en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李华伟,男,1993年生。博士研究生,矿物学、岩石学、矿床学专业。E-mail:geo_hwli@163.com。

通讯作者:

杨志明,男,1978年生。研究员,主要从事大陆碰撞成矿作用研究。E-mail:zm.yang@hotmail.com。

参考文献
Aleinikoff J N, Selby D, Slack J F, Day D C, Pillers R M, Cosca M A, Seeger C M, Fanning C M, Samson I M. 2016. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri. Economic Geology, 111(8): 1883~1914.
参考文献
Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216(3-4): 249~270.
参考文献
Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.
参考文献
Ansberque C, Mark C, Caulfield J T, Chew D M. 2019. Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chemical Geology, 524: 406~420.
参考文献
Audétat A, Pettke T. 2006. Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). Journal of Petrology, 47(10): 2021~2046.
参考文献
Audétat A. 2015. Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado. Journal of Petrology, 56 (8): 1519~1546.
参考文献
Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6): 1033~1056.
参考文献
Ayers J C, Peters T J. 2018. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1. 5 GPa and 800-1000℃. Geochimica et Cosmochimica Acta, 223: 60~74.
参考文献
Baksheev I A, Prokof'Ev V Y, Zaraisky G P, Chitalin A F, Yapaskurt V O, Nikolaev Y N, Tikhomirov P L, Nagornaya E V, Rogacheva L I, Gorelikova N V. 2012. Tourmaline as a prospecting guide for the porphyry-style deposits. European Journal of Mineralogy, 24(6): 957~979.
参考文献
Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.
参考文献
Barnes J D, Sharp Z D. 2017. Chlorine isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 345~378.
参考文献
Bell E A, Boehnke P, Hopkins-Wielicki M D, Harrison T M. 2015. Distinguishing primary and secondary inclusion assemblages inJack Hills zircons. Lithos, 234-235: 15~26.
参考文献
Bell E A, Boehnke P, Harrison T M, Wielicki M M. 2018. Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477: 151~160.
参考文献
Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences. 48(4): 603~619.
参考文献
Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002a. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.
参考文献
Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002b. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of geochemical exploration, 76(1): 45~69.
参考文献
Blevin P L, Chappell B W. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 305~316.
参考文献
Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.
参考文献
Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.
参考文献
Boyce J W, Liu Yang, Rossman G R, Guan Yunbin, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances. Nature, 466(7305): 466~469.
参考文献
Boyce J W, Tomlinson S M, McCubbin F M, Greenwood J P, Treiman A H. 2014. The lunar apatite paradox. Science, 344: 400~402.
参考文献
Brice J C. 1975. Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth, 28(2): 249~253.
参考文献
Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385: 105900.
参考文献
Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55(8): 1619~1651.
参考文献
Bruand E, Storey C, Fowler M. 2016. An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology, 44(2): 91~94.
参考文献
Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102(1): 75~84.
参考文献
Bruand E, Fowler M, Storey C, Laurent O, Nebel O. 2020. Accessory mineral constraints on crustal evolution: Elemental fingerprints for magma discrimination. Geochemical Perspectives, 13: 7~12.
参考文献
Buret Y, von Quadt A, Heinrich C, Selby D, Wälle M, Peytcheva I. 2016. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450: 120~131.
参考文献
Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.
参考文献
Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimicaet Cosmochimica Acta, 95: 196~212.
参考文献
Burnham A D, Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.
参考文献
Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.
参考文献
Cao Kang, Yang Zhiming, Hou Zengqian, Yu Chao. 2022. Contrasting porphyry Cu fertilities in the Yidun arc, eastern Tibet: Insights from zircon and apatite compositions and implications for exploration. Society of Economic Geologists Special Publication, 2(24): 231~255.
参考文献
Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.
参考文献
Carmichael I S E, Ghiorso M S. 1990. The effect of oxygen fugacity on the redox state of natural liquids and their crystallising phases. Reviews in Mineralogy and Geochemistry, 24: 191~2012.
参考文献
Chapman J B, Gehrels G E, Ducea M N, Giesler N, Pullen A. 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology, 439: 59~70.
参考文献
Chelle-Michou C, Chiaradia M, Ovtcharova M, Ulianov A, Wotzlaw J F. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198-199: 129~140.
参考文献
Chelle-Michou C, Chiaradia M. 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions to Mineralogy and Petrology, 172(11): 1~26.
参考文献
Chen Lei, Zhang Yong. 2018. In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: Constraints on the petrogenetic-metallogenic features. Ore Geology Reviews, 94: 93~103.
参考文献
Chen Weiterry, Zhou Meifu. 2015. Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu (Mo, Ree) deposit, SW China. American Journal of Science, 315: 671~711.
参考文献
Chew D M, Drost K, Petrus J A. 2019. Ultrafast, >50 Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals. Geostandards and Geoanalytical Research, 43(1): 39~60.
参考文献
Chew D M, Spikings R A. 2021. Apatite U-Pb thermochronology: A review. Minerals, 11: 1095.
参考文献
Cherniak D J, Watson E B. 2003. Diffusion in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon. Mineralogical Society of America and Geochemical Society. Reviews in Mineralogy and Geochemistry, 53: 113~143.
参考文献
Chiaradia M, Ulianov A, Kouzmanov K, Beate B. 2012. Why large porphyry Cudeposits like high Sr/Y magmas? Scientific Reports, 2(9): 685.
参考文献
Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatitecomposition: Tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology, 50(10): 1829~1855.
参考文献
Cogné N, Chew D M, Stuart F M. 2014. The thermal history of the western Irish onshore. Journal of the Geological Society, 171: 779~792.
参考文献
Colombini L L, Miller C F, Gualda G A, Wooden J L, Miller J S. 2011. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineralogy and Petrology, 102: 29~50.
参考文献
Cooke D R, Baker M, Hollings P, Sweet G, Chang Zhaoshan, Danyushevsky L V, Gilbert S E, Zhou Taofa, White N C, Gemmell B, Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoringand fertility assessments. In: Kelley K D Golden H C, eds. Building Exploration Capability for the 21st Century. SEG Special Publication, 18. Boulder, CO, USA: Society of Economic Geologists, 127~152.
参考文献
Cooke D R, Wilkinson J J, Baker M, Agnew P, Martin H. 2020. Using mineral chemistry to aid exploration: A case study from the resolution porphyry Cu-Mo deposit, Arizona. Economic Geology, 115 (4): 813~840.
参考文献
Corfu F, Hanchar J M, Hoskin P, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.
参考文献
Cottrell E, Walter MJ, Walker D. 2009. Metal-silicate partitioning of tungsten at high pressure and temperature: implications for equilibrium core formation in Earth. Earth and Planetary Science Letters, 281(3-4): 275~287.
参考文献
Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole “sponge” in arc crust? Geology, 35(9): 787~790.
参考文献
Davidson J, Turner S, Plank T. 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3): 525~537.
参考文献
Dill H G. 1994. Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks? Sedimentary Geology, 92(s3-4): 175~196.
参考文献
Dilles J H, Kent A J, Wooden J L, Tosdal R, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology. 110 (1): 241~251.
参考文献
Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850~950℃. Chemical Geology, 384: 94~111.
参考文献
Dong Ping. 2005. Halogen-element (fluorine, chlorine, and bromine) behaviour in apatites, scapolite, and sodalite: An experimental investigation with field applications. Doctoral dissertation of University of Saskatchewan (Canada).
参考文献
Du Jingguo, Wang Gongwen, Jia Lihui. 2019. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization. Ore Geology Reviews, 115: 103174.
参考文献
Duan Zhanzhan, Wei Chuanjing, Rehman H U. 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: Insights into the regional Archean P-T-t history. Precambrian Research, 292: 240~257.
参考文献
Es'kova E M. 1959. Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya, 2: 130~139.
参考文献
Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251~284.
参考文献
Feng Yantong, Zhang Wen, Hu Zhaochu Liu Yongsheng, Luo Tao, He Tao, Liu Hong, Yu Kun, 2022. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the earth sciences. Science China Earth Sciences, 65(1): 182~196.
参考文献
Fernandes P, Cogne N, Chew D M, Rodrigues B, Jorge R C G S, Marques J, Jamal D, Vasconcelos L. 2015. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. Journal of African Earth Sciences, 112(A): 55~72.
参考文献
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.
参考文献
Finch R J, Hanchar J M. 2003. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry, 53: 1~25.
参考文献
Fleet M E. 2005. XANES spectroscopy of sulfur in Earth materials. Canadian Mineralogist, 43: 1811~1838.
参考文献
Fleet M E, Pan Yuanming. 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist, 80(3): 329~335.
参考文献
Fleet M E, Liu Xiaoyang, Pan Yuanming. 2000. Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist, 85(10): 1437~1446.
参考文献
Fleischer M, Altschuler Z S. 1986. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neues Jb. Mineral. Monat, 467~480.
参考文献
Franz G, Morteani G, Rhede D. 2015. Xenotime-(Y) formation from zircon dissolution-precipitation and HREE fractionation: An example from a metamorphosed phosphatic sandstone, Espinhao fold belt (Brazil). Contributions to Mineralogy and Petrology, 170(4): 1~22.
参考文献
Frondel. 1953, Hydroxyl substitution in thorite and zircon. American Mineralogist, 38: 1007~1018.
参考文献
Frost B R, Lindsley D. 1991. Occurance of iron-titanium oxides in igneous rocks. Reviews in Mineralogy and Geochemistry, 25: 433~468.
参考文献
Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology, 94(1): 42~45.
参考文献
Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xingshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203(10): 104552.
参考文献
Ghiorso M S, Evans B W. 2008. Thermodynamicsof rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science, 308(9): 957~1039.
参考文献
Ghiorso M S, Gualda G A R. 2013. A method for estimating the activity oftitania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contributions to Mineralogy and Petrology, 165: 73~81.
参考文献
Gillespie J, Nemchina A A, Kinny P D, Martin L, Aleshin M, Roberts M P, Ireland T R, Whitehouse M J, Jeon H, Cavosie A J, Kirkland C L. 2021. Strontium isotope analysis of apatite via SIMS. Chemical Geology, 559: 119979.
参考文献
Goldoff B, Webster J D, Harlov D E. 2012. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97: 1103~1115.
参考文献
Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghøj K, Schwartz J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643~646.
参考文献
Grimes C B, Wooden J L, Cheadle M J, John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170: 46.
参考文献
Halden N M, Hawthorne F C. 1993. The fractal geometry of oscillatory zoning in crystals: Application to zircon. American Mineralogist, 78(9-10): 1113~1116.
参考文献
Hammouda T, Chantel J, Devidal J. 2010. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochimicaet Cosmochimica Acta, 74(24): 7220~7235.
参考文献
Harlov D E, Andersson U B, Förster H-J, Nyström J O, Dulski P, Broman C. 2002. Apatite-monazite relations in the Kiirunavaara magnetite apatite ore, northern Sweden. Chemical Geology, 191(1-3): 47~72.
参考文献
Harlov D E, Förster H J. 2003. Fluid-induced nucleation of (Y+REE) phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88: 1209~1229.
参考文献
Harlov D E, Wirth R, Förster H. 2005. An experimental study of dissolutionreprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150: 268~286.
参考文献
Harlov D E. 2015. Apatite: a fingerprint for metasomatic processes. Elements, 11: 171~176.
参考文献
Hayden L A, Watson E B. 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258: 561~568.
参考文献
Heaman L M, Bowins R, Crocket J. 1990. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochimica et Cosmochimica Acta, 54(6): 1597~1607.
参考文献
Hedenquist J W, Watanabe Y, Arribas A. 2020. Hypogene alunite from theel salvador district, chile, indicates potential for a blind porphyry copper center. Economic Geology, 115(2): 231~239.
参考文献
Henrichs I A, Chew D M, O'Sullivan G J, Mark C, McKenna C, Guyett P. 2019. Trace-element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist-to amphibolite-facies Barrovian metamorphism. Geochemistry, Geophysics, Geosystems, 20(8): 4103~4129.
参考文献
Hoskin P. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64: 1905~1923.
参考文献
Hou Zengqian, Duan Lianfeng, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang, Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541~1575.
参考文献
Hsu Y J, Zajacz Z, Ulmer P, Heinrich C A. 2019. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth's upper crust and implications for magmatic-hydrothermal ore genesis. Geochimica et Cosmochimica Acta, 261: 171~190.
参考文献
Hughes J M, John M. 2015a. The many facets of apatite. American Mineralogist, 100(5-6): 1033~1039.
参考文献
Hughes J M, Rakovan J F. 2015b. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements, 11(3): 165~170.
参考文献
Imai A. 2004. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resource Geology, 54(3): 357~372.
参考文献
Imai A, Listanco E L, Fujii T. 1993. Petrologic and surfur isotopic significance of highly oxidized and silfur-rich magma of Mt. Pinatabo, Philippines. Geology, 21(8): 699~702.
参考文献
Imai A. 2002. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks. Resource Geology, 52(2): 147~161.
参考文献
Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75: 458~484.
参考文献
Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.
参考文献
Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415~418.
参考文献
Jugo P J, Luth R W, Richards J P. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimicaet Cosmochimica Acta, 69(2): 497~503.
参考文献
Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74: 5926~5938.
参考文献
Kirkland C L, Smithies R H, Taylor R, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.
参考文献
Klemme S, Dalpé C. 2003. Trace-element partitioning between apatite and carbonatite melt. American Mineralogist, 88: 639~646.
参考文献
Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2+ in apatite as a function of oxidation state: implications for a new oxybarometer. American Mineralogist, 102(3): 548~557.
参考文献
Konecke B A, Fiege A, Simon A C, Linsler S, Holtz F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochimica et Cosmochimica Acta, 265: 242~258.
参考文献
Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) Systems. Society of Economic Geologists Special Publication 16: 573~618.
参考文献
Kusebauch C, John T, Whitehouse M J, Engvik A. 2015a. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contributions to Mineralogy and Petrology, 170(4): 1~20.
参考文献
Kusebauch C, John T, Whitehouse M J, Klemme S, Putnis A. 2015b. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochimicaet Cosmochimica Acta, 170: 225~246.
参考文献
Kutoglu A. 1974, Structure refi nement of the apatite Ca5(VO4)3(OH). Neues Jahrbuch für Mineralogie - Monatshefte, 5: 210~218.
参考文献
La Tourrette T Z, Burnett D S, Bacon C R. 1991. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. Geochimicaet Cosmochimica Acta, 55(2), 457~469.
参考文献
Lee R G, Byrne K, D'Angelo M, Hart C J R, Alfaro M. 2021. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Mineralium Deposita, 56(2): 215~238.
参考文献
Leng Chengbiao, Cooke D R, Hou Zenqian, Evans N J, Zhang Xingchun, Chen Weiterry, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.
参考文献
Li Huijuan, Hermann J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2. 5 GPa, 800℃: A new experimentally derived thermodynamic model. American Mineralogist, 102(3): 580~594.
参考文献
Li Jinxiang, Li Guangming, Evans N J, Zhao Junxing, Qin Kezhang, Xie Jing. 2021. Primary fluid exsolution in porphyry copper systems: Evidence from magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56(2): 407~415.
参考文献
Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 105820: 380~381.
参考文献
Li Qiuli. 2016. “High-Ueffect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).
参考文献
Li Qiuyun, Yang Zhiming, Wang Rui, Sun Maoyu, Qu Huanchun. 2021. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, southern Tibet. Acta Petrologicaet Mineralogica, 40(6): 1023~1048 (in Chinese with English abstract).
参考文献
Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.
参考文献
Li Weiran, Costa F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochimica et Cosmochimica Acta, 269: 203~222.
参考文献
Li Weiran, Costa F, Nagashima K, 2021. Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. Journal of Petrology, 62(4): 1~35.
参考文献
Li Xianhua, Li Yang, Li Qiuli, Wu Liguang, Wang Hao, Yang Chuan, Wei Gangjian, Zhang Wanfeng. 2022. Progress and prospects of radiometric geochronology. Acta Geologica Sinica, 96(1): 104~122 (in Chinese with English abstract).
参考文献
Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimicaet Cosmochimica Acta, 166: 53~73.
参考文献
Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.
参考文献
Liu Xuelong, Yang Zhiming, Lu Yingxiang, Mei Shehua, Zhang Na, Zhu Jun, Chen Jianhang, Liu Sihan, Li Zhenhuan. 2021. Apatite and zircon fission track chronology of the Late Cretaceous porphyry Mo-Cu deposits in the Zhongdian area, Yunnan. Acta Geologica Sinica, 95(11): 3366~3379.
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.
参考文献
Liu Yu, Li Qiuli, Tang Guoqiang, Li Xianhua. 2020a. Concurrent determination of U-Pb age and REE mass fractions of zircon by high mass resolution SIMS. Geostandards and Geoanalytical Research, 44(3): 421~437.
参考文献
Liu Yu, Li Xianhua, Li Qiuli, Tang Guoqiang. 2020b. Breakthrough of 2- to 3-μm scale U-Pb zircon dating using Cameca IMS-1280HR SIMS. Surface and Interface Analysis, 52(5): 214~223.
参考文献
Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.
参考文献
Long Yijie, Yang Wei, Lin Yangting, Yang Jinhui, Hao Jialong, Zhang Jianchao. 2019. Sub-micron trace elemental distributions and U-Pb dating of zircon from the oldest rock in the Anshan area, North China Craton. Precambrian Research, 322: 1~17.
参考文献
Loucks R R. 2014. Distinctive composition of copper-ore-forming arc magmas. Journal of the Geological Society of Australia, 61(1): 5~16.
参考文献
Loucks R R, Fiorentini M L, Rohrlach B D. 2018. Divergent T-fo2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contributions to Mineralogy and Petrology, 173: 104.
参考文献
Loucks R R, Fiorentini M L, Henríquez G J. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3): 1~30.
参考文献
Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated post-collisional high-Sr/Y copper-ore-forming water-rich magmas in Tibet. Geology, 43: 583~586.
参考文献
Lu Yongjun, Loucks R R, Fiorentini M, McCuaig T C, Evans N J, Yang Zhiming, Hou Zengqian, Kirkland C L, Parra-Avila L A, Kobussen A. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Society of Economic Geologists, Special Publication, 329~347.
参考文献
Lu Yongjun, Smithies R H, Wingate M, Evans N J, McCuaig T C, Champion D C, Outhwaite M. 2019. Zircon fingerprinting of magmatic-hydrothermal systems in the Archean Yilgarn Craton. Geological Survey of Western Australia, 197.
参考文献
Luo Yan, Ayers J C. 2009. Experimental measurements of zircon/melt trace-element partition coefficients. Geochimica et Cosmochimica Acta, 73: 3656~3679.
参考文献
Mahood G, Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11~30.
参考文献
Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.
参考文献
Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?” \[Geochimica et Cosmochimica Acta 132 (2014) 101~119\]. Geochimica et Cosmochimica Acta, 183: 267~270.
参考文献
Marshall A S, Macdonald R, Rogers N W, Fitton J G, Tindle A G, Nejbert K Hinton R W. 2009. Fractionation of peralkaline silicic magmas: The Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50(2): 323~359.
参考文献
Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimicaet Cosmochimica Acta, 69(5): 1275~1286.
参考文献
McCubbin F M, Steele A, Nekvasil H, Schnieders A, Rose T, Fries M, Carpenter P K, Jolliff B L. 2010. Detection of structurally bound hydroxyl in apatite from Apollo Mare basalt 15058, 128 using Tof-SIMS. American Mineralogist, 95(8-9): 1141~1150.
参考文献
McCubbin F M, Hauri E H, Elardo S M, Vander Kaaden K E, Wang Jianhua, Shearer C K. 2012. Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40(8): 683~686.
参考文献
McCubbin F M, Vander Kaaden K E, Tartèse, R, Boyce J W, Mikhail S, Whitson E S, Bell A S, Anand M, Franchi I A, Wang Jianhua, Hauri E H. 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1. 0-1. 2 GPa and 950-1000℃. American Mineralogist, 100(8-9): 1790~1802.
参考文献
Meng Juntong, Xia Xiaoping, Ma Lin, Jiang Ziqi, Xu Jian, Cui Zexian, Yang Qing, Zhang Wanfeng, Zhang Le. 2021. A H2O-in-zircon perspective on the heterogeneous water content of crust-derived magmas in southern Tibet. Science China Earth Science, 64: 1184~1194 (in Chinese with English abstract).
参考文献
Miles A J, Graham C M, Hawkesworth C J, Gillespie M, Hinton R, Bromiley G. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.
参考文献
Mohammadi N, Lentz D R, Mcfarlane C, Yang Xueming. 2021. Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas granite, New Brunswick, Canada. Lithos, 382-383: 105926.
参考文献
Murali A V, Parthasarathy R, Mahadevan T M, Das M S. 1983. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—a case study on Indian zircons. Geochimica et Cosmochimica Acta, 47(11): 2047~2052.
参考文献
Mutch E J F, Blundy J D, Tattitch B C, Cooper F J, Brooker R A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171: 85.
参考文献
Nagasawa H. 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth and Planetary Science Letters, 9(4): 359~364.
参考文献
Nandedkar R H, Hürlimann N, Ulmer P, Müntener O. 2016. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: An experimental study. Contributions to Mineralogy and Petrology, 171(8-9): 71.
参考文献
Nardi L V S, Formoso M L L, Müller I F, Fontana E, Jarvis K, Lamarão C. 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335: 1~7.
参考文献
Nathwani C L, Loader M A, Wilkinson J J, Buret, Y, Sievwright R H, Hollings P. 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48: 324~327.
参考文献
Odlum M L, Levy D A, Stockli D F, Stockli L D, DesOrmeau J W. 2022. Deformation and metasomatism recorded by single-grain apatite petrochronology. Geology, 50(6): 697~703.
参考文献
Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16: 491~559.
参考文献
O'Sullivan G, Chew D M, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 201: 103044.
参考文献
Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254: 118~130.
参考文献
Pan Yuanming, Fleet M E. 2002. Compositions ofthe apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48: 13~49
参考文献
Parat F, Holtz F O. 2004. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contributions to Mineralogy and Petrology, 147(2): 201~212.
参考文献
Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150(6): 643~651.
参考文献
Parat F, Holtz F, Streck M J. 2011. Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73: 285~314.
参考文献
Paris E, Giuli G, Carroll M R, Davoli I. 2001. The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy. Canadian Mineralogist, 39(2): 331~339.
参考文献
Peng Genyong, Luhr J F, Mcgee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82(11-12): 1210~1224.
参考文献
Piccoli P M, Candela P A. 1994. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the bishop tuff (long valley) and tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294: 92~135.
参考文献
Piccoli P M, Candela P A. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1): 255~292.
参考文献
Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimicaet Cosmochimica Acta, 70(17): 4513~4527.
参考文献
Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101: 841~858.
参考文献
Pyle J M, Spear F S, Wark D A. 2002. Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Reviews in Mineralogy and Geochemistry, 48: 337~362.
参考文献
Quintero R R, Kitajima K, Lackey J S, Kozdon R, Strickland A, Valley J W. 2021. Oxygen isotope ratios in zircon and garnet: a record of assimilation and fractional crystallization in the Dinkey Dome peraluminous granite, Sierra Nevada, California. American Mineralogist, 106(5): 715~729.
参考文献
Reubi O, Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461: 1269~1273.
参考文献
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu (Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.
参考文献
Richards J P. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27~45.
参考文献
Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271~305.
参考文献
Richards J P. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology and the Bulletin of the Society of Economic Geologists, 106: 1075~1081.
参考文献
Richards J P, Spell T, Rameh E, Razique A, Fletcher T. 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan. Economic Geology, 107(2): 295~332.
参考文献
Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.
参考文献
Ricketts J W, Kelley S A, Karlstrom K E, SchmandtB, Donahue M S, van Eijk J. 2016. Synchronous opening of the Rio Grande rift along its entire length at 25-10 Ma supported by apatite (U-Th)/He and fission-track thermochronology, and evaluation of possible driving mechanisms. Geological Society of America Bulletin, 128(3-4): 397~424.
参考文献
Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T. 2008. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1): 94~106.
参考文献
Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45~66.
参考文献
Robinson K L, Taylor G J. 2014. Heterogeneous distribution of water in the Moon. Nature Geoscience, 7(6): 401~408.
参考文献
Rochín-BañagaH, Davis D W, Schwennicke T. 2021. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry. Geology, 49(9): 1027~1031.
参考文献
RØnsbo J G. 1989. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74: 896~901.
参考文献
Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261~295.
参考文献
Rubatto D, Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241(1-2): 38~61.
参考文献
Rutherford M. 1988. The May 18, 1980, eruption of Mount St. Helens: 3. Stability and chemistry of amphibole in the magma chamber. Journal of Geophysical Research Solid Earth, 93(B10): 11949~11959.
参考文献
Rutherford M J, Hill P M. 1993. Magmas ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mt. St. Helens eruptions. Journal of Geophysical Research Solid Earth, 98(B11): 19667~19685.
参考文献
Sano Y, Terada K, Fukuoka T. 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chemical Geology, 184(3): 217~230.
参考文献
Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.
参考文献
Seedorff E, Dilles J H, Proffett Jr J M, Einaudi M T, Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 251~298.
参考文献
Selverstone J, Sharp Z D. 2015. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks. Earth and Planetary Science Letters, 417: 120~131.
参考文献
Sha Liankun, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861~3881.
参考文献
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.
参考文献
Sievwright R. 2017. Developing magnetite chemistry as an exploration tool for porphyry copper deposits. PhD thesis of Imperial College London.
参考文献
Sillitoe R H. 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3~41.
参考文献
Simon A C, Ripley E M. 2011. The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73: 513~578.
参考文献
Singer D A, Berger V I, Moring B C. 2008. Porphyry copper deposits of the world: Database and grade and tonnage models, 2008: U. S. Geological Survey, Open-File Report, 2008~1155.
参考文献
Smithies R H, Lu Yongjun, Kirkland C L, Johnson T E, Mole D R, Champion D C, Martin L, Jeon H, Wingate M T D, Johnson S P. 2021. Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature, 592: 70~75.
参考文献
Smythe D J, Brenan J M. 2015. Cerium oxidation state in silicate melts: Combined fo2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.
参考文献
Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.
参考文献
Speer J A. 1982. Zircon. In: Ribbe P H, ed. Orthosilicates. Rev Mineral, 5: 67~112.
参考文献
Stock M J, Humphreys M C S, Smith V C, Johnson R D, Pyle D M. 2015. New constraints on electron-beam induced halogen migration in apatite. American Mineralogist, 100: 281~293.
参考文献
Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59(12): 2463~2492.
参考文献
Stockli D F, Farley K A, Dumitru T A. 2000. Calibration of the (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology, 28: 983~986.
参考文献
Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.
参考文献
Stormer J C, Pierson M L, Tackler R C. 1993. Variation of F-X-Ray and Cl-X-Ray intensity due to anisotropic diffusion in apatite during electron-microprobe analysis. American Mineralogist, 78(5): 641~648.
参考文献
Sun Jinfeng, Yang Jinhui, Zhang Jiheng, Yang Yueheng, Zhu Yusheng. 2021. Apatite geochemical and Sr Nd isotopic insights into granitoid petrogenesis. Chemical Geology, 566: 120104.
参考文献
Sun Saijun, Yang Xiaoyon, Wang Guangjie, Sun Weidong, Zhang Hong, Li Congying, Ding Xing. 2019. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chemical Geology, 510: 200~214.
参考文献
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Li Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.
参考文献
Takahashi Y, Sakashima T, Shimizu H. 2003. Observation of tetravalent cerium in zircon and its reduction by radiation effect. Geophysical Research Letters, 30(3): 263~263.
参考文献
Tang Ming, Chu Xu, Hao Jihua, Shen Bing. 2021. Orogenic quiescence in Earth's middle age. Science, 371: 728~731.
参考文献
Tartèse R, Anand M, Barnes J J, Starkey N A, Franchi I A, Sano Y. 2013. The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica et Cosmochimica Acta, 122: 58~74.
参考文献
Taylor R J M, Harley S L, Hinton R W, Elphick S, Clark C, Kelly N M. 2015. Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33(3): 231~248.
参考文献
Thomas J B, Bodnar R J, Shimizu N, Sinha A K. 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimicaet Cosmochimica Acta, 66(16): 2887~2901.
参考文献
Trail D, Tailby N D, Lanzirotti A, Newville M, Thomas J B, Watson, E B. 2015. Redox evolution of silicic magmas: Insights from XANES measurements of Ce valence in Bishop Tuff zircons. Chemical. Geology, 402: 77~88.
参考文献
Tsuboi M. 2005. The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chemical Geology, 221(3): 157~169.
参考文献
Uribe-Mogollon C, Maher K. 2020. White mica geochemistry: discriminating between barren and mineralized porphyry systems. Economic Geology, 115(2): 325~354.
参考文献
Venezky D Y, Rutherford M J. 1997. Preeruption conditions and timing of dacite-andesite magma mixing in the 2. 2 ka eruption at Mount Rainier. Journal of Geophysical Research Solid Earth, 102(B9): 20068~20086.
参考文献
Wallis D, Carter A, Phillips R J, Parsons A, Searle M P. 2016. Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India. Tectonics, 35(3): 704~721.
参考文献
Wang Changming, Bagas L, Lu Yongjun, Santosh M, Du Bin, McCuaig T C. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39~65.
参考文献
Wang Lianxun, Ma Changqian, Zhang Chao, Zhu Yuxiang, Marks M A W. 2018. Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): Insights into the elevated fluorine in A-type granite. Chemical Geology, 478: 164~182.
参考文献
Wang Qing, Zhu Dicheng, Zhao Zhidan, Guan Qi, Zhang Xiaoqian, Sui Qinglin, Hu Zhaochu, Mo Xuanxue. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59~66.
参考文献
Wang Rui, Richards J P, Hou Zengqian, Yang Zhiming, DuFrane S A. 2014. Increased magmatic water content-the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109: 1315~1339.
参考文献
Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.
参考文献
Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.
参考文献
Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11(3): 177~182.
参考文献
Webster J D, Goldoff B A, Flesch R N, Nadeau P A, Silbert Z W. 2017. Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50-200 MPa and 700-1000℃. American Mineralogist, 102(1): 61~74.
参考文献
Wilkinson J J, Chang Zhaoshan, Cooke D R, Baker M J, Wilkinson C C, Inhlis S, Chen Huayong, Gemmell J B. 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10~26.
参考文献
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).
参考文献
Xiao Rong, Li Xiaofeng, Wang Cuiyu, Wei Xinglin, Bai Yanping. 2016. Diagenetic and metallogenic geochronological characteristics of Zhushahong porphyry copper deposit in Dexing area of Jiangxi and its implications. Journal of Earth Sciences and Environment, 38(1): 55~65 (in Chinese with English abstract).
参考文献
Xie Fuwei, Tang Juxing, Lang Xinghai, Ma Di. 2018. The different source and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite. Lithos, 314-315: 447~62.
参考文献
Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing'an Range, NE China. American Mineralogist, 105: 382~396.
参考文献
Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on theformation of the Giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62(4): egab018.
参考文献
Xu Bo, Griffin W L, Hou Zengqian, Lu Yongjun, Belousova E A, Xu Jifeng, O'Reilly S Y. 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106: 656~661.
参考文献
Xu Cheng, Kynicky J, Chakhmouradian A R, Li Xianhua, Song Wenlei. 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos, 227: 107~121.
参考文献
Xu Leiluo, Bi Xianwu, Hu Ruizhong, Tang Yongyong, Wang Xinsong, Xu Yue. 2015. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China. Mineralogy and Petrology, 109(2): 181~200.
参考文献
Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.
参考文献
Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43(2): 186~200.
参考文献
Yang Wei, Lin Yangting, Hao Jialong, Zhang Jianchao, Hu Sen, Ni Huaiwei. 2016. Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contributions to Mineralogy and Petrology, 171(3): 28.
参考文献
Yao Chunliang, Lu Jianjun, Guo Weimin. 2007. Compositional difference between three generations of apatite from Tongchang porphyry copper deposit, Jiangxi Province, southeast China. Acta Mineralogica Sinica, 27(1): 31~40 (in Chinese with English abstract).
参考文献
Zeng Liping, Zhao Xinfu, Li Xiaochun, Hu Hao, McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468~2483.
参考文献
Zhai Yusheng, Deng Jun, Peng Runmin. 2020. Research contents and methods for post-ore changes modifications and preservation. Earth Science, 25(4): 340~345 (in Chinese with English abstract).
参考文献
Zhang Bidong, Lin Yangting, Moser D E Hao Jialong, Liu Yu, Zhang Jianchao, Barker I R, Li Qiuli, Shieh S R, Bouvier A. 2021. Radiogenic Pb mobilization induced by shock metamorphism of zircons in the Apollo 72255 Civet Cat norite clast. Geochimicaet Cosmochimica Acta, 302: 175~192.
参考文献
Zhang Daohan, Audétat A. 2017a. Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA. Journal of Petrology, 58(2): 277~296.
参考文献
Zhang Daohan, Audétat A. 2017b. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Economic Geology, 112: 221~244.
参考文献
Zhang Daohan, Audétat A. 2018. Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: A melt and fluid inclusion study. Economic Geology, 113: 803~24.
参考文献
Zhang Peipei. 2015. Hydrogen diffusion in NAMs: Andradite garnet and zircon. Doctoral Dissertation of University of Science and Technology of China.
参考文献
Zhao Xinfu, Zhou Meifu, Gao Jianfeng, Li Xiaochun, Li Jianwei. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871~884.
参考文献
Zhong Shihua, Seltmann R, Qu Hongying, Song Yingxin. 2019. Characterization of the zircon Ce anomaly forestimation of oxidation state of magmas: A revised Ce/Ce* method. Mineralogy and Petrology, 113: 755~763.
参考文献
Zhong Shihua, Li Sanzhong, Seltmann R, Lai Zhiqing, Zhou Jie. 2021. The influence of fractionation of REE-enriched minerals on the zircon partition coefficients. Geoscience Frontiers, 12(3): 101094.
参考文献
Zhu Ziyi, Campbell I H, Allen C M, Burnham A D. 2020. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 536: 116140.
参考文献
Zou Xinyu, Jiang Jiliang, Qin Kezhang, Han Xinlei, Li Guangming, Evans N J, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.
参考文献
Zou Xinyu, Jiang Jiliang, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 982~999 (in Chinese with English abstract).
参考文献
李秋立. 2016. 离子探针U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.
参考文献
李秋耘, 杨志明, 王瑞, 孙茂妤, 曲焕春. 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023~1048.
参考文献
李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.
参考文献
刘学龙, 杨志明, 卢映祥, 梅社华, 张娜, 朱俊, 陈建航, 刘思晗, 李振焕. 2021. 云南中甸地区晚白垩世斑岩型Mo-Cu矿床磷灰石, 锆石裂变径迹年代学研究. 地质学报, 95(11): 3366~3379.
参考文献
蒙均桐, 夏小平, 马林, 姜子琦, 徐健, 崔泽贤, 杨晴, 张万峰, 张乐. 2021. 拉萨地块南缘壳源岩浆水含量差异: 来自锆石水含量的启示. 中国科学: 地球科学, 51(8): 1389~1400.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
肖荣, 李晓峰, 王翠云, 韦星林, 白艳萍. 2016. 江西德兴地区朱砂红斑岩铜矿成岩成矿年代学特征及其地质意义. 地球科学与环境学报, 38(1): 55~65.
参考文献
姚春亮, 陆建军, 郭维民. 2007. 江西省铜厂斑岩铜矿磷灰石世代和成分特征研究. 矿物学报, 27(1): 31~40.
参考文献
翟裕生, 邓军, 彭润民. 2000. 矿床变化与保存的研究内容和研究方法. 地球科学, 25(4): 340~345.
参考文献
张培培. 2015. 钙铁榴石和锆石中氢的扩散. 中国科学技术大学博士论文.
参考文献
邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 982~999.
目录contents

    摘要

    斑岩矿床是全球铜钼的主要来源,其形成与中酸性岩体的浅成侵位有关。斑岩矿床形成的精细过程与斑岩体成矿潜力判别,一直是新世纪以来矿床学研究的重要前沿。作为中酸性岩体中最常见且化学性质较为稳定的副矿物,锆石和磷灰石矿物化学近年来在岩浆作用与斑岩成矿作用研究中得到广泛应用。一方面,这是得益于近年来以LA-ICP-MS为代表的原位分析技术的快速进步及普及,使得精确获取矿物组分信息、特别是微量组分信息成为可能;另一方面,锆石和磷灰石的化学成分中蕴含丰富的成岩成矿信息,包括年龄、温度、氧逸度、含水量、S和Cl含量等,综合这些指标可以揭示岩浆-成矿演化规律及精细过程。为此,本文详细综述了近年来利用锆石和磷灰石约束斑岩矿床形成过程及成矿潜力评价等方面的主要进展,特别是在判断岩石类型、岩石成因、岩浆源区、反演母岩浆成分、区分矿床类型、示踪成矿流体来源、揭示流体交代作用与斑岩矿床蚀变分带、评价矿床剥蚀与保存情况等方面的进展;同时也梳理了研究中存在的主要问题与挑战,在此基础上,对未来锆石和磷灰石在斑岩矿床领域的应用研究提出一些建议。

    Abstract

    Porphyry deposits are globally the main source of copper and molybdenum, and their formation is related to the epigenetic emplacement of intermediate to felsic porphyry intrusions. The fine ore-forming processes and fertility assessments of porphyry deposits have been an important frontier since the beginning of this century. As the most common and chemically stable accessory minerals in intermediate to felsic rocks, zircon and apatite have been widely used in the study of magmatism and mineralization in recent years. On the one hand, this is due to the rapid progress and popularization of in-situ analysis technology represented by LA-ICP-MS in recent years, which makes it possible to accurately obtain information of mineral trace elements; on the other hand, the chemical composition of zircon and apatite contains rich diagenesis and mineralization information, including age, temperature, oxygen fugacity, water content, S and Cl content, etc. Combining these indicators can reveal the evolution and fine processes of magma-mineralization. This paper reviewed the main progress in the ore-forming processes and fertility assessments of porphyry deposits by zircon and apatite, especially in discriminating rock types, petrogenesis, magma sources, estimating parent magma composition, discriminating ore deposit types, tracing sources of ore-forming fluids, revealing fluid metasomatism and alteration zoning of porphyry deposits, quantifying post-mineralization exhumation and preservation. Furthermore, a summary of problems and challenges in the study is presented. Finally, some suggestions are proposed for the application of zircon and apatite in study of porphyry deposits in the future.

    关键词

    锆石磷灰石微量元素斑岩矿床氧逸度

  • 斑岩矿床当前提供了全球约75%的铜、50%的钼和20%的金(Sillitoe,2010),是矿床学研究及工业界关注的热点。斑岩矿床与中酸性浅成侵入体(常为斑岩体)常具有明显的时空及成因关联,因此,浅成侵入体的地球化学特征常能提供成矿或示矿的重要信息。然而,全岩地球化学组成常受风化作用和热液蚀变改造,应用存在较多局限性。近年来,国内外学者基于斑岩中的矿物化学总结出系列找矿示矿指标,并在指示岩浆系统的成矿潜力及确定矿化中心方面显示较好效果,正逐渐发展为“矿物地球化学勘探”这一新兴研究方向。这些工作大致可分为两大类:① 通过斑岩中锆石、磷灰石、榍石等副矿物的主微量及稀土元素研究,区分成矿岩体和非成矿岩体,评价岩体的成矿潜力(如Xu Leiluo et al.,2015; Lu Yongjun et al.,2016; Mao Mao et al.,2016; Xie Fuwei et al.,2018; Xing Kai et al.,2021); ② 通过斑岩成矿系统中蚀变矿物(如绿帘石、绿泥石、电气石、磁铁矿、明矾石、白云母、黑云母等)的化学成分研究,确定斑岩成矿系统矿化中心位置(如Baksheev et al.,2012; Cooke et al.,20142020; Wilkinson et al.,2015; Sievwright,2017; Hedenquist et al.,2020; Uribe-Mogollon et al.,2020; Mohammadi et al.,2021)。

  • 锆石和磷灰石作为斑岩矿床中常见的副矿物(Ballard et al.,2002; Piccoli et al.,2002; Hughes et al.,2015a),可容纳多种微量元素,且物理化学性质稳定,能记录岩浆的年龄、温度、氧逸度、含水量、挥发分、Hf-O-Sr-Nd-Cl同位素等信息,是岩浆作用与成矿作用良好的记录者。特别是近年来随着原位分析技术的发展,利用这两种矿物化学特征约束斑岩矿床形成的精细过程与成矿潜力评价开展了大量研究(如Ballard et al.,2002; Bouzari et al.,2016; Lu Yongjun et al.,2016; Mao Mao et al.,2016; Loucks et al.,2020)。然而,研究中也面临诸多问题与挑战,比如锆石微量元素组成的影响因素、锆石温度计与氧逸度计的可靠性、磷灰石成分反演母岩浆成分的可行性(包括分配系数的确定及挥发分饱和的判别)、磷灰石卤素分析的逃逸现象、各类判别图解的重叠问题等。为全面梳理锆石和磷灰石在斑岩矿床领域的应用情况,本文以这两种矿物为例,详细总结了它们在斑岩矿床成岩与成矿中的指示作用,系统梳理了存在的主要问题与挑战,并对未来研究进行了展望。

  • 1 锆石

  • 锆石普遍存在于各类岩石中(Belousova et al.,2002a; Andersen,2005; Rubatto,2017),且物理化学性质稳定,能记录结晶年龄、温度、氧逸度、变质作用、成矿作用等(Ballard et al.,2002; Watson et al.,2005; Ferry et al.,2007; Lu Yongjun et al.,2016; Duan Zhanzhan et al.,2017; Loucks et al.,2020)。

  • 1.1 锆石晶体特征

  • 锆石属于四方晶系,晶形通常是棱柱形和金字塔形的聚形,长宽比值通常为1~5,该比值越大反映结晶速率越快(Corfu et al.,2003)。岩浆锆石的典型特征之一是发育良好的振荡环带,是Hf、P、Y、REE、Th、U等元素振荡分布的结果(Hoskin,2000; Corfu et al.,2003)。

  • 锆石化学式为ZrSiO4,结构中包含两个阳离子位:四配位的Si和八配位的Zr,分别位于Si-O四面体中和Zr-O十二面体中(图1),Zr和Si均为四价,它们的离子半径分别为0.084 nm和0.026 nm(Finch et al.,2003)。

  • 1.2 锆石微量元素组成及其影响因素

  • 大约有20~25种微量元素可以通过置换进入到锆石的结构中替代Zr4+或Si4+,此过程需要满足电荷守恒,常见的简单替代或成对替代反应如下:(Hf4+,U4+,Th4+,Ti4+,Sn4+)=Zr4+Frondel,1953); Ti4+=Si4+Watson et al.,2005);(OH)4=SiO4Frondel,1953);(Y,REE)3++(Nb,Ta)5+=2Zr4+Es'kova,1959);(Y,REE)3++P5+=Zr4++Si4+Speer,1982); Sc3++P5+=Zr4++Si4+Halden et al.,1993)。

  • HREE的离子半径较小(例如Lu3+,0.0977 nm),而LREE的离子半径较大(例如La3+,0.1160 nm)(Shannon,1976),因此HREE比LREE更容易进入锆石结构中,在稀土配分图中表现为从La到Lu急剧上升且伴随正Ce异常和负Eu异常(Sano et al.,2002)。

  • 图1 锆石的晶体结构(据邹心宇等,2021

  • Fig.1 The crystal structure of zircon (after Zou Xinyu et al., 2021)

  • 目前主要通过LA-ICP-MS(激光剥蚀-电感耦合等离子质谱)和SIMS(二次离子质谱)获取锆石的微量元素和同位素年龄(Liu Yongsheng et al.,2010; Liu Yu et al.,2020a)。锆石微量元素组成受到锆石晶格、熔体成分、其他矿物结晶、包裹体、振荡环带、热点和蜕晶化作用的影响。

  • 锆石晶格对微量元素具有一级控制作用。锆石微量元素在锆石与熔体之间的分配系数D可以用晶格应变模型来描述(Brice,1975; Blundy et al.,1994):

  • D=D0exp-4πENARTr02r0-ri2-13r0-ri3
    (1)
  • 式中D0为元素在无应变条件下的分配系数,r0ri分别是锆石晶格中Zr4+和类质同象进入锆石晶格中元素的离子半径,E为杨氏模量,NA是阿伏伽德罗常数,R是理想气体常数,T为温度。该公式表明在给定的温度、压力和化学组成的熔体中,微量元素在锆石和熔体间的分配系数只与锆石晶格配位及替代微量元素的离子半径有关。

  • 熔体的物理条件如温度、氧逸度的变化影响元素在锆石-熔体间的分配系数从而间接影响锆石的微量元素组成; 熔体的组分可以直接影响锆石的微量元素组成(Zou Xinyu et al.,2019; Burnham,2020)。熔体中斜长石、榍石、角闪石、石榴子石、独居石等矿物早期分离结晶也会影响熔体成分进而影响锆石的微量元素组成(Smythe et al.,2015; Long Yijie et al.,2019; Zou Xinyu et al.,2019; Yan Lili et al.,2020; Lee et al.,2021)。

  • 锆石中包裹体、振荡环带、热点、蜕晶化作用都能导致锆石在微米—亚微米尺度上成分不均一(李秋立,2016; Yang Wei et al.,2016; Long Yijie et al.,2019)。通过高空间分辨率的SIMS测试发现锆石中暗色环带与亮色环带具有不同的微量元素组成,而大多数研究通过LA-ICP-MS得到锆石微量数据,代表的是分析束斑范围内(通常24~50 μm)不同显微结构单元的混合微量元素组成(邹心宇等,2021)。锆石在二次离子探针图像上出现高U高Y的热点,可能与熔体成分或蜕晶化作用有关,蜕晶化作用导致锆石晶格变大,使Th和U更容易进入锆石晶格中形成高异常值区域(李秋立,2016; Long Yijie et al.,2019)。此外,锆石中的包裹体对锆石微量元素也可能产生较大的影响,这些包裹体包括磷灰石、榍石、独居石、磷钇矿、硬石膏、云母、金红石等(Franz et al.,2015; Bell et al.,20152018; Aleinikoff et al.,2016; Loader et al.,2017; Li Jinxiang et al.,2021)。近年来,一些学者提出一些判别“干净锆石”的指标,如用La≤0.1×10-6排除REE载体矿物包裹体的污染(Zou Xinyu et al.,2019),用Ti<50×10-6排除钛氧化物的污染,用Fe<5000×10-6来排除铁氧化物的污染(Lu Yongjun et al.,2016),用Al、P、Li、Mg、K、Ca等元素的峰与锆石微量的分布规律对比来排除非REE载体矿物包裹体的污染(Kirkland et al.,2015)。总之,在进行锆石微量元素分析之前必须结合详细的显微结构观察,才有机会获得可靠的锆石微量数据(吴元保等,2004)。

  • 1.3 锆石Ti温度计

  • 基于锆石的温度计在岩浆岩、变质岩和矿床中都有广泛的应用。Ti4+可以和锆石结构中的Si4+进行等价替代:Ti4+=Si4+Watson et al.,2005)。Watson et al.(2006)通过实验和天然锆石研究发现,锆石中的Ti含量与温度具有强烈的相关性,相对不受压力影响,提出锆石Ti温度计:

  • T锆石 =5080±30(6.01±0.03)-lgTi-273
    (2)
  • 式中T为锆石的结晶温度(单位:℃)。然而,Ferry et al.(2007)发现Ti在锆石中的溶解度不仅取决于温度,还与SiO2和TiO2的活度(aSiO2aTiO2)有关,因此将Watson et al.(2006)的锆石Ti温度计修订为:

  • T锆石 =4800±865.711±0.072-lg(Ti)-lgaSiO2+lgaTiO2-273
    (3)
  • 该公式的校准在1 GPa的压力下进行的,如果应用于压力高于或低于1 GPa的天然样品时,需要进行压力校正,比如斑岩矿床中的岩浆通常在1~5 km的深度固结(Richards,2003; Sillitoe,2010),锆石在有限的压力范围内结晶(0.1~0.3 GPa,Seedorff et al.,2005)。形成压力小于1 GPa时,则所计算的温度会比实际偏高(Ferry et al.,2007)。对此,Loucks et al.(2020)考虑了压力的影响,在式(3)的基础上进行压力校正:

  • T锆石 =4800-0.4748(P-1000)5.711-lg(Ti)-lgaSiO2+lgaTiO2-273
    (4)
  • 式中,压力值P(单位:MPa)可以通过角闪石Al压力计(Mutch et al.,2016; Putirka,2016)估算。不同的环境中aSiO2aTiO2是不同的,在硅饱和的中酸性岩中锆石一般都与石英共存,因此aSiO2=1,aTiO2则可以通过Hayden et al.(2007)实验标定的热力学模型估算或者通过共生的Fe-Ti氧化物估算(Ghiorso et al.,2013)。如果无法获取压力值,则采用式(3),aSiO2aTiO2可以根据矿物共生组合设定(一般0.5~1),误差在70℃以内(Ferry et al.,2007)。

  • 1.4 构造背景与源岩类型判别

  • 不同构造背景、不同源岩类型中的锆石具有不同的微量元素组成,因此可以通过锆石的微量元素判别源岩类型及构造环境。

  • Heaman et al.(1990)首次通过对17个不同来源的锆石进行分析,发现锆石的Hf含量可以对来源进行一定程度的区分。Grimes et al.(2007,2015)发现大陆锆石和洋壳锆石的U、Yb、Y元素组成有明显差异,大陆弧背景、洋中脊背景和洋岛背景的锆石U、Nb、Sc、Yb元素组成显著不同(图2a~d),因此,可以利用这些指标的差异判别不同的构造环境。Belousova et al.(2002a)测量了各种岩石类型(金伯利岩、煌斑岩、碳酸岩、镁铁质岩石、花岗岩类、正长岩、伟晶岩)的锆石微量元素,揭示了特定岩石类型具有独特的Lu、Hf、U、Yb元素丰度(图2e)。近年来,锆石Th-Pb图解(图2f; Wang Qing et al.,2012)、(REE+Y)-P图解(图2g; Zhu Ziyi et al.,2020)等被提出来区分I型、S型和A型花岗岩。

  • 这类判别图解,对于识别锆石的源岩与构造环境具有重要意义,也成为碎屑锆石寻根溯源、重建古地理的新手段。但需要注意的是,这类图解一般都只考虑2~4个元素/元素比值,存在较多重叠区域的问题,使用时尽可能结合更多其他信息做判断。

  • 图2 不同构造背景锆石lg(U/Yb)-lg(Nb/Yb)(a)、lg(Sc/Yb)-lg(Nb/Yb)(b)、lg(U/Yb)-lg(Sc/Yb)(c)判别图(据Grimes et al.,2015); 大陆锆石与洋壳锆石U/Yb-Y判别图(d)(据Grimes et al.,2007); 不同岩石类型锆石 Y-U判别图(e)(据Belousova et al.,2002a); I-S-A型花岗岩锆石Th-Pb判别图(f)(据Wang Qing et al.,2012); S型花岗岩锆石(REE+Y)-P判别图(g)(据Zhu Ziyi et al.,2020

  • Fig.2 Discrimination diagrams for different tectonic settings of lg (U/Yb) -lg (Nb/Yb) (a) , lg (Sc/Yb) -lg (Nb/Yb) (b) and lg (U/Yb) -lg (Sc/Yb) (c) of zircons (after Grimes et al., 2015) ; U/Yb-Y discrimination diagram for zircon from the continental and oceanic crust (d) (after Grimes et al., 2007) ; Y-U discrimination diagram for zircon from different types of rock (e) (after Belousova et al., 2002a) ; Th-Pb discrimination diagram for zircon from I-, S-, and A-type granites (f) (after Wang Qing et al., 2012) ; (REE+Y) -P discrimination diagram for zircon from S-type granites (g) (after Zhu Ziyi et al., 2020)

  • 1.5 计算熔体成分

  • 前人已经通过大量实验试图确定微量元素在锆石与熔体之间的分配系数,并以此来反演锆石结晶时熔体的成分(Nagasawa,1970; Mahood et al.,1983; Murali et al.,1983; Fujimaki,1986; Sano et al.,2002; Thomas et al.,2002; Rubatto et al.,2007; Marshall et al.,2009; Burnham et al.,20122017; Nardi et al.,2013; Taylor et al.,2015; Chapman et al.,2016; Ayers et al.,2018)。由于测定的方法不同,所得到的分配系数也相差甚远,甚至可以相差2个数量级(图3)。应用分配系数对熔体成分进行反演的关键在于锆石的微量元素成分、各元素的分配系数以及锆石是从熔体中早期结晶的假设,如果分配系数不确定,那么根据它反演出来的熔体成分可靠性也存在巨大争议,所以急需一种可靠的评价和选择机制对分配系数进行评估,未来可以尝试利用晶格应变模型偏离系数“δK”去衡量分配系数是否显著偏离晶格应变模型(邹心宇等,2021)。

  • 1.6 锆石U-Pb、Lu-Hf、O同位素体系

  • U-Pb技术是基于235U和238U分别向207Pb和206Pb的放射性衰变,由于锆石分布广泛、物理化学性质稳定、U含量适中、初始Pb低、封闭温度高,使锆石U-Pb定年成为最常用的定年方法(李献华等,2022)。目前锆石U-Pb定年主要手段有CA-ID-TIMS(化学磨蚀-同位素稀释-热电离质谱)、SIMS和LA-ICP-MS。其中CA-ID-TIMS的精度最高,单次分析精度可优于0.1%(Schaltegger et al.,2021),使得刻画地质事件的精确时间与精细过程成为可能。SIMS具有高空间分辨率(2~3 μm; Liu Yu et al.,2020b),纳米离子探针(NanoSIMS)甚至可以在小于1 μm束斑下进行U-Pb定年(Zhang Bidong et al.,2021),适合月岩等小颗粒样品的研究。LA-ICP-MS具有高效率的特点,单次测量时间通常小于2 min,利用多接收或高分辨率扇形磁场电感耦合等离子体与激光联用(LA-MC-ICP-MS、LA-HR-SF-ICP-MS)甚至可将单次测量时间缩短到20 s以内(Chew et al.,2019; Feng Yantong et al.,2022)。随着测试手段的进步和效率的提高,全球已经积累了海量的锆石U-Pb年龄数据,通过大数据分析可以从单个成岩年龄的研究扩展到示踪更大时间尺度的演化,如Tang Ming et al.(2021)统计了全球~1.4万颗锆石年龄和Eu异常数据,重建了4.5 Ga以来大陆地壳厚度的变化。锆石通常具有高Hf低Lu,由176Lu衰变产生的176Hf极少,是进行Hf同位素测定的理想矿物(吴福元等,2007),LA-MC-ICP-MS的出现也极大带动了锆石微区原位Hf同位素测定的发展,广泛应用于岩石学、矿床学、地球动力学等领域。如Hou Zengqian et al.(2015)Wang Changming et al.(2016) 通过对西藏和三江地区进行锆石Hf同位素填图,发现Hf同位素所反映的岩石圈结构与成矿具有对应关系,可为区域成矿潜力评价提供依据。

  • 图3 天然样品和实验研究中锆石-熔体分配系数图(据Zhong Shihua et al.,2021

  • Fig.3 The plots of reported zircon DREE from natural samples and experimental studies (after Zhong Shihua et al., 2021)

  • 天然样品数据来自:a—Thomas et al.,2002; b—Colombini et al.,2011; c—Marshall et al.,2009; d—Sano et al.,2002; 实验研究(安山岩、流纹岩、花岗岩)数据来自:e—Burnham et al.,2012; f—Luo Yan et al.,2009; g—Rubatto et al.,2007; FMQ—铁橄榄石-磁铁矿-石英缓冲剂的氧逸度; HM—赤铁矿-磁铁矿缓冲剂的氧逸度; NNO—自然镍-绿镍矿缓冲剂的氧逸度

  • Data of natural samples are from: a—Thomas et al., 2002; b—Colombini et al., 2011; c—Marshall et al., 2009; d—Sano et al., 2002; data of experimental studies (andesitic, rhyolite, granitic) is from: e—Burnham et al., 2012; f—Luo Yan et al., 2009; g—Rubatto et al., 2007; FMQ—oxygen fugacity for fayalite-magnetite-quartz buffer; HM—oxygen fugacity for hematite-magnetite buffer; NNO—oxygen fugacity for Ni-NiO buffer

  • 锆石中的O交换速率非常缓慢,其δ18O不易受到后期变质作用或热液蚀变的影响,锆石O同位素已广泛应用于示踪地球早期大陆地壳成因(Smithies et al.,2021),岩浆起源与演化(Quintero et al.,2021),矿床中的岩浆-热液演化过程等(Li Yang et al.,2018)。如最近李秋耘等(2021)对西藏驱龙斑岩矿床的成矿前、成矿期及成矿后岩体锆石Hf-O同位素进行研究,探讨了幔源岩浆对斑岩成矿的贡献。

  • 2 磷灰石

  • 磷灰石可以赋存在岩浆岩、沉积岩、变质岩以及热液矿床中(Piccoli et al.,2002; Hughes et al.,2015a),其结构、成分和同位素蕴含丰富的成岩成矿信息,已被应用于估算岩浆氧逸度和挥发分、区分岩石和矿床类型、判断岩浆成因、指导找矿勘查等(如Belousova et al.,2002b; Chu Meifei et al.,2009; Cao Mingjian et al.,2012; Miles et al.,2014; Chen Weiterry et al.,2015; Bruand et al.,2016; Pan Lichuan et al.,2016; Mao Mao et al.,2016; Zeng Lipeng et al.,2016; Jiang Xiaoyan et al.,2018)。

  • 2.1 磷灰石晶体特征

  • 磷灰石属于六方晶系,常呈六方柱状或板状。磷灰石结构由三种多面体组成(图4):其中T位置为PO4四面体; 配位数为9的M1(Ca1)位置为CaO9多面体; 配位数为7的M2(Ca2)位置为CaO6X1多面体(X=F,Cl,OH),3个Ca2形成一个垂直于c轴的等边三角形,X离子(也叫通道离子)分布在等边三角形构成的平行于c轴的结构通道中(Hughes et al.,2015b)。

  • 由于磷灰石结构中阳离子位的多样性,使得元素周期表中超过一半的元素都可以通过替换进入磷灰石结构中(Hughes et al.,2015b)。磷灰石分子通式可以表达为:M10(TO46Z2,M位置为Ca,通常被Sr、Ba、Pb、Cd、Mg、Fe、Mn、Co、Ni、Cu、Zn、Sn、REE、Na 替代,T位置为P,通常被As、V、S、Si、B、C替代等。Z位置被F-、Cl-或OH-占据,根据Z位置的阴离子种类,磷灰石又可进一步细分为氟磷灰石、氯磷灰石和羟基磷灰石。磷灰石中常见的替代反应有 :2Na+=Ca2+; Ga2+=Ca2+; Sr2+=Ca2+; Th4+=2Ca2+; 2REE3+=Ca2++Th4+; REE3++Na+=2Ca2+; S6++Si4+=2P5+; Na++S6+=Ca2++P5+; REE3++Si4+=Ca2++P5+; Th4++Si4+=REE3++P5+RØnsbo,1989; Sha Liankun et al.,1999; Pan Yuanming et al.,2002)。

  • 2.2 磷灰石卤素含量测试

  • 电子探针(EPMA)是磷灰石主量分析中最常用的手段(Pyle et al.,2002; Stock et al.,2015),具有很高的空间分辨率,允许在微米尺度上进行定量分析。然而,利用电子探针分析磷灰石卤素元素时可能存在问题(Pyle et al.,2002),在电子束的照射下,F和Cl的X射线计数率会发生变化,当入射电子束方向平行于磷灰石晶体c轴时,这种效应最显著(Stormer et al.,1993),如果测试结果中F含量超过3.76%时意味着测试可能存在问题(Pyle et al.,2002; Yang Shuiyuan et al.,2022)。

  • 图4 沿c轴投影的磷灰石原子排列示意图(a)、Ca1(M1)多面体(b)及Ca2(M2)多面体(c)(据Hughes et al.,2015b

  • Fig.4 Apatite atomic arrangement projected down the c axis (a) , Ca1 (M1) polyhedral (b) , and Ca2 (M2) polyhedral (c) (after Hughes et al., 2015b)

  • 为了减小卤素分析误差,分析时需要注意以下几点:① 在分析之前尽量不要将磷灰石暴露在电子束中,如果必须使用背散射成像识别和定位磷灰石,需使用小电流观察,尽量缩短观察时间(Goldoff et al.,2012; Yang Shuiyuan et al.,2022),并在进行电子探针分析之前重新抛光,去除先前电子束照射的影响(Stock et al.,2018); ② 先分析磷灰石中的F、Cl,使用小电流大束斑和相对较短的分析时间(Pyle et al.,2002; Goldoff et al.,2012; Yang Shuiyuan et al.,2022); ③ 选择平行于c轴的晶面测试(Goldoff et al.,2012; Yang Shuiyuan et al.,2022); ④ 选择黄玉、MgF2、BaF2等材料作为标样(Yang Shuiyuan et al.,2022); ⑤ 如果实验室条件允许,使用液氮冷却样品或使用基于X射线强度与时间的数学模型校正F含量(Yang Shuiyuan et al.,2022)。

  • 2.3 磷灰石饱和温度

  • 硅酸盐熔体饱和并结晶出磷灰石的温度称为磷灰石饱和温度(Apatite saturation temperature: AST),由于挥发分和REE等元素分配行为受到温度控制,通过磷灰石限定岩浆成分时往往需要准确的温度(Webster et al.,2015)。对于偏铝质和微过铝质岩石,用于计算磷灰石饱和温度的经验公式(Piccoli et al.,19942002)可以表示为:

  • T=26400×CSiO21-480012.4×CSiO21-lnCP2O51-3.97
    (5)
  • 式中T为磷灰石饱和温度(单位:K),CSiO21CP2O51为磷灰石开始结晶时熔体SiO2和P2O5的浓度(%)。尽管计算时常用全岩SiO2和P2O5含量代替磷灰石开始结晶时熔体SiO2和P2O5的浓度(%),不过,一般来说除了磷灰石为液相态或近液相态的情况外,全岩成分不会与磷灰石结晶时的熔体成分相同; 另外,长石可以结合高浓度的P,如果长石在磷灰石饱和之前发生结晶分异,则通过全岩组分计算的AST将偏高(Piccoli et al.,19942002)。

  • 2.4 岩石类型与成因判别

  • 磷灰石一般在岩浆结晶早阶段形成,其饱和温度较高,可以记录和保存结晶时岩浆的信息,在反映岩浆类型、成因等方面效果良好(Bruand et al.,2020)。

  • 2.4.1 岩石类型

  • 从不同岩浆类型中结晶出来的磷灰石在一些主微量元素上表现出显著的差异(Chu Meifei et al.,2009),因此磷灰石成分有助于判断源岩类型。

  • Fleischer et al.(1986)开创性地使用磷灰石La/Nd-(La+Ce)/REE图解区分出酸性、中性和碱性岩浆岩; Dill(1994)第一次使用磷灰石Th-U判别图解区分出花岗岩、英安岩等; Belousova et al.(2002b)提出Sr-Y、Sr-Mn、Y-Eu/Eu*、Ce/Yb-ΣREE判别图解,区分出花岗岩、花岗伟晶岩、正长岩、碳酸岩、二辉橄榄岩、辉绿岩以及铁矿石中的磷灰石(如图5a 磷灰石Sr-Y判别图解),并引入机器学习方法,使用CART(Correlation And Regression Trees)软件进行多元统计分析,识别未知样品的源岩类型。 O'Sullivan et al.(2020)使用一种基于机器学习的统计学方法(Support vector machine,SVM),提出Sr/Y-∑LREE(La、Ce、Pr、Nd)双元图解,区分六大类岩石:中低级变质岩、高级变质岩、S型花岗岩和长英质I型花岗岩、超镁铁质火成岩、镁铁质I型花岗岩和镁铁质火成岩、富碱火成岩(图5b),这种分类方法的平均成功率为85%; Ansberque et al.(2019)利用卤素(F、Cl)含量区分出S-I-A型花岗岩(图5c)。岩石遭受风化蚀变后Sr难以保存初始值,影响埃达克岩的判别,而磷灰石抗风化蚀变能力强,其δEu-Sr/Y判别图解(图5d)可用于区分埃达克质岩石,从埃达克质岩石中结晶的磷灰石具有更高的Sr/Y和δEu,该图解对判断斑岩矿床成矿岩体也有一定的指示意义(Pan Lichuan et al.,2016; Chen Lei et al.,2018; Sun Saijun et al.,2019; Gao Xue et al.,2020)。

  • 2.4.2 岩浆成因

  • 岩浆是多阶段的产物,从深部地壳到浅部地壳过程中会经历分异和混合,导致早期深部岩浆历史可能被掩盖(Reubi et al.,2009),因此,仅仅利用全岩地球化学来揭示完整的岩浆演化历史具有较大挑战性。磷灰石可以记录岩浆分异过程熔体演化的信息,是研究岩浆成因和演化历史重要的工具。Nathwani et al.(2020)针对智利中部弧火山岩,使用磷灰石的Sr/Y、Eu/Eu*和Mg含量来示踪岩浆演化历史,应用分离结晶模型来揭示早期结晶的磷灰石(高Mg)可以继承高Sr/Y和高Eu/Eu*熔体化学特征,这是由深部下地壳以角闪石为主的分离结晶所决定的; 晚期在浅层地壳中结晶的磷灰石(低Mg)是由于斜长石等矿物结晶对熔体中微量元素的竞争导致磷灰石成分与岩浆成分解耦。实验工作表明,磷灰石中的Mg含量与熔体中的Mg含量成正比(Prowatke et al.,2006),因此磷灰石中的Mg含量可以作为磷灰石结晶过程中岩浆分异的示踪剂,岩浆越演化,磷灰石的Mg含量越低。

  • 图5 不同岩石类型的磷灰石Sr-Y判别图解(a)(据Belousova et al.,2002b); 不同岩石类型的磷灰石Sr/Y-LREE判别图解(b)(据O'Sullivan et al.,2020); I-S-A型花岗岩磷灰石F-Cl判别图解(c)(据Ansberque et al.,2019),每个圆点代表一个样品,每种颜色代表一个侵入体,S型花岗岩来自拉克兰褶皱带,I型花岗岩分别来自福州-漳州杂岩体、休瓦促岩体、拉克兰褶皱带、苏格兰加里东造山带、威廉姆斯岩基、罗弗敦群岛,A型花岗岩来自长江下游带,数据来自Ansberque et al.(2019) 及其中文献; 埃达克质与非埃达克质岩石磷灰石δEu-Sr/Y判别图解(d)(据Pan Lichuan et al.,2016

  • Fig.5 Sr-Y discrimination diagram for apatites from different types of rock (a) (after Belousova et al., 2002b) ; Sr/Y-LREE discrimination diagram for apatites from different types of rock (b) (after O'Sullivan et al., 2020) , F-Cl discrimination diagram for apatites from I-, S-, and A-type granites (c) (after Ansberque et al., 2019) , each data point represents a sample, while each color refers to an intrusive suite; S-type granitoids are from Lachlan fold belt, I-type granitoids are from Fuzhou-Zhangzhou complex suite, Xiuwacu suite, Lachlan fold belt, Scottish Caledonides, Williams batholith, Lofoten island, respectively; A-type granitoids are from Lower Yangtze River belt, all data is from Ansberque et al. (2019) and references therein; δEu-Sr/Y discrimination diagram for apatite from adakite-like and non-adakite-like rocks (d) (after Pan Lichuan et al., 2016)

  • 通过结合阴极发光和原位成分分析甚至可以在单个磷灰石颗粒尺度上观察到岩浆的演化历史。比如苏格兰北部的Strontian和Rogart花岗岩,其中Rogart岩体中磷灰石可见振荡环带(图6a),从核部到边部REE含量逐渐降低(图6c),反映了结晶分异过程; 相反地,Strontian岩体磷灰石核部有振荡环带,而边部均匀(图6b),边部REE含量明显低于核部(图6d),由于磷灰石的REE分配系数强烈依赖于岩浆中的SiO2含量,磷灰石-熔体的REE分配系数在长英质岩浆中要比镁铁质岩浆中高一个数量级(Prowatke et al,2006),所以Strontian岩体磷灰石边部REE含量明显下降与镁铁质岩浆侵入有关(Bruand et al.,20142017)。

  • 图6 Strontian和Rogart岩体磷灰石阴极发光图(a、b)及REE配分图(c、d)(据Bruand et al.,2017

  • Fig.6 CL images (a, b) and REE distributions (c, d) of the apatite from Strontian and Rogart (after Bruand et al., 2017)

  • Sr可以替代磷灰石结构中的Ca,而Rb在磷灰石和花岗质熔体之间的分配系数极低(DRb磷灰石/熔体=0.0013)(Prowatke et al.,2006; Hughes et al.,2015b)。因此,磷灰石的87Sr/86Sr同位素组成反映了其结晶时体系的初始87Sr/86Sr比值(Tsuboi,2005),并且消除了对来自87Rb的放射性87Sr的影响。这些性质使磷灰石成为研究各种岩石初始Sr同位素的理想选择(Gillespie et al.,2021)。Sun Jinfeng et al.(2021)通过对中国东北地区早白垩世花岗岩中磷灰石进行原位元素和Sr-Nd同位素研究识别出两类磷灰石,具有明显不同的产状、地球化学特征和Sr-Nd同位素组成,表明其来源不同。原位同位素研究可以提供更加精细的成因信息,是全岩地球化学不能比拟的。

  • 2.5 估算母岩浆成分

  • 已有研究显示,岩浆磷灰石成分可以在一定程度上反映与其平衡的熔体成分(Nathwani et al.,2020; Xing Kai et al.,2020),而反演母岩浆信息,核心是要了解元素在磷灰石-熔体/流体之间的分配行为,前人对此已通过大量实验进行限定(表1)。

  • 需要注意的是,要选择岩浆成因、且内部不含流体包裹体的磷灰石颗粒进行分析,因为这些颗粒最可能在挥发分不饱和的条件下结晶,才能根据它们的成分获取流体出溶之前母岩浆的物理化学信息(Audétat,2019; Xing Kai et al.,2021)。Stock et al.(2018)提出了磷灰石是否为挥发分不饱和条件下结晶的判别模型,该模型强调:Cl在流体/熔体之间的分配系数远大于F,在挥发分不饱和条件下,磷灰石通常显示XF/XOHXF/XCl比值降低,XCl/XOH比值可能增加或减少(XFXClXOH分别表示磷灰石中F、Cl、OH的摩尔分数); 如果挥发分饱和,则随着XF/XClXF/XOH比值增加,XCl/XOH比值会显著降低,根据不同的变化趋势可以判断是否发生挥发分饱和(Stock et al.,2018)。Bruand et al.(2014,2016,2017)对全球花岗岩和磷灰石化学成分汇编发现磷灰石的Sr含量和全岩的Sr及SiO2含量有很好的相关性,即使全岩发生长石蚀变,也可以根据磷灰石的Sr含量来估算全岩的Sr和SiO2含量。

  • 表1 元素在磷灰石-熔体/流体中分配实验

  • Table1 Experiments of elemental distribution between apatite and melt/fluid

  • 除了根据上述的相关性来估算母岩浆成分,Xu Cheng et al.(2015)基于质量平衡和瑞利分馏公式:

  • C0=CS×(1-F)+F×CL
    (6)
  • CL=C0×FD-1
    (7)
  • 提出根据磷灰石成分与分配系数来计算母岩浆微量元素浓度的公式:

  • C0=CS(1-F)1-FD
    (8)
  • 其中CSCLC0分别是元素在晶体(磷灰石)、残余熔体和母岩浆中的浓度; D是元素在矿物-熔体之间的分配系数(见表1参考文献); F是残余熔体分数,假定磷灰石是最早且是唯一的磷酸盐矿物,F可以根据全岩P2O5含量计算。

  • 2.6 磷灰石U-Pb定年

  • 锆石U-Pb是岩浆岩中最常用的定年手段,但是在硅不饱和的镁铁质、超镁铁质、碱性岩中锆石不易结晶,此外,与矿化有关的中酸性岩、伟晶岩中的锆石常发生蜕晶质化,给锆石定年带来不确定性。

  • 磷灰石普遍存在于各类岩石中,含有放射性核素U和Th,可以用于U-Pb定年,且封闭温度较高(350~570℃; O'Sullivan et al.,2020; Chew et al.,2021)。磷灰石U-Pb定年现已广泛应用于岩浆岩(Li Linlin et al.,2021)、变质岩(Henrichs et al.,2019)、碎屑沉积岩(O'Sullivan et a.,2020)、构造研究(Odlum et al.,2022)、化石定年(Rochín-Bañaga et al.,2021)、矿床学年代学研究(肖荣等,2016)。如Li Linlin et al.(2021)对华北克拉通基性岩墙开展斜锆石、锆石和磷灰石U-Pb定年和面扫描分析,对比研究表明,三者均获得一致的基性岩形成年龄。肖荣等(2016)对江西德兴地区朱砂红斑岩铜矿进行磷灰石和锆石定年,结果显示热液蚀变磷灰石ID-TIMS U-Pb年龄(170.6±1.0 Ma)略晚于该矿区含矿斑岩的锆石SHRIMP U-Pb年龄(171.3±1.7 Ma),表明其岩浆侵位到铜钼矿化经历了较短的冷却历史。

  • 3 锆石、磷灰石的成矿指示作用

  • 形成与斑岩矿床有关的岩浆通常具有高氧化状态(FMQ+1至+2)、高含水量(≥4%)、高S和Cl含量,且矿床形成过程中发育明显的热液蚀变分带(Sillitoe,2010; Loucks,2014; Richards,2015)。锆石和磷灰石化学成分可以反映岩浆氧逸度、水含量、S、Cl含量,示踪成矿流体演化、量化剥蚀率等,因此可以用于评价斑岩矿床的成矿潜力与寻找矿化中心。

  • 3.1 岩浆氧逸度

  • 岩浆的氧逸度控制硅酸盐熔体中S的价态和溶解度,进而影响亲铜和亲铁元素的溶解度(Ballard et al.,2002; Richards,20032011; Jugo et al.,2005)。在低氧逸度条件下(FMQ≤0),岩浆S主要以硫化物形式存在,如果岩浆经历早期硫化物相饱和,亲铜元素会强烈分配进入硫化物相中堆积下来而无法用于后期岩浆热液成矿过程,对成矿不利(Ishihara,1981; Blevin et al.,1992); 相反,在高氧逸度条件下(>FMQ+2,Jugo et al.,2010),岩浆S主要以硫酸盐形式存在,硫酸盐在硅酸盐熔体中的溶解度高,亲铜元素将保留在熔体中,并在流体达到饱和时分配到岩浆热液中,在适当的条件下沉淀形成矿床(Sun Weidong et al.,2015)。因此,岩浆的氧化还原状态可以作为区分斑岩矿床成矿与不成矿侵入体的经验判别指标(Ballard et al.,2002)。

  • 3.1.1 已有氧逸度计及存在的问题

  • 前人已提出多种方法来定性或定量确定岩浆的氧逸度(Li Weikai et al.,2019,及其中文献),如:① 全岩Fe3+/Fe2+比值。全岩Fe3+/Fe2+比值是一个经验的氧化还原指标(Carmichael et al.,1990),但是该指标只能用于未遭受风化或热液蚀变的新鲜岩浆岩样品和熔体包裹体。然而在斑岩矿床中,普遍遭受热液蚀变,因此该方法在斑岩矿床系统中适用性不强。② 角闪石氧逸度计。前人通过实验证明角闪石的Mg*(镁指数)与岩浆氧逸度有很好的相关性(R2=0.89),提出相对氧逸度△NNO的计算方程(Ridolfi et al.,20082010):

  • NNO=1.644Mg*-4.01
    (9)
  • 该方法适用于温度在550~1200℃,压力小于1200 MPa,1≤△NNO≤+5的岩浆,标准误差为±0.22 lgfO2。该氧逸度计的缺点在于角闪石无法在较浅深度下稳定存在,当岩浆上升到<4~5 km 时,硅酸盐熔体中H2O出溶会导致角闪石在短时间内分解为无水矿物(Rutherford et al.,1993)。③ 钛铁矿-磁铁矿氧逸度计。钛铁矿-磁铁矿氧逸度计是根据这两种铁钛氧化物之间的假设平衡来估算岩浆氧逸度(Ghiorso et al.,2008)。该方法的标准误差仅为0.2 lgfO2Loucks et al.,2018),但是,该方法仅可靠地适用于快速淬火的火山岩,而且当体系中没有出现钛铁矿和磁铁矿矿物对或者两者不平衡时,该方法也无法使用(Frost et al.,1991; Venezky et al.,1997; Loucks et al.,2020)。

  • 3.1.2 锆石氧逸度计

  • 锆石物理化学性质稳定,化学扩散非常缓慢,在花岗质岩浆温度锆石成分稳定长达0.1~1 Ma甚至更久(Cherniak et al.,2003),因此基于锆石的氧逸度计研究具有很大的潜力。锆石中Ce和Eu具有两种价态,氧化态的Ce4+ 离子半径0.097 nm 和Eu3+ 离子半径0.107 nm 比还原态的Ce3+ 离子半径0.114 nm 和Eu2+离子半径0.125 nm更容易进入锆石中替代Zr4+离子半径0.084 nm,因此锆石的Ce异常(Ce/Ce*、Ce4+/Ce3+、Ce/Nd、 X4+Ce/X3+Ce)和Eu异常(Eu/Eu*)被提出来作为岩浆氧化还原状态的指标(Ballard et al.,2002; Chelle-Michou et al.,2014; Smythe et al.,20152016)。

  • 3.1.2.1 锆石的Ce4+/Ce3+

  • X射线吸收近边结构光谱(XANES)是一种原位、无损、高分辨率和灵敏度的分析技术,用于测定元素的价态(Paris et al.,2001; Fleet,2005; Jugo et al.,2010)。虽然XANES可以直接测定锆石中的Ce的价态(Trail et al.,2015),但是由于锆石中U和Th的辐射效应,Ce4+常被还原为Ce3+将导致Ce4+减少(Takahashi et al.,2003),给直接定量分析带来了挑战,Ballard et al.(2002)提出一种计算锆石Ce4+/Ce3+比值的方法:

  • Ce4+/Ce3+锆石 =Ce熔体 -Ce锆石 DCe3+锆石/熔体 Ce锆石 DCe4+锆石/熔体 -Ce熔体
    (10)
  • 计算锆石Ce4+/Ce3+比值需要4个值,锆石和熔体中的Ce浓度Ce锆石和Ce熔体,以及Ce3+和Ce4+在锆石与熔体之间的分配系数DCe3+锆石/熔体 DCe4+锆石/熔体 Ballard et al.,2002)。锆石中的Ce浓度可通过原位分析测定得到,熔体中的Ce浓度假定等于全岩Ce浓度,Ce4+和Ce3+分配系数根据晶格应变模型(Blundy et al.,1994)进行插值估算。该方法的局限性在于全岩的Ce浓度无法代替锆石结晶时熔体的Ce浓度,因为含稀土矿物结晶会导致熔体中Ce含量减少,而不影响全岩中的Ce含量,结果使计算的锆石Ce4+/Ce3+比值偏高(Dilles et al.,2015; Loader et al.,2017)。

  • 3.1.2.2 锆石的Ce/Ce*

  • 锆石中的Ce异常通常用测得的Ce浓度与预期浓度(Ce*)之间的比值来表示,即Ce/Ce*=CeNLaN×PrN(下标N表示球粒陨石标准化值)。由于锆石中的La含量通常接近或低于LA-ICP-MS的检测限,以及含有极少量(<1 μm)的富LREE矿物包裹体(如磷灰石、独居石、榍石)都会给计算带来不确定性(Loader et al.,2017; Loucks et al.,2020)。

  • 为了避免以上问题,不同学者也提出不同的替代方法,如Chelle-Michou et al.(2014)提出用锆石Ce/Nd比值来反映Ce的富集或亏损; Loader et al.(2017)利用Sm和Nd对Ce进行插值计算Ce*=NdN2SmN,然而这也会导致计算的Ce/Ce*偏低,因为锆石REE模式图是向上凸的,所以用Sm和Nd对Ce反向插值时会导致偏高的Ce*; Zhong Shihua et al.(2019)提出用对数函数来拟合锆石REE模式图中+3价的LREE和MREE位置,该方法只需要锆石中的REE浓度就能计算锆石Ce*,前提是假设LREE与MREE和HREE从熔体进入锆石的机制一致,这一点难以证明。

  • 3.1.2.3 锆石的Eu/Eu*

  • 与锆石Ce/Ce*比值计算相似,Eu/Eu*=EuNSmN×GdN(下标N表示球粒陨石标准化值)。Eu异常的大小受岩浆氧逸度、含水量及角闪石、磷灰石、榍石、斜长石共结晶的影响(Ballard et al.,2002; Dilles et al.,2015; Lu Yongjun et al.,201520162019; Buret et al.,2016; Loader et al.,2017)。Eu2+优先分配进入斜长石中,因此在还原条件下,早期斜长石结晶带走大量的Eu,导致熔体中亏损Eu,进而影响锆石中的Eu/Eu*; 另外斜长石结晶发生在相对无水的硅酸盐熔体中,富水会抑制斜长石的结晶,所以只有在相对富水和氧化的条件下,锆石的Eu/Eu*才相对不受斜长石结晶的影响。榍石中Eu的相容性低于相邻的Sm和Gd,这意味着榍石的结晶使残余熔体产生正Eu异常,这种异常可能被锆石所继承,只有高Ta的锆石(Ta>0.2 ×10-6)才能减少由于榍石结晶对锆石的影响(Loader et al.,2017)。

  • 3.1.2.4 锆石的XCe4+/XCe3+

  • Smythe et al.(2015,2016)提出新的锆石氧逸度计算方法:

  • lnXCe4+熔体 XCe3+熔体 =14lnfO2+13136(±591)T-2.064(±0.011)(NBO/T)-8.878(±0.112)×XH2O-8.955(±0.091)
    (11)
  • 其中XCe4+溶体 XCe3+熔体 分别是熔体中Ce4+和Ce3+的摩尔分数,T是用锆石Ti温度计算的开尔文温度(Ferry et al.,2007),NBO/T是非桥氧与四面体配位阳离子的比例,XH2O是熔体中水的摩尔分数。使用该方法计算时要求输入主量元素成分、锆石母熔体的温度以及熔体中的水含量,由该程序计算的氧逸度值对锆石母熔体H2O含量的假设或测量误差极为敏感(Zou Xinyu et al.,2019)。

  • 3.1.2.5 锆石Ce-U-Ti氧逸度计

  • 最近Loucks et al.(2020) 提出来的Ce-U-Ti氧逸度计是基于锆石中的4价元素Ce4+、U4+、Ti4+含量,该方法的标准误差为± 0.6 lgfO2,且与元素价态、结晶温度、压力、母熔体的成分无关,避免了基于REE3+的氧逸度计可能受到其他矿物结晶、岩浆含水量、矿物包裹体影响的问题,有望获得可靠的氧逸度。计算时需要测得锆石的Ce、U、Ti含量及年龄值,先用U含量和年龄值计算得到初始U含量(Ui),则:

  • FMQ=3.998(±0.124)×lgCe/Ui×Ti+2.284(±0.101)
    (12)
  • Cao Kang et al.(2022) 利用这种新的锆石氧逸度计计算了藏东义敦弧南段斑岩矿床的成矿岩体与北段同期无矿岩体的△FMQ,结果显示成矿岩体比无矿岩体具有更高的△FMQ(成矿岩体△FMQ=0.8~2.4; 无矿岩体△FMQ=3.3~0.5)(图7),证明了该方法在区分岩浆氧逸度及判断成矿潜力的有效性。

  • 图7 锆石△FMQ-锆石Ti温度计图解(据Cao Kang et al.,2022)(锆石△FMQ是使用Loucks et al.,2020的新氧逸度计,根据锆石微量元素计算得到的)

  • Fig.7 Zircon △FMQ vs. zircon Ti thermometer (after Cao Kang et al., 2022) (zircon △FMQ was calculated based on the zircon trace elements using the new magmatic oxybarometer of Loucks et al., 2020)

  • 3.1.3 磷灰石氧逸度计

  • 磷灰石中赋存多种对氧化还原敏感的元素(如Mn、S、Ce、Eu等),在限制熔体氧逸度方面已有较多应用实例(Miles et al.,2014; Konecke et al.,2017; Sun Saijun et al.,2019)。

  • 3.1.3.1 磷灰石Mn-氧逸度计

  • Miles et al.(2014) 发现磷灰石的Mn含量与中酸性火成岩的氧逸度成负相关(图8a),温度范围在 600~1000℃区间内两者之间的关系可以表达为:

  • lgfO2=-0.0022(±0.0003)Mn-9.75(±0.46)
    (13)
  • Marks et al.(2016)指出并不是所有岩石样品的磷灰石Mn含量都和岩浆氧逸度呈负相关关系,温度、熔体成分和其他含Mn的矿物相(如角闪石,黑云母和磁铁矿)的结晶都会对磷灰石中Mn的分配产生影响。Stokes et al.(2019)通过实验岩石学研究发现熔体聚合程度才是控制Mn在磷灰石与熔体之间分配的关键因素。熔体聚合程度可以用非桥氧数(NBO)与四面体配位阳离子数(T)的比值NBO/T来表示(Cottrell et al.,2009)。在聚合程度高的熔体中,非桥氧较少,熔体中吸收金属阳离子(如Mn2+)的程度将降低,因为Mn-O键会使硅酸盐骨架不稳定。因此,熔体聚合程度对Mn在磷灰石与熔体之间的分配起强烈的控制作用,在熔体成分发生变化的体系中,氧逸度和磷灰石Mn含量之间的经验关系是无效的(图8b)(Stokes et al.,2019)。

  • 3.1.3.2 磷灰石S氧逸度计

  • S分别以硫酸盐(S6+)和硫化物(S2-)的形式存在于氧化和还原的硅酸盐熔体中(Jugo,2009; Jugo et al.,2010),地球上富S的磷灰石通常是产在相对氧化的环境中,S6+通过替代反应进入磷灰石结构中:Na++S6+=Ca2++P5+,S6++Si4+=2P5+Sha Liankun et al.,1999; Parat et al.,2011)。

  • Konecke et al.(2017)通过对实验生长的磷灰石(1000℃和300 MPa)进行XANES研究发现S的相态和含量可以指示氧逸度:当岩浆氧逸度为FMQ时,S6+/S总量=0.168,当岩浆氧逸度为FMQ+1.2时,S6+/S总量=0.958,当岩浆氧逸度为FMQ+3时,S6+/S总量=0.963(图9a)。

  • 使用磷灰石S相态来指示岩浆氧逸度的方法更适用于氧逸度为FMQ~FMQ+1.2的镁铁质岩浆系统(如MORB),这意味着当岩浆体系氧逸度大于FMQ+1.2后磷灰石就无法灵敏指示氧逸度(Konecke et al.,2019),而且对于岩浆体系来说,氧逸度大于FMQ+2后才是以S6+为主,这一点与磷灰石也有差异(图9b)(Jugo et al.,20052010)。

  • 3.1.3.3 磷灰石Ce、Eu氧逸度计

  • 磷灰石中Ca2+位置有七次和九次配位,离子半径分别为0.106 nm和0.118 nm(Shannon,1976)。REE中的Ce和Eu有两种价态,七次和九次配位Eu2+的离子半径分别为0.120 nm和0.130 nm,Eu3+的离子半径分别为0.101 nm和0.112 nm,Ce3+的离子半径分别为0.107 nm和0.1196 nm,Ce4+没有奇数配位,只有六次、八次、十次和十二次配位(Shannon,1976; Cao Mingjian et al.,2012)。因此Ce3+和Eu3+更容易通过反应:REE3++Na+=2Ca2+; REE3++Si4+=Ca2++P5+RØnsbo,1989; Fleet et al.,1995; Sha Liankun,1999; Pan Yuanming et al.,2002)进入磷灰石结构中,在其他条件(温度、压力、熔体中元素浓度)相同的情况下,氧化岩浆中结晶的磷灰石具有更高的Eu3+/Eu2+比值和更低的Ce4+/Ce3+比值。

  • 图8 磷灰石Mn含量与氧逸度关系(a)(据Miles et al.,2014)及Mn在磷灰石与熔体间的分配系数与NBO/T(每个四面体阳离子的非桥氧数)的关系(b)(据Stokes et al.,2019

  • Fig.8 The relationship between apatite Mn concentrations and oxygen fugacity (a) (after Miles et al., 2014) and the relationship between Dapatite-meltMn and NBO/T (number of nonbridging oxygen per tetrahedral cation) (b) (after Stokes et al., 2019)

  • (a)中数字1~10表示的侵入岩和火山岩分别为:1—Criffell; 2—Mount St Helens; 3—La'scar; 4—Tambora; 5—Krakatau; 6—El Chicho'n; 7—Pinatubo; 8—Bishop Tuff; 9—Santa Maria; 10—Criffell; 样品的详细信息见Peng Genyong et al.(1997);(b)中曲线拟合使用Sha Liankun et al.(1999)McCubbin et al.(2015)Stokes et al.(2019)的数据,因为Belousova et al.(2001) 的数据中NBO/T都偏低,故不参与曲线拟合

  • The numbers 1 to 10 in (a) , denote the following intrusions and volcanoes: 1—Criffell; 2—Mount St Helens; 3—La'scar; 4—Tambora; 5—Krakatau; 6—El Chicho'n; 7—Pinatubo; 8—Bishop Tuff; 9—Santa Maria; 10—Criffell; see Appendix 1 in Peng Genyong et al. (1997) for sample details. The solid curve in (b) is fitted using data from Sha Liankun et al. (1999) , McCubbin et al. (2015) and Stokes et al. (2019) . Belousova et al. (2001) data is not used for the power law fit because there is an unexplained offset to lower NBO/T

  • 图9 磷灰石S6+/S总量与氧逸度(△FMQ)关系图(a)(据Konecke et al.,2019)及岩浆S6+/S总量与氧逸度(△FMQ)关系图(b)(据Jugo et al.,2005

  • Fig.9 The relationship between the S6+/S总量 and oxygen fugacity(△FMQ)of apatite(a)(after Konecke et al.,2019)and the relationship between magmatic S6+/S总量 and oxygen fugacity(△FMQ)of magma(b)(after Jugo et al.,2005

  • (a)中圆圈和三角形分别表示系列1和系列2的实验,黑色虚线表示S6+/S总量校正曲线,灰色虚线和灰色实线分别表示系列1和系列2实验的拟合;(b)中圆形、正方形和菱形符号表示来自全球镁铁质—长英质熔体样品(详见Jugo et al.,2005及其中文献),实线为所有数据点非线性回归的曲线,虚线为排除部分中酸性样品(粗安岩、安山岩、英安岩)后得到的回归曲线

  • The circles and triangles in (a) , denote Series 1 and Series 2 experiments, respectively; the black dashed line represents S6+/ΣS calibration curve, the gray dashed and gray solid lines denote the fitting for Series 1 and Series 2 experiments, respectively; the circle, square and diamond symbols in (b) represent the samples from global mafic to felsic melt (see Jugo et al., 2005 and references therein for sample details) . The solid line denotes the nonlinear regression curve for all data points, the dashed line denotes the nonlinear regression curve obtained after eliminating some intermediate to felsic samples (trachyandesites, andesites, and dacites)

  • 磷灰石中单个元素的变化很容易受到其他矿物结晶和物理化学条件变化的影响,而联用磷灰石中具有相反分配行为的两种元素可以更好地确定氧化态(Sun Saijun et al.,2019),当氧逸度是磷灰石Ce、Eu异常的唯一控制因素时,磷灰石的δCe和δEu会呈现负相关。实际情况中,磷灰石中的Ce、Eu异常容易受到其他矿物结晶的影响,当榍石和斜长石早于磷灰石或与磷灰石同时结晶也会使磷灰石产生明显Eu异常(Chu Meifei et al.,2009),独居石、锆石和萤石的结晶会影响Ce在磷灰石中的分配(Ballard et al.,2002; Belousova et al.,2002b; Piccoli et al.,2002),因此在使用磷灰石Ce、Eu异常判断氧逸度之前要进行详细的岩相学观察,确定矿物结晶顺序。

  • 不过,一些对比研究表明,利用磷灰石Ce异常判断岩浆氧逸度时常常不可靠,因为对于地球上的岩浆而言,Ce4+相对于Ce3+所占的比例非常小,在典型的地球氧化还原条件下,岩浆Ce4+/Ce3+通常<0.01(Burnham et al.,2014; Smythe et al.,2015)。尽管Ce3+和Ce4+在磷灰石中的相容性有显著差异,但Ce异常可能非常小,难以检测(Xing Kai et al.,2021; Bromiley,2021)。所以在使用磷灰石Ce判断岩浆氧逸度时需要谨慎。

  • 3.1.3.4 磷灰石Ga、V和As的氧逸度计

  • Ga元素有两种价态:Ga2+和Ga3+,还原条件下Ga2+更容易替换磷灰石中Ca2+离子; V元素有三种价态:V3+、V4+和V5+,氧化条件下V5+更容易以VO43-的形式替换磷灰石中的PO43-,还原条件下V3+则进入到铁镁矿物中; As元素与V类似,氧化条件下As5+更容易以AsO43-的形式替换磷灰石中的PO43-,还原条件下As3+则进入到含As硫化物中(Kutoglu,1974; Sha Liankun et al.,1999; Sun Saijun et al.,2019)。因此在其他条件相同的情况下,氧化环境下结晶的磷灰石有较高的V、As含量和较低的Ga含量。但是Cao Mingjian et al.(2012)提出磷灰石的V含量高并不意味着氧逸度高,而是由于熔体中的V含量高。磁铁矿、单斜辉石、角闪石和黑云母中V的分配系数较高(D>1),磷灰石中V的含量也可能受到共生矿物和全岩等因素的影响(Sun Saijun et al.,2019)。

  • 3.2 岩浆含水量

  • 水作为主要的岩浆挥发性成分,控制着地壳和地幔的熔融过程、熔体黏度、岩浆上升流动和喷发以及各种岩浆热液金属矿的沉淀(Webster et al.,2017)。普遍认为,岩浆中高H2O含量是形成斑岩矿床的重要因素,它是金属从岩浆释放到热液的主要载体,因此岩浆H2O含量是评价斑岩体成矿潜力的重要指标之一(Loucks,2014; Wang Rui et al.,2014; Lu Yongjun et al.,2016)。

  • 岩浆含水量可通过富水矿物(如角闪石和黑云母)进行估算(Rutherford et al.,1988; Richards et al.,2001)。富水的岩浆在早期冷却过程中会抑制斜长石的结晶,促进角闪石和石榴子石的结晶,使得残余熔体中Eu富集而Y与HREE亏损(Richards et al.,2012; Chiaradia et al.,2012; Loucks,2014)。角闪石相对于HREE更优先分配MREE,因此富水岩浆早期角闪石分馏会降低熔体的Dy/Yb比值(Davidson et al.,20072013),在这种熔体中结晶的锆石也继承这种微量元素特征,Lu Yongjun et al.(2016)认为锆石中高Eu/Eu*比值、(10000×Eu/Eu*)/Y比值、(Ce/Nd)/Y比值以及低Dy/Yb比值与岩浆中的高含水量有关,通过对比成矿与不成矿岩体的锆石微量元素比值,发现成矿斑岩的锆石Eu/Eu*>0.3,(10000×Eu/Eu*)/Y>1,(Ce/Nd)/Y>0.01,Dy/Yb<0.3。另一方面,氢在锆石中扩散很慢,活化能较高,因此初始水含量信息更容易保存(张培培,2015)。利用SIMS可以测定锆石中的水含量,锆石水含量的变化可以反映岩浆水含量的差异(蒙均桐等,2021),该方法为研究岩浆水含量提供新的思路。

  • 许多研究已经尝试通过磷灰石的OH浓度来估算熔体中的H2O丰度(Boyce et al.,2010; McCubbin et al.,20102012; Tartèse et al.,2013; Robinson et al,2014),Du Jingguo et al.(2019)提出熔体中的相对H2O丰度可以通过磷灰石中的OH浓度来定性判断,认为成矿岩体中磷灰石OH含量高,指示熔体富H2O。然而,磷灰石-熔体分配关系显示F最优先进入磷灰石,随后是Cl,最后是OH(Mathez et al.,2005; Webster et al.,2015),这意味着富OH的岩浆可以形成贫OH的磷灰石,而且F、Cl、OH三者在磷灰石结构中占据同一位置,他们的分配系数会受到彼此浓度的影响(Boyce et al.,2014),所以单独使用磷灰石OH含量来反映其熔体H2O含量是不可靠的。

  • 为了避免这种影响,McCubbin et al.(2015)建议使用两种挥发分而不是一种来计算。Li Weiran et al.(2021)提出两个计算磷灰石和硅酸盐熔体之间的交换系数KDOH-F磷灰石-熔体 KDOH-Cl磷灰石-熔体 ,建立了一个计算熔体中H2O含量的方法,并将其发展为一个在线计算器(https://apthermo.wovodat.org/)。使用该方法计算熔体的H2O含量前,需要知道磷灰石成分、与磷灰石平衡的熔体中卤素(F或Cl)含量以及磷灰石-熔体平衡温度,该方法计算熔体水含量的相对误差为30%~50%。

  • 除了上述定量计算外,磷灰石的微量元素比值也可以定性判别岩浆含水量,如Sr/Y、V/Y、(Ce/Pb)N比值(Xu Bo et al.,2021; Xing Kai et al.,2021)。富水岩浆会促进角闪石分馏和抑制斜长石结晶,导致岩浆出现高Sr/Y比值(Richards,2011; Loucks,2014),从这种富水岩浆中结晶的磷灰石也继承了岩浆高Sr/Y比值(Xing Kai et al.,2021),可以作为岩浆富水的标志。在富H2O熔体中,角闪石比磁铁矿更早结晶,因此会有更多的V保留在残余熔体中(DV磁铁矿/熔体>130; DV角闪石/熔体=6.34~10.64; La Tourrette et al.,1991; Nandedkar et al.,2016),而Y分配进入角闪石中(DY角闪石/熔体=2~6; Ewart et al.,1994),因此残余熔体中V/Y比值升高,从这种熔体中结晶的磷灰石也具有高V/Y比值的特征,可以指示岩浆富水(Xu Bo et al.,2021)。此外,含水熔体中LREE(如La、Ce)比HREE和Pb更相容,通常具有较高的LREE或(Ce/Pb)N比值(Davidson et al.,2007),因此富水熔体中结晶的磷灰石比干体系中结晶的磷灰石具有更高的(Ce/Pb)N比值(Xu Bo et al.,2021)。与贫矿岩体相比,成矿斑岩体中磷灰石具有更高的Sr/Y、V/Y、(Ce/Pb)N比值,反映了成矿岩浆更富H2O的特点(Xu Bo et al.,2021; Xing Kai et al.,2021),可以作为斑岩系统成矿潜力的判别指标。

  • 3.3 岩浆卤素(F,Cl)含量

  • 卤素在岩浆热液成矿过程中起着重要作用,它们会改变花岗岩熔体的易熔组分,降低体系的最低液相线温度,增加高场强元素和稀土元素在熔体中的溶解度,影响金属元素的流体-熔体分配,特别是在脱气和流体出溶的过程中,可以运移金属离子并最终沉淀(Harlov,2015; Wang Lianxun et al.,2018; Sun Saijun et al.,2019)。磷灰石结构中可以容纳F和Cl,并且岩浆磷灰石常被包裹在其他矿物斑晶中,扩散非常缓慢,因此磷灰石能够很好地保存岩浆卤素的信息(Piccoli et al.,2002; Webster et al.,20092015; Li Weiran et al.,2020)。

  • 由于F、Cl在磷灰石和熔体之间属于非能斯特分配,所以用交换系数KD来表示挥发分在磷灰石与熔体之间的关系,交换系数KD使用Li Huijuan et al.(2017)的热力学分配模型计算:

  • XCl熔体 XOH熔体 =XCl磷灰石 XOH磷灰石 ×1KDCl/OH磷灰石/熔体
    (14)
  • XF熔体 XOH熔体 =XF磷灰石 XOH磷灰石 ×1KDF/OH磷灰石/熔体
    (15)
  • KDCl/OH磷灰石/熔体 =e25.81+XCl磷灰石 -XOH磷灰石 ×17.33×1038.314T
    (16)
  • KDF/OH磷灰石/熔体 =e40.33+XF磷灰石 -XOH磷灰石 ×21.29-3.96XCl磷灰石 ×1038.314T
    (17)
  • 式中T为温度(单位:K),通过交换系数KD和磷灰石成分,可以根据以下经验公式求得熔体中的F、Cl含量(CCl熔体 CF熔体 )(图10):

  • CCl熔体 =XCl熔体 XOH熔体 ×28.72==XCl磷灰石 XOH磷灰石 ×1KDCl/OH磷灰石/熔体 × 28. 72 (Li Huijuan et al., 2017)
    (18)
  • CCl熔体 =XCl熔体 XOH熔体 ×9.12==XCl磷灰石 XOH磷灰石 ×1KDCl/OH磷灰石/熔体 × 9.12 (McCubbin et al., 2015)
    (19)
  • CCl熔体 =XCl熔体 XOH熔体 ×10.79==XCl磷灰石 XOH磷灰石 ×1KDCl/OH磷灰石/熔体 × 10.79 (Webster et al., 2009)
    (20)
  • CCl熔体 =XF熔体 XOH熔体 ×6.18==XF磷灰石 XOH磷灰石 ×1KDF/OH磷灰石/熔体 × 6.18 (Webster et al., 2009)
    (21)
  • 这些公式适用的温压范围见表1,鉴于斑岩系统中岩浆的温压条件与Webster et al.(2009)更相近,所以推荐使用他的公式来计算熔体中的F、Cl含量。

  • 熔体中高Cl含量可能是形成斑岩型矿床的先决条件(Hsu et al.,2019),流体包裹体研究也表明成矿流体具有高Cl的特征(Kouzmanov et al.,2012)。前人通过对比发现成矿岩体中磷灰石普遍具有高Cl/F 比值(Pan Lichuan et et.,2016; Xie Fuwei et al.,2018; Xu Bo et al.,2021)。因此可以通过磷灰石成分估算熔体F,Cl含量(Webster et al.,2009; Li Huijuan et al.,2017),进而评价斑岩成矿潜力。

  • 3.4 岩浆S含量

  • 斑岩矿床中金属主要赋存在硫化物中,S是形成斑岩矿床的关键元素(Simon et al.,2011)。岩浆中的S浓度可以直接从熔体包裹体中测量(Audétat,2015; Zhang Daohan et al.,2017a2017b2018),但是通常熔体包裹体太小或不易获取。早期结晶的岩浆磷灰石能保存当时的熔体成分信息,成为反算熔体S含量的新工具(Parat et al.,2005; Chelle-Michou et al.,2017)。

  • Peng Genyong et al.(1997)首次用实验方法研究了S在磷灰石和熔体之间的分配,发现S的分配与温度和压力有关,而氧逸度对于他们所研究的氧化条件范围(lgfO2=NNO+3.7~NNO+4.5)来说并不是一个重要参数,根据实验提出一种半定量估算岩浆S含量的方法(图11a):

  • lnKd=lnSO3磷灰石 SO3熔体 =21130/T-16.2
    (22)
  • Parat et al.(2011)通过对天然样品(磷灰石中的熔融包裹体)的原位测量并结合实验数据,揭示了S在磷灰石和熔体之间的分配不遵循亨利定律,磷灰石和熔体S含量之间的关系可以表示为(图11b):

  • S磷灰石 =0.0629×lnS熔体 +0.4513R2=0.68
    (23)
  • 传统认为岩浆中高浓度的S对斑岩型矿床的形成非常重要(Richards et al.,2017),Parat et al.(2011)的经验公式表明磷灰石中的S含量随着熔体中S含量的增加而增加,因此可以根据磷灰石中的S来估算其母岩浆中的S含量,并且作为斑岩型矿床的一个成矿指标,如:Imai et al.(1993)Imai(20022004)对西太平洋岛弧带中酸性侵入岩与火山岩中的岩浆磷灰石进行了详细研究,发现与斑岩Cu(Au)矿床有关的岩体中磷灰石普遍富含S(SO3>0.1%),而无矿或火山岩中的磷灰石贫S(SO3<0.1%); Xu Bo et al.(2021)对特提斯成矿带上12个斑岩型Cu±Mo±Au矿的成矿岩体和7个同时期不成矿岩体中磷灰石进行对比也发现成矿岩体中具有更高的S含量。

  • 图10 熔体Cl含量与XCl熔体 /XOH熔体 关系(a)(据Li Huijuan et al.,2017)、熔体Cl含量与XCl熔体 /XOH熔体 的关系(b)(据McCubbin et al.,2015)、熔体Cl含量与XCl熔体 /XOH熔体 的关系(c)(据Webster et al.,2009)及熔体F含量与 XF熔体 /XOH熔体 的关系(d)(据Webster et al.,2009

  • Fig.10 The relationship between melt Cl content and the molar ratio XClmelt /XOHmelt OH (a) (after Li Huijuan et al., 2017) ; the relationship between melt Cl content and the molar ratio XClmelt /XOHmelt OH (b) (after McCubbin et al., 2015) ; the relationship between melt Cl content andthe molar ratio XClmelt /XOHmelt (c) (after Webster et al., 2009) ; The relationship between melt F content and the molar ratio XFmelt /XOHmelt (d) (after Webster et al., 2009)

  • 各图中方形、菱形、三角形代表不同温度和压力条件下的实验:(a)中为2.5~4.5 GPa、690~900℃;(b)中为1 GPa、1000℃;(c)和(d)中为 0.2 GPa、900℃

  • Square, diamond and triagle symbols in each figure represent experiments under different temperature and pressure, (a) 2.5~4.5 GPa, 690~900℃; (b) 1 GPa, 1000℃; (c) and (d) 0.2 GPa, 900℃

  • 然而,一些研究表明成矿岩浆中的S含量并不一定高于贫矿岩浆,总金属量也不随岩浆S含量的增加而增加,甚至贫矿岩浆中的S含量还高于成矿岩浆(Audétat et al.,2006; Zhang Daohan et al.,2017b; Xing Kai et al.,20202021)。因此,虽然磷灰石可以反映岩浆S含量高低,但是岩浆S含量高低与斑岩型矿床的成矿潜力之间的关系还有待进一步研究。

  • 3.5 矿床类型判别

  • 矿床类型的划分是矿床学研究的基础,正确的矿床类型划分对于矿床成因和找矿勘查都有重要的指导意义。国内外已积累了大量磷灰石地球化学数据,从这些数据中提取特征的元素或元素组合可以有效区分不同的矿床类型,在区域调查时能识别覆盖区可能隐伏的特定类型的矿床,为评价区域成矿潜力提供科学依据。

  • Cao Mingjian et al.(2012)利用磷灰石的F、Cl、Mn、Sr、Y、(La/Yb)N和(Eu/Eu*N区分出矽卡岩型Pb-Zn矿床、矽卡岩型Cu矿床、斑岩型Cu矿床、Mo-W矿床、W-Mo矿床(如Sr-(Eu/Eu*N判别图解,图12a)。Mao Mao et al.(2016)对磷灰石微量元素进行判别投影分析(Discrimination projection analysis: DPA),第一步:利用磷灰石(DP1-1)-(DP1-2)判别图解区分出岩浆热液矿床、碳酸岩和未矿化岩体(图12b); 第二步:针对岩浆热液矿床再进一步使用六个判别函数(DP2-1-1、DP2-1-2,DP2-2-2、DP2-2-3、DP2-3-1、DP2-3-2)区分出造山型Au矿、造山型Ni-Cu±PGE矿床、Kiruna铁氧化物-磷灰石矿床(IOA)和铁氧化物铜金矿床(IOCG)、斑岩型Cu-Au-Mo矿床、矽卡岩型矿床(如图12c(DP2-2-2)-(DP2-2-3)判别图解); 第三步:针对斑岩型和矽卡岩型矿床再进一步使用判别函数(DP3-1、DP3-2、DP3-3)区分出碱性斑岩型Cu-Au矿、斑岩型Mo矿、斑岩型Cu±Mo±Au矿、与斑岩相关的Cu-Au角砾岩、矽卡岩型W矿、矽卡岩型Au±Co±Cu±Pb±Zn矿(如图12d(DP3-1)-(DP3-2)判别图解)。

  • 图11 SO3在磷灰石-熔体之间分配系数和温度T(K)的关系图(a)(据Peng Genyong et al.,1997); 磷灰石和熔体中S含量关系图(b)(据Parat et al.,2011

  • Fig.11 Apatite-melt partition coefficients for SO3 vs. temperature (K) (a) (after Peng Genyong et al., 1997) ; data are from experiments under MNH and MTH buffer and different pressures; sulfur content in apatite vs. sulfur content in the melt (b) (after Parat et al., 2011)

  • MNH—方锰矿-黑锰矿缓冲剂; MTH—磁铁矿-赤铁矿缓冲剂

  • MNH—manganosite-hausmanite buffer; MTH—magnetite-hematite buffer

  • 3.6 流体交代作用与斑岩矿床蚀变分带

  • 尽管磷灰石有很好的稳定性,但一些研究显示磷灰石可以被热液流体部分或完全地交代蚀变(Harlov et al.,200220032005; Li Xiaochun et al.,2015; Harlov,2015)。特别是在岩浆热液矿床中,与成矿有关的岩体中磷灰石易遭受热液流体交代,通常会有以下特征:蚀变的磷灰石保存原始晶体形态和结晶取向,蚀变与未蚀变区域有明显的边界,蚀变域内普遍存在微孔隙、次生稀土矿物(如独居石、磷钇矿)和流体包裹体,微量元素和同位素发生明显改变(Zeng Lipeng et al.,2016)。

  • 蚀变分带是斑岩型矿床最重要的特征之一,研究显示不同蚀变阶段形成的磷灰石具有不同的组分特征。姚春亮等(2007)对江西铜厂斑岩铜矿中3期磷灰石的化学成分进行测定,发现岩浆期磷灰石富含S和Si,钾化带磷灰石富含Mn和Fe,绢英岩化带的磷灰石富含S和F,贫Cl。Bouzari et al.(2016)利用阴极发光区分出斑岩矿床中未蚀变岩石中磷灰石以及钾化、绢英岩化、泥化岩石中磷灰石,而且不同蚀变带中的磷灰石具有不同的阴极发光特征和成分特征(图13)。未蚀变的磷灰石的阴极发光图像呈黄色,Mn含量较高,Mn/Fe比值>1(图13d); 与钾硅酸盐蚀变相关的磷灰石具有绿色的阴极发光特征,这类磷灰石Mn/Fe比值较低,Cl、S和Na亏损(图13e); 与绢云母蚀变相关的磷灰石具有灰色的阴极发光特征,磷灰石中Mn大量丢失,同时伴有Na、S、Cl和REE的亏损(图13f)。

  • 3.7 成矿流体来源

  • 成矿流体来源和演化对于建立成矿系统定量过程模型至关重要。长期以来,稳定同位素和放射性同位素一直被用来限制成矿流体的来源和演化,为矿床成因和成矿过程提供了重要的信息(Ohmoto,1986; Zhao Xinfu et al.,2015)。

  • 矿物原位化学成分和同位素可以弥补由于可能存在多个流体来源或经历长期演化以及后期热液蚀变的改造而使全岩地化分析无法识别的缺陷(Zhao Xinfu et al.,2015)。由于Cl是几乎所有成矿流体中的主要配体,源区的Cl同位素组成很可能被热液流体继承(Selverstone et al.,2015),因此磷灰石Cl同位素组成可提供流体和金属最终来源的关键信息(Kusebauch et al.,2015a2015b; Barnes et al.,2017)。Andersson et al.(2019)在研究瑞典东南部稀土矿时发现从近端花岗岩到远端变质沉积岩中的磷灰石,Cl和Br含量增加,F和I含量降低,而且δ37Cl值从+1.6‰降到0.7‰,这可能是原始岩浆流体与变质流体混合的结果。Zeng Liping et al.(2016)研究表明热液蚀变对Sr、O同位素也有显著的影响,原生的磷灰石和蚀变磷灰石具有明显不同的Sr、O同位素特征,其δ18O值的变化可达~10‰,因此对成矿流体来源有很好的指示作用。

  • 图12 不同矿床类型的磷灰石判别图解(a)(据Cao Mingjian et al.,2012); 碳酸岩、成矿与不成矿岩石的磷灰石判别图解(b)(据Mao Mao et al.,2016); 各类岩浆热液矿床的磷灰石判别图解(c)(据Mao Mao et al.,2016); 不同斑岩、矽卡岩矿床的磷灰石判别图解(d)(据Mao Mao et al.,2016

  • Fig.12 Discrimination diagram for apatites from different types of deposits (after Cao Mingjian et al., 2012) (a) ; discrimination diagram for apatites from carbonatites, various ore deposits and rocks that are not associated with mineralization (b) (after Mao Mao et al., 2016) ; discrimination diagram for apatites from different types of deposits (c) (after Mao Mao et al., 2016) ; discrimination diagram for apatites from different porphyry and skarn deposits (d) (after Mao Mao et al., 2016)

  • 3.8 矿床的剥蚀与保存

  • 斑岩型矿床形成于上地壳,通常深度在1~5 km(Sillitoe,2010)。年代学统计工作显示全球的斑岩矿床年龄主要是在显生宙,特别是新生代(Singer et al.,2008)。由于所在区域的构造作用,可能使矿床形成后的位置发生隆升或者沉降,少数矿床可能保持原位(翟裕生等,2000)。因此对于斑岩矿床来说,成矿后的热历史和隆升-剥蚀过程的研究对于矿床的储量评价和深部找矿都有重要意义。

  • 锆石和磷灰石通常含有大量的放射性核素U和Th,可以作为地质年代学或热年代学工具(O'Sullivan et al.,2020)。裂变径迹和(U-Th)/He定年是两种低温(<250℃)热年代学方法。

  • 图13 未蚀变、钾化和绢云母化蚀变磷灰石成分及阴极发光特征(据Bouzari et al.,2016

  • Fig.13 Cathodoluminescence and trace element composition from unaltered, potassic, and sericite altered apatites (after Bouzari et al., 2016)

  • (a)—磷灰石Ca(pfu)-Mn(pfu)图解;(b)—磷灰石 Ca-(pfu)-Na(pfu)图解;(c)—磷灰石Ca(pfu)-Cl(pfu)图解;(d)—未蚀变磷灰石CL呈黄色;(e)—钾化蚀变磷灰石CL呈绿色;(f)—绢云母化蚀变磷灰石CL呈灰色; CL—阴极发光; DL—检测限; pfu—每分子式单位

  • (a) —plot of apatite Ca (pfu) vs. Mn (pfu) ; (b) —plot of apatite Ca (pfu) vs. Na (pfu) ; (c) —plot of apatite Ca (pfu) vs. Cl (pfu) ; (d) —unaltered apatite under CL showing yellow luminescence; (e) —apatite with potassic alteration under CL showing green luminescence; (f) —apatite with sericite alteration under CL showing dull gray luminescence; CL—cathodoluminescence; DL—detection limit; pfu—per formula unit

  • 裂变径迹广泛应用于盆地热模拟(Fernandes et al.,2015)、估算剥蚀率(Cogné et al.,2014)和确定断层滑动速率(Wallis et al.,2016)。近年来在研究热液矿床的构造热史演化方面也取得进展,如刘学龙等(2021)对西南三江中甸地区晚白垩斑岩钼铜矿的成矿斑岩体进行了锆石、磷灰石裂变径迹分析和构造热史演化模拟,揭示了区内斑岩体自晚白垩世以来经历了三阶段构造热事件,定量计算了各个矿床的剥蚀量与剥蚀速率,为区内斑岩矿床的资源评价与找矿勘查提供科学参考。

  • (U-Th)/He定年的应用类似于裂变径迹,如估算剥蚀率和断层滑动率(Stockli et al.,2000; Ricketts et al.,2016),主要应用于量化剥蚀率。如Leng Chengbiao et al.(2018)通过对中甸地区普朗斑岩矿床进行锆石和磷灰石(U-Th)/He研究,揭示了普朗矿床侵位深度约为5~6 km,经历了晚三叠世快速冷却、晚三叠世至早白垩世中等冷却和早白垩世至现今长时间缓慢冷却,经过两阶段的隆升和剥蚀后大约有558~1099 m厚的物质被剥蚀,为深部资源潜力评价提供参考依据。

  • 4 总结与展望

  • 锆石和磷灰石作为常见的副矿物,具有广泛的用途,特别用于约束斑岩矿床成岩成矿过程及成矿潜力方面,显示出重要的指示作用。

  • 锆石的物理化学性质稳定且常见,不仅作为年龄的标尺,而且可以反映温度、含水量、氧逸度等信息,通过结合锆石年龄和微量信息可以重建区域的岩浆-成矿演化历史,为斑岩成矿潜力评价提供科学依据。

  • 岩浆磷灰石可以记录和保存早期岩浆信息,反演岩浆的类型、成因、成分等,以及反映氧逸度、含水量、S、Cl含量等关键成矿因素,有助于评价区域斑岩体的成矿潜力; 热液磷灰石在示踪成矿流体,确定斑岩系统矿化中心方面也有巨大潜力。

  • 随着分析测试数据的不断积累,依靠人工去处理这些海量数据日益困难,未来需要借助大数据和机器学习,结合多种数理统计方法,如多元线性回归分析、递归分割法、判别投影分析等,深度挖掘数据中的复杂信息与内在联系。岩浆结晶分异过程中,矿物结晶时熔体成分是动态变化的,且与全岩成分不一致,应该综合考虑锆石和磷灰石与其他矿物的先后结晶顺序,并结合瑞利分馏等模拟熔体成分的动态演化。未来的研究一定会向更加精细的方向发展,这就需要测试手段的支持,通过更高空间分辨率(微米—纳米尺度)的单个矿物原位结构-成分-同位素分析,可以提供更详细的信息,这是全岩和全矿物分析所不具备的优势。

  • 尽管目前锆石和磷灰石在斑岩矿床中的应用还存在问题,随着研究的进行,相信在未来锆石和磷灰石对于斑岩系统的成岩、成矿方面会有更多的应用,而且推广到更多类型成矿系统中去。

  • 致谢:感谢两位审稿人的细心审阅与宝贵意见。

  • 参考文献

    • Aleinikoff J N, Selby D, Slack J F, Day D C, Pillers R M, Cosca M A, Seeger C M, Fanning C M, Samson I M. 2016. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri. Economic Geology, 111(8): 1883~1914.

    • Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216(3-4): 249~270.

    • Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.

    • Ansberque C, Mark C, Caulfield J T, Chew D M. 2019. Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chemical Geology, 524: 406~420.

    • Audétat A, Pettke T. 2006. Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). Journal of Petrology, 47(10): 2021~2046.

    • Audétat A. 2015. Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado. Journal of Petrology, 56 (8): 1519~1546.

    • Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6): 1033~1056.

    • Ayers J C, Peters T J. 2018. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1. 5 GPa and 800-1000℃. Geochimica et Cosmochimica Acta, 223: 60~74.

    • Baksheev I A, Prokof'Ev V Y, Zaraisky G P, Chitalin A F, Yapaskurt V O, Nikolaev Y N, Tikhomirov P L, Nagornaya E V, Rogacheva L I, Gorelikova N V. 2012. Tourmaline as a prospecting guide for the porphyry-style deposits. European Journal of Mineralogy, 24(6): 957~979.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Barnes J D, Sharp Z D. 2017. Chlorine isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 345~378.

    • Bell E A, Boehnke P, Hopkins-Wielicki M D, Harrison T M. 2015. Distinguishing primary and secondary inclusion assemblages inJack Hills zircons. Lithos, 234-235: 15~26.

    • Bell E A, Boehnke P, Harrison T M, Wielicki M M. 2018. Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477: 151~160.

    • Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences. 48(4): 603~619.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002a. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002b. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of geochemical exploration, 76(1): 45~69.

    • Blevin P L, Chappell B W. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 305~316.

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.

    • Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.

    • Boyce J W, Liu Yang, Rossman G R, Guan Yunbin, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances. Nature, 466(7305): 466~469.

    • Boyce J W, Tomlinson S M, McCubbin F M, Greenwood J P, Treiman A H. 2014. The lunar apatite paradox. Science, 344: 400~402.

    • Brice J C. 1975. Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth, 28(2): 249~253.

    • Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385: 105900.

    • Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55(8): 1619~1651.

    • Bruand E, Storey C, Fowler M. 2016. An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology, 44(2): 91~94.

    • Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102(1): 75~84.

    • Bruand E, Fowler M, Storey C, Laurent O, Nebel O. 2020. Accessory mineral constraints on crustal evolution: Elemental fingerprints for magma discrimination. Geochemical Perspectives, 13: 7~12.

    • Buret Y, von Quadt A, Heinrich C, Selby D, Wälle M, Peytcheva I. 2016. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450: 120~131.

    • Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.

    • Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimicaet Cosmochimica Acta, 95: 196~212.

    • Burnham A D, Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.

    • Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.

    • Cao Kang, Yang Zhiming, Hou Zengqian, Yu Chao. 2022. Contrasting porphyry Cu fertilities in the Yidun arc, eastern Tibet: Insights from zircon and apatite compositions and implications for exploration. Society of Economic Geologists Special Publication, 2(24): 231~255.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.

    • Carmichael I S E, Ghiorso M S. 1990. The effect of oxygen fugacity on the redox state of natural liquids and their crystallising phases. Reviews in Mineralogy and Geochemistry, 24: 191~2012.

    • Chapman J B, Gehrels G E, Ducea M N, Giesler N, Pullen A. 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology, 439: 59~70.

    • Chelle-Michou C, Chiaradia M, Ovtcharova M, Ulianov A, Wotzlaw J F. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198-199: 129~140.

    • Chelle-Michou C, Chiaradia M. 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions to Mineralogy and Petrology, 172(11): 1~26.

    • Chen Lei, Zhang Yong. 2018. In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: Constraints on the petrogenetic-metallogenic features. Ore Geology Reviews, 94: 93~103.

    • Chen Weiterry, Zhou Meifu. 2015. Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu (Mo, Ree) deposit, SW China. American Journal of Science, 315: 671~711.

    • Chew D M, Drost K, Petrus J A. 2019. Ultrafast, >50 Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals. Geostandards and Geoanalytical Research, 43(1): 39~60.

    • Chew D M, Spikings R A. 2021. Apatite U-Pb thermochronology: A review. Minerals, 11: 1095.

    • Cherniak D J, Watson E B. 2003. Diffusion in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon. Mineralogical Society of America and Geochemical Society. Reviews in Mineralogy and Geochemistry, 53: 113~143.

    • Chiaradia M, Ulianov A, Kouzmanov K, Beate B. 2012. Why large porphyry Cudeposits like high Sr/Y magmas? Scientific Reports, 2(9): 685.

    • Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatitecomposition: Tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology, 50(10): 1829~1855.

    • Cogné N, Chew D M, Stuart F M. 2014. The thermal history of the western Irish onshore. Journal of the Geological Society, 171: 779~792.

    • Colombini L L, Miller C F, Gualda G A, Wooden J L, Miller J S. 2011. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineralogy and Petrology, 102: 29~50.

    • Cooke D R, Baker M, Hollings P, Sweet G, Chang Zhaoshan, Danyushevsky L V, Gilbert S E, Zhou Taofa, White N C, Gemmell B, Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoringand fertility assessments. In: Kelley K D Golden H C, eds. Building Exploration Capability for the 21st Century. SEG Special Publication, 18. Boulder, CO, USA: Society of Economic Geologists, 127~152.

    • Cooke D R, Wilkinson J J, Baker M, Agnew P, Martin H. 2020. Using mineral chemistry to aid exploration: A case study from the resolution porphyry Cu-Mo deposit, Arizona. Economic Geology, 115 (4): 813~840.

    • Corfu F, Hanchar J M, Hoskin P, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Cottrell E, Walter MJ, Walker D. 2009. Metal-silicate partitioning of tungsten at high pressure and temperature: implications for equilibrium core formation in Earth. Earth and Planetary Science Letters, 281(3-4): 275~287.

    • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole “sponge” in arc crust? Geology, 35(9): 787~790.

    • Davidson J, Turner S, Plank T. 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3): 525~537.

    • Dill H G. 1994. Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks? Sedimentary Geology, 92(s3-4): 175~196.

    • Dilles J H, Kent A J, Wooden J L, Tosdal R, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology. 110 (1): 241~251.

    • Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850~950℃. Chemical Geology, 384: 94~111.

    • Dong Ping. 2005. Halogen-element (fluorine, chlorine, and bromine) behaviour in apatites, scapolite, and sodalite: An experimental investigation with field applications. Doctoral dissertation of University of Saskatchewan (Canada).

    • Du Jingguo, Wang Gongwen, Jia Lihui. 2019. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization. Ore Geology Reviews, 115: 103174.

    • Duan Zhanzhan, Wei Chuanjing, Rehman H U. 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: Insights into the regional Archean P-T-t history. Precambrian Research, 292: 240~257.

    • Es'kova E M. 1959. Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya, 2: 130~139.

    • Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251~284.

    • Feng Yantong, Zhang Wen, Hu Zhaochu Liu Yongsheng, Luo Tao, He Tao, Liu Hong, Yu Kun, 2022. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the earth sciences. Science China Earth Sciences, 65(1): 182~196.

    • Fernandes P, Cogne N, Chew D M, Rodrigues B, Jorge R C G S, Marques J, Jamal D, Vasconcelos L. 2015. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. Journal of African Earth Sciences, 112(A): 55~72.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Finch R J, Hanchar J M. 2003. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry, 53: 1~25.

    • Fleet M E. 2005. XANES spectroscopy of sulfur in Earth materials. Canadian Mineralogist, 43: 1811~1838.

    • Fleet M E, Pan Yuanming. 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist, 80(3): 329~335.

    • Fleet M E, Liu Xiaoyang, Pan Yuanming. 2000. Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist, 85(10): 1437~1446.

    • Fleischer M, Altschuler Z S. 1986. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neues Jb. Mineral. Monat, 467~480.

    • Franz G, Morteani G, Rhede D. 2015. Xenotime-(Y) formation from zircon dissolution-precipitation and HREE fractionation: An example from a metamorphosed phosphatic sandstone, Espinhao fold belt (Brazil). Contributions to Mineralogy and Petrology, 170(4): 1~22.

    • Frondel. 1953, Hydroxyl substitution in thorite and zircon. American Mineralogist, 38: 1007~1018.

    • Frost B R, Lindsley D. 1991. Occurance of iron-titanium oxides in igneous rocks. Reviews in Mineralogy and Geochemistry, 25: 433~468.

    • Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology, 94(1): 42~45.

    • Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xingshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203(10): 104552.

    • Ghiorso M S, Evans B W. 2008. Thermodynamicsof rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science, 308(9): 957~1039.

    • Ghiorso M S, Gualda G A R. 2013. A method for estimating the activity oftitania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contributions to Mineralogy and Petrology, 165: 73~81.

    • Gillespie J, Nemchina A A, Kinny P D, Martin L, Aleshin M, Roberts M P, Ireland T R, Whitehouse M J, Jeon H, Cavosie A J, Kirkland C L. 2021. Strontium isotope analysis of apatite via SIMS. Chemical Geology, 559: 119979.

    • Goldoff B, Webster J D, Harlov D E. 2012. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97: 1103~1115.

    • Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghøj K, Schwartz J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643~646.

    • Grimes C B, Wooden J L, Cheadle M J, John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170: 46.

    • Halden N M, Hawthorne F C. 1993. The fractal geometry of oscillatory zoning in crystals: Application to zircon. American Mineralogist, 78(9-10): 1113~1116.

    • Hammouda T, Chantel J, Devidal J. 2010. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochimicaet Cosmochimica Acta, 74(24): 7220~7235.

    • Harlov D E, Andersson U B, Förster H-J, Nyström J O, Dulski P, Broman C. 2002. Apatite-monazite relations in the Kiirunavaara magnetite apatite ore, northern Sweden. Chemical Geology, 191(1-3): 47~72.

    • Harlov D E, Förster H J. 2003. Fluid-induced nucleation of (Y+REE) phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88: 1209~1229.

    • Harlov D E, Wirth R, Förster H. 2005. An experimental study of dissolutionreprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150: 268~286.

    • Harlov D E. 2015. Apatite: a fingerprint for metasomatic processes. Elements, 11: 171~176.

    • Hayden L A, Watson E B. 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258: 561~568.

    • Heaman L M, Bowins R, Crocket J. 1990. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochimica et Cosmochimica Acta, 54(6): 1597~1607.

    • Hedenquist J W, Watanabe Y, Arribas A. 2020. Hypogene alunite from theel salvador district, chile, indicates potential for a blind porphyry copper center. Economic Geology, 115(2): 231~239.

    • Henrichs I A, Chew D M, O'Sullivan G J, Mark C, McKenna C, Guyett P. 2019. Trace-element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist-to amphibolite-facies Barrovian metamorphism. Geochemistry, Geophysics, Geosystems, 20(8): 4103~4129.

    • Hoskin P. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64: 1905~1923.

    • Hou Zengqian, Duan Lianfeng, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang, Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541~1575.

    • Hsu Y J, Zajacz Z, Ulmer P, Heinrich C A. 2019. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth's upper crust and implications for magmatic-hydrothermal ore genesis. Geochimica et Cosmochimica Acta, 261: 171~190.

    • Hughes J M, John M. 2015a. The many facets of apatite. American Mineralogist, 100(5-6): 1033~1039.

    • Hughes J M, Rakovan J F. 2015b. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements, 11(3): 165~170.

    • Imai A. 2004. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resource Geology, 54(3): 357~372.

    • Imai A, Listanco E L, Fujii T. 1993. Petrologic and surfur isotopic significance of highly oxidized and silfur-rich magma of Mt. Pinatabo, Philippines. Geology, 21(8): 699~702.

    • Imai A. 2002. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks. Resource Geology, 52(2): 147~161.

    • Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75: 458~484.

    • Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.

    • Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415~418.

    • Jugo P J, Luth R W, Richards J P. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimicaet Cosmochimica Acta, 69(2): 497~503.

    • Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74: 5926~5938.

    • Kirkland C L, Smithies R H, Taylor R, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.

    • Klemme S, Dalpé C. 2003. Trace-element partitioning between apatite and carbonatite melt. American Mineralogist, 88: 639~646.

    • Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2+ in apatite as a function of oxidation state: implications for a new oxybarometer. American Mineralogist, 102(3): 548~557.

    • Konecke B A, Fiege A, Simon A C, Linsler S, Holtz F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochimica et Cosmochimica Acta, 265: 242~258.

    • Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) Systems. Society of Economic Geologists Special Publication 16: 573~618.

    • Kusebauch C, John T, Whitehouse M J, Engvik A. 2015a. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contributions to Mineralogy and Petrology, 170(4): 1~20.

    • Kusebauch C, John T, Whitehouse M J, Klemme S, Putnis A. 2015b. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochimicaet Cosmochimica Acta, 170: 225~246.

    • Kutoglu A. 1974, Structure refi nement of the apatite Ca5(VO4)3(OH). Neues Jahrbuch für Mineralogie - Monatshefte, 5: 210~218.

    • La Tourrette T Z, Burnett D S, Bacon C R. 1991. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. Geochimicaet Cosmochimica Acta, 55(2), 457~469.

    • Lee R G, Byrne K, D'Angelo M, Hart C J R, Alfaro M. 2021. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Mineralium Deposita, 56(2): 215~238.

    • Leng Chengbiao, Cooke D R, Hou Zenqian, Evans N J, Zhang Xingchun, Chen Weiterry, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.

    • Li Huijuan, Hermann J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2. 5 GPa, 800℃: A new experimentally derived thermodynamic model. American Mineralogist, 102(3): 580~594.

    • Li Jinxiang, Li Guangming, Evans N J, Zhao Junxing, Qin Kezhang, Xie Jing. 2021. Primary fluid exsolution in porphyry copper systems: Evidence from magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56(2): 407~415.

    • Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 105820: 380~381.

    • Li Qiuli. 2016. “High-Ueffect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).

    • Li Qiuyun, Yang Zhiming, Wang Rui, Sun Maoyu, Qu Huanchun. 2021. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, southern Tibet. Acta Petrologicaet Mineralogica, 40(6): 1023~1048 (in Chinese with English abstract).

    • Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.

    • Li Weiran, Costa F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochimica et Cosmochimica Acta, 269: 203~222.

    • Li Weiran, Costa F, Nagashima K, 2021. Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. Journal of Petrology, 62(4): 1~35.

    • Li Xianhua, Li Yang, Li Qiuli, Wu Liguang, Wang Hao, Yang Chuan, Wei Gangjian, Zhang Wanfeng. 2022. Progress and prospects of radiometric geochronology. Acta Geologica Sinica, 96(1): 104~122 (in Chinese with English abstract).

    • Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimicaet Cosmochimica Acta, 166: 53~73.

    • Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.

    • Liu Xuelong, Yang Zhiming, Lu Yingxiang, Mei Shehua, Zhang Na, Zhu Jun, Chen Jianhang, Liu Sihan, Li Zhenhuan. 2021. Apatite and zircon fission track chronology of the Late Cretaceous porphyry Mo-Cu deposits in the Zhongdian area, Yunnan. Acta Geologica Sinica, 95(11): 3366~3379.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Liu Yu, Li Qiuli, Tang Guoqiang, Li Xianhua. 2020a. Concurrent determination of U-Pb age and REE mass fractions of zircon by high mass resolution SIMS. Geostandards and Geoanalytical Research, 44(3): 421~437.

    • Liu Yu, Li Xianhua, Li Qiuli, Tang Guoqiang. 2020b. Breakthrough of 2- to 3-μm scale U-Pb zircon dating using Cameca IMS-1280HR SIMS. Surface and Interface Analysis, 52(5): 214~223.

    • Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.

    • Long Yijie, Yang Wei, Lin Yangting, Yang Jinhui, Hao Jialong, Zhang Jianchao. 2019. Sub-micron trace elemental distributions and U-Pb dating of zircon from the oldest rock in the Anshan area, North China Craton. Precambrian Research, 322: 1~17.

    • Loucks R R. 2014. Distinctive composition of copper-ore-forming arc magmas. Journal of the Geological Society of Australia, 61(1): 5~16.

    • Loucks R R, Fiorentini M L, Rohrlach B D. 2018. Divergent T-fo2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contributions to Mineralogy and Petrology, 173: 104.

    • Loucks R R, Fiorentini M L, Henríquez G J. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3): 1~30.

    • Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated post-collisional high-Sr/Y copper-ore-forming water-rich magmas in Tibet. Geology, 43: 583~586.

    • Lu Yongjun, Loucks R R, Fiorentini M, McCuaig T C, Evans N J, Yang Zhiming, Hou Zengqian, Kirkland C L, Parra-Avila L A, Kobussen A. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Society of Economic Geologists, Special Publication, 329~347.

    • Lu Yongjun, Smithies R H, Wingate M, Evans N J, McCuaig T C, Champion D C, Outhwaite M. 2019. Zircon fingerprinting of magmatic-hydrothermal systems in the Archean Yilgarn Craton. Geological Survey of Western Australia, 197.

    • Luo Yan, Ayers J C. 2009. Experimental measurements of zircon/melt trace-element partition coefficients. Geochimica et Cosmochimica Acta, 73: 3656~3679.

    • Mahood G, Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11~30.

    • Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.

    • Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?” \[Geochimica et Cosmochimica Acta 132 (2014) 101~119\]. Geochimica et Cosmochimica Acta, 183: 267~270.

    • Marshall A S, Macdonald R, Rogers N W, Fitton J G, Tindle A G, Nejbert K Hinton R W. 2009. Fractionation of peralkaline silicic magmas: The Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50(2): 323~359.

    • Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimicaet Cosmochimica Acta, 69(5): 1275~1286.

    • McCubbin F M, Steele A, Nekvasil H, Schnieders A, Rose T, Fries M, Carpenter P K, Jolliff B L. 2010. Detection of structurally bound hydroxyl in apatite from Apollo Mare basalt 15058, 128 using Tof-SIMS. American Mineralogist, 95(8-9): 1141~1150.

    • McCubbin F M, Hauri E H, Elardo S M, Vander Kaaden K E, Wang Jianhua, Shearer C K. 2012. Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40(8): 683~686.

    • McCubbin F M, Vander Kaaden K E, Tartèse, R, Boyce J W, Mikhail S, Whitson E S, Bell A S, Anand M, Franchi I A, Wang Jianhua, Hauri E H. 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1. 0-1. 2 GPa and 950-1000℃. American Mineralogist, 100(8-9): 1790~1802.

    • Meng Juntong, Xia Xiaoping, Ma Lin, Jiang Ziqi, Xu Jian, Cui Zexian, Yang Qing, Zhang Wanfeng, Zhang Le. 2021. A H2O-in-zircon perspective on the heterogeneous water content of crust-derived magmas in southern Tibet. Science China Earth Science, 64: 1184~1194 (in Chinese with English abstract).

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M, Hinton R, Bromiley G. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • Mohammadi N, Lentz D R, Mcfarlane C, Yang Xueming. 2021. Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas granite, New Brunswick, Canada. Lithos, 382-383: 105926.

    • Murali A V, Parthasarathy R, Mahadevan T M, Das M S. 1983. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—a case study on Indian zircons. Geochimica et Cosmochimica Acta, 47(11): 2047~2052.

    • Mutch E J F, Blundy J D, Tattitch B C, Cooper F J, Brooker R A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171: 85.

    • Nagasawa H. 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth and Planetary Science Letters, 9(4): 359~364.

    • Nandedkar R H, Hürlimann N, Ulmer P, Müntener O. 2016. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: An experimental study. Contributions to Mineralogy and Petrology, 171(8-9): 71.

    • Nardi L V S, Formoso M L L, Müller I F, Fontana E, Jarvis K, Lamarão C. 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335: 1~7.

    • Nathwani C L, Loader M A, Wilkinson J J, Buret, Y, Sievwright R H, Hollings P. 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48: 324~327.

    • Odlum M L, Levy D A, Stockli D F, Stockli L D, DesOrmeau J W. 2022. Deformation and metasomatism recorded by single-grain apatite petrochronology. Geology, 50(6): 697~703.

    • Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16: 491~559.

    • O'Sullivan G, Chew D M, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 201: 103044.

    • Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254: 118~130.

    • Pan Yuanming, Fleet M E. 2002. Compositions ofthe apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48: 13~49

    • Parat F, Holtz F O. 2004. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contributions to Mineralogy and Petrology, 147(2): 201~212.

    • Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150(6): 643~651.

    • Parat F, Holtz F, Streck M J. 2011. Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73: 285~314.

    • Paris E, Giuli G, Carroll M R, Davoli I. 2001. The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy. Canadian Mineralogist, 39(2): 331~339.

    • Peng Genyong, Luhr J F, Mcgee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82(11-12): 1210~1224.

    • Piccoli P M, Candela P A. 1994. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the bishop tuff (long valley) and tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294: 92~135.

    • Piccoli P M, Candela P A. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1): 255~292.

    • Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimicaet Cosmochimica Acta, 70(17): 4513~4527.

    • Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101: 841~858.

    • Pyle J M, Spear F S, Wark D A. 2002. Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Reviews in Mineralogy and Geochemistry, 48: 337~362.

    • Quintero R R, Kitajima K, Lackey J S, Kozdon R, Strickland A, Valley J W. 2021. Oxygen isotope ratios in zircon and garnet: a record of assimilation and fractional crystallization in the Dinkey Dome peraluminous granite, Sierra Nevada, California. American Mineralogist, 106(5): 715~729.

    • Reubi O, Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461: 1269~1273.

    • Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu (Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.

    • Richards J P. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27~45.

    • Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271~305.

    • Richards J P. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology and the Bulletin of the Society of Economic Geologists, 106: 1075~1081.

    • Richards J P, Spell T, Rameh E, Razique A, Fletcher T. 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan. Economic Geology, 107(2): 295~332.

    • Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.

    • Ricketts J W, Kelley S A, Karlstrom K E, SchmandtB, Donahue M S, van Eijk J. 2016. Synchronous opening of the Rio Grande rift along its entire length at 25-10 Ma supported by apatite (U-Th)/He and fission-track thermochronology, and evaluation of possible driving mechanisms. Geological Society of America Bulletin, 128(3-4): 397~424.

    • Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T. 2008. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1): 94~106.

    • Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45~66.

    • Robinson K L, Taylor G J. 2014. Heterogeneous distribution of water in the Moon. Nature Geoscience, 7(6): 401~408.

    • Rochín-BañagaH, Davis D W, Schwennicke T. 2021. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry. Geology, 49(9): 1027~1031.

    • RØnsbo J G. 1989. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74: 896~901.

    • Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261~295.

    • Rubatto D, Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241(1-2): 38~61.

    • Rutherford M. 1988. The May 18, 1980, eruption of Mount St. Helens: 3. Stability and chemistry of amphibole in the magma chamber. Journal of Geophysical Research Solid Earth, 93(B10): 11949~11959.

    • Rutherford M J, Hill P M. 1993. Magmas ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mt. St. Helens eruptions. Journal of Geophysical Research Solid Earth, 98(B11): 19667~19685.

    • Sano Y, Terada K, Fukuoka T. 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chemical Geology, 184(3): 217~230.

    • Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.

    • Seedorff E, Dilles J H, Proffett Jr J M, Einaudi M T, Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 251~298.

    • Selverstone J, Sharp Z D. 2015. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks. Earth and Planetary Science Letters, 417: 120~131.

    • Sha Liankun, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861~3881.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Sievwright R. 2017. Developing magnetite chemistry as an exploration tool for porphyry copper deposits. PhD thesis of Imperial College London.

    • Sillitoe R H. 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3~41.

    • Simon A C, Ripley E M. 2011. The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73: 513~578.

    • Singer D A, Berger V I, Moring B C. 2008. Porphyry copper deposits of the world: Database and grade and tonnage models, 2008: U. S. Geological Survey, Open-File Report, 2008~1155.

    • Smithies R H, Lu Yongjun, Kirkland C L, Johnson T E, Mole D R, Champion D C, Martin L, Jeon H, Wingate M T D, Johnson S P. 2021. Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature, 592: 70~75.

    • Smythe D J, Brenan J M. 2015. Cerium oxidation state in silicate melts: Combined fo2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.

    • Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.

    • Speer J A. 1982. Zircon. In: Ribbe P H, ed. Orthosilicates. Rev Mineral, 5: 67~112.

    • Stock M J, Humphreys M C S, Smith V C, Johnson R D, Pyle D M. 2015. New constraints on electron-beam induced halogen migration in apatite. American Mineralogist, 100: 281~293.

    • Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59(12): 2463~2492.

    • Stockli D F, Farley K A, Dumitru T A. 2000. Calibration of the (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology, 28: 983~986.

    • Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.

    • Stormer J C, Pierson M L, Tackler R C. 1993. Variation of F-X-Ray and Cl-X-Ray intensity due to anisotropic diffusion in apatite during electron-microprobe analysis. American Mineralogist, 78(5): 641~648.

    • Sun Jinfeng, Yang Jinhui, Zhang Jiheng, Yang Yueheng, Zhu Yusheng. 2021. Apatite geochemical and Sr Nd isotopic insights into granitoid petrogenesis. Chemical Geology, 566: 120104.

    • Sun Saijun, Yang Xiaoyon, Wang Guangjie, Sun Weidong, Zhang Hong, Li Congying, Ding Xing. 2019. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chemical Geology, 510: 200~214.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Li Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Takahashi Y, Sakashima T, Shimizu H. 2003. Observation of tetravalent cerium in zircon and its reduction by radiation effect. Geophysical Research Letters, 30(3): 263~263.

    • Tang Ming, Chu Xu, Hao Jihua, Shen Bing. 2021. Orogenic quiescence in Earth's middle age. Science, 371: 728~731.

    • Tartèse R, Anand M, Barnes J J, Starkey N A, Franchi I A, Sano Y. 2013. The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica et Cosmochimica Acta, 122: 58~74.

    • Taylor R J M, Harley S L, Hinton R W, Elphick S, Clark C, Kelly N M. 2015. Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33(3): 231~248.

    • Thomas J B, Bodnar R J, Shimizu N, Sinha A K. 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimicaet Cosmochimica Acta, 66(16): 2887~2901.

    • Trail D, Tailby N D, Lanzirotti A, Newville M, Thomas J B, Watson, E B. 2015. Redox evolution of silicic magmas: Insights from XANES measurements of Ce valence in Bishop Tuff zircons. Chemical. Geology, 402: 77~88.

    • Tsuboi M. 2005. The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chemical Geology, 221(3): 157~169.

    • Uribe-Mogollon C, Maher K. 2020. White mica geochemistry: discriminating between barren and mineralized porphyry systems. Economic Geology, 115(2): 325~354.

    • Venezky D Y, Rutherford M J. 1997. Preeruption conditions and timing of dacite-andesite magma mixing in the 2. 2 ka eruption at Mount Rainier. Journal of Geophysical Research Solid Earth, 102(B9): 20068~20086.

    • Wallis D, Carter A, Phillips R J, Parsons A, Searle M P. 2016. Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India. Tectonics, 35(3): 704~721.

    • Wang Changming, Bagas L, Lu Yongjun, Santosh M, Du Bin, McCuaig T C. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39~65.

    • Wang Lianxun, Ma Changqian, Zhang Chao, Zhu Yuxiang, Marks M A W. 2018. Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): Insights into the elevated fluorine in A-type granite. Chemical Geology, 478: 164~182.

    • Wang Qing, Zhu Dicheng, Zhao Zhidan, Guan Qi, Zhang Xiaoqian, Sui Qinglin, Hu Zhaochu, Mo Xuanxue. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59~66.

    • Wang Rui, Richards J P, Hou Zengqian, Yang Zhiming, DuFrane S A. 2014. Increased magmatic water content-the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109: 1315~1339.

    • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.

    • Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11(3): 177~182.

    • Webster J D, Goldoff B A, Flesch R N, Nadeau P A, Silbert Z W. 2017. Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50-200 MPa and 700-1000℃. American Mineralogist, 102(1): 61~74.

    • Wilkinson J J, Chang Zhaoshan, Cooke D R, Baker M J, Wilkinson C C, Inhlis S, Chen Huayong, Gemmell J B. 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10~26.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xiao Rong, Li Xiaofeng, Wang Cuiyu, Wei Xinglin, Bai Yanping. 2016. Diagenetic and metallogenic geochronological characteristics of Zhushahong porphyry copper deposit in Dexing area of Jiangxi and its implications. Journal of Earth Sciences and Environment, 38(1): 55~65 (in Chinese with English abstract).

    • Xie Fuwei, Tang Juxing, Lang Xinghai, Ma Di. 2018. The different source and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite. Lithos, 314-315: 447~62.

    • Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing'an Range, NE China. American Mineralogist, 105: 382~396.

    • Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on theformation of the Giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62(4): egab018.

    • Xu Bo, Griffin W L, Hou Zengqian, Lu Yongjun, Belousova E A, Xu Jifeng, O'Reilly S Y. 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106: 656~661.

    • Xu Cheng, Kynicky J, Chakhmouradian A R, Li Xianhua, Song Wenlei. 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos, 227: 107~121.

    • Xu Leiluo, Bi Xianwu, Hu Ruizhong, Tang Yongyong, Wang Xinsong, Xu Yue. 2015. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China. Mineralogy and Petrology, 109(2): 181~200.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.

    • Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43(2): 186~200.

    • Yang Wei, Lin Yangting, Hao Jialong, Zhang Jianchao, Hu Sen, Ni Huaiwei. 2016. Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contributions to Mineralogy and Petrology, 171(3): 28.

    • Yao Chunliang, Lu Jianjun, Guo Weimin. 2007. Compositional difference between three generations of apatite from Tongchang porphyry copper deposit, Jiangxi Province, southeast China. Acta Mineralogica Sinica, 27(1): 31~40 (in Chinese with English abstract).

    • Zeng Liping, Zhao Xinfu, Li Xiaochun, Hu Hao, McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468~2483.

    • Zhai Yusheng, Deng Jun, Peng Runmin. 2020. Research contents and methods for post-ore changes modifications and preservation. Earth Science, 25(4): 340~345 (in Chinese with English abstract).

    • Zhang Bidong, Lin Yangting, Moser D E Hao Jialong, Liu Yu, Zhang Jianchao, Barker I R, Li Qiuli, Shieh S R, Bouvier A. 2021. Radiogenic Pb mobilization induced by shock metamorphism of zircons in the Apollo 72255 Civet Cat norite clast. Geochimicaet Cosmochimica Acta, 302: 175~192.

    • Zhang Daohan, Audétat A. 2017a. Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA. Journal of Petrology, 58(2): 277~296.

    • Zhang Daohan, Audétat A. 2017b. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Economic Geology, 112: 221~244.

    • Zhang Daohan, Audétat A. 2018. Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: A melt and fluid inclusion study. Economic Geology, 113: 803~24.

    • Zhang Peipei. 2015. Hydrogen diffusion in NAMs: Andradite garnet and zircon. Doctoral Dissertation of University of Science and Technology of China.

    • Zhao Xinfu, Zhou Meifu, Gao Jianfeng, Li Xiaochun, Li Jianwei. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871~884.

    • Zhong Shihua, Seltmann R, Qu Hongying, Song Yingxin. 2019. Characterization of the zircon Ce anomaly forestimation of oxidation state of magmas: A revised Ce/Ce* method. Mineralogy and Petrology, 113: 755~763.

    • Zhong Shihua, Li Sanzhong, Seltmann R, Lai Zhiqing, Zhou Jie. 2021. The influence of fractionation of REE-enriched minerals on the zircon partition coefficients. Geoscience Frontiers, 12(3): 101094.

    • Zhu Ziyi, Campbell I H, Allen C M, Burnham A D. 2020. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 536: 116140.

    • Zou Xinyu, Jiang Jiliang, Qin Kezhang, Han Xinlei, Li Guangming, Evans N J, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.

    • Zou Xinyu, Jiang Jiliang, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 982~999 (in Chinese with English abstract).

    • 李秋立. 2016. 离子探针U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.

    • 李秋耘, 杨志明, 王瑞, 孙茂妤, 曲焕春. 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023~1048.

    • 李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.

    • 刘学龙, 杨志明, 卢映祥, 梅社华, 张娜, 朱俊, 陈建航, 刘思晗, 李振焕. 2021. 云南中甸地区晚白垩世斑岩型Mo-Cu矿床磷灰石, 锆石裂变径迹年代学研究. 地质学报, 95(11): 3366~3379.

    • 蒙均桐, 夏小平, 马林, 姜子琦, 徐健, 崔泽贤, 杨晴, 张万峰, 张乐. 2021. 拉萨地块南缘壳源岩浆水含量差异: 来自锆石水含量的启示. 中国科学: 地球科学, 51(8): 1389~1400.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 肖荣, 李晓峰, 王翠云, 韦星林, 白艳萍. 2016. 江西德兴地区朱砂红斑岩铜矿成岩成矿年代学特征及其地质意义. 地球科学与环境学报, 38(1): 55~65.

    • 姚春亮, 陆建军, 郭维民. 2007. 江西省铜厂斑岩铜矿磷灰石世代和成分特征研究. 矿物学报, 27(1): 31~40.

    • 翟裕生, 邓军, 彭润民. 2000. 矿床变化与保存的研究内容和研究方法. 地球科学, 25(4): 340~345.

    • 张培培. 2015. 钙铁榴石和锆石中氢的扩散. 中国科学技术大学博士论文.

    • 邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 982~999.

  • 参考文献

    • Aleinikoff J N, Selby D, Slack J F, Day D C, Pillers R M, Cosca M A, Seeger C M, Fanning C M, Samson I M. 2016. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri. Economic Geology, 111(8): 1883~1914.

    • Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216(3-4): 249~270.

    • Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.

    • Ansberque C, Mark C, Caulfield J T, Chew D M. 2019. Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chemical Geology, 524: 406~420.

    • Audétat A, Pettke T. 2006. Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). Journal of Petrology, 47(10): 2021~2046.

    • Audétat A. 2015. Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado. Journal of Petrology, 56 (8): 1519~1546.

    • Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6): 1033~1056.

    • Ayers J C, Peters T J. 2018. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1. 5 GPa and 800-1000℃. Geochimica et Cosmochimica Acta, 223: 60~74.

    • Baksheev I A, Prokof'Ev V Y, Zaraisky G P, Chitalin A F, Yapaskurt V O, Nikolaev Y N, Tikhomirov P L, Nagornaya E V, Rogacheva L I, Gorelikova N V. 2012. Tourmaline as a prospecting guide for the porphyry-style deposits. European Journal of Mineralogy, 24(6): 957~979.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Barnes J D, Sharp Z D. 2017. Chlorine isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 345~378.

    • Bell E A, Boehnke P, Hopkins-Wielicki M D, Harrison T M. 2015. Distinguishing primary and secondary inclusion assemblages inJack Hills zircons. Lithos, 234-235: 15~26.

    • Bell E A, Boehnke P, Harrison T M, Wielicki M M. 2018. Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477: 151~160.

    • Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences. 48(4): 603~619.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002a. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002b. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of geochemical exploration, 76(1): 45~69.

    • Blevin P L, Chappell B W. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 305~316.

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.

    • Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.

    • Boyce J W, Liu Yang, Rossman G R, Guan Yunbin, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances. Nature, 466(7305): 466~469.

    • Boyce J W, Tomlinson S M, McCubbin F M, Greenwood J P, Treiman A H. 2014. The lunar apatite paradox. Science, 344: 400~402.

    • Brice J C. 1975. Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth, 28(2): 249~253.

    • Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385: 105900.

    • Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55(8): 1619~1651.

    • Bruand E, Storey C, Fowler M. 2016. An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology, 44(2): 91~94.

    • Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102(1): 75~84.

    • Bruand E, Fowler M, Storey C, Laurent O, Nebel O. 2020. Accessory mineral constraints on crustal evolution: Elemental fingerprints for magma discrimination. Geochemical Perspectives, 13: 7~12.

    • Buret Y, von Quadt A, Heinrich C, Selby D, Wälle M, Peytcheva I. 2016. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450: 120~131.

    • Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.

    • Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimicaet Cosmochimica Acta, 95: 196~212.

    • Burnham A D, Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.

    • Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.

    • Cao Kang, Yang Zhiming, Hou Zengqian, Yu Chao. 2022. Contrasting porphyry Cu fertilities in the Yidun arc, eastern Tibet: Insights from zircon and apatite compositions and implications for exploration. Society of Economic Geologists Special Publication, 2(24): 231~255.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.

    • Carmichael I S E, Ghiorso M S. 1990. The effect of oxygen fugacity on the redox state of natural liquids and their crystallising phases. Reviews in Mineralogy and Geochemistry, 24: 191~2012.

    • Chapman J B, Gehrels G E, Ducea M N, Giesler N, Pullen A. 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology, 439: 59~70.

    • Chelle-Michou C, Chiaradia M, Ovtcharova M, Ulianov A, Wotzlaw J F. 2014. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198-199: 129~140.

    • Chelle-Michou C, Chiaradia M. 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions to Mineralogy and Petrology, 172(11): 1~26.

    • Chen Lei, Zhang Yong. 2018. In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: Constraints on the petrogenetic-metallogenic features. Ore Geology Reviews, 94: 93~103.

    • Chen Weiterry, Zhou Meifu. 2015. Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu (Mo, Ree) deposit, SW China. American Journal of Science, 315: 671~711.

    • Chew D M, Drost K, Petrus J A. 2019. Ultrafast, >50 Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals. Geostandards and Geoanalytical Research, 43(1): 39~60.

    • Chew D M, Spikings R A. 2021. Apatite U-Pb thermochronology: A review. Minerals, 11: 1095.

    • Cherniak D J, Watson E B. 2003. Diffusion in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon. Mineralogical Society of America and Geochemical Society. Reviews in Mineralogy and Geochemistry, 53: 113~143.

    • Chiaradia M, Ulianov A, Kouzmanov K, Beate B. 2012. Why large porphyry Cudeposits like high Sr/Y magmas? Scientific Reports, 2(9): 685.

    • Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatitecomposition: Tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology, 50(10): 1829~1855.

    • Cogné N, Chew D M, Stuart F M. 2014. The thermal history of the western Irish onshore. Journal of the Geological Society, 171: 779~792.

    • Colombini L L, Miller C F, Gualda G A, Wooden J L, Miller J S. 2011. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineralogy and Petrology, 102: 29~50.

    • Cooke D R, Baker M, Hollings P, Sweet G, Chang Zhaoshan, Danyushevsky L V, Gilbert S E, Zhou Taofa, White N C, Gemmell B, Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoringand fertility assessments. In: Kelley K D Golden H C, eds. Building Exploration Capability for the 21st Century. SEG Special Publication, 18. Boulder, CO, USA: Society of Economic Geologists, 127~152.

    • Cooke D R, Wilkinson J J, Baker M, Agnew P, Martin H. 2020. Using mineral chemistry to aid exploration: A case study from the resolution porphyry Cu-Mo deposit, Arizona. Economic Geology, 115 (4): 813~840.

    • Corfu F, Hanchar J M, Hoskin P, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Cottrell E, Walter MJ, Walker D. 2009. Metal-silicate partitioning of tungsten at high pressure and temperature: implications for equilibrium core formation in Earth. Earth and Planetary Science Letters, 281(3-4): 275~287.

    • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole “sponge” in arc crust? Geology, 35(9): 787~790.

    • Davidson J, Turner S, Plank T. 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3): 525~537.

    • Dill H G. 1994. Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks? Sedimentary Geology, 92(s3-4): 175~196.

    • Dilles J H, Kent A J, Wooden J L, Tosdal R, Koleszar A, Lee R G, Farmer L P. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology. 110 (1): 241~251.

    • Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850~950℃. Chemical Geology, 384: 94~111.

    • Dong Ping. 2005. Halogen-element (fluorine, chlorine, and bromine) behaviour in apatites, scapolite, and sodalite: An experimental investigation with field applications. Doctoral dissertation of University of Saskatchewan (Canada).

    • Du Jingguo, Wang Gongwen, Jia Lihui. 2019. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization. Ore Geology Reviews, 115: 103174.

    • Duan Zhanzhan, Wei Chuanjing, Rehman H U. 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: Insights into the regional Archean P-T-t history. Precambrian Research, 292: 240~257.

    • Es'kova E M. 1959. Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya, 2: 130~139.

    • Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251~284.

    • Feng Yantong, Zhang Wen, Hu Zhaochu Liu Yongsheng, Luo Tao, He Tao, Liu Hong, Yu Kun, 2022. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the earth sciences. Science China Earth Sciences, 65(1): 182~196.

    • Fernandes P, Cogne N, Chew D M, Rodrigues B, Jorge R C G S, Marques J, Jamal D, Vasconcelos L. 2015. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. Journal of African Earth Sciences, 112(A): 55~72.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Finch R J, Hanchar J M. 2003. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry, 53: 1~25.

    • Fleet M E. 2005. XANES spectroscopy of sulfur in Earth materials. Canadian Mineralogist, 43: 1811~1838.

    • Fleet M E, Pan Yuanming. 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist, 80(3): 329~335.

    • Fleet M E, Liu Xiaoyang, Pan Yuanming. 2000. Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist, 85(10): 1437~1446.

    • Fleischer M, Altschuler Z S. 1986. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neues Jb. Mineral. Monat, 467~480.

    • Franz G, Morteani G, Rhede D. 2015. Xenotime-(Y) formation from zircon dissolution-precipitation and HREE fractionation: An example from a metamorphosed phosphatic sandstone, Espinhao fold belt (Brazil). Contributions to Mineralogy and Petrology, 170(4): 1~22.

    • Frondel. 1953, Hydroxyl substitution in thorite and zircon. American Mineralogist, 38: 1007~1018.

    • Frost B R, Lindsley D. 1991. Occurance of iron-titanium oxides in igneous rocks. Reviews in Mineralogy and Geochemistry, 25: 433~468.

    • Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology, 94(1): 42~45.

    • Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xingshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203(10): 104552.

    • Ghiorso M S, Evans B W. 2008. Thermodynamicsof rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science, 308(9): 957~1039.

    • Ghiorso M S, Gualda G A R. 2013. A method for estimating the activity oftitania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contributions to Mineralogy and Petrology, 165: 73~81.

    • Gillespie J, Nemchina A A, Kinny P D, Martin L, Aleshin M, Roberts M P, Ireland T R, Whitehouse M J, Jeon H, Cavosie A J, Kirkland C L. 2021. Strontium isotope analysis of apatite via SIMS. Chemical Geology, 559: 119979.

    • Goldoff B, Webster J D, Harlov D E. 2012. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97: 1103~1115.

    • Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghøj K, Schwartz J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643~646.

    • Grimes C B, Wooden J L, Cheadle M J, John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170: 46.

    • Halden N M, Hawthorne F C. 1993. The fractal geometry of oscillatory zoning in crystals: Application to zircon. American Mineralogist, 78(9-10): 1113~1116.

    • Hammouda T, Chantel J, Devidal J. 2010. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochimicaet Cosmochimica Acta, 74(24): 7220~7235.

    • Harlov D E, Andersson U B, Förster H-J, Nyström J O, Dulski P, Broman C. 2002. Apatite-monazite relations in the Kiirunavaara magnetite apatite ore, northern Sweden. Chemical Geology, 191(1-3): 47~72.

    • Harlov D E, Förster H J. 2003. Fluid-induced nucleation of (Y+REE) phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88: 1209~1229.

    • Harlov D E, Wirth R, Förster H. 2005. An experimental study of dissolutionreprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150: 268~286.

    • Harlov D E. 2015. Apatite: a fingerprint for metasomatic processes. Elements, 11: 171~176.

    • Hayden L A, Watson E B. 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258: 561~568.

    • Heaman L M, Bowins R, Crocket J. 1990. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochimica et Cosmochimica Acta, 54(6): 1597~1607.

    • Hedenquist J W, Watanabe Y, Arribas A. 2020. Hypogene alunite from theel salvador district, chile, indicates potential for a blind porphyry copper center. Economic Geology, 115(2): 231~239.

    • Henrichs I A, Chew D M, O'Sullivan G J, Mark C, McKenna C, Guyett P. 2019. Trace-element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist-to amphibolite-facies Barrovian metamorphism. Geochemistry, Geophysics, Geosystems, 20(8): 4103~4129.

    • Hoskin P. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64: 1905~1923.

    • Hou Zengqian, Duan Lianfeng, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang, Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541~1575.

    • Hsu Y J, Zajacz Z, Ulmer P, Heinrich C A. 2019. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth's upper crust and implications for magmatic-hydrothermal ore genesis. Geochimica et Cosmochimica Acta, 261: 171~190.

    • Hughes J M, John M. 2015a. The many facets of apatite. American Mineralogist, 100(5-6): 1033~1039.

    • Hughes J M, Rakovan J F. 2015b. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements, 11(3): 165~170.

    • Imai A. 2004. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resource Geology, 54(3): 357~372.

    • Imai A, Listanco E L, Fujii T. 1993. Petrologic and surfur isotopic significance of highly oxidized and silfur-rich magma of Mt. Pinatabo, Philippines. Geology, 21(8): 699~702.

    • Imai A. 2002. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks. Resource Geology, 52(2): 147~161.

    • Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75: 458~484.

    • Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.

    • Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415~418.

    • Jugo P J, Luth R W, Richards J P. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimicaet Cosmochimica Acta, 69(2): 497~503.

    • Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74: 5926~5938.

    • Kirkland C L, Smithies R H, Taylor R, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.

    • Klemme S, Dalpé C. 2003. Trace-element partitioning between apatite and carbonatite melt. American Mineralogist, 88: 639~646.

    • Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2+ in apatite as a function of oxidation state: implications for a new oxybarometer. American Mineralogist, 102(3): 548~557.

    • Konecke B A, Fiege A, Simon A C, Linsler S, Holtz F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochimica et Cosmochimica Acta, 265: 242~258.

    • Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) Systems. Society of Economic Geologists Special Publication 16: 573~618.

    • Kusebauch C, John T, Whitehouse M J, Engvik A. 2015a. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contributions to Mineralogy and Petrology, 170(4): 1~20.

    • Kusebauch C, John T, Whitehouse M J, Klemme S, Putnis A. 2015b. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochimicaet Cosmochimica Acta, 170: 225~246.

    • Kutoglu A. 1974, Structure refi nement of the apatite Ca5(VO4)3(OH). Neues Jahrbuch für Mineralogie - Monatshefte, 5: 210~218.

    • La Tourrette T Z, Burnett D S, Bacon C R. 1991. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. Geochimicaet Cosmochimica Acta, 55(2), 457~469.

    • Lee R G, Byrne K, D'Angelo M, Hart C J R, Alfaro M. 2021. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Mineralium Deposita, 56(2): 215~238.

    • Leng Chengbiao, Cooke D R, Hou Zenqian, Evans N J, Zhang Xingchun, Chen Weiterry, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.

    • Li Huijuan, Hermann J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2. 5 GPa, 800℃: A new experimentally derived thermodynamic model. American Mineralogist, 102(3): 580~594.

    • Li Jinxiang, Li Guangming, Evans N J, Zhao Junxing, Qin Kezhang, Xie Jing. 2021. Primary fluid exsolution in porphyry copper systems: Evidence from magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56(2): 407~415.

    • Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 105820: 380~381.

    • Li Qiuli. 2016. “High-Ueffect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).

    • Li Qiuyun, Yang Zhiming, Wang Rui, Sun Maoyu, Qu Huanchun. 2021. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, southern Tibet. Acta Petrologicaet Mineralogica, 40(6): 1023~1048 (in Chinese with English abstract).

    • Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.

    • Li Weiran, Costa F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochimica et Cosmochimica Acta, 269: 203~222.

    • Li Weiran, Costa F, Nagashima K, 2021. Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. Journal of Petrology, 62(4): 1~35.

    • Li Xianhua, Li Yang, Li Qiuli, Wu Liguang, Wang Hao, Yang Chuan, Wei Gangjian, Zhang Wanfeng. 2022. Progress and prospects of radiometric geochronology. Acta Geologica Sinica, 96(1): 104~122 (in Chinese with English abstract).

    • Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimicaet Cosmochimica Acta, 166: 53~73.

    • Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.

    • Liu Xuelong, Yang Zhiming, Lu Yingxiang, Mei Shehua, Zhang Na, Zhu Jun, Chen Jianhang, Liu Sihan, Li Zhenhuan. 2021. Apatite and zircon fission track chronology of the Late Cretaceous porphyry Mo-Cu deposits in the Zhongdian area, Yunnan. Acta Geologica Sinica, 95(11): 3366~3379.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Liu Yu, Li Qiuli, Tang Guoqiang, Li Xianhua. 2020a. Concurrent determination of U-Pb age and REE mass fractions of zircon by high mass resolution SIMS. Geostandards and Geoanalytical Research, 44(3): 421~437.

    • Liu Yu, Li Xianhua, Li Qiuli, Tang Guoqiang. 2020b. Breakthrough of 2- to 3-μm scale U-Pb zircon dating using Cameca IMS-1280HR SIMS. Surface and Interface Analysis, 52(5): 214~223.

    • Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107~119.

    • Long Yijie, Yang Wei, Lin Yangting, Yang Jinhui, Hao Jialong, Zhang Jianchao. 2019. Sub-micron trace elemental distributions and U-Pb dating of zircon from the oldest rock in the Anshan area, North China Craton. Precambrian Research, 322: 1~17.

    • Loucks R R. 2014. Distinctive composition of copper-ore-forming arc magmas. Journal of the Geological Society of Australia, 61(1): 5~16.

    • Loucks R R, Fiorentini M L, Rohrlach B D. 2018. Divergent T-fo2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contributions to Mineralogy and Petrology, 173: 104.

    • Loucks R R, Fiorentini M L, Henríquez G J. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3): 1~30.

    • Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated post-collisional high-Sr/Y copper-ore-forming water-rich magmas in Tibet. Geology, 43: 583~586.

    • Lu Yongjun, Loucks R R, Fiorentini M, McCuaig T C, Evans N J, Yang Zhiming, Hou Zengqian, Kirkland C L, Parra-Avila L A, Kobussen A. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Society of Economic Geologists, Special Publication, 329~347.

    • Lu Yongjun, Smithies R H, Wingate M, Evans N J, McCuaig T C, Champion D C, Outhwaite M. 2019. Zircon fingerprinting of magmatic-hydrothermal systems in the Archean Yilgarn Craton. Geological Survey of Western Australia, 197.

    • Luo Yan, Ayers J C. 2009. Experimental measurements of zircon/melt trace-element partition coefficients. Geochimica et Cosmochimica Acta, 73: 3656~3679.

    • Mahood G, Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11~30.

    • Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.

    • Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?” \[Geochimica et Cosmochimica Acta 132 (2014) 101~119\]. Geochimica et Cosmochimica Acta, 183: 267~270.

    • Marshall A S, Macdonald R, Rogers N W, Fitton J G, Tindle A G, Nejbert K Hinton R W. 2009. Fractionation of peralkaline silicic magmas: The Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50(2): 323~359.

    • Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimicaet Cosmochimica Acta, 69(5): 1275~1286.

    • McCubbin F M, Steele A, Nekvasil H, Schnieders A, Rose T, Fries M, Carpenter P K, Jolliff B L. 2010. Detection of structurally bound hydroxyl in apatite from Apollo Mare basalt 15058, 128 using Tof-SIMS. American Mineralogist, 95(8-9): 1141~1150.

    • McCubbin F M, Hauri E H, Elardo S M, Vander Kaaden K E, Wang Jianhua, Shearer C K. 2012. Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40(8): 683~686.

    • McCubbin F M, Vander Kaaden K E, Tartèse, R, Boyce J W, Mikhail S, Whitson E S, Bell A S, Anand M, Franchi I A, Wang Jianhua, Hauri E H. 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1. 0-1. 2 GPa and 950-1000℃. American Mineralogist, 100(8-9): 1790~1802.

    • Meng Juntong, Xia Xiaoping, Ma Lin, Jiang Ziqi, Xu Jian, Cui Zexian, Yang Qing, Zhang Wanfeng, Zhang Le. 2021. A H2O-in-zircon perspective on the heterogeneous water content of crust-derived magmas in southern Tibet. Science China Earth Science, 64: 1184~1194 (in Chinese with English abstract).

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M, Hinton R, Bromiley G. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • Mohammadi N, Lentz D R, Mcfarlane C, Yang Xueming. 2021. Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas granite, New Brunswick, Canada. Lithos, 382-383: 105926.

    • Murali A V, Parthasarathy R, Mahadevan T M, Das M S. 1983. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—a case study on Indian zircons. Geochimica et Cosmochimica Acta, 47(11): 2047~2052.

    • Mutch E J F, Blundy J D, Tattitch B C, Cooper F J, Brooker R A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171: 85.

    • Nagasawa H. 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth and Planetary Science Letters, 9(4): 359~364.

    • Nandedkar R H, Hürlimann N, Ulmer P, Müntener O. 2016. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: An experimental study. Contributions to Mineralogy and Petrology, 171(8-9): 71.

    • Nardi L V S, Formoso M L L, Müller I F, Fontana E, Jarvis K, Lamarão C. 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335: 1~7.

    • Nathwani C L, Loader M A, Wilkinson J J, Buret, Y, Sievwright R H, Hollings P. 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48: 324~327.

    • Odlum M L, Levy D A, Stockli D F, Stockli L D, DesOrmeau J W. 2022. Deformation and metasomatism recorded by single-grain apatite petrochronology. Geology, 50(6): 697~703.

    • Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16: 491~559.

    • O'Sullivan G, Chew D M, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 201: 103044.

    • Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254: 118~130.

    • Pan Yuanming, Fleet M E. 2002. Compositions ofthe apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48: 13~49

    • Parat F, Holtz F O. 2004. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contributions to Mineralogy and Petrology, 147(2): 201~212.

    • Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150(6): 643~651.

    • Parat F, Holtz F, Streck M J. 2011. Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73: 285~314.

    • Paris E, Giuli G, Carroll M R, Davoli I. 2001. The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy. Canadian Mineralogist, 39(2): 331~339.

    • Peng Genyong, Luhr J F, Mcgee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82(11-12): 1210~1224.

    • Piccoli P M, Candela P A. 1994. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the bishop tuff (long valley) and tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294: 92~135.

    • Piccoli P M, Candela P A. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1): 255~292.

    • Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimicaet Cosmochimica Acta, 70(17): 4513~4527.

    • Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101: 841~858.

    • Pyle J M, Spear F S, Wark D A. 2002. Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Reviews in Mineralogy and Geochemistry, 48: 337~362.

    • Quintero R R, Kitajima K, Lackey J S, Kozdon R, Strickland A, Valley J W. 2021. Oxygen isotope ratios in zircon and garnet: a record of assimilation and fractional crystallization in the Dinkey Dome peraluminous granite, Sierra Nevada, California. American Mineralogist, 106(5): 715~729.

    • Reubi O, Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461: 1269~1273.

    • Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu (Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.

    • Richards J P. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27~45.

    • Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271~305.

    • Richards J P. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology and the Bulletin of the Society of Economic Geologists, 106: 1075~1081.

    • Richards J P, Spell T, Rameh E, Razique A, Fletcher T. 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan. Economic Geology, 107(2): 295~332.

    • Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.

    • Ricketts J W, Kelley S A, Karlstrom K E, SchmandtB, Donahue M S, van Eijk J. 2016. Synchronous opening of the Rio Grande rift along its entire length at 25-10 Ma supported by apatite (U-Th)/He and fission-track thermochronology, and evaluation of possible driving mechanisms. Geological Society of America Bulletin, 128(3-4): 397~424.

    • Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T. 2008. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1): 94~106.

    • Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45~66.

    • Robinson K L, Taylor G J. 2014. Heterogeneous distribution of water in the Moon. Nature Geoscience, 7(6): 401~408.

    • Rochín-BañagaH, Davis D W, Schwennicke T. 2021. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry. Geology, 49(9): 1027~1031.

    • RØnsbo J G. 1989. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74: 896~901.

    • Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261~295.

    • Rubatto D, Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241(1-2): 38~61.

    • Rutherford M. 1988. The May 18, 1980, eruption of Mount St. Helens: 3. Stability and chemistry of amphibole in the magma chamber. Journal of Geophysical Research Solid Earth, 93(B10): 11949~11959.

    • Rutherford M J, Hill P M. 1993. Magmas ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mt. St. Helens eruptions. Journal of Geophysical Research Solid Earth, 98(B11): 19667~19685.

    • Sano Y, Terada K, Fukuoka T. 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chemical Geology, 184(3): 217~230.

    • Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.

    • Seedorff E, Dilles J H, Proffett Jr J M, Einaudi M T, Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 251~298.

    • Selverstone J, Sharp Z D. 2015. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks. Earth and Planetary Science Letters, 417: 120~131.

    • Sha Liankun, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861~3881.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Sievwright R. 2017. Developing magnetite chemistry as an exploration tool for porphyry copper deposits. PhD thesis of Imperial College London.

    • Sillitoe R H. 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3~41.

    • Simon A C, Ripley E M. 2011. The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73: 513~578.

    • Singer D A, Berger V I, Moring B C. 2008. Porphyry copper deposits of the world: Database and grade and tonnage models, 2008: U. S. Geological Survey, Open-File Report, 2008~1155.

    • Smithies R H, Lu Yongjun, Kirkland C L, Johnson T E, Mole D R, Champion D C, Martin L, Jeon H, Wingate M T D, Johnson S P. 2021. Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature, 592: 70~75.

    • Smythe D J, Brenan J M. 2015. Cerium oxidation state in silicate melts: Combined fo2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.

    • Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.

    • Speer J A. 1982. Zircon. In: Ribbe P H, ed. Orthosilicates. Rev Mineral, 5: 67~112.

    • Stock M J, Humphreys M C S, Smith V C, Johnson R D, Pyle D M. 2015. New constraints on electron-beam induced halogen migration in apatite. American Mineralogist, 100: 281~293.

    • Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59(12): 2463~2492.

    • Stockli D F, Farley K A, Dumitru T A. 2000. Calibration of the (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology, 28: 983~986.

    • Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.

    • Stormer J C, Pierson M L, Tackler R C. 1993. Variation of F-X-Ray and Cl-X-Ray intensity due to anisotropic diffusion in apatite during electron-microprobe analysis. American Mineralogist, 78(5): 641~648.

    • Sun Jinfeng, Yang Jinhui, Zhang Jiheng, Yang Yueheng, Zhu Yusheng. 2021. Apatite geochemical and Sr Nd isotopic insights into granitoid petrogenesis. Chemical Geology, 566: 120104.

    • Sun Saijun, Yang Xiaoyon, Wang Guangjie, Sun Weidong, Zhang Hong, Li Congying, Ding Xing. 2019. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chemical Geology, 510: 200~214.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Li Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Takahashi Y, Sakashima T, Shimizu H. 2003. Observation of tetravalent cerium in zircon and its reduction by radiation effect. Geophysical Research Letters, 30(3): 263~263.

    • Tang Ming, Chu Xu, Hao Jihua, Shen Bing. 2021. Orogenic quiescence in Earth's middle age. Science, 371: 728~731.

    • Tartèse R, Anand M, Barnes J J, Starkey N A, Franchi I A, Sano Y. 2013. The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica et Cosmochimica Acta, 122: 58~74.

    • Taylor R J M, Harley S L, Hinton R W, Elphick S, Clark C, Kelly N M. 2015. Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33(3): 231~248.

    • Thomas J B, Bodnar R J, Shimizu N, Sinha A K. 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimicaet Cosmochimica Acta, 66(16): 2887~2901.

    • Trail D, Tailby N D, Lanzirotti A, Newville M, Thomas J B, Watson, E B. 2015. Redox evolution of silicic magmas: Insights from XANES measurements of Ce valence in Bishop Tuff zircons. Chemical. Geology, 402: 77~88.

    • Tsuboi M. 2005. The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chemical Geology, 221(3): 157~169.

    • Uribe-Mogollon C, Maher K. 2020. White mica geochemistry: discriminating between barren and mineralized porphyry systems. Economic Geology, 115(2): 325~354.

    • Venezky D Y, Rutherford M J. 1997. Preeruption conditions and timing of dacite-andesite magma mixing in the 2. 2 ka eruption at Mount Rainier. Journal of Geophysical Research Solid Earth, 102(B9): 20068~20086.

    • Wallis D, Carter A, Phillips R J, Parsons A, Searle M P. 2016. Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India. Tectonics, 35(3): 704~721.

    • Wang Changming, Bagas L, Lu Yongjun, Santosh M, Du Bin, McCuaig T C. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39~65.

    • Wang Lianxun, Ma Changqian, Zhang Chao, Zhu Yuxiang, Marks M A W. 2018. Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): Insights into the elevated fluorine in A-type granite. Chemical Geology, 478: 164~182.

    • Wang Qing, Zhu Dicheng, Zhao Zhidan, Guan Qi, Zhang Xiaoqian, Sui Qinglin, Hu Zhaochu, Mo Xuanxue. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59~66.

    • Wang Rui, Richards J P, Hou Zengqian, Yang Zhiming, DuFrane S A. 2014. Increased magmatic water content-the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109: 1315~1339.

    • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.

    • Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11(3): 177~182.

    • Webster J D, Goldoff B A, Flesch R N, Nadeau P A, Silbert Z W. 2017. Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50-200 MPa and 700-1000℃. American Mineralogist, 102(1): 61~74.

    • Wilkinson J J, Chang Zhaoshan, Cooke D R, Baker M J, Wilkinson C C, Inhlis S, Chen Huayong, Gemmell J B. 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10~26.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xiao Rong, Li Xiaofeng, Wang Cuiyu, Wei Xinglin, Bai Yanping. 2016. Diagenetic and metallogenic geochronological characteristics of Zhushahong porphyry copper deposit in Dexing area of Jiangxi and its implications. Journal of Earth Sciences and Environment, 38(1): 55~65 (in Chinese with English abstract).

    • Xie Fuwei, Tang Juxing, Lang Xinghai, Ma Di. 2018. The different source and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite. Lithos, 314-315: 447~62.

    • Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing'an Range, NE China. American Mineralogist, 105: 382~396.

    • Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on theformation of the Giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62(4): egab018.

    • Xu Bo, Griffin W L, Hou Zengqian, Lu Yongjun, Belousova E A, Xu Jifeng, O'Reilly S Y. 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106: 656~661.

    • Xu Cheng, Kynicky J, Chakhmouradian A R, Li Xianhua, Song Wenlei. 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos, 227: 107~121.

    • Xu Leiluo, Bi Xianwu, Hu Ruizhong, Tang Yongyong, Wang Xinsong, Xu Yue. 2015. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China. Mineralogy and Petrology, 109(2): 181~200.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.

    • Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43(2): 186~200.

    • Yang Wei, Lin Yangting, Hao Jialong, Zhang Jianchao, Hu Sen, Ni Huaiwei. 2016. Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contributions to Mineralogy and Petrology, 171(3): 28.

    • Yao Chunliang, Lu Jianjun, Guo Weimin. 2007. Compositional difference between three generations of apatite from Tongchang porphyry copper deposit, Jiangxi Province, southeast China. Acta Mineralogica Sinica, 27(1): 31~40 (in Chinese with English abstract).

    • Zeng Liping, Zhao Xinfu, Li Xiaochun, Hu Hao, McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468~2483.

    • Zhai Yusheng, Deng Jun, Peng Runmin. 2020. Research contents and methods for post-ore changes modifications and preservation. Earth Science, 25(4): 340~345 (in Chinese with English abstract).

    • Zhang Bidong, Lin Yangting, Moser D E Hao Jialong, Liu Yu, Zhang Jianchao, Barker I R, Li Qiuli, Shieh S R, Bouvier A. 2021. Radiogenic Pb mobilization induced by shock metamorphism of zircons in the Apollo 72255 Civet Cat norite clast. Geochimicaet Cosmochimica Acta, 302: 175~192.

    • Zhang Daohan, Audétat A. 2017a. Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA. Journal of Petrology, 58(2): 277~296.

    • Zhang Daohan, Audétat A. 2017b. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Economic Geology, 112: 221~244.

    • Zhang Daohan, Audétat A. 2018. Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: A melt and fluid inclusion study. Economic Geology, 113: 803~24.

    • Zhang Peipei. 2015. Hydrogen diffusion in NAMs: Andradite garnet and zircon. Doctoral Dissertation of University of Science and Technology of China.

    • Zhao Xinfu, Zhou Meifu, Gao Jianfeng, Li Xiaochun, Li Jianwei. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871~884.

    • Zhong Shihua, Seltmann R, Qu Hongying, Song Yingxin. 2019. Characterization of the zircon Ce anomaly forestimation of oxidation state of magmas: A revised Ce/Ce* method. Mineralogy and Petrology, 113: 755~763.

    • Zhong Shihua, Li Sanzhong, Seltmann R, Lai Zhiqing, Zhou Jie. 2021. The influence of fractionation of REE-enriched minerals on the zircon partition coefficients. Geoscience Frontiers, 12(3): 101094.

    • Zhu Ziyi, Campbell I H, Allen C M, Burnham A D. 2020. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 536: 116140.

    • Zou Xinyu, Jiang Jiliang, Qin Kezhang, Han Xinlei, Li Guangming, Evans N J, Li Zhenzhen, Yang Wei. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 506: 87~96.

    • Zou Xinyu, Jiang Jiliang, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 982~999 (in Chinese with English abstract).

    • 李秋立. 2016. 离子探针U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.

    • 李秋耘, 杨志明, 王瑞, 孙茂妤, 曲焕春. 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023~1048.

    • 李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.

    • 刘学龙, 杨志明, 卢映祥, 梅社华, 张娜, 朱俊, 陈建航, 刘思晗, 李振焕. 2021. 云南中甸地区晚白垩世斑岩型Mo-Cu矿床磷灰石, 锆石裂变径迹年代学研究. 地质学报, 95(11): 3366~3379.

    • 蒙均桐, 夏小平, 马林, 姜子琦, 徐健, 崔泽贤, 杨晴, 张万峰, 张乐. 2021. 拉萨地块南缘壳源岩浆水含量差异: 来自锆石水含量的启示. 中国科学: 地球科学, 51(8): 1389~1400.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 肖荣, 李晓峰, 王翠云, 韦星林, 白艳萍. 2016. 江西德兴地区朱砂红斑岩铜矿成岩成矿年代学特征及其地质意义. 地球科学与环境学报, 38(1): 55~65.

    • 姚春亮, 陆建军, 郭维民. 2007. 江西省铜厂斑岩铜矿磷灰石世代和成分特征研究. 矿物学报, 27(1): 31~40.

    • 翟裕生, 邓军, 彭润民. 2000. 矿床变化与保存的研究内容和研究方法. 地球科学, 25(4): 340~345.

    • 张培培. 2015. 钙铁榴石和锆石中氢的扩散. 中国科学技术大学博士论文.

    • 邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 982~999.