en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

秦向辉,男,1984年生。博士,副研究员,硕导,主要从事地应力测量与应用、构造应力场和重大工程地质安全风险评价方面工作。ORCID:0000-0001-7824-3975。E-mail:qinxiangh03@126.com。

参考文献
Amadei B, Stephansson O. 1997. Rock Stress and Its Measurement. London: Chapman & Hall.
参考文献
Brown E T, Hoek E. 1978. Trends in relationship between measured in-situ stresses and depth. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 15(4): 211~215.
参考文献
Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Z Z, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compression crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.
参考文献
Byerlee J D. 1978. Friction of rocks. Pure and Applied Geophysics, 116(4-5): 615~626.
参考文献
Cheng Cheng, Bai Ling, Ding Lin, Li Guohui, Yang Jianya, Xu Qiang. 2017. Crustal structure of eastern Himalayan syntaxis revealed by receiver function method. Chinese Journal of Geophysics, 60(8): 2969~2979 (in Chinese with English abstract).
参考文献
Diederichs M S, Kaiser P K, Eberhardt E. 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics & Mining Sciences, 41(5): 785~812.
参考文献
Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Yi Zhining, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).
参考文献
Fan Qixiang, Lin Peng, Wei Pengcheng, Li Guo. 2021. Intelligent construction of hydraulic engineering in high altitude areas: Challenges and strategies. Journal of Hydraulic Engineering, 52(12): 1404~1417 (in Chinese with English abstract).
参考文献
Feng Chengjun, Chen Qunce, Wu Manlu, Zhao Jinsheng, Li Guoqi. 2012. Analysis of hydraulic fracturing stress measurement data-discussion of methods frequently used to determine instantaneous shut-in pressure. Rock and Soil Mechanics, 33(7): 2149~2159 (in Chinese with English abstract).
参考文献
Figueiredo B, Cornet F H, Lamas L, Muralha J. 2014. Determination of the stress field in a mountainous granite rock mass. International Journal of Rock Mechanics & Mining Sciences, 72: 37~48.
参考文献
Gronseth J M, Kry P R. 1983. Instantaneous Shut-in Pressure and Its Relationship to the Minimum in-situ Stress. Hydraulic Fracturing Stress Measurements. Washington D. C. : National Academy Press, 55~60.
参考文献
Haimson B C, Cornet F H. 2003. ISRM suggested methods for rock stress estimation-part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40: 1011~1020.
参考文献
Hayashi K, Haimson B C. 1991. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ stress minimum compressive stress. Journal of Geophysical Research, 96(B11): 18311~19321.
参考文献
Hergert T, Heidbach O, Reiter K, Giger S B, Marschall P. 2016. Stress field sensitivity analysis in sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6: 533~552.
参考文献
Hettema M. 2020. Analysis of mechanics of fault reactivation in depleting reservoirs. International Journal of Rock Mechanics & Mining Sciences, 129: 104290.
参考文献
Huang Yidan, Pan Qian, Yao Lingkan, Chen Nuo. 2021. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 375~382 (in Chinese with English abstract).
参考文献
Industry Standard of the People's Republic of China. 2017. TB 10003—2016 Code for Design of Railway Tunnel. Beijing: China Railway Publishing House.
参考文献
Lee M Y, Haimson B C. 1989. Statistical evaluation of hydraulic fracturing stress measurement parameter. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 26: 447~456.
参考文献
Li Hongru, Bai Lin, Zhan Huili. 2021. Research progress of Jiali fault activity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).
参考文献
Li Hua, Li Chongbiao, Liu Yunpeng, Hang Gang, Zhao Qihua. 2016. Geostress field characteristics of high steep canyon slope in Southwest China. Rock and Soil Mechanics, 37(S1): 482~488 (in Chinese with English abstract).
参考文献
Ljunggren C, Chang Y, Janson T. 2003. An overview of rock stress measurement methods. International Journal of Rock Mechanics & Mining Sciences, 40(7-8): 975~989.
参考文献
Luo Feng, Du Shihui, Huang Yong, Meng Xianglian, Zhang Wenzhong, Chen Xingqiang, Han Yongqi, Zhang Zhiliang, Zhang Yuxi, Li Yubo. 2022. Determining the boundary of the Jiali-Palongzangbo tectonic mélange belt based on airborne geophysical prospecting and its engineering geological risk. Earth Science, 47(3): 779~793 (in Chinese with English abstract).
参考文献
Ma Xin, Fu Lei, Li Tiefeng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of geothermal origin in eastern Himalayan syntaxis. Geoscience, 35(1): 209~219(in Chinese with English abstract).
参考文献
Martel S. 2016. Effect of small-amplitude periodic topography on combined stresses due to gravity and tectonics. International Journal of Rock Mechanics & Mining Sciences, 89: 1~13.
参考文献
Meng Wen, Guo Changbao, Zhang Chongyuan, Zhang Yongshuang, Chen Qunce. 2017. In situ stress measurements and implications in the Lhasa Terrane, Tibetan Plateau. Chinese Journal of Geophysics, 60(6): 2159~2171(in Chinese with English abstract).
参考文献
Ou Xiaoqiang, Wang Shi, Li Yongliang, Liu Zhiqing, Zheng Zongxi, Wu Jian. 2019. In-situ stress analysis of tunnel in plate suture zone of Lhasa-Nyingchi railway. Journal of Jilin University (Earth Science Edition), 49(6): 1689~1697 (in Chinese with English abstract).
参考文献
Pan E, Amadei B, Savage W Z. 1995. Gravitational and tectonic stresses in anisotropic rock with irregular topography. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 31(1): 201~214.
参考文献
Pan Guitang, Ren Fei, Yin Fuguang, Wang Liquan, Wang Baodi, Wang Dongbing, An Xianyi, Tang Yuan, Liu Han, Wang Qiyu, Pang Weihua, Xu Bo. 2020. Key zones of oceanic plate geology and Sichuan-Tibet railway project. Earth Science, 45(7): 2293~2304 (in Chinese with English abstract).
参考文献
Peng Jianbing, Cui Peng, Zhuang Jianqi. 2021. Challenges to engineering geology Sichuan-Tibet railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377~2389 (in Chinese with English abstract).
参考文献
Qin Xianghui, Chen Qunce, Zhao Xingguang, Zhang Chongyuan, Sun Dongsheng, Meng Wen, Feng Chengjun, Wang Bin, Yang Yuehui. 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189~1202 (in Chinese with English abstract).
参考文献
Ren Jinwei, Shen Jun, Cao Zhongquan, Wang Yipeng. 2000. Quaternary faulting of Jiali fault, southeast Tibetan Plateau. Seismology and Geology, 22(4): 344~350 (in Chinese with English abstract).
参考文献
Scholz C H. 2002. The Mechanics of Earthquake and Faulting. Cambridge: Cambridge University Press.
参考文献
Sheorey P R. 1994. A theory for in situ stress in isotropic and transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 31(1): 23~34.
参考文献
Song Jian, Tang Fangtou, Deng Zhihui, Chen Weitao. 2013. Late Quaternary movement characteristics of Jiali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinesis, 49(6): 973~980 (in Chinese with English abstract).
参考文献
Stephansson O, Zang A. 2012. ISRM suggested methods for rock stress estimation-part 5: Establishing a model for the in situ stress at a given site. Rock Mechanics and Rock Engineering, 45: 955~969.
参考文献
Sun Yujun, Guo Changbao, Wu Zhonghai, Fan Taoyuan, Li Hailong. 2017. Numerical study on the crustal stress, strain rate and fault activity in the eastern Tibetan Plateau. Acta Geoscientia Sinica, 38(3): 385~392 (in Chinese with English abstract).
参考文献
Tan Chengxuan, Sun Weifeng, Sun Ye, Wang Lianjie. 2006. A consideration on in-situ stress measuring and its underground engineering application. Acta Geologica Sinica, 80(10): 1627~1632 (in Chinese with English abstract).
参考文献
Tan Chengxuan, Zhang Peng, Zheng Hanhuai, Wang Jiming, Sun Ye. 2008. An analysis on in-situ crustal stress measurements and major engineering geology issues at the dam site area of Jinping first stage hydropower station. Journal of Engineering Geology, 16(2): 162~168 (in Chinese with English abstract).
参考文献
Tan Chengxuan, Zhang Peng, Feng Chengjun, Qin Xianghui, Sun Weifeng, Chen Qunce, Wu Manlu. 2014. An approach to deep borehole crustal stress Mersuring and real-time monitoring and its application in seismogeology resaerch in captial Beijing region. Acta Geologica Sinica, 88(8): 1436~1452 (in Chinese with English abstract).
参考文献
Tang Fangtou, Song Jian, Cao Zhongquan, Deng Zhihui, Wang Min, Xiao Genru, Chen Weitao. 2010. The movement characters of main faults aroud eastern Himalayan syntaxis revealed by the latest GPS data. Chinese Journal of Geophysics, 53(9): 2119~2128 (in Chinese with English abstract).
参考文献
Tian Zhen, Yang Zhiqiang, Wang Shidi. 2020. Moment deficits on the major faults and earthquake hazard assessment in the eastern Himalayan syntaxis. Seismology and Geology, 42(1): 33~49 (in Chinese with English abstract).
参考文献
Tu Jiyao, Ji Jianqing, Zhong Dalai, Sun Dongxia, Zhou Jing. 2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constrains from thermochronological data. Journal of Geomechanics, 27(4): 679~690 (in Chinese with English abstract).
参考文献
Wang Chenghu, Liu Lipeng, Guo Qiliang, Hou Yanhe. 2008. One method to analyze the measured in-situ stress data and its significance to the project stability design. Journal of Engineering Geology, 16(Suppl. ): 377~381(in Chinese with English abstract).
参考文献
Wang Chenghu, Guo Qiliang, Ding Lifeng, Liu Lipeng. 2009. High in-situ stress criteria for engineering area and a case analysis. Rock and Soil Mechanics, 30(8): 2359~2364 (in Chinese with English abstract).
参考文献
Wang Chenghu, Gao Guiyun, Yang Shuxin, Yao Rui, Huang Luyuan. 2019. Analysis and prediction of stress field of Sichuan-Tibet railway area based on contemporary tectonic stress filed zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242~2253 (in Chinese with English abstract).
参考文献
Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
参考文献
Wang Yanhua, Cui Xiaofeng, Hu Xingping, Xie Furen. 2012. Study on the stress state in upper crust of China mainland based on in-situ stress measurements. Chinese Journal of Geophysics, 55(9): 3016~3027 (in Chinese with English abstract).
参考文献
Wu Xiaolong, Xiang Yang, Tang Fuquan. 2020. Study on current crustal deformation of the Himalayan tectonic zone by GPS strain-rate estimation and focal mechanism stress inversion. Chinese Journal of Geophysics, 63(8): 2924~2939 (in Chinese with English abstract).
参考文献
Xie Furen, Chen Qunce, Cui Xiaofeng, Li Hong, Yang Shuxin, Chen Lianwang. 2003. Crustal Stress in China. Beijing: Geological Publish House.
参考文献
Xu Linsheng, Wang Lansheng. 1999. Study on the laws of rockburst and its forcasting in the tunnel of Erlang Moutain road. Chinese Journal of Geotechnical Engineering, 21(5): 569~572 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Huaqi, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta PetrologicaSinica, 24(7): 1463~1476 (in Chinese with English abstract).
参考文献
Yan Jian, He Chuan, Wang Bo, Meng Wei, Wu Fangyin. 2019. Inoculation and characters of rock bursts in extra-long deep-lying tunnels located on Yarlung Zangbo suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769~781 (in Chinese with English abstract).
参考文献
Yang Fan, Sheng Zhongshu, Wan Yongge, Wang Xiaoshan, Liu Zhaocai, Li Yao. 2019. Impact of the stress field in the grid not satisfies the assumption of uniformity on stress field inversion results: The study of stress field in the eastern Himalayan syntaxis and its surrounding area is an example. Progress in Geophysics, 4(2): 479~488 (in Chinese with English abstract).
参考文献
Yang Shuxin, Yao Rui, Cui Xiaofeng, Chen Qunce, Huang Luyuan. 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chinese Journal of Geophysics, 55(12): 4207~4217 (in Chinese with English abstract).
参考文献
Yao Rui, Yang Shuxin, Xie Furen, Cui Xiaofeng, Lu Yuanzhong, Xu Zhaoyi. 2017. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai-Tibet plateau and its adjacent region based on in-situ stress data. Chinese Journal of Geophysics, 60(6): 2147~2158 (in Chinese with English abstract).
参考文献
Zhang Chongyuan, Du Shihui, He Manchao, Qin Xianghui, Li Bin, Chen Xingqiang, Meng Wen, Huang Yong. 2022. Characteristics of in-situ stress on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock. Chinese Journal of Rock Mechanics and Engineering. 41(5): 954~968 (in Chinese with English abstract).
参考文献
Zhang Hao, Shi Gang, Wu Hong, Shao Lei, Wang Qian. 2020. In-situ stress measurements in the shallow basement of the Shanghai area and its structural geological significance. Journal of Geomechanics, 26(4): 583~590 (in Chinese with English abstract).
参考文献
Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Study on the tectonic pattern of the formation process of the Nanga Bawa Syntaxis in eastern Himalayan. Science in China(Series D), 33(4): 373~383 (in Chinese with English abstract).
参考文献
Zhang Yongshuang, Ren Sanshao, Guo Changbao, Yao Xin, Zhou Nengjuan. 2019. Research on engineering geology related with active fault zone. Acta Geologica Sinica, 93(4): 763~775 (in Chinese with English abstract).
参考文献
Zhang Yongshuang, Guo Changbao, Li Xiangquan, Bi Junbo, Ma Jianfei, Liu Feng. 2021. Key problems on hydro-engineering-enviromental geology along the Sichuan-Tibet railway corridor: Current status and development direction. Hydrogeology & Engineering Geology, 48(5): 1~12 (in Chinese with English abstract).
参考文献
Zhang Yuxi. 2021. Characteristics of current in situ stress field about Sejila Moutain traffice corridor. Journal of Engineering Geology, 29(2): 394~403 (in Chinese with English abstract).
参考文献
Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Weidu. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).
参考文献
Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalyas. Acta Geologica Sinica, 78(6): 743~751 (in Chinese with English abstract).
参考文献
Zhong Shan, Jiang Quan, Feng Xiating, Liu Jiguang, Li Shaojun, Qiu Shili, Wu Shiyong. 2018. A case of in-situ stress measurement in Chinese Jinping underground laboratory. Rock and Soil Mechanics, 39(1): 356~366 (in Chinese with English abstract).
参考文献
Zoback M D. 2007. Reservoir Geomechanics. Cambridge: Cambridge University Press.
参考文献
Zoback M D, Townend J. 2001. Implications of the hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1-4): 19~30.
参考文献
程成, 白玲, 丁林, 李国辉, 杨建亚, 许强. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构. 地球物理学报, 60(8): 2969~2979.
参考文献
董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宁, 陈希节, 马绪宣, 吴婵. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.
参考文献
樊启祥, 林鹏, 魏鹏程, 李果. 2021. 高海拔地区水电工程智能建造挑战与对策. 水利学报, 52(12): 1404~1417.
参考文献
丰成君, 陈群策, 吴满路, 赵金生, 李国岐, 安其美. 2012. 水压致裂应力测量数据分析——对瞬时关闭压力Ps的常用判读方法讨论. 岩土力学, 33(7): 2149~2159.
参考文献
黄艺丹, 潘前, 姚令侃, 陈诺. 2021. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略. 工程地质学报, 29(2): 375~382.
参考文献
李洪儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182~193.
参考文献
李华, 李崇标, 刘云鹏, 韩刚, 赵其华. 2006. 中国西南深切峡谷岸坡地应力场基本特征. 岩土力学, 37(S1): 482~488.
参考文献
罗锋, 杜世回, 黄勇, 孟祥连, 张文忠, 陈兴强, 韩永琦, 张志亮, 张玉玺, 李玉波. 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779~793.
参考文献
马鑫, 付雷, 李铁锋, 闫晶, 刘廷, 王明国, 邵伟. 2021. 喜马拉雅东构造结地区地热成因分析. 现代地质, 35(1): 209~219.
参考文献
孟文, 郭长宝, 张重远, 张永双, 陈群策. 2017. 青藏高原拉萨块体地应力测量及其意义. 地球物理学报, 60(6): 2159~2171.
参考文献
欧小强, 王奭, 李永亮, 刘志强, 郑宗溪, 吴剑. 2019. 拉林铁路板块缝合带隧道地应力分析. 吉林大学学报(地球科学版), 49(6): 1689~1697.
参考文献
潘桂棠, 任飞, 尹福光, 王立全, 王保弟, 王冬兵, 安显银, 唐渊, 刘函, 王启宇, 庞维华, 徐波. 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293~2304.
参考文献
彭建兵, 崔鹏, 庄建琦. 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377~2389.
参考文献
秦向辉, 陈群策, 赵星光, 张重远, 孙东生, 孟文, 丰成君, 王斌, 杨跃辉. 2020. 水压致裂地应力测量中系统柔度影响试验研究. 岩石力学与工程学报, 39(6): 1189~1202.
参考文献
任金卫, 沈军, 曹忠权, 汪一鹏. 2000. 西藏东南部嘉黎断裂新知. 地震地质, 22(4): 344~350.
参考文献
宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.
参考文献
孙玉军, 郭长宝, 吴中海, 范桃园, 李海龙. 2017. 数值模拟探讨青藏高原东部应力应变场及断裂活动性. 地球学报, 38(3): 385~392.
参考文献
谭成轩, 孙炜锋, 孙叶, 王连捷. 2006. 地应力测量及其地下工程应用的思考. 地质学报, 80(10): 1627~1632.
参考文献
谭成轩, 张鹏, 郑汉淮, 孙炜锋, 王继明, 孙叶. 2008. 雅砻江锦屏一级电站坝址区实测地应力与重大工程问题分析. 工程地质学报, 16(2): 162~168.
参考文献
谭成轩, 张鹏, 丰成君, 秦向辉, 孙炜锋, 陈群策, 吴满路. 2014. 探索首都区地区深孔地应力测量与实时监测及其在地震地质研究中应用. 地质学报, 88(8): 1436~1452.
参考文献
唐方头, 宋键, 曹忠权, 邓志辉, 王敏, 肖根如, 陈为涛. 2010. 最新GPS数据揭示的东构造周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119~2128.
参考文献
田镇, 杨志强, 王师迪. 2020. 喜马拉雅东构造结主要断裂地震矩亏损与危险性评估. 地震地质, 42(1): 33~49.
参考文献
涂继耀, 季建清, 钟大赉, 孙东霞, 周晶. 2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据. 地质力学学报, 27(4): 679~690.
参考文献
王成虎, 刘立鹏, 郭启良, 侯砚和. 2008. 地应力测量数据分析对工程稳定性控制设计的意义. 工程地质学报, 16(增): 377~381.
参考文献
王成虎, 郭啟良, 丁立丰, 刘立鹏. 2009. 工程区高地应力判据研究及实例分析. 岩土力学, 30(8): 2359~2364.
参考文献
王成虎, 高桂云, 杨树新, 姚瑞, 黄禄渊. 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242~2253.
参考文献
王艳华, 崔效锋, 胡幸平, 谢富仁. 2012. 基于原地应力测量数据的中国大陆地壳上部应力状态研究. 地球物理学报, 55(9): 3016~3027.
参考文献
吴啸龙, 向洋, 汤伏全. 2020. 基于GPS应变与震源机制解应力反演喜马拉雅构造带现今地壳形变特征. 地球物理学报, 63(8): 2924~2939.
参考文献
谢富仁, 陈群策, 崔效锋, 李宏, 杨树新, 陈连旺. 2003. 中国大陆地壳应力环境研究. 北京: 地质出版社.
参考文献
徐林生, 王兰生. 1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究. 岩土工程学报, 21(5): 569~572.
参考文献
许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463~1476.
参考文献
严健, 何川, 汪波, 汪波, 蒙伟, 吴枋胤. 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769~781.
参考文献
杨帆, 盛书中, 万永革, 王晓山, 刘兆才, 李瑶. 2019. 网格内不满足均匀性假设对引力场反演结果的影响——以喜马拉雅东构造结缉周边地区应力场研究为例. 地球物理学进展, 34(2): 479~488.
参考文献
杨树新, 姚瑞, 崔效锋, 陈群策, 黄禄渊. 2012. 中国大陆各活动地块、南北地震带实测应力特征分析. 地球物理学报, 55(12): 4207~4217.
参考文献
姚瑞, 杨树新, 谢富仁, 崔效锋, 陆远忠, 许兆义. 2017. 青藏高原及周缘地壳浅层构造应力场量值特征分析. 地球物理学报, 60(6): 2147~2158.
参考文献
张浩, 施刚, 巫虹, 邵磊, 王乾. 2020. 上海地区浅部地应力测量极其构造地质意义分析. 地质力学学报, 26(4): 583~594.
参考文献
张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D缉), 33(4): 373~383.
参考文献
张永双, 任三绍, 郭长宝, 姚鑫, 周能娟. 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763~775.
参考文献
张永双, 郭长宝, 李向全, 毕俊擘, 马剑飞, 刘峰. 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1~12.
参考文献
张玉玺. 2021. 色季拉山交通廊道现今地应力场特征研究. 工程地质学报, 29(2): 394~403.
参考文献
张重远, 杜世回, 何满朝, 秦向辉, 李彬, 陈兴强, 陈群策, 孟文, 黄勇. 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响. 岩石力学与工程学报, 41(5): 954~968.
参考文献
赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.
参考文献
郑来林, 金振民, 潘桂棠, 耿全如, 孙志民. 2004. 东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 743~751.
参考文献
钟山, 江权, 冯夏庭, 刘继光, 李邵军, 邱士利, 吴世勇. 2018. 锦屏深部地下实验室初始地应力测量实践. 岩土力学, 39(1): 356~366.
参考文献
中华人民共和国行业标准. 2017. TB 10003—2016 铁路隧道设计规范. 北京: 中国铁道出版社.
目录contents

    摘要

    喜马拉雅东构造结是青藏高原构造演化研究的关键地区,规划有川藏铁路和雅鲁藏布江下游水电开发等重大工程,受限于地质地理条件,其现今地应力场尚不完全清楚。本文利用水压致裂法地应力数据,研究了东构造结北缘通麦—波密段现今地应力场,探讨了其构造应力环境。结果表明,通麦—波密段实测主应力随深度增加而增大,1100 m深度内SHSh分别为4.87~32.47 MPa和3.05~20.07 MPa,随深度增加梯度分别为2.49 MPa/100 m和1.61 MPa/100 m,略低于青藏地块和东构造结西缘梯度水平,但地应力状态特征参数表明其水平应力作用强度总体上高于青藏地块;SH优势方向为NEE向(N69.2°±11.5°E),相比NNE—NE向区域主压应力方向表现出明显的顺时针偏转特征;现今地应力场由水平向应力作用主导,400 m以浅应力类型为逆冲型,以深转换为走滑型;水平向差应力和构造差应力在600 m深度以下显著增加,构造差应力最大为12.42 MPa,表明通麦—波密段深部存在相对较强的构造应力作用;库伦摩擦失稳准则分析表明,受地形影响较小的200 m以深实测地应力值总体低于摩擦系数取0.6时理论地应力水平,并且430 m深度以下地应力值总体在摩擦系数取0.2~0.4的理论地应力取值范围内,揭示通麦—波密段现今地壳应力强度尚未达到极限水平,目前处于相对稳定的构造应力环境。最后,讨论了现今地应力场对东构造结北缘重大铁路隧道工程的潜在影响,并提出了应对建议。

    Abstract

    The eastern Himalayan syntaxis is the key geological region to understand the tectonic evolution of the Qinghai-Tibet Plateau where major engineering projects such as the Sichuan-Tibet railway and hydropower stations in the lower Yarlung Tsangpo River have been planned. However, the current in-situ stress field of this region is still unclear yet due to the complex geological and geographical conditions. Based on in-situ stress data that were obtained recently using the hydraulic fracturing method in this region, the current in-situ stress filed of the Tongmai-Bomi section, which is located in the northern margin of the eastern Himalayan syntaxis, is determined in detail. Furthermore, the current tectonic stress environment is estimated and discussed by adopting the Coulomb frictional-failure criterion and Byerlee's law. The results indicate that the measured principal stresses SH and Sh show increase pattern versus depths and range 4.87~32.47 MPa, and 3.05~20.07 MPa within 1000 m depth below surface, respectively. The increase gradient coefficients of SH and Sh versus depths are 2.49 MPa/100 m, and 1.61 MPa/100 m, respectively, being lower than the corresponding gradient levels of the Qinghai-Tibet block and the western margin region of the eastern Himalayan syntaxis. However, the characteristic parameters representing the in-situ stress state reveal that the horizontal stress intensity in this region is greater than that of the Qinghai-Tibet block. The orientation of SH of the Tongmai-Bomi section derived from hydraulic fracturing tests is dominantly in NEE direction, with a mathematical average magnitude N69.2°±11.5°E, showing a clockwise deflection pattern comparing with the dominant NNE-NE regional tectonic stress direction derived from other tectonic stress indicators. The measured in-situ stress data reveal that the horizontal stresses play a dominant role in the generation of the current in-situ stress field, and the stress regime is considered to be thrust faulting within depths shallower than 400 m, and strike-slip faulting under 400 m depth below surface. The values of horizontal differential stress and tectonic differential stress increase significantly under 600 m depth below surface and the latter can reach up to 12.42 MPa, indicating that there is relatively high regional tectonic stress in the Tongmai-Bomi region. Estimation of the in-situ stress field using the Coulomb frictional-failure criterion incorporating the Byerlee's law indicates that the value of measured in-situ stress below 200 m depth which may not be affected by the topography is generally lower than the theoretical limit calculated by assuming friction coefficient to be 0.6. In addition, the patterns that measured in-situ stress below 430 m depth distribute within the theoretical range calculated by assuming the friction coefficient to 0.2~0.4 leads to an insight that the current in-situ stress level of the Tongmai-Bomi section does not exceed the lower limit of the upper crust controlled by the frictional strength of faults. Collectively, it can be noted that the Tongmai-Bomi region is in the relatively stable tectonic stress environment. Finally, the influence of the current in-situ stress condition on the planned major railway tunnels is discussed and corresponding suggestions are put forward.

  • 地应力是地壳构造变形、断裂活动和工程岩体破坏的直接力源(Scholz,2002Diederichs et al.,2004Hettema,2020),准确查明区域地应力场特征及其形成机制,是断裂活动和地震地质研究的基础(谭成轩等,2014张浩等,2020),也是交通工程选线、地下工程设计科学化的前提(谭成轩等,2006王成虎等,2008Stephansson and Zang,2012黄艺丹等,2021)。青藏高原地区地质条件复杂,构造活动强烈,地震频发,地形地貌改造剧烈,重大工程规划建设面临的地应力环境极为复杂,以往工程中曾普遍出现高地应力,导致了强烈岩爆或大变形,制约了工程建设进度和安全(徐林生和王兰生,1999谭成轩等,2008钟山等,2018严健等,2019张永双等,2019)。目前,喜马拉雅东构造结区域规划有川藏铁路、雅鲁藏布江水电开发等重大工程,地应力问题是其亟需解决的难题之一(彭建兵等,2020张永双等,2021),急需查明该区域现今地应力场特征;同时,该区域地震危险性和断裂活动性研究也需要准确的地应力场数据支撑。

  • 关于东构造结地区地应力场,研究表明其属于墨脱—昌都和喜马拉雅应力分区,区域主压应力方向为NNE—NE,应力类型以逆冲和走滑型为主(谢富仁等,2003)。杨树新等(2012)指出,青藏地块1 km深度内最大、最小主应力随深度增加梯度分别为2.92 MPa/100 m和1.72 MPa/100 m,姚瑞等(2017)发现其构造应力作用在2 km深度内存在“浅弱深强”特征。孙玉军等(2017)指出青藏高原水平构造应力以挤压为主,围绕东构造结,主压应力方向由NE—SW向近E—W顺时针变化,应变分配率在绕东构造结的一系列弧形活动断裂上较高,应力积累较快;GPS观测和震源机制解结果也证实亚东-谷露断裂以东至东构造结地区的应变和应力场发生顺时针偏转(吴啸龙等,2020)。杨帆等(2019)发现东构造结地区震源机制解中P轴自西向东呈现NNE—NE向偏转,应力形因子自西北向东南出现规律性递增,绕东构造结应力环境和主应力相对大小存在变化。这些成果为东构造结地应力场研究提供了背景场信息,但不足以准确揭示东构造结及其不同部位地应力场。

  • 近年来,一些学者采用预测或实测地应力数据研究了东构造结及邻区地应力场,如孟文等(2017)基于实测数据指出拉萨地块地壳浅表层水平应力作用占主导,主应力方向集中于近SN—NNE向,地壳强度处于破裂临界状态;欧小强等(2019)利用拉林铁路地应力数据,揭示了喜马拉雅缝合带高地应力特征,但是其测点相对东构造结通麦—波密段较远。王成虎等(2019)预测了川藏铁路雅安—林芝段不同深度和岩性条件下地应力水平,但是使用的Sheorey模型(Sheorey,1994)对构造作用考虑不够充分,强烈构造活动区预测结果需要实测数据验证和约束。张玉玺(2021)利用川藏铁路林芝—通麦段实测地应力数据,分析了东构造结西缘地应力场,结果显示,色季拉山地区1410 m深度最大水平主应力为45.52 MPa,最大水平主应力为NE—NEE向,地应力随深度变化梯度由北东向南西表现出减小趋势,鲁朗隧址区1207 m深度最大水平主应力为39.67 MPa,最大水平主应力为NE向。张重远等(2022)进一步指出林芝—通麦段最大、最小主应力随深度增加梯度存在“南北高,中间低”的特征,梯度系数与青藏地块接近。上述认识为东构造结北缘通麦—波密段地应力场研究提供了重要参考,但是东构造结地区经历了复杂的构造演化历史,其东、西两侧与内部南迦巴瓦的构造活动强度存在明显差异(张进江等,2003唐方头等,2010宋键等,2013董汉文等,2018涂继耀等,2021),导致不同构造部位的应力场存在差别,嘉黎断裂带的活动又使得北缘通麦—波密区域地应力场更加复杂(宋键等,2013赵远方等,2021),仅利用区域性或东构造结西缘地应力资料不能准确揭示通麦—波密段地应力场。

  • 为此,本文在东构造结北缘通麦—波密地区开展了水压致裂地应力测试,利用详实的实测地应力数据,研究了东构造结北缘通麦—波密段现今地应力场特征,并利用库伦准则和拜尔利定律,分析了通麦—波密段构造应力环境,探讨了其对规划铁路隧道工程影响。研究成果和认识对东构造结地球动力学研究和重大工程规划建设有重要意义。

  • 1 区域地质背景

  • 研究区位于喜马拉雅东构造北缘(图1),西藏自治区林芝市通麦镇至波密县之间。东构造结位于印度板块与欧亚板块碰撞、汇聚前缘部位,喜马拉雅造山带的东端,是构造格架和地貌水系发生急剧转折的地区,也是构造应力作用最强、隆升和剥蚀最快、新生代变质和深熔作用最强的地区(Burg et al.,1998张进江等,2003郑来林等,2004许志琴等,2008)。东构造结的东、西边界分别由墨脱断裂和东久-米林断裂限定,北缘以西兴拉断裂和嘉黎断裂带等为边界(许志琴等,2008董汉文等,2018)。有学者认为其北、东边界发育白垩纪岛弧沉积形成的缝合带残余(张进江等,2003)。嘉黎断裂带是一条大型韧性断层带,走向290°~310°,最宽可达10 km,由嘉黎延伸至察隅,并向东南继续延伸,在东构造结北缘沿易贡、通麦和波密展布(任金卫等,2000唐方头等,2010;宋健等,2013;李洪儒等,2021);断裂带由糜棱岩化花岗岩、片麻岩、大理岩和变质砂岩组成(张进江等,2003)。嘉黎断裂带东构造结弧顶段总体以走滑运动为主,挤压作用较弱,走滑速率低于东构造结两侧段落,晚新生代以来仍有活动的迹象,并具有多期构造叠加特征;嘉黎断裂带弧顶段在南北方向上分成三个分支,其中以西兴拉断裂活动性最强,地震频发(宋键等,2013李洪儒等,2021赵远方等,2021);嘉黎断裂带的构造变形调节了东构造结地区地块间的相对运动和区域应力场(李洪儒等,2021赵远方等,2021)。东构造地区地震活动频繁,但地震活动主要分布在块体周围的深大断裂附近、断裂几何形态转折部位,以及不同走向断裂交汇区域,如沿西兴拉断裂、东久-米林断裂与嘉黎断裂带交汇的迫隆至易贡区域、嘉黎断裂带与迫龙-旁辛断裂带的交汇区域等(杨帆等,2019田镇等,2020)。

  • 研究区地层主要有元古宇念青唐古拉山岩群、晚古生界石炭系和第四系(图1),其中念青唐古拉山岩群主要为混合岩化黑云斜长片麻岩,石炭系主要为变质砂岩和板岩,第四系主要为冲洪积、残坡积、冰川沉积和冰水堆积物等;侵入岩主要是早白垩世花岗岩和花岗闪长岩(张进江等,2003郑来林等,2004马鑫等,2021)。

  • 图1 喜马拉雅东构造结地区地质构造简图(据马鑫等,2021修改)

  • Fig.1 Regional geological map of the eastern Himalayan syntaxis region (after Ma Xin et al., 2021)

  • 2 测试方法与数据

  • 2.1 测试方法

  • 本文采用水压致裂法开展地应力测试。作为一种二维地应力测量方法,水压致裂法通过水力诱发裂缝方式来获取地应力大小和方向,是常用的深部地应力测量方法,也是国际岩石力学学会(ISRM)推荐的五种地应力测量方法之一(Haimson and Cornet,2003),其可靠性和准确性在理论上和实践中获得了广泛认可(Ljunggeen et al.,2003)。水压致裂法测量原理和程序等见Amadei and Stephansson(1997)Haimson and Cornet(2003)的著述,不再赘述。对于垂直钻孔,主应力计算公式如下:

  • Sh=Ps
    (1)
  • SH=3Sh-Pr-P0
    (2)
  • Sv=ρgh
    (3)
  • 式中,SH为最大水平主应力(MPa);Sh为最小水平主应力(MPa);Sv为垂向应力(MPa);Ps为瞬时闭合压力(MPa);Pr为重张应力(MPa);P0为孔隙压力(MPa),取为静水压力;ρ为地层密度(kg/m3),本文取平均值为2.65×103 kg/m3h为上覆地层厚度(m);g为重力加速度(m/s2)。

  • 最大水平主应力方向的确定,采用了水压致裂地应力测试中常用的印模方法,具体方法和程序见ISRM建议方法论述(Haimson and Cornet,2003)。

  • 2.2 测点分布

  • 在东构造结北缘通麦—波密地区共开展了20个钻孔的水压致裂地应力测试,钻孔总体沿东构造结北缘以近北西向分布(图2),孔口高程在2500~3600 m之间(图3),孔深在150~1190 m不等。通麦—波密段地形地貌为高山峡谷,根据DEM数据和地貌特征,侵蚀基准面在2400~2500 m左右(通麦段和古乡—波密段略有差别),大部分钻孔的深度能够达到或超过侵蚀基准面。需要说明的是上述钻孔并非完全沿一条直线分布,为了方便对比分析,将其投在了SE向地形剖面上(图3)。钻孔岩性主要为花岗岩、花岗闪长岩和片麻岩等,满足水压致裂地应力测量对岩性的要求。

  • 2.3 数据处理

  • 测试采用了自主研发的单回路水压致裂测量系统,其具有摩阻小、刚度大、可安装多种监测传感器等优点,适用于深孔测试(秦向辉等,2020)。现场测试遵循ISRM要求和建议步骤,在1100 m深度内共获得了117个有效压裂数据和43个印模数据。图4给出了ZK15钻孔1039 m测段的测试曲线,显示其形态标准,符合ISRM相关要求和规范(Haimson and Cornet,2003),受篇幅所限,不再列出全部曲线。利用公式(1)和(2)计算主应力时,需要从测试曲线中准确获取关键参数PsPr,本文计算Ps时参考ISRM建议(Haimson and Cornet,2003),并结合已有认识(丰成君等,2012),综合了单切线法(Gronseth and Kry,1983)、dt/dP vs. P法(Hayashi and Haimson,1991)和dP/dt vs. P法(Lee and Haimson,1989)计算结果进行取值(其中的P为注入流体压力,t为时间),以保证Ps的准确性和可靠性,提高Sh值准确性,图5以ZK15钻孔1039 m测段为例阐释了多方法求取Ps值的过程。Pr取值也采用了国内外常用的方法(Lee and Haimson,1989),上述关键参数取值均采用自主研发软件进行。

  • 图2 喜马拉雅东构造结北缘通麦—波密地区地质与地应力测量孔分布图

  • Fig.2 Geological map and locations of the hydraulic fracturing test boreholes in the Tongmai-Bomi region along the northern margin of eastern Himalayan syntaxis

  • 图3 喜马拉雅东构造结北缘通麦—波密地区地应力测量孔分布剖面图

  • Fig.3 Section showing locations of test boreholes in Tongmai-Bomi region along the northern margin of eastern Himalayan syntaxis

  • 图4 喜马拉雅东构造结北缘通麦—波密段ZK15钻孔1039 m测段水压致裂测试曲线

  • Fig.4 Hydraulic fracturing curve obtained at 1039 m depth in ZK15 in the Tongmai-Bomi region along the northern margin of eastern Himalayan syntaxis

  • 3 地应力场特征

  • 3.1 地应力量值

  • 根据获得的地应力数据,分析了通麦—波密段主应力随深度分布特征,并以线性回归方式计算了1100 m深度以内SHSh随深度变化特征(图6)。结果表明,实测主应力随深度增加表现出增大特征,与已有认识和规律相吻合,约250 m以浅的数据分布略显分散(图6中A段),可能是受地形的影响;1100 m以内,实测SHSh分别为4.87~32.47 MPa和3.05~20.07 MPa,其随深度增加梯度分别为2.49 MPa/100 m和1.61 MPa/100 m,略低于青藏地块对应梯度系数(杨树新等,2012),以及东构造结西侧林芝—通麦区段对应梯度系数(张重远等,2022)。分析认为,东构造结北缘通麦—波密段与西缘林芝—通麦段的应力梯度系数差别与两个区段所处的构造部位不同有关,是印度板块向欧亚板块持续俯冲碰撞作用下,在统一的构造应力场作用下,不同构造位置所受构造作用强度差别的表现。此外,樊启祥等(2021)指出西南地区应力可达97 MPa,与本文拟合结果计算的2000 m埋深应力值有较大差别,抛开利用千米数据估算2000 m深度应力值本身可能存在偏差外,两者差别显著的原因除与两者关注的区域范围及其构造条件差别有关外,可能与地形也有关,因为相同埋深时,是否处于侵蚀基准面以下,在地形影响范围之外,会造成显著的应力值差异。

  • 在此基础上,使用国内外常用的表征地壳浅表层应力状态的参数:侧压系数Kav,表征水平应力强度的参数KHvKhv,以及间接反映水平向差应力水平的参数KHhBrown and Hoek,1978王艳华等,2012杨树新等,2012)详细分析了通麦—波密段现今地应力状态(图7)。结果表明,Kav分布特征(图7a)与国内外已有认识基本一致,在约250 m以浅分布较为离散,随深度增加趋于稳定,稳定收敛值为1.01。KHv分布特征(图7b)与Kav相似,稳定收敛值为1.22,揭示水平应力作用强度大于重力作用。Khv在约570 m深度以浅大于1,该深度以下逐渐趋于稳定,收敛值为0.79,其值随深度变化揭示,在此深度上下三个主应力中的中间和最小主应力对应的ShSv发生了转换:570 m深度以浅,ShSv分别为中间和最小主应力,在此深度以下,SvSh分别为中间和最小主应力,反映出该区域应力结构随深度发生变化。与上述参数特征不同,KHh随深度表现出明显的分段性特征:250 m以浅分布相对离散,值为1.2~1.8(图7d中A段);250~600 m深度域分布相对集中,其平均值为1.32±0.07(图7b中B段);600 m深度以下,其平均值为1.66±0.03,明显大于浅部(图7b中C段),揭示通麦—波密段水平向差应力强度存在分段特征。分析认为,250 m以浅的离散特征可能与地形影响有关,这与主应力随深度分布特征基本一致;600 m深度以下构造作用有较明显的增强(图6中C段、图7中C段),是由于构造应力与自重耦合作用中前者强度的增加,构造应力对地应力场的控制逐渐增强(Hergert et al.,2016Martel,2016),说明600 m深度可能是区域构造作用强度显著增强的界线;250~600 m段分布特征是构造应力作用逐渐增加的表现(图6中B段、图7中B段)。

  • 图5 喜马拉雅东构造结北缘通麦—波密段ZK15钻孔1039 m测段不同方法计算关闭压力参数

  • Fig.5 Determination of Ps for 1039 m test interval in ZK15 borehole along the northern margin of eastern Himalayan syntaxis using different methods

  • (a)—单切线法;(b)—dt/dP vs. P法;(c)—dP/dt vs. P

  • (a) —the inflection point method; (b) —dt/dP vs. P method; (c) —dP/dt vs. P method

  • 图6 喜马拉雅东构造结北缘通麦—波密段主应力随深度分布特征(图中蓝色阴影区代表95%置信区间)

  • Fig.6 Profile of principal stresses vs. depths of the Tongmai-Bomi section along the northern margin of eastern Himalayan syntaxis (the shaded zones in this figure represent the 95% confidence limits for the linear regressions of these two horizontal stress components)

  • 我们详细对比分析了基于实测数据计算东构造结北缘通麦—波密段Kav、青藏地块Kav杨树新等,2012)和Sheorey模型(Sheorey,1994K结果(图7a)。在利用Sheorey模型计算水平应力平均值与垂向应力值之比K时,弹性模量E根据通麦—波密段的花岗闪长岩的岩石力学实验结果44.78±9.28 GPa,取为44.78 GPa。分析发现,东构造结北缘通麦—波密段Kav值高于青藏地块结果,表明通麦—波密段水平向应力作用强度要超过青藏地块背景水平。在约400 m以浅,通麦—波密段Kav值介于青藏地块Kav和Sheorey模型K值之间,400 m以下,通麦—波密段Kav值大于Sheorey模型K和青藏地块Kav值,Sheorey模型K值又大于青藏地块Kav值,揭示通麦—波密段的水平向应力水平总体上高于青藏地块背景值,也高于Sheorey模型预测水平。利用Sheorey模型计算K值时,使用了岩石弹性模量E,而王成虎等(2009)建议采用岩体弹性模量Em,受岩体结构面影响,Em要小于E,由此计算的K值会更小,实测数据计算的Kav将比修正后K更大,由此认为利用Sheorey模型预测强烈构造区深部水平向应力作用时,其结果可能偏低。

  • 图7 喜马拉雅东构造结北缘通麦—波密段地应力状态特征参数随深度分布图

  • Fig.7 Profile of the characteristic parameters representing the stress state versus the depths of the Tongmai-Bomi section along the northern margin of eastern Himalayan syntaxis

  • (a)—参数Kav;(b)—参数KHv;(c)—参数Khv;(d)—参数KHh

  • (a) —Kav; (b) —KHv; (c) —Khv; (d) —KHh

  • 3.2 主应力方向

  • 根据43条印模数据,分析了东构造结北缘通麦—波密段SH方向及其随深度分布特征(图8)。结果表明,通麦—波密段SH优势方向为NEE向,数学平均值为N69.2°±11.5°E,与NNE—NE向区域主压应力方位(谢富仁等,2003)、东构造结震源机制解P轴为NNE—NE向结果(杨帆等,2019),以及GPS观测结果(Wang Min and Shen Zhengkang,2020田镇等,2020)相比,总体趋势基本吻合,但其表现出的顺时针偏转特征更加明显。分析认为,喜马拉雅东构造结在NNE—NE向区域挤压作用下,受东、西边界断裂运动方式控制,整体表现为顺时针运动特征,其北缘主应力方向理论上为NE向附近,通麦—波密段表现出的更加明显的顺时针偏转特征可能是受到了北缘嘉黎断裂带右行活动的影响。

  • 图8 喜马拉雅东构造结北缘通麦—波密段SH方向分布特征

  • Fig.8 Distribution of the SH orientantions in the Tongmai-Bomi region along the northern margin of eastern Himalayan syntaxis

  • (a)—主应力方向随深度变化特征;(b)—主应力方向分布玫瑰花图

  • (a) —variation of SH orientation with depth; (b) —rose diagrams of SH orientation

  • 3.3 应力类型

  • 基于实测数据,结合Anderson断层理论,分析了东构造结北缘通麦—波密区段应力类型。结果表明,通麦—波密段应力类型随深度表现出明显的分段特征:400 m以浅整体为逆冲型应力状态(SHShSv),400 m深度以下整体为走滑型应力状态(SHSvSh)。值得注意的是通麦—波密段地形切割改造强烈、高差大,浅表层数据(图6中A段)受到地形的影响,逆冲型应力类型的准确深度需要更多数据进一步确认;400 m以下走滑型应力状态与震源机制解反映的深部应力状态基本一致(杨帆等,2019)。实测SH方向、应力类型和嘉黎断裂带几何特征组合表明,现今地应力状态有利于断裂以左旋走滑方式运动,与已有研究给出的嘉黎断裂带东构造结弧顶段目前以弱右旋挤压运动为主(宋健等,2013)认识不一致。分析认为,其原因可能在于嘉黎断裂带东构造结弧顶段并非单一断层面,是由若干次级断层组成,并且该段近南北走向断层发育(图2),与嘉黎断裂带共同构成了复杂、多期次活动的断裂系统,其运动方式沿走向存在变化,对于这种复杂断裂系统,简单套用Anderson断层理论可能不能完全准确反映断裂运动方式。

  • 3.4 构造应力水平

  • 地应力实测值实际上是重力作用、构造应力、残余应力等耦合作用的结果,对于如何剥离和定量描述各种作用目前尚无公认的理论方法,本文参考已有研究(姚瑞等,2017),利用实测数据,分析了通麦—波密段构造应力强度。分析时,需要计算水平构造应力值,方法是将实测地应力结果中重力作用的影响去掉,其中,重力作用影响的计算采用泊松效应公式,由此构造应力计算公式如下(姚瑞等,2017):

  • 重力影响: SHg=Shg=ν1-νSv
    (4)
  • 最大水平构造应力: SHt=SH-SHg
    (5)
  • 最小水平构造应力: Sht=Sh-Shg
    (6)
  • 构造差应力: ΔSt=SHt-Sht
    (7)
  • 其中,Sv按公式(3)计算,参数取值一致。

  • 由公式(4)~(7)计算得到的通麦—波密段水平构造应力随深度分布特征如图9所示。结果表明,SHtSht随深度整体表现为增加趋势,分布特征与SHSh特征相似;300 m深度以浅分布相对离散,且200~300 m深度附近存在地形变化显著地区如高山、峡谷区应力分布特有的“应力包”现象(李华等,2016),300 m深度以下增加趋势相对稳定,1100 m深度内SHtSht最大值分别为23.29 MPa和10.89 MPa,显示较强的水平构造应力作用。构造差应力ΔSt表现出与参数KHh类似的分段性特征:250 m以浅ΔSt分布较为离散(图9中A段),但其值增加趋势较快;250~600 m之间ΔSt分布相对集中(图9中B段),但增加梯度相对较小,构造差应力增加不大,其值并未超过250 m以浅水平;600 m深度以下ΔSt增加梯度较快(图9中C段),表明水平构造作用增强较快,与KHh特征相吻合,1100 m深度内ΔSt值为0.41~12.42 MPa,显示较强的构造应力作用。

  • 复杂地形条件下的地应力场分布与形成机制十分复杂,不同深度内的应力场是由自重主导,还是构造应力作用主导,还是两者共同主导,受地层条件、构造发育情况、地形条件共同控制,并且与远场构造应力水平和自重作用间相对强度也密切相关(Pan et al.,1995Figueiredo et al.,2014Hergert et al.,2016Martel,2016)。通麦—波密段主应力、特征参数和水平构造应力分布特征揭示,地形对表层地应力分布特征有较为明显的影响,深部构造应力对地应力分布控制作用增加显著。

  • 图9 喜马拉雅东构造结北缘通麦—波密段水平构造应力随深度分布特征

  • Fig.9 Profile of horizontal tectonic stresses vs. depths in the Tongmai-Bomi region along the northern margin of eastern Himalayan syntaxis

  • 4 讨论

  • 4.1 通麦—波密段构造应力环境

  • 实测地应力数据揭示了东构造结北缘通麦—波密段现今地应力场,那么其揭示什么样的构造应力环境?研究认为,地壳浅部应力状态受到地壳中断裂等不连续结构面强度控制,处于极限平衡状态,并以断裂滑动失稳活动或地震方式不断进行调整,从而使其能够保持动态平衡(Zoback and Townend,2001;Scholz,2002Zoback,2007)。Zoback and Townend(2001)研究指出地壳浅部应力状态的极限平衡条件可以用库伦摩擦失稳准则(Coulomb frictional-failure criterion)描述,并且可以忽略断层的黏聚力,只考虑断层摩擦系数(μ)。在引入主应力和有效应力概念后,用来描述地壳浅部强度极限状态的库伦摩擦失稳准则变成:

  • σ1-P0σ3-P0=μ2+1+12
    (8)
  • 式中,σ1σ3分别为区域最大、最小主应力(MPa),根据Anderson断层理论和实测地应力值确定;P0为孔隙压力(MPa),通常取静水压力。

  • 关于地壳浅表部摩擦系数取值,Byerlee基于大量岩石力学实验认为在0.6~1.0之间,即拜尔律定律(Byerlee,1978),大量深孔地应力数据也证实这一结论(Zoback and Townend,2001;Zoback,2007)。使用式(8)评价某区域构造应力环境时,将实测地应力值带入,若由实测地应力数据计算的公式(8)左侧结果大于右侧μ取0.6的结果(下限值),尤其是大于1.0(上限值)结果时,表明其现今地应力强度已达到地壳浅表部理论应力水平,区域地应力场可能通过断层失稳活动或地震进行调整,处于不稳定的构造应力环境;反之,实测地应力值低于μ取0.6结果时,则地应力水平未达到理论上的极限水平,暂时处于相对稳定的构造应力环境。本文在评价通麦—波密段构造应力环境时,以0.6为构造应力环境稳定与否评判标准。

  • 通麦—波密段的滑动失稳分析结果(图10)显示,其地应力水平整体上低于摩擦系数取0.8时理论上的应力水平,并表现出分段特征:受地形影响明显的200 m以浅的数据分布较离散,200 m深度以下,地应力水平下总体上低于摩擦系数取0.6时理论应力水平,尤其是约430 m深度以下,地应力水平总体在摩擦系数为0.2~0.4时的理论地壳应力值之间。综上认为,东构造结北缘通麦—波密段现今地应力水平未达到地壳极限下限水平,暂时处于相对稳定的构造应力环境。

  • 图10 基于库伦摩擦失稳准则的通麦— 波密段地应力分析结果

  • Fig.10 Estimation results of in-situ stress in Tongmai-Bomi section according to Coulomb frictional-failure criterion incorporating Byerlee′s law

  • 4.2 不同方法揭示的构造应力环境对比

  • 实测地应力数据揭示东构造结北缘通麦—波密段处于相对稳定的构造应力环境,这与其他方法结果是否吻合呢?分析发现,地壳变形方面,GPS观测数据表明东构造结北缘嘉黎断裂带通麦—波密段两侧变形速率有较明显的变化,断裂右旋走滑速率较低,处于弱走滑状态的特征,地震矩亏损结果显示其处于能量积累的阶段(田镇等,2020)。地震资料显示,东构造结地区地震主要集中在嘉黎断裂带与东久-米林断裂交汇的拉月—易贡区域,沿西兴拉断裂,以及墨脱-阿尼桥断裂带展布,嘉黎断裂带弧顶段地震活动频度相对较低(程成等,2017杨帆等,2019田镇等,2020),表明强烈的区域挤压作用主要集中在东构造结两侧及南迦巴瓦变质体内部。构造地质研究表明(任金卫等,2000;宋健等,2013),嘉黎断裂带的走滑活动性可能是伴随着张性活动产生的,东构造结弧顶段的活动速率低于那曲—嘉黎段和波密—察隅段,总体为弱右旋挤压特征,但局部段也存在向左旋转换的迹象。以上分析表明实测地应力数据揭示的构造应力环境与其他方法研究认识基本相符。考虑到东构造结北缘蛇绿混杂岩带发育(潘桂棠等,2020罗锋等,2022)、嘉黎断裂带活动特征、断裂带南北两侧深部泊松比差异性(程成等,2017),以及东构造结北缘发育的近南北向断裂与北西向断裂构成了复杂断裂系统,认为在北东向区域挤压作用持续增强的背景下,东构造结北缘通麦—波密段具备进一步应力积累的条件,且应力积累可能在东构造结西北顶端(易贡—拉月—通麦区域),以及沿西兴拉断裂等,并形成强烈挤压应力环境。因此,建议在这些关键构造部位和断裂开展地应力长期监测,获取关键构造部位构造应力动态变化数据。

  • 4.3 对隧道工程的影响及建议

  • 东构造结北缘目前正规划建设有重大铁路工程,且主要以隧道形式通过,现今地应力条件对隧道围岩稳定性影响直接关系工程的地质安全。东构造结北缘段铁路隧道总体走向N65°W左右,最大埋深1500 m左右,围岩以片麻岩、花岗闪长岩和花岗岩为主,具备岩爆发生的岩石条件,因此探讨了现今地应力条件下围岩岩爆情况。参考相关规范(TB 10003—2016)和相邻工程资料(张重远等,2022),采用了强度应力比法(TB 10003—2016)和应力强度比法(徐林生和王兰生,1999)进行分析:强度应力比法为Rc/σmax; 应力强度比法为σθmax/Rc。其中,Rc为岩石饱和单轴抗压强度(MPa);σmax为最大主应力(MPa),取为SHσθmax为隧道开挖面最大切向应力(MPa),根据实测地应力和隧道走向计算。

  • 分析时隧道断面设为圆形,Rc参考相邻拉月隧道结果(张重远等,2022),并不区分岩性,使用其平均值81.8 MPa,不同深度应力值以图6中拟合公式计算,由此得到的结果见图11。综合分析认为,在现今地应力场下,东构造结北缘隧道埋深超过600 m后即可能发生中等岩爆,埋深超过1100 m后,可能发生强烈—极强岩爆。对比图9和图11发现,中等岩爆开始出现的深度与构造差应力显著增加深度基本吻合,表明中等及以上岩爆出现可能是构造应力作用显著增强的效应。因此,建议进一步开展隧道沿线600 m以深的地应力场精细评价研究,并结合通麦—波密段混杂岩地质调查,详细评价隧道埋深超过600 m段的工程地质条件变化情况,深化岩爆风险认识。

  • 图11 喜马拉雅东构造结北缘通麦—波密段隧道围岩岩爆可能性分析结果

  • Fig.11 Evaluation results of rock burst possibility profile for the Tongmai-Bomi section along the northern margin of eastern Himalayan syntaxis

  • (a)—强度应力比方法;(b)—应力强度比方法

  • (a) —method using ratio of rock strength to maximum principal stress; (b) —method using ratio of maximum principal stress to rock strength

  • 5 结论

  • (1)东构造结北缘通麦—波密段地表至1100 m深度内(孔口高程2500~3600 m,侵蚀基准面高程2400~2500 m)实测最大、最小水平主应力随深度增加而增大,其值分别为4.87~32.47 MPa和3.05~20.07 MPa,随深度增加梯度分别为2.49 MPa/100 m和1.61 MPa/100 m,低于青藏地块和东构造结西缘对应梯度水平。

  • (2)东构造结北缘通麦—波密段实测最大水平主应力优势方位为NEE向,数学平均值为N69.2°±11.5°E,与构造地质、GPS和震源机制解等方法揭示的NNE—NE向区域主应力优势方位相比,呈现明显的顺时针偏转特征。

  • (3)东构造结北缘通麦—波密段现今地应力场由水平应力作用主导,应力类型为逆冲和走滑型,水平应力作用强度整体高于青藏地块背景水平,并随深度表现出分段增加特征,600 m深度以下水平应力作用强度和构造差应力增加明显,表明深部存在相对较强的构造应力作用。

  • (4)库伦摩擦失稳准则分析显示,东构造结北缘通麦—波密段受地形影响较小的200 m深度以下地应力值整体低于摩擦系数取0.6时的理论地壳应力水平,430 m以深实测地应力值总体在摩擦系数取0.2~0.4时的理论地壳应力范围内,表明通麦—波密段现今地应力水平未达到极限状态,处于相对稳定的构造应力环境,应力将进一步积累。

  • (5)现今地应力场条件下,东构造结北缘NW向展布的铁路隧道埋深超过600 m后围岩存在发生中等—极强岩爆可能,建议进一步开展深部地应力场和工程地质条件精细研究。

  • 致谢:地应力测量工作得到了中铁第一勘察设计院集团有限公司地路院杜世回处长、黄勇处长、陈兴强博士等的帮助,在此深表谢意。感谢中国地质科学院地质力学研究所胡道功研究员、孙东霞副研究员、贾丽云副研究员在野外地质调查与分析中的指导和帮助。评审专家提出的宝贵意见和建议,显著提高了文章质量,在此谨致谢忱。

  • 参考文献

    • Amadei B, Stephansson O. 1997. Rock Stress and Its Measurement. London: Chapman & Hall.

    • Brown E T, Hoek E. 1978. Trends in relationship between measured in-situ stresses and depth. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 15(4): 211~215.

    • Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Z Z, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compression crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.

    • Byerlee J D. 1978. Friction of rocks. Pure and Applied Geophysics, 116(4-5): 615~626.

    • Cheng Cheng, Bai Ling, Ding Lin, Li Guohui, Yang Jianya, Xu Qiang. 2017. Crustal structure of eastern Himalayan syntaxis revealed by receiver function method. Chinese Journal of Geophysics, 60(8): 2969~2979 (in Chinese with English abstract).

    • Diederichs M S, Kaiser P K, Eberhardt E. 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics & Mining Sciences, 41(5): 785~812.

    • Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Yi Zhining, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).

    • Fan Qixiang, Lin Peng, Wei Pengcheng, Li Guo. 2021. Intelligent construction of hydraulic engineering in high altitude areas: Challenges and strategies. Journal of Hydraulic Engineering, 52(12): 1404~1417 (in Chinese with English abstract).

    • Feng Chengjun, Chen Qunce, Wu Manlu, Zhao Jinsheng, Li Guoqi. 2012. Analysis of hydraulic fracturing stress measurement data-discussion of methods frequently used to determine instantaneous shut-in pressure. Rock and Soil Mechanics, 33(7): 2149~2159 (in Chinese with English abstract).

    • Figueiredo B, Cornet F H, Lamas L, Muralha J. 2014. Determination of the stress field in a mountainous granite rock mass. International Journal of Rock Mechanics & Mining Sciences, 72: 37~48.

    • Gronseth J M, Kry P R. 1983. Instantaneous Shut-in Pressure and Its Relationship to the Minimum in-situ Stress. Hydraulic Fracturing Stress Measurements. Washington D. C. : National Academy Press, 55~60.

    • Haimson B C, Cornet F H. 2003. ISRM suggested methods for rock stress estimation-part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40: 1011~1020.

    • Hayashi K, Haimson B C. 1991. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ stress minimum compressive stress. Journal of Geophysical Research, 96(B11): 18311~19321.

    • Hergert T, Heidbach O, Reiter K, Giger S B, Marschall P. 2016. Stress field sensitivity analysis in sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6: 533~552.

    • Hettema M. 2020. Analysis of mechanics of fault reactivation in depleting reservoirs. International Journal of Rock Mechanics & Mining Sciences, 129: 104290.

    • Huang Yidan, Pan Qian, Yao Lingkan, Chen Nuo. 2021. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 375~382 (in Chinese with English abstract).

    • Industry Standard of the People's Republic of China. 2017. TB 10003—2016 Code for Design of Railway Tunnel. Beijing: China Railway Publishing House.

    • Lee M Y, Haimson B C. 1989. Statistical evaluation of hydraulic fracturing stress measurement parameter. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 26: 447~456.

    • Li Hongru, Bai Lin, Zhan Huili. 2021. Research progress of Jiali fault activity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).

    • Li Hua, Li Chongbiao, Liu Yunpeng, Hang Gang, Zhao Qihua. 2016. Geostress field characteristics of high steep canyon slope in Southwest China. Rock and Soil Mechanics, 37(S1): 482~488 (in Chinese with English abstract).

    • Ljunggren C, Chang Y, Janson T. 2003. An overview of rock stress measurement methods. International Journal of Rock Mechanics & Mining Sciences, 40(7-8): 975~989.

    • Luo Feng, Du Shihui, Huang Yong, Meng Xianglian, Zhang Wenzhong, Chen Xingqiang, Han Yongqi, Zhang Zhiliang, Zhang Yuxi, Li Yubo. 2022. Determining the boundary of the Jiali-Palongzangbo tectonic mélange belt based on airborne geophysical prospecting and its engineering geological risk. Earth Science, 47(3): 779~793 (in Chinese with English abstract).

    • Ma Xin, Fu Lei, Li Tiefeng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of geothermal origin in eastern Himalayan syntaxis. Geoscience, 35(1): 209~219(in Chinese with English abstract).

    • Martel S. 2016. Effect of small-amplitude periodic topography on combined stresses due to gravity and tectonics. International Journal of Rock Mechanics & Mining Sciences, 89: 1~13.

    • Meng Wen, Guo Changbao, Zhang Chongyuan, Zhang Yongshuang, Chen Qunce. 2017. In situ stress measurements and implications in the Lhasa Terrane, Tibetan Plateau. Chinese Journal of Geophysics, 60(6): 2159~2171(in Chinese with English abstract).

    • Ou Xiaoqiang, Wang Shi, Li Yongliang, Liu Zhiqing, Zheng Zongxi, Wu Jian. 2019. In-situ stress analysis of tunnel in plate suture zone of Lhasa-Nyingchi railway. Journal of Jilin University (Earth Science Edition), 49(6): 1689~1697 (in Chinese with English abstract).

    • Pan E, Amadei B, Savage W Z. 1995. Gravitational and tectonic stresses in anisotropic rock with irregular topography. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 31(1): 201~214.

    • Pan Guitang, Ren Fei, Yin Fuguang, Wang Liquan, Wang Baodi, Wang Dongbing, An Xianyi, Tang Yuan, Liu Han, Wang Qiyu, Pang Weihua, Xu Bo. 2020. Key zones of oceanic plate geology and Sichuan-Tibet railway project. Earth Science, 45(7): 2293~2304 (in Chinese with English abstract).

    • Peng Jianbing, Cui Peng, Zhuang Jianqi. 2021. Challenges to engineering geology Sichuan-Tibet railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377~2389 (in Chinese with English abstract).

    • Qin Xianghui, Chen Qunce, Zhao Xingguang, Zhang Chongyuan, Sun Dongsheng, Meng Wen, Feng Chengjun, Wang Bin, Yang Yuehui. 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189~1202 (in Chinese with English abstract).

    • Ren Jinwei, Shen Jun, Cao Zhongquan, Wang Yipeng. 2000. Quaternary faulting of Jiali fault, southeast Tibetan Plateau. Seismology and Geology, 22(4): 344~350 (in Chinese with English abstract).

    • Scholz C H. 2002. The Mechanics of Earthquake and Faulting. Cambridge: Cambridge University Press.

    • Sheorey P R. 1994. A theory for in situ stress in isotropic and transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 31(1): 23~34.

    • Song Jian, Tang Fangtou, Deng Zhihui, Chen Weitao. 2013. Late Quaternary movement characteristics of Jiali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinesis, 49(6): 973~980 (in Chinese with English abstract).

    • Stephansson O, Zang A. 2012. ISRM suggested methods for rock stress estimation-part 5: Establishing a model for the in situ stress at a given site. Rock Mechanics and Rock Engineering, 45: 955~969.

    • Sun Yujun, Guo Changbao, Wu Zhonghai, Fan Taoyuan, Li Hailong. 2017. Numerical study on the crustal stress, strain rate and fault activity in the eastern Tibetan Plateau. Acta Geoscientia Sinica, 38(3): 385~392 (in Chinese with English abstract).

    • Tan Chengxuan, Sun Weifeng, Sun Ye, Wang Lianjie. 2006. A consideration on in-situ stress measuring and its underground engineering application. Acta Geologica Sinica, 80(10): 1627~1632 (in Chinese with English abstract).

    • Tan Chengxuan, Zhang Peng, Zheng Hanhuai, Wang Jiming, Sun Ye. 2008. An analysis on in-situ crustal stress measurements and major engineering geology issues at the dam site area of Jinping first stage hydropower station. Journal of Engineering Geology, 16(2): 162~168 (in Chinese with English abstract).

    • Tan Chengxuan, Zhang Peng, Feng Chengjun, Qin Xianghui, Sun Weifeng, Chen Qunce, Wu Manlu. 2014. An approach to deep borehole crustal stress Mersuring and real-time monitoring and its application in seismogeology resaerch in captial Beijing region. Acta Geologica Sinica, 88(8): 1436~1452 (in Chinese with English abstract).

    • Tang Fangtou, Song Jian, Cao Zhongquan, Deng Zhihui, Wang Min, Xiao Genru, Chen Weitao. 2010. The movement characters of main faults aroud eastern Himalayan syntaxis revealed by the latest GPS data. Chinese Journal of Geophysics, 53(9): 2119~2128 (in Chinese with English abstract).

    • Tian Zhen, Yang Zhiqiang, Wang Shidi. 2020. Moment deficits on the major faults and earthquake hazard assessment in the eastern Himalayan syntaxis. Seismology and Geology, 42(1): 33~49 (in Chinese with English abstract).

    • Tu Jiyao, Ji Jianqing, Zhong Dalai, Sun Dongxia, Zhou Jing. 2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constrains from thermochronological data. Journal of Geomechanics, 27(4): 679~690 (in Chinese with English abstract).

    • Wang Chenghu, Liu Lipeng, Guo Qiliang, Hou Yanhe. 2008. One method to analyze the measured in-situ stress data and its significance to the project stability design. Journal of Engineering Geology, 16(Suppl. ): 377~381(in Chinese with English abstract).

    • Wang Chenghu, Guo Qiliang, Ding Lifeng, Liu Lipeng. 2009. High in-situ stress criteria for engineering area and a case analysis. Rock and Soil Mechanics, 30(8): 2359~2364 (in Chinese with English abstract).

    • Wang Chenghu, Gao Guiyun, Yang Shuxin, Yao Rui, Huang Luyuan. 2019. Analysis and prediction of stress field of Sichuan-Tibet railway area based on contemporary tectonic stress filed zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242~2253 (in Chinese with English abstract).

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.

    • Wang Yanhua, Cui Xiaofeng, Hu Xingping, Xie Furen. 2012. Study on the stress state in upper crust of China mainland based on in-situ stress measurements. Chinese Journal of Geophysics, 55(9): 3016~3027 (in Chinese with English abstract).

    • Wu Xiaolong, Xiang Yang, Tang Fuquan. 2020. Study on current crustal deformation of the Himalayan tectonic zone by GPS strain-rate estimation and focal mechanism stress inversion. Chinese Journal of Geophysics, 63(8): 2924~2939 (in Chinese with English abstract).

    • Xie Furen, Chen Qunce, Cui Xiaofeng, Li Hong, Yang Shuxin, Chen Lianwang. 2003. Crustal Stress in China. Beijing: Geological Publish House.

    • Xu Linsheng, Wang Lansheng. 1999. Study on the laws of rockburst and its forcasting in the tunnel of Erlang Moutain road. Chinese Journal of Geotechnical Engineering, 21(5): 569~572 (in Chinese with English abstract).

    • Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Huaqi, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta PetrologicaSinica, 24(7): 1463~1476 (in Chinese with English abstract).

    • Yan Jian, He Chuan, Wang Bo, Meng Wei, Wu Fangyin. 2019. Inoculation and characters of rock bursts in extra-long deep-lying tunnels located on Yarlung Zangbo suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769~781 (in Chinese with English abstract).

    • Yang Fan, Sheng Zhongshu, Wan Yongge, Wang Xiaoshan, Liu Zhaocai, Li Yao. 2019. Impact of the stress field in the grid not satisfies the assumption of uniformity on stress field inversion results: The study of stress field in the eastern Himalayan syntaxis and its surrounding area is an example. Progress in Geophysics, 4(2): 479~488 (in Chinese with English abstract).

    • Yang Shuxin, Yao Rui, Cui Xiaofeng, Chen Qunce, Huang Luyuan. 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chinese Journal of Geophysics, 55(12): 4207~4217 (in Chinese with English abstract).

    • Yao Rui, Yang Shuxin, Xie Furen, Cui Xiaofeng, Lu Yuanzhong, Xu Zhaoyi. 2017. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai-Tibet plateau and its adjacent region based on in-situ stress data. Chinese Journal of Geophysics, 60(6): 2147~2158 (in Chinese with English abstract).

    • Zhang Chongyuan, Du Shihui, He Manchao, Qin Xianghui, Li Bin, Chen Xingqiang, Meng Wen, Huang Yong. 2022. Characteristics of in-situ stress on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock. Chinese Journal of Rock Mechanics and Engineering. 41(5): 954~968 (in Chinese with English abstract).

    • Zhang Hao, Shi Gang, Wu Hong, Shao Lei, Wang Qian. 2020. In-situ stress measurements in the shallow basement of the Shanghai area and its structural geological significance. Journal of Geomechanics, 26(4): 583~590 (in Chinese with English abstract).

    • Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Study on the tectonic pattern of the formation process of the Nanga Bawa Syntaxis in eastern Himalayan. Science in China(Series D), 33(4): 373~383 (in Chinese with English abstract).

    • Zhang Yongshuang, Ren Sanshao, Guo Changbao, Yao Xin, Zhou Nengjuan. 2019. Research on engineering geology related with active fault zone. Acta Geologica Sinica, 93(4): 763~775 (in Chinese with English abstract).

    • Zhang Yongshuang, Guo Changbao, Li Xiangquan, Bi Junbo, Ma Jianfei, Liu Feng. 2021. Key problems on hydro-engineering-enviromental geology along the Sichuan-Tibet railway corridor: Current status and development direction. Hydrogeology & Engineering Geology, 48(5): 1~12 (in Chinese with English abstract).

    • Zhang Yuxi. 2021. Characteristics of current in situ stress field about Sejila Moutain traffice corridor. Journal of Engineering Geology, 29(2): 394~403 (in Chinese with English abstract).

    • Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Weidu. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).

    • Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalyas. Acta Geologica Sinica, 78(6): 743~751 (in Chinese with English abstract).

    • Zhong Shan, Jiang Quan, Feng Xiating, Liu Jiguang, Li Shaojun, Qiu Shili, Wu Shiyong. 2018. A case of in-situ stress measurement in Chinese Jinping underground laboratory. Rock and Soil Mechanics, 39(1): 356~366 (in Chinese with English abstract).

    • Zoback M D. 2007. Reservoir Geomechanics. Cambridge: Cambridge University Press.

    • Zoback M D, Townend J. 2001. Implications of the hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1-4): 19~30.

    • 程成, 白玲, 丁林, 李国辉, 杨建亚, 许强. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构. 地球物理学报, 60(8): 2969~2979.

    • 董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宁, 陈希节, 马绪宣, 吴婵. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.

    • 樊启祥, 林鹏, 魏鹏程, 李果. 2021. 高海拔地区水电工程智能建造挑战与对策. 水利学报, 52(12): 1404~1417.

    • 丰成君, 陈群策, 吴满路, 赵金生, 李国岐, 安其美. 2012. 水压致裂应力测量数据分析——对瞬时关闭压力Ps的常用判读方法讨论. 岩土力学, 33(7): 2149~2159.

    • 黄艺丹, 潘前, 姚令侃, 陈诺. 2021. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略. 工程地质学报, 29(2): 375~382.

    • 李洪儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182~193.

    • 李华, 李崇标, 刘云鹏, 韩刚, 赵其华. 2006. 中国西南深切峡谷岸坡地应力场基本特征. 岩土力学, 37(S1): 482~488.

    • 罗锋, 杜世回, 黄勇, 孟祥连, 张文忠, 陈兴强, 韩永琦, 张志亮, 张玉玺, 李玉波. 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779~793.

    • 马鑫, 付雷, 李铁锋, 闫晶, 刘廷, 王明国, 邵伟. 2021. 喜马拉雅东构造结地区地热成因分析. 现代地质, 35(1): 209~219.

    • 孟文, 郭长宝, 张重远, 张永双, 陈群策. 2017. 青藏高原拉萨块体地应力测量及其意义. 地球物理学报, 60(6): 2159~2171.

    • 欧小强, 王奭, 李永亮, 刘志强, 郑宗溪, 吴剑. 2019. 拉林铁路板块缝合带隧道地应力分析. 吉林大学学报(地球科学版), 49(6): 1689~1697.

    • 潘桂棠, 任飞, 尹福光, 王立全, 王保弟, 王冬兵, 安显银, 唐渊, 刘函, 王启宇, 庞维华, 徐波. 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293~2304.

    • 彭建兵, 崔鹏, 庄建琦. 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377~2389.

    • 秦向辉, 陈群策, 赵星光, 张重远, 孙东生, 孟文, 丰成君, 王斌, 杨跃辉. 2020. 水压致裂地应力测量中系统柔度影响试验研究. 岩石力学与工程学报, 39(6): 1189~1202.

    • 任金卫, 沈军, 曹忠权, 汪一鹏. 2000. 西藏东南部嘉黎断裂新知. 地震地质, 22(4): 344~350.

    • 宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.

    • 孙玉军, 郭长宝, 吴中海, 范桃园, 李海龙. 2017. 数值模拟探讨青藏高原东部应力应变场及断裂活动性. 地球学报, 38(3): 385~392.

    • 谭成轩, 孙炜锋, 孙叶, 王连捷. 2006. 地应力测量及其地下工程应用的思考. 地质学报, 80(10): 1627~1632.

    • 谭成轩, 张鹏, 郑汉淮, 孙炜锋, 王继明, 孙叶. 2008. 雅砻江锦屏一级电站坝址区实测地应力与重大工程问题分析. 工程地质学报, 16(2): 162~168.

    • 谭成轩, 张鹏, 丰成君, 秦向辉, 孙炜锋, 陈群策, 吴满路. 2014. 探索首都区地区深孔地应力测量与实时监测及其在地震地质研究中应用. 地质学报, 88(8): 1436~1452.

    • 唐方头, 宋键, 曹忠权, 邓志辉, 王敏, 肖根如, 陈为涛. 2010. 最新GPS数据揭示的东构造周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119~2128.

    • 田镇, 杨志强, 王师迪. 2020. 喜马拉雅东构造结主要断裂地震矩亏损与危险性评估. 地震地质, 42(1): 33~49.

    • 涂继耀, 季建清, 钟大赉, 孙东霞, 周晶. 2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据. 地质力学学报, 27(4): 679~690.

    • 王成虎, 刘立鹏, 郭启良, 侯砚和. 2008. 地应力测量数据分析对工程稳定性控制设计的意义. 工程地质学报, 16(增): 377~381.

    • 王成虎, 郭啟良, 丁立丰, 刘立鹏. 2009. 工程区高地应力判据研究及实例分析. 岩土力学, 30(8): 2359~2364.

    • 王成虎, 高桂云, 杨树新, 姚瑞, 黄禄渊. 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242~2253.

    • 王艳华, 崔效锋, 胡幸平, 谢富仁. 2012. 基于原地应力测量数据的中国大陆地壳上部应力状态研究. 地球物理学报, 55(9): 3016~3027.

    • 吴啸龙, 向洋, 汤伏全. 2020. 基于GPS应变与震源机制解应力反演喜马拉雅构造带现今地壳形变特征. 地球物理学报, 63(8): 2924~2939.

    • 谢富仁, 陈群策, 崔效锋, 李宏, 杨树新, 陈连旺. 2003. 中国大陆地壳应力环境研究. 北京: 地质出版社.

    • 徐林生, 王兰生. 1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究. 岩土工程学报, 21(5): 569~572.

    • 许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463~1476.

    • 严健, 何川, 汪波, 汪波, 蒙伟, 吴枋胤. 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769~781.

    • 杨帆, 盛书中, 万永革, 王晓山, 刘兆才, 李瑶. 2019. 网格内不满足均匀性假设对引力场反演结果的影响——以喜马拉雅东构造结缉周边地区应力场研究为例. 地球物理学进展, 34(2): 479~488.

    • 杨树新, 姚瑞, 崔效锋, 陈群策, 黄禄渊. 2012. 中国大陆各活动地块、南北地震带实测应力特征分析. 地球物理学报, 55(12): 4207~4217.

    • 姚瑞, 杨树新, 谢富仁, 崔效锋, 陆远忠, 许兆义. 2017. 青藏高原及周缘地壳浅层构造应力场量值特征分析. 地球物理学报, 60(6): 2147~2158.

    • 张浩, 施刚, 巫虹, 邵磊, 王乾. 2020. 上海地区浅部地应力测量极其构造地质意义分析. 地质力学学报, 26(4): 583~594.

    • 张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D缉), 33(4): 373~383.

    • 张永双, 任三绍, 郭长宝, 姚鑫, 周能娟. 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763~775.

    • 张永双, 郭长宝, 李向全, 毕俊擘, 马剑飞, 刘峰. 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1~12.

    • 张玉玺. 2021. 色季拉山交通廊道现今地应力场特征研究. 工程地质学报, 29(2): 394~403.

    • 张重远, 杜世回, 何满朝, 秦向辉, 李彬, 陈兴强, 陈群策, 孟文, 黄勇. 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响. 岩石力学与工程学报, 41(5): 954~968.

    • 赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.

    • 郑来林, 金振民, 潘桂棠, 耿全如, 孙志民. 2004. 东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 743~751.

    • 钟山, 江权, 冯夏庭, 刘继光, 李邵军, 邱士利, 吴世勇. 2018. 锦屏深部地下实验室初始地应力测量实践. 岩土力学, 39(1): 356~366.

    • 中华人民共和国行业标准. 2017. TB 10003—2016 铁路隧道设计规范. 北京: 中国铁道出版社.

  • 参考文献

    • Amadei B, Stephansson O. 1997. Rock Stress and Its Measurement. London: Chapman & Hall.

    • Brown E T, Hoek E. 1978. Trends in relationship between measured in-situ stresses and depth. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 15(4): 211~215.

    • Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Z Z, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compression crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.

    • Byerlee J D. 1978. Friction of rocks. Pure and Applied Geophysics, 116(4-5): 615~626.

    • Cheng Cheng, Bai Ling, Ding Lin, Li Guohui, Yang Jianya, Xu Qiang. 2017. Crustal structure of eastern Himalayan syntaxis revealed by receiver function method. Chinese Journal of Geophysics, 60(8): 2969~2979 (in Chinese with English abstract).

    • Diederichs M S, Kaiser P K, Eberhardt E. 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics & Mining Sciences, 41(5): 785~812.

    • Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Yi Zhining, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).

    • Fan Qixiang, Lin Peng, Wei Pengcheng, Li Guo. 2021. Intelligent construction of hydraulic engineering in high altitude areas: Challenges and strategies. Journal of Hydraulic Engineering, 52(12): 1404~1417 (in Chinese with English abstract).

    • Feng Chengjun, Chen Qunce, Wu Manlu, Zhao Jinsheng, Li Guoqi. 2012. Analysis of hydraulic fracturing stress measurement data-discussion of methods frequently used to determine instantaneous shut-in pressure. Rock and Soil Mechanics, 33(7): 2149~2159 (in Chinese with English abstract).

    • Figueiredo B, Cornet F H, Lamas L, Muralha J. 2014. Determination of the stress field in a mountainous granite rock mass. International Journal of Rock Mechanics & Mining Sciences, 72: 37~48.

    • Gronseth J M, Kry P R. 1983. Instantaneous Shut-in Pressure and Its Relationship to the Minimum in-situ Stress. Hydraulic Fracturing Stress Measurements. Washington D. C. : National Academy Press, 55~60.

    • Haimson B C, Cornet F H. 2003. ISRM suggested methods for rock stress estimation-part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40: 1011~1020.

    • Hayashi K, Haimson B C. 1991. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ stress minimum compressive stress. Journal of Geophysical Research, 96(B11): 18311~19321.

    • Hergert T, Heidbach O, Reiter K, Giger S B, Marschall P. 2016. Stress field sensitivity analysis in sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6: 533~552.

    • Hettema M. 2020. Analysis of mechanics of fault reactivation in depleting reservoirs. International Journal of Rock Mechanics & Mining Sciences, 129: 104290.

    • Huang Yidan, Pan Qian, Yao Lingkan, Chen Nuo. 2021. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 375~382 (in Chinese with English abstract).

    • Industry Standard of the People's Republic of China. 2017. TB 10003—2016 Code for Design of Railway Tunnel. Beijing: China Railway Publishing House.

    • Lee M Y, Haimson B C. 1989. Statistical evaluation of hydraulic fracturing stress measurement parameter. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 26: 447~456.

    • Li Hongru, Bai Lin, Zhan Huili. 2021. Research progress of Jiali fault activity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).

    • Li Hua, Li Chongbiao, Liu Yunpeng, Hang Gang, Zhao Qihua. 2016. Geostress field characteristics of high steep canyon slope in Southwest China. Rock and Soil Mechanics, 37(S1): 482~488 (in Chinese with English abstract).

    • Ljunggren C, Chang Y, Janson T. 2003. An overview of rock stress measurement methods. International Journal of Rock Mechanics & Mining Sciences, 40(7-8): 975~989.

    • Luo Feng, Du Shihui, Huang Yong, Meng Xianglian, Zhang Wenzhong, Chen Xingqiang, Han Yongqi, Zhang Zhiliang, Zhang Yuxi, Li Yubo. 2022. Determining the boundary of the Jiali-Palongzangbo tectonic mélange belt based on airborne geophysical prospecting and its engineering geological risk. Earth Science, 47(3): 779~793 (in Chinese with English abstract).

    • Ma Xin, Fu Lei, Li Tiefeng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of geothermal origin in eastern Himalayan syntaxis. Geoscience, 35(1): 209~219(in Chinese with English abstract).

    • Martel S. 2016. Effect of small-amplitude periodic topography on combined stresses due to gravity and tectonics. International Journal of Rock Mechanics & Mining Sciences, 89: 1~13.

    • Meng Wen, Guo Changbao, Zhang Chongyuan, Zhang Yongshuang, Chen Qunce. 2017. In situ stress measurements and implications in the Lhasa Terrane, Tibetan Plateau. Chinese Journal of Geophysics, 60(6): 2159~2171(in Chinese with English abstract).

    • Ou Xiaoqiang, Wang Shi, Li Yongliang, Liu Zhiqing, Zheng Zongxi, Wu Jian. 2019. In-situ stress analysis of tunnel in plate suture zone of Lhasa-Nyingchi railway. Journal of Jilin University (Earth Science Edition), 49(6): 1689~1697 (in Chinese with English abstract).

    • Pan E, Amadei B, Savage W Z. 1995. Gravitational and tectonic stresses in anisotropic rock with irregular topography. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 31(1): 201~214.

    • Pan Guitang, Ren Fei, Yin Fuguang, Wang Liquan, Wang Baodi, Wang Dongbing, An Xianyi, Tang Yuan, Liu Han, Wang Qiyu, Pang Weihua, Xu Bo. 2020. Key zones of oceanic plate geology and Sichuan-Tibet railway project. Earth Science, 45(7): 2293~2304 (in Chinese with English abstract).

    • Peng Jianbing, Cui Peng, Zhuang Jianqi. 2021. Challenges to engineering geology Sichuan-Tibet railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377~2389 (in Chinese with English abstract).

    • Qin Xianghui, Chen Qunce, Zhao Xingguang, Zhang Chongyuan, Sun Dongsheng, Meng Wen, Feng Chengjun, Wang Bin, Yang Yuehui. 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189~1202 (in Chinese with English abstract).

    • Ren Jinwei, Shen Jun, Cao Zhongquan, Wang Yipeng. 2000. Quaternary faulting of Jiali fault, southeast Tibetan Plateau. Seismology and Geology, 22(4): 344~350 (in Chinese with English abstract).

    • Scholz C H. 2002. The Mechanics of Earthquake and Faulting. Cambridge: Cambridge University Press.

    • Sheorey P R. 1994. A theory for in situ stress in isotropic and transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 31(1): 23~34.

    • Song Jian, Tang Fangtou, Deng Zhihui, Chen Weitao. 2013. Late Quaternary movement characteristics of Jiali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinesis, 49(6): 973~980 (in Chinese with English abstract).

    • Stephansson O, Zang A. 2012. ISRM suggested methods for rock stress estimation-part 5: Establishing a model for the in situ stress at a given site. Rock Mechanics and Rock Engineering, 45: 955~969.

    • Sun Yujun, Guo Changbao, Wu Zhonghai, Fan Taoyuan, Li Hailong. 2017. Numerical study on the crustal stress, strain rate and fault activity in the eastern Tibetan Plateau. Acta Geoscientia Sinica, 38(3): 385~392 (in Chinese with English abstract).

    • Tan Chengxuan, Sun Weifeng, Sun Ye, Wang Lianjie. 2006. A consideration on in-situ stress measuring and its underground engineering application. Acta Geologica Sinica, 80(10): 1627~1632 (in Chinese with English abstract).

    • Tan Chengxuan, Zhang Peng, Zheng Hanhuai, Wang Jiming, Sun Ye. 2008. An analysis on in-situ crustal stress measurements and major engineering geology issues at the dam site area of Jinping first stage hydropower station. Journal of Engineering Geology, 16(2): 162~168 (in Chinese with English abstract).

    • Tan Chengxuan, Zhang Peng, Feng Chengjun, Qin Xianghui, Sun Weifeng, Chen Qunce, Wu Manlu. 2014. An approach to deep borehole crustal stress Mersuring and real-time monitoring and its application in seismogeology resaerch in captial Beijing region. Acta Geologica Sinica, 88(8): 1436~1452 (in Chinese with English abstract).

    • Tang Fangtou, Song Jian, Cao Zhongquan, Deng Zhihui, Wang Min, Xiao Genru, Chen Weitao. 2010. The movement characters of main faults aroud eastern Himalayan syntaxis revealed by the latest GPS data. Chinese Journal of Geophysics, 53(9): 2119~2128 (in Chinese with English abstract).

    • Tian Zhen, Yang Zhiqiang, Wang Shidi. 2020. Moment deficits on the major faults and earthquake hazard assessment in the eastern Himalayan syntaxis. Seismology and Geology, 42(1): 33~49 (in Chinese with English abstract).

    • Tu Jiyao, Ji Jianqing, Zhong Dalai, Sun Dongxia, Zhou Jing. 2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constrains from thermochronological data. Journal of Geomechanics, 27(4): 679~690 (in Chinese with English abstract).

    • Wang Chenghu, Liu Lipeng, Guo Qiliang, Hou Yanhe. 2008. One method to analyze the measured in-situ stress data and its significance to the project stability design. Journal of Engineering Geology, 16(Suppl. ): 377~381(in Chinese with English abstract).

    • Wang Chenghu, Guo Qiliang, Ding Lifeng, Liu Lipeng. 2009. High in-situ stress criteria for engineering area and a case analysis. Rock and Soil Mechanics, 30(8): 2359~2364 (in Chinese with English abstract).

    • Wang Chenghu, Gao Guiyun, Yang Shuxin, Yao Rui, Huang Luyuan. 2019. Analysis and prediction of stress field of Sichuan-Tibet railway area based on contemporary tectonic stress filed zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242~2253 (in Chinese with English abstract).

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.

    • Wang Yanhua, Cui Xiaofeng, Hu Xingping, Xie Furen. 2012. Study on the stress state in upper crust of China mainland based on in-situ stress measurements. Chinese Journal of Geophysics, 55(9): 3016~3027 (in Chinese with English abstract).

    • Wu Xiaolong, Xiang Yang, Tang Fuquan. 2020. Study on current crustal deformation of the Himalayan tectonic zone by GPS strain-rate estimation and focal mechanism stress inversion. Chinese Journal of Geophysics, 63(8): 2924~2939 (in Chinese with English abstract).

    • Xie Furen, Chen Qunce, Cui Xiaofeng, Li Hong, Yang Shuxin, Chen Lianwang. 2003. Crustal Stress in China. Beijing: Geological Publish House.

    • Xu Linsheng, Wang Lansheng. 1999. Study on the laws of rockburst and its forcasting in the tunnel of Erlang Moutain road. Chinese Journal of Geotechnical Engineering, 21(5): 569~572 (in Chinese with English abstract).

    • Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Huaqi, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta PetrologicaSinica, 24(7): 1463~1476 (in Chinese with English abstract).

    • Yan Jian, He Chuan, Wang Bo, Meng Wei, Wu Fangyin. 2019. Inoculation and characters of rock bursts in extra-long deep-lying tunnels located on Yarlung Zangbo suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769~781 (in Chinese with English abstract).

    • Yang Fan, Sheng Zhongshu, Wan Yongge, Wang Xiaoshan, Liu Zhaocai, Li Yao. 2019. Impact of the stress field in the grid not satisfies the assumption of uniformity on stress field inversion results: The study of stress field in the eastern Himalayan syntaxis and its surrounding area is an example. Progress in Geophysics, 4(2): 479~488 (in Chinese with English abstract).

    • Yang Shuxin, Yao Rui, Cui Xiaofeng, Chen Qunce, Huang Luyuan. 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chinese Journal of Geophysics, 55(12): 4207~4217 (in Chinese with English abstract).

    • Yao Rui, Yang Shuxin, Xie Furen, Cui Xiaofeng, Lu Yuanzhong, Xu Zhaoyi. 2017. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai-Tibet plateau and its adjacent region based on in-situ stress data. Chinese Journal of Geophysics, 60(6): 2147~2158 (in Chinese with English abstract).

    • Zhang Chongyuan, Du Shihui, He Manchao, Qin Xianghui, Li Bin, Chen Xingqiang, Meng Wen, Huang Yong. 2022. Characteristics of in-situ stress on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock. Chinese Journal of Rock Mechanics and Engineering. 41(5): 954~968 (in Chinese with English abstract).

    • Zhang Hao, Shi Gang, Wu Hong, Shao Lei, Wang Qian. 2020. In-situ stress measurements in the shallow basement of the Shanghai area and its structural geological significance. Journal of Geomechanics, 26(4): 583~590 (in Chinese with English abstract).

    • Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Study on the tectonic pattern of the formation process of the Nanga Bawa Syntaxis in eastern Himalayan. Science in China(Series D), 33(4): 373~383 (in Chinese with English abstract).

    • Zhang Yongshuang, Ren Sanshao, Guo Changbao, Yao Xin, Zhou Nengjuan. 2019. Research on engineering geology related with active fault zone. Acta Geologica Sinica, 93(4): 763~775 (in Chinese with English abstract).

    • Zhang Yongshuang, Guo Changbao, Li Xiangquan, Bi Junbo, Ma Jianfei, Liu Feng. 2021. Key problems on hydro-engineering-enviromental geology along the Sichuan-Tibet railway corridor: Current status and development direction. Hydrogeology & Engineering Geology, 48(5): 1~12 (in Chinese with English abstract).

    • Zhang Yuxi. 2021. Characteristics of current in situ stress field about Sejila Moutain traffice corridor. Journal of Engineering Geology, 29(2): 394~403 (in Chinese with English abstract).

    • Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Weidu. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).

    • Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalyas. Acta Geologica Sinica, 78(6): 743~751 (in Chinese with English abstract).

    • Zhong Shan, Jiang Quan, Feng Xiating, Liu Jiguang, Li Shaojun, Qiu Shili, Wu Shiyong. 2018. A case of in-situ stress measurement in Chinese Jinping underground laboratory. Rock and Soil Mechanics, 39(1): 356~366 (in Chinese with English abstract).

    • Zoback M D. 2007. Reservoir Geomechanics. Cambridge: Cambridge University Press.

    • Zoback M D, Townend J. 2001. Implications of the hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1-4): 19~30.

    • 程成, 白玲, 丁林, 李国辉, 杨建亚, 许强. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构. 地球物理学报, 60(8): 2969~2979.

    • 董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宁, 陈希节, 马绪宣, 吴婵. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.

    • 樊启祥, 林鹏, 魏鹏程, 李果. 2021. 高海拔地区水电工程智能建造挑战与对策. 水利学报, 52(12): 1404~1417.

    • 丰成君, 陈群策, 吴满路, 赵金生, 李国岐, 安其美. 2012. 水压致裂应力测量数据分析——对瞬时关闭压力Ps的常用判读方法讨论. 岩土力学, 33(7): 2149~2159.

    • 黄艺丹, 潘前, 姚令侃, 陈诺. 2021. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略. 工程地质学报, 29(2): 375~382.

    • 李洪儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182~193.

    • 李华, 李崇标, 刘云鹏, 韩刚, 赵其华. 2006. 中国西南深切峡谷岸坡地应力场基本特征. 岩土力学, 37(S1): 482~488.

    • 罗锋, 杜世回, 黄勇, 孟祥连, 张文忠, 陈兴强, 韩永琦, 张志亮, 张玉玺, 李玉波. 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779~793.

    • 马鑫, 付雷, 李铁锋, 闫晶, 刘廷, 王明国, 邵伟. 2021. 喜马拉雅东构造结地区地热成因分析. 现代地质, 35(1): 209~219.

    • 孟文, 郭长宝, 张重远, 张永双, 陈群策. 2017. 青藏高原拉萨块体地应力测量及其意义. 地球物理学报, 60(6): 2159~2171.

    • 欧小强, 王奭, 李永亮, 刘志强, 郑宗溪, 吴剑. 2019. 拉林铁路板块缝合带隧道地应力分析. 吉林大学学报(地球科学版), 49(6): 1689~1697.

    • 潘桂棠, 任飞, 尹福光, 王立全, 王保弟, 王冬兵, 安显银, 唐渊, 刘函, 王启宇, 庞维华, 徐波. 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293~2304.

    • 彭建兵, 崔鹏, 庄建琦. 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377~2389.

    • 秦向辉, 陈群策, 赵星光, 张重远, 孙东生, 孟文, 丰成君, 王斌, 杨跃辉. 2020. 水压致裂地应力测量中系统柔度影响试验研究. 岩石力学与工程学报, 39(6): 1189~1202.

    • 任金卫, 沈军, 曹忠权, 汪一鹏. 2000. 西藏东南部嘉黎断裂新知. 地震地质, 22(4): 344~350.

    • 宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.

    • 孙玉军, 郭长宝, 吴中海, 范桃园, 李海龙. 2017. 数值模拟探讨青藏高原东部应力应变场及断裂活动性. 地球学报, 38(3): 385~392.

    • 谭成轩, 孙炜锋, 孙叶, 王连捷. 2006. 地应力测量及其地下工程应用的思考. 地质学报, 80(10): 1627~1632.

    • 谭成轩, 张鹏, 郑汉淮, 孙炜锋, 王继明, 孙叶. 2008. 雅砻江锦屏一级电站坝址区实测地应力与重大工程问题分析. 工程地质学报, 16(2): 162~168.

    • 谭成轩, 张鹏, 丰成君, 秦向辉, 孙炜锋, 陈群策, 吴满路. 2014. 探索首都区地区深孔地应力测量与实时监测及其在地震地质研究中应用. 地质学报, 88(8): 1436~1452.

    • 唐方头, 宋键, 曹忠权, 邓志辉, 王敏, 肖根如, 陈为涛. 2010. 最新GPS数据揭示的东构造周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119~2128.

    • 田镇, 杨志强, 王师迪. 2020. 喜马拉雅东构造结主要断裂地震矩亏损与危险性评估. 地震地质, 42(1): 33~49.

    • 涂继耀, 季建清, 钟大赉, 孙东霞, 周晶. 2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据. 地质力学学报, 27(4): 679~690.

    • 王成虎, 刘立鹏, 郭启良, 侯砚和. 2008. 地应力测量数据分析对工程稳定性控制设计的意义. 工程地质学报, 16(增): 377~381.

    • 王成虎, 郭啟良, 丁立丰, 刘立鹏. 2009. 工程区高地应力判据研究及实例分析. 岩土力学, 30(8): 2359~2364.

    • 王成虎, 高桂云, 杨树新, 姚瑞, 黄禄渊. 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242~2253.

    • 王艳华, 崔效锋, 胡幸平, 谢富仁. 2012. 基于原地应力测量数据的中国大陆地壳上部应力状态研究. 地球物理学报, 55(9): 3016~3027.

    • 吴啸龙, 向洋, 汤伏全. 2020. 基于GPS应变与震源机制解应力反演喜马拉雅构造带现今地壳形变特征. 地球物理学报, 63(8): 2924~2939.

    • 谢富仁, 陈群策, 崔效锋, 李宏, 杨树新, 陈连旺. 2003. 中国大陆地壳应力环境研究. 北京: 地质出版社.

    • 徐林生, 王兰生. 1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究. 岩土工程学报, 21(5): 569~572.

    • 许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463~1476.

    • 严健, 何川, 汪波, 汪波, 蒙伟, 吴枋胤. 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769~781.

    • 杨帆, 盛书中, 万永革, 王晓山, 刘兆才, 李瑶. 2019. 网格内不满足均匀性假设对引力场反演结果的影响——以喜马拉雅东构造结缉周边地区应力场研究为例. 地球物理学进展, 34(2): 479~488.

    • 杨树新, 姚瑞, 崔效锋, 陈群策, 黄禄渊. 2012. 中国大陆各活动地块、南北地震带实测应力特征分析. 地球物理学报, 55(12): 4207~4217.

    • 姚瑞, 杨树新, 谢富仁, 崔效锋, 陆远忠, 许兆义. 2017. 青藏高原及周缘地壳浅层构造应力场量值特征分析. 地球物理学报, 60(6): 2147~2158.

    • 张浩, 施刚, 巫虹, 邵磊, 王乾. 2020. 上海地区浅部地应力测量极其构造地质意义分析. 地质力学学报, 26(4): 583~594.

    • 张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D缉), 33(4): 373~383.

    • 张永双, 任三绍, 郭长宝, 姚鑫, 周能娟. 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763~775.

    • 张永双, 郭长宝, 李向全, 毕俊擘, 马剑飞, 刘峰. 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1~12.

    • 张玉玺. 2021. 色季拉山交通廊道现今地应力场特征研究. 工程地质学报, 29(2): 394~403.

    • 张重远, 杜世回, 何满朝, 秦向辉, 李彬, 陈兴强, 陈群策, 孟文, 黄勇. 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响. 岩石力学与工程学报, 41(5): 954~968.

    • 赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.

    • 郑来林, 金振民, 潘桂棠, 耿全如, 孙志民. 2004. 东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 743~751.

    • 钟山, 江权, 冯夏庭, 刘继光, 李邵军, 邱士利, 吴世勇. 2018. 锦屏深部地下实验室初始地应力测量实践. 岩土力学, 39(1): 356~366.

    • 中华人民共和国行业标准. 2017. TB 10003—2016 铁路隧道设计规范. 北京: 中国铁道出版社.