en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王晨光,男,1990年生。博士,助理研究员,主要研究方向为地热成矿学、盐湖学、矿物学、岩石学、矿床学。E-mail:chenguangwangcags@163.com。

通讯作者:

郑绵平,男,1934年生。研究员,中国工程院院士,主要从事盐湖学和盐类矿床地质学研究。E-mail:zhengmp2010@126.com。

参考文献
Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica et Cosmochimica Acta, 59(20): 4125~4146.
参考文献
Blisniuk P M, Hacher B R, Glodny J, Ratschbacher L, Bi S, Wu Z, Mc Williams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412: 628~632.
参考文献
Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J. 1996. Bright spots, structure, and magmatism insouthern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688~1690.
参考文献
Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R, Moore J, Ricchiuto T E, Thurow J, Thusuf B. 2013. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N. W. Himalaya, India. Earth-Science Reviews, 126: 156~177.
参考文献
Delmelle P, Bernard A, Kusakabe M, Fischer T P, Takano B. 2000. Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. Journal of Volcanology & Geothermal Research, 97(1-4): 31~53.
参考文献
Dotsika E. 2015. H-O-C-S isotope and geochemical assessment of the geothermal area of Central Greece. Journal of Geochemical Exploration, 150: 1~15.
参考文献
Dotsika E, Leontiadis I, Poutoukis D, Cioni R, Raco B. 2006. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece. Journal of Volcanology and Geothermal Research, 154(3-4): 237~250.
参考文献
Du Jianguo, Liu Congqiang, Fu Bihong, Yoshiki N, Zhang Youlian, Wang Chuanyuan, Wang Hualiu, Sun Zigang. 2005. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. Journal of Volcanology and Geothermal Research, 142(3-4): 243~261.
参考文献
Duo Ji. 2003. The basic characteristics of the Yangbajing geothermal field-typical high temperature geothermal system. Strategic Study of CAE, 5(1): 42~47(in Chinese with English abstract).
参考文献
Ellis A J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2(70): 516~528.
参考文献
Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1): 41~50.
参考文献
Fournier R O. 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology & Geothermal Research, 5(1): 1~16.
参考文献
Fournier R O, Rowe J J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9): 685~697.
参考文献
Fournier R O, Truesdell A H. 1973. An empirical Na, K, Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37(5): 1255~1275.
参考文献
Friedman B. 2011. Geothermal potential touted. AAPG Explorer, 14.
参考文献
Gemici Ünsal, Tarcan G. 2002. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. Journal of Volcanology & Geothermal Research, 116(3-4): 215~233.
参考文献
Gianelli G, Teklemariam M. 1993. Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia). Journal of Volcanology & Geothermal Research, 56(4): 429~445.
参考文献
Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~2765.
参考文献
Giggenbach W F, Gonfiantini R, Jangi B L, Truesdell A H. 1983. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India. Geothermics, 12(2): 199~222.
参考文献
Gluyas J G, Younger P L, Stephens W E. 2012. Development of deep geothermal energy resources in the UK. Energy, 165(1): 19~32.
参考文献
Guo Qinghai, Wang Yanxin, Liu Wei. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. Journal of Volcanology & Geothermal Research, 166(3): 255~268.
参考文献
Guo Qinghai, Wang Yanxin, Liu Wei. 2009. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology & Geothermal Research, 180(1): 9~20.
参考文献
Guo Qinghai, Wang Yanxin. 2012. Geochemistry of hot springs in the Tengchong hydrothermal areas, southwestern China. Journal of Volcanology & Geothermal Research, 215-216: 61~73.
参考文献
Guo Qinghai, Liu Mingliang, Li Jiexiang, Zhang Xiaobo, Guo Wei, Wang Yanxin. 2017. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet geothermal province, China. Journal of Geochemical Exploration, 172: 109~119.
参考文献
Hu Xiancai, Wang Guiling, Wang Xiaoli. 2015. Geothermal exploration along the Qinghai-Xizang Railway drilled 205℃ geothermal steam. Geothermal Energy, (3): 30 (in Chinese).
参考文献
Keenan J H. 1978. Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. New York: John Wiley.
参考文献
Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003~1008 (in Chinese with English abstract).
参考文献
Li Jiexiang, Guo Qinghai, Wang Yanxin. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai geothermal field, Tengchong. Earth Science, 40(9): 1576~1584 (in Chinese with English abstract).
参考文献
Li Zhenqing. 2002. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau. Doctoral dissertation of Chinese Academy of Geologecal Sciences (in Chinese with English abstract).
参考文献
Liao Zhijie, Zhao Ping. 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Beijing: Science Press (in Chinese with English abstract).
参考文献
Lin Yongjie, Zheng Mianping, Ye Chuanyong. 2017. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Applied Geochemistry, 78: 139~148.
参考文献
Liu Mingliang. 2018. Geochemical study of boron in typical high temperature hydrothermal system in Tibet. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).
参考文献
Liu Zhao, Chen Kang, Nan Dawa. 2017. Hydrochemical characteristics of geothermal water in Gudui, Xizang(Tibet). Geological Review, (s1): 353~354 (in Chinese with English abstract).
参考文献
Lü Yuanyuan, Zheng Mianping, Zhao Ping, Xu Ronghua. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone. Science China Earth Sciences, 57(12): 2934~2944.
参考文献
Luo Yangbing, Zheng Mianping, Ren Yaqiong. 2017. Correlation between special salt lakes on the Qinghai-Tibetan Plateau and deep volcanoes-geothermal water. Science & Technology Review, 35(12): 44~48 (in Chinese with English abstract).
参考文献
Makovsky Y, Klemperer S L, Huang L, Lu D, Project INDEPTH Team. 1996. Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics, 15(5): 997~1005.
参考文献
Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen L, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 274: 1684~1687.
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Shangguan Zhiguan, Zhao Ciping, Li Hengzhong, Gao Qingwu, Sun Mingliang. 2005. Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 34(4): 518~526.
参考文献
Sturchio N C, Ohsawa S, Sano Y, Arehart G, Kitaoka K, Yusa Y. 1996. Geochemical characteristics of the Yufuin outflow plume, Beppu hydrothermal system, Japan. Geothermics, 25(2): 215~230.
参考文献
Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda R J, Huertas A D. 2010. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile). Journal of Volcanology & Geothermal Research, 192(1-2): 1~15.
参考文献
Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3): 199~214.
参考文献
Tong Wei, Zhang Mingtao, Zhang Zhifei, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Jinying, Liu Shibin. 1981. Geothermy in Xizang. Beijing: Science Press (in Chinese with English abstract).
参考文献
Tong Wei, Liao Zhijie, Liu Shibin, Zhang Zhifei, You Maozheng, Zhang Mingtao. 2000. Xizang Hot Springs. Beijing: Science Press (in Chinese with English abstract).
参考文献
Verma S P, Santoyo E. 1997. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology & Geothermal Research, 79(1): 9~23.
参考文献
Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.
参考文献
Wang Chenguang, Zheng Mianping, Zhang Xuefei, Xing Enyuan, Zhang Jiangyi, Ren Jianhong, Ling Yuan. 2019. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geoscience Frontiers, 11(4): 1175~1187.
参考文献
Wang Chenguang, Zheng Mianping, Zhang Xuefei, Ye Chuanyong, Wu Qian, Chen Shuangshuang, Li Mingming, Ding Tao, Du Shaorong. 2020. Geothermal-type lithium resources in Southern Tibetan Plateau. Science & Technology Review, 38(15): 24~36 (in Chinese with English abstract).
参考文献
Wang Peng, Chen Xiaohong, Shen Licheng, Wu Kunyu, Huang Mingzhi, Xiao Qiong. 2016. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (western Tibet, China). Journal of Volcanology and Geothermal Research, 320: 29~39.
参考文献
Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet. Geology in China, 43(4): 1429~1438 (in Chinese with English abstract).
参考文献
Wang Siqi. 2017. Hydrogeochemical processes and genesis mechanism of high-temperature geothermal system in Gudui, Tibet. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Wang Wei, Wei Haizhen, Jiang Shaoyong, Tan Hongbing, Eastoe C J, Williams-Jones A E, Wu Heping. 2019. The origin of rare alkali metals in geothermal fluids of southern Tibet, China: A silicon isotope perspective. Scientific Reports, 9(1): 1~11.
参考文献
Williams H, Turner S, Kelley S. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339~342.
参考文献
Zhang Zhifei. 1985. Geothermal research in Tibet. Bulletin of Mineralogy, Petrology and Geochemistry, 4(2): 59~61(in Chinese).
参考文献
Zhao Ping, Jin Jian, Zhang Haizheng, Dor Ji, Liang Tingli. 1998. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Chinese Journal of Geology, 33(1): 61~72 (in Chinese with English abstract).
参考文献
Zhao Ping, Xie Ejun, Dor Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539~550 (in Chinese with English abstract).
参考文献
Zhao Ping, Dor Ji, Xie Ejun, Jin Jian. 2003. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China. Acta Petrologica Sinica, 19(3): 569~576 (in Chinese with English abstract).
参考文献
Zheng Mianping. 1995. A New Type of Hydrothermal Deposit—Cesium-Bearing Geyserite in Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Zheng Shuhui, Zhang Zhifei, Ni Baoling, Hou Fagao, Shen Minzi. 1982. Hydrogen-oxygen stable isotope study of geothermal water in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99~106.
参考文献
Zhu Bingqiu, Zhu Lixin, Shi Changyi. 1992. Geochemical Exploration of Geothermal Fields. Beijing: Geological Publishing House(in Chinese).
参考文献
多吉. 2003. 典型高温地热系统-羊八井热田基本特征. 中国工程科学, 5(1): 42~47.
参考文献
胡先才, 王贵玲, 王婉丽. 2015. 青藏铁路沿线地热勘查钻获195℃高温地热蒸汽. 地热能, (3): 30.
参考文献
李光明, 董磊, 黄勇, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003~1008.
参考文献
李洁祥, 郭清海, 王焰新. 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学(中国地质大学学报), 40(9): 1576~1584.
参考文献
李振清. 2002. 青藏高原碰撞造山过程中的现代热水活动. 中国地质科学院博士学位论文.
参考文献
廖志杰, 赵平. 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
参考文献
刘明亮. 2018. 西藏典型高温水热系统中硼的地球化学研究. 中国地质大学博士学位论文.
参考文献
刘昭, 陈康, 男达瓦. 2017. 西藏古堆地热田地下热水水化学特征. 地质论评, (s1): 353~354.
参考文献
雒洋冰, 郑绵平, 任雅琼. 2017. 青藏高原特种盐湖与深部火山-地热水的相关性. 科技导报, 35(12): 5.
参考文献
佟伟, 章铭陶, 张知非, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1981. 西藏地热. 北京: 科学出版社.
参考文献
佟伟, 廖志杰, 刘时彬, 张知非, 由懋正, 章铭陶. 2000. 西藏温泉志. 北京: 科学出版社.
参考文献
王晨光, 郑绵平, 张雪飞, 叶传永, 伍倩, 陈双双, 黎明明, 丁涛, 杜少荣. 2020. 青藏高原南部地热型锂资源. 科技导报, 38(15): 24~36.
参考文献
王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应. 中国地质, 43(4): 1429~1438.
参考文献
王思琪. 2017. 西藏古堆高温地热田水文地球化学过程与形成机理. 中国地质大学(北京) 博士学位论文.
参考文献
张知非. 1985. 西藏的地热研究. 矿物岩石地球化学通讯, 4(2): 59~61.
参考文献
赵平, 金建, 张海政, 多吉, 梁廷立. 1998. 西藏羊八井地热田热水的化学组成. 地质科学, 33(1): 61~72.
参考文献
赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义. 岩石学报, 18(4): 539~550.
参考文献
赵平, 谢鄂军, 金建. 2003. 中国典型高温热田热水的锶同位素研究. 岩石学报;19(3): 569~576.
参考文献
郑绵平. 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社.
参考文献
郑淑蕙, 张知非, 倪葆龄, 侯发高, 沈敏子. 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报(自然科学版), (1): 99~106.
参考文献
朱炳球, 朱立新, 史长义. 1992. 地热田地球化学勘查. 北京: 地质出版社.
目录contents

    摘要

    作为我国近些年地热勘探取得重要突破的地热田,西藏南部古堆地热田以其浅埋、高温、富锂、活动剧烈为典型特征而为人们广泛关注。然而关于其水化学特征和成因人们还知之甚少。古堆高温富锂地热田由五个地热显示区组成,分别是布雄朗古、杀噶朗噶、巴布的密、茶卡和日若地热显示区,其中布雄朗古、杀噶朗噶地热显示区地热活动最为强烈。古堆地热田沸泉和热泉的水化学类型主要为Na-Cl型,温泉和冷泉的水化学类型主要为Na-Cl-HCO3、Na-HCO3-Cl和Na-HCO3型,地表水化学类型主要为Ca-Mg-SO4-HCO3和Na-Ca-Mg-SO4-Cl-HCO3型,这些不同的水化学类型可能反映其不同的成因和物质来源;K-Na地温计显示布雄朗古、杀噶朗噶、巴布的密、茶卡有相似的热储温度(最高可达240.56℃),且明显高于石英和K-Mg地温计计算结果;除了部分沸泉,多数地热水在Na-K-Mg三角图中的投点都远离完全平衡线,表明地热水在从热储上升至地表的过程中没有达到完全的化学再平衡,可能与冷水发生了混合;通过对地热流体特征元素的分析发现Cl、Na、K、SiO2、B、As、Li、Rb、Cs和F是古堆地热流体的特征化学组分,Cl和其他特征化学组分之间良好的线性关系,表明了深部母地热流体的存在;通过对古堆地热流体焓-氯图解的分析表明古堆地热田深部可能存在两类不同的母地热流体,其Cl含量、焓值和对应的温度分别为567 mg/L、1562.5 J/g、335.5℃和697 mg/L、1250 J/g、282.5℃,并且古堆地热田的母地热流体可能是通过与围岩的热传导、沸腾或者与浅部地表冷水混合的冷却方式上升至地表形成不同温度、水化学类型和活动强度的热泉,本研究对深入认识我国西藏南部高温富锂地热系统的水化学特征和形成过程具有重要理论意义,同时对将来合理利用我国西藏南部清洁地热能和地热型锂资源具有重要的现实意义。

    Abstract

    As the important breakthrough in geothermal exploration in Southern Tibet in recent years, the Gudui (Gobdu) high-temperature geothermal system has attracted widespread attention for its typical characteristics of shallow burial, high temperature, high lithium content and intense activity. The boiling springs and hot springs in the Gudui geothermal system are mainly Na-Cl type, the warm springs and cold springs are mainly Na-Cl-HCO3, Na-HCO3-Cl and Na-HCO3 types, and the surface water mainly belong to Ca-Mg-SO4-HCO3 and Na-Ca-Mg-SO4-Cl-HCO3 types; these differences may reflect their different origins and material sources. The comprehensive analysis of Na-K, quartz, K-Mg geothermometer indicate that the reservoir temperature was up to 240.56℃. Except for four samples, the results of Na-K geothermometer is always higher than the quartz and K-Mg geothermometers. Most geothermal water samples collected from Gudui are far from the full equilibrium line in Na-K-Mg ternary diagram, suggesting that the complete chemical re-equilibrium has not been achieved as these geothermal waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. Geochemical characteristics analysis indicates that Cl, Na, K, SiO2, B, As, Li, Rb, Cs and F are the characteristic components of Gudui geothermal waters. The good linear relations between Cl and other characteristic constituents reflect the existence of a parent geothermal liquid (PGL) below Gudui. Comprehensive comparative analysis of the chloride-enthalpy diagram suggests that there may be two kinds parent geothermal liquid below Gudui that have Cl- concentration, enthalpy value and their corresponding temperature are 567 mg/L, 1562.5 J/g, 335.5℃ and 697 mg/L, 1250 J/g, 282.5℃. The PGL ascends to the surface through different channels and may cool by conduction of heat to reservoir host rocks, by boiling, or by mixing with cooler groundwater. This study is of great significance to deeply understand the hydrochemical characteristics and formation process of high-temperature lithium-rich geothermal system in southern Tibet, and has important practical significance for the rational utilization of clean geothermal energy and geothermal-type lithium resources in southern Tibet in the future.

  • 面对全球的能源危机和日益严重的环境问题,清洁能源的开发和利用越来越受到人们的重视,作为一种古老的能源,清洁可持续的地热资源有超过2 ka的利用历史(Friedman,2011; Gluyas et al.,2012; Craig et al.,2013)。近年来,围绕地热资源的各项研究在全球范围内都受到了广泛的关注(Delmelle et al.,2000; Gemici and Tarcan,2002; Dotsika et al.,2006; Tassi et al.,2010; Dotsika,2015)。我国的地热资源在每个省都有分布(刘昭等,2017),但高温地热田主要分布在云南、四川和西藏南部,属于西藏-云南地热带,也是地中海-喜马拉雅地热带的重要组成部分(Blisniuk et al.,2001; Williams et al.,2001; 多吉,2003; Taylor and Yin,2009; Pan Guitang et al.,2012; Lü Yuanyuan et al.,2014)。20世纪70年代以来,中国科学院等单位对西藏地热资源开展了一系列的调查研究工作(Wang Peng et al.,2016),在西藏发现和勘查了超过600个地热显示点(图1a),其中尤以亚东-谷露地热带和错那-沃卡地热带地热点的分布最为集中(图1a)。多数的高温地热田都分布于南北向深大断裂附近,尤其是近东西向与近南北向深大断裂相互交汇的地区(图1a)。地质历史上强烈活动的东西向区域性深大断裂为深部物质热量的上升提供了通道,在叠加了南北向的后期张性断裂之后,深部热能迁移至浅层地表,形成我国西藏地区沿断裂规律发育的众多地热田,如羊八井地热田、羊易地热田即位于亚东-谷露裂谷带(图1a)与墨竹工卡-工布江达断裂带的交汇位置(王思琪,2017),而羊八井、羊易地热田的成功开发利用也为西藏其他高温地热田的开发提供了范例(赵平等,199820022003多吉,2003; Du Jianguo et al.,2005; Shangguan Zhiguan et al.,2005; Guo Qinghai et al.,2007200920122017)。

  • 我国西藏地区地热资源极其丰富,热储温度超过150℃的地热点就有129个之多(廖志杰和赵平,1999)。近年来,西藏地热地质大队通过对查尼-索县-沃卡-古堆-错那活动构造带(错那-沃卡裂谷带;图1a)的调查研究,发现诸多高温地热活动区,其中古堆地热显示区地热活动最为强烈(Wang Peng et al.,2016),地热钻孔ZK303在古堆地热田深部230 m处钻获了温度高达205℃的地热流体,刷新了我国地热勘探中同等深度温度最高的记录(胡先才等,2015),而刘昭等(2017)通过估算认为古堆地热田的发电潜力总和约为266 MW,这些研究都说明了古堆地热田拥有较大的地热资源开发潜力。古堆地区年平均气温在8.2℃左右,人畜取暖多以柴薪和畜粪做燃料,这也为古堆地热田的开发利用提出了迫切的需求。近些年的研究发现,古堆地热流体中关键金属锂的含量达到了超常富集水平,并且数十年持续稳定的排放(王晨光等,2020),这一定程度增加了古堆地热田的开发利用潜力,而所有的开发利用都离不开前期对古堆地热田的深入研究,前人对古堆高温地热田的水化学特征进行过初步的研究(佟伟等,19812000张知非等,1985)。郑淑蕙等(1982)对羊八井和古堆地热田进行了氢氧稳定同位素的对比研究,获得了补给水源、热源及热水通道等初步信息。王思琪(2017)对古堆地热田进行了研究并提出了初步的成因模式。但目前围绕古堆地热流体的热储特征和地热流体的运移演化过程的揭示仍然有所欠缺,这些不足在一定程度上限制了古堆地热资源的开发和利用。本文通过对古堆地热田多个地热显示区的野外实地观察和系统采样研究,结合前人的研究成果,对古堆地热流体的水化学特征、地热流体冷却上升的过程、热储温度和母地热流体的特征等方面进行了系统阐述,为后期的钻探工作及资源开发利用的决策部署提供可靠的理论支撑,同时可以进一步深化对我国西藏南部地区高温富锂地热系统的形成机制的理论认识。

  • 1 研究区概况

  • 古堆地热田位于拉萨市南东方向约150 km的山南地区措美县古堆乡,西距措美县城约90 km,东距隆子县约60 km。地理坐标:东经91°30′~92°15′,北纬28°15′~28°45′,大地构造位置上处于藏南拆离系和雅鲁藏布缝合带之间的近南北向的错那-沃卡裂谷带(图1a)与近东西向的哲古错-隆子逆冲构造带的交汇位置。区内总体地势南高北低,地形起伏较大,海拔4420~5430 m,平均海拔4700 m,相对最大高差近900 m(刘昭等,2017),约90%的区域山势陡峭,野外调查工作难度非常大。研究区属高原温带半干旱季风气候区,年平均气温8.2℃,多年平均最低气温为1.3℃,年平均降水量408 mm,年平均蒸发量2653.6 mm(王思琪,2017)。研究区地表水比较发育,发育的主要河流为雄曲、玛尼当曲及其支流(图1b),在平面上呈树枝状展布,雄曲为长年性水流,但雄曲丰、枯水季流量变化幅度极大,变幅可达400倍以上,野外考察过程中雨季河水漫过公路;区内地下水可划分为第四系松散岩类孔隙潜水、基岩裂隙水和碳酸盐岩裂隙水;研究区地层主要出露了三叠系涅如组、侏罗统陆热组、第四系冲洪积物和第四系泉华堆积物(图1b),第四系冲洪积物主要分布于工作区的撒嘎朗嘎沟谷地带;第四系泉华堆积物主要分布于工作区的日若、撒嘎朗嘎等处,主要以硅华、钙华为主。研究区岩浆侵入活动频繁,但多为规模较小岩体及岩体群,地热显示区内主要见有下白垩世闪长岩、上白垩世辉绿岩出露,但整个地热裂谷带北部发育雅拉香波淡色花岗岩,南部发育错那洞淡色花岗岩,近些年围绕错那洞淡色花岗岩发现了超大型铍锡钨多金属矿床(李光明等,2017);古堆地热田周边断裂构造发育,区域上有14条相互交叉的近东西-近南北向断裂,热泉点多集中分布在地热田内发育的10条断裂的交叉部位,其中以东西向早期断裂F1、F2、F3、F10(图1b)为主断层,北东向(F4、F6、F9)和北西向(F5、F7、F8)晚期断裂(图1b)为次级断裂。早期断层大多为逆断层,具有阻水性质;次级断层多为张性,是主要的导水导热通道。温泉区集中发育在F3、F5、F6、F7、F8(图1b)断裂附近及其交叉部位,这些断裂为深部地热流体的上升运移和存储提供了空间,物探和钻探的成果已经揭示它们具有重要的导水导热作用(王思琪,2017),深部电导率物探结果显示古堆地热田也与羊八井地热田类似,其下部也存在一定规模的低阻体。羊八井地热田深部岩浆热源的存在也已经成为许多学者的共识(Nelson et al.,1996; Brown et al.,1996; Makovsky et al.,1996; Guo Qinghai et al.,2007),结合同等深度条件下,古堆地热田深部高温地热流体存在的事实,推断古堆地热田深部同样存在含水局部熔融岩浆(王思琪,2017),并可能为古堆地热田的形成提供了持续的热源和部分物质来源。

  • 图1 我国西藏南部热泉点、活动构造分布(a)和古堆地热田及各热泉区地质简图(b)(修改自郑绵平等,1995李振清,2002; 雒阳冰等,2017;刘昭等,2017王思琪,2017; Wang Chenguang and Zheng Mianping,2019; Wang Chenguang et al.,2019

  • Fig.1 Distribution of hot springs sites, active tectonics in the Tibetan Plateau (a) and simplified geological map of the Gudui geothermal field and different geothermal areas (b) (modified from Zheng Mianping et al., 1995; Li Zhenqing, 2002; Luo Yangbing et al., 2017; Liu Zhao et al., 2017; Wang Siqi, 2017; Wang Chenguang and Zheng Mianping, 2019; Wang Chenguang et al., 2019)

  • 2 各热泉区特征

  • 古堆地热田是由布雄朗古、杀噶朗噶、巴布的密、茶卡和日若5个温泉区组成(刘昭等,2017),现结合最新野外考察结果,将其各个泉区特征分述如下:

  • 布雄朗古沸泉位于嘛尼定村西南,玛尼当曲两岸(图1b),其中沸泉群出现在玛尼当曲西岸谷坡上(图2f)。前人1975年5月31日对其作第一次实地观察,见玛尼当曲两岸皆有泉华体分布,面积至少0.7~1 km2,各类泉口均位于泉化体之上,100 m2范围内75℃以上泉口共23个,最高温度86.5℃。沸泉、喷气孔以及浊水泉均有分布,显示间歇性活动的特点(佟伟等,2000)。1979年7月21日观察时主沸泉泉口温度仍可达85℃。郑绵平等(1995)对布雄朗古的古硅化进行了化学分析,并认为其与打加和谷露硅化大体相似。本次野外工作过程中,发现主沸泉口表现出强烈的间歇喷发特点,喷出的高温水汽泥混合物可以上升至空中数十米(图2f),并呈现出间隔10 min喷发一次,每次喷发5 min的规律。此外,由于地热钻井ZK203(图2f)的施工,导致泉华大部分被破坏或掩埋。

  • 杀噶朗噶沸泉位于玛尼当村东南,玛尼当曲东侧支沟内(图1b,图2a),章铭陶等分别于1975年、1979年和1989年对此泉进行过考察(佟伟等,2000)。杀噶朗噶沸泉沿沟谷分布,多位于支沟南侧和沟底(图2a),沸泉、硫质气孔和热泉均有出露(图2a、d、e、g),主沸泉口温度超过85℃,总流量10~20 L/s。郑绵平等(1995)对其古泉华的时代和其中的稀碱金属含量进行过详细的研究工作,认为泉华体时代较老,且其中的Cs含量高达0.1886%(铯矿床的最低工业品位为0.05%~0.06%),是谷露铯硅华的两倍,比羊八井泉华中Cs含量高一个数量级。本次野外工作发现杀噶朗噶沸泉区主沸泉口为PC04、PC05,泉口温度83℃左右,除此之外还发育一系列流量较小的热泉。此外,地热钻井ZK302(图1b)处发育沸泥泉,涌气量也很大,并伴有巨大的沸水鼓涌声响,此泉区以PC05样品所代表的的泉口发育强烈的硫磺气味(图2e)和单泉口最大流量(图2g)为显著特点,实地测得单泉口地热水流量可达13.15 L/s,是杀噶朗噶沸泉区水流量最大的沸泉。

  • 巴布的密沸泉位于嘛尼定村东南,雄曲南侧谷坡近山脊处,泉区位于一冲沟之源头(图1b,图2h,图2j),前人观测到沸泉和热泉泉口10余个,温度高达86.5℃,1975年6月观测有喷气孔和浊水泉,且总流量约10 L/s;1979年观察到两个热水塘,并疑似水热爆炸的遗迹(佟伟等,2000)。本次野外工作发现巴布的密泉区热水活动明显减弱,且原有的岩石陡坎发生坍塌,掩盖大部分泉口(图2j),但热泉水温度依然很高。

  • 茶卡沸泉位于玛尼当曲东侧支沟南边,紧邻杀噶朗噶沸泉区(图1b),野外调查发现此热泉区最显著的特点是发育巨大的钙华丘及盐华(图2i),其上发育古泉华锥,泉华锥多已被风化剥蚀,仅部分残余,沸泉出露于泉华丘体下方临沟处,1989年佟伟等考察时测得温度高达83℃(佟伟等,2000)。本次野外工作中测得两泉口温度分别为68℃、70℃,且流量也明显减小(图2)。

  • 日若沸泉位于古堆村南,雄曲河谷南侧谷坡上(图1b),前人野外观测发现泉区被板岩残丘分隔为4个泉口密集区,沸泉区泉华发育,且硫磺味浓烈,1979年张知非等对其进行考察,测得泉口温度最高可达84℃。1989年考察时发现泉华台地之下有大量盐华发育,最高温度可达82℃(佟伟等,2000)。本次野外工作中由于雨季来临,雄曲河暴涨,无法越过汹涌河水到达日若沸泉区,相关分析引用前人分析数据。

  • 图2 古堆地热田各热全区代表性热泉现象和特征

  • Fig.2 Typical hot springs phenomena and surface expression of Gudui geothermal field

  • (a)—杀噶朗噶热泉区的地形特征和相对位置;(b)—热泉PC01特征及其冒汽地面;(c)—热泉PC03及其地热水输水管道;(d)—F3断裂的特征以及布雄朗古和茶卡热泉的位置;(e)—PC05强烈的热泉活动及其相对与F3断裂的位置;(f)—布雄朗古热泉强烈的水热爆炸及其喷发的水、汽、泥混合物;(g)—热泉PC05的巨大水流,地热田内涌水量最大的热泉;(h)—热泉PC03的位置及其形成的沟谷;(i)—茶卡热泉特征及其周围泉华;(j)—巴布的密热泉区及其周围坍塌围岩;(k)—沸泉;(l)—水热蚀变特征

  • (a) —topography characteristics and the relative location of the Shagalangga springs areas; (b) —hot spring PC01 and the steaming ground; (c) —hot spring PC03 and the use of geothermal water through water pipe; (d) —the characteristics of fault F3 and the location of Buxionglanggu and Chaka springs areas; (e) —intense hydrothermal activity of PC05 and its location relative to the F3; (f) —the hydrothermal explosion of Buxionglanggu and its strong extrusion of mixed geothermal water, steam and mud; (g) —the spring flow of PC05, which is the maximum spring flow of Gudui geothermal field; (h) —the position of the PC03 spring and the gully; (i) —Chaka spring and the characteristics of the sinter; (j) —Babudimi springs area and the collapsed host rock; (k) —boiling spring; (l) —hydrothermal alteration of Gudui geothermal field

  • 3 数据采集与分析

  • 本次对古堆地热田进行野外实地勘查研究严格按照地热资源地质勘查规范(GB 11615—2010)的要求执行。本次共采集古堆地热田代表性地热显示区(杀噶朗噶、布雄朗古、巴布的密和茶卡)的典型地热水样品10件,其中,在杀噶朗噶采集2个沸泉样品PC04、PC05,在布雄朗古采集1个沸泉样品BXLG01,在茶卡采集2个热泉样品CK01、CK02,在巴布的密采集1个沸泉样品PC02,3个热泉样品PC01、PC03、BBDM01,1个冷泉样品BBDM02,采样位置和热泉特征分别见图1b和表1。本次研究采集的所有样品均在现场用0.45 μm滤膜过滤,并尽量保证水样充满采样瓶,防止进入空气,每个采样点采集4瓶水样,其中一瓶加入优级纯HNO3至pH低于1,用于阳离子分析,一瓶稀释10倍用于SiO2分析,防止SiO2产生沉淀,样品储存在600 mL的聚乙烯瓶中,采样之前每一个聚乙烯瓶用去离子水润洗3次(李振清,2002王思琪,2017刘明亮,2018),野外使用GPS来记录不同温泉和样品的位置(图1b,表1);泉口温度现场使用温度计测量;pH是在野外通过便携式手持pH计测定,在测定pH之前,先用pH值分别为7和4的缓冲液对pH进行校准;在确定任何后续样品的pH值之前,先用蒸馏水冲洗pH计的电极,以防止样品间的污染。采样温泉名称、温泉类型、高程、泉口温度等其他信息见表1,在样品采集后一周内对样品进行水化学分析。在自然资源部盐湖资源与环境重点实验室,通过离子色谱法对SO42-、Cl-、F-等阴离子含量进行分析,分析之前过滤处理试验样品,在25℃的干燥无污染室内环境对样品进行分析,分析测试精度在0.1%以上,准确度均符合本文研究要求(Lin Yongjie et al.,2017)。Ca2+、Mg2+、Na+和K+浓度用ICP-AES分析,分析测试精度在0.2%以上,准确度满足要求,其他金属元素用ICP-MS分析,详细分析流程及细节见Lin Yongjie et al.(2017),所有样品的水化学分析结果见表2。在国家地质实验测试中心通过等离子体光谱仪(PE8300)和紫外可见分光光度计分别对SiO2和NH4+的含量进行分析,分析精度在0.1%以上,水化学分析的方法、准确度等要求符合国家标准GB/T8538—2008。此外,为了深入分析本次水化学数据并加强与前人研究成果的对比,本文还搜集了40年来前人对古堆地热流体样品的水化学分析结果(表1)。

  • 表1 古堆地热田各热全区地热流体样品基本特征

  • Table1 Basic characteristics of geothermal fluid samples in each thermal area of Gudui geothermal field

  • 注:pH(F)代表野外测量pH值,仅供参考;nd代表没有测出;本文将温度范围介于20~45℃之间的温泉定义为温泉,46~80℃之间的温泉定义为热泉,81℃至等于或略高于当地水沸点的温泉定义为沸泉,参考修改自佟伟等(2000)

  • 4 结果与讨论

  • 4.1 水化学特征

  • 在古堆地热田中,地表水的水化学类型为Ca-Mg-SO4-HCO3和Na-Ca-Mg-SO4-Cl-HCO3;日若和茶卡热泉区水化学类型主要为Na-HCO3-Cl,偶尔也可见Na-Cl-HCO3型水(图3);杀噶朗噶、布雄朗古、巴布的密热泉区的水化学类型以Na-Cl型水为主,其次为Na-Cl-HCO3型水,偶尔可见Na-HCO3-Cl型水(表1)。从热泉类型的角度,可以发现沸泉除了9号(CK197903)(表1)外,其他都是Na-Cl型水,这与地热钻井中地热水化学类型一致(表1,图3),可能反映了深部热储的水化学类型;热泉和温泉中一少部分为Na-Cl型水,其他多为Na-Cl-HCO3和Na-HCO3-Cl型水,可能反映了随着地热流体的上升,与地下水发生了一定程度的混合(图3)。从空间位置的角度看,杀噶朗噶、布雄朗古热泉区地热水多为沸泉,且水化学类型基本都为Na-Cl型水,而日若和茶卡热泉区泉口温度较低,水化学类型也多以Na-Cl-HCO3和Na-HCO3-Cl型水为主;此外,古堆地区地表水的TDS值介于545.3~1096.2 mg/L之间,温泉水介于2134.0~2356.8 mg/L之间,热泉水介于1786.0~3070.0 mg/L之间,沸泉水介于2050.0~3060.0 mg/L之间,地热钻井的介于2798.26~3324.9 mg/L之间(表1),总体上随着地热水温度的升高,TDS值也有逐渐升高的趋势,反映了杀噶朗噶、布雄朗古热泉区可能为地热水升流中心,而日若和茶卡热泉区为边缘区域。古堆地区地表水的pH值介于6.7~8.3之间,热泉水介于6.5~8.4之间,沸泉水介于8.0~9.3之间(其中超过9的地热水为巴布的密和杀噶朗噶1979年测得结果,可能不准),地热钻井水的介于8.5~8.7之间(王思琪,2017),总体上呈中性—弱碱性,而中性Na-Cl型地热水和弱碱性—中性Na-Cl-HCO3和Na-HCO3-Cl型地热水是典型的岩浆地热田水化学类型(Guo Qinghai et al.,2017),典型实例如羊八井地热田,进一步说明了古堆地热田也可能含有深部岩浆流体来源。区内地热水阳离子以Na+为主,阴离子以Cl-为主;冷泉及地表水中阳离子Ca2+、Mg2+含量较高,阴离子HCO3-、SO42-含量较高(表2),随着热泉温度的逐渐降低,可以看到地热水有逐渐往地表水演化的趋势,这也说明了高温地热流体中逐渐混入地下水的过程(图3)。研究区地热水化学类型与羊八井类似,同时富含HBO2、F、As、Li、SiO2的成分(表2),与冷水区分明显,为典型的高温地下热水水化学类型(郑绵平等,1995佟伟等,2000)。

  • 表2 古堆地热田各热泉区前人采集样品和本次野外采集地热流体样品主要化学组分含量

  • Table2 The content of the main chemical components of the samples collected by predecessors in each hot spring areas of Gudui geothermal field and the samples collected this time

  • 注:所有样品组分的单位都是mg/L;电荷平衡单位为%;样品1~22引自佟伟等(2000),样品23~38引自王思琪(2017),样品39~48为本次研究工作采集,前人样品的采样位置详见对应参考文献;电荷平衡值计算公式如下:电荷平衡值= cations - anions ÷ cations + anions ×100,参考Hydrochemistry software Phreeq C(U.S.G.S.)。

  • 4.2 热储温度计算

  • 在地热资源勘查中,深部热储温度是区分地热系统类型和评估地热资源潜力的重要指标。通常情况下热储温度难以直接测量,而地球化学温标能有效便捷地获取这一参数(王鹏等,2016)。流体地温计是一种重要的地球化学温标,其可以利用出露的泉点或浅的地热钻孔来评价地热系统的储层温度,其主要是利用地热水中某些化学组分的含量变化与温度的关系,来估算热储温度(王思琪,2017)。其基本原理是深部热储中矿物与流体或不同流体之间已达到了平衡,地热流体升流过程中,到达地表后尽管温度明显下降,而化学成分含量并未发生明显的变化,因此,可基于化学反应的平衡温度来估算热储的温度(Fournier et al.,1979)。使用地热温标法判断热储温度的前提是地热温标的某种物质和热储中的矿物达到平衡(李洁祥,2015),有时由于热储温度过低,与浅层冷水进行混合或者其他一些化学反应的发生,可能导致作为地热温标的化学组分与热储中的矿物不平衡,因此需要检验地下热水和矿物的平衡状态,分析地热温标的使用可靠性。图4展现了古堆高温富锂地热系统1975~2017年间前人采集的地热水样品的平衡状态,可以发现多数水样属于未成熟水,一些属于部分平衡或混合水,而对本次研究所采集的样品来说,多数处于部分平衡或混合水的平衡线上(编号39~44样品),即采样温度分别为85℃、84℃、85.5℃、86℃的4个沸泉。样品BXLG197901、SGLG197904、SGLG197901和SGLG197902的投点非常靠近完全平衡线并且所有的样品随着温度的升高有逐步靠近完全平衡线的趋势。本研究工作发现来自茶卡和巴布的密的样品均位于不成熟水区域,杀噶朗噶和布雄朗古样品基本位于不成熟水和部分平衡或混合水的分界位置,且具有逐渐向完全平衡演化的趋势,这说明其受到了一些浅层冷水混合作用,地热温标法求得的热储温度会有一些偏差但由于部分平衡仍具有一定参考意义。其他样品处于未成熟水区域(编号45~48样品),地热温标计算结果可能偏差较大。此外,我们注意到Na-K-Mg1/2三角图解中所有的样品基本处于一条直线上,或者两条边界范围之间,而这两条边界直线与完全平衡线的交点温度分别为240~270℃,这表明热储温度是介于240~270℃之间的。为进一步厘定热储温度,我们用地热温度计对古堆地热田热储温度开展进一步的计算研究。

  • 图3 古堆高温富锂地热田地表水、地热钻井水和热泉水的Piper图解

  • Fig.3 Piper diagram of surface water, thermal water from geothermal drills and hot springs of Gudui geothermal field

  • 图4 古堆高温富锂地热水、地热钻孔水、冷水和地表水样品1975~2017年的Na-K-Mg1/2三角图解(据Giggenbach,1988

  • Fig.4 Triangular diagram Na-K-Mg1/2 (after Giggenbach, 1988) for geothermal water samples, geothermal drill water, cold spring water, and surface water from 1975 to 2017 of Gudui geothermal field

  • 图例如图3所示,编号如表2所示,虚线代表地热水与浅部(地表水)的混合,虚线与完全平衡线的交点代表热储温度

  • The legend is the same as in Fig.3; the number label of the symbol is the same as Table2, dashed lines indicate the mixing between geothermal waters and shallow (surface) waters, the intersection of the dashed line and the full equilibrium line represents the geothermal reservoir temperature

  • 本次研究工作中通过石英地温计(Verma and Santoyo,1997)、Na-K地温计(Giggenbach et al.,1983)和K-Mg地温计(Giggenbach,1988)对古堆地热田不同地热显示区的热储温度进行了估算(图5)。从图5可以看出,计算出的热储温度普遍高于采样温度,前人地热水研究的数据计算显示Na-K地温计范围为206.80~311.28℃(最高温度311.28℃是布雄朗古1979年数据结果),平均值262.27℃;石英地温计范围为131.35~232.25℃,平均值172.48℃;K-Mg地温计119.45~209.38℃;平均值为161.49℃。地热钻井样品的计算结果显示Na-K地温计(264.46~267.89℃,平均值266.37℃)高于石英地温计(165.11~179.14℃,平均值174.01℃),石英地温计高于K-Mg(108.62~114.42℃,平均值为111.14℃)地温计。本次工作样品计算结果显示Na-K地温计范围226.46~240.56℃,平均值为233.35℃;石英地温计范围为74.81~186.40℃,平均值为124.73℃;K-Mg地温计范围为112.50~142.23℃,平均值为127.65℃,总体上Na-K地温计计算的热储温度普遍高于石英和K-Mg地温计的计算结果。由以上结果可知,随着时间的推移,总体上热储温度稍有降低。地热钻井较为接近热储,温度普遍高于泉口样品计算结果。从本次样品的计算结果可以看出,古堆地热田不同地热区Na-K温标显示深部热储温度差异不大(226.46~240.56℃,平均值为233.35℃),石英和K-Mg地温计则显示出明显的波动,且明显低于Na-K温标计算结果,部分学者提出,冷、热水的混合过程对热水的Na/K比值影响很小,Na/K地温计可反映深部热水的温度尤其适用于高温地热田,可用来估算该地热田热储的最高温度(朱炳球等,1992赵平等,1998)。Fournier(1979)研究结果说明,当地热水起始温度超过210~230℃时(ZK302样品采样温度205℃,深部温度可能更高),SiO2会因为高温下的快速反应及对无定型硅来说是过饱和的状态而沉淀下来,并附着在热水通道壁上阻止了其他元素水岩反应的发生,尤其是Na和K,在这种情况下,Na-K温标的计算结果比SiO2温标更能代表热储温度(Fournier and Rowe,1966),因此,古堆地热田的Na-K温标可能反映了热储真实的温度介于226.46~240.56℃之间,而石英和K-Mg地温计代表了地热流体上升过程中通过传导冷却或者混合的再平衡过程的中间温度,即Na-K地温计的计算结果可能反映了深部热储的温度,而石英或K-Mg地温计可能记录了介于深部热储和地表热泉之间的中间热储的温度(浅层热储)(Guo Qinghai et al.,2012)。此外,本次野外样品的SiO2温标计算结果不同的样品波动较大,反映了其SiO2含量的不同,SiO2的含量受到地热流体上升时的温度、上升速度、停留时间的控制;K-Mg温标的计算结果也有不同,反映了不同地热水上升过程中与富Mg的地下水不同程度的混合。PC05样品的采样温度和Na-K温标计算结果与其他样品相差不大,但其SiO2温标却高出其他样品30~40℃,说明随着地热水的上涌其SiO2较少发生沉淀,这可能是由于PC05沸泉上涌速度较快导致的(Fournier,1979),这也说明了其绝热冷却的形成过程。进一步研究发现,对大多数沸泉或者温度非常接近当地沸点的热泉来说,K-Mg仅仅略低于石英温度,例如沸泉BXLG1975、SGLG197901、SGLG197902、BBDM1989和PC04, K-Mg温度(146.64℃、187.05℃、173.88℃、173.14℃、177.13℃)与石英温度(143.86℃、190.34℃、174.05℃、175.97℃、136.86℃)差别非常小。这意味着对沸泉或者高温热泉来说,在地热水上升至地表的过程中,绝热冷却对温度降低的作用远远大于传导冷却或者与冷水的混合(Guo Qinghai et al.,2012)。对这些采样温度远远低于沸点的样品来说,在地热水上升至地表的过程中,传导冷却和与冷的富Mg地表水的混合是引起地热水温度降低的主要过程,结果就导致这些温泉的K-Mg温度与石英温度差别较大。以上这些分析表明古堆地热田深部热储温度可能介于226.46~240.56℃之间,而浅层热储温度可能介于119.45~209.38℃之间,并且不同的热储温度特征可能反映了深部地热流体不同的上升演化过程。

  • 图5 Na-K、石英(no steam loss)和K-Mg地温计计算的古堆地热田各热全区热储温度结果(图中编号与表2一致)

  • Fig.5 The reservoir temperature calculated by Na-K, quartz (no steam loss) and K-Mg geothermometers (the number label of the symbol in this figure is the same as the sample number in the Table2) of each geothermal area of Gudui geothermal field

  • 4.3 地热水特征元素分析

  • 通过对古堆地区地热水和地表水地球化学元素的含量折线图的分析(图6a~d)可以看出,Na、K、Cl、SiO2、B、As、Li、Rb+、Cs+、NH4+、F的含量在地热水中普遍含量较高并且走势基本相互平行,但这些元素在冷泉Q001及地表水中急剧减少。冷泉Q001及地表水中Ca、Mg、SO42-的含量则远远高于地热水(图6),这说明Na、K、Cl、SiO2、B、As、Li、Rb+、Cs+、NH4+、F可能是地热水的特征组分。Guo Qinghai et al.(2012)的研究成果也表明了Na、K、Cl、SiO2、B、As、Li、Rb、Cs是地热流体的特征组分。最接近热储流体的地热钻孔ZK302样品(采样温度最高)中Na、K、Cl、B、Li、F的含量在所有的地热水样品中是最高的也支持了以上的结论。从图6可以看出,自1975年以来,除部分元素波动较大外,大部分元素的含量相对较为稳定,说明了古堆地热田的补给地热流体的持续性和稳定性,这为地热田的长期开发提供了重要的基础。地热钻孔ZK302样品中虽然其他元素含量最高,但SiO2的含量却不是最高,这与Fournier et al.(1979)年的研究结果是一致的。即当地热水起始温度超过210~230℃时(ZK302样品采样温度205℃),SiO2会因为高温下的快速反应及对无定型硅来说是过饱和状态而沉淀下来,引起SiO2含量的减少(Fournier et al.,1979),这进一步说明了ZK302样品代表了起始地热流体。由此,我们可以得出Na、K、Cl、SiO2、B、As、Li、Rb+、Cs+、F为古堆地热水的特征组分。

  • ZK302的Ca的含量也稍低于PC05,由于相对PC05来说,ZK302样品的CO2没有及时的散失,因此可能与Ca生成碳酸盐沉淀导致含量稍低(Fournier et al.,1979)。由图6还可以看出,PC05的Na、Cl、B含量几乎与ZK302相当,说明可能来自同一个达到化学平衡的热储流体,并且ZK302和PC05可能是通过绝热冷却形成的,其特征组分含量与热储流体保持基本相当(Fournier et al.,1979)。样品PC02、PC04和BLX01的采样温度高于当地沸点,可能也是通过绝热冷却形成的。因为采样温度高于当地沸点的热泉通常是作为近地表地热水绝热冷却的证据(Guo Qinghai et al.,2017),其地热水中特征组分的含量接近ZK302和PC05的值也证明了这点,而PC01、PC03、CK01、CK02、BBDM01样品的采样温度至少比当地沸点低3°C。这些样品可能是通过传导冷却或者是与地表水的混合形成的或者二者都有,而CK01、CK02、BBDM01中Mg的含量高于PC02、PC04、

  • 图6 1975年到2017年间古堆地热田地热流体、地表水和地热钻井水特征性离子含量变化曲线(a~d)

  • Fig.6 Line chart of concentrations (a~d) of major chemical constituents of surface water and geothermal water from 1975 to 2017 of Gudui geothermal field

  • PC05和BLX01,表明可能混合了富Mg地下水,虽然,Na、K、Cl、SiO2、B、As、Li、Rb+、Cs+、F是古堆地热水的特征组分。但是在这些成分中,只有Cl的含量几乎不受水岩反应的影响,并且不被普通的造岩矿物表面所吸收(Ellis,1970; Arnórsson and Andrésdóttir,1995)。在几乎所有的天然水环境中,Cl都是不相容的,尤其是在非常高的温度下(Guo Qinghai et al.,2012),并且来自古堆地热田不同地热显示区的不同热泉中Cl的含量具有明显的不同(表2,图6),因此Cl含量可以作为对比古堆地热田不同地热显示区地热水的水化学特征和分析热储中的水化学过程的基本指数。图7和图8展示了地热水样品中部分成分与Cl含量关系的散点图,由于不同的采样时间及实验室的分析的分析结果可能对样品地热水特征元素含量有较大影响(Guo Qinghai et al.,2007),因此本文只对近几年的研究工作中所采取样品中所含元素与Cl含量关系进行了比较。从图7可以看出,本次研究所分析的所有古堆地热水样品中,B与Cl、F与Cl、K与Cl、Li与Cl具有非常好的线性关系,平方回归系数分别为0.9673、0.9468、0.9253和0.8788。古堆地热田地热水Cl-B、Cl-Li、Cl-Rb和Cl-Cs之间良好的线性关系(图7、8),证明了古堆地热田下部母地热流体的存在,因为这些元素在冷却和混合过程中是相对保守的,这说明古堆地热田的一些热泉水是通过地下冷水和以Cl、B、Li、Rb和Cs为特征组分的母地热水两个端元的混合形成的。换句话说,Cl和B、Li、Rb及Cs含量之间不同的比率关系,暗示了古堆地热田下部有不同的热储温度和围岩类型,通过不同类型和程度的水岩反应,Cl、B、Li、Rb和Cs的含量及其比率发生了非常大的变化。Na和SiO2的表现形式与Cl、B、Li、Rb和Cs相差较大。对于古堆地热水样品来说,Na、SiO2与Cl之间也有一定的线性关系,但其平方回归系数(0.7884、0.8417)远低于B-Cl、Li-Cl、Rb-Cl和Cs-Cl的(图7、8),这说明了Na、SiO2与B、Li、Rb、Cs一样,也是地热水的特征组分。Na、SiO2并不是保守组分,它们的含量可能受到含Na和Si矿物沉淀的影响,这也导致了Na-Cl和SiO2-Cl散点图中数据点的散乱分布,Ca-Cl、Mg-Cl、HCO3--Cl、SO42--Cl之间没有线性关系,表明Ca、Mg、HCO3-、SO42-并不是地热水的特征组分,地热水中的这些组分可能有多种来源,例如原有的硅铝质矿物的溶解、与地下冷水的混合和H2S的还原作用,但Ca-Cl、Mg-Cl、HCO3--Cl、-SO42--Cl之间的线性关系可能主要受到一些热液蚀变矿物溶解度的影响,考虑到热泉区围岩地层主要为海相沉积的泥晶灰岩、粉砂质绢云板岩、粉砂岩、页岩等(王思琪,2017),围岩中主要的矿物成分为石英、绿泥石、方解石和白云石,还含有少量的斜长石、钾长石等。因此,地热流体中水-岩反应过程中绿泥石、方解石和白云石等矿物的溶解和生成反应过程中可能会生成三水铝石、高岭石、蒙脱石等次生矿物。尤其是地热水中Ca的含量可能受到方解石和一些次生的钙铝硅矿物沉淀的控制,这些因素都可能直接或者间接的影响了Ca-Cl、Mg-Cl、HCO3--Cl、SO42--Cl之间线性关系。

  • 4.4 母地热流体特征

  • 众所周知,沿断裂或者裂隙进入地下的大气降水,在循环深度不断增加的过程中,由于遇到热的岩石或者深部热流体的混合而温度升高,并在自身浮力的作用下上升至地表形成温泉或热泉。根据上文对古堆地热流体水化学特征的分析,我们认为在古堆地热田下部存在有母地热流体,这个母地热流体成分均一,与围岩化学平衡并且通过不同的冷却方式和途径上升至地表形成古堆地热田地表不同温度和水化学类型的热泉。因此,确定古堆地热田下部母地热流体的特点并描绘出其不同的上升和冷却过程对理解古堆地热田的形成过程至关重要。

  • 焓氯图解被广泛用来评价母地热流体的温度和阐释其冷却机制(Fournier,1977; Gianelli and Teklemariam,1993; Sturchio et al.,1996; Guo Qinghai et al.,2009)。本研究中古堆地热田不同地热显示区的地热流体样品被投在焓氯图上(图9),图中沸泉温度为K-Na地热计估算值,冷水及较低温度温泉为取样温度,热焓值通过查蒸汽表获取对应的值。图解中冷水端元为冷泉实测值,地热钻井流体温度为实测值,通过对氯焓图解的分析,我们可以将地热流体样品分为以下几组并分别讨论其地热流体上升演化过程。

  • (1)取样温度分别是204℃、163℃、175.5℃的地热钻井ZK302、ZK251和ZK203。地热钻井水样采样温度差别较大,但是其Na-K地温计计算结果非常相近,分别是266.75℃、267.89℃、264.46℃,这反映了这三个水样都是经历绝热冷却形成的并且来自相同的深部热储,但是其Cl含量差别较大,反映了不同的上升路径过程中,可能与地表水发生了不同程度的混合,而其中ZK203样品的Cl含量含量最低,推测可能混入冷的地下水最多。此外,采样温度高于当地沸点的样品PC04、PC05和BLXG01,我们认为这些热泉也是主要通过母地热流体的绝热冷却形成的,因为泉口温度高于当地沸点的热泉通常是作为近地表地热水绝热冷却的证据(Guo Qinghai et al.,2017),因此与ZK302、ZK251、ZK203、PC04、PC05和BLX01样品相对应的热储中地热水的焓氯数据点应该位于远离蒸汽分离温度下的蒸汽焓值的近似的直线上,并且从这四个点出发的直线,汇聚到一点S,这个点是当地沸点的饱和蒸汽热焓值,焓值为2666 J/g, Cl含量为0(图9)。因此这些点相应的热储流体基于Na-K温度投点在这些直线上,根据Steam Tables of Pure Waters(Keenan et al.,1978) 的研究,如果地下沸腾发生的温度低于340°C(Fournier,1973)的话,使用这个方法的误差几乎不存在,而这与古堆的情况是一致的。

  • 图7 古堆地热田地表水、地热水(本文)和地热钻井水的B vs. Cl(a)、F vs. Cl(b)、K vs. Cl(c)、Li vs. Cl(d)、 As vs. Cl(e)、SiO2 vs. Cl(f)、Na vs. Cl(g)和Rb vs. Cl(h)关系图

  • Fig.7 Plot of B vs. Cl (a) , F vs. Cl (b) , K vs. Cl (c) , Li vs. Cl (d) , As vs. Cl (e) , SiO2 vs. Cl (f) , Na vs. Cl (g) , and Rb vs. Cl (h) of surface water, geothermal water (in this study) and geothermal drill water samples of Gudui geothermal field

  • 图8 古堆地热田地表水、地热水(本文)和地热钻井水的Ca vs. Cl(a)、Cs vs. Cl(b)、 Mg vs. Cl(c)、SO42- vs. Cl(d)、HCO3- vs. Cl(e)和NH4+ vs. Cl(f)关系图

  • Fig.8 Plot of Ca vs. Cl (a) , Cs vs. Cl (b) , Mg vs. Cl (c) , SO42- vs. Cl (d) , HCO3- vs. Cl (e) and NH4+ vs. Cl (f) of surface water, geothermal water (in this study) and geothermal drill water samples of Gudui geothermal field

  • (2)PC01、PC02、PC03、CK01、CK02、BBDM01、BBDM02样品的采样温度至少比当地沸点低3°C,这些样品被认为是通过传导冷却形成的,传导冷却形成的地热水,其Cl含量与补给他的含水层含量相当(Fournier et al.,1979)。因此,这些样品以Na-K地温计计算的焓值为纵坐标,以样品本身的氯含量为横坐标进行投图。

  • (3)BBDM02样品的地球化学特征与其他样品类似,只是温度较低,可能此温泉上升速度较慢,传导冷却降温比较充分。基于以上分析,我们绘制了古堆地热样品在率焓图解中的边界线及两类母地热流体和四个中间热储层。图9中,Line1和Line2线限定了大部分样品和其相应的热储流体的边界,上述混合线与绝热冷却线Line3相交于两点,交点的坐标分别代表不同母地热流体中Cl含量和焓值,即形成包括地热钻孔在内的地热水的母地热流体的Cl含量为567 mg/L,而焓值为1562.5 J/g,对应的母地热流体1温度约为335.5℃(图9)。而形成以地表热泉为主的母地热流体的Cl含量为697 mg/L,而焓值为1250 J/g,对应的母地热流体2温度约为282.5℃(图9),除了PC04、PC05和BLXG01之外,其他泉口下部的地热流体从热储中向上迁移的过程都有蒸汽的损失,其经历的过程如图9中垂直虚线所示,进一步分析可以得出整个古堆热田下部可能存在着至少R1、R2、R3和R4一共4个地下深层热储,其温度相比母地热流体2稍低。基于以上的分析,我们可以推测出上述各个热泉的形成演化过程,古堆地热田深部存在不同的母地热流体,不同的母地热流体通过不同的形式上升至地表形成不同温度和水化学类型的热泉:① ZK302样品采样温度高达204℃,我们认为其可能是通过母地热流体的直接上升形成的,经历了绝热冷却形成的,而ZK251、ZK203采样温度要低将近40℃,并且相对更靠近地表水端元,因此ZK251、ZK203水样被认为是通过母地热流体与少量的地下水混合之后又经历绝热冷却形成的;② 温度稍微高于当地沸点的PC02、PC04、PC05和BLX01温泉是通过地热流体的直接上升形成的,经历了绝热冷却的过程,因此其热储位置直接对应在与S点连线上;③ 上升的母地热流体与中间储层中的地下冷水发生混合,混合水继续上升并通过与围岩的热传导冷却,形成了PC01、PC03、CK01、CK02和BBDM01热泉;④ 母地热流体2上升进入另一个中间热储(热储R3,图9),这个热储中流体上升的速率和传导冷却速率相对缓慢,母地热流体到达热储R3之后可能近于达到完全的化学平衡,因为热储R3中的地热流体具有相似的氯含量和焓值,从热储R3开始,地热流体继续上升,但是有两种不同的上升通道,一种通道是地热流体上升过程中有足够的速度绝热冷却,并形成PC05温泉;另一种是通过一个非常慢的流速上升,然后传导冷却并形成温泉PC01、CK01、CK02(图9)。

  • 图9 古堆地热田不同地热显示区地热流体样品焓氯图解(据Fournier,1979; Guo Qinghai et al.,2012

  • Fig.9 Plot of enthalpy relative to chloride for geothermal waters from Gudui geothermal field (after Fournier, 1979; Guo Qinghai et al., 2012)

  • △—地热流体传导冷却形成地表热泉;●—地热流体绝热冷却形成地表热泉;■—母地热流体;▲—地热流体形成的蒸汽;其他图标与图3含义一致;图中R1~R4分别代表母地热流体形成的四个中间热储

  • △—geothermal fluid cooling conductively to form hot springs; ●—geothermal fluid cooling adiabatically to form hot springs; ■—parent geothermal liquid; ▲—steam separated from geothermal fluid; other legends are the same as in Fig.3; R1~R4 in the figure respectively represent the four intermediate geothermal reservoirs formed by the parent geothermal fluid

  • 此外,由上文的热储温度计算我们可以发现,本次野外样品的SiO2温标计算结果不同的样品波动较大(图5),表明其SiO2含量的不同,而SiO2的含量受到地热流体上升时的温度、上升速度、停留时间的控制。K-Mg温标的计算结果也有不同,反映了不同地热水上升过程中与富Mg的地下水不同程度的混合,其中PC05样品的Na-K温标计算结果与其他样品相差不大,但其SiO2温标却高出其他样品30~40℃,说明随着地热水的上涌其SiO2较少发生沉淀,这可能是由于PC05沸泉上涌速度较快导致的(Fournier et al.,1979),这也说明了上述分析其为绝热冷却的形成过程是可靠的。进一步分析发现,对大多数沸泉或者温度非常接近当地沸点的热泉来说,K-Mg仅仅略低于石英温度,例如沸泉BXLG1975、SGLG197901、SGLG197902、BBDM1989和PC04,K-Mg温度(146.64℃、187.05℃、173.88℃、173.14℃、177.13℃)与石英温度(143.86℃、190.34℃、174.05℃、175.97℃、136.86℃)差别非常小,这意味着对沸泉或者高温热泉来说,在地热水上升至地表的过程中,绝热冷却对温度降低的作用远远大于传导冷却或者与冷水的混合(Guo Qinghai et al.,2012),对这些采样温度远远低于沸点的样品来说,在地热水上升至地表的过程中,传导冷却和与冷的富Mg地表水的混合是引起地热水温度降低的主要过程,结果就导致这些温泉的K-Mg温度与石英温度差别较大。以上这些分析与我们上文关于各个热泉的形成演化过程的分析也相对一致,从侧面验证了上述分析的可靠性。

  • 4.5 地热田的成因讨论

  • 古堆高温地热系统作为桑日-错那裂谷带的代表性地热系统,有记录以来已经持续强烈活动数十年(王晨光等,2020),地球物理研究表明古堆地热田深部局部熔融层的存在可能为古堆地热田强烈的地热活动提供了持续稳定的热源和部分物源(Nelson et al.,1996; Guo Qinghai et al.,2007王思琪,2017),本次研究表明古堆地热流体主要的高温水化学类型为Na-Cl型地热水也从侧面印证了深部岩浆流体的存在(图3),考虑到古堆地热流体与地表及地下水明显的物质组成差异(图6),推测深部岩浆流体的补给可能提供了古堆地热流体的主要物质来源,并提供了其特征组分的主要来源,近些年学者在西藏南部其他高温地热系统如色米、塔格架和卡乌等高温地热田的研究也证明了岩浆流体物质来源的存在(Wang Wei et al.,2019)。古堆地热田广泛发育的不同方向的断裂构造为地热流体的上涌提供了通道条件,尤其是不同方向断裂的交汇部位往往是各地热显示区的中心部位(图1),研究区深部富含B、As、Li、Rb+、Cs+、NH4+、F等特征组分的高温岩浆流体在自身浮力的作用下沿深大断裂不断上升,在上升的过程中不断有地下水或者沿深大断裂下渗的冰雪融水混入,随着混入冷水量的逐渐增多,高温地热流体可能在浅部构造圈闭部位短暂停留,并与围岩发生水岩反应,逐渐达到接近平衡形成深部高温热储(335.5℃),随着区域构造活动的加剧,深部热储中的地热流体可能沿着重新活化的次级断裂继续上升,在地壳浅部形成不同的浅部热储(282.5℃),浅部热储流体以不同的冷却降温形式、沿不同路径上升至地表形成了不同温度和水化学类型的地表热泉。以上关于古堆地热田成因初步的讨论认识可能尚有不足之处,后期有待进一步的深入研究。

  • 5 结论

  • 古堆高温富锂地热田是西藏南部错那-沃卡地热带中最具代表性的高温富锂地热田,其高温水化学类型主要为Na-Cl型,中低温地热水化学类型为Na-HCO3-Cl型和Na-Cl-HCO3型;热储温度计算表明了Na-K地温计(226.46~240.56℃)可能较为真实地反映了深部热储温度,而石英和K-Mg地温计可能反映了深部热储和热泉口之间发育的浅层热储的温度;大多数古堆地热水样品在K-Na-Mg三角图中都远离完全平衡线,表明传导冷却或与富Mg地下水混合是地热水上升过程中冷却的主要方式,但是一些高温地热流体样品靠近完全平衡线,表明了在地热水上升至地表过程中绝热冷却过程的存在;通过对地热流体化学元素的分析发现Na、K、Cl、SiO2、B、As、Li、Rb、Cs和F是古堆地热流体的特征组分,并且Cl和其他特征元素之间的线性关系说明了古堆地热田下部母地热流体的存在;焓氯图解的计算表明深部可能存在两类不同的母地热流体,其Cl含量、焓值和对应的温度分别为567 mg/L、1562.5 J/g、335.5℃和697 mg/L、1250 J/g、282.5℃,此外,焓氯图解的分析也表明古堆地热田下部可能存在四个中间热储层,且古堆地热田下部的母地热流体通过不同的方式形成中间热储层,中间热储层中的地热流体又通过不同的方式上升至地表形成不同的热泉,在这个过程中,母地热流体可能经过了传导冷却、绝热冷却或者与冷的地下水混合的过程,以上的认识加强了我们对古堆地热田中地热流体上升演化的过程的深入理解,为将来合理开发利用古堆地热能和其中的关键金属锂资源奠定了基础。

  • 致谢:衷心感谢野外考察过程中徐志军,张广龙等所提供的帮助,衷心感谢室内分析过程中司东新提供的帮助,感谢审稿专家和编辑部专家提供宝贵的意见,感谢前人在研究区付出的辛勤劳动。

  • 参考文献

    • Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica et Cosmochimica Acta, 59(20): 4125~4146.

    • Blisniuk P M, Hacher B R, Glodny J, Ratschbacher L, Bi S, Wu Z, Mc Williams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412: 628~632.

    • Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J. 1996. Bright spots, structure, and magmatism insouthern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688~1690.

    • Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R, Moore J, Ricchiuto T E, Thurow J, Thusuf B. 2013. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N. W. Himalaya, India. Earth-Science Reviews, 126: 156~177.

    • Delmelle P, Bernard A, Kusakabe M, Fischer T P, Takano B. 2000. Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. Journal of Volcanology & Geothermal Research, 97(1-4): 31~53.

    • Dotsika E. 2015. H-O-C-S isotope and geochemical assessment of the geothermal area of Central Greece. Journal of Geochemical Exploration, 150: 1~15.

    • Dotsika E, Leontiadis I, Poutoukis D, Cioni R, Raco B. 2006. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece. Journal of Volcanology and Geothermal Research, 154(3-4): 237~250.

    • Du Jianguo, Liu Congqiang, Fu Bihong, Yoshiki N, Zhang Youlian, Wang Chuanyuan, Wang Hualiu, Sun Zigang. 2005. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. Journal of Volcanology and Geothermal Research, 142(3-4): 243~261.

    • Duo Ji. 2003. The basic characteristics of the Yangbajing geothermal field-typical high temperature geothermal system. Strategic Study of CAE, 5(1): 42~47(in Chinese with English abstract).

    • Ellis A J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2(70): 516~528.

    • Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1): 41~50.

    • Fournier R O. 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology & Geothermal Research, 5(1): 1~16.

    • Fournier R O, Rowe J J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9): 685~697.

    • Fournier R O, Truesdell A H. 1973. An empirical Na, K, Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37(5): 1255~1275.

    • Friedman B. 2011. Geothermal potential touted. AAPG Explorer, 14.

    • Gemici Ünsal, Tarcan G. 2002. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. Journal of Volcanology & Geothermal Research, 116(3-4): 215~233.

    • Gianelli G, Teklemariam M. 1993. Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia). Journal of Volcanology & Geothermal Research, 56(4): 429~445.

    • Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~2765.

    • Giggenbach W F, Gonfiantini R, Jangi B L, Truesdell A H. 1983. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India. Geothermics, 12(2): 199~222.

    • Gluyas J G, Younger P L, Stephens W E. 2012. Development of deep geothermal energy resources in the UK. Energy, 165(1): 19~32.

    • Guo Qinghai, Wang Yanxin, Liu Wei. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. Journal of Volcanology & Geothermal Research, 166(3): 255~268.

    • Guo Qinghai, Wang Yanxin, Liu Wei. 2009. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology & Geothermal Research, 180(1): 9~20.

    • Guo Qinghai, Wang Yanxin. 2012. Geochemistry of hot springs in the Tengchong hydrothermal areas, southwestern China. Journal of Volcanology & Geothermal Research, 215-216: 61~73.

    • Guo Qinghai, Liu Mingliang, Li Jiexiang, Zhang Xiaobo, Guo Wei, Wang Yanxin. 2017. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet geothermal province, China. Journal of Geochemical Exploration, 172: 109~119.

    • Hu Xiancai, Wang Guiling, Wang Xiaoli. 2015. Geothermal exploration along the Qinghai-Xizang Railway drilled 205℃ geothermal steam. Geothermal Energy, (3): 30 (in Chinese).

    • Keenan J H. 1978. Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. New York: John Wiley.

    • Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003~1008 (in Chinese with English abstract).

    • Li Jiexiang, Guo Qinghai, Wang Yanxin. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai geothermal field, Tengchong. Earth Science, 40(9): 1576~1584 (in Chinese with English abstract).

    • Li Zhenqing. 2002. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau. Doctoral dissertation of Chinese Academy of Geologecal Sciences (in Chinese with English abstract).

    • Liao Zhijie, Zhao Ping. 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Beijing: Science Press (in Chinese with English abstract).

    • Lin Yongjie, Zheng Mianping, Ye Chuanyong. 2017. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Applied Geochemistry, 78: 139~148.

    • Liu Mingliang. 2018. Geochemical study of boron in typical high temperature hydrothermal system in Tibet. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Liu Zhao, Chen Kang, Nan Dawa. 2017. Hydrochemical characteristics of geothermal water in Gudui, Xizang(Tibet). Geological Review, (s1): 353~354 (in Chinese with English abstract).

    • Lü Yuanyuan, Zheng Mianping, Zhao Ping, Xu Ronghua. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone. Science China Earth Sciences, 57(12): 2934~2944.

    • Luo Yangbing, Zheng Mianping, Ren Yaqiong. 2017. Correlation between special salt lakes on the Qinghai-Tibetan Plateau and deep volcanoes-geothermal water. Science & Technology Review, 35(12): 44~48 (in Chinese with English abstract).

    • Makovsky Y, Klemperer S L, Huang L, Lu D, Project INDEPTH Team. 1996. Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics, 15(5): 997~1005.

    • Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen L, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 274: 1684~1687.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Shangguan Zhiguan, Zhao Ciping, Li Hengzhong, Gao Qingwu, Sun Mingliang. 2005. Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 34(4): 518~526.

    • Sturchio N C, Ohsawa S, Sano Y, Arehart G, Kitaoka K, Yusa Y. 1996. Geochemical characteristics of the Yufuin outflow plume, Beppu hydrothermal system, Japan. Geothermics, 25(2): 215~230.

    • Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda R J, Huertas A D. 2010. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile). Journal of Volcanology & Geothermal Research, 192(1-2): 1~15.

    • Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3): 199~214.

    • Tong Wei, Zhang Mingtao, Zhang Zhifei, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Jinying, Liu Shibin. 1981. Geothermy in Xizang. Beijing: Science Press (in Chinese with English abstract).

    • Tong Wei, Liao Zhijie, Liu Shibin, Zhang Zhifei, You Maozheng, Zhang Mingtao. 2000. Xizang Hot Springs. Beijing: Science Press (in Chinese with English abstract).

    • Verma S P, Santoyo E. 1997. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology & Geothermal Research, 79(1): 9~23.

    • Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.

    • Wang Chenguang, Zheng Mianping, Zhang Xuefei, Xing Enyuan, Zhang Jiangyi, Ren Jianhong, Ling Yuan. 2019. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geoscience Frontiers, 11(4): 1175~1187.

    • Wang Chenguang, Zheng Mianping, Zhang Xuefei, Ye Chuanyong, Wu Qian, Chen Shuangshuang, Li Mingming, Ding Tao, Du Shaorong. 2020. Geothermal-type lithium resources in Southern Tibetan Plateau. Science & Technology Review, 38(15): 24~36 (in Chinese with English abstract).

    • Wang Peng, Chen Xiaohong, Shen Licheng, Wu Kunyu, Huang Mingzhi, Xiao Qiong. 2016. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (western Tibet, China). Journal of Volcanology and Geothermal Research, 320: 29~39.

    • Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet. Geology in China, 43(4): 1429~1438 (in Chinese with English abstract).

    • Wang Siqi. 2017. Hydrogeochemical processes and genesis mechanism of high-temperature geothermal system in Gudui, Tibet. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Wei, Wei Haizhen, Jiang Shaoyong, Tan Hongbing, Eastoe C J, Williams-Jones A E, Wu Heping. 2019. The origin of rare alkali metals in geothermal fluids of southern Tibet, China: A silicon isotope perspective. Scientific Reports, 9(1): 1~11.

    • Williams H, Turner S, Kelley S. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339~342.

    • Zhang Zhifei. 1985. Geothermal research in Tibet. Bulletin of Mineralogy, Petrology and Geochemistry, 4(2): 59~61(in Chinese).

    • Zhao Ping, Jin Jian, Zhang Haizheng, Dor Ji, Liang Tingli. 1998. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Chinese Journal of Geology, 33(1): 61~72 (in Chinese with English abstract).

    • Zhao Ping, Xie Ejun, Dor Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539~550 (in Chinese with English abstract).

    • Zhao Ping, Dor Ji, Xie Ejun, Jin Jian. 2003. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China. Acta Petrologica Sinica, 19(3): 569~576 (in Chinese with English abstract).

    • Zheng Mianping. 1995. A New Type of Hydrothermal Deposit—Cesium-Bearing Geyserite in Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zheng Shuhui, Zhang Zhifei, Ni Baoling, Hou Fagao, Shen Minzi. 1982. Hydrogen-oxygen stable isotope study of geothermal water in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99~106.

    • Zhu Bingqiu, Zhu Lixin, Shi Changyi. 1992. Geochemical Exploration of Geothermal Fields. Beijing: Geological Publishing House(in Chinese).

    • 多吉. 2003. 典型高温地热系统-羊八井热田基本特征. 中国工程科学, 5(1): 42~47.

    • 胡先才, 王贵玲, 王婉丽. 2015. 青藏铁路沿线地热勘查钻获195℃高温地热蒸汽. 地热能, (3): 30.

    • 李光明, 董磊, 黄勇, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003~1008.

    • 李洁祥, 郭清海, 王焰新. 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学(中国地质大学学报), 40(9): 1576~1584.

    • 李振清. 2002. 青藏高原碰撞造山过程中的现代热水活动. 中国地质科学院博士学位论文.

    • 廖志杰, 赵平. 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.

    • 刘明亮. 2018. 西藏典型高温水热系统中硼的地球化学研究. 中国地质大学博士学位论文.

    • 刘昭, 陈康, 男达瓦. 2017. 西藏古堆地热田地下热水水化学特征. 地质论评, (s1): 353~354.

    • 雒洋冰, 郑绵平, 任雅琼. 2017. 青藏高原特种盐湖与深部火山-地热水的相关性. 科技导报, 35(12): 5.

    • 佟伟, 章铭陶, 张知非, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1981. 西藏地热. 北京: 科学出版社.

    • 佟伟, 廖志杰, 刘时彬, 张知非, 由懋正, 章铭陶. 2000. 西藏温泉志. 北京: 科学出版社.

    • 王晨光, 郑绵平, 张雪飞, 叶传永, 伍倩, 陈双双, 黎明明, 丁涛, 杜少荣. 2020. 青藏高原南部地热型锂资源. 科技导报, 38(15): 24~36.

    • 王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应. 中国地质, 43(4): 1429~1438.

    • 王思琪. 2017. 西藏古堆高温地热田水文地球化学过程与形成机理. 中国地质大学(北京) 博士学位论文.

    • 张知非. 1985. 西藏的地热研究. 矿物岩石地球化学通讯, 4(2): 59~61.

    • 赵平, 金建, 张海政, 多吉, 梁廷立. 1998. 西藏羊八井地热田热水的化学组成. 地质科学, 33(1): 61~72.

    • 赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义. 岩石学报, 18(4): 539~550.

    • 赵平, 谢鄂军, 金建. 2003. 中国典型高温热田热水的锶同位素研究. 岩石学报;19(3): 569~576.

    • 郑绵平. 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社.

    • 郑淑蕙, 张知非, 倪葆龄, 侯发高, 沈敏子. 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报(自然科学版), (1): 99~106.

    • 朱炳球, 朱立新, 史长义. 1992. 地热田地球化学勘查. 北京: 地质出版社.

  • 参考文献

    • Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica et Cosmochimica Acta, 59(20): 4125~4146.

    • Blisniuk P M, Hacher B R, Glodny J, Ratschbacher L, Bi S, Wu Z, Mc Williams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412: 628~632.

    • Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J. 1996. Bright spots, structure, and magmatism insouthern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688~1690.

    • Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R, Moore J, Ricchiuto T E, Thurow J, Thusuf B. 2013. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N. W. Himalaya, India. Earth-Science Reviews, 126: 156~177.

    • Delmelle P, Bernard A, Kusakabe M, Fischer T P, Takano B. 2000. Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. Journal of Volcanology & Geothermal Research, 97(1-4): 31~53.

    • Dotsika E. 2015. H-O-C-S isotope and geochemical assessment of the geothermal area of Central Greece. Journal of Geochemical Exploration, 150: 1~15.

    • Dotsika E, Leontiadis I, Poutoukis D, Cioni R, Raco B. 2006. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece. Journal of Volcanology and Geothermal Research, 154(3-4): 237~250.

    • Du Jianguo, Liu Congqiang, Fu Bihong, Yoshiki N, Zhang Youlian, Wang Chuanyuan, Wang Hualiu, Sun Zigang. 2005. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. Journal of Volcanology and Geothermal Research, 142(3-4): 243~261.

    • Duo Ji. 2003. The basic characteristics of the Yangbajing geothermal field-typical high temperature geothermal system. Strategic Study of CAE, 5(1): 42~47(in Chinese with English abstract).

    • Ellis A J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2(70): 516~528.

    • Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1): 41~50.

    • Fournier R O. 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology & Geothermal Research, 5(1): 1~16.

    • Fournier R O, Rowe J J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9): 685~697.

    • Fournier R O, Truesdell A H. 1973. An empirical Na, K, Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37(5): 1255~1275.

    • Friedman B. 2011. Geothermal potential touted. AAPG Explorer, 14.

    • Gemici Ünsal, Tarcan G. 2002. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. Journal of Volcanology & Geothermal Research, 116(3-4): 215~233.

    • Gianelli G, Teklemariam M. 1993. Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia). Journal of Volcanology & Geothermal Research, 56(4): 429~445.

    • Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~2765.

    • Giggenbach W F, Gonfiantini R, Jangi B L, Truesdell A H. 1983. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India. Geothermics, 12(2): 199~222.

    • Gluyas J G, Younger P L, Stephens W E. 2012. Development of deep geothermal energy resources in the UK. Energy, 165(1): 19~32.

    • Guo Qinghai, Wang Yanxin, Liu Wei. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. Journal of Volcanology & Geothermal Research, 166(3): 255~268.

    • Guo Qinghai, Wang Yanxin, Liu Wei. 2009. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology & Geothermal Research, 180(1): 9~20.

    • Guo Qinghai, Wang Yanxin. 2012. Geochemistry of hot springs in the Tengchong hydrothermal areas, southwestern China. Journal of Volcanology & Geothermal Research, 215-216: 61~73.

    • Guo Qinghai, Liu Mingliang, Li Jiexiang, Zhang Xiaobo, Guo Wei, Wang Yanxin. 2017. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet geothermal province, China. Journal of Geochemical Exploration, 172: 109~119.

    • Hu Xiancai, Wang Guiling, Wang Xiaoli. 2015. Geothermal exploration along the Qinghai-Xizang Railway drilled 205℃ geothermal steam. Geothermal Energy, (3): 30 (in Chinese).

    • Keenan J H. 1978. Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. New York: John Wiley.

    • Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003~1008 (in Chinese with English abstract).

    • Li Jiexiang, Guo Qinghai, Wang Yanxin. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai geothermal field, Tengchong. Earth Science, 40(9): 1576~1584 (in Chinese with English abstract).

    • Li Zhenqing. 2002. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau. Doctoral dissertation of Chinese Academy of Geologecal Sciences (in Chinese with English abstract).

    • Liao Zhijie, Zhao Ping. 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Beijing: Science Press (in Chinese with English abstract).

    • Lin Yongjie, Zheng Mianping, Ye Chuanyong. 2017. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Applied Geochemistry, 78: 139~148.

    • Liu Mingliang. 2018. Geochemical study of boron in typical high temperature hydrothermal system in Tibet. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Liu Zhao, Chen Kang, Nan Dawa. 2017. Hydrochemical characteristics of geothermal water in Gudui, Xizang(Tibet). Geological Review, (s1): 353~354 (in Chinese with English abstract).

    • Lü Yuanyuan, Zheng Mianping, Zhao Ping, Xu Ronghua. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone. Science China Earth Sciences, 57(12): 2934~2944.

    • Luo Yangbing, Zheng Mianping, Ren Yaqiong. 2017. Correlation between special salt lakes on the Qinghai-Tibetan Plateau and deep volcanoes-geothermal water. Science & Technology Review, 35(12): 44~48 (in Chinese with English abstract).

    • Makovsky Y, Klemperer S L, Huang L, Lu D, Project INDEPTH Team. 1996. Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics, 15(5): 997~1005.

    • Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen L, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 274: 1684~1687.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Shangguan Zhiguan, Zhao Ciping, Li Hengzhong, Gao Qingwu, Sun Mingliang. 2005. Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 34(4): 518~526.

    • Sturchio N C, Ohsawa S, Sano Y, Arehart G, Kitaoka K, Yusa Y. 1996. Geochemical characteristics of the Yufuin outflow plume, Beppu hydrothermal system, Japan. Geothermics, 25(2): 215~230.

    • Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda R J, Huertas A D. 2010. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile). Journal of Volcanology & Geothermal Research, 192(1-2): 1~15.

    • Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3): 199~214.

    • Tong Wei, Zhang Mingtao, Zhang Zhifei, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Jinying, Liu Shibin. 1981. Geothermy in Xizang. Beijing: Science Press (in Chinese with English abstract).

    • Tong Wei, Liao Zhijie, Liu Shibin, Zhang Zhifei, You Maozheng, Zhang Mingtao. 2000. Xizang Hot Springs. Beijing: Science Press (in Chinese with English abstract).

    • Verma S P, Santoyo E. 1997. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology & Geothermal Research, 79(1): 9~23.

    • Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.

    • Wang Chenguang, Zheng Mianping, Zhang Xuefei, Xing Enyuan, Zhang Jiangyi, Ren Jianhong, Ling Yuan. 2019. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geoscience Frontiers, 11(4): 1175~1187.

    • Wang Chenguang, Zheng Mianping, Zhang Xuefei, Ye Chuanyong, Wu Qian, Chen Shuangshuang, Li Mingming, Ding Tao, Du Shaorong. 2020. Geothermal-type lithium resources in Southern Tibetan Plateau. Science & Technology Review, 38(15): 24~36 (in Chinese with English abstract).

    • Wang Peng, Chen Xiaohong, Shen Licheng, Wu Kunyu, Huang Mingzhi, Xiao Qiong. 2016. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (western Tibet, China). Journal of Volcanology and Geothermal Research, 320: 29~39.

    • Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet. Geology in China, 43(4): 1429~1438 (in Chinese with English abstract).

    • Wang Siqi. 2017. Hydrogeochemical processes and genesis mechanism of high-temperature geothermal system in Gudui, Tibet. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Wei, Wei Haizhen, Jiang Shaoyong, Tan Hongbing, Eastoe C J, Williams-Jones A E, Wu Heping. 2019. The origin of rare alkali metals in geothermal fluids of southern Tibet, China: A silicon isotope perspective. Scientific Reports, 9(1): 1~11.

    • Williams H, Turner S, Kelley S. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339~342.

    • Zhang Zhifei. 1985. Geothermal research in Tibet. Bulletin of Mineralogy, Petrology and Geochemistry, 4(2): 59~61(in Chinese).

    • Zhao Ping, Jin Jian, Zhang Haizheng, Dor Ji, Liang Tingli. 1998. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Chinese Journal of Geology, 33(1): 61~72 (in Chinese with English abstract).

    • Zhao Ping, Xie Ejun, Dor Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539~550 (in Chinese with English abstract).

    • Zhao Ping, Dor Ji, Xie Ejun, Jin Jian. 2003. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China. Acta Petrologica Sinica, 19(3): 569~576 (in Chinese with English abstract).

    • Zheng Mianping. 1995. A New Type of Hydrothermal Deposit—Cesium-Bearing Geyserite in Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zheng Shuhui, Zhang Zhifei, Ni Baoling, Hou Fagao, Shen Minzi. 1982. Hydrogen-oxygen stable isotope study of geothermal water in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99~106.

    • Zhu Bingqiu, Zhu Lixin, Shi Changyi. 1992. Geochemical Exploration of Geothermal Fields. Beijing: Geological Publishing House(in Chinese).

    • 多吉. 2003. 典型高温地热系统-羊八井热田基本特征. 中国工程科学, 5(1): 42~47.

    • 胡先才, 王贵玲, 王婉丽. 2015. 青藏铁路沿线地热勘查钻获195℃高温地热蒸汽. 地热能, (3): 30.

    • 李光明, 董磊, 黄勇, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003~1008.

    • 李洁祥, 郭清海, 王焰新. 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学(中国地质大学学报), 40(9): 1576~1584.

    • 李振清. 2002. 青藏高原碰撞造山过程中的现代热水活动. 中国地质科学院博士学位论文.

    • 廖志杰, 赵平. 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.

    • 刘明亮. 2018. 西藏典型高温水热系统中硼的地球化学研究. 中国地质大学博士学位论文.

    • 刘昭, 陈康, 男达瓦. 2017. 西藏古堆地热田地下热水水化学特征. 地质论评, (s1): 353~354.

    • 雒洋冰, 郑绵平, 任雅琼. 2017. 青藏高原特种盐湖与深部火山-地热水的相关性. 科技导报, 35(12): 5.

    • 佟伟, 章铭陶, 张知非, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1981. 西藏地热. 北京: 科学出版社.

    • 佟伟, 廖志杰, 刘时彬, 张知非, 由懋正, 章铭陶. 2000. 西藏温泉志. 北京: 科学出版社.

    • 王晨光, 郑绵平, 张雪飞, 叶传永, 伍倩, 陈双双, 黎明明, 丁涛, 杜少荣. 2020. 青藏高原南部地热型锂资源. 科技导报, 38(15): 24~36.

    • 王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应. 中国地质, 43(4): 1429~1438.

    • 王思琪. 2017. 西藏古堆高温地热田水文地球化学过程与形成机理. 中国地质大学(北京) 博士学位论文.

    • 张知非. 1985. 西藏的地热研究. 矿物岩石地球化学通讯, 4(2): 59~61.

    • 赵平, 金建, 张海政, 多吉, 梁廷立. 1998. 西藏羊八井地热田热水的化学组成. 地质科学, 33(1): 61~72.

    • 赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义. 岩石学报, 18(4): 539~550.

    • 赵平, 谢鄂军, 金建. 2003. 中国典型高温热田热水的锶同位素研究. 岩石学报;19(3): 569~576.

    • 郑绵平. 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社.

    • 郑淑蕙, 张知非, 倪葆龄, 侯发高, 沈敏子. 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报(自然科学版), (1): 99~106.

    • 朱炳球, 朱立新, 史长义. 1992. 地热田地球化学勘查. 北京: 地质出版社.