en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘润川,男,1993年生。博士研究生,从事地热资源评价与开发及天体化学等方面的研究。E-mail:liurunchuan@outlook.com。

通讯作者:

任战利,男,1961年生。教授,从事盆地热演化史与油气成藏评价、地热资源评价及开发研究工作。E-mail:renzhanl@nwu.edu.cn。

参考文献
Alfaro C, Rueda-Gutierrez J B, Casallas Y, Rodriguez G, Malo J. 2021. Approach to the geothermal potential of Colombia. Geothermics, 96: 102169.
参考文献
Bai Qinqin. 2019. “Water” type ground fissure in Xi'an region paranormal activity analysis. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Chen Yueqiang, Ji Yongtao, Pu Jingyi, Zhang Xiaohong. 2018. Discussion on the development mode of mid-deep geothermal resources in Guanzhong basin. Western Prospecting Engineering, 30(11): 103~106 (in Chinese with English abstract).
参考文献
Cheng Chao, Yu Wengang, Jia Wanting, Lin Haiyu, Li Lianqing. 2017. Research progress and development tendency about thermal physical properties of rocks. Advances in Earth Science, 32(10): 1072~1083 (in Chinese with English abstract).
参考文献
Dai Meiling, Wang Wenke. 2016. Delineation of typical groundwater source protection. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Deng Yaren, Ren Zhanli, Ren Wenbo. 2017. Geothermal distribution control factors and geothermal prospect in Guanzhong region. Western Development (Land Development and Engineering Research), 2(11): 19~27 (in Chinese with English abstract).
参考文献
Dou Huiping. 2012. Research of chemical clogging during waste geothermal water re-injection based on hydrogeochemical simulation. Master thesis of Chang'an University(in Chinese with English abstract).
参考文献
Dowdle W L, Cobb W M. 1975. Static formation temperature from well logs—An empirical method. Journal of Petroleum Technology, 27: 1326~1330.
参考文献
Erol S, Akin T, Baser A, Saracoglu O, Akin S. 2022. Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics, 98: 102271.
参考文献
Fan Jijiao, Ma Zhiyuan. 2006. Research on the circulation mode and renewability of underground hot water in Guanzhong basin. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Fang Jiabing, Yang Fei, Yue Leping. 1992. Magnetostratigraphic study of the Weihe fifth-order terrace in Changshougou, Baoji City, Shanxi Province. Shaanxi Geology, 10(1): 53~59 (in Chinese with English abstract).
参考文献
Ge Tongming, Fan Limin, Xu Xing, Li Suzhen, Zheng Hongrui. 1991. Paleomagnetic study of borehole W7 in Yancun, Weinan. Marine Geology & Quaternary Geology, 11(4): 59~71 (in Chinese with English abstract).
参考文献
Gudala M, Govindarajan S K. 2021. Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models. Geothermics, 96: 102174.
参考文献
Guo Sasa, Zhu Chuanqing, Qiu Nansheng, Tang Boning, Cui Yue. 2020. Formation conditions and favorable areas for the deep geothermal resources in Xiong'an New Area. Acta Geologica Sinica, 94(7): 2026~2035 (in Chinese with English abstract).
参考文献
Hu Shengbiao, He Lijuan, Wang Jiyang. 2001. Compilation of heat flow data in the continental area of China (3rd Edition). Chinese Journal of Geophysics, 44(5): 611~626 (in Chinese with English abstract).
参考文献
Huang Shuai, Zhu Ke, Dong Jiankai, Li Ji, Jiang Yiqiang, Fang Zhaohong. 2022. Operation stability and heat-affected radius of medium-deep borehole heat exchanger. Journal of Harbin Institute of Technology, 54(6): 119~127 (in Chinese with English abstract).
参考文献
Huang Wei. 2015. Logging study on key parameters of shale gas in Yanchang Formation south central Ordos basin. Doctoral dissertation of Northwestern University (in Chinese with English abstract).
参考文献
Jia Linrui, Cui Ping, Fang Liang, Fang Zhaohong. 2021. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil. HV & AC, 51(1): 101~107 (in Chinese with English abstract).
参考文献
Jian G, Sarathi R S, Burghardt J, Bonneville A, Gupta V, Fernandez C A, Garrison G. 2021. Evaluation of a geener fracturing fluid for geothermal energy recovery: An experimental and simulation study. Geothermics, 97: 102266.
参考文献
Jiang Guangzheng, Gao Wei, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu Shengbiao, Wang Jiyang. 2016. Compilation of heat flow data in the continental area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892~2910 (in Chinese with English abstract).
参考文献
Ke Tingting, Huang Shaopeng, Xu Wei, Tang Xiaoyin, Li Xuxiang. 2022. Evaluation of the multi-doublet performance in sandstone reservoirs using thermal-hydraulic modeling and economic analysis. Geothermics, 98: 102273.
参考文献
Kong Yanlong, Chen Chaofan, Shao Haibing, Pang Zhonghe, Xiong Liangping, Wang Jiyang. 2017. Principle and capacity quantification of deep-borehole heat exchangers.
参考文献
Chinese Journal of Geophysics, 60(7): 4741~4752 (in Chinese with English abstract).
参考文献
Koochak Zadeh M, Haque Mondol N, Jahren J. 2017. Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf. Geophysics, 82: C61~C75.
参考文献
Li Chao, Zhang Likuan, Luo Xiaorong, Zhang Liqiang, Hu Caizhi, Yang Peng, Qiu Guiqiang, Ma Liyuan, Lei Yuhong, Cheng Ming. 2016. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study. Journal of China University of Petroleum (Natural Science Edition), 40(3): 77~87 (in Chinese with English abstract).
参考文献
Li Yang. 2020. Study on the mechanism and effective influence distance of ground fracture in Xi'an. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Li Zhichao. 2017. The lithofacies paleogeography and paleoenvironmental evolution of the Cenozoic in the Weihe basin, China. Doctoral dissertation of Northwestern University (in Chinese with English abstract).
参考文献
Li Zhichao, Li Wenhou, Li Yongxiang, Li Meng. 2015a. Miocene sedimentary facies and paleoclimate characteristics in the Weihe basin. Abstracts of Sedimentology and Unconventional Resources of the 2015 National Sedimentology Conference , 1: 423 (in Chinese with English abstract).
参考文献
Li Zhichao, Li Wenhou, Li Yongxiang, Li Yuhong, Han Wei, Wen Jinhua, Chen Meng, Qin Zhi. 2015b. Sedimentary facies of the Cenozoic in Weihe basin. Journal of Palaeogeography, 17(4): 529~540 (in Chinese with English abstract).
参考文献
Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China. Geology in China, 40(1): 312~321 (in Chinese with English abstract).
参考文献
Liu Cong, Peng Jianbing, Chen Liwei, Deng Yahong, Wu Ming. 2012. Finith element analysis of seismic effects on ground fissures in Xi'an. Journal of Engineering Geology, 20(6): 979~985 (in Chinese with English abstract).
参考文献
Liu Hongjun. 1985. Analysis of geothermic distribution and geothermal anomalies in the Xi'an region. Journal of Chang'an University (Earth Science Edition), 2: 59~63 (in Chinese with English abstract).
参考文献
Liu Hujun, Xue Xiangxu. 2004. Discussion on the Cenozoic and its chronology in the Weihe basin. Journal of Earth Science and Environment, 4: 1~5 (in Chinese with English abstract).
参考文献
Liu Jiangtao, Sun Jun, He Qiaoqiao. 2015. Analysis on present situation of reinjection of geothermal utilized water in Guanzhong basin. Journal of Xi'an University (Natural Science Edition), 18(4): 111~114.
参考文献
Liu Runchuan, Ren Zhanli, Ye Hanqing, Ren Wenbo, Wang Kun, Huai Yinchao, Qi Kai. 2021. Potential evaluation of geothermal resources: Exemplifying some municipalities and key strata in Ordos basin as a study case. Geological Bulletin of China, 40(4): 565~576 (in Chinese with English abstract).
参考文献
Morales E, Veroslavsky G, Manganelli A, Marmisolle J, Pedro A, Samaniego L, Plenc F, Umpierrez R, Ferreiro M, Morales M. 2021. Potential of geothermal energy in the onshore sedimentary basins of Uruguay. Geothermics, 95: 102165.
参考文献
Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng. 2014. Occurrence Law of Geothermal Resources and Key Technologies for Development and Utilization in Guanzhong Basin (1st Edition). Beijing: Geological Publishing House, 132~141 (in Chinese with English abstract).
参考文献
Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng, Liu Jianqiang, Liu Fang, Chen Jianping, Zhao Zhiqiang, Jin Guang, Ma Zhiyuan, Yang Youyun. 2016. Geothermal Resource Occurrence Rules and Key Technologies for Development and Utilization in the Guanzhong Basin. Beijing: Geological Publishing House.
参考文献
Muffler P, Cataldi R. 1978. Methods for regional assessment of geothermal resources. Geothermics, 7(2-4): 53~89.
参考文献
Pang Zhonghe, Kong Yanlong, Pang Jumei, Hu Shengbiao, Wang Jiyang. 2017. Geothermal resources and development in Xiong'an New Area. Bulletin of the Chinese Academy of Sciences, 32: 1224~1230 (in Chinese with English abstract).
参考文献
Qi Kai, Ren Zhanli, Cui Junping, Yu Qiang, Cao Zhanpeng, Yang Peng, Deng Yaren, Zhang Mengting. 2017. The Meso-cenozoic tectonic thermal evolution of the Qishan-Linyou areas in Weibei uplift of Ordos basin and its response in Geology: Evidence from fission track analysis. Acta Geologica Sinica, 91(1): 151~162 (in Chinese with English abstract).
参考文献
Qiu Nansheng, Hu Shengbiao, He Lijuan. 2019. Geothermal Science of Sedimentary Basins. Qingdao: China University of Petroleum Press (in Chinese with English abstract).
参考文献
Rao Song, Jiang Guangzheng, Gao Yajie, Hu Shengbiao, Wang Jiyang. 2016. The thermal structure of lithosphere and heat source mechanism of geothermal fields in Weihe basin. Chinese Journal of Geophysics, 59(6): 2176~2190 (in Chinese with English abstract).
参考文献
Ren Juan, Peng Jianbing, Wang Fuyun, Liu Chen, Feng Xijie, Dai Wangqiang. 2012a. The research of deep structural features of Weihe basin and adjacent areas. Chinese Journal of Geophysics, 55(9): 2939~2947 (in Chinese with English abstract).
参考文献
Ren Juan, Peng Jianbing, Wang Fuyun. 2012b. Probe on the deep crustal structure in Weihe basin and tectonics research of basin. Doctoral dissertation of Chang'an University (in Chinese with English abstract).
参考文献
Ren Wenbo. 2019. Characteristics and development of geothermal resources in the middle and deep layers of the Weihe basin. Master thesis of Northwestern University (in Chinese with English abstract).
参考文献
Ren Zhanli. 1998. Comparative research on tectonically thermal history of sedimentary basins in the Northern China. Doctoral thesis of northwestern University (in Chinese with English abstract).
参考文献
Ren Zhanli, Chen Yulin, Li Xiaohui, Liu Limeng, Tian Tao, Duan Haijiao, Cui Junping. 2011. Experimental study on the sustainable utilization of geothermal resources in Xi'an. Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society, 314 (in Chinese with English abstract).
参考文献
Ren Zhanli, Liu Runchuan, Ren Wenbo, Qi Kai, Yang Guilin, Cui Junping, Yang Peng, Zhang Yuanyuan. 2020. Distribution of geothermal field and its controlling factors in the Weihe basin. Acta Geological Sinica, 94(7): 1938~1949 (in Chinese with English abstract).
参考文献
Sasaki A. 1985. An empirical method and a few problems for estimating formation temperature from Bottom-hole temperature recorded during logging (a revised edition). Journal of the Japanese Association for Petroleum Technology, 50(1): 17~19.
参考文献
Tanaka T, Sato K. 1977. Estimation of subsurface temperature in oil and gas producing areas, northeast Japan. Japan: NP.
参考文献
Tang Xiaoyin, Huang Shaopeng, Zhang Gongcheng, Yang Shuchun, Hu Shengbiao. 2018. Lithospheric thermal structure of the Pearl River Mouth basin northern South China Sea. Chinese Journal Geophysics, 61(9): 3749~3759 (in Chinese with English abstract).
参考文献
Tang Xiaoyin, Cheng Luyao, Xu Wei, Ke Tingting, Dong Ying, Tuo Jiasheng. 2021. Numerical study on factors that influence the heat transfer performance of middeep coaxial casing heat exchanger in the Xi'an area. Chinese Journal of Geology, 56(3): 985~999 (in Chinese with English abstract).
参考文献
Tzanis A, Efstathiou A, Chailas S, Lagios E, Stamatakis M. 2020. The Methana Volcano—Geothermal resource, greece, and its relationship to regional tectonics. Journal of Volcanology and Geothermal Research, 404: 107035.
参考文献
Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449~450+134+451~459 (in Chinese with English abstract).
参考文献
Wang Guiling, Yang Xuan, Ma Ling, Zhou Jiaqi, Shen Guohua, Wang Wanli. 2021. Status quo and prospects of geothermal energy in heat supply. Huadian Technology, 43(11): 15~24 (in Chinese with English abstract).
参考文献
Wang Jiyang. 2015. Geothermics and Its Applications. Beijing: Science Press (in Chinese).
参考文献
Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 30(32): 25~31.
参考文献
Wang Xinwei, Wang Tinghao, Zhang Xuan, Mao Xiang, Luo Lu, Wang Di, Wu Minghui. 2019. Genetic mechanism of Xiwenzhuang geothermal field in Taiyuan basin. Earth Science, 44(3): 1042~1056 (in Chinese with English abstract).
参考文献
Wang Zhuting, Zhang Chao, Jiang Guangzheng, Hu Jie, Tang Xianchun, Hu Shengbiao. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313~4322 (in Chinese with English abstract).
参考文献
Xu Xiwei, Ma Xingyuan. 1992. Geodynamics of the Shanxi Rift system, China. Geodynamics of Rifting, 208: 325~340.
参考文献
Yan Wenzhong, Mu Genxu, Liu Jianqiang. 2014. Experimental study of geothermal tail-water reinjection in the Guanzhong urban area of the Weihe basin, Shaanxi Province. Shanghai Land & Resources, 35(2): 32~35 (in Chinese with English abstract).
参考文献
Yang Chao. 2017. Research on comprehensive evaluation of shallow geothermal energy resources in Yinchuan. Doctoral thesis of Chang'an University (in Chinese with English abstract).
参考文献
Yang Jilong, Liu Futian, Jia Zhi, Yuan Haifan, Xu Qinfen, Hu Yunzhuang. 2018. The hadrochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance. Acta Geoscientica Sinica, 39(1): 71~78 (in Chinese with English abstract).
参考文献
Yang Peng, Xia Bin, Cai Zhourong, Wan Zhifeng, Huang Qiangtai, Zhang Yong. 2017. Genetic mechanism of the Yinggehai basin, northern South China Sea: A comparative study of the Weihe basin. Marine Geology & Quaternary Geology, 37(6): 65~75 (in Chinese with English abstract).
参考文献
Yang Peng, Ren Zhanli, Zhang Jingong, Xia Bin, Tian Tao. 2018. Discussion of the coupling relationship between Cenozoic sedimentary-tectonic migration of Weihe basin and the uplift of Weibei and East Qinling areas. Chinese Journal of Geology, 53(5): 876~892 (in Chinese with English abstract).
参考文献
Ye Hong, Zhang Botao, Mao Fungying. 1987. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133(9): 217~227 (in Chinese with English abstract).
参考文献
Yu Ruyang, Huang Shaopeng, Zhang Jiong, Xu Wei, Ke Tingting, Zuo Yinhui, Zhou Yongshui. 2020. Measurement and analysis of thermal conductivity of rocks from the Baiyinchagan and Ulyastai sags, Erlian basin. Acta Petrologica Sinica, 36(2): 621~636 (in Chinese with English abstract).
参考文献
Zhang Chao, Huang Ronghua, Qin Song, Hu Shengbiao, Zhang Shengsheng, Li Shengtao, Zhang Linyou, Wang Zhuting. 2021. The high-temperature geothermal resources in the Gonghe-Guide area, northeast Tibetan Plateau: A comprehensive review. Geothermics, 97: 102264.
参考文献
Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins. Geology in China, 46(2): 255~268 (in Chinese with English abstract).
参考文献
Zhao Hui, Qian Hui. 2009. Study on hydrogeochemistry and enviornmental impacts from exploitation and utilization of geothermal water in Guanzhong basin. Doctoral thesis of Chang' an University (in Chinese with English abstract).
参考文献
Zhao Xirong. 2006. Occurrence features of geothermal resources and geothermal bearing analysis in Weihe basin. Coal Geology & Exploration, (2): 51~54 (in Chinese with English abstract).
参考文献
Zheng Liying. 2015. The characteristics and evaluation of geothermal resources in Beijing-Tianjin-Hebei region. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Zhou Yang, Deng Niandong, Wang Feng, Mu Genxu, Liu Jianqiang. 2017. Fractal theory of suitability zoning structure of shallow geothermal energy. Geological Survey of China, 4(1): 18~23 (in Chinese with English abstract).
参考文献
Zhou Yang, Mu Genxu, Liu Jianqiang, Zhang Hui, Zhang Le, Jin Guang. 2018. Shallow geothermal energy resources occurrence regularity of typical geomorphological units. Geological Science and Technology Information, 37(4): 232~238+268 (in Chinese with English abstract).
参考文献
Zhu Huanlai. 2011. Research on the sedimentary geothermal resources in northern Songliao basin. Doctoral thesis of Northeast Petroleum University (in Chinese with English abstract).
参考文献
Zhu Shuyuan, Zhang Guobin, Li Shaohu. 2018. A study on geothermal resources comprehensive utilization in Xiong'an New Area. Coal Geology of China, 30(5): 20~23+45 (in Chinese with English abstract).
参考文献
白琴琴. 2019. 西安地区“采水型”地裂缝超常活动分析研究. 长安大学硕士学位论文.
参考文献
陈粤强, 姬永涛, 浦静怡, 张晓宏. 2018. 关中盆地中深层地热资源开发方式探讨. 西部探矿工程, 30(11): 103~106.
参考文献
程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 2017. 岩石热物理性质的研究进展及发展趋势. 地球科学进展, 32(10): 1072~1083.
参考文献
代美龄, 王文科. 2016. 关中盆地典型地下水水源地保护区划分研究. 长安大学硕士学位论文.
参考文献
邓亚仁, 任战利, 任文波. 2017. 关中地区地热分布控制因素与地热开发前景. 西部大开发(土地开发工程研究), 2(11): 19~27.
参考文献
豆惠萍. 2012. 基于水文地球化学模拟的地热尾水回灌化学堵塞研究. 长安大学硕士学位论文.
参考文献
范基姣, 马致远. 2006. 关中盆地地下热水循环模式及可更新性研究. 长安大学硕士学位论文.
参考文献
方甲炳, 杨飞, 岳乐平. 1992. 宝鸡长寿沟渭河五级阶地磁性地层学研究. 陕西地质, 10(1): 53~59.
参考文献
葛同明, 樊利民, 徐行, 李素珍, 郑洪瑞. 1991. 渭南阎村W7孔岩心样品的古地磁学研究. 海洋地质与第四纪地质, 11(4): 59~71.
参考文献
郭飒飒, 朱传庆, 邱楠生, 唐博宁, 崔悦. 2020. 雄安新区深部地热资源形成条件与有利区预测. 地质学报, 94(7): 2026~2035.
参考文献
胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611~626.
参考文献
黄帅, 朱科, 董建锴, 李骥, 姜益强, 方肇洪. 2022. 中深层地埋管换热器取热稳定性及热影响半径. 哈尔滨工业大学学报, 54(6): 119~127.
参考文献
黄薇. 2015. 鄂尔多斯盆地中南部延长组页岩气关键参数测井研究. 西北大学博士学位论文.
参考文献
贾林瑞, 崔萍, 方亮, 方肇洪. 2021. 中深层地埋管换热器传热过程对周围岩土体的热影响. 暖通空调, 51(1): 101~107.
参考文献
姜光政, 高堋, 饶松, 张林友, 唐晓音, 黄方, 赵平, 庞忠和, 何丽娟, 胡圣标, 汪集旸. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892~2910.
参考文献
孔彦龙, 陈超凡, 邵亥冰, 庞忠和, 熊亮萍, 汪集暘. 2017. 深井换热技术原理及其换热量评估. 地球物理学报, 60(7): 4741~4752.
参考文献
李超, 张立宽, 罗晓容, 张立强, 胡才志, 杨鹏, 邱桂强, 马立元, 雷裕红, 程明. 2016. 泥岩压实研究中有机质导致声波时差异常的定量校正方法. 中国石油大学学报(自然科学版), 40(3): 77~87.
参考文献
李阳. 2020. 西安地裂缝活动机理及有效影响距离研究. 长安大学硕士学位论文.
参考文献
李智超. 2017. 渭河盆地新生代岩相古地理及环境演化. 西北大学博士学位论文.
参考文献
李智超, 李文厚, 李永项, 李蒙. 2015a. 渭河盆地中新统沉积相与古气候特征. 2015年全国沉积学大会沉积学与非常规资源论文摘要集 1: 423.
参考文献
李智超, 李文厚, 李永项, 李玉宏, 韩伟, 闻金华, 陈萌, 秦智. 2015b. 渭河盆地新生代沉积相研究. 古地理学报, 17(4): 529~540.
参考文献
蔺文静, 刘志明, 王婉丽, 王贵玲. 2013. 中国地热资源及其潜力评估. 中国地质, 40(1): 312~321.
参考文献
刘聪, 彭建兵, 陈立伟, 邓亚虹, 吴明. 2012. 西安地裂缝场地地震效应分析. 工程地质学报, 20(6): 979~985.
参考文献
刘鸿俊. 1985. 西安地区地温分布及地热异常分析. 长安大学学报(地球科学版), 2: 59~63.
参考文献
刘鸿俊, 孙永斌. 1986. 汾渭盆地南段地温分布特征. 陕西地质, 1: 55~60.
参考文献
刘护军, 薛祥煦. 2004. 对渭河盆地新生界及其年代的讨论. 地球科学与环境学报, 4: 1~5.
参考文献
刘江涛, 孙军, 何俏俏. 2015. 关中盆地地热尾水回注现状分析. 西安文理学院学报(自然科学版), 18(4): 111~114.
参考文献
刘润川, 任战利, 叶汉青, 任文波, 王琨, 淮银超, 祁凯. 2021. 地热资源潜力评价——以鄂尔多斯盆地部分地级市和重点层位为例. 地质通报, 40(4): 565~576.
参考文献
穆根胥, 李锋, 闫文中, 李成. 2014. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社, 132~141.
参考文献
穆根胥, 李锋, 闫文中, 李成, 刘建强, 刘方, 陈建平, 赵智强, 金光, 马致远, 杨友运. 2016. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社.
参考文献
庞忠和, 孔彦龙, 庞菊梅, 胡圣标, 汪集暘. 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32(11): 1224~1230.
参考文献
祁凯, 任战利, 崔军平, 于强, 曹展鹏, 杨鹏, 邓亚仁, 张梦婷. 2017. 鄂尔多斯盆地渭北隆起岐山-麟游地区中新生代构造热演化及地质响应——来自裂变径迹分析的证据. 地质学报, 91(1): 151~162.
参考文献
邱楠生, 胡圣标, 何丽娟. 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.
参考文献
饶松, 姜光政, 高雅洁, 胡圣标, 汪集旸. 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176~2190.
参考文献
任隽, 彭建兵, 王夫运, 刘晨, 冯希杰, 戴王强. 2012a. 渭河盆地及邻区地壳深部结构特征研究. 地球物理学报, 55(9): 2939~2947.
参考文献
任隽, 彭建兵;王夫运. 2012b. 渭河盆地深部地壳结构探测与盆地构造研究. 长安大学博士学位论文.
参考文献
任文波. 2019. 渭河盆地中深层地热资源特征及开发利用. 西北大学硕士学位论文.
参考文献
任战利. 1998. 中国北方沉积盆地构造热演化史恢复及其对比研究. 西北大学博士学位论文.
参考文献
任战利, 陈玉林, 李晓辉, 刘立萌, 田涛, 段海礁, 崔军平. 2011. 西安市地热资源可持续利用的回灌试验研究, 中国地球物理学会第二十七届年会, 314.
参考文献
任战利, 刘润川, 任文波, 祁凯, 杨桂林, 崔军平, 杨鹏, 张园园. 2020. 渭河盆地地温场分布规律及其控制因素. 地质学报, 94(7): 1938~1949.
参考文献
唐晓音, 黄少鹏, 张功成, 杨树春, 胡圣标. 2018. 南海北部陆缘珠江口盆地岩石圈热结构. 地球物理学报, 61(9): 3749~3759.
参考文献
唐晓音, 程璐瑶, 许威, 柯婷婷, 董英, 拓佳胜. 2021. 西安地区中深层套管式地埋管换热性能数值模拟. 地质科学, 56(3): 985~999.
参考文献
汪集旸. 2015. 地热学及其应用. 北京: 科学出版社.
参考文献
汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25~31.
参考文献
王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449~450+134+451~459.
参考文献
王贵玲, 杨轩, 马凌, 周佳琦, 沈国华, 王婉丽. 2021. 地热能供热技术的应用现状及发展趋势. 华电技术, 43(11): 15~24.
参考文献
王兴. 2002. 渭河盆地地热资源特征及其开发的环境因素, 中国科协2002年学术年会, 四川成都.
参考文献
王朱亭, 张超, 姜光政, 胡杰, 唐显春, 胡圣标. 2019. 雄安新区现今地温场特征及成因机制. 地球物理学报, 62(11): 4313~4322.
参考文献
闫文中, 穆根胥, 刘建强. 2014. 陕西渭河盆地关中城市群地热尾水回灌试验研究. 上海国土资源, 35(2): 32~35.
参考文献
杨超. 2017. 银川地区浅层地温能资源综合评价研究. 长安大学博士学位论文.
参考文献
杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 2018. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义. 地球学报, 39(1): 71~78.
参考文献
杨鹏, 夏斌, 蔡周荣, 万志峰, 黄强太, 张勇. 2017. 南海北部莺歌海盆地成因机制: 与渭河盆地构造对比分析的启示. 海洋地质与第四纪地质, 37(6): 65~75.
参考文献
杨鹏, 任战利, 张金功, 夏斌, 田涛. 2018. 新生代渭河盆地沉积—构造迁移与渭北隆起及东秦岭耦合关系探讨. 地质科学, 53(5): 876~892.
参考文献
余如洋, 黄少鹏, 张炯, 许威, 柯婷婷, 左银辉, 周勇水. 2020. 二连盆地白音查干凹陷和乌里雅斯太凹陷岩石热导率测试与分析. 岩石学报, 36(2): 621~636.
参考文献
张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255~268.
参考文献
赵慧, 钱会. 2009. 关中盆地地下热水地球化学及其开发利用的环境效应研究. 长安大学博士学位论文.
参考文献
赵西蓉. 2006. 渭河断陷盆地地热资源赋存特征与热储分析. 煤田地质与勘探, (2): 51~54.
参考文献
郑丽英. 2015. 京津冀地区新生代地热热储分布特征与资源评价. 中国地质大学(北京)硕士学位论文.
参考文献
周阳, 邓念东, 王凤, 穆根胥, 刘建强. 2017. 浅层地热能适宜性分区结构的分形原理. 中国地质调查, 4(1): 18~23.
参考文献
周阳, 穆根胥, 刘建强, 张卉, 张乐, 金光. 2018. 典型地貌单元浅层地热能资源量赋存规律. 地质科技情报, 37(4): 232~238+268.
参考文献
朱焕来. 2011. 松辽盆地北部沉积盆地型地热资源研究. 东北石油大学博士学位论文.
参考文献
朱树源, 张国斌, 李少虎. 2018. 雄安新区地热资源综合利用研究. 中国煤炭地质, 30(5): 20~23+45.
目录contents

    摘要

    热源、热储层(砂体厚度、孔隙度、渗透率)、地温场等是影响地热资源评价的重要因素。本文以渭河盆地西安凹陷-西安市延长石油西化小区为例,在收集前人资料的基础上,应用地层测温、测井、岩芯分析等资料,分析了研究区地温场特征、热储层特征及地热资源量,运用多种参数对热储层有利区进行了综合评定。研究结果表明延长石油西化小区属地热异常区,地温梯度为3.5 ℃/100 m;研究区张家坡组、蓝田灞河组砂泥岩互层发育,砂厚分布在40~140 m之间,平均孔隙度分布在15.68%~30.3%之间,蓝田灞河组砂层厚度、地层热量、含水量和总热量均高于三门组和张家坡组地层,地热开发条件最好;综合考虑砂体厚度、地层含水量、地温梯度、地温、热储层物性因素,认为西安凹陷延长石油西化小区地热开发应选择蓝田灞河组为主要目的层段,最优的地热开发方式应采用采灌平衡法进行地热开采,综合考虑研究区更宜选择中深层地埋管井下换热方式进行地热资源开发。

    Abstract

    There are several important factors that affect the evaluation of geothermal resources, such as heat source, thermal reservoir (sand thickness, porosity, permeability), geothermal field, etc. This paper considers the Yanchang Petroleum Xihua District of the Xi'an sag as an example, and analyzes the geothermal field characteristics, thermal reservoir characteristics and geothermal resources by using formation temperature measurement, well logging, and core analysis data. We also use a variety of parameters to optimize the evaluation of the favorable areas of the thermal reservoir. The research results show that the geothermal gradient of the Yanchang Petroleum Xihua District is 3.56 ℃/100 m, which is a geothermal anomaly area. The Zhangjiapo and Lantian Bahe Formations in the Xihua District have developed interbeds of sand and mudstone, with sand thickness ranging from 40~140 m, and average porosity at 15.68%~30.3%. The sand thickness, formation heat, water content and total heat of the Lantian-Bahe Formation is higher than those in the Sanmen and Zhangjiapo Formations, and the geothermal development conditions are the best. The Lantian Bahe Formation should be selected as the target stratum for geothermal development in the Xihua District of Xi'an sag. The optimal geothermal development method should adopt the balance method of mining and irrigation for geothermal exploitation, and it is more appropriate to choose the underground heat transfer method of medium and deep buried pipes for geothermal resource development in the research area.

  • 2020年9月16日,我国政府明确提出2030年“碳达峰”与2060年“碳中和”的双碳目标,2021年是双碳目标的开局之年,在当前各方需求推动下,越发凸显了发展地热能供暖的紧迫性和必要性(王贵玲等,2021)。渭河断陷盆地位于我国中部,是世界上最大的新生代板内裂谷之一(Ye Hong et al.,1987; Xu Xiwei et al.,1992; 饶松等,2016),面积约20000 km2,地热资源潜力巨大,开发历史悠久,早在唐代华清池地热温泉已名扬世界(任战利等,2020)。前人在渭河盆地的地热地质条件、地温分布特征、地热资源赋存特征、地热水回灌及示踪剂等方面做了大量工作(刘鸿俊等,19851986; 任战利,1998; 王兴等,2002; 赵西荣等,2006; 任战利等,20112020闫文中等,2014; 饶松等,2016; 穆根胥等,2016; 周阳等,2017; 邓亚仁等,2017),为渭河盆地地热地质及地温场研究奠定了坚实的基础。且地热资源评价方法已经形成一整套完备的方法体系。从1976年建立了地热资源的评价术语体系(Muffler et al.,1978; 邱楠生等,2019),到2010年重新修定的《地热资源地质勘察规范》(GB/T11615—2010)都对地热资源评价工作做了详细规范。目前常用的地热资源评价方法主要有平面裂隙法、地表热通量法、岩浆热量均衡法、热储体积法、类比法、热储模拟法、统计分析法等(汪集旸,2015; 穆根胥,2016; 王贵玲等,2017; 庞忠和等,2017; 邱楠生等,2019; 郭飒飒等,2020),主要对研究区地热资源的热源机制、深部构造、地温场特征、地热流体特征、地热流体更新能力、热储层特征等方面进行全面评估(朱焕来,2011; 汪集旸等,2012; 郑丽英等,2015; 朱树源等,2018; 杨吉龙等,2018; 王朱亭等,2019)。

  • 近年来,渭河盆地地热资源开发利用得到了快速发展,随着浅层地热能项目、中深层地热项目的大规模实施,做好地热开发区的地热储层及地热资源评价工作就显得十分必要,需要对项目实施区的地温场特征、热储层特征、地热资源、地热能利用方式等方面进行综合研究(任战利等,2017)。前人在盆地地温场特征及变化规律、热储层分布特征、热储层物性、地热田形成机制等方面成果颇丰(赵西荣等,2006; 任战利等,20112020; 闫文中等,2014; 饶松等,2016; 穆根胥等,2016; 周阳等,2017; 邓亚仁等,2017)。基于前人的地质研究基础,我们认为有必要对具体的地热井区块做进一步的评价工作,通过对西安凹陷具体区块的地热地质特征开展研究,并将其与地热能的利用形式相结合,达到进一步指导区块地热能开发利用的目的。本次选定的西安凹陷(图1a)延长石油西化小区分别有延热1直井和延热U1井U型井(图1b)两口地热井,本文在充分利用研究区及渭河盆地已有资料的基础上,根据延长石油西化小区实施的延热1直井实测的地层温度、测井、岩芯、热导率分析数据,对研究区深部热背景、构造演化特征、现今地温场特征、沉积相特征、热储层特征和开发利用方式进行了分析(任战利等,2017a,2017b,2018)。研究成果及方法对渭河盆地热储研究及地热开发有一定参考及借鉴价值。

  • 1 构造特征及深部热背景

  • 渭河盆地处于秦岭造山带与鄂尔多斯稳定地块之间,走向近东西,为南深北浅、南陡北缓的不对称新生代箕状断陷,沉积盖层在南部最厚可达7000 m(任战利等,2020),盆地地壳厚度东薄西厚,西安凹陷处莫霍面深度约33 km,热岩石圈厚度约为95~101 km,地壳热流平均为34.6 mW/m2;地幔热流平均为36.0 mW/m2任隽等,2012a; 饶松等,2016)。深部活动强烈,软流圈被动上涌,岩石圈厚度减薄,莫霍面隆起,盆地内热流显示异常高值(任隽等,2012a; 饶松等,2016; 穆根胥,2016; 周阳等,2017; 祁凯等,2017; 杨鹏等,2018; 任战利等,2020),具备了较好的深部热背景。西安凹陷位于盆地南部,为一地堑式凹陷,断裂构造发育,南部被切割成许多断块,形成断凹和断凸(图1)。基底为元古宇沉积岩系和燕山期花岗岩,新生界盖层最厚可达7000 m,新生代以来沉积速度快,岩性粒度粗,厚度大。西安凹陷热储层大面积分布,地热资源条件好(任战利等,2018)。沿秦岭山前断裂带有较多的地热异常显示及火成岩体分布,深大断裂切割较深,是热流体活跃地带(任战利等,2020)。延长石油西化小区位于西安城西三环与二环之间,昆明路与汉城南路十字西南角,地质上位于劳动公园黄土梁—槐芽岭黄土梁南侧的F3-F4地裂缝之间(刘聪等,2012; 白琴琴,2019; 李阳,2020)(图1b),地热条件适宜,为本次地热项目研究区域。

  • 2 样品及数据来源

  • 为了对西安凹陷延长石油西化小区的地温场、沉积微相及热储层进行详细研究,延长石油国际能源化工有限公司(简称延长国际)在西安市延长石油西化小区对延热1直井于2018年及2019年进行了连续井温测试,选用ECLIPS-5700系统测井仪器,井内注满钻井液等待静止48 h后进行连续测温(采用铂电阻,测量分辨率为 0.1℃,测量间隔0.01 m,测量速度8.0~10.0 m/min),采集了多组井温数据,将测温数据校正、分析之后,获得了较为详实的3000 m以浅的研究区地层测温资料,测温数据可视为稳态资料,对这些区域内原有的温度资料起到了补充和校正作用。其次,延长国际利用贝克·阿特拉斯公司的ECLIPS-5700测井系统对延热1直井经过垂直校正后的自然伽马、自然电位、中/深感应电阻率、八侧向测井等基础测井资料进行了详细的收集整理、前期处理工作,进而得到了较为详实的单井测井图,基于此进行了详细的沉积相及岩相特征分析。最后,将部分张家坡组和蓝田灞河组的延热1井钻井岩芯在西北大学地质系切样室进行切割、磨平,一定程度的抛光处理后,在西北大学内西安市多种能源资源勘探开发重点实验室,利用夏溪公司TC-3000热导率测试仪进行实测,每次测试三组数值,分别间隔180 s,进而得到研究区新生代地层张家坡组及蓝田灞河组泥岩、粉砂质泥岩等岩性的热导率实测值。

  • 3 研究方法

  • 通过对西安凹陷延长石油西化小区的沉积相划分对比、地温场恢复及热储层的系统研究工作来讨论并确定本区域的最优热储层。

  • 首先,沉积相类型对确定热储层类型及展布规律十分重要,在后续的工作中可用来模拟西化小区延热1直井和延热U-1井的热介质换热效率及地热流体流动规律(Alfaro et al.,2021; Jian Guoqing et al.,2021; Erol et al.,2022),从而判断热储层的能量恢复情况及热流体分布规律。在前人对渭河盆地地层划分方案的基础上(李智超等,2015b2017; 任文波等,2019),根据渭河盆地部分野外剖面的岩性(李智超等,2015b)、沉积构造(李智超等,2015a)、古生物(刘护军等,2004; 李智超,2017)、钻井岩芯及古地磁(葛同明等,1991; 方甲炳等,1992)等资料,结合研究区录井资料、测井曲线,最终确定研究区标志层,建立研究区地层划分方案(图2)。

  • 图1 渭河盆地地构造单元分布图(a)和西安市延长石油西化小区位置与地裂缝位置分布图(b)(据任战利等,2020; 李阳,2020修改)

  • Fig.1 Distribution map of geotectonic units in Weihe basin (a) and location of Yanchang Petroleum Xihua community of Xi'an City and ground fissures (b) (modified from Ren Zhanli et al., 2020; Li Yang, 2020)

  • 其次,根据西安市电影制片厂XR004地热井地温校正结果,静井80 h后测井温度基本达到了真实地层温度(穆根胥,2016; 任文波,2019)(图3a),表明地热井井底测温的大小随静井时间越来越接近真实地层温度。本次研究因考虑施工风险及工期等问题静井时间较短,数据需经过校正才能使用。对于钻井井底温度(BHT)校正,唐晓音等(2018)提出Waples法,但主要适用于南海地区,提出的温度校正模型对于渭河盆地并不适用。Dowdle et al.(1975)Tanaka et al.(1977)曾提出过如何校正BHT温度,经验公式为:

  • 图2 西安市延长石油西化小区延热1直井蓝田灞河组单井相剖面图

  • Fig.2 Single well facies profile of Lantian Bahe Formation of well Yanre1 in Yanchang Petroleum Xihua community of Xi'an City

  • Tf=K(BHT-15)+15
    (1)
  • 校正系数K与地区地温梯度具有密切相关性(Dowdle et al.,1975)。经后人改进后开始利用不同地区地温梯度的差异系数A来校正BHT(Sasaki,1985)。本次研究选择该公式对BHT温度进行校正。具体公式为:

  • Tf=0.21GBHT+0.73BHT
    (2)
  • 式中,GBHT为利用BHT温度求得的地温梯度,校正因子A=0.21GBHT+0.73。因地区差异,对比渭河盆地地温梯度特点将校正因子修改为A=0.21GBHT+0.6。

  • 浅层岩土体的基本参数包括岩土的密度、含水量、孔隙率、饱和度、比热容以及导热系数(杨超,2017)。导热系数在系统的设计运行中是比较关键的参数之一,它受岩土体本身的温度、密度、孔隙率、饱和度以及含水量等基本参数的影响,可以通过以下函数表示:

  • K=f(t,ρ,n,Sr)
    (3)
  • 式中,K为导热系数(W/(m·k));t为温度(K);ρ为岩土密度(kg/m3);n为孔隙率(%);Sr为含水饱和度。参考工程地质相关标准,渭河盆地各地貌单元各参数见表1(穆根胥等,2016),本研究选择6块岩样在西北大学内西安市多种能源资源勘探开发重点实验室进行热导率实测,测试原理为瞬态热线法(程超等,2017; 余如洋等,2020),测量范围为0.001~10.0 W/(m·k),分辨率为0.0005 W/(m·k),准确度为±3%。

  • 本次研究中地层热量按照体积法计算(穆根胥等,2016),实际上是估算西化厂区三门组、张家坡组、蓝田灞河组热储层内的热量,计算公式为:

  • Q=AHCvTp-Tc106
    (4)
  • 表1 渭河盆地各地貌单元参数(据穆根胥,2016

  • Table1 Parameters of each landform unit in the Weihe basin (after Mu Genxu, 2016)

  • 式中,Q为总热量(kcal);A为热储面积(km2);H为热储层平均厚度(m);Cv为热储层体积比热容(kcal/(m3·℃));Tp为热储层平均温度(℃);Tc为基准温度,即地下恒温层(一般是地下15~20 m)温度或多年平均气温(℃),此处盆地基准温度选择为15℃。

  • 其次流体热量计算时本次针对大于4 m砂层进行精准计算,孔隙度选用的是该砂层的平均孔隙度,计算公式(蔺文静等,2013; 王贵玲等,2017; 张薇等,2019)为:

  • Q=ΦSHSw
    (5)
  • 式中,Q为地热流体储存量(m3);Φ为砂层孔隙度(%);S为砂层面积(m3);H为热储层厚度(m);Sw为热储层含水饱和度。

  • 再者目的层热能计算公式为:

  • Q=ρwCwQTp-Tc
    (6)
  • 式中,Q为地热流体热能(J);ρw为地热流体的密度(kg/m3);Cw为地热流体的比热容(J/(kg·K))或(J/(kg·℃));Q为地热流体储存量(m3);Tp为热储层平均温度(℃);Tc为基准温度(℃)。

  • 通过以上多个参数及地质实际进行综合对比,结合中深层地埋管井下换热和水热型地热能的特点,对延长石油西化小区的取热层位及地热能利用方式进行讨论确定。

  • 4 研究结果

  • 4.1 岩相及沉积相特征

  • 通过分析不同岩石的颜色、结构、沉积构造、类型等特征,可以反映不同成因砂体沉积过程中的水动力条件,并恢复原沉积环境。根据岩芯观察,槽状交错层理分布在曲流河河道砂坝中,可见于三门组岩芯,层系底界为槽型冲刷面,水动力强,多为中—粗砂岩。平行层理分布在三角洲前缘及河流沉积环境,研究区多见于三门组与张家坡组岩芯,一般为高流态水动力条件,主要为细砂岩、泥质细砂岩等。水平层理分布在浅湖、三角洲分流间湾及河漫滩沉积环境,可见于蓝田灞河组中部岩芯,主要在水动力较弱情况下形成,纹理细薄清晰,为粉砂岩及粉砂质泥岩等细粒岩。小型板状交错层理分布在三角洲水下分流河道,可见于研究区蓝田灞河组底部岩芯,表明水动力较强,多为中砂岩、细砂岩。

  • 河流沉积广泛分布于盆地腹地及盆地周边,新生代各个时期均发育,是渭河盆地主要的沉积类型之一,沉积物往往是河道砂质沉积与河漫滩细粒沉积,砂泥比在40%~50%之间(李智超,2015b)。沉积相研究结果表明研究区内三门组沉积期为河流相沉积体系,主要为曲流河沉积,发育河道沙坝及河漫滩沉积。

  • 渭河盆地曲流河三角洲北部地形较南部平缓,沉积范围较广,而南部(研究区)地形较陡(李智超等,2015b; 李智超,2017)。沉积相研究结果表明研究区张家坡沉积期为曲流河三角洲沉积体系,以三角洲前缘沉积最为典型,发育水下分流河道及分流间湾微相,曲流河三角洲沉积体系岩性组成以含砾中砂岩、细砂岩为主。

  • 渭河盆地新生代湖泊沉积集中分布于盆地腹地,后期随着盆地不断的断陷、分异,湖泊分布围绕西安凹陷与固市凹陷两大沉积区(李智超等,2015b; 李智超,2017; 任文波,2019)。沉积相研究结果表明研究区蓝田灞河沉积期为湖泊相沉积(图2),发育浅湖及滨湖两个亚相,有砂质浅滩及砂砾滩沉积两个微相。本区湖泊沉积包括为浅湖沉积和滨湖沉积2个亚相,半深湖—深湖沉积不发育(表2)。

  • 表2 西安市延长石油西化小区延热1直井储层特征统计表

  • Table2 Statistical table of reservoir characteristics of vertical well Yanre1 in Yanchang Petroleum Xihua community of Xi'an City

  • 4.2 地温场特征

  • 地温场特征主要包括地层温度、大地热流特征、地层热导率等方面(邱楠生等,2019),地温场研究是热储层开发中必不可少的一环,在渭河盆地根据温度分布情况选择温度较高且热导率较高的储层,可以提高热能换热效率(任战利等,2020)。地热资源90~150℃的中温和 25~90℃的低温地热资源可以直接利用,优选温度高于90℃或者接近90℃的层位更利于供暖(刘润川等,2021)。

  • 本次经过校正数据和相应的参数见表3。按照上述校正结果拟合回归曲线,对整个井段地层真实温度分布情况进行分析(图3a)。

  • 表3 西安市延长石油西化小区延热1直井BHT 温度校正基本参数与校正结果

  • Table3 Basic parameters and results of BHT temperature correction in Yanre1 vertical well in Yanchang Petroleum Xihua community of Xi'an City

  • 延热1直井测温曲线校正后比校正前地温高,温度差在20℃左右(图3b),未校正前地温梯度为2.79℃/100 m,校正后延热1直井地温梯度为3.5℃/100 m(任战利等,2017a),厂区地温梯度比渭河盆地平均地温梯度3.5℃/100 m稍高。对比整个渭河盆地的地温分布图,明显可以看出校正后的地温曲线更符合该地区的地温分布特点。经过长时间静井以后,延热1直井补充测温,可见浅部实测温度相对于第一次实测温度较低,深部实测温度介于第一次实测温度与校正温度之间。经过长时间的静井以后,比第一次测温地温梯度高,比校正后地温梯度低,地温曲线变化更加贴近实际,地温梯度在3.3~3.5℃/100 m之间(图3b)。

  • 图3 西安市电影厂测温及校正图(a)和西安市延长石油西化小区延热1直井井温分布(b)

  • Fig.3 Temperature measurement and correction diagram of film factory of Xi'an (a) and temperature distribution of well Yanre1 (b) in Yanchang Petroleum Xihua community of Xi'an City

  • 渭河盆地平均地温梯度在3.5℃/100 m左右,其中西安凹陷地温梯度最高,在周至—武功—西安一带普遍大于3℃/100 m,其中在咸阳—西安一带,地温梯度高于3.5℃/100 m(胡圣标等,2001; 姜光政等,2016; 穆根胥等,2016; 饶松等,2016; 周阳等,2017; 任文波,2019; 任战利等,2017a,2017b,2018,2020)。地温梯度分布趋势为北低南高,西低东高,地热资源丰富区主要分布在盆地中部西安凹陷及东部固市凹陷。研究区位于西安凹陷中部,地温梯度在3.5℃/100 m左右(邓亚仁等,2017; 任文波,2019; 任战利等,2020)。实测资料表明三门组地温梯度为3.33℃/100 m,张家坡组地温梯度为3.47℃/100 m,蓝田灞河组地温梯度为3.5℃/100 m(图4)。

  • 通过延热1直井的测温曲线来看,张家坡组地层温度达49~82℃,蓝田灞河组地温在82~104℃之间(图4)。依据地温随深度逐渐增大的变化规律,结合地热能供暖需求,考虑目的层应选择地温在80℃之上,因此从地温方面建议目的层应选择蓝田灞河组或高陵群。

  • 图4 西安市西化小区延热一井及渭河盆地不同地区测温曲线分布图

  • Fig.4 Temperature measurement curve distribution of well Yanre 1 in Yanchang Petroleum Xihua community of Xi'an City and different areas of Weihe basin

  • 测量数据经过处理分析得出试验结果见表4,结合收集前人资料绘制渭河盆地热导率分布图(任战利等,2020;图5)。

  • 任战利等(2020)研究认为,在整个渭河盆地热导率图版中可以发现不同岩性地层热导率不同,但基本都是随着温度和深度的增加,热导率逐渐增大。渭河盆地内砂岩热导率主要介于0.9~2.5 W/(m·k)之间,低于3 W/(m·k)。灰岩热导率介于2.5~4.5 W/(m·k)之间,泥岩热导率低于2 W/(m·k),介于1.5~2.5 W/(m·k)之间,砂岩、泥岩同深度下的热导率均比白云岩、灰岩低。研究区张家坡组钻井样品热导率在1.31~1.46 W/(m·k)之间,热导率较小,可能是因张家坡组砂质泥岩取芯样品,砂质成分较少,泥质含量较多,导致热导率测试结果显示较小。而蓝田灞河组取样成分主要为密度较小的泥质粉砂岩和泥岩,热导率测试结果在1.95~2.07 W/(m·k)之间,热导率较小,主要是未取到中粗粒砂岩,所取样品中为细砂岩,泥质成分含量较高。

  • 表4 西安市延长石油西化小区岩石热导率测试结果

  • Table4 Test results of rock thermal conductivity in Yanchang Petroleum Xihua community of Xi'an City

  • 图5 渭河盆地不同岩性地层热导率随深度变化图

  • Fig.5 Variation of thermal conductivity of strata depth with different lithology in Weihe basin

  • 研究区所在的西安凹陷受渭河南岸断裂、临潼长安断裂带等控制,地处于地裂发育地带(刘聪等,2012; 白琴琴,2019; 李阳,2020),岩石圈厚度薄,地温场受岩石圈深部结构及热传导控制,热传导为热的主要传递方式,热传导效率为纯白云岩>纯砂岩>纯泥岩(汪集旸,2015; 邱楠生等,2019; 任战利等,2020),热导率越高传递越快,热导率越低传递越慢。研究区新生界砂泥岩互层较为发育,其中三门组、张家坡组、高陵群泥岩发育,砂岩厚度比蓝田灞河组砂岩厚度小,泥岩热导率低,因此蓝田灞河组的砂岩较发育,有利于热传导。

  • 4.3 储盖条件

  • 渭河盆地内部地热资源的储盖条件是决定深部传递的热能是否能大量保存下来的关键因素,具有理想的储热及储水环境的热储层,与具有良好的保温隔热效果的储盖组合对地热资源的赋存和保温起到重要作用(汪集旸等,2012; 王贵玲等,2017; 邱楠生等,2019; 任文波,2019; 郭飒飒等,2020; Tzanis et al.,2020; Alfaro et al.,2021; Gudala et al.,2021; Morales et al.,2021; Zhang Chao et al.,2021; Ke Tingting et al.,2022)。渭河盆地内部储盖条件发育较好,整套新生界中下部为良好的储集层,上部区域延伸的厚层泥岩、泥页岩以及各层内泥质夹层发育,为绝佳的保温层,为地热田的形成提供了必要条件(任战利等,2017b,2018)。热储层分析主要包括地层厚度、砂层厚度、孔隙度分析等内容,目的是确定热储层的含水量及总热量是否能支持预计的供暖需求(穆根胥等,2016; 邓亚仁等,2017; 周阳等,2018; 任文波,2019)。

  • 西安凹陷三门组区域上顶板深度为300~700 m(穆根胥等,2016; 邓亚仁等,2017; 周阳等,2018; 任文波,2019),研究区内地层厚度为565 m,是一套半胶结的河湖相堆积物,岩性为黏土、粉质黏土与中细砂、砂砾石互层,一般砂泥岩厚度比值为20%~40%,地层厚度约在270~280 m之间(图6a)。西安凹陷内张家坡组顶板深度为500~1300 m(穆根胥等,2016; 邓亚仁等,2017; 周阳等,2018; 任文波,2019),区内为848 m,为一套黄灰、灰绿色的河湖相地层,岩性为泥岩、砂质泥岩与砂岩互层,地层厚度约在910 m左右,一般砂泥岩厚度比值为10%~20%,主要充当盖层(图6b)。盆地内蓝田灞河组顶板深度为900~1800 m(穆根胥等,2016; 邓亚仁等,2017; 周阳等,2018; 任文波,2019),研究区内为1768 m,是一套以河流、冲积-洪积相沉积为主的地层,伴随一部分河湖相沉积,岩性为灰黄、灰白色中粗砂岩、砂砾岩与泥岩、页岩互层,一般砂泥岩厚度比值15%~35%。研究区蓝田灞河组地层厚度约在730~740 m之间(图6c)。地层厚度研究表明研究区蓝田灞河组的地层厚度较大,且砂厚比较高,有很好的储水潜力。

  • 在不同的构造断块上,渭河盆地地热流体的运移特征及热储的埋藏特征各不相同(范基姣等,2006; 任隽等,2012b; 李智超等,2015b; 杨鹏等,2017; 陈粤强等,2018; 任文波,2019)。盆地的中间基底埋藏较深,南北两侧埋藏较浅,故新生界热储埋藏条件是中间地带优于南北两侧。盆地西部基底埋藏较浅,基底深度在哑柏断裂以东逐渐加深,尤其在固市凹陷和西安凹陷中,基底埋藏最深,故东部新生界热储埋藏条件明显优于西部(任战利等,20112020; 代美龄等,2016; 邓亚仁等,2017)。

  • 图6 西安市延长石油西化小区三门组地层厚度图(a),西安市延长石油西化小区张家坡组地层厚度图(b)和西安市延长石油西化小区蓝田灞河组地层厚度图(c)

  • Fig.6 Stratum thickness map of Sanmen Formation in Yanchang Petroleum Xihua community of Xi'an City (a) , stratum thickness map of Zhangjiapo Formation in Yanchang Petroleum Xihua community of Xi'an City (b) and stratum thickness map of Lantian Bahe Formation in Yanchang Petroleum Xihua community of Xi'an City (c)

  • 研究区邻近及周边(盆地中部)埋藏较深,均为新生界孔隙型砂岩热储层。研究区及其邻近区域三门组沉积的是一套河流相沉积物,岩性为砂砾石与中细砂、粉质黏土和黏土互层,一般砂泥岩厚度比值为20%~40%,砂厚最高可达120 m,在西化厂区附近该层砂厚为40 m左右(图7a)。张家坡组热储层段(N2z)为一套灰绿色,黄灰的河湖相地层,岩性为砂岩与砂质泥岩、泥岩互层,一般砂泥岩厚度比值为10%~20%,砂厚最高可达160 m,在西化厂区附近该层砂厚为60 m左右(图7b)。蓝田灞河组热储层段(N2l+b)是一套以湖相沉积为主的地层,岩性为灰白色、灰黄的页岩、泥岩与砂砾岩、中粗砂岩互层,一般砂泥岩厚度比值为15%~35%,其中砂砾岩主要是滨湖砂砾滩沉积,粗砂岩是砂质湖滩沉积,研究区及邻区砂厚最高可达270 m,在西化厂区附近砂厚140 m以上(图7c)。研究区延热1直井仅钻穿高陵群顶部,前人认为高陵群热储层段(N1g):顶板深度约为2520~2940 m,为一套以湖相沉积为主的地层,岩性为紫红色泥岩夹薄层粉细砂岩,砂泥岩厚度比值变化较大,一般为5%~20%(穆根胥等,2016; 邓亚仁等,2017; 周阳等,2018; 任文波,2019)。

  • 根据西化厂区及邻区地层厚度、顶面构造及砂体厚度的叠合图(图8)可以看出,三门组在地层向西北逐渐加厚的背景下,砂体相对较薄,在40 m左右(图8a),砂体厚度较薄可能是由于处于河道沉积的凸岸,砂体不易保存下来,或者是河流频繁改道,在三门期沉积的砂质较少;张家坡沉积期主要是河湖相沉积物的堆积,地层向西北方向逐渐加厚。砂厚达到60 m以上,并存在向东逐渐加厚的趋势(图8b)。蓝田灞河组沉积期主要发育滨湖沉积体及三角洲沉积体。继承高陵群沉积期断陷扩张、稳定浅湖沉积特征,逐渐向河湖相过渡,沉积的砂质在下部主要是砂质及砾质湖滩沉积,中上部是三角洲前缘分流河道沉积,砂体厚度高达140 m,平面上地层厚度沿NNW方向逐渐增大(图8c)。砂体厚度分析表明区域内蓝田灞河组砂体厚度最厚,利于热能储存。

  • 利用孔隙度与声波时差数据进行拟合发现孔隙度与声波时差显示了很好的正相关性,延热1直井声波时差值随孔隙度增加线性增加(任战利等,2017a)。而声波在井下传播过程中主要受到岩性及目的层的物理化学变化影响,因此用孔隙度可大致描述砂层的好坏(黄薇,2015; 李超等,2016; Koochak et al.,2017)。

  • 从延热1直井砂厚统计频率分布直方图(图9a)可以看出,65 层单砂体其中1~2 m的砂层有4套,2~4 m的砂层40套,4~6 m的砂层12套,大于6 m的砂层9套。考虑到热流体的赋存量及砂厚大小选取的目的层主要是4~6 m及大于6 m的砂层,共计21套砂体。进一步分析孔隙度与砂体厚度的相关关系,直观地展现不同深度孔隙度下砂体厚度,便于更好地选择目的层(图10)。对研究区内的延热1直井的孔隙度进行统计分析,发现孔隙度一般处于10%~30%之间,平均为18.53%,主要分布在10%~20%之间,占样品总数的71.75%(图9b,图10a)。三门组地层孔隙度一般处于23%~38%之间,占样品总数的98.55%,平均为30.3%(图10b),超高的孔隙主要是由于第四系沉积物松散欠压实造成的。张家坡组地层孔隙度一般处于10%~30%之间,平均为21.15%;20%~30%区间段占样品总数的96.42%(图10c)。蓝田灞河组地层孔隙度处于10%~20%之间,平均为15.68%(图10d,占样品总数的93.41%)。

  • 图7 西安市延长石油西化小区三门组砂厚图(a),西安市延长石油西化小区张家坡组砂厚图(b)和西安市延长石油西化小区-蓝田灞河组砂厚图(c)

  • Fig.7 Sand thickness map of Sanmen Formation in Yanchang Petroleum Xihua community of Xi'an City (a) , sand thickness map of Zhangjiapo Formation in Yanchang Petroleum Xihua community of Xi'an City (b) and sand thickness map of Xihua community Lantian Bahe Formation of Yanchang Petroleum Xihua community of Xi'an City (c)

  • 图8 西安市延长石油西化小区三门组地热开发潜力评价图(a),西安市延长石油西化小区张家坡组地热开发潜力评价(b)和西安市延长石油西化小区蓝田灞河组地热开发潜力评价(c)

  • Fig.8 Evaluation of geothermal development potential of Sanmen Formation in Yanchang Petroleum Xihua community of Xi'an City (a) , evaluation of geothermal development potential of Zhangjiapo Formation in Yanchang Petroleum Xihua community of Xi'an City (b) and evaluation of geothermal development potential of Lantian Bahe Formation in Yanchang Petroleum company Xihua community of Xi'an City (c)

  • 图9 西安市延长石油西化小区延热1直井砂厚统计频率分布直方图(a)和西安市延长石油西化小区延热1直井孔隙度垂向分布图(b)

  • Fig.9 Statistical frequency distribution histogram of sand thickness of well Yanre1 (a) and vertical distribution diagram of porosity of well Yanre1 in Yanchang Petroleum Xihua community of Xi'an City (b)

  • 图10 延长石油西化小区延热1直井孔隙度频率分布直方图(a),延长石油西化小区延热1直井三门组孔隙度频率分布直方图(b),延长石油西化小区延热1直井张家坡组孔隙度频率分布直方图(c)和延长石油西化小区延热1 直井蓝田灞河组孔隙度频率分布直方图(d)

  • Fig.10 Porosity frequency distribution histogram of well Yanre1 in Yanchang Petroleum Xihua community of Xi'an City (a) , porosity frequency distribution histogram of well Yanre1 Sanmen Formation in Yanchang Petroleum Xihua community of Xi'an City (b) , porosity frequency distribution histogram of well Yanre1 Zhangjiapo Formation in Yanchang Petroleum Xihua community of Xi'an City (c) and porosity frequency distribution histogram of well Yanre1 Lantian Bahe Formation in Yanchang Petroleum Xihua community of Xi'an City (d)

  • 统计得到三门组共有4套大于4 m的单砂层,其孔隙度均在25%~35%之间(图11a)。张家坡组共有4套大于4 m的单砂层,4~6 m的砂层孔隙度基本处于15%~24%之间,而大于6 m的砂层孔隙度在12%~23%(图11b)。蓝田灞河组共有13套大于4 m的单砂层,其中4~6 m的单砂层有7套,大多数处于14%~20%之间(图11c),只有2520 m处深的砂层孔隙度处于9%~18%之间;大于6 m的单砂层有6套,1930 m深的砂层孔隙度处于16%~22%之间,2040 m深及2060 m深的砂层孔隙度基本处于13%~18%之间,2240 m处的砂层孔隙度介于14%~19%之间,2380 m处砂层孔隙度处于12%~15%之间,2490 m处的砂层孔隙度处于13%~19%之间。

  • 由上述数据可见,在随深度增加的过程中孔隙度因逐渐压实而减小,但相同深度孔隙度变化范围较宽。在深部依然有高孔隙度的砂层,蓝田灞河组砂层厚度大且孔隙度较大,是良好的地热资源储层。

  • 4.4 资源量及换热功率确定

  • 我们采用体积法(朱焕来,2011; 汪集旸,2015; 邱楠生等,2019; 刘润川等,2021; Alfaro et al.,2021; Morales et al.,2021; Ke Tingting et al.,2022)对研究区蓝田灞河组、张家坡组及三门组的地层热量、含水量和地热流体所含热能进行了简要讨论计算(任战利等,2017a),得出三门组地层热量为2.17×1012 kcal,地热流体资源量为5.77×106 m3,热流体所含热能9.44×1011 kcal。张家坡组地层热量为9.32×1012 kcal,地热流体资源量为3.17×106 m3,热流体所含热能9.61×1011 kcal。蓝田灞河组地层热量为9.66×1012 kcal,地热流体资源量为9.90×106 m3,热流体所含热能4.70×1012 kcal。计算结果表明研究区内蓝田灞河组地层热量最高,张家坡组次之,三门组最低。在大于4 m的单砂层中地热流体资源量及其所含热能计算结果中,三门组含水量为5.77×106 m3,所含热能为9.44×1011 kcal,张家坡组含水量为3.71×106 m3,所含热能为8.61×1011 kcal,蓝田灞河组含水量为9.90×106 m3,所含热能为4.70×1012 kcal。蓝田灞河组远远高于三门组及张家坡组的地层(表5),因此主要的开采层位建议选取蓝田灞河组,目的砂层建议主要选取蓝田灞河组大于4 m以上的地层,深度在1850 m以下,最大深度可达2520 m。

  • 图11 西安市延长石油西化小区延热1直井三门组砂层孔隙度分布图(a),西安市延长石油西化小区张家坡组砂层孔隙分布图(b)和西安市延长石油西化小区蓝田灞河组砂层孔隙度分布图(c)

  • Fig.11 Well Yanre1 porosity distribution of sand layer of Sanmen Formation in Yanchang Petroleum Xihua community of Xi'an City (a) , porosity distribution of sand layer of Zhangjiapo Formation in Yanchang Petroleum Xihua community of Xi'an City (b) and porosity distribution of sand layer of Lantian Bahe Formation in Yanchang Petroleum Xihua community of Xi'an City (c)

  • 表5 西安市延长石油西化小区地层热量情况计算表

  • Table5 Formation heat calculation table in Yanchang Petroleum Xihua community of Xi'an City

  • 我们进一步对西安凹陷西化厂区地热井进行中深层地埋管井下换热计算: 在持续地热井取热并供暖的情况下,建筑物热负荷为35 W/m2,参照本地区地温梯度大于3℃/100 m,以及前人研究成果(孔彦龙等,2017;戴传山,2023)进行计算。

  • 在井深为2000 m左右时,根据前人研究每延米换热量为150~350 W/m(孔彦龙等,2017;戴传山,2023),计算的单井换热功率为300~700 kW,单井每天可供热6.2×106~14.5×106 kcal,可供热8571~20000 m2,换算标准煤0.885~2.065 t。

  • 当井深为3000 m时,每延米换热量仍取150~350 W/m(孔彦龙等,2017;戴传山,2023),计算的单井换热功率为450~1050 kW,单井每天可供热9.3×106~21.7×106 kcal,可供热12857~30000 m2,换算标准煤1.328~3.1 t。但是由于冬季供热时间越长,对于深部地温的恢复能力要求越高,因此在保持供暖系统长期稳定运行时应选择换热功率较低,对系统总负荷较小的换热方式:如选择系统低效运行的取热方式,如井深2000 m,选择150~250 W/m 的延米换热量,也就是换热功率为300~500 kW,井深3000 m,宜选用600~1050 kW 的换热功率。或者采取间歇性运行的方式,在保证供暖效果的前提下,使用一段时间后停止使用,待深部地温恢复后再次运行。

  • 5 讨论

  • 5.1 热储层选择及地热开采方式

  • 对延热一井所属区域内的热储层进行优选时主要是对砂体厚度、孔隙度、含水量大小及地温场纵向分布特点、地热流体体积及热量等方面进行综合评价。蓝田灞河组地层温度最高,为80~100℃,张家坡组次之为60~80℃,三门组地温最低,为58~60℃。根据延热1直井测温曲线推测高陵群地层温度大于110℃左右(图5a)。三门组砂岩储层孔隙度最高,处于20%~40%之间,平均为30.3%;张家坡组较低,处于10%~30%之间,平均为21.15%;蓝田灞河组孔隙度最低,处于10%~20%之间,平均为15.68%。高陵群孔隙度在13%~25%左右,可能存在地层异常高压导致高陵群孔隙度变化较大(图9)。蓝田灞河组砂体厚度最大,为140 m以上,高陵群砂厚预计在100 m左右,张家坡组次之为60 m左右,三门组砂厚最小为40 m(图11)。大于4 m以上单砂层含水量数据显示,蓝田灞河组含水量高达9.90×106 m3,热流体所含热能高达4.70×1012 kcal;三门组含水量及热流体热能次之,张家坡组含水量及所含热能最低。地层温度及热导率对中深层地埋管取热效果有较大影响,取热段设置在地热流体较为富集、温度较高的砂岩发育层段有助于取得较高的换热效率,易于使地层温度达到平衡。总的来看蓝田灞河组为研究区内最优储层,温度较高,高陵组、张家坡组及三门组次之。

  • 综合考虑砂体厚度、地层含水量、地温梯度、地温、热储层物性因素,认为延长石油西化小区地热开发应选择蓝田灞河组为主要目的层段,高陵群为次要目的层段。直井开采换热可选择蓝田灞河组及高陵群的含水砂层发育层段。U型水平对接管式取热方式成井应主要选择蓝田灞河组含水砂层发育段,砂岩热导率高,有较长的换热段,可获得较高的换热效率。

  • 中深层地埋管井下换热技术具有以下特点(图12):① 单井供热面积小,换热效率相对较低;② 分布式供暖,不受城市供热管道限制;③ 无环保压力。无需尾水回灌处理装置,更加环保安全;④ 开发利用更便捷。新小区、老小区都可应用;⑤ 取热不取水,不存在地下水位下降问题。但投资回收期较长,后续对开采井周围地温场的影响还需观察。

  • 水热型开发技术是以中石化绿源公司为代表的取水换热采回灌平衡方式开发利用技术,主要包括丛式井工厂技术、地热尾水回灌技术、梯级开发利用技术三大类,即通过在地面打井至2000 m以下,形成地热井口集中分布,井深多方位展布的分布方式,将地下热水抽提至地面后,通过板式换热器及梯级利用技术最大限度地利用地热水热量,随后通过地热尾水回灌技术将地热尾水进行回灌。该技术具有以下特点:① 单井供热面积大,换热效率相对较高;② 管网集中供暖。水热型地热资源由于供热量较大,可以接入城市管网,供多个小区使用,经济效益高;③ 需要配套地热尾水回灌装置和地面尾水排放处理装置;④ 砂岩完全回灌还存在技术难题,不同区域差异较大,对其适应性还需进一步攻关研究。回灌开采对施工工艺要求较高。就渭河盆地而言,不同区块地质情况差异大,对砂岩储层不发育及高异常压力储层段很难直接回灌,需要加压回灌或对砂岩型热储层进行压裂(豆惠萍,2012; 刘江涛等,2015)。

  • 图12 中深层地埋管及U型井换热器换热原理

  • Fig.12 Heat exchange principle of mid-deep buried pipe and U-shaped well heat exchanger

  • 考虑以上不同取热方式特点,结合延长石油西化小区热储层特征、地温场特征及地热资源量来看,蓝田灞河组砂岩层孔隙度较大、地层地温高,地热资源量大,由前述可知采灌平衡法比中深层地埋管井下换热方式取热效果好,但由于研究区域砂泥岩互层发育、砂层相对较薄且地下水矿化度较高,长期开发会存在管道锈蚀、回灌困难的情况。因此,综合考虑后认为,中深层地埋管井下换热方式更加合适本地区,且应选择蓝田灞河组及高陵群为主要目的层段。U型水平对接管式取热方式成井应选择在含水砂层发育段,砂岩热导率高,可获得较高的换热效率,也有利于换热井周围地温场的恢复。

  • 5.2 地热井设计及运行参数对比

  • 地热井设计参数对地下热温度恢复具有十分重要的影响,如良好的岩石热导率以及较大的井下换热面积(换热介质与岩石接触面积)有助于提高换热量,进一步会提升换热井的热恢复能力(孔彦龙等,2017),在此基础上可打丛式井或者水平井增加井下换热面积。此外,地热井间距主要取决于地热井的热影响半径,贾林瑞等(2021)研究认为当取热负荷为150 kW、钻孔深度为2000 m时,热影响半径最大值出现在1750 m深处。而影响热影响半径取值的主要因素包括取热负荷和运行时间,并与负荷强度及传热时间成正相关。运行20年后,热影响半径基本不再变化,约为100 m左右,与黄帅等(2022)的研究结果相同。井深对于后期地热井换热量影响较大(唐晓音等,2021),地热井深度越大会导致出口端温升和换热量呈指数增长。

  • 针对后期地热井运行期间影响出水温度的因素进行分析,认为地热井的采热方式、延米换热功率对出水温度、换热效率、热恢复能力、热影响半径及热衰减效率等因素影响较为显著。如:连续采热和非连续采热区别较大,孔彦龙等(2017)的工作表明,在长期场景(30年)或者短期场景下,若每天连续采热且延米换热功率接近150 W时,出水端温度会迅速下降,且换热井无法实现可持续供热。若采取间断采热,系统在短期内可获得较高的换热功率,但是进出水端口的水温波动幅度会显著增加。其次,入水口流量设置对于出水温度及换热量具有显著影响,唐晓音等(2021)研究认为西安地区增加入口流量会导致出水端温度降低、换热量增大,西安地区入口流量设置在15~25 m3/h最为适宜;黄帅等(2022)曾对西安凹陷的其余小区进行了换热器取热稳定性及热影响半径研究,并建立了非稳态数值传热模型,研究结果表明经过15年的运行,中深层地埋管换热器的出水温度较为稳定,从第11年开始出水温度基本处于准稳态阶段,与初始温度相比,其周围核心取热区域的最大温度降低比例仅为6.5%。

  • 地热钻井参数表明延热1井资源潜力较大,后续还需在使用过程中考虑不同的采热方式,并监测出水温度、入口流量及热恢复能力,在此基础上进行数值模拟,确定延热1井的最佳采热方式,并根据延热1井井温及地温的监测情况进行调整。

  • 6 结论

  • (1)西安市延长石油西化小区延热1直井属于热传导型地热资源类型。小区地温梯度为3.50℃/100 m,是地热高温异常区,具有较好的地热资源开发潜力。

  • (2)西安市延长石油西化小区对应的三门组砂厚为40 m,平均孔隙度为30.3%;张家坡组砂厚为60 m,平均孔隙度21.15%;蓝田灞河组砂厚在140 m左右,平均孔隙度为15.68%。张家坡组地温较高,可达49~82℃,蓝田灞河组地温在82~104℃之间,地层温度高。蓝田灞河组砂层厚度大,储层孔隙度较高,地层温度高,地热资源开发条件好。

  • (3)综合考虑砂体厚度、地层含水量、地温梯度、地温、热储层物性因素,认为西安市延长石油西化小区地热开发应选择蓝田灞河组为主要目的层段,高陵群为次要目的层段。直井开采取热可选择蓝田灞河组及高陵群的含水砂层发育层段。U型水平对接管式取热方式成井应主要选择蓝田灞河组含水砂层发育段,砂岩热导率高,井深较小成本较低,可获得较高的换热效率。

  • (4)西安市延长西化小区地温梯度较高,蓝田灞河组热储层物性较好,最优的地热开发方式应采用采灌平衡法进行地热开采,综合考虑适宜采用中深层地埋管井下换热方式进行地热资源开发。

  • 致谢:感谢两位匿名审稿人对本文提出的意见和建议,感谢编辑部老师耐心细致的工作,使得本文得以顺利发表!感谢陕西延长石油集团提供的地热井样品及数据,使得本文的工作得以顺利开展!

  • 注释

  • ❶ 任战利,任文波,刘润川,陈志鹏,于春勇,张园园,祁凯,马骞,杨燕,王锟.2017a. 渭河盆地延长西化小区地热地质条件评价. 陕西延长石油(集团)国际公司合作研究项目.

  • ❷ 任战利,任文波,刘润川,祁凯,杨桂林,于春勇.2017b. 陕西地热资源调查分布评价报告. 陕西延长石油(集团)有限责任公司研究院合作项目.

  • ❸ 任战利,任文波,刘润川,祁凯.2018. 鄂尔多斯盆地地热资源调查分布评价成果报告. 中国地质调查局西安地质调查中心合作项目.

  • ❹ 戴传山.2023. 推广中深层单井高效取热技术应用.地热加公众号,2023-03-02.

  • 参考文献

    • Alfaro C, Rueda-Gutierrez J B, Casallas Y, Rodriguez G, Malo J. 2021. Approach to the geothermal potential of Colombia. Geothermics, 96: 102169.

    • Bai Qinqin. 2019. “Water” type ground fissure in Xi'an region paranormal activity analysis. Master thesis of Chang'an University (in Chinese with English abstract).

    • Chen Yueqiang, Ji Yongtao, Pu Jingyi, Zhang Xiaohong. 2018. Discussion on the development mode of mid-deep geothermal resources in Guanzhong basin. Western Prospecting Engineering, 30(11): 103~106 (in Chinese with English abstract).

    • Cheng Chao, Yu Wengang, Jia Wanting, Lin Haiyu, Li Lianqing. 2017. Research progress and development tendency about thermal physical properties of rocks. Advances in Earth Science, 32(10): 1072~1083 (in Chinese with English abstract).

    • Dai Meiling, Wang Wenke. 2016. Delineation of typical groundwater source protection. Master thesis of Chang'an University (in Chinese with English abstract).

    • Deng Yaren, Ren Zhanli, Ren Wenbo. 2017. Geothermal distribution control factors and geothermal prospect in Guanzhong region. Western Development (Land Development and Engineering Research), 2(11): 19~27 (in Chinese with English abstract).

    • Dou Huiping. 2012. Research of chemical clogging during waste geothermal water re-injection based on hydrogeochemical simulation. Master thesis of Chang'an University(in Chinese with English abstract).

    • Dowdle W L, Cobb W M. 1975. Static formation temperature from well logs—An empirical method. Journal of Petroleum Technology, 27: 1326~1330.

    • Erol S, Akin T, Baser A, Saracoglu O, Akin S. 2022. Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics, 98: 102271.

    • Fan Jijiao, Ma Zhiyuan. 2006. Research on the circulation mode and renewability of underground hot water in Guanzhong basin. Master thesis of Chang'an University (in Chinese with English abstract).

    • Fang Jiabing, Yang Fei, Yue Leping. 1992. Magnetostratigraphic study of the Weihe fifth-order terrace in Changshougou, Baoji City, Shanxi Province. Shaanxi Geology, 10(1): 53~59 (in Chinese with English abstract).

    • Ge Tongming, Fan Limin, Xu Xing, Li Suzhen, Zheng Hongrui. 1991. Paleomagnetic study of borehole W7 in Yancun, Weinan. Marine Geology & Quaternary Geology, 11(4): 59~71 (in Chinese with English abstract).

    • Gudala M, Govindarajan S K. 2021. Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models. Geothermics, 96: 102174.

    • Guo Sasa, Zhu Chuanqing, Qiu Nansheng, Tang Boning, Cui Yue. 2020. Formation conditions and favorable areas for the deep geothermal resources in Xiong'an New Area. Acta Geologica Sinica, 94(7): 2026~2035 (in Chinese with English abstract).

    • Hu Shengbiao, He Lijuan, Wang Jiyang. 2001. Compilation of heat flow data in the continental area of China (3rd Edition). Chinese Journal of Geophysics, 44(5): 611~626 (in Chinese with English abstract).

    • Huang Shuai, Zhu Ke, Dong Jiankai, Li Ji, Jiang Yiqiang, Fang Zhaohong. 2022. Operation stability and heat-affected radius of medium-deep borehole heat exchanger. Journal of Harbin Institute of Technology, 54(6): 119~127 (in Chinese with English abstract).

    • Huang Wei. 2015. Logging study on key parameters of shale gas in Yanchang Formation south central Ordos basin. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Jia Linrui, Cui Ping, Fang Liang, Fang Zhaohong. 2021. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil. HV & AC, 51(1): 101~107 (in Chinese with English abstract).

    • Jian G, Sarathi R S, Burghardt J, Bonneville A, Gupta V, Fernandez C A, Garrison G. 2021. Evaluation of a geener fracturing fluid for geothermal energy recovery: An experimental and simulation study. Geothermics, 97: 102266.

    • Jiang Guangzheng, Gao Wei, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu Shengbiao, Wang Jiyang. 2016. Compilation of heat flow data in the continental area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892~2910 (in Chinese with English abstract).

    • Ke Tingting, Huang Shaopeng, Xu Wei, Tang Xiaoyin, Li Xuxiang. 2022. Evaluation of the multi-doublet performance in sandstone reservoirs using thermal-hydraulic modeling and economic analysis. Geothermics, 98: 102273.

    • Kong Yanlong, Chen Chaofan, Shao Haibing, Pang Zhonghe, Xiong Liangping, Wang Jiyang. 2017. Principle and capacity quantification of deep-borehole heat exchangers.

    • Chinese Journal of Geophysics, 60(7): 4741~4752 (in Chinese with English abstract).

    • Koochak Zadeh M, Haque Mondol N, Jahren J. 2017. Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf. Geophysics, 82: C61~C75.

    • Li Chao, Zhang Likuan, Luo Xiaorong, Zhang Liqiang, Hu Caizhi, Yang Peng, Qiu Guiqiang, Ma Liyuan, Lei Yuhong, Cheng Ming. 2016. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study. Journal of China University of Petroleum (Natural Science Edition), 40(3): 77~87 (in Chinese with English abstract).

    • Li Yang. 2020. Study on the mechanism and effective influence distance of ground fracture in Xi'an. Master thesis of Chang'an University (in Chinese with English abstract).

    • Li Zhichao. 2017. The lithofacies paleogeography and paleoenvironmental evolution of the Cenozoic in the Weihe basin, China. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Li Zhichao, Li Wenhou, Li Yongxiang, Li Meng. 2015a. Miocene sedimentary facies and paleoclimate characteristics in the Weihe basin. Abstracts of Sedimentology and Unconventional Resources of the 2015 National Sedimentology Conference , 1: 423 (in Chinese with English abstract).

    • Li Zhichao, Li Wenhou, Li Yongxiang, Li Yuhong, Han Wei, Wen Jinhua, Chen Meng, Qin Zhi. 2015b. Sedimentary facies of the Cenozoic in Weihe basin. Journal of Palaeogeography, 17(4): 529~540 (in Chinese with English abstract).

    • Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China. Geology in China, 40(1): 312~321 (in Chinese with English abstract).

    • Liu Cong, Peng Jianbing, Chen Liwei, Deng Yahong, Wu Ming. 2012. Finith element analysis of seismic effects on ground fissures in Xi'an. Journal of Engineering Geology, 20(6): 979~985 (in Chinese with English abstract).

    • Liu Hongjun. 1985. Analysis of geothermic distribution and geothermal anomalies in the Xi'an region. Journal of Chang'an University (Earth Science Edition), 2: 59~63 (in Chinese with English abstract).

    • Liu Hujun, Xue Xiangxu. 2004. Discussion on the Cenozoic and its chronology in the Weihe basin. Journal of Earth Science and Environment, 4: 1~5 (in Chinese with English abstract).

    • Liu Jiangtao, Sun Jun, He Qiaoqiao. 2015. Analysis on present situation of reinjection of geothermal utilized water in Guanzhong basin. Journal of Xi'an University (Natural Science Edition), 18(4): 111~114.

    • Liu Runchuan, Ren Zhanli, Ye Hanqing, Ren Wenbo, Wang Kun, Huai Yinchao, Qi Kai. 2021. Potential evaluation of geothermal resources: Exemplifying some municipalities and key strata in Ordos basin as a study case. Geological Bulletin of China, 40(4): 565~576 (in Chinese with English abstract).

    • Morales E, Veroslavsky G, Manganelli A, Marmisolle J, Pedro A, Samaniego L, Plenc F, Umpierrez R, Ferreiro M, Morales M. 2021. Potential of geothermal energy in the onshore sedimentary basins of Uruguay. Geothermics, 95: 102165.

    • Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng. 2014. Occurrence Law of Geothermal Resources and Key Technologies for Development and Utilization in Guanzhong Basin (1st Edition). Beijing: Geological Publishing House, 132~141 (in Chinese with English abstract).

    • Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng, Liu Jianqiang, Liu Fang, Chen Jianping, Zhao Zhiqiang, Jin Guang, Ma Zhiyuan, Yang Youyun. 2016. Geothermal Resource Occurrence Rules and Key Technologies for Development and Utilization in the Guanzhong Basin. Beijing: Geological Publishing House.

    • Muffler P, Cataldi R. 1978. Methods for regional assessment of geothermal resources. Geothermics, 7(2-4): 53~89.

    • Pang Zhonghe, Kong Yanlong, Pang Jumei, Hu Shengbiao, Wang Jiyang. 2017. Geothermal resources and development in Xiong'an New Area. Bulletin of the Chinese Academy of Sciences, 32: 1224~1230 (in Chinese with English abstract).

    • Qi Kai, Ren Zhanli, Cui Junping, Yu Qiang, Cao Zhanpeng, Yang Peng, Deng Yaren, Zhang Mengting. 2017. The Meso-cenozoic tectonic thermal evolution of the Qishan-Linyou areas in Weibei uplift of Ordos basin and its response in Geology: Evidence from fission track analysis. Acta Geologica Sinica, 91(1): 151~162 (in Chinese with English abstract).

    • Qiu Nansheng, Hu Shengbiao, He Lijuan. 2019. Geothermal Science of Sedimentary Basins. Qingdao: China University of Petroleum Press (in Chinese with English abstract).

    • Rao Song, Jiang Guangzheng, Gao Yajie, Hu Shengbiao, Wang Jiyang. 2016. The thermal structure of lithosphere and heat source mechanism of geothermal fields in Weihe basin. Chinese Journal of Geophysics, 59(6): 2176~2190 (in Chinese with English abstract).

    • Ren Juan, Peng Jianbing, Wang Fuyun, Liu Chen, Feng Xijie, Dai Wangqiang. 2012a. The research of deep structural features of Weihe basin and adjacent areas. Chinese Journal of Geophysics, 55(9): 2939~2947 (in Chinese with English abstract).

    • Ren Juan, Peng Jianbing, Wang Fuyun. 2012b. Probe on the deep crustal structure in Weihe basin and tectonics research of basin. Doctoral dissertation of Chang'an University (in Chinese with English abstract).

    • Ren Wenbo. 2019. Characteristics and development of geothermal resources in the middle and deep layers of the Weihe basin. Master thesis of Northwestern University (in Chinese with English abstract).

    • Ren Zhanli. 1998. Comparative research on tectonically thermal history of sedimentary basins in the Northern China. Doctoral thesis of northwestern University (in Chinese with English abstract).

    • Ren Zhanli, Chen Yulin, Li Xiaohui, Liu Limeng, Tian Tao, Duan Haijiao, Cui Junping. 2011. Experimental study on the sustainable utilization of geothermal resources in Xi'an. Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society, 314 (in Chinese with English abstract).

    • Ren Zhanli, Liu Runchuan, Ren Wenbo, Qi Kai, Yang Guilin, Cui Junping, Yang Peng, Zhang Yuanyuan. 2020. Distribution of geothermal field and its controlling factors in the Weihe basin. Acta Geological Sinica, 94(7): 1938~1949 (in Chinese with English abstract).

    • Sasaki A. 1985. An empirical method and a few problems for estimating formation temperature from Bottom-hole temperature recorded during logging (a revised edition). Journal of the Japanese Association for Petroleum Technology, 50(1): 17~19.

    • Tanaka T, Sato K. 1977. Estimation of subsurface temperature in oil and gas producing areas, northeast Japan. Japan: NP.

    • Tang Xiaoyin, Huang Shaopeng, Zhang Gongcheng, Yang Shuchun, Hu Shengbiao. 2018. Lithospheric thermal structure of the Pearl River Mouth basin northern South China Sea. Chinese Journal Geophysics, 61(9): 3749~3759 (in Chinese with English abstract).

    • Tang Xiaoyin, Cheng Luyao, Xu Wei, Ke Tingting, Dong Ying, Tuo Jiasheng. 2021. Numerical study on factors that influence the heat transfer performance of middeep coaxial casing heat exchanger in the Xi'an area. Chinese Journal of Geology, 56(3): 985~999 (in Chinese with English abstract).

    • Tzanis A, Efstathiou A, Chailas S, Lagios E, Stamatakis M. 2020. The Methana Volcano—Geothermal resource, greece, and its relationship to regional tectonics. Journal of Volcanology and Geothermal Research, 404: 107035.

    • Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449~450+134+451~459 (in Chinese with English abstract).

    • Wang Guiling, Yang Xuan, Ma Ling, Zhou Jiaqi, Shen Guohua, Wang Wanli. 2021. Status quo and prospects of geothermal energy in heat supply. Huadian Technology, 43(11): 15~24 (in Chinese with English abstract).

    • Wang Jiyang. 2015. Geothermics and Its Applications. Beijing: Science Press (in Chinese).

    • Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 30(32): 25~31.

    • Wang Xinwei, Wang Tinghao, Zhang Xuan, Mao Xiang, Luo Lu, Wang Di, Wu Minghui. 2019. Genetic mechanism of Xiwenzhuang geothermal field in Taiyuan basin. Earth Science, 44(3): 1042~1056 (in Chinese with English abstract).

    • Wang Zhuting, Zhang Chao, Jiang Guangzheng, Hu Jie, Tang Xianchun, Hu Shengbiao. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313~4322 (in Chinese with English abstract).

    • Xu Xiwei, Ma Xingyuan. 1992. Geodynamics of the Shanxi Rift system, China. Geodynamics of Rifting, 208: 325~340.

    • Yan Wenzhong, Mu Genxu, Liu Jianqiang. 2014. Experimental study of geothermal tail-water reinjection in the Guanzhong urban area of the Weihe basin, Shaanxi Province. Shanghai Land & Resources, 35(2): 32~35 (in Chinese with English abstract).

    • Yang Chao. 2017. Research on comprehensive evaluation of shallow geothermal energy resources in Yinchuan. Doctoral thesis of Chang'an University (in Chinese with English abstract).

    • Yang Jilong, Liu Futian, Jia Zhi, Yuan Haifan, Xu Qinfen, Hu Yunzhuang. 2018. The hadrochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance. Acta Geoscientica Sinica, 39(1): 71~78 (in Chinese with English abstract).

    • Yang Peng, Xia Bin, Cai Zhourong, Wan Zhifeng, Huang Qiangtai, Zhang Yong. 2017. Genetic mechanism of the Yinggehai basin, northern South China Sea: A comparative study of the Weihe basin. Marine Geology & Quaternary Geology, 37(6): 65~75 (in Chinese with English abstract).

    • Yang Peng, Ren Zhanli, Zhang Jingong, Xia Bin, Tian Tao. 2018. Discussion of the coupling relationship between Cenozoic sedimentary-tectonic migration of Weihe basin and the uplift of Weibei and East Qinling areas. Chinese Journal of Geology, 53(5): 876~892 (in Chinese with English abstract).

    • Ye Hong, Zhang Botao, Mao Fungying. 1987. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133(9): 217~227 (in Chinese with English abstract).

    • Yu Ruyang, Huang Shaopeng, Zhang Jiong, Xu Wei, Ke Tingting, Zuo Yinhui, Zhou Yongshui. 2020. Measurement and analysis of thermal conductivity of rocks from the Baiyinchagan and Ulyastai sags, Erlian basin. Acta Petrologica Sinica, 36(2): 621~636 (in Chinese with English abstract).

    • Zhang Chao, Huang Ronghua, Qin Song, Hu Shengbiao, Zhang Shengsheng, Li Shengtao, Zhang Linyou, Wang Zhuting. 2021. The high-temperature geothermal resources in the Gonghe-Guide area, northeast Tibetan Plateau: A comprehensive review. Geothermics, 97: 102264.

    • Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins. Geology in China, 46(2): 255~268 (in Chinese with English abstract).

    • Zhao Hui, Qian Hui. 2009. Study on hydrogeochemistry and enviornmental impacts from exploitation and utilization of geothermal water in Guanzhong basin. Doctoral thesis of Chang' an University (in Chinese with English abstract).

    • Zhao Xirong. 2006. Occurrence features of geothermal resources and geothermal bearing analysis in Weihe basin. Coal Geology & Exploration, (2): 51~54 (in Chinese with English abstract).

    • Zheng Liying. 2015. The characteristics and evaluation of geothermal resources in Beijing-Tianjin-Hebei region. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Zhou Yang, Deng Niandong, Wang Feng, Mu Genxu, Liu Jianqiang. 2017. Fractal theory of suitability zoning structure of shallow geothermal energy. Geological Survey of China, 4(1): 18~23 (in Chinese with English abstract).

    • Zhou Yang, Mu Genxu, Liu Jianqiang, Zhang Hui, Zhang Le, Jin Guang. 2018. Shallow geothermal energy resources occurrence regularity of typical geomorphological units. Geological Science and Technology Information, 37(4): 232~238+268 (in Chinese with English abstract).

    • Zhu Huanlai. 2011. Research on the sedimentary geothermal resources in northern Songliao basin. Doctoral thesis of Northeast Petroleum University (in Chinese with English abstract).

    • Zhu Shuyuan, Zhang Guobin, Li Shaohu. 2018. A study on geothermal resources comprehensive utilization in Xiong'an New Area. Coal Geology of China, 30(5): 20~23+45 (in Chinese with English abstract).

    • 白琴琴. 2019. 西安地区“采水型”地裂缝超常活动分析研究. 长安大学硕士学位论文.

    • 陈粤强, 姬永涛, 浦静怡, 张晓宏. 2018. 关中盆地中深层地热资源开发方式探讨. 西部探矿工程, 30(11): 103~106.

    • 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 2017. 岩石热物理性质的研究进展及发展趋势. 地球科学进展, 32(10): 1072~1083.

    • 代美龄, 王文科. 2016. 关中盆地典型地下水水源地保护区划分研究. 长安大学硕士学位论文.

    • 邓亚仁, 任战利, 任文波. 2017. 关中地区地热分布控制因素与地热开发前景. 西部大开发(土地开发工程研究), 2(11): 19~27.

    • 豆惠萍. 2012. 基于水文地球化学模拟的地热尾水回灌化学堵塞研究. 长安大学硕士学位论文.

    • 范基姣, 马致远. 2006. 关中盆地地下热水循环模式及可更新性研究. 长安大学硕士学位论文.

    • 方甲炳, 杨飞, 岳乐平. 1992. 宝鸡长寿沟渭河五级阶地磁性地层学研究. 陕西地质, 10(1): 53~59.

    • 葛同明, 樊利民, 徐行, 李素珍, 郑洪瑞. 1991. 渭南阎村W7孔岩心样品的古地磁学研究. 海洋地质与第四纪地质, 11(4): 59~71.

    • 郭飒飒, 朱传庆, 邱楠生, 唐博宁, 崔悦. 2020. 雄安新区深部地热资源形成条件与有利区预测. 地质学报, 94(7): 2026~2035.

    • 胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611~626.

    • 黄帅, 朱科, 董建锴, 李骥, 姜益强, 方肇洪. 2022. 中深层地埋管换热器取热稳定性及热影响半径. 哈尔滨工业大学学报, 54(6): 119~127.

    • 黄薇. 2015. 鄂尔多斯盆地中南部延长组页岩气关键参数测井研究. 西北大学博士学位论文.

    • 贾林瑞, 崔萍, 方亮, 方肇洪. 2021. 中深层地埋管换热器传热过程对周围岩土体的热影响. 暖通空调, 51(1): 101~107.

    • 姜光政, 高堋, 饶松, 张林友, 唐晓音, 黄方, 赵平, 庞忠和, 何丽娟, 胡圣标, 汪集旸. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892~2910.

    • 孔彦龙, 陈超凡, 邵亥冰, 庞忠和, 熊亮萍, 汪集暘. 2017. 深井换热技术原理及其换热量评估. 地球物理学报, 60(7): 4741~4752.

    • 李超, 张立宽, 罗晓容, 张立强, 胡才志, 杨鹏, 邱桂强, 马立元, 雷裕红, 程明. 2016. 泥岩压实研究中有机质导致声波时差异常的定量校正方法. 中国石油大学学报(自然科学版), 40(3): 77~87.

    • 李阳. 2020. 西安地裂缝活动机理及有效影响距离研究. 长安大学硕士学位论文.

    • 李智超. 2017. 渭河盆地新生代岩相古地理及环境演化. 西北大学博士学位论文.

    • 李智超, 李文厚, 李永项, 李蒙. 2015a. 渭河盆地中新统沉积相与古气候特征. 2015年全国沉积学大会沉积学与非常规资源论文摘要集 1: 423.

    • 李智超, 李文厚, 李永项, 李玉宏, 韩伟, 闻金华, 陈萌, 秦智. 2015b. 渭河盆地新生代沉积相研究. 古地理学报, 17(4): 529~540.

    • 蔺文静, 刘志明, 王婉丽, 王贵玲. 2013. 中国地热资源及其潜力评估. 中国地质, 40(1): 312~321.

    • 刘聪, 彭建兵, 陈立伟, 邓亚虹, 吴明. 2012. 西安地裂缝场地地震效应分析. 工程地质学报, 20(6): 979~985.

    • 刘鸿俊. 1985. 西安地区地温分布及地热异常分析. 长安大学学报(地球科学版), 2: 59~63.

    • 刘鸿俊, 孙永斌. 1986. 汾渭盆地南段地温分布特征. 陕西地质, 1: 55~60.

    • 刘护军, 薛祥煦. 2004. 对渭河盆地新生界及其年代的讨论. 地球科学与环境学报, 4: 1~5.

    • 刘江涛, 孙军, 何俏俏. 2015. 关中盆地地热尾水回注现状分析. 西安文理学院学报(自然科学版), 18(4): 111~114.

    • 刘润川, 任战利, 叶汉青, 任文波, 王琨, 淮银超, 祁凯. 2021. 地热资源潜力评价——以鄂尔多斯盆地部分地级市和重点层位为例. 地质通报, 40(4): 565~576.

    • 穆根胥, 李锋, 闫文中, 李成. 2014. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社, 132~141.

    • 穆根胥, 李锋, 闫文中, 李成, 刘建强, 刘方, 陈建平, 赵智强, 金光, 马致远, 杨友运. 2016. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社.

    • 庞忠和, 孔彦龙, 庞菊梅, 胡圣标, 汪集暘. 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32(11): 1224~1230.

    • 祁凯, 任战利, 崔军平, 于强, 曹展鹏, 杨鹏, 邓亚仁, 张梦婷. 2017. 鄂尔多斯盆地渭北隆起岐山-麟游地区中新生代构造热演化及地质响应——来自裂变径迹分析的证据. 地质学报, 91(1): 151~162.

    • 邱楠生, 胡圣标, 何丽娟. 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.

    • 饶松, 姜光政, 高雅洁, 胡圣标, 汪集旸. 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176~2190.

    • 任隽, 彭建兵, 王夫运, 刘晨, 冯希杰, 戴王强. 2012a. 渭河盆地及邻区地壳深部结构特征研究. 地球物理学报, 55(9): 2939~2947.

    • 任隽, 彭建兵;王夫运. 2012b. 渭河盆地深部地壳结构探测与盆地构造研究. 长安大学博士学位论文.

    • 任文波. 2019. 渭河盆地中深层地热资源特征及开发利用. 西北大学硕士学位论文.

    • 任战利. 1998. 中国北方沉积盆地构造热演化史恢复及其对比研究. 西北大学博士学位论文.

    • 任战利, 陈玉林, 李晓辉, 刘立萌, 田涛, 段海礁, 崔军平. 2011. 西安市地热资源可持续利用的回灌试验研究, 中国地球物理学会第二十七届年会, 314.

    • 任战利, 刘润川, 任文波, 祁凯, 杨桂林, 崔军平, 杨鹏, 张园园. 2020. 渭河盆地地温场分布规律及其控制因素. 地质学报, 94(7): 1938~1949.

    • 唐晓音, 黄少鹏, 张功成, 杨树春, 胡圣标. 2018. 南海北部陆缘珠江口盆地岩石圈热结构. 地球物理学报, 61(9): 3749~3759.

    • 唐晓音, 程璐瑶, 许威, 柯婷婷, 董英, 拓佳胜. 2021. 西安地区中深层套管式地埋管换热性能数值模拟. 地质科学, 56(3): 985~999.

    • 汪集旸. 2015. 地热学及其应用. 北京: 科学出版社.

    • 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25~31.

    • 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449~450+134+451~459.

    • 王贵玲, 杨轩, 马凌, 周佳琦, 沈国华, 王婉丽. 2021. 地热能供热技术的应用现状及发展趋势. 华电技术, 43(11): 15~24.

    • 王兴. 2002. 渭河盆地地热资源特征及其开发的环境因素, 中国科协2002年学术年会, 四川成都.

    • 王朱亭, 张超, 姜光政, 胡杰, 唐显春, 胡圣标. 2019. 雄安新区现今地温场特征及成因机制. 地球物理学报, 62(11): 4313~4322.

    • 闫文中, 穆根胥, 刘建强. 2014. 陕西渭河盆地关中城市群地热尾水回灌试验研究. 上海国土资源, 35(2): 32~35.

    • 杨超. 2017. 银川地区浅层地温能资源综合评价研究. 长安大学博士学位论文.

    • 杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 2018. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义. 地球学报, 39(1): 71~78.

    • 杨鹏, 夏斌, 蔡周荣, 万志峰, 黄强太, 张勇. 2017. 南海北部莺歌海盆地成因机制: 与渭河盆地构造对比分析的启示. 海洋地质与第四纪地质, 37(6): 65~75.

    • 杨鹏, 任战利, 张金功, 夏斌, 田涛. 2018. 新生代渭河盆地沉积—构造迁移与渭北隆起及东秦岭耦合关系探讨. 地质科学, 53(5): 876~892.

    • 余如洋, 黄少鹏, 张炯, 许威, 柯婷婷, 左银辉, 周勇水. 2020. 二连盆地白音查干凹陷和乌里雅斯太凹陷岩石热导率测试与分析. 岩石学报, 36(2): 621~636.

    • 张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255~268.

    • 赵慧, 钱会. 2009. 关中盆地地下热水地球化学及其开发利用的环境效应研究. 长安大学博士学位论文.

    • 赵西蓉. 2006. 渭河断陷盆地地热资源赋存特征与热储分析. 煤田地质与勘探, (2): 51~54.

    • 郑丽英. 2015. 京津冀地区新生代地热热储分布特征与资源评价. 中国地质大学(北京)硕士学位论文.

    • 周阳, 邓念东, 王凤, 穆根胥, 刘建强. 2017. 浅层地热能适宜性分区结构的分形原理. 中国地质调查, 4(1): 18~23.

    • 周阳, 穆根胥, 刘建强, 张卉, 张乐, 金光. 2018. 典型地貌单元浅层地热能资源量赋存规律. 地质科技情报, 37(4): 232~238+268.

    • 朱焕来. 2011. 松辽盆地北部沉积盆地型地热资源研究. 东北石油大学博士学位论文.

    • 朱树源, 张国斌, 李少虎. 2018. 雄安新区地热资源综合利用研究. 中国煤炭地质, 30(5): 20~23+45.

  • 参考文献

    • Alfaro C, Rueda-Gutierrez J B, Casallas Y, Rodriguez G, Malo J. 2021. Approach to the geothermal potential of Colombia. Geothermics, 96: 102169.

    • Bai Qinqin. 2019. “Water” type ground fissure in Xi'an region paranormal activity analysis. Master thesis of Chang'an University (in Chinese with English abstract).

    • Chen Yueqiang, Ji Yongtao, Pu Jingyi, Zhang Xiaohong. 2018. Discussion on the development mode of mid-deep geothermal resources in Guanzhong basin. Western Prospecting Engineering, 30(11): 103~106 (in Chinese with English abstract).

    • Cheng Chao, Yu Wengang, Jia Wanting, Lin Haiyu, Li Lianqing. 2017. Research progress and development tendency about thermal physical properties of rocks. Advances in Earth Science, 32(10): 1072~1083 (in Chinese with English abstract).

    • Dai Meiling, Wang Wenke. 2016. Delineation of typical groundwater source protection. Master thesis of Chang'an University (in Chinese with English abstract).

    • Deng Yaren, Ren Zhanli, Ren Wenbo. 2017. Geothermal distribution control factors and geothermal prospect in Guanzhong region. Western Development (Land Development and Engineering Research), 2(11): 19~27 (in Chinese with English abstract).

    • Dou Huiping. 2012. Research of chemical clogging during waste geothermal water re-injection based on hydrogeochemical simulation. Master thesis of Chang'an University(in Chinese with English abstract).

    • Dowdle W L, Cobb W M. 1975. Static formation temperature from well logs—An empirical method. Journal of Petroleum Technology, 27: 1326~1330.

    • Erol S, Akin T, Baser A, Saracoglu O, Akin S. 2022. Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics, 98: 102271.

    • Fan Jijiao, Ma Zhiyuan. 2006. Research on the circulation mode and renewability of underground hot water in Guanzhong basin. Master thesis of Chang'an University (in Chinese with English abstract).

    • Fang Jiabing, Yang Fei, Yue Leping. 1992. Magnetostratigraphic study of the Weihe fifth-order terrace in Changshougou, Baoji City, Shanxi Province. Shaanxi Geology, 10(1): 53~59 (in Chinese with English abstract).

    • Ge Tongming, Fan Limin, Xu Xing, Li Suzhen, Zheng Hongrui. 1991. Paleomagnetic study of borehole W7 in Yancun, Weinan. Marine Geology & Quaternary Geology, 11(4): 59~71 (in Chinese with English abstract).

    • Gudala M, Govindarajan S K. 2021. Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models. Geothermics, 96: 102174.

    • Guo Sasa, Zhu Chuanqing, Qiu Nansheng, Tang Boning, Cui Yue. 2020. Formation conditions and favorable areas for the deep geothermal resources in Xiong'an New Area. Acta Geologica Sinica, 94(7): 2026~2035 (in Chinese with English abstract).

    • Hu Shengbiao, He Lijuan, Wang Jiyang. 2001. Compilation of heat flow data in the continental area of China (3rd Edition). Chinese Journal of Geophysics, 44(5): 611~626 (in Chinese with English abstract).

    • Huang Shuai, Zhu Ke, Dong Jiankai, Li Ji, Jiang Yiqiang, Fang Zhaohong. 2022. Operation stability and heat-affected radius of medium-deep borehole heat exchanger. Journal of Harbin Institute of Technology, 54(6): 119~127 (in Chinese with English abstract).

    • Huang Wei. 2015. Logging study on key parameters of shale gas in Yanchang Formation south central Ordos basin. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Jia Linrui, Cui Ping, Fang Liang, Fang Zhaohong. 2021. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil. HV & AC, 51(1): 101~107 (in Chinese with English abstract).

    • Jian G, Sarathi R S, Burghardt J, Bonneville A, Gupta V, Fernandez C A, Garrison G. 2021. Evaluation of a geener fracturing fluid for geothermal energy recovery: An experimental and simulation study. Geothermics, 97: 102266.

    • Jiang Guangzheng, Gao Wei, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu Shengbiao, Wang Jiyang. 2016. Compilation of heat flow data in the continental area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892~2910 (in Chinese with English abstract).

    • Ke Tingting, Huang Shaopeng, Xu Wei, Tang Xiaoyin, Li Xuxiang. 2022. Evaluation of the multi-doublet performance in sandstone reservoirs using thermal-hydraulic modeling and economic analysis. Geothermics, 98: 102273.

    • Kong Yanlong, Chen Chaofan, Shao Haibing, Pang Zhonghe, Xiong Liangping, Wang Jiyang. 2017. Principle and capacity quantification of deep-borehole heat exchangers.

    • Chinese Journal of Geophysics, 60(7): 4741~4752 (in Chinese with English abstract).

    • Koochak Zadeh M, Haque Mondol N, Jahren J. 2017. Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf. Geophysics, 82: C61~C75.

    • Li Chao, Zhang Likuan, Luo Xiaorong, Zhang Liqiang, Hu Caizhi, Yang Peng, Qiu Guiqiang, Ma Liyuan, Lei Yuhong, Cheng Ming. 2016. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study. Journal of China University of Petroleum (Natural Science Edition), 40(3): 77~87 (in Chinese with English abstract).

    • Li Yang. 2020. Study on the mechanism and effective influence distance of ground fracture in Xi'an. Master thesis of Chang'an University (in Chinese with English abstract).

    • Li Zhichao. 2017. The lithofacies paleogeography and paleoenvironmental evolution of the Cenozoic in the Weihe basin, China. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Li Zhichao, Li Wenhou, Li Yongxiang, Li Meng. 2015a. Miocene sedimentary facies and paleoclimate characteristics in the Weihe basin. Abstracts of Sedimentology and Unconventional Resources of the 2015 National Sedimentology Conference , 1: 423 (in Chinese with English abstract).

    • Li Zhichao, Li Wenhou, Li Yongxiang, Li Yuhong, Han Wei, Wen Jinhua, Chen Meng, Qin Zhi. 2015b. Sedimentary facies of the Cenozoic in Weihe basin. Journal of Palaeogeography, 17(4): 529~540 (in Chinese with English abstract).

    • Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China. Geology in China, 40(1): 312~321 (in Chinese with English abstract).

    • Liu Cong, Peng Jianbing, Chen Liwei, Deng Yahong, Wu Ming. 2012. Finith element analysis of seismic effects on ground fissures in Xi'an. Journal of Engineering Geology, 20(6): 979~985 (in Chinese with English abstract).

    • Liu Hongjun. 1985. Analysis of geothermic distribution and geothermal anomalies in the Xi'an region. Journal of Chang'an University (Earth Science Edition), 2: 59~63 (in Chinese with English abstract).

    • Liu Hujun, Xue Xiangxu. 2004. Discussion on the Cenozoic and its chronology in the Weihe basin. Journal of Earth Science and Environment, 4: 1~5 (in Chinese with English abstract).

    • Liu Jiangtao, Sun Jun, He Qiaoqiao. 2015. Analysis on present situation of reinjection of geothermal utilized water in Guanzhong basin. Journal of Xi'an University (Natural Science Edition), 18(4): 111~114.

    • Liu Runchuan, Ren Zhanli, Ye Hanqing, Ren Wenbo, Wang Kun, Huai Yinchao, Qi Kai. 2021. Potential evaluation of geothermal resources: Exemplifying some municipalities and key strata in Ordos basin as a study case. Geological Bulletin of China, 40(4): 565~576 (in Chinese with English abstract).

    • Morales E, Veroslavsky G, Manganelli A, Marmisolle J, Pedro A, Samaniego L, Plenc F, Umpierrez R, Ferreiro M, Morales M. 2021. Potential of geothermal energy in the onshore sedimentary basins of Uruguay. Geothermics, 95: 102165.

    • Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng. 2014. Occurrence Law of Geothermal Resources and Key Technologies for Development and Utilization in Guanzhong Basin (1st Edition). Beijing: Geological Publishing House, 132~141 (in Chinese with English abstract).

    • Mu Genxu, Li Feng, Yan Wenzhong, Li Cheng, Liu Jianqiang, Liu Fang, Chen Jianping, Zhao Zhiqiang, Jin Guang, Ma Zhiyuan, Yang Youyun. 2016. Geothermal Resource Occurrence Rules and Key Technologies for Development and Utilization in the Guanzhong Basin. Beijing: Geological Publishing House.

    • Muffler P, Cataldi R. 1978. Methods for regional assessment of geothermal resources. Geothermics, 7(2-4): 53~89.

    • Pang Zhonghe, Kong Yanlong, Pang Jumei, Hu Shengbiao, Wang Jiyang. 2017. Geothermal resources and development in Xiong'an New Area. Bulletin of the Chinese Academy of Sciences, 32: 1224~1230 (in Chinese with English abstract).

    • Qi Kai, Ren Zhanli, Cui Junping, Yu Qiang, Cao Zhanpeng, Yang Peng, Deng Yaren, Zhang Mengting. 2017. The Meso-cenozoic tectonic thermal evolution of the Qishan-Linyou areas in Weibei uplift of Ordos basin and its response in Geology: Evidence from fission track analysis. Acta Geologica Sinica, 91(1): 151~162 (in Chinese with English abstract).

    • Qiu Nansheng, Hu Shengbiao, He Lijuan. 2019. Geothermal Science of Sedimentary Basins. Qingdao: China University of Petroleum Press (in Chinese with English abstract).

    • Rao Song, Jiang Guangzheng, Gao Yajie, Hu Shengbiao, Wang Jiyang. 2016. The thermal structure of lithosphere and heat source mechanism of geothermal fields in Weihe basin. Chinese Journal of Geophysics, 59(6): 2176~2190 (in Chinese with English abstract).

    • Ren Juan, Peng Jianbing, Wang Fuyun, Liu Chen, Feng Xijie, Dai Wangqiang. 2012a. The research of deep structural features of Weihe basin and adjacent areas. Chinese Journal of Geophysics, 55(9): 2939~2947 (in Chinese with English abstract).

    • Ren Juan, Peng Jianbing, Wang Fuyun. 2012b. Probe on the deep crustal structure in Weihe basin and tectonics research of basin. Doctoral dissertation of Chang'an University (in Chinese with English abstract).

    • Ren Wenbo. 2019. Characteristics and development of geothermal resources in the middle and deep layers of the Weihe basin. Master thesis of Northwestern University (in Chinese with English abstract).

    • Ren Zhanli. 1998. Comparative research on tectonically thermal history of sedimentary basins in the Northern China. Doctoral thesis of northwestern University (in Chinese with English abstract).

    • Ren Zhanli, Chen Yulin, Li Xiaohui, Liu Limeng, Tian Tao, Duan Haijiao, Cui Junping. 2011. Experimental study on the sustainable utilization of geothermal resources in Xi'an. Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society, 314 (in Chinese with English abstract).

    • Ren Zhanli, Liu Runchuan, Ren Wenbo, Qi Kai, Yang Guilin, Cui Junping, Yang Peng, Zhang Yuanyuan. 2020. Distribution of geothermal field and its controlling factors in the Weihe basin. Acta Geological Sinica, 94(7): 1938~1949 (in Chinese with English abstract).

    • Sasaki A. 1985. An empirical method and a few problems for estimating formation temperature from Bottom-hole temperature recorded during logging (a revised edition). Journal of the Japanese Association for Petroleum Technology, 50(1): 17~19.

    • Tanaka T, Sato K. 1977. Estimation of subsurface temperature in oil and gas producing areas, northeast Japan. Japan: NP.

    • Tang Xiaoyin, Huang Shaopeng, Zhang Gongcheng, Yang Shuchun, Hu Shengbiao. 2018. Lithospheric thermal structure of the Pearl River Mouth basin northern South China Sea. Chinese Journal Geophysics, 61(9): 3749~3759 (in Chinese with English abstract).

    • Tang Xiaoyin, Cheng Luyao, Xu Wei, Ke Tingting, Dong Ying, Tuo Jiasheng. 2021. Numerical study on factors that influence the heat transfer performance of middeep coaxial casing heat exchanger in the Xi'an area. Chinese Journal of Geology, 56(3): 985~999 (in Chinese with English abstract).

    • Tzanis A, Efstathiou A, Chailas S, Lagios E, Stamatakis M. 2020. The Methana Volcano—Geothermal resource, greece, and its relationship to regional tectonics. Journal of Volcanology and Geothermal Research, 404: 107035.

    • Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449~450+134+451~459 (in Chinese with English abstract).

    • Wang Guiling, Yang Xuan, Ma Ling, Zhou Jiaqi, Shen Guohua, Wang Wanli. 2021. Status quo and prospects of geothermal energy in heat supply. Huadian Technology, 43(11): 15~24 (in Chinese with English abstract).

    • Wang Jiyang. 2015. Geothermics and Its Applications. Beijing: Science Press (in Chinese).

    • Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 30(32): 25~31.

    • Wang Xinwei, Wang Tinghao, Zhang Xuan, Mao Xiang, Luo Lu, Wang Di, Wu Minghui. 2019. Genetic mechanism of Xiwenzhuang geothermal field in Taiyuan basin. Earth Science, 44(3): 1042~1056 (in Chinese with English abstract).

    • Wang Zhuting, Zhang Chao, Jiang Guangzheng, Hu Jie, Tang Xianchun, Hu Shengbiao. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313~4322 (in Chinese with English abstract).

    • Xu Xiwei, Ma Xingyuan. 1992. Geodynamics of the Shanxi Rift system, China. Geodynamics of Rifting, 208: 325~340.

    • Yan Wenzhong, Mu Genxu, Liu Jianqiang. 2014. Experimental study of geothermal tail-water reinjection in the Guanzhong urban area of the Weihe basin, Shaanxi Province. Shanghai Land & Resources, 35(2): 32~35 (in Chinese with English abstract).

    • Yang Chao. 2017. Research on comprehensive evaluation of shallow geothermal energy resources in Yinchuan. Doctoral thesis of Chang'an University (in Chinese with English abstract).

    • Yang Jilong, Liu Futian, Jia Zhi, Yuan Haifan, Xu Qinfen, Hu Yunzhuang. 2018. The hadrochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance. Acta Geoscientica Sinica, 39(1): 71~78 (in Chinese with English abstract).

    • Yang Peng, Xia Bin, Cai Zhourong, Wan Zhifeng, Huang Qiangtai, Zhang Yong. 2017. Genetic mechanism of the Yinggehai basin, northern South China Sea: A comparative study of the Weihe basin. Marine Geology & Quaternary Geology, 37(6): 65~75 (in Chinese with English abstract).

    • Yang Peng, Ren Zhanli, Zhang Jingong, Xia Bin, Tian Tao. 2018. Discussion of the coupling relationship between Cenozoic sedimentary-tectonic migration of Weihe basin and the uplift of Weibei and East Qinling areas. Chinese Journal of Geology, 53(5): 876~892 (in Chinese with English abstract).

    • Ye Hong, Zhang Botao, Mao Fungying. 1987. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133(9): 217~227 (in Chinese with English abstract).

    • Yu Ruyang, Huang Shaopeng, Zhang Jiong, Xu Wei, Ke Tingting, Zuo Yinhui, Zhou Yongshui. 2020. Measurement and analysis of thermal conductivity of rocks from the Baiyinchagan and Ulyastai sags, Erlian basin. Acta Petrologica Sinica, 36(2): 621~636 (in Chinese with English abstract).

    • Zhang Chao, Huang Ronghua, Qin Song, Hu Shengbiao, Zhang Shengsheng, Li Shengtao, Zhang Linyou, Wang Zhuting. 2021. The high-temperature geothermal resources in the Gonghe-Guide area, northeast Tibetan Plateau: A comprehensive review. Geothermics, 97: 102264.

    • Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins. Geology in China, 46(2): 255~268 (in Chinese with English abstract).

    • Zhao Hui, Qian Hui. 2009. Study on hydrogeochemistry and enviornmental impacts from exploitation and utilization of geothermal water in Guanzhong basin. Doctoral thesis of Chang' an University (in Chinese with English abstract).

    • Zhao Xirong. 2006. Occurrence features of geothermal resources and geothermal bearing analysis in Weihe basin. Coal Geology & Exploration, (2): 51~54 (in Chinese with English abstract).

    • Zheng Liying. 2015. The characteristics and evaluation of geothermal resources in Beijing-Tianjin-Hebei region. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Zhou Yang, Deng Niandong, Wang Feng, Mu Genxu, Liu Jianqiang. 2017. Fractal theory of suitability zoning structure of shallow geothermal energy. Geological Survey of China, 4(1): 18~23 (in Chinese with English abstract).

    • Zhou Yang, Mu Genxu, Liu Jianqiang, Zhang Hui, Zhang Le, Jin Guang. 2018. Shallow geothermal energy resources occurrence regularity of typical geomorphological units. Geological Science and Technology Information, 37(4): 232~238+268 (in Chinese with English abstract).

    • Zhu Huanlai. 2011. Research on the sedimentary geothermal resources in northern Songliao basin. Doctoral thesis of Northeast Petroleum University (in Chinese with English abstract).

    • Zhu Shuyuan, Zhang Guobin, Li Shaohu. 2018. A study on geothermal resources comprehensive utilization in Xiong'an New Area. Coal Geology of China, 30(5): 20~23+45 (in Chinese with English abstract).

    • 白琴琴. 2019. 西安地区“采水型”地裂缝超常活动分析研究. 长安大学硕士学位论文.

    • 陈粤强, 姬永涛, 浦静怡, 张晓宏. 2018. 关中盆地中深层地热资源开发方式探讨. 西部探矿工程, 30(11): 103~106.

    • 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 2017. 岩石热物理性质的研究进展及发展趋势. 地球科学进展, 32(10): 1072~1083.

    • 代美龄, 王文科. 2016. 关中盆地典型地下水水源地保护区划分研究. 长安大学硕士学位论文.

    • 邓亚仁, 任战利, 任文波. 2017. 关中地区地热分布控制因素与地热开发前景. 西部大开发(土地开发工程研究), 2(11): 19~27.

    • 豆惠萍. 2012. 基于水文地球化学模拟的地热尾水回灌化学堵塞研究. 长安大学硕士学位论文.

    • 范基姣, 马致远. 2006. 关中盆地地下热水循环模式及可更新性研究. 长安大学硕士学位论文.

    • 方甲炳, 杨飞, 岳乐平. 1992. 宝鸡长寿沟渭河五级阶地磁性地层学研究. 陕西地质, 10(1): 53~59.

    • 葛同明, 樊利民, 徐行, 李素珍, 郑洪瑞. 1991. 渭南阎村W7孔岩心样品的古地磁学研究. 海洋地质与第四纪地质, 11(4): 59~71.

    • 郭飒飒, 朱传庆, 邱楠生, 唐博宁, 崔悦. 2020. 雄安新区深部地热资源形成条件与有利区预测. 地质学报, 94(7): 2026~2035.

    • 胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611~626.

    • 黄帅, 朱科, 董建锴, 李骥, 姜益强, 方肇洪. 2022. 中深层地埋管换热器取热稳定性及热影响半径. 哈尔滨工业大学学报, 54(6): 119~127.

    • 黄薇. 2015. 鄂尔多斯盆地中南部延长组页岩气关键参数测井研究. 西北大学博士学位论文.

    • 贾林瑞, 崔萍, 方亮, 方肇洪. 2021. 中深层地埋管换热器传热过程对周围岩土体的热影响. 暖通空调, 51(1): 101~107.

    • 姜光政, 高堋, 饶松, 张林友, 唐晓音, 黄方, 赵平, 庞忠和, 何丽娟, 胡圣标, 汪集旸. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892~2910.

    • 孔彦龙, 陈超凡, 邵亥冰, 庞忠和, 熊亮萍, 汪集暘. 2017. 深井换热技术原理及其换热量评估. 地球物理学报, 60(7): 4741~4752.

    • 李超, 张立宽, 罗晓容, 张立强, 胡才志, 杨鹏, 邱桂强, 马立元, 雷裕红, 程明. 2016. 泥岩压实研究中有机质导致声波时差异常的定量校正方法. 中国石油大学学报(自然科学版), 40(3): 77~87.

    • 李阳. 2020. 西安地裂缝活动机理及有效影响距离研究. 长安大学硕士学位论文.

    • 李智超. 2017. 渭河盆地新生代岩相古地理及环境演化. 西北大学博士学位论文.

    • 李智超, 李文厚, 李永项, 李蒙. 2015a. 渭河盆地中新统沉积相与古气候特征. 2015年全国沉积学大会沉积学与非常规资源论文摘要集 1: 423.

    • 李智超, 李文厚, 李永项, 李玉宏, 韩伟, 闻金华, 陈萌, 秦智. 2015b. 渭河盆地新生代沉积相研究. 古地理学报, 17(4): 529~540.

    • 蔺文静, 刘志明, 王婉丽, 王贵玲. 2013. 中国地热资源及其潜力评估. 中国地质, 40(1): 312~321.

    • 刘聪, 彭建兵, 陈立伟, 邓亚虹, 吴明. 2012. 西安地裂缝场地地震效应分析. 工程地质学报, 20(6): 979~985.

    • 刘鸿俊. 1985. 西安地区地温分布及地热异常分析. 长安大学学报(地球科学版), 2: 59~63.

    • 刘鸿俊, 孙永斌. 1986. 汾渭盆地南段地温分布特征. 陕西地质, 1: 55~60.

    • 刘护军, 薛祥煦. 2004. 对渭河盆地新生界及其年代的讨论. 地球科学与环境学报, 4: 1~5.

    • 刘江涛, 孙军, 何俏俏. 2015. 关中盆地地热尾水回注现状分析. 西安文理学院学报(自然科学版), 18(4): 111~114.

    • 刘润川, 任战利, 叶汉青, 任文波, 王琨, 淮银超, 祁凯. 2021. 地热资源潜力评价——以鄂尔多斯盆地部分地级市和重点层位为例. 地质通报, 40(4): 565~576.

    • 穆根胥, 李锋, 闫文中, 李成. 2014. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社, 132~141.

    • 穆根胥, 李锋, 闫文中, 李成, 刘建强, 刘方, 陈建平, 赵智强, 金光, 马致远, 杨友运. 2016. 关中盆地地热资源赋存规律及开发利用关键技术. 北京: 地质出版社.

    • 庞忠和, 孔彦龙, 庞菊梅, 胡圣标, 汪集暘. 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32(11): 1224~1230.

    • 祁凯, 任战利, 崔军平, 于强, 曹展鹏, 杨鹏, 邓亚仁, 张梦婷. 2017. 鄂尔多斯盆地渭北隆起岐山-麟游地区中新生代构造热演化及地质响应——来自裂变径迹分析的证据. 地质学报, 91(1): 151~162.

    • 邱楠生, 胡圣标, 何丽娟. 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.

    • 饶松, 姜光政, 高雅洁, 胡圣标, 汪集旸. 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176~2190.

    • 任隽, 彭建兵, 王夫运, 刘晨, 冯希杰, 戴王强. 2012a. 渭河盆地及邻区地壳深部结构特征研究. 地球物理学报, 55(9): 2939~2947.

    • 任隽, 彭建兵;王夫运. 2012b. 渭河盆地深部地壳结构探测与盆地构造研究. 长安大学博士学位论文.

    • 任文波. 2019. 渭河盆地中深层地热资源特征及开发利用. 西北大学硕士学位论文.

    • 任战利. 1998. 中国北方沉积盆地构造热演化史恢复及其对比研究. 西北大学博士学位论文.

    • 任战利, 陈玉林, 李晓辉, 刘立萌, 田涛, 段海礁, 崔军平. 2011. 西安市地热资源可持续利用的回灌试验研究, 中国地球物理学会第二十七届年会, 314.

    • 任战利, 刘润川, 任文波, 祁凯, 杨桂林, 崔军平, 杨鹏, 张园园. 2020. 渭河盆地地温场分布规律及其控制因素. 地质学报, 94(7): 1938~1949.

    • 唐晓音, 黄少鹏, 张功成, 杨树春, 胡圣标. 2018. 南海北部陆缘珠江口盆地岩石圈热结构. 地球物理学报, 61(9): 3749~3759.

    • 唐晓音, 程璐瑶, 许威, 柯婷婷, 董英, 拓佳胜. 2021. 西安地区中深层套管式地埋管换热性能数值模拟. 地质科学, 56(3): 985~999.

    • 汪集旸. 2015. 地热学及其应用. 北京: 科学出版社.

    • 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25~31.

    • 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449~450+134+451~459.

    • 王贵玲, 杨轩, 马凌, 周佳琦, 沈国华, 王婉丽. 2021. 地热能供热技术的应用现状及发展趋势. 华电技术, 43(11): 15~24.

    • 王兴. 2002. 渭河盆地地热资源特征及其开发的环境因素, 中国科协2002年学术年会, 四川成都.

    • 王朱亭, 张超, 姜光政, 胡杰, 唐显春, 胡圣标. 2019. 雄安新区现今地温场特征及成因机制. 地球物理学报, 62(11): 4313~4322.

    • 闫文中, 穆根胥, 刘建强. 2014. 陕西渭河盆地关中城市群地热尾水回灌试验研究. 上海国土资源, 35(2): 32~35.

    • 杨超. 2017. 银川地区浅层地温能资源综合评价研究. 长安大学博士学位论文.

    • 杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 2018. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义. 地球学报, 39(1): 71~78.

    • 杨鹏, 夏斌, 蔡周荣, 万志峰, 黄强太, 张勇. 2017. 南海北部莺歌海盆地成因机制: 与渭河盆地构造对比分析的启示. 海洋地质与第四纪地质, 37(6): 65~75.

    • 杨鹏, 任战利, 张金功, 夏斌, 田涛. 2018. 新生代渭河盆地沉积—构造迁移与渭北隆起及东秦岭耦合关系探讨. 地质科学, 53(5): 876~892.

    • 余如洋, 黄少鹏, 张炯, 许威, 柯婷婷, 左银辉, 周勇水. 2020. 二连盆地白音查干凹陷和乌里雅斯太凹陷岩石热导率测试与分析. 岩石学报, 36(2): 621~636.

    • 张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255~268.

    • 赵慧, 钱会. 2009. 关中盆地地下热水地球化学及其开发利用的环境效应研究. 长安大学博士学位论文.

    • 赵西蓉. 2006. 渭河断陷盆地地热资源赋存特征与热储分析. 煤田地质与勘探, (2): 51~54.

    • 郑丽英. 2015. 京津冀地区新生代地热热储分布特征与资源评价. 中国地质大学(北京)硕士学位论文.

    • 周阳, 邓念东, 王凤, 穆根胥, 刘建强. 2017. 浅层地热能适宜性分区结构的分形原理. 中国地质调查, 4(1): 18~23.

    • 周阳, 穆根胥, 刘建强, 张卉, 张乐, 金光. 2018. 典型地貌单元浅层地热能资源量赋存规律. 地质科技情报, 37(4): 232~238+268.

    • 朱焕来. 2011. 松辽盆地北部沉积盆地型地热资源研究. 东北石油大学博士学位论文.

    • 朱树源, 张国斌, 李少虎. 2018. 雄安新区地热资源综合利用研究. 中国煤炭地质, 30(5): 20~23+45.