、岩相与地震多属性异常关系

  • Table1 The relationship among drilling lithologies, lithofacies and seismic multi-attributes anomalies in Enping sag of Pearl River Mouth basin

  • 由PSQ1多属性平面分析图(图10a)可知,南北两侧地震多属性异常分布差异性明显。其中,北部断控带F1、F2断裂其下降盘根部的地震相为楔形杂乱反射,在多属性图上表现为蓝色异常相逐渐向外缘黄色异常相过渡,平面上呈扇状、点状展布,表明为北部隆起带提供的沉积物为近源快速堆积(杜文波等, 2015b; Liu Qinghua et al., 2016),其发育范围较小。南部低隆区的红色、黄色指示富砂沉积体,整体呈环带状分布,红色异常区域集中发育在中央隆起带,向盆地沉降方向,依次变为黄色异常连片发育区、黄色异常孤立发育区、蓝色异常区(图10),指示区内从南部隆起带岩性越粗,连片性越好,向凹陷内岩性变细,连片性越差。根据EP-2井单井相及地震相特征,南部红色与黄色异常区分布对应为砾质与砂质滩坝,其物源主要以基岩为主,物源供给强,在隆起区域形成砾质滩坝(红色异常区),在向凹陷内搬运时发育成砂质滩坝(黄色异常区)。

  • 由PSQ2多属性平面分析图(图10b)可知,北部断裂活动作用减弱,沉积区地形坡度变缓,地震多属性异常呈继承性展布。北部断控带F1、F2断裂下降盘多属性异常区呈扇状分布,相对PSQ1沉积范围萎缩、变小。西部出现呈两期长条状的黄色异常区并逐步减少,表明西部物源经长距离搬运至凹陷中心。南部隆起红色和黄色异常区对应砾质与砂质滩坝范围相对PSQ1时期减小,连片性变差(图10),说明南部基岩供源作用明显减弱,但是物源还是以南部隆起为主。

  • 由PSQ3多属性平面分析图(图10c)可知,北部F1主控断裂活动基本停止,沉积地形坡度进一步变缓,随着海平面的上升,沉积区范围明显扩大,黄色异常区呈大面积分布,具“满盆砂”特点。北部发育的红色异常区逐渐过渡到黄色异常区并呈典型的长条状分布,因坡度较缓,河流作用强,沉积体向凹陷中心直至南部低隆区延伸的范围较远。而西部的红色异常与黄色异常呈扇状和长条状分布,且红黄色异常范围逐渐变小。南部隆起红色和黄色异常区呈继承性块状分布,由于水平面不断上升,其分布范围相对PSQ1与PSQ2时期大幅度萎缩(图10)。

  • 4.4 利用沉积相平面分布形态可指示物源方向

  • 珠江口盆地古近纪漫长的沉积充填演化过程中形成了非常丰富的沉积相类型(龚丽等, 2014; Lin Changsong et al., 2018)。尽管目前钻遇恩平组的钻井不多,但有限的钻井仍然揭示了恩平凹陷恩平组特色鲜明的沉积体系类型。根据研究区主力物源供给方向示踪分析下,结合钻井、地震相和地震多属性等资料综合分析,恩平凹陷恩平组主要发育扇三角洲相、辫状河三角洲相、滨浅湖相和滩坝相。

  • PSQ1层序处于恩平组裂陷初始期,由于受到构造作用与基底古地貌的影响,三个主洼间分割性较强,该层序厚度具有北厚南薄的特点,沉积中心主要发育在靠近北部断裂带的附近,此处沉积厚度最大,向南地层逐渐减薄(图4)。基于锆石U-Pb定年及厚度图综合分析可知该时期凹陷周缘隆起中生代火成岩母岩提供的短程分散物源体系供给为主(图6),扇三角洲在F1与F2断裂带的下降盘快速堆积形成,主要呈扇状分布在陡坡带下缘并向湖盆延伸不远;在凹陷的西部邻近F1断层附近,由于坡度较缓,发育规模较大的辫状河三角洲,延伸距离较远。而南部低隆起以基岩提供物源,在隆起区域形成砾质滩坝,向北部凹陷中心进一步搬运时发育砂质滩坝(图11a)。由于恩平组PSQ1时期,整个凹陷水体较浅,大部分区域为滨浅湖。

  • PSQ2层序处于恩平组的断陷中期,地层表现为继承性发育,其中北部断层活动整体减弱,沉积区地形坡度变缓,该层序厚度具有北厚南薄特点,靠近北部断裂带的附近,此处沉积厚度最大,向南地层逐渐减薄(图4)。基于锆石U-Pb定年及厚度图综合分析可知该时期凹陷周缘隆起中生代火成岩母岩提供的短程分散物源体系供给为主,且北部褶皱带提供的物源供给能力相对PSQ1时期增加(图6),北部隆起带作为主要的物源区遭受强烈的剥蚀,为凹陷中心提供了大量的碎屑沉积物,根据钻井资料和地震多属性图可知该区域发育的是扇三角洲,凹陷的西部的辫状河三角洲沉积作用增强,向盆内延伸距离较远(图11b)。由于湖泊扩展,南部低隆区范围逐渐缩小,南部基岩的供源能力减弱,而来自西部辫状河三角洲的供源能力相对增强,滩坝中砂岩含量相对PSQ1时期减小,对应滩坝沉积范围减小,但分选磨圆度变好。

  • 图10 珠江口盆地恩平凹陷恩平组PSQ1~PSQ3(a~c)层序地震多属性平面图

  • Fig.10 Maps showing seismic multi-attributes of PSQ1~PSQ3 (a~c) sequences of Enping Formation in Enping sag of Pearl River Mouth basin

  • 图11 珠江口盆地恩平凹陷恩平组PSQ1~PSQ3(a~c)层序沉积相

  • Fig.11 The sedimentary facies of PSQ1~PSQ3 (a~c) sequences of the Enping Formation in Enping sag of Pearl River Mouth basin

  • PSQ3层序处于恩平组断拗转换期,F1断裂与F2断裂不控制沉积,湖平面进一步扩大,越过F1、F2断层向北扩张。该层序地层厚度继续继承PSQ2发育,但总体厚度大于PSQ2(图4)。伴随沉积地形坡度进一步变缓,基于锆石U-Pb定年及厚度图综合分析可知,该时期凹陷周缘隆起中生代火成岩母岩以提供短程的分散物源体系供给为主,且北部褶皱带提供的物源供给能力相对PSQ2时期增加(图6),证实了随着湖平面的上升,北部褶皱带的物源供给越来越占主导作用。根据钻井资料和地震多属性图可知,由于古地形变缓,北部隆起带黄色异常区范围明显扩大,扇三角洲过渡为大型的呈长条状分布的辫状河三角洲,同时辫状河三角洲继续向南部低隆起推进,此时的滩坝主要为西部的辫状河三角洲经湖水改造成滩坝相,该时期发育的范围相对PSQ1和PSQ2明显减小(图11c)。

  • 5 结论与建议

  • (1) 根据古生物垂向上的变化,不仅可以指示层序界面的识别,而且判断出恩平凹陷恩平组时期整体为断坳转化阶段,湖盆整体沉降,控洼断层逐渐停止活动,湖平面进一步扩大。

  • (2)根据碎屑古生物沉积环境分析、锆石U-Pb定年物源示踪、古沟谷的识别、前积反射结构、地震多属性分析和沉积相带平面分布形态对恩平凹陷恩平组物源体系分析,研究结果表明恩平凹陷恩平组PSQ1-PSQ2时期陆相湖盆特征明显,物源主要为古生代变质岩和中生代火成岩,少量的元古代变质岩,北部受断层的控制,在断层下降盘发育扇状分布的扇三角洲,西部由于供源较弱的条件下发育辫状河三角洲;在恩平组PSQ3时期,由于断层逐渐停止活动,湖平面不断上升,华南褶皱带物源供给能力明显增强,占据主导作用,由于古地形变缓,北部主要发育大型的长条状辫状河三角洲。

  • (3)南海陆缘珠江口盆地断陷阶段受构造活动、气候和海平面变化等的影响,物源体系不断发生改变导致沉积格局也不断变化,不但制约了南海北部裂陷期构造-沉积耦合研究,也限制了断陷阶段和坳陷阶段的地质演化过程分析。相比于洋陆边缘盆地,陆相湖盆源汇构造背景或驱动机制更多样,过程更复杂,预测难度更大,需要一口完整的陆相湖盆地层取心来揭示南海北部沉积盆地裂陷期构造-沉积耦合过程,以便更好指导油气勘探。然而,遗憾的是,南海深水油气前景巨大,被称为第二波斯湾(林间等,2019),而作为重要的油气富集区的珠江口盆地,目前还未有一口钻井获取完整的陆相湖盆地层岩芯剖面。鉴此,建议下一步在南海北部陆相沉积盆地(如珠江口盆地)开展大洋钻探工作,以便获取更连续、时间精度更高,受风化作用影响更小的连续沉积记录岩芯剖面,不仅有利于进一步了解深水盆地构造发育与沉积过程对油气富集的控制关系,进而更好指导下一步油气勘探,而且也可为重建不同地质历史时期气候变化过程及不同时段的沉积物堆积速率的比较,了解古气候状态和预测未来气候变化提供重要依据。

  • 参考文献

    • Bai Zhenhua, Li Shengli, Su Yan, Ma Xing, Li Maowen. 2011. Provenance analysis of 3rd member of Oligocene Lingshui Formation in the Yacheng13-1 Gasfield, Qiongdongnan basin. Geology in China, 38(2): 384~392 (in Chinese with English abstract).

    • Cui Yuchi, Cao Licheng, Qiao Peijun, Chen Shuhui, Pang Xiong, Shao Lei. 2018. Provenance evolution of Paleogene sequence (northern South China Sea) based on detrital zircon U-Pb dating analysis. Earth Science, 43(11): 4169~4179 (in Chinese with English abstract).

    • Du Jiayuan, Zhang Xiangtao, Liu Pei, Luo Ming, Zhang Qin, Yao Jiali, Wang Xuchen, Liang Jie. 2021. Classification of the Paleogene source-to-sink system and its petroleum geological significance in the Zhuyi depression of the Pearl River Mouth basin. Earth Science, 46(10): 3690~3706 (in Chinese with English abstract).

    • Du Wenbo, Sun Guihua, Huang Yongjian, Shu Yu, Nie Xin. 2015a. Reservoir prediction based on seismic multi-attributes analysis: an example from Paleogene Enping Formation of Enping sag in the Pearl River Mouth basin. Marine. Geology Frontiers, 31(8): 62~70 (in Chinese with English abstract).

    • Du Wenbo, Sun Guihua, Shu Yu. 2015b. Seismic sedimentology of Paleogene Enping Formation in Enping sag, Pearl River Mouth basin. Geological Science and Technology Information, 34(3): 220~229 (in Chinese with English abstract).

    • Du Wenbo, Huang Wenkai, Zhu Hongtao, Zhang Lu, Jakub Miluch. 2020. Sedimentary system, stratigraphic architecture, and petroleum exploration prospect in the western Taiwan Strait. Geology in China, 47(5): 1542~1553 (in Chinese with English abstract).

    • Du Wenbo, Qiu Yan, Huang Wenkai, Han Bing. 2021. Zengmu Xi fault on the western-border of South China Sea and its control over the sedimentation of the basin. Marine Geologogy & Quaternary Geology, 41(2): 100~108 (in Chinese with English abstract).

    • Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping. 2021. Variability in sequence stratigraphic architectures of lower-middle Miocene Pearl River delta, northern Enping sag, Pearl River Mouth basin: implications for lithological trap development. Earth Science, 46(5): 1758~1770 (in Chinese with English abstract).

    • Gong Li, Zhu Hongtao, Shu Yu, Fu Xin, Yang Xianghua. 2014. Distribution of middle-deep lacustrine source rocks within sequence stratigraphic framework of Wenchang Formation in Enping depression, the Pearl River Mouth basin. Earth Science, 39(5): 546~556 (in Chinese with English abstract).

    • Han Yinxue, Chen Ying, Yang Haichang, Wang Longying, Shen Huailei, Guo Shuai, Ji Mo, Zeng Zhiwei. 2017. “Source to sink” of Enping Formation and its effects on oil and gas exploration in Baiyun sag, Pearl River Mouth basin. China Petroleum Exploration, 22(2): 25~34 (in Chinese with English abstract).

    • Harms U, Koeberl C, Zobac K M D. 2007. Continental Scientific Drilling. Berlin: Springer.

    • Lin Changsong, He Min, Steel R J, Zhang Zhongtao, Li Hao, Zhang Bo, Wu Wei, Shu Liangfeng, Tian Hongxun, Zhang Xin, Xing Zuochang, Wang Siqi, Zhang Manli. 2018. Changes in inner- to outer-shelf delta architecture, Oligocene to Quaternary Pearl River shelf-margin prism, northern South China Sea. Marine Geology, 404: 187~204.

    • Lin Jian, Li Jiabiao, Xu Yigang, Sun Zhen, Xia Shaohong, Huang Xiaolong, Xie Xinong, Li Chunfeng, Ding Weiwei, Zhou Zhiyuan, Zhang Fan, Luo Yiming. 2019. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao, 41(10): 125~140 (in Chinese with English abstract).

    • Liu An, Wu Shimin. 2011. A discussion on the formation of granite in the Pearl River Mouth basin and its implication to hydrocarbon resource. Earth Science Frontier, 18(1): 141~148 (in Chinese with English abstract).

    • Liu Qianghu, Zhu Hongtao, Yang Xianghua, Shu Yu, Huang Zhong. 2013. Quantitative recognition of seismic sequence stratigraphic unit in Wenchang Formation, Paleogene, Enping sag, Pearl River Mouth basin. Journal of Central South University (Science and Technology), 44(3): 1076~1082 (in Chinese with English abstract).

    • Liu Qianghu, Zhu Hongtao, Shu Yu, Zhu Xiaomin, Yang Xianghua, Chen Liang, Tan Mingxuan, Geng Mingyang. 2016. Provenance identification and sedimentary analysis of the beach and bar systems in the Paleogene of the Enping sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 70: 251~272.

    • Liu Zhongqiang, Suo Yanhui, Du Xiaodong, Cai Guofu, Cheng Haohao, Wang Guangzeng, Zhou Jie, Diao Yixiao, Fu Xinjian, Li Sanzhong. 2022. Scientific drilling sites of the northern South China Sea margin: insights from sediment source-to-sink in the Pearl River Mouth basin. Acta Geologica Sinica, 96(8): 2775~2787.

    • Long Hoang, Wu Yuanfu, Clift P D, Wysocka A. 2009. Evaluating the evolution of the red river system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): 292~310.

    • Shao Lei, Cao Licheng, Pang Xiong, Jiang Tao, Qiao Peijun, Zhao Meng. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255~269.

    • Sun Zhen, Xu Ziying, Sun Longtao, Pang Xiong, Yan Chengzhi, Li Yuanping, Zhao Zhongxian, Wang Zhangwen, Zhang Cuimei. 2014. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin. Asian Earth Science, 89: 76~87.

    • Vail P R. 1983. Seismic stratigraphy and the evaluation of depositional sequences facies. Geophysical Journal of the Royal Astronomical Society, 73: 278.

    • Wang Jiahao, Liu Lihua, Chen Shenhong, Shang Yale. 2011. Tectonic-sedimentary responses to the second episode of the Zhu-Qiong movement in the Enping depression, Pearl River Mouth basin and its regional tectonic significance. Acta Petrolei Sinica, 32(4): 588~595 (in Chinese with English abstract).

    • Yang Tian, Cao Yingchang, Tian Jingchun, Niu Xiaobing, Li Shixiang, Zhou Xinping, Jin Jiehua, Zhang Yian. 2021. Deposition of deep-water gravity-flow hybrid event beds in lacustrine basins and their sedimentological significance. Acta Geological Sinica, 95(12): 3842~3857 (in Chinese with English abstract).

    • Zeng Zhiwei, Yang Xianghua, Shu Yu, Chen Shenghong, Wu Jing, Wang Wei, Xia Chenchen. 2015. Structure palaeogeomorphology characteristics and sand bodies distribution regularities of Paleogene Wenchang Formation in Enping sag: under the conditions of lack of drilling data to predict and evaluate the reservoir sand bodies. Geoscience, 29(4): 804~815 (in Chinese with English abstract).

    • Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Xia Chenchen, Chen Ying, Han Yinxue. 2017. Provenance transformation and sedimentary evolution of Enping Formation, Baiyun sag, Pearl River Mouth basin. Earth Science: Journal of China University of Geosciences, 42(11): 1936~1954 (in Chinese with English abstract).

    • Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Zeng Hongliu, Zhang Gongcheng. 2020. Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 112: 104048.

    • Zhang Jinyu, Kim W, Olariu C, Steel R. 2019. Accommodation- versus supply-dominated systems for sediment partitioning to deep water. Geology, 47: 1~4.

    • Zhu Dingwei, Peng Guangrong, Zhang Zhongtao, Yu Shuiming, Wu Jing, Xu Xinming, Li Kongsen. 2022. Hydrocarbon accumulation conditions in drape structure zone north of Enpingsag, Pearl River Mouth basin. China Offshore Oil and Gas, 34(1): 36~44 (in Chinese with English abstract).

    • Zhu Hongtao, Yang Xianghua, Zhou Xinhuai, Li Jianping, Wang Deying, Li Min. 2013. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag. Earth Science: Journal of China University of Geosciences, 38(1): 121~129 (in Chinese with English abstract).

    • Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).

    • 白振华, 李胜利, 苏燕, 马行陟, 李茂文. 2011. 琼东南盆地崖城13-1气田渐新统陵三段沉积物源综合分析. 中国地质, 38(2): 384~392.

    • 崔宇驰, 曹立成, 乔培军, 陈淑慧, 庞雄, 邵磊. 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169~4179.

    • 杜家元, 张向涛, 刘培, 罗明, 张琴, 姚佳利, 王绪诚, 梁杰. 2021. 珠江口盆地珠一坳陷古近系“源-汇”系统分类及石油地质意义. 地球科学, 46(10): 3690~3706.

    • 杜文波 , 孙桂华, 黄永健, 舒誉, 聂鑫. 2015a. 基于地震多属性的储层预测——以珠江口盆地恩平凹陷古近系恩平组为例. 海洋地质前沿, 31(8): 62~70.

    • 杜文波, 孙桂华, 舒誉. 2015b. 珠江口盆地恩平凹陷古近系恩平组地震沉积学研究. 地质科技情报, 34(3): 220~229.

    • 杜文波, 黄文凯, 朱红涛, 张璐, Jakub Miluch. 2020. 台湾海峡西部海域沉积体系、地层架构与油气勘探前景. 中国地质, 47(5): 1542~1553.

    • 杜文波, 邱燕, 黄文凯, 韩冰. 2021. 南海西缘曾母西断裂构造特征及其对盆地沉积发育的控制作用. 海洋地质与第四纪地质, 41(2): 100~108.

    • 高阳东, 张向涛, 李智高, 丁琳, 李小平. 2021. 珠江口盆地恩平凹陷北带下-中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758~1770.

    • 龚丽, 朱红涛, 舒誉, 付鑫, 杨香华. 2014. 珠江口盆地恩平凹陷文昌组层序格架中中- 深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546~556.

    • 韩银学, 陈莹, 杨海长, 王龙颖, 沈怀磊, 郭帅, 纪沫, 曾智伟. 2017. 白云凹陷恩平组“源-汇”体系及其对油气勘探的影响. 中国石油勘探, 22(2): 25~34.

    • 林间, 李家彪, 徐义刚, 孙珍, 夏少红, 黄小龙, 解习农, 李春峰, 丁巍伟, 周志远, 张帆, 罗怡鸣. 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125~140.

    • 刘安, 吴世敏. 2011. 珠江口盆地花岗岩成因探讨及其对油气资源指示意义. 地学前缘, 18(1): 141~148.

    • 刘强虎, 朱红涛, 杨香华, 舒誉, 黄众. 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3): 1076~1082.

    • 刘仲强, 索艳慧, 杜晓东, 蔡国富, 程昊皞, 王光增, 周洁, 刁一笑, 付新建, 李三忠. 2022. 南海北部陆缘大陆架科学钻探选址: 珠江口盆地沉积源汇启示. 地质学报, 96(8): 2775~2787.

    • 王家豪, 刘丽华 , 陈胜红, 尚亚乐. 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588~595.

    • 杨田, 操应长, 田景春, 牛小兵, 李士祥, 周新平, 金杰华, 张倚安. 2021. 陆相湖盆深水重力流混合事件层沉积及沉积学意义. 地质学报, 95(12): 3842~3857.

    • 曾智伟, 杨香华, 舒誉, 陈胜红, 吴静, 王维, 夏晨晨. 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律. 现代地质, 29(4): 804~815.

    • 曾智伟, 朱红涛, 杨香华, 夏晨晨, 陈莹, 韩银学. 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936~1954.

    • 朱定伟, 彭光荣, 张忠涛, 于水明, 吴静, 许新明, 李孔森. 2022. 珠江口盆地恩平凹陷北部披覆带油气成藏条件. 中国海上油气, 34(1): 36~44.

    • 朱红涛, 杨香华, 周心怀, 李建平, 王德英, 李敏. 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学: 中国地质大学学报, 38(1): 121~129.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相湖盆源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.

  • 参考文献

    • Bai Zhenhua, Li Shengli, Su Yan, Ma Xing, Li Maowen. 2011. Provenance analysis of 3rd member of Oligocene Lingshui Formation in the Yacheng13-1 Gasfield, Qiongdongnan basin. Geology in China, 38(2): 384~392 (in Chinese with English abstract).

    • Cui Yuchi, Cao Licheng, Qiao Peijun, Chen Shuhui, Pang Xiong, Shao Lei. 2018. Provenance evolution of Paleogene sequence (northern South China Sea) based on detrital zircon U-Pb dating analysis. Earth Science, 43(11): 4169~4179 (in Chinese with English abstract).

    • Du Jiayuan, Zhang Xiangtao, Liu Pei, Luo Ming, Zhang Qin, Yao Jiali, Wang Xuchen, Liang Jie. 2021. Classification of the Paleogene source-to-sink system and its petroleum geological significance in the Zhuyi depression of the Pearl River Mouth basin. Earth Science, 46(10): 3690~3706 (in Chinese with English abstract).

    • Du Wenbo, Sun Guihua, Huang Yongjian, Shu Yu, Nie Xin. 2015a. Reservoir prediction based on seismic multi-attributes analysis: an example from Paleogene Enping Formation of Enping sag in the Pearl River Mouth basin. Marine. Geology Frontiers, 31(8): 62~70 (in Chinese with English abstract).

    • Du Wenbo, Sun Guihua, Shu Yu. 2015b. Seismic sedimentology of Paleogene Enping Formation in Enping sag, Pearl River Mouth basin. Geological Science and Technology Information, 34(3): 220~229 (in Chinese with English abstract).

    • Du Wenbo, Huang Wenkai, Zhu Hongtao, Zhang Lu, Jakub Miluch. 2020. Sedimentary system, stratigraphic architecture, and petroleum exploration prospect in the western Taiwan Strait. Geology in China, 47(5): 1542~1553 (in Chinese with English abstract).

    • Du Wenbo, Qiu Yan, Huang Wenkai, Han Bing. 2021. Zengmu Xi fault on the western-border of South China Sea and its control over the sedimentation of the basin. Marine Geologogy & Quaternary Geology, 41(2): 100~108 (in Chinese with English abstract).

    • Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping. 2021. Variability in sequence stratigraphic architectures of lower-middle Miocene Pearl River delta, northern Enping sag, Pearl River Mouth basin: implications for lithological trap development. Earth Science, 46(5): 1758~1770 (in Chinese with English abstract).

    • Gong Li, Zhu Hongtao, Shu Yu, Fu Xin, Yang Xianghua. 2014. Distribution of middle-deep lacustrine source rocks within sequence stratigraphic framework of Wenchang Formation in Enping depression, the Pearl River Mouth basin. Earth Science, 39(5): 546~556 (in Chinese with English abstract).

    • Han Yinxue, Chen Ying, Yang Haichang, Wang Longying, Shen Huailei, Guo Shuai, Ji Mo, Zeng Zhiwei. 2017. “Source to sink” of Enping Formation and its effects on oil and gas exploration in Baiyun sag, Pearl River Mouth basin. China Petroleum Exploration, 22(2): 25~34 (in Chinese with English abstract).

    • Harms U, Koeberl C, Zobac K M D. 2007. Continental Scientific Drilling. Berlin: Springer.

    • Lin Changsong, He Min, Steel R J, Zhang Zhongtao, Li Hao, Zhang Bo, Wu Wei, Shu Liangfeng, Tian Hongxun, Zhang Xin, Xing Zuochang, Wang Siqi, Zhang Manli. 2018. Changes in inner- to outer-shelf delta architecture, Oligocene to Quaternary Pearl River shelf-margin prism, northern South China Sea. Marine Geology, 404: 187~204.

    • Lin Jian, Li Jiabiao, Xu Yigang, Sun Zhen, Xia Shaohong, Huang Xiaolong, Xie Xinong, Li Chunfeng, Ding Weiwei, Zhou Zhiyuan, Zhang Fan, Luo Yiming. 2019. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao, 41(10): 125~140 (in Chinese with English abstract).

    • Liu An, Wu Shimin. 2011. A discussion on the formation of granite in the Pearl River Mouth basin and its implication to hydrocarbon resource. Earth Science Frontier, 18(1): 141~148 (in Chinese with English abstract).

    • Liu Qianghu, Zhu Hongtao, Yang Xianghua, Shu Yu, Huang Zhong. 2013. Quantitative recognition of seismic sequence stratigraphic unit in Wenchang Formation, Paleogene, Enping sag, Pearl River Mouth basin. Journal of Central South University (Science and Technology), 44(3): 1076~1082 (in Chinese with English abstract).

    • Liu Qianghu, Zhu Hongtao, Shu Yu, Zhu Xiaomin, Yang Xianghua, Chen Liang, Tan Mingxuan, Geng Mingyang. 2016. Provenance identification and sedimentary analysis of the beach and bar systems in the Paleogene of the Enping sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 70: 251~272.

    • Liu Zhongqiang, Suo Yanhui, Du Xiaodong, Cai Guofu, Cheng Haohao, Wang Guangzeng, Zhou Jie, Diao Yixiao, Fu Xinjian, Li Sanzhong. 2022. Scientific drilling sites of the northern South China Sea margin: insights from sediment source-to-sink in the Pearl River Mouth basin. Acta Geologica Sinica, 96(8): 2775~2787.

    • Long Hoang, Wu Yuanfu, Clift P D, Wysocka A. 2009. Evaluating the evolution of the red river system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): 292~310.

    • Shao Lei, Cao Licheng, Pang Xiong, Jiang Tao, Qiao Peijun, Zhao Meng. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255~269.

    • Sun Zhen, Xu Ziying, Sun Longtao, Pang Xiong, Yan Chengzhi, Li Yuanping, Zhao Zhongxian, Wang Zhangwen, Zhang Cuimei. 2014. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin. Asian Earth Science, 89: 76~87.

    • Vail P R. 1983. Seismic stratigraphy and the evaluation of depositional sequences facies. Geophysical Journal of the Royal Astronomical Society, 73: 278.

    • Wang Jiahao, Liu Lihua, Chen Shenhong, Shang Yale. 2011. Tectonic-sedimentary responses to the second episode of the Zhu-Qiong movement in the Enping depression, Pearl River Mouth basin and its regional tectonic significance. Acta Petrolei Sinica, 32(4): 588~595 (in Chinese with English abstract).

    • Yang Tian, Cao Yingchang, Tian Jingchun, Niu Xiaobing, Li Shixiang, Zhou Xinping, Jin Jiehua, Zhang Yian. 2021. Deposition of deep-water gravity-flow hybrid event beds in lacustrine basins and their sedimentological significance. Acta Geological Sinica, 95(12): 3842~3857 (in Chinese with English abstract).

    • Zeng Zhiwei, Yang Xianghua, Shu Yu, Chen Shenghong, Wu Jing, Wang Wei, Xia Chenchen. 2015. Structure palaeogeomorphology characteristics and sand bodies distribution regularities of Paleogene Wenchang Formation in Enping sag: under the conditions of lack of drilling data to predict and evaluate the reservoir sand bodies. Geoscience, 29(4): 804~815 (in Chinese with English abstract).

    • Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Xia Chenchen, Chen Ying, Han Yinxue. 2017. Provenance transformation and sedimentary evolution of Enping Formation, Baiyun sag, Pearl River Mouth basin. Earth Science: Journal of China University of Geosciences, 42(11): 1936~1954 (in Chinese with English abstract).

    • Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, Zeng Hongliu, Zhang Gongcheng. 2020. Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun sag, Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 112: 104048.

    • Zhang Jinyu, Kim W, Olariu C, Steel R. 2019. Accommodation- versus supply-dominated systems for sediment partitioning to deep water. Geology, 47: 1~4.

    • Zhu Dingwei, Peng Guangrong, Zhang Zhongtao, Yu Shuiming, Wu Jing, Xu Xinming, Li Kongsen. 2022. Hydrocarbon accumulation conditions in drape structure zone north of Enpingsag, Pearl River Mouth basin. China Offshore Oil and Gas, 34(1): 36~44 (in Chinese with English abstract).

    • Zhu Hongtao, Yang Xianghua, Zhou Xinhuai, Li Jianping, Wang Deying, Li Min. 2013. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag. Earth Science: Journal of China University of Geosciences, 38(1): 121~129 (in Chinese with English abstract).

    • Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870 (in Chinese with English abstract).

    • 白振华, 李胜利, 苏燕, 马行陟, 李茂文. 2011. 琼东南盆地崖城13-1气田渐新统陵三段沉积物源综合分析. 中国地质, 38(2): 384~392.

    • 崔宇驰, 曹立成, 乔培军, 陈淑慧, 庞雄, 邵磊. 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169~4179.

    • 杜家元, 张向涛, 刘培, 罗明, 张琴, 姚佳利, 王绪诚, 梁杰. 2021. 珠江口盆地珠一坳陷古近系“源-汇”系统分类及石油地质意义. 地球科学, 46(10): 3690~3706.

    • 杜文波 , 孙桂华, 黄永健, 舒誉, 聂鑫. 2015a. 基于地震多属性的储层预测——以珠江口盆地恩平凹陷古近系恩平组为例. 海洋地质前沿, 31(8): 62~70.

    • 杜文波, 孙桂华, 舒誉. 2015b. 珠江口盆地恩平凹陷古近系恩平组地震沉积学研究. 地质科技情报, 34(3): 220~229.

    • 杜文波, 黄文凯, 朱红涛, 张璐, Jakub Miluch. 2020. 台湾海峡西部海域沉积体系、地层架构与油气勘探前景. 中国地质, 47(5): 1542~1553.

    • 杜文波, 邱燕, 黄文凯, 韩冰. 2021. 南海西缘曾母西断裂构造特征及其对盆地沉积发育的控制作用. 海洋地质与第四纪地质, 41(2): 100~108.

    • 高阳东, 张向涛, 李智高, 丁琳, 李小平. 2021. 珠江口盆地恩平凹陷北带下-中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758~1770.

    • 龚丽, 朱红涛, 舒誉, 付鑫, 杨香华. 2014. 珠江口盆地恩平凹陷文昌组层序格架中中- 深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546~556.

    • 韩银学, 陈莹, 杨海长, 王龙颖, 沈怀磊, 郭帅, 纪沫, 曾智伟. 2017. 白云凹陷恩平组“源-汇”体系及其对油气勘探的影响. 中国石油勘探, 22(2): 25~34.

    • 林间, 李家彪, 徐义刚, 孙珍, 夏少红, 黄小龙, 解习农, 李春峰, 丁巍伟, 周志远, 张帆, 罗怡鸣. 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125~140.

    • 刘安, 吴世敏. 2011. 珠江口盆地花岗岩成因探讨及其对油气资源指示意义. 地学前缘, 18(1): 141~148.

    • 刘强虎, 朱红涛, 杨香华, 舒誉, 黄众. 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3): 1076~1082.

    • 刘仲强, 索艳慧, 杜晓东, 蔡国富, 程昊皞, 王光增, 周洁, 刁一笑, 付新建, 李三忠. 2022. 南海北部陆缘大陆架科学钻探选址: 珠江口盆地沉积源汇启示. 地质学报, 96(8): 2775~2787.

    • 王家豪, 刘丽华 , 陈胜红, 尚亚乐. 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588~595.

    • 杨田, 操应长, 田景春, 牛小兵, 李士祥, 周新平, 金杰华, 张倚安. 2021. 陆相湖盆深水重力流混合事件层沉积及沉积学意义. 地质学报, 95(12): 3842~3857.

    • 曾智伟, 杨香华, 舒誉, 陈胜红, 吴静, 王维, 夏晨晨. 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律. 现代地质, 29(4): 804~815.

    • 曾智伟, 朱红涛, 杨香华, 夏晨晨, 陈莹, 韩银学. 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936~1954.

    • 朱定伟, 彭光荣, 张忠涛, 于水明, 吴静, 许新明, 李孔森. 2022. 珠江口盆地恩平凹陷北部披覆带油气成藏条件. 中国海上油气, 34(1): 36~44.

    • 朱红涛, 杨香华, 周心怀, 李建平, 王德英, 李敏. 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学: 中国地质大学学报, 38(1): 121~129.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相湖盆源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.