en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙斌,男,1982年生。高级工程师,从事水文地质与环境地质勘察研究。E-mail:spinhlr@163.com。

通讯作者:

丁冠涛,男,1985年生。高级工程师,长期从事环境地质、水文地质研究。E-mail:531396099@qq.com。

郭秀军,男,1972年生。教授,主要从事海洋地质环境监测技术研究及装备开发。E-mail:guojunqd@ouc.edu.cn。

参考文献
Chen Zhenpeng. 1985. The study of water supply in Jinan under the preservation of springs. Carsologica Sinica, (1-2): 22~30(in Chinese with English abstract).
参考文献
Fang Peixian, Cao Yuqing, Tang Kewang, Li Xiangzhi, Wang Shaowen. 1989. Age datings of the groundwater in the spring area of Ji'nan City. Carsologica Sinica, 8(1): 47~51(in Chinese with English abstract).
参考文献
Gao Shuai, Li Changsuo, Jia Chao, Sun Bin, Zhang Hailin, Pang Wei. 2019. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotuspring area of Ji'nan. Acta Geologica Sinica, 93(s1): 61~70 (in Chinese with English abstract).
参考文献
Gao Zongjun, Xu Junxiang, Wang Shichen, Li Changsuo, Han Ke, Li Jiajia, Luo Fei, Ma Hekuan. 2014. The distribution characteristics and hydrogeological significance of trace elements in karst water, Ji'nan, China. Earth Science Frontiers, 21(4): 135~146(in Chinese with English abstract).
参考文献
Hou Xinwen, Xing Liting, Sun Beibei, Li Changsuo. 2014. Resources potential of Jinan monoclinic karst groundwater system. Journal of University of Jinan(Science and Technology), 28(4): 300~305(in Chinese with English abstract).
参考文献
Hu Caiping, Wang Nan, Song Liang, Bai Xinfei, Wang Tao, Liang Yunhan, Sun Xiaotao, Peng Wenquan. 2019. Thermal anomaly mechanism of carbonate rock thermal storage in the shallow buried areas of northwestern Ji'nan. Acta Geologica Sinica, 93(s1): 178~183(in Chinese with English abstract).
参考文献
Huang Chunhai. 1960. Study on geology of Ji'nan. Geological Review, 20(6): 232~239(in Chinese).
参考文献
Kang Fengxin, Sui Haibo, Zheng Tingting. 2020. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Ji'nan. Acta Geologica Sinica, 94(5): 1606~1624 (in Chinese with English abstract).
参考文献
Li Baoxue, Qin Dajun, Guo Yi, Liu Wencai, Mohammed H, Lin Lin, Guan Qinghua. 2017. Effect of Yufu River on chemical process of karst groundwater in Ji'nan, Shandong Province. Journal of Engineering Geology, 25(1): 190~198(in Chinese with English abstract).
参考文献
Li Changsuo, Wu Xiancang, Sun Bin, Sui Haibo, Geng Fuqiang, Qi Huan, Ma Xueying. 2018. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji'nan. Earth Science, 43(s1): 313~325 (in Chinese with English abstract).
参考文献
Li Chuanmo. 1985. Analysis on karst resources and preservation of famous springs in Ji'nan. Carsologica Sinica, (Z1): 37~45(in Chinese with English abstract).
参考文献
Li Jiangbai, Xing Liting, Hou Yusong, Xing Xuerui, Deng Zhong, Zhang Fengjuan, Meng Qinghan, Wu Dongqiang. 2021. Replenishment sources of four great springs in Ji'nan based on fuzzy similarity priority ratio. Science Technology and Engineering, 21(3): 918~926(in Chinese with English abstract).
参考文献
Lucas L L, Unterweger M P. 2000. Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards & Technology, 105(4): 541~549.
参考文献
Meng Qingbin, Xing Liting, Teng Zhaoxia. 2008. The relationship of spring protection and transformation pattern between precipitation groundwater and surface water in the Jinan spring region. Journal of Shandong University (Engineering Science), 38(5): 82~87(in Chinese with English abstract).
参考文献
Sui Haibo, Kang Fengxin, Li Changsuo, Han Jianjiang, Xing Liting. 2017. Realationship between north Ji'nan geothermal water and Ji'nan spring water revealed by hydrogeochemical characteristics. Carsologica Sinica, 36(1): 49~58 (in Chinese with English abstract).
参考文献
Sun Bin, Xing Liting, Peng Yuming, Li Changsuo. 2021. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City. Carsologica Sinica, 40(3): 409~419(in Chinese with English abstract).
参考文献
Wang Hongtao, Cao Yuqing, Cao Yilin. 1993. Groundwater flow fields simulation of Jinan karst area, China. Carsologica Sinica, 12(2): 111~121(in Chinese with English abstract).
参考文献
Wang Jiale, Jin Menggui, Jia Baojie, Kang Fengxin. 2015. Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Geothermics, 57: 185~195.
参考文献
Wang Junyu, Wang Jiale, Jin Menggui. 2017. Hydrochemical characteristics and formation cause of karst water in Jinan spring catchment. Earth Science, 42(5): 821~831(in Chinese with English abstract).
参考文献
Wang Ruijiu. 1983. Three line diagram and its hydrogeological interpretation. Geotechnical Investigation & Surveying, (6): 6~11(in Chinese).
参考文献
Wei Shanming, Ding Guantao, Yuan Guoxia, Wang Lifang, Nie Yupeng, Du Jinliang. 2021. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River basin in Shandong Province. Acta Geologica Sinica, 95(6): 1973~1983(in Chinese with English abstract).
参考文献
Xing Liting, Zhou Juan, Song Guangzeng, Xing Xuerui. 2018. Mixing ratios of recharging water sources for the four largest spring groups in Jinan. Earth Science Frontiers, 25(3): 260~272(in Chinese with English abstract).
参考文献
Xu Junxiang, Xing Liting, Tong Guangyu, Fan Liqin. 2004. Groundwater environment evolution and its conservation in Jinan spring catchment. Hydrogeology & Engineering Geology, 31(6): 69~73(in Chinese with English abstract).
参考文献
Xu Junxiang, Li Changsuo, Xing Liting, Sun Bin, Peng Yuming. 2020. Jinan Spring Water and Its Protection. Beijing: Geology Press (in Chinese).
参考文献
Yin Xiulan, Wang Qingbing, Feng Wei. 2017. Hydrochemical and isotopic study of the karst spring catchment in Jinan. Acta Geologica Sinica, 91(7): 1651~1660(in Chinese with English abstract).
参考文献
Zhang Baojian, Shen Zhaoli, Qiao Zengbao, Qi Lin. 2009. Analysis on hydro-chemical features and origin of the hot spring in karst geothermal field, east Liaocheng City. Carsologica Sinica, 28(3): 263~268(in Chinese with English abstract).
参考文献
Zhang Naixing, Li Wei, An Ligui, Huang Chunhai. 1998. The experimental research on link between sources and four spring groups in Jinan. Journal of Shandong Normal University (Natural Science), 13(4): 408~412(in Chinese with English abstract).
参考文献
Zhao Yuxiang, Li Changsuo, Xing Liting. 2009. Forming conditions of geothermal field in northern Jinan. Journal of University of Jinan(Science and Technology), 23(4): 406~409(in Chinese with English abstract).
参考文献
陈振鹏. 1985. 济南保泉供水研究. 中国岩溶, (1-2): 22~30.
参考文献
房佩贤, 曹玉清, 唐克旺, 李祥之, 王绍文. 1989. 济南泉域地下水年龄计算. 中国岩溶, 8(1): 47~51.
参考文献
高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 2019. 济南趵突泉泉域岩溶水化学特征时空差异性研究. 地质学报, 93(s1): 61~70.
参考文献
高宗军, 徐军祥, 王世臣, 李常锁, 韩克, 李佳佳, 罗斐, 马河宽. 2014. 济南岩溶水微量元素分布特征及其水文地质意义. 地学前缘, 21(4): 135~146.
参考文献
侯新文, 邢立亭, 孙蓓蓓, 李常锁. 2014. 济南市岩溶水系统分级及市区与东西郊的水力联系. 济南大学学报(自然科学版), 28(4): 300~305.
参考文献
胡彩萍, 王楠, 宋亮, 白新飞, 王涛, 梁云汉, 孙晓涛, 彭文泉. 2019. 济南西北部碳酸盐岩热储浅埋区热异常机理研究. 地质学报, 93(s1): 178~183.
参考文献
黄春海. 1960. 济南地质的研究. 地质论评, 20(6): 232~239.
参考文献
康凤新, 隋海波, 郑婷婷. 2020. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例. 地质学报, 94(5): 1606~1624.
参考文献
李宝学, 秦大军, 郭艺, 刘文才, Mohammed Haji, 林琳, 管清花. 2017. 玉符河对济南岩溶水水化学过程的影响研究. 工程地质学报, 25(1): 190~198.
参考文献
李常锁, 武显仓, 孙斌, 隋海波, 耿付强, 齐欢, 马雪莹. 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(s1): 313~325.
参考文献
李传谟. 1985. 济南岩溶水资源的分析与泉水名胜的保护. 中国岩溶, (Z1): 37~45.
参考文献
李江柏, 邢立亭, 侯玉松, 邢学睿, 邓忠, 张凤娟, 孟庆晗, 武东强. 2021. 基于模糊相似优先比法的济南四大泉群补给来源. 科学技术与工程, 21(3): 918~926.
参考文献
孟庆斌, 邢立亭, 滕朝霞. 2008. 济南泉域“三水”转化与泉水恢复关系研究. 山东大学学报(工学版), 38(5): 82~87.
参考文献
隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 2017. 水化学特征揭示的济北地热水与济南泉水关系. 中国岩溶, 36(1): 49~58.
参考文献
孙斌, 邢立亭, 彭玉明, 李常锁. 2021. 济南十大泉群特征、形成模式及水循环差异性研究. 中国岩溶, 40(3): 409~419.
参考文献
王洪涛, 曹玉清, 曹以临. 1993. 济南地区岩溶地下水径流场模拟分析. 中国岩溶, 12(2): 111~121.
参考文献
王珺瑜, 王家乐, 靳孟贵. 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821~831.
参考文献
王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.
参考文献
魏善明, 丁冠涛, 袁国霞, 汪丽芳, 聂玉朋, 杜金亮. 2021. 山东省东汶河沂南地区地下水水化学特征及形成机理. 地质学报, 95(6): 1973~1983.
参考文献
邢立亭, 周娟, 宋广增, 邢学睿. 2018. 济南四大泉群泉水补给来源混合比探讨. 地学前缘, 25(3): 260~272.
参考文献
徐军祥, 邢立亭, 佟光玉, 范立芹. 2004. 济南泉域地下水环境演化与保护. 水文地质工程地质, 31(6): 69~73.
参考文献
徐军祥, 李常锁, 邢立亭, 孙斌, 彭玉明. 2020. 济南泉水及其保护. 北京: 地质出版社.
参考文献
殷秀兰, 王庆兵, 凤蔚. 2017. 济南岩溶泉域泉群区水化学与环境同位素研究. 地质学报, 91(7): 1651~1660.
参考文献
张保健, 沈照理, 乔增宝, 亓麟. 2009. 聊城市东部岩溶地热田地下热水水化学特征及成因分析. 中国岩溶, 28(3): 263~268.
参考文献
张乃兴, 李伟, 安立贵, 黄春海. 1998. 济南四大泉群水源地连通试验研究. 山东师大学报(自然科学版), 13(4): 408~412.
参考文献
赵玉祥, 李常锁, 邢立亭. 2009. 济南北部地热田的生成条件. 济南大学学报(自然科学版), 23(4): 406~409.
目录contents

    摘要

    为了深入认识济南岩溶泉水及地热水循环过程,本文以泰山北翼碳酸盐岩含水介质空间分布特征为研究出发点,分析其埋藏条件和连续性特征,并利用数理统计、空间插值、Piper三线图、概念模型等方法,结合水动力场、水化学场、水温度场和水年龄场“四场”分析,揭示区域地下水循环规律。结果表明:地表分水岭与齐广断裂、禹王山断裂、聊考断裂等深大断裂控制了泰山北翼地区岩溶含水介质空间展布,大致呈现由南向北埋藏深度逐渐增大的变化趋势,受马山断裂、东坞断裂、文祖断裂等次级断裂影响岩溶含水介质上下盘有不同错动,但东西展布仍具有较好连续性;区域地下水循环过程极其复杂,泰山岩群、寒武纪及奥陶纪各类含水岩组通过排泄-渗漏、断裂垂向径流、水平地下径流等形式发生水流交汇,并在山前局部地区与第四纪松散孔隙水产生水量交换,最终通过泉或人工开采形式排泄。区域地下水流具有统一的“四场”,并且呈现明显的水平与垂向分带特征,大致沿东阿断裂及其延长线—吴家堡—华山—章丘区—淄博磁村一线划分冷泉与地热水的分界线,以600 m、1000 m划分出浅、中、深循环深度分界线;冷泉以浅循环为主,中、深循环为辅,地下水矿化度、温度、年龄偏低,而地热水以中、深循环为主,浅循环为辅,地下水矿化度、温度、年龄偏大。不同含水介质水流具有一定内在关联,构成一个完整的岩溶水系统。

    Abstract

    In order to gain a comprehensive understanding of the circulation process of karst spring and geothermal water in Ji'nan on a larger spatial scale, this research paper analyzes the burial conditions and continuity characteristics of carbonate water-bearing media based on their spatial distribution in the north flank of Mount Tai. Furthermore, the study reveals the pattern of regional groundwater circulation through the utilization of mathematical statistics, spatial interpolation, a Piper three-line diagram, a conceptual model, and the “four fields” analysis of hydrodynamic field, hydrochemical field, water temperature field, and water age field. The results show that the spatial distribution of karst water-bearing media in the north flank of Mount Tai is controlled by surface watersheds and deep faults such as Qiguang fault, Yuwangshan fault, and Liaokao fault. There is a gradual increase in burial depth from south to north. Additionally, the hanging wall and footwall have different dislocations due to the influence of secondary faults such as Mashan fault, Dongwu fault, and Wenzu fault. However, there is still a general continuity in their East-West distribution. The regional groundwater circulation process is extremely complex. The Taishan rock group, Cambrian, and Ordovician water-bearing rock groups interact with each other through various means such as surface flow discharge, leakage, structural connectivity, and underground runoff. In certain areas of piedmont, karst water exchanges with Quaternary loose-pore water and ultimately discharges through springs or artificial mining. The regional groundwater flow exhibits a unified “four fields” and demonstrates distinct horizontal and vertical zoning characteristics. The boundary between cold springs and geothermal springs is formed along the Donge fault and its extension line, encompassing Wujiabao, Huashan, Zhangqiu and Cicun. The circulation depth boundaries of shallow, medium, and deep flow are roughly divided at 600 m and 1000 m. Cold springs are predominantly characterized by shallow circulation, supplemented by medium and deep circulation, with low groundwater mineralization, temperature, and age. On the other hand, geothermal water is dominated by medium and deep circulation, supplemented by shallow circulation, with large groundwater mineralization, temperature, and age. The flow of different aquifer media exhibits certain internal correlations, forming a complete karst water system.

    关键词

    济南岩溶含水介质泉水地热水循环四场

  • 济南是举世闻名的“泉城”,被国内外学者高度关注。自20世纪50年代,水文地质科技工作者围绕岩溶水补、径、排条件开展了大量研究工作,分析了地质条件及构造特征(Huang Chunhai,1960)、大气降水及地表水入渗条件(Chen Zhenpeng,1985)、三水转化关系(Meng Qingbin et al.,2008)和岩溶水资源开发利用条件(Li Chuanmo,1985),通过示踪试验与水化学相结合方法研究岩溶水径流通道(Zhang Naixing et al.,1998)和泉水补给来源混合比(Xing Liting et al.,2018)。伴随着人类活动影响加剧,岩溶水系统生态平衡被破坏,生态环境质量引起人们高度重视(Xu Junxiang et al.,2004),开始探讨水环境演化及生态保护,利用水化学方法(Wang Junyu et al.,2017Li Baoxue et al.,2017)和稳定同位素(Yin Xiulan et al.,2017)分析了地下水质量特征及演化规律,提出了相关保护对策。长期以来济南北部地热也是研究重点,利用氢氧同位素资料对济北地热田地热水的补给来源问题进行了研究(Wang Jiale et al.,2015Li Changsuo et al.,2018Hu Caiping et al.,2019),利用水化学同位素揭露聊城东部岩溶地热田成因与泰山北鲁中山区大气降水补给有关(Zhang Baojian et al.,2009)。在济南岩溶水循环研究方面,通过有限差分数值法(Wang Hongtao et al.,1993),模拟出济南岩溶区地下水径流主要集中于300 m以内深度范围;利用模糊相似优先法(Li Jiangbai et al.,2021),揭露出四大泉群补给来源为东南、西南、正南方向,定量计算出寒武系和奥陶系岩溶水补给大小;利用微量元素揭示泉水同时接受浅源和深循环补给(Gao Zongjun et al.,2014);利用冷、热水井中水位动态对比分析(Zhao Yuxiang et al.,2009),揭露地下热水与冷泉属于同源补给,地热主要来源地下水深层径流。总体来看,济南岩溶水研究分别集中在南部冷泉地区和北部地热区,并开始关注两区之间的水力联系。随着对区域岩溶水系统研究程度提升(Hou Xinwen et al.,2014),发现济南岩溶水相互关联区域逐渐增大,但是目前鲜有针对大范围区域性岩溶含水介质空间分布及水流系统特征开展研究,对于岩溶水循环深度、径流长度、径流过程等问题需要深化。为此本文从泰山北翼地区岩溶介质分布着手,结合水动力场、水化学场、水温度场和水年龄场等“四场”分析,进一步揭露北方岩溶水系统不同尺度的多级次循环过程,从而为泉水、地热水保护和利用提供依据。

  • 1 地质背景及数据方法

  • 1.1 地质及水文地质条件

  • 研究区隶属华北地层大区之鲁西地层分区,区内地层由老至新依次为新太古代、古生代及新生代地层(徐军祥,2020)。新太古代泰山岩群在研究区南部裸露地表;古生代寒武纪—奥陶纪碳酸盐岩海相沉积地层在南部低山丘陵区裸露地表,石炭纪—二叠纪海陆过渡相与陆相沉积地层在北部多为隐伏地质体;新生代松散地层主要在研究区北部山前平原和黄河冲积平原广泛分布(图1)。

  • 区内主要的脆性断裂规模较大者有:北北西向,包括阿城断裂、文祖断裂、东坞断裂、千佛山断裂、马山断裂等;北北东向,包括聊考断裂、东阿断裂等;近南北向的禹王山断裂以及近东西向的齐广断裂。不同时期的断裂形迹具有差异性,并且相互叠加、切割、改造,形成了区内的复杂构造格局,奠定了本区的构造格架。

  • 区内岩溶含水岩组可划分为两类:碳酸盐岩裂隙-岩溶含水岩组和碎屑岩夹碳酸盐岩岩溶-裂隙含水岩组。前者包含寒武纪九龙群张夏组、三山子组和奥陶纪马家沟群含水岩组,裂隙较发育,富水性好,单井出水量一般大于1000 m3/d,山前富水地段局部可达5000~10000 m3/d;后者包含寒武纪长清群馒头组和九龙群炒米店组薄层灰岩夹页岩含水层,裂隙不发育,富水性差,单井出水量一般小于100 m3/d,在构造、地形适宜的地段,单井出水量也可达100~500 m3/d。区域泰山岩群风化裂隙水,富水性较差,单井出水量一般小于100 m3/d。

  • 图1 泰山北翼前新近纪基岩地质图

  • Fig.1 Geological map of pre-Tertiary bedrock in the north flank of Mount Tai

  • 1.2 数据及方法

  • 收集区域内钻孔数据,根据岩性特征对地层进行标准划分,重点统计各碳酸盐岩地层上覆地层厚度;水位统测是掌握区域地下水流场的重要手段,通过地下水水位长测点进行水位统一测量,测量时间保证在一周内完成;水样数据主要基于山东省地矿局801队2016年枯水期采样数据,采样工作严格按照《地下水质量标准》(GB14848—2017),对pH值、TDS、K+、Na+、Ca2+、Mg2+、HCO3-、SO42-、Cl-等主要离子进行分析,样品分析工作送山东省地矿工程勘察院实验室进行测试,测试结果的阴阳离子平衡误差均在±5%以内;北部地热井水温和14C同位素数据资料以收集为主,南部典型泉水温度采用温度计对流动水体静置5 min后进行测量,测具最小分度值小于0.1℃。

  • 根据钻孔标准分层,利用CorelDRAW绘图软件绘制地质及水文地质剖面图;利用Surfer软件对区域离散散点数据进行克里金插值,从而绘制相关等值线图,揭示区域岩溶含水系统和流动系统特征;利用AquaChem软件将水质采样点落入Piper三线图中,通过不同含水介质水样位置揭示水化学空间分布特征及变化规律。

  • 2 岩溶含水介质空间分布特征

  • 2.1 碳酸盐岩分布与埋藏特征

  • 区内寒武纪、奥陶纪碳酸盐岩地层分布广泛,西至东平湖,东至禹王山断裂,南至泰山北麓,北至齐广断裂。受南高北低地形控制,碳酸盐岩在南部低山丘陵区裸露地表,在北部平原地带则隐伏于地下。利用大量钻孔数据,刻画出区内碳酸盐岩地层顶板埋藏深度特征,其埋藏深度在灰岩与火成岩、石炭纪—二叠纪地层接触带以南地区一般小于400 m,向北则逐渐增大至1500~2000 m,局部可达3000~4000 m,总体呈现由南向北逐渐增大的变化趋势(图2)。

  • 图2 泰山北翼奥陶纪碳酸盐岩地层顶板埋深等值线图

  • Fig.2 The contour map of roof depth of regional Ordovician carbonate strata in the north flank of Mount Tai

  • 2.2 典型剖面特征

  • 山前典型东西向剖面图显示(图3),受控于区域性地质构造,在区域性深大断裂聊考断裂与禹王山断裂影响下,内侧岩溶含水介质与外侧岩溶含水介质完全被错断,岩溶含水介质不连续。在东阿断裂、马山断裂、千佛山断裂、东坞断裂、文祖断裂等次级断裂影响下,断裂两盘岩溶含水介质垂直方向上发生不同程度的位移,岩溶含水介质统一性及连续性受到一定程度破坏,但并未被地质构造完全错断,岩溶含水介质的整体连续性在系统内部仍旧存在,而且在市区一带有火成岩体穿插影响,使得岩溶含水介质厚度、埋藏深度在空间上存在一定差异。

  • 3 岩溶地下水四场特征

  • 3.1 水动力场

  • 岩溶水等水位线图(图4)显示,岩溶水在南部山区得到补给,顺地势向北径流,水力梯度较大,由于岩溶含水介质被北北西向的断裂切割形成五个单斜断块,各断块南部含水层被错断,地下水等水位线不连续,相邻断块基本不发生水力联系。岩溶水向北径流至山前前缘地带受到隔水地层或岩体阻挡,在岩溶含水介质与火成岩或煤系地层接触带富集,等水位线变疏,水力梯度减小,各断块之间水位差异减少,甚至一致,形成近东西向的水力联系密切的富水带,等水位线跨越断块产生联系。如在长清区以北黄河以南一带,马山断裂两侧岩溶水水位基本一致;在华山镇东南一带,东坞断裂两侧岩溶水位基本一致。但在章丘地区,受文祖断裂和埠村向斜控制,与西侧的白泉地区水位相差甚远,同一纬度上断裂东侧水位高于西侧。

  • 3.2 水化学场

  • 水化学Piper三线图通常用于区域地下水化学成分归类、水化学成分的演化研究(Wang Ruijiu,1983; Gao Shuai et al.,2019; Wei Shanming et al.,2021)。根据不同区域岩溶水及泰山岩群裂隙水Piper图(图5)分析结果,区域地下水类型大致可以分为两组,第一组是以泰山岩群裂隙水、补给区岩溶水、泉水为主,矿化度低,以碱土金属和弱酸为主,第二组是以地热水为主,矿化度高,以碱土金属和强酸为主。沿地下水径流路径水化学组分的变化,充分表明由冷泉至地热符合地下水演化规律,随着径流途径增长,HCO3-含量逐渐减少,而SO42-含量逐渐增大。第一组地下水也存在一定差异,主要表现在水化学成分在间接补给区、直接补给区和径流汇集区分布分散,而在泉水排泄区分布集中,表明泉水接受多种类型地下水混合作用,也反映出直接补给区因地层裸露易受人类活动影响,致使水中SO42-含量增幅较大。

  • 从南部补给区至中部径流排泄区,再至北部地热区,水化学表现出明显的分带性特征,这与Piper三线图表现特征相同。补给区地下水化学类型以HCO3-Ca·Mg和HCO3·SO4-Ca·Mg为主,TDS含量一般小于400 mg/L;径流排泄区岩溶水化学类型较多,主要以HCO3-Ca 型为主,TDS含量一般小于500 mg/L,西部典型富水地带TDS一般300 mg/L左右;北部地热水水化学类型较复杂,趵突泉北部主要为HCO3·SO4-Ca、HCO3·SO4-Ca·Mg和SO4-Ca型,白泉北部鸭旺口-桃园水化学类型主要为SO4·Cl-Na·Ca型,TDS较大,一般为1~3 g/L,向北可达5~7 g/L(图6)。结果表明,从碳酸盐岩裸露区至深埋区,岩溶水水化学演化主要受水岩作用控制,由碳酸盐岩溶解向蒸发岩矿物溶解转变。

  • 图3 泰山北翼近东西向地质剖面图

  • Fig.3 Geological profile nearly east-westward in the north flank of Mount Tai

  • 图4 泰山北翼岩溶水等水位线图(2016年10月)

  • Fig.4 The contour map of karst water level in the north flank of Mount Tai (October 2016)

  • 图5 泰山北翼岩溶水Piper三线图

  • Fig.5 Piper three line diagram of karst water in the north flank of Mount Tai

  • 3.3 水温度场

  • 基于现状岩溶水开采条件及测温数据(图7),区域南部岩溶水温度一般常年小于18℃,诸如东阿断裂以南的下码头水源地、长清区桥子李水源地、济南岩体西南侧峨眉山水源地、市区四大泉群、白泉、章丘百脉泉等,水温均相对较低,相对恒定,空间上变化相对较小。区域北部岩溶水温度一般大于25℃,且沿地下水流向温度逐渐升高,如济南吴家堡西南火成岩体边缘地带,济淡井孔口水温27.5℃;天桥区桑梓店地热井孔口水温33℃;齐河县油房赵地热井孔口水温38℃;北郊林场地热井孔口水温43℃;天桥区蒋家庄村地热井孔口水温55℃;章丘枣园地热井孔口水温41℃;聊城市区东部凸起区地热水孔口水温50.2℃;济阳县城地热井,奥灰顶板埋深2450 m,水温95℃。由此可见,岩溶水温度主要是受控于岩溶含水介质埋藏与水动力条件,大致沿东阿断裂及其延长线—吴家堡—华山—章丘区—淄博磁村一线划分出冷泉与地热的分界线,该线南北两侧温度特征具有显著差异,可作为区域岩溶水温度场的一条推测边界。

  • 3.4 水年龄场

  • 氚元素的半衰期为12.33±0.03 a,一般用于1952年以后的地下水测年(Lucas et al.,2000),由于地下水中氚稳定性好,不与含水岩组发生反应,可以用于准确估算地下水滞留时间。20世纪80年代,氚同位素被用于测定趵突泉和黑虎泉地下水年龄分别为25.67 a、27.00 a(Fang Peixian et al.,1989)。近几年,秦大军等应用CFCs法测得岩溶冷水的年龄范围是20~30 a,这一结果与氚法测年基本吻合。与南部岩溶水相比,北部地热水的年龄较大,通过14C测得济南北部地热水的年龄范围为26.68×103~13.44×103 a B.P.(Sui Haibo et al.,2017Kang Fengxin et al.,2020),表明地热水来自晚更新世更加寒冷气候条件下的补给。根据岩溶水年龄散点图(图8),岩溶水年龄场存在一条与温度场相同的推测边界线,在分界线以南,地下水更新速度快,年龄较小;在分界线以北,随着碳酸盐岩顶板埋藏深度逐渐加大,地下水年龄呈现逐渐增大趋势,表明随着深度增大,岩溶地下水的径流变缓,滞留时间变长,更新速率降低,如从趵突泉泉域、白泉泉域、百脉泉泉域北部边界附近一直向北,岩溶水14C年龄从小于20 ka,逐渐增大至25~30 ka左右;济南岩体北部“灰岩凸起条带”岩溶水年龄15 ka左右,相对于北部地热水更低,表明“灰岩条带”部位与更北部岩溶水循环过程还存在一定差异。冷、热水之间年龄差异表明二者循环深度、径流途径、滞留时间存在显著差异。

  • 图6 泰山北翼岩溶水TDS浓度散点图

  • Fig.6 TDS concentration scatter diagram of karst water in the north flank of Mount Tai

  • 图7 泰山北翼岩溶水温度散点图

  • Fig.7 Temperature scatter diagram of regional karst water in the north flank of Mount Tai

  • 4 区域岩溶水循环规律

  • 4.1 岩溶水循环过程

  • 尽管济南单斜岩溶水冷泉系统受构造影响形成五个子系统(Sun Bin et al.,2021),但各水文地质单元岩溶水循环过程具有相似特征。以趵突泉所在单元为例,因各含水介质的岩性、结构、空间分布等差异,赋存其中的水流具不同的输入、传导和输出特点,且彼此间存在一定内在联系,构成一个完整的趵突泉岩溶水系统。南部山区的泰山岩群裂隙水和寒武系馒头组岩溶裂隙水以泉水形式输出并转化为地表径流,在碳酸盐岩裸露区和降水共同输入寒武纪张夏含水层和寒武系炒米店组至奥陶系大型岩溶含水岩组。碳酸盐岩在南部丘陵区分布广、厚度大,地表及地下裂隙岩溶十分发育,岩溶水通过复杂的岩溶网络系统形成统一的流场,向北运动至山前局部地区与第四纪孔隙水发生水量交换,并受石炭二叠系含煤地层和火成岩体阻挡后以泉水形式出流,构成冷泉水循环的末端。寒武系馒头组、寒武系张夏组、寒武系炒米店组—奥陶系大型含水岩组之间,岩溶水通过断裂沟通,发生垂向水量交换以后,共同汇集至形成泉水的主要含水岩组中,除一部分以泉水形式排泄外,其余继续向深部径流,形成地热水(图9)。

  • 4.2 岩溶水循环模式

  • 济南市地处鲁中南山区北部,宏观上南部古老变质岩系组成的泰山山脉为区域地表水和地下水的分水岭,东部禹王山断裂、西部聊考断裂-阿城断裂及北部齐广断裂断距较大,为阻水构造。寒武纪和奥陶纪碳酸盐岩地层,向北倾覆于泰山岩群地层之上。受茌平凹陷、济南岩体、埠村向斜等内部构造、岩浆活动影响,地下水总体在南部接受大气降水入渗补给,沿地层倾向向北运移,在火成岩体及石炭纪—二叠纪砂、页岩阻挡下出露成泉;北部奥陶纪和寒武纪碳酸盐岩埋藏深度逐渐加大,岩溶地下水继续向深部径流,径流速度和更替速度降低。依据区域岩溶水含水介质埋藏、水动力、水化学、水温度及水年龄差异性特征,将济南单斜岩溶水系统划分为浅、中、深三个循环带(图10)。

  • 图8 泰山北翼岩溶水年龄散点图

  • Fig.8 Age scatter diagram of regional karst water in the north flank of Mount Tai

  • 图9 泰山北翼岩溶水循环概念模型图

  • Fig.9 Conceptual model diagram of karst water cycle in the north flank of Mount Tai

  • (1)浅循环带(积极交替带):在市区四大泉群、东郊白泉泉群及章丘百脉泉泉群地带集中出露,主要含水系统均属于寒武系炒米店组—奥陶系八陡组,地下水以浅循环运动为主,循环深度一般小于600 m,泉水主部来源于浅循环径流补给,部分来源于中循环补给,地下水径流途径短、循环速度快、滞留时间短,常形成低矿化、低温、低年龄地下冷水。诸如山前的众多泉水,TDS一般小于0.5 g/L,水温常年恒定在18℃左右,地下水年龄一般为20~30 a。

  • (2)中循环带(缓慢交替带):在火成岩体及石炭纪—二叠纪地层与奥灰交接以北地带,奥陶纪和寒武纪含水系统内的地下水均继续向北做深部径流,以中循环为主,循环深度一般小于1000 m,受巨厚火成岩体及石炭纪—二叠纪地层控制,地下水径流途径增长、径流速度减慢、更新速率变缓,于济南岩体北部“灰岩条带”区形成中矿化、中热、较高年龄地下热水。诸如济北地热田众多地热井显示,TDS一般为1~3 g/L,水温一般为33~55℃,地下水年龄一般为15~20 ka。

  • (3)深循环带(相对滞留带):在济北地热田以北至齐广断裂附近,受北倾单斜构造及石炭纪—二叠纪、古近纪巨厚盖层控制,岩溶含水层埋藏深度较大,岩溶发育程度大大减弱,地下水以区域深循环为主,循环深度一般大于1000 m,地下水运动相对滞缓,水循环速率极低,基本属于岩溶地下水相对滞留区,多形成高矿化、高热、高年龄地下热水,TDS一般为3~7 g/L,水温一般为43~95℃,地下水年龄一般大于25 ka。除局部有利条件外,岩溶含水层埋藏深度均较大且涌水量小。

  • 5 结论

  • (1)齐广、禹王山、聊考等深大断裂成为控制泰山北翼地区碳酸盐岩分布的重要地质构造。岩溶含水介质由南向北埋藏深度逐渐增大,在冷泉汇集区一带埋深一般小于400 m,在地热集聚区埋深一般大于1000 m,最大近4000 m,黄河北鹊山水库一带较特殊,存在“灰岩凸起条带”,埋深一般为200~400 m;岩溶含水介质由东向西厚度不一,虽被次级断裂错动,但整体上仍然具有连续性分布特征。总体认为泰山北翼深大断裂圈闭的碳酸盐岩区为一个统一的岩溶水系统。

  • 图10 济南单斜岩溶水系统水循环模式图

  • Fig.10 Water circulation pattern of Ji'nan monoclinic karst water system

  • (2)地下水流系统特征受岩溶含水介质的展布控制。由南向北,水动力场由离散的大水力坡度向聚集的小水力坡度转变,水化学场由低矿化的HCO3-Ca型向高矿化的SO4-Ca、SO4·Cl-Na·Ca型转变,水温度场由<18℃恒温向>25℃增温转变,水年龄场由20~30 a向>13 ka转变。依此“四场”,一条区分冷泉和地热的分界线被推测出来,大致沿东阿断裂及其延长线—吴家堡—华山—章丘区—淄博磁村一线分布。

  • (3)区域水循环表现出明显垂向分带性,浅循环深度一般小于600 m,主要参与形成冷泉,水循环交替强烈,地下水矿化度、年龄、温度较低;中循环深度一般小于1000 m,深循环深度一般大于1000 m,中循环主要参与形成黄河北“灰岩凸起条带”地热田,深循环主要参与形成孙耿济阳等深层地热,地下水矿化度、年龄、温度较高。

  • (4)建立的区域地下水复杂循环过程概念模型,深化了区域地下水补、径、排规律认识,揭示出各岩溶含水介质参与冷泉和地热循环过程中存在内在联系,泰山岩群风化裂隙水、馒头组岩溶裂隙水、张夏组裂隙岩溶水、炒米店组至八陡组裂隙岩溶水及松散孔隙水之间交互频繁,水流交互形式多样,或通过表流沟通、或通过断层沟通、或通过层流沟通。同时,为了更加精准识别泉水和地热水中各含水介质水流组成,建议进一步开展补给来源的定量化研究。

  • 致谢:特别感谢审稿专家提出的宝贵修改意见和建议。

  • 参考文献

    • Chen Zhenpeng. 1985. The study of water supply in Jinan under the preservation of springs. Carsologica Sinica, (1-2): 22~30(in Chinese with English abstract).

    • Fang Peixian, Cao Yuqing, Tang Kewang, Li Xiangzhi, Wang Shaowen. 1989. Age datings of the groundwater in the spring area of Ji'nan City. Carsologica Sinica, 8(1): 47~51(in Chinese with English abstract).

    • Gao Shuai, Li Changsuo, Jia Chao, Sun Bin, Zhang Hailin, Pang Wei. 2019. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotuspring area of Ji'nan. Acta Geologica Sinica, 93(s1): 61~70 (in Chinese with English abstract).

    • Gao Zongjun, Xu Junxiang, Wang Shichen, Li Changsuo, Han Ke, Li Jiajia, Luo Fei, Ma Hekuan. 2014. The distribution characteristics and hydrogeological significance of trace elements in karst water, Ji'nan, China. Earth Science Frontiers, 21(4): 135~146(in Chinese with English abstract).

    • Hou Xinwen, Xing Liting, Sun Beibei, Li Changsuo. 2014. Resources potential of Jinan monoclinic karst groundwater system. Journal of University of Jinan(Science and Technology), 28(4): 300~305(in Chinese with English abstract).

    • Hu Caiping, Wang Nan, Song Liang, Bai Xinfei, Wang Tao, Liang Yunhan, Sun Xiaotao, Peng Wenquan. 2019. Thermal anomaly mechanism of carbonate rock thermal storage in the shallow buried areas of northwestern Ji'nan. Acta Geologica Sinica, 93(s1): 178~183(in Chinese with English abstract).

    • Huang Chunhai. 1960. Study on geology of Ji'nan. Geological Review, 20(6): 232~239(in Chinese).

    • Kang Fengxin, Sui Haibo, Zheng Tingting. 2020. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Ji'nan. Acta Geologica Sinica, 94(5): 1606~1624 (in Chinese with English abstract).

    • Li Baoxue, Qin Dajun, Guo Yi, Liu Wencai, Mohammed H, Lin Lin, Guan Qinghua. 2017. Effect of Yufu River on chemical process of karst groundwater in Ji'nan, Shandong Province. Journal of Engineering Geology, 25(1): 190~198(in Chinese with English abstract).

    • Li Changsuo, Wu Xiancang, Sun Bin, Sui Haibo, Geng Fuqiang, Qi Huan, Ma Xueying. 2018. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji'nan. Earth Science, 43(s1): 313~325 (in Chinese with English abstract).

    • Li Chuanmo. 1985. Analysis on karst resources and preservation of famous springs in Ji'nan. Carsologica Sinica, (Z1): 37~45(in Chinese with English abstract).

    • Li Jiangbai, Xing Liting, Hou Yusong, Xing Xuerui, Deng Zhong, Zhang Fengjuan, Meng Qinghan, Wu Dongqiang. 2021. Replenishment sources of four great springs in Ji'nan based on fuzzy similarity priority ratio. Science Technology and Engineering, 21(3): 918~926(in Chinese with English abstract).

    • Lucas L L, Unterweger M P. 2000. Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards & Technology, 105(4): 541~549.

    • Meng Qingbin, Xing Liting, Teng Zhaoxia. 2008. The relationship of spring protection and transformation pattern between precipitation groundwater and surface water in the Jinan spring region. Journal of Shandong University (Engineering Science), 38(5): 82~87(in Chinese with English abstract).

    • Sui Haibo, Kang Fengxin, Li Changsuo, Han Jianjiang, Xing Liting. 2017. Realationship between north Ji'nan geothermal water and Ji'nan spring water revealed by hydrogeochemical characteristics. Carsologica Sinica, 36(1): 49~58 (in Chinese with English abstract).

    • Sun Bin, Xing Liting, Peng Yuming, Li Changsuo. 2021. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City. Carsologica Sinica, 40(3): 409~419(in Chinese with English abstract).

    • Wang Hongtao, Cao Yuqing, Cao Yilin. 1993. Groundwater flow fields simulation of Jinan karst area, China. Carsologica Sinica, 12(2): 111~121(in Chinese with English abstract).

    • Wang Jiale, Jin Menggui, Jia Baojie, Kang Fengxin. 2015. Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Geothermics, 57: 185~195.

    • Wang Junyu, Wang Jiale, Jin Menggui. 2017. Hydrochemical characteristics and formation cause of karst water in Jinan spring catchment. Earth Science, 42(5): 821~831(in Chinese with English abstract).

    • Wang Ruijiu. 1983. Three line diagram and its hydrogeological interpretation. Geotechnical Investigation & Surveying, (6): 6~11(in Chinese).

    • Wei Shanming, Ding Guantao, Yuan Guoxia, Wang Lifang, Nie Yupeng, Du Jinliang. 2021. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River basin in Shandong Province. Acta Geologica Sinica, 95(6): 1973~1983(in Chinese with English abstract).

    • Xing Liting, Zhou Juan, Song Guangzeng, Xing Xuerui. 2018. Mixing ratios of recharging water sources for the four largest spring groups in Jinan. Earth Science Frontiers, 25(3): 260~272(in Chinese with English abstract).

    • Xu Junxiang, Xing Liting, Tong Guangyu, Fan Liqin. 2004. Groundwater environment evolution and its conservation in Jinan spring catchment. Hydrogeology & Engineering Geology, 31(6): 69~73(in Chinese with English abstract).

    • Xu Junxiang, Li Changsuo, Xing Liting, Sun Bin, Peng Yuming. 2020. Jinan Spring Water and Its Protection. Beijing: Geology Press (in Chinese).

    • Yin Xiulan, Wang Qingbing, Feng Wei. 2017. Hydrochemical and isotopic study of the karst spring catchment in Jinan. Acta Geologica Sinica, 91(7): 1651~1660(in Chinese with English abstract).

    • Zhang Baojian, Shen Zhaoli, Qiao Zengbao, Qi Lin. 2009. Analysis on hydro-chemical features and origin of the hot spring in karst geothermal field, east Liaocheng City. Carsologica Sinica, 28(3): 263~268(in Chinese with English abstract).

    • Zhang Naixing, Li Wei, An Ligui, Huang Chunhai. 1998. The experimental research on link between sources and four spring groups in Jinan. Journal of Shandong Normal University (Natural Science), 13(4): 408~412(in Chinese with English abstract).

    • Zhao Yuxiang, Li Changsuo, Xing Liting. 2009. Forming conditions of geothermal field in northern Jinan. Journal of University of Jinan(Science and Technology), 23(4): 406~409(in Chinese with English abstract).

    • 陈振鹏. 1985. 济南保泉供水研究. 中国岩溶, (1-2): 22~30.

    • 房佩贤, 曹玉清, 唐克旺, 李祥之, 王绍文. 1989. 济南泉域地下水年龄计算. 中国岩溶, 8(1): 47~51.

    • 高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 2019. 济南趵突泉泉域岩溶水化学特征时空差异性研究. 地质学报, 93(s1): 61~70.

    • 高宗军, 徐军祥, 王世臣, 李常锁, 韩克, 李佳佳, 罗斐, 马河宽. 2014. 济南岩溶水微量元素分布特征及其水文地质意义. 地学前缘, 21(4): 135~146.

    • 侯新文, 邢立亭, 孙蓓蓓, 李常锁. 2014. 济南市岩溶水系统分级及市区与东西郊的水力联系. 济南大学学报(自然科学版), 28(4): 300~305.

    • 胡彩萍, 王楠, 宋亮, 白新飞, 王涛, 梁云汉, 孙晓涛, 彭文泉. 2019. 济南西北部碳酸盐岩热储浅埋区热异常机理研究. 地质学报, 93(s1): 178~183.

    • 黄春海. 1960. 济南地质的研究. 地质论评, 20(6): 232~239.

    • 康凤新, 隋海波, 郑婷婷. 2020. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例. 地质学报, 94(5): 1606~1624.

    • 李宝学, 秦大军, 郭艺, 刘文才, Mohammed Haji, 林琳, 管清花. 2017. 玉符河对济南岩溶水水化学过程的影响研究. 工程地质学报, 25(1): 190~198.

    • 李常锁, 武显仓, 孙斌, 隋海波, 耿付强, 齐欢, 马雪莹. 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(s1): 313~325.

    • 李传谟. 1985. 济南岩溶水资源的分析与泉水名胜的保护. 中国岩溶, (Z1): 37~45.

    • 李江柏, 邢立亭, 侯玉松, 邢学睿, 邓忠, 张凤娟, 孟庆晗, 武东强. 2021. 基于模糊相似优先比法的济南四大泉群补给来源. 科学技术与工程, 21(3): 918~926.

    • 孟庆斌, 邢立亭, 滕朝霞. 2008. 济南泉域“三水”转化与泉水恢复关系研究. 山东大学学报(工学版), 38(5): 82~87.

    • 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 2017. 水化学特征揭示的济北地热水与济南泉水关系. 中国岩溶, 36(1): 49~58.

    • 孙斌, 邢立亭, 彭玉明, 李常锁. 2021. 济南十大泉群特征、形成模式及水循环差异性研究. 中国岩溶, 40(3): 409~419.

    • 王洪涛, 曹玉清, 曹以临. 1993. 济南地区岩溶地下水径流场模拟分析. 中国岩溶, 12(2): 111~121.

    • 王珺瑜, 王家乐, 靳孟贵. 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821~831.

    • 王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.

    • 魏善明, 丁冠涛, 袁国霞, 汪丽芳, 聂玉朋, 杜金亮. 2021. 山东省东汶河沂南地区地下水水化学特征及形成机理. 地质学报, 95(6): 1973~1983.

    • 邢立亭, 周娟, 宋广增, 邢学睿. 2018. 济南四大泉群泉水补给来源混合比探讨. 地学前缘, 25(3): 260~272.

    • 徐军祥, 邢立亭, 佟光玉, 范立芹. 2004. 济南泉域地下水环境演化与保护. 水文地质工程地质, 31(6): 69~73.

    • 徐军祥, 李常锁, 邢立亭, 孙斌, 彭玉明. 2020. 济南泉水及其保护. 北京: 地质出版社.

    • 殷秀兰, 王庆兵, 凤蔚. 2017. 济南岩溶泉域泉群区水化学与环境同位素研究. 地质学报, 91(7): 1651~1660.

    • 张保健, 沈照理, 乔增宝, 亓麟. 2009. 聊城市东部岩溶地热田地下热水水化学特征及成因分析. 中国岩溶, 28(3): 263~268.

    • 张乃兴, 李伟, 安立贵, 黄春海. 1998. 济南四大泉群水源地连通试验研究. 山东师大学报(自然科学版), 13(4): 408~412.

    • 赵玉祥, 李常锁, 邢立亭. 2009. 济南北部地热田的生成条件. 济南大学学报(自然科学版), 23(4): 406~409.

  • 参考文献

    • Chen Zhenpeng. 1985. The study of water supply in Jinan under the preservation of springs. Carsologica Sinica, (1-2): 22~30(in Chinese with English abstract).

    • Fang Peixian, Cao Yuqing, Tang Kewang, Li Xiangzhi, Wang Shaowen. 1989. Age datings of the groundwater in the spring area of Ji'nan City. Carsologica Sinica, 8(1): 47~51(in Chinese with English abstract).

    • Gao Shuai, Li Changsuo, Jia Chao, Sun Bin, Zhang Hailin, Pang Wei. 2019. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotuspring area of Ji'nan. Acta Geologica Sinica, 93(s1): 61~70 (in Chinese with English abstract).

    • Gao Zongjun, Xu Junxiang, Wang Shichen, Li Changsuo, Han Ke, Li Jiajia, Luo Fei, Ma Hekuan. 2014. The distribution characteristics and hydrogeological significance of trace elements in karst water, Ji'nan, China. Earth Science Frontiers, 21(4): 135~146(in Chinese with English abstract).

    • Hou Xinwen, Xing Liting, Sun Beibei, Li Changsuo. 2014. Resources potential of Jinan monoclinic karst groundwater system. Journal of University of Jinan(Science and Technology), 28(4): 300~305(in Chinese with English abstract).

    • Hu Caiping, Wang Nan, Song Liang, Bai Xinfei, Wang Tao, Liang Yunhan, Sun Xiaotao, Peng Wenquan. 2019. Thermal anomaly mechanism of carbonate rock thermal storage in the shallow buried areas of northwestern Ji'nan. Acta Geologica Sinica, 93(s1): 178~183(in Chinese with English abstract).

    • Huang Chunhai. 1960. Study on geology of Ji'nan. Geological Review, 20(6): 232~239(in Chinese).

    • Kang Fengxin, Sui Haibo, Zheng Tingting. 2020. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Ji'nan. Acta Geologica Sinica, 94(5): 1606~1624 (in Chinese with English abstract).

    • Li Baoxue, Qin Dajun, Guo Yi, Liu Wencai, Mohammed H, Lin Lin, Guan Qinghua. 2017. Effect of Yufu River on chemical process of karst groundwater in Ji'nan, Shandong Province. Journal of Engineering Geology, 25(1): 190~198(in Chinese with English abstract).

    • Li Changsuo, Wu Xiancang, Sun Bin, Sui Haibo, Geng Fuqiang, Qi Huan, Ma Xueying. 2018. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji'nan. Earth Science, 43(s1): 313~325 (in Chinese with English abstract).

    • Li Chuanmo. 1985. Analysis on karst resources and preservation of famous springs in Ji'nan. Carsologica Sinica, (Z1): 37~45(in Chinese with English abstract).

    • Li Jiangbai, Xing Liting, Hou Yusong, Xing Xuerui, Deng Zhong, Zhang Fengjuan, Meng Qinghan, Wu Dongqiang. 2021. Replenishment sources of four great springs in Ji'nan based on fuzzy similarity priority ratio. Science Technology and Engineering, 21(3): 918~926(in Chinese with English abstract).

    • Lucas L L, Unterweger M P. 2000. Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards & Technology, 105(4): 541~549.

    • Meng Qingbin, Xing Liting, Teng Zhaoxia. 2008. The relationship of spring protection and transformation pattern between precipitation groundwater and surface water in the Jinan spring region. Journal of Shandong University (Engineering Science), 38(5): 82~87(in Chinese with English abstract).

    • Sui Haibo, Kang Fengxin, Li Changsuo, Han Jianjiang, Xing Liting. 2017. Realationship between north Ji'nan geothermal water and Ji'nan spring water revealed by hydrogeochemical characteristics. Carsologica Sinica, 36(1): 49~58 (in Chinese with English abstract).

    • Sun Bin, Xing Liting, Peng Yuming, Li Changsuo. 2021. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City. Carsologica Sinica, 40(3): 409~419(in Chinese with English abstract).

    • Wang Hongtao, Cao Yuqing, Cao Yilin. 1993. Groundwater flow fields simulation of Jinan karst area, China. Carsologica Sinica, 12(2): 111~121(in Chinese with English abstract).

    • Wang Jiale, Jin Menggui, Jia Baojie, Kang Fengxin. 2015. Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Geothermics, 57: 185~195.

    • Wang Junyu, Wang Jiale, Jin Menggui. 2017. Hydrochemical characteristics and formation cause of karst water in Jinan spring catchment. Earth Science, 42(5): 821~831(in Chinese with English abstract).

    • Wang Ruijiu. 1983. Three line diagram and its hydrogeological interpretation. Geotechnical Investigation & Surveying, (6): 6~11(in Chinese).

    • Wei Shanming, Ding Guantao, Yuan Guoxia, Wang Lifang, Nie Yupeng, Du Jinliang. 2021. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River basin in Shandong Province. Acta Geologica Sinica, 95(6): 1973~1983(in Chinese with English abstract).

    • Xing Liting, Zhou Juan, Song Guangzeng, Xing Xuerui. 2018. Mixing ratios of recharging water sources for the four largest spring groups in Jinan. Earth Science Frontiers, 25(3): 260~272(in Chinese with English abstract).

    • Xu Junxiang, Xing Liting, Tong Guangyu, Fan Liqin. 2004. Groundwater environment evolution and its conservation in Jinan spring catchment. Hydrogeology & Engineering Geology, 31(6): 69~73(in Chinese with English abstract).

    • Xu Junxiang, Li Changsuo, Xing Liting, Sun Bin, Peng Yuming. 2020. Jinan Spring Water and Its Protection. Beijing: Geology Press (in Chinese).

    • Yin Xiulan, Wang Qingbing, Feng Wei. 2017. Hydrochemical and isotopic study of the karst spring catchment in Jinan. Acta Geologica Sinica, 91(7): 1651~1660(in Chinese with English abstract).

    • Zhang Baojian, Shen Zhaoli, Qiao Zengbao, Qi Lin. 2009. Analysis on hydro-chemical features and origin of the hot spring in karst geothermal field, east Liaocheng City. Carsologica Sinica, 28(3): 263~268(in Chinese with English abstract).

    • Zhang Naixing, Li Wei, An Ligui, Huang Chunhai. 1998. The experimental research on link between sources and four spring groups in Jinan. Journal of Shandong Normal University (Natural Science), 13(4): 408~412(in Chinese with English abstract).

    • Zhao Yuxiang, Li Changsuo, Xing Liting. 2009. Forming conditions of geothermal field in northern Jinan. Journal of University of Jinan(Science and Technology), 23(4): 406~409(in Chinese with English abstract).

    • 陈振鹏. 1985. 济南保泉供水研究. 中国岩溶, (1-2): 22~30.

    • 房佩贤, 曹玉清, 唐克旺, 李祥之, 王绍文. 1989. 济南泉域地下水年龄计算. 中国岩溶, 8(1): 47~51.

    • 高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 2019. 济南趵突泉泉域岩溶水化学特征时空差异性研究. 地质学报, 93(s1): 61~70.

    • 高宗军, 徐军祥, 王世臣, 李常锁, 韩克, 李佳佳, 罗斐, 马河宽. 2014. 济南岩溶水微量元素分布特征及其水文地质意义. 地学前缘, 21(4): 135~146.

    • 侯新文, 邢立亭, 孙蓓蓓, 李常锁. 2014. 济南市岩溶水系统分级及市区与东西郊的水力联系. 济南大学学报(自然科学版), 28(4): 300~305.

    • 胡彩萍, 王楠, 宋亮, 白新飞, 王涛, 梁云汉, 孙晓涛, 彭文泉. 2019. 济南西北部碳酸盐岩热储浅埋区热异常机理研究. 地质学报, 93(s1): 178~183.

    • 黄春海. 1960. 济南地质的研究. 地质论评, 20(6): 232~239.

    • 康凤新, 隋海波, 郑婷婷. 2020. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例. 地质学报, 94(5): 1606~1624.

    • 李宝学, 秦大军, 郭艺, 刘文才, Mohammed Haji, 林琳, 管清花. 2017. 玉符河对济南岩溶水水化学过程的影响研究. 工程地质学报, 25(1): 190~198.

    • 李常锁, 武显仓, 孙斌, 隋海波, 耿付强, 齐欢, 马雪莹. 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(s1): 313~325.

    • 李传谟. 1985. 济南岩溶水资源的分析与泉水名胜的保护. 中国岩溶, (Z1): 37~45.

    • 李江柏, 邢立亭, 侯玉松, 邢学睿, 邓忠, 张凤娟, 孟庆晗, 武东强. 2021. 基于模糊相似优先比法的济南四大泉群补给来源. 科学技术与工程, 21(3): 918~926.

    • 孟庆斌, 邢立亭, 滕朝霞. 2008. 济南泉域“三水”转化与泉水恢复关系研究. 山东大学学报(工学版), 38(5): 82~87.

    • 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 2017. 水化学特征揭示的济北地热水与济南泉水关系. 中国岩溶, 36(1): 49~58.

    • 孙斌, 邢立亭, 彭玉明, 李常锁. 2021. 济南十大泉群特征、形成模式及水循环差异性研究. 中国岩溶, 40(3): 409~419.

    • 王洪涛, 曹玉清, 曹以临. 1993. 济南地区岩溶地下水径流场模拟分析. 中国岩溶, 12(2): 111~121.

    • 王珺瑜, 王家乐, 靳孟贵. 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821~831.

    • 王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.

    • 魏善明, 丁冠涛, 袁国霞, 汪丽芳, 聂玉朋, 杜金亮. 2021. 山东省东汶河沂南地区地下水水化学特征及形成机理. 地质学报, 95(6): 1973~1983.

    • 邢立亭, 周娟, 宋广增, 邢学睿. 2018. 济南四大泉群泉水补给来源混合比探讨. 地学前缘, 25(3): 260~272.

    • 徐军祥, 邢立亭, 佟光玉, 范立芹. 2004. 济南泉域地下水环境演化与保护. 水文地质工程地质, 31(6): 69~73.

    • 徐军祥, 李常锁, 邢立亭, 孙斌, 彭玉明. 2020. 济南泉水及其保护. 北京: 地质出版社.

    • 殷秀兰, 王庆兵, 凤蔚. 2017. 济南岩溶泉域泉群区水化学与环境同位素研究. 地质学报, 91(7): 1651~1660.

    • 张保健, 沈照理, 乔增宝, 亓麟. 2009. 聊城市东部岩溶地热田地下热水水化学特征及成因分析. 中国岩溶, 28(3): 263~268.

    • 张乃兴, 李伟, 安立贵, 黄春海. 1998. 济南四大泉群水源地连通试验研究. 山东师大学报(自然科学版), 13(4): 408~412.

    • 赵玉祥, 李常锁, 邢立亭. 2009. 济南北部地热田的生成条件. 济南大学学报(自然科学版), 23(4): 406~409.