-
层控矽卡岩型矿床提供了我国重要的Cu-Fe-S-Au-Mo等资源(Mao Jingwen et al.,2011; Li Yang et al.,2018; Chen Ke et al.,2022),一直是矿床学研究的热点,代表性矿床包括长江中下游地区冬瓜山铜金矿床和新桥铜硫铁矿床以及三江特提斯成矿带羊拉铜矿床等。由于此类矽卡岩型矿体呈层状产出显示同生矿化的特征,又与侵入岩具空间联系,其矿床成因长期以来存在较大争议,包括喷流-沉积(路远发等,1999,2004; 潘家永等,2001; 王训诚等,2007)、岩浆-热液(Xiao Xin et al.,2021; Chen Ke et al.,2022)以及叠加成矿等多种模型(Xie Jiancheng et al.,2020; Li Wenchang et al.,2021)。
-
羊拉铜矿位于云南省德钦县羊拉乡境内,构造位置处于金沙江缝合带中段,夹持于羊拉断裂和金沙江断裂之间,是西南“三江”地区继普朗铜矿之后最大的印支期铜矿床(图1; Deng Jun et al.,2014; Zhu Jingjing et al.,2015)。自发现以来,多位学者从矿床地质特征、矿区花岗闪长岩成因、成矿时代等方面开展了详细的研究,并取得了丰硕的成果。普遍认为,矿区内花岗闪长岩、矽卡岩化蚀变与铜成矿之间存在紧密成因联系,因而该矿床为典型的矽卡岩型铜矿床(Zhu Jingjing et al.,2015; Meng Xuyang et al.,2016; 解世雄,2018)。然而,该矿床矿体和矽卡岩并不直接产于岩体与围岩的内、外接触带上,主要呈层状—似层状分布于岩体外围、碳酸盐岩地层和变质砂岩地层层间。据此,有学者提出该矿床可能存在海西期沉积喷流铜预富集过程(陈开旭等,2002; 魏君奇等,2004; 董涛,2009; Li Wenchang et al.,2021),或者该矿床属于沉积喷流型铜矿床,其中矽卡岩亦形成于沉积喷流过程(路远发等,1999,2004; 潘家永等,2001)。解决上述争议的关键是精确厘定矽卡岩的形成时代及成因机制。
-
图1 中国西南及东南亚主要大陆块体的分布及缝合线(a)和西南“三江”地区构造单元以及羊拉铜矿和其他铜金矿床的产出位置(b)(据Zhu Jingjing et al.,2015; 解世雄,2018)
-
Fig.1 Distributions of main continental blocks and sutures in Southeast Asia (a) , tectonic units and locations of Yangla Cu and other Cu-Au deposits in Sanjiang region, SW China (b) (after Zhu Jingjing et al., 2015; Xie Shixiong, 2018)
-
近年来,激光剥蚀-电感耦合-等离子体质谱(LA-ICP-MS)原位微区分析技术发展迅速,并已被广泛应用于各类矿床中矿物原位同位素年代学及元素地球化学分析,在精细限定成矿时代、示踪成矿物质来源、揭示矿床成因和演化方面显示出巨大应用前景(Dupuis et al.,2011; 熊风等,2015; Tian Zhendong et al.,2019)。本文利用LA-ICP-MS原位微区分析技术,① 对羊拉铜矿矽卡岩矿石中的热液石榴子石开展了原位U-Pb定年分析,以精确限定矽卡岩形成时代; ② 对矿石中的石榴子石、磁铁矿进行了原位微量元素分析,明确羊拉铜矿床为典型矽卡岩型铜矿床,且推测区内可能存在寻找W-Sn矿化的潜力。
-
1 矿床地质特征概况
-
我国西南“三江”成矿域位于青藏高原与华南陆块的结合部位,是特提斯-喜马拉雅成矿带的重要组成部分(Deng Jun et al.,2014; Zhu Jingjing et al.,2015; 李雨健等,2018; 边晓龙等,2020)。区内发育多条近南北向缝合带,自西向东依次为班公-怒江缝合带、金沙江缝合带和甘孜-理塘缝合带(图1)。金沙江缝合带位于中咱微陆块和昌都-思茅微陆块之间,是古特提斯分支洋盆(金沙江洋)俯冲闭合后的产物(莫宣学等,1993; Deng Jun et al.,2014; Wang Yuejun et al.,2018),其南北长约1000 km,东西宽约20~40 km(朱经经,2012)。
-
羊拉铜矿床处于金沙江缝合带中部,夹持于金沙江断裂和羊拉断裂之间(图2)。矿区出露的地层主要为泥盆系和石炭系大理岩、变质石英砂岩和玄武岩,赋矿地层主要为泥盆系变质石英砂岩和大理岩。矿区内岩浆活动以印支期花岗闪长岩(锆石206Pb/238U平均年龄为231.0±1.6 Ma; Zhu Jingjing et al.,2011)为主,由北向南主要分布有贝吾、里农、路农和加仁等侵入体。矿区包含贝吾、尼吕、江边、里农、路农、加仁、通吉格等7个矿段,其中以里农矿段铜矿化规模最大,品位为0.65%~2.22%,目前控制铜金属量约60万t,占羊拉铜矿铜资源总量的90%(朱经经,2012; Zhu Jingjing et al.,2015; 孟旭阳,2016)。里农矿段的主要矿体为2号和5号矿体(KT2和KT5; 图3),呈层状、似层状产出于花岗闪长岩外围、碳酸盐岩和变质砂岩地层的层间破碎带中(图3)。矿体总体倾向西,倾角20°~80°(Meng Xuyang et al.,2016; 边晓龙等,2020)。矿石以矽卡岩型为主,矿石矿物主要为黄铜矿,其次为斑铜矿、黄铁矿、磁铁矿、方铅矿、闪锌矿、辉钼矿等; 脉石矿物包括石英、方解石、石榴子石、透辉石、透闪石、阳起石、绿帘石及绿泥石等,其中黄铜矿常填隙于石榴子石晶间(Zhu Jingjing et al.,2015)。
-
2 样品采集及分析测试
-
本次研究样品采集自里农矿段3200 m中段KT2矿体,为矽卡岩型矿石。将采集的手标本磨制成光薄片后,通过详细的显微镜下观察,选择晶形较好、矿物包裹体较少的石榴子石开展原位LA-ICP-MS U-Pb同位素定年分析; 同时,选择表面平整、孔隙较少的石榴子石、磁铁矿,开展原位LA-ICP-MS微量元素成分分析(图4)。需要指出的是,由于羊拉铜矿石榴子石和磁铁矿形成世代相对单一(Zhu Jingjing et al.,2015),并且本文未涉及有关成矿流体演化的讨论,因而未对石榴子石和磁铁矿进行详细的世代划分。
-
图2 羊拉铜矿床地质图及矿体分布(据朱经经,2012; Li Bo et al.,2020)
-
Fig.2 Geological map and orebody distributions of Yangla copper deposit (after Zhu Jingjing, 2012; Li Bo et al., 2020)
-
图3 羊拉矿区里农矿段剖面图(据Zhu Jingjing et al.,2015)
-
Fig.3 Geological section of Linong ore zone at Yangla (after Zhu Jingjing et al., 2015)
-
高品位矿体KT2-1、KT2-2、KT4、KT5,平均品位1.03%; 低品位矿体KT2-3、KT3品位为0.76%~0.97%
-
High-grade orebodies KT2-1, KT2-2, KT4 and KT5 have average copper grade of 1.03%, with low-grade orebodies KT2-3 and KT3 of 0.76%~0.97% Cu
-
图4 羊拉铜矿石榴子石、磁铁矿和硫化物矿物组合镜下特征(反射光)
-
Fig.4 Mineral assemblages of garnet, magnetite, and Fe-Cu sulfides under microscope at Yangla (reflected light)
-
(a)—他形的黄铜矿、黄铁矿充填于半自形—他形粒状结构的石榴子石缝隙中;(b)—他形的黄铜矿、黄铁矿充填于半自形的磁铁矿之间; Cpy—黄铜矿; Grt—石榴子石; Mt—磁铁矿; Py—黄铁矿
-
(a) —anhedral chalcopyrite and pyrite fill the euhedral to anhedral-granular garnet gap; (b) —anhedral chalcopyrite and pyrite fill the subhedral magnetite gap; Cpy—chalcopyrite; Grt—garnet; Mt—magnetite; Py—pyrite
-
石榴子石U-Pb定年和石榴子石、磁铁矿LA-ICP-MS原位成分分析测试均在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。分析仪器为德国哥廷根Lamda Physik公司制造的193 nm ArF准分子激光剥蚀系统,型号为GeoLasPro。石榴子石定年使用的电感耦合等离子体质谱由安捷伦公司制造,型号为Agilent 7900x。激光剥蚀束斑直径为32 μm,能量密度为6 J/cm2,频率为5 Hz。每次分析先进行5 s预剥蚀,随后进行60 s的样本数据采集和大约30 s的背景采集,具体分析流程参照Deng Xiaodong et al.(2017)。年龄计算采用标准锆石91500为外标,校正仪器质量歧视与元素分馏; 以QC为质控样,监控数据质量。原始测试数据经过ICPMSDataCal软件离线处理完成(Liu Yongsheng et al.,2010),采用Isoplot程序计算年龄和制图。
-
石榴子石和磁铁矿LA-ICP-MS微区原位分析使用的电感耦合等离子体质谱为Agilent 7700x,ArF准分子激光发生器产生193 nm深紫色外光束,经过均匀化光路聚焦于样品表面。测试过程中采用He作为载气,Ar作为补偿气,通过单点剥蚀模式进行分析; 激光束斑直径为32 μm,频率为8 Hz,激光能量70 mJ/cm2,具体分析条件及流程详见Liu Yongsheng et al.(2008)。测试完成后,采用软件ICPMSDataCal E9.0对样品的原始数据进行后期处理。测试元素包括Sc、V、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Ag、Gd、In、Sn、Ba、Hf、Ta、W、Bi、Pb、Th、U等,分析精度一般优于10%。
-
3 分析结果
-
3.1 石榴子石U-Pb定年结果
-
羊拉铜矿床石榴子石原位LA-ICP-MS U-Pb同位素测试结果列于表1。石榴子石中普通Pb含量为0.11×10-6~1.16×10-6,平均值为0.28×10-6; Th含量为0.04×10-6~1.43×10-6,平均值为0.26×10-6; U含量为1.18×10-6~6.69×10-6,平均值为3.09×10-6。由于U和普通Pb的含量变化范围相对较小,为得到较为准确的年龄,采用Tera-Wasserburg图解降低普通铅对结果的影响(张小波等,2020; 王潇逸等,2022)该图解显示交点年龄为231.0±5.3 Ma(2σ,n=32,MSWD=2.1; 图5)。
-
3.2 石榴子石微量元素组成
-
27 个石榴子石原位LA-ICP-MS主量和微量元素测试数据见表2。由于Cu很难进入石榴子石晶格,我们将Cu含量高于10×10-6视为硫化物包裹体混染,并将该数据剔除。剩余数据均表现为高铁(TFeO=26.6%~30.5%)和CaO(34.3%~36.9%)含量以及极低的Al2O3含量(0.010%~0.22%),表明其主要为钙铁榴石,钙铝榴石组分占比非常低。这些石榴子石具有很高的Sn(485×10-6~7433×10-6,平均值为3931×10-6)和W(0.20×10-6~736×10-6,平均值为156×10-6)含量(表2)。其稀土元素总量较低(∑REE=6.22×10-6~48.43×10-6),球粒陨石标准化稀土元素配分曲线(图6)显示其均富集轻稀土而亏损重稀土(LREE/HREE=1.42×10-6~58.54×10-6)且具有弱—显著的Eu正异常(δEu=0.62×10-6~13.66×10-6,平均值为2.78×10-6 :表2)。
-
图5 羊拉铜矿石榴子石U-Pb年龄Tera-Wasserburg图解和透射光照片(白色圆圈代表激光打点位置)
-
Fig.5 Tera-Wasserburg diagram of U-Pb age and transmitted light photograph of garnet at Yangla (white circles denote the analysis spots)
-
图6 羊拉铜矿床石榴子石稀土元素配分模式图(标准化值据Sun et al.,1989)
-
Fig.6 Rare earth element distribution pattern of garnet in Yangla copper deposit (normalized value after Sun et al., 1989)
-
灰色区域表示贝吾、里农、路农花岗岩体稀土元素球粒陨石标准化分布特征,数据来源于Zhu Jingjing et al.,2011
-
Gray area indicates chondrite-normalized rare earth element distribution patterns of the Beiwu, Linong and Lunong granitoids, data source from Zhu Jingjing et al., 2011
-
续表2
-
注:“—”表示元素含量低于检测限; δEu=(Eu/EuN)/[(Sm/SmN)×(Gd/GdN)]0.5,δCe=(Ce/CeN)/[(La/LaN)×(Pr/PrN)]0.5; 球粒陨石标准化值据Sun et al.(1989)。
-
3.3 磁铁矿微量元素组成
-
磁铁矿原位LA-ICP-MS微量元素分析结果列于表3。主要包括Zn、Sn、W等33种微量元素(含量小于0.1%)。磁铁矿中Cu含量一般较低,若含量高于100×10-6可能反映硫化物包裹体混染(Nadoll et al.,2014),故将该类数据剔除。剩余样品的Zn含量为543×10-6~2354×10-6,平均值为1509×10-6; Sn含量为115×10-6~778×10-6,平均值为405×10-6; W含量为0.03×10-6~10.7×10-6,平均值0.75×10-6。
-
续表3
-
注:“—”表示元素含量低于检测限。
-
4 讨论
-
4.1 矽卡岩形成时代与矿床成因类型
-
石榴子石U-Pb定年结果显示其形成于231.0±5.3 Ma,代表了羊拉矿区矽卡岩的形成时代。这与矿区辉钼矿Re-Os同位素定年结果(~232±1.5 Ma; Zhu Jingjing et al.,2015)和花岗闪长岩年龄高度一致(231.0±1.6 Ma; Zhu Jingjing et al.,2011; 孟旭阳,2016)。由于辉钼矿呈星散状赋存于矽卡岩矿石中且与黄铜矿紧密共生,因而辉钼矿Re-Os同位素年龄可代表铜矿化的时代(Zhu Jingjing et al.,2015)。矽卡岩形成与矿区岩体和铜矿化同期,表明它们可能存在成因联系,即矽卡岩和铜矿化可能形成于岩浆热液交代过程。与之相反,若羊拉矿区矽卡岩为沉积喷流成因,其形成时代应该与赋矿地层近同期(Schardt et al.,2009; 朱经经,2012),即泥盆纪(图2)。综上所述,年代学研究结果支持羊拉铜矿为岩浆热液交代矽卡岩型铜矿床。
-
近年来,随着激光剥蚀-电感耦合-等离子质谱(LA-ICP-MS)测试技术在磁铁矿微量元素组成方面的广泛应用,发现各类矿床中磁铁矿微量元素组成显著不同,可用于指示矿床的成因类型(Dupuis,2011; Nadoll et al.,2014; Knipping et al.,2015)。羊拉铜矿磁铁矿中含有多种元素,其中Mg(1205×10-6~5005×10-6)、Mn(1124×10-6~6114×10-6)、Zn(543×10-6~2354×10-6)的含量较高,这一特征与矽卡岩型磁铁矿相似(Nadoll et al.,2014)。其较低的Ti+V和Ni/(Cr+Mn)以及较高的Ca+Al+Mn,亦与全球典型矽卡岩型矿床磁铁矿特征一致(图7a、b; Dupuis et al.,2011; 陈应华等,2018)。控制磁铁矿中微量元素含量的因素很多,争议也很大(Dupuis et al.,2011; Nadoll et al.,2014)。磁铁矿的通用矿物式是AB2O4,A代表Fe2+、Mg2+、Mn2+、Zn2+、Ni2+等二价的金属离子,B代表了Al3+、Fe3+、V3+、Ga3+、Cr3+等三价金属离子,其他阳离子可以通过离子替换的形式进入到磁铁矿当中。以这种方式进入磁铁矿时,主要受到离子半径和电荷平衡的控制(van Baalen,1993; Nadoll et al.,2014)。初步的研究表明,高温条件下Ti、V可能更易于进入磁铁矿晶格,矽卡岩磁铁矿较低的Ti+V可能受控于其与岩浆磁铁矿相比具较低的形成温度(Nadoll et al.,2014); 较高的Ca、Mn、Al可能受控于流体与碳酸盐岩地层的相互作用,因为碳酸盐岩往往富集这些元素(Meinert et al.,2005)。此外,Mg、Mn、Zn的含量与Fe呈现明显的负相关关系(图8a~c),表明它们可能以类质同象的方式替换Fe进入磁铁矿中(Nadoll et al.,2012)。
-
前人对羊拉铜矿流体包裹体研究发现,早期成矿流体具有高温(508~600℃)特征,高盐度(41.6%~53.7%NaCleq)和富气相流体包裹体共存,指示成矿流体发生过流体沸腾(陈思尧等,2013a; Zhu Jingjing et al.,2015; 杜丽娟,2017),表明初始成矿流体来源于岩浆; S、Pb同位素示踪结果同样显示成矿物质主要来源于矿区花岗闪长岩和围岩地层的混合(Yang Xi'an et al.,2012; 陈思尧等,2013b; Zhu Jingjing et al.,2015; 杜丽娟,2017)。结合上述石榴子石形成时代和磁铁矿的成因判别结果,一致表明羊拉铜矿为典型矽卡岩型铜矿床。
-
图7 羊拉铜矿磁铁矿中(Ti+V)-(Ca+Al+Mn)(a)和(Ti+V)-Ni/(Cr+Mn)(b)相关图(底图据Dupuis et al.,2011)
-
Fig.7 (Ti+V) - (Ca+Al+Mn) (a) and (Ti+V) -Ni/ (Cr+Mn) (b) of magnetite at the Yangla Cu deposit (after Dupuis et al., 2011)
-
图8 羊拉铜矿磁铁矿Fe与微量元素关系图(a~c)及不同矽卡岩型矿床磁铁矿中Sn含量对比图(d)
-
Fig.8 Plots of Fe and trace elements of magnetite at the Yangla Cu deposit (a~c) and Sn contents in magnetite from various skarn deposits (d)
-
数据来源:红牛-红山矽卡岩型铜矿床,Peng Huijuan et al.,2021; 凤凰山矽卡岩型铜-铁-金矿床,Huang Xiaowen et al.,2016; 铁山矽卡岩型铁(铜)矿床,Hu Xia et al.,2017
-
Data source: Hongniu-Hongshan Cuskarn deposit, Peng Huijuan et al., 2021; Fenghuangshan Cu-Fe-Au skarn deposit, Huang Xiaowen et al., 2016; Tieshan Fe (Cu) skarn deposit, Hu Xia et al., 2017
-
4.2 石榴子石微量元素组成及其意义
-
4.2.1 石榴子石稀土元素组成及其控制因素
-
研究表明,石榴子石中的REE的分配会受到物质来源、流体物理化学性质、矿物晶体化学结构以及矿物内部静电作用的共同影响,REE通常有以下4种方式进入石榴子石:表面吸附、吸收、类质同象替换、固溶体间填隙物(McIntire,1963; Smith et al.,2004)。石榴子石的晶体化学式一般为X3Y2Z3O12,其中X为占据八面体配位的二价阳离子(Ca2+、Mg2+、Mn2+、Fe2+),受离子半径和电荷的影响,稀土元素REE进入石榴子石内部主要通过替换八面体配位上X2+的形式(Gaspar et al.,2008; Fei Xianghui et al.,2019; Wen Guang et al.,2020; 边晓龙等,2020)。已有研究表明,石榴子石中的稀土配分模式受石榴子石成分影响较大。一般而言,钙铝榴石富集HREE而亏损LREE,而钙铁榴石则相对富集LREE(Gaspar et al.,2008; Yu Fan et al.,2022)。羊拉铜矿的石榴子石稀土元素表现出右倾型的配分模式(图6),这可能主要受其以钙铁榴石为主的组分控制。然而,稀土元素与Ca2+、Mg2+、Fe2+的含量没有明显线性关系(图9a~c),指示REE在石榴子石中的分配可能不完全受到石榴子石晶体化学结构的制约,还可能受到流体成分和矿物内部静电作用控制。羊拉石榴子石发育震荡环带且其中流体包裹体较多(Zhu Jingjing et al.,2015; Xie Shixiong et al.,2022),表明其生长速度较快。在这种条件下,稀土元素在热液流体和石榴子石之间难以完全达到平衡,吸附作用会起到重要作用。通过与矿区花岗岩REE配分模式对比,发现两者具有相似的配分模式(图6,Zhu Jingjing et al.,2011)。这说明在吸附作用之下,石榴子石REE配分模式可能继承了流体的REE配分模式。综上所述,羊拉石榴子石REE组分受到了石榴子石化学组成、流体成分和吸附作用的共同影响。
-
4.2.2 石榴子石形成环境
-
石榴子石的微量元素组成可以指示其形成时流体的物理化学条件(Meinert et al.,2005; 赵盼捞等,2018; 边晓龙等,2019)。变价元素特征表明羊拉铜矿石榴子石可能形成于相对氧化的环境:① 石榴子石以钙铁榴石为主,反映流体中铁可能主要以高价态Fe3+形成存在(Meinert et al.,2005); ② 与Eu2+相比,Eu3+更容易替换石榴子石中的Ca2+,同时Eu3+离子半径更小,也更容易被吸附; 鉴于氧化条件下Eu3+更稳定,因而羊拉铜矿石榴子石正Eu异常可能与流体较氧化有关(Gaspar et al.,2008; Yu Fan et al.,2022); ③ 氧化条件下U6+比U4+更稳定,但U4+更容易进入石榴子石晶格,因而羊拉铜矿石榴子石较低的U含量(平均值为0.95×10-6)指示其较氧化的形成环境(表2; 赵盼捞等,2018)。这种较高的流体氧逸度与典型矽卡岩型铜矿床特征高度一致(Meinert et al.,2005; Chang Zhaoshan et al.,2019)。
-
图9 羊拉铜矿石榴子石微量元素关系图
-
Fig.9 Relationship of trace elements in garnet at the Yangla Cu deposit
-
扩散和渗滤交代作用都能够形成矽卡岩,在接触交代成因的矿床中,水/岩比值(W/R)影响着交代方式:当水/岩比值较低时,在封闭体系中以扩散作用为主,会产生pH接近中性的流体(Park et al.,2017),此时矿物结晶速度较慢; 相反,当水/岩比值较高时,在开放体系中以渗滤交代作用为主,会产生偏酸性、氯络合物较多的流体,此时矿物结晶速度较快,金属元素以氯的络合物形式迁移(Bau,1991; Smith et al.,2004; Gaspar et al.,2008)。再者,当流体活动强烈时,流体的酸碱度会显著影响稀土元素的分馏:在近中性条件石榴子石的稀土配分模式是轻稀土亏损、重稀土富集,负的Eu异常或异常不明显; 相反,在弱酸性条件下,稀土元素模式更多地受Cl离子的控制,Cl离子的存在可以增强除REE3+外的可溶Eu2+(EuCl2-4为主)离子的稳定性,因而流体中高的Cl含量会使Eu2+在流体中的含量升高,从而致使石榴子石具有明显的正Eu异常(Bau,1991; Zhang Lejun et al.,2017; Fu Yu et al.,2018; Xie Shixiong et al.,2022)。羊拉铜矿石榴子石发育大量流体包裹体、LREE/HREE均大于1(图9d)和显著的Eu正异常,一致表明石榴子石为弱酸性、富Cl流体中快速生长而形成,且热液交代以高水/岩比条件下的渗滤作用为主。
-
4.3 对找矿勘查的启示
-
一般而言,W、Sn在石榴子石和磁铁矿中并不富集(Park et al.,2017; Fei Xianghui et al.,2019),但在氧逸度较高的条件下,W6+(0.068 nm)、Sn4+(0.071 nm)与Fe3+(0.065 nm)的半径相似,因而可以通过替换八面体配位Y位点上的阳离子的方式进入石榴子石晶格。Sn4+可通过替换Ti4+的方式进入到磁铁矿中(Chang Zhaoshan et al.,2019)。羊拉石榴子石含有较高的Sn(485×10-6~7433×10-6,平均值为3931×10-6)和W(0.20×10-6~736×10-6,平均值为156×10-6)含量,这与其形成于较氧化的环境相吻合。然而,由于上述Sn-W含量显著高于国内外其他矽卡岩型铜矿床,却与含钨、钨-锡或钨-铜矽卡岩型矿床相似,暗示氧化还原条件不足以充分解释石榴子石富W-Sn的现象(图10a、b)。羊拉磁铁矿中的Sn(115×10-6~778×10-6,平均值为405×10-6)含量同样显著高于其他矽卡岩型铜、铁矿床(图8d)。这表明,在均为矽卡岩型铜矿床故成矿流体均较氧化的条件下,羊拉铜矿床成矿流体可能具有更高的W-Sn含量,初步显示区内(深部?)可能存在寻找W-Sn矿化的潜力。
-
图10 羊拉铜矿石榴子石Sn-U(a)、U-W(b)图解(底图据Tian Zhendong et al.,2017; Yu Fan et al.,2022)
-
Fig.10 Sn-U (a) , U-W (b) diagrams of garnet at the Yangla Cu deposit (reference data after Tian Zhendong et al., 2017; Yu Fan et al., 2022)
-
当然,W-Sn矿化与花岗岩的分异程度密切相关。W、Sn属于强不相容元素,在花岗岩浆分离结晶过程中倾向于在残余熔体中富集并最终分异至流体中(Lehmann,2021),因而高的岩浆分异程度利于W-Sn矿化。羊拉铜矿矿区发育高分异的花岗斑岩(Rb/Sr比值约1~4; 图2; Li Bo et al.,2020),但是否在该花岗斑岩附近最具W-Sn矿化潜力,需要进一步研究和验证。
-
5 结论
-
(1)羊拉铜矿床石榴子石形成时代为231.0±5.3 Ma,与矿区花岗闪长岩形成时代和辉钼矿Re-Os年龄在误差范围内一致,表明矽卡岩化、Cu成矿作用和花岗闪长岩体形成时代一致; 结合石榴子石、磁铁矿微量元素组成与全球矽卡岩型矿床相似的地球化学特征,进一步证实羊拉铜矿床为典型的矽卡岩型矿床。
-
(2)石榴子石稀土元素轻稀土富集、重稀土亏损的配分模式可能受晶体化学和吸附作用共同控制; 结合石榴子石以钙铁榴石组分为主、具显著Eu正异常和较低的U含量等特征综合表明,羊拉铜矿石榴子石形成于弱酸性、富Cl和较氧化的环境,且热液交代以高水/岩比条件下的渗滤作用为主。
-
(3)与国内外矽卡岩型铜矿床相比,羊拉铜矿床石榴子石有较高W、Sn含量、磁铁矿也具有较高Sn含量,推测羊拉矿区内具有寻找W、Sn矿化的潜力。
-
致谢:室内石榴子石U-Pb定年得到中科院地球化学研究所唐燕文高级工程师的指导,论文在撰写过程中得到中科院地球化学研究所潘力川副研究员、杨宗永博士的热情帮助,在此表示衷心感谢。
-
参考文献
-
Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid rock interaction and the significance of the oxidation-state of Europium. Chemical Geology, 93(3~4): 219~230.
-
Bian Xiaolong, Zhang Jing, Wang Jialin, Liu Chunfa, Yu Haijun. 2019. In situ analysis of garnets from the Hongshan skarn copper deposit in Northwest Yunnan Province and its geological implications. Acta Petrologica Sinica, 35(5): 1463~1477 (in Chinese with English abstract).
-
Bian Xiaolong, Zhang Jing, Wang Xiaoyi, Yu Haijun. 2020. Mineralogical and geochemical characteristics of the Lunong intrusion from the Yangla ore district in Northwest Yunnan Province and their geological implications. Acta Petrologica Sinica, 36(5): 1354~1368 (in Chinese with English abstract).
-
Chen Kaixu, Lu Yuanfa, Wei Junqi, Dong Fangliu, Fan Yuhua. 2002. Geologicalsettings and mutiple mineralization of Yangla copper deposit, northwestern Yunnan. Mineral Deposits, 21(S1): 361~364 (in Chinese with English abstract).
-
Chen Ke, Shao Yongjun, Zhang Junke, Zhang Yu, Tan Huajie, Zhang Yuce, Liu Zhongfa. 2022. Garnet U-Pb geochronology and geochemistry reveal deposit types and fluid evolution: an example from the Dongguashan Cu-Au deposit, eastern China. Ore Geology Reviews, 145: 104883.
-
Chen Siyao, Gu Xuexiang, Cheng Wenbin, Zheng Luo, Han Siyu, Peng Yiwei. 2013a. Characteristics of ore-forming fluid and mineralization process of the Yangla copper deposit, Yunnan. Earth Science Frontiers, 20(1): 82~91 (in Chinese with English abstract).
-
Chen Siyao, Gu Xuexiang, Cheng Wenbin, Zhang Yongmei, Zheng Luo, Peng Yiwei, Liu Ruiping. 2013b. Characteristics of stable isotopic compositions and its geological significances of the Yangla copper deposit, northwestern Yunnan Province. Acta Petrologica Sinica, 29(4): 1290~1300 (in Chinese with English abstract).
-
Chen Yinghua, Lan Tingguang, Wang Hong, Tang Yanwen, Dai Zhihui. 2018. LA-ICP-MS trace element characteristics of magnetite from the Zhangjiawa iron deposit, Laiwu and constraints on metallogenic processes. Earth Science Frontiers, 25(4): 32~49 (in Chinese with English abstract).
-
Chang Zhaoshan, Shu Qihai, Meinert L D. 2019. Skarndeposits of China. Mineral Deposits of China. Economic Geology (SEG Special Publication v. 22).
-
Deng Jun, Wang Qingfei, Li Gongjian, Li Chusi, Wang Changming. 2014. Tethystectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419~437.
-
Deng Xiaodong, Li Jianwei, Luo Tao, Wang Hongqiang. 2017. Datingmagmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71.
-
Dong Tao. 2009. Geochemical characteristics and genesis of the Yangla copper deposit in Deqin County. Master dissertation of Kunming University of Science and Technology, 1~64 (in Chinese with English abstract).
-
Du Lijuan. 2017. Hydrothermal evolution and metallogenic mechanism of Yanglacopper deposit in northwestern Yunnan Province. Doctoral dissertation of Graduate School of Chinese Academy of Sciences, 1~165 (in Chinese with English abstract).
-
Dupuis C, Beaudoin G. 2011. Discriminantdiagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319~335.
-
Fei Xianghui, Zhang Zhaochong, Cheng Zhiguo, Santosh M. 2019. Factorscontrolling the crystal morphology and chemistry of garnet in skarn deposits: a case study from the Cuihongshan polymetallic deposit, Lesser Xing'an Range, NE China. American Mineralogist, 104(10): 1455~1468.
-
Fu Yu, Sun Xiaoming, Li Dengfeng, Lin Hai. 2018. U-Pb geochronology and geochemistry of U-rich garnet from the giant Beiya gold-polymetallic deposit in SW China: constraints on skarn mineralization process. Minerals, 8(4): 128.
-
Gaspar M, Knaack C, Meinert L D, Moretti R. 2008. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et Cosmochimica Acta, 72(1): 185~205.
-
Hu Xia, Chen Huayong, Zhao Liandang, Han jinsheng, Xia Xiaoping. 2017. Magnetite geochemistry of the Longqiao and Tieshan Fe-(Cu) deposits in the Middle-Lower Yangtze River belt: implications for deposit type and ore genesis. Ore Geology Reviews, 89: 822~835.
-
Huang Xiaowen, Gao Jianfeng, Qi Liang, Meng Yumiao, Wang Yichang, Dai Zhihui. 2016. In-situ LA-ICP-MS trace elements analysis of magnetite: the Fenghuangshan Cu-Fe-Au deposit, Tongling, eastern China. Ore Geology Reviews, 72: 746~759.
-
Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Waelle M, Heinrich C A, Holtz F, Munizaga R. 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171: 15~38.
-
Lehmann B. 2021. Formation of tin ore deposits: a reassessment. Lithos, 402~403: 105756.
-
Li Bo, Wang Xinfu, Du Lijuan, Xiang Zuopeng, Tang Guo, Huang Zhilong. 2020. Zircon U-Pb ages and geochemistry of granite porphyries in the Yangla Cu deposit, SW China: constraints on petrogenesis and tectonic evolution of the Jinshajiang suture belt. Geofluids, 2020: 8852277.
-
Li Yang, Selby D, Li Xianhua, Ottley C J. 2018. Multisourced metals enriched by magmatic-hydrothermal fluids in Stratabound deposits of the Middle-Lower Yangtze River metallogenic belt, China. Geology, 46(5): 391~394.
-
Li Yujian, Zhu Jun, YinGuanghou, Yu Haijun, Liu Dongyue. 2018. Deposite genesis and prospecting direction of the Yangla copper deposit in northwestern Yunnan Province. Nonferrous Metals (Mining), 70(1): 35~39 (in Chinese with English abstract).
-
Li Wenchang, Pan Guitang, Zhang Xiangfei, Wang Liquan, Zhou Jiaxi. 2021. Tectonic evolution and multi-episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau. Journal of Asian Earth Sciences, 221: 104932.
-
Liu Yongsheng, Hu Zhaochu, Gao Shan, Guenther Detlef, Xu Jaun, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental andoceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1~2): 537~571.
-
Lu Yuanfa, Chen Kaixu, Zhan Mingguo. 1999. Geochemical evidence of exhalative-sedimentary ore-bearing skarns in Yangla copper mineralization concentrated area, Deqin County, northwestern Yunnan Province. Earth Science, (3): 83~88 (in Chinese with English abstract).
-
Lu Yuanfa, Chen Kaixu, Huang Huilan. 2004. Fluid inclusions of verious types of copper deposits in Yangla region, Yunnan Province. Geological Science and Technology Information, (2): 13~20 (in Chinese with English abstract).
-
Mao Jingwen, Xie Guiqing, Duan Chao, Pirajno F, Ishiyama D, Chen Yuchuan. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River valley, eastern China. Ore Geology Reviews, 43(1): 294~314.
-
Mcintire W L. 1963. Traceelement partition coefficients—a review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27(12): 1209~1264.
-
Meinert L D, Dipple G M, Nicolescu S. 2005. Worldskarn deposits. Economic Geology 100th Anniversary, 100: 299~336.
-
Meng Xuyang. 2016. The petrogenesis of the skarn and the magmatic origin in the Yangla copper deposit area along Jinshajiang belt, western Yunnan Province. Master dissertation of China University of Geosciences (Beijing), 1~102 (in Chinese with English abstract).
-
Meng Xuyang, Mao Jingwen, Zhang Changqing, Zhangc Dongyang, Kong Zhigang, Jia Fudong. 2016. Thetiming, origin and T-F(O2) crystallization conditions of long-lived magmatism at the Yangla copper deposit, Sanjiang Tethyan orogenic belt: implications for post-collisional magmatic-hydrothermal ore formation. Gondwana Research, 40: 211~229.
-
Mo Xuanxue, Lu Fengxiang, Shen Shangyue, Zhu Qinwen, Hou Zengqian, Yang Kaihui, Deng Jinfu, Liu Xiangpin, He Changxiang, Lin Peiying, Zhang Baomin, Tai Daoqian, Chen Meihua, Hu Xiangsheng, Ye Song, Xue Yongxi, Tan Jin, Wei Qirong, Fan Li. 1993. Sanjiang Tethys Volcanism and Mineralization. Beijing: Geological Publishing House, 1~267 (in Chinese with English abstract).
-
Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews, 61: 1~32.
-
Nadoll P, Mauk J L, Hayes T S, Koenig A E, Box S E. 2012. Geochemistry ofmagnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic belt supergroup, United States. Economic Geology, 107(6): 1275~1292.
-
Pan Jiayong, Zhang Qian, Ma Dongsheng, Li Chaoyang. 2001. Characteristics of siliceous rocks and their relationship with mineralization in Yangla copper mine area, western Yunnan. Chinese Science: Series D, 31(1): 10~16 (in Chinese with English abstract).
-
Park C, Choi W, Kim H, Park M H, Kang I M, Lee H S, Song Y. 2017. Oscillatoryzoning in skarn garnet: implications for tungsten ore exploration. Ore Geology Reviews, 89: 1006~1018.
-
Peng Huijuan, Hou Lin, Sun Ce, Zou Hao, Wang Tianrui, Ma Zhizhong. 2021. Geochemistry of magnetite from the Hongniu-Hongshan Cu skarn deposit in Yunnan Province, SW China. Ore Geology Reviews, 136: 104237.
-
Schardt C, Large R R. 2009. New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies. Ore Geology Reviews, 35(3): 333~351.
-
Smith M P, Henderson P, Jeffries T E R, Long J, Williams C T. 2004. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. Journal of Petrology, 45: 457~484.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
-
Tian Zhendong, Leng Chengbiao, Zhang Xingchun, Zafar Tehseen, Zhang Lejun, Hong Wei, Lai Chunkit. 2019. Chemical composition, genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China. Ore Geology Reviews, 112: 103016.
-
Van Baalen M R. 1993. Titanium mobility in metamorphic systems: a review. Chemical Geology, 110(1~3): 233~249.
-
Wang Xiaoyi, Zhang Jing, Bian Xiaolong, Tong Zida, Li Dengfeng. 2022. LA-ICP-MS in-situ U-Pb dating and composition analyzing on the garnets from Macchangqing Cu-Mo deposit in Yunnan Province. Acta Petrologica Sinica, 38(1): 124~142 (in Chinese with English abstract).
-
Wang Xuncheng, Liu Lianggen, Guo Xiangyan, Zhou Yucai, Wang Cisong. 2007. Regional sedex massive sulfide ore deposit. Geology of Anhui, 15(2): 95~97 (in Chinese with English abstract).
-
Wang Yuejun, Qian Xin, Cawood P A, Liu Huichuan, Feng Qinglai, Zhao Guochun, Zhang Yanhua, He Huiying, Zhang Peizhen. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195~230.
-
Wei Junqi, Chen Kaixu. 2004. Copper metallogenic series in Yangla area, Yunnan Province. Geological Science and Technology Information, 23(2): 21~21 (in Chinese with English abstract).
-
Wen Guang, Li Jianwei, Hofstra A H, Koenig A E, Cui Bingzhi. 2020. Textures andcompositions of clinopyroxene in an Fe skarn with implications for ore-fluid evolution and mineral-fluid REE partitioning. Geochimica et Cosmochimica Acta, 290: 104~123.
-
Xiao Xin, Zhou Taofa, White N C, Zhang Lejun, Fan Yu, Chen Xuefeng. 2021. Multiple generations of titanites and their geochemical characteristics record the magmatic-hydrothermal processes and timing of the Dongguashan porphyry-skarn Cu-Au system, Tongling district, eastern China. Mineralium Deposita, 56(2): 363~380.
-
Xie Jiancheng, Ge Likai, Fang De, Li Quanzhong, Qian Lin, Li Zhensheng, Yan Jun, Sun Weidong. 2020. Geochemistry of pyrite from stratabound massive sulfide deposits, Tongling region, China: implication for their genesis. Ore Geology Reviews, 120: 103430.
-
Xie Shixiong. 2018. Skarn mineralogy characteristics and metallogenic mechanism of the Yangla deposit in northwestern Yunnan, China. Master dissertation of China University of Geosciences (Beijing), 1~86 (in Chinese with English abstract).
-
Xie Shixiong, Yang Liqiang, He Wenyan, Gao Xue. 2022. Garnet trace element geochemistry of Yangla Cu deposit in NW Yunnan, China: implications for multistage ore-fluid activities in skarn system. Ore Geology Reviews, 141: 104662.
-
Xiong Feng, Tao Yan, Deng Xianze. 2015. Geochemical characteristics of trace elements in magnetite from Funing Donghairon deposit, Yunnan Province. Journal of Minerals, 35(S1): 172~173 (in Chinese with English abstract).
-
Yang Xi'an, Liu Jiajun, Cao Ye, Han Siyu, Gao Bingyu, Wang Huan, Liu Yuedong. 2012. Geochemistry and S, Pb isotope of the Yangla copper deposit, western Yunnan, China: implication for ore genesis. Lithos, 144: 231~240.
-
Yu Fan, Shu Qihai, Zeng Qingwen, Ma Xinghua, Niu Xudong, Ma Shaolong, Li Yixin, Xing Kai. 2022. Chemical composition of garnet from the Xintianling skarn W deposite in southern Hunan and its geological significance. Acta Petrologica Sinica, 38(1): 78~90.
-
Zhang Lejun, Zhou Taofa. 2017. Minerals in-situ LA-ICP-MS trace elements study and the applications in ore deposit genesis and exploration. Acta Petrologica Sinica, 33(11): 3437~3452.
-
Zhang Xiaobo, Zhang Shitao, Chen Huayong, Liu Jun'an, Cheng Jiamin, Chu Gaobin, Li Shasha. 2020. Application of garnet U-Pb dating in the skarn deposit: a case study of Gaoyishan Wo (-Cu) deposit in Southeast Hubei Province. Earth Science, 45(3): 856~868 (in Chinese with English abstract).
-
Zhao Panlao, Yuan Shunda, Yuan Yabin. 2018. Geochemical characteristics of garnet in the Huangshaping polymetallic deposit, southern Hunan: implications for the genesis of Cu and W-Sn mineralization. Acta Petrologica Sinica, 34(9): 2581~2597 (in Chinese with English abstract).
-
Zhu Jingjing. 2012. The geological setting and metallogenesis of the Yangla copper deposit, SW Yunnan. Doctoral dissertation of Graduate School of Chinese Academy of Sciences, 1~179 (in Chinese with English abstract).
-
Zhu Jingjing, Hu Ruizhong, Bi Xianwu, Zhong Hong, Chen Heng. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3~4): 248~264.
-
Zhu Jingjing, Hu Ruizhong, Righards Jeremy P, Bi Xianwu, Zhong Hong. 2015. Genesis and magmatic-hydrothermal evolution of the Yangla skarn Cu deposit, Southwest China. Economic Geology, 110(3): 631~652.
-
边晓龙, 张静, 王佳琳, 刘春发, 余海军. 2019. 滇西北红山矽卡岩型铜矿床石榴子石原位成分及其地质意义. 岩石学报, 35(5): 1463~1477.
-
边晓龙, 张静, 王潇逸, 余海军. 2020. 滇西北羊拉铜矿区路农岩体矿物学、地球化学特征及其地质意义. 岩石学报, 36(5): 1354~1368.
-
陈开旭, 路远发, 魏君奇, 董芳浏, 范玉华. 2002. 滇西北羊拉铜矿区成矿地质背景及多期成矿作用. 矿床地质, 21(S1): 361~364.
-
陈思尧, 顾雪祥, 程文斌, 郑硌, 韩思宇, 彭义伟. 2013a. 云南羊拉铜矿床成矿流体特征及成矿过程. 地学前缘, 20(1): 82~91.
-
陈思尧, 顾雪祥, 程文斌, 章永梅, 郑硌, 彭义伟, 刘瑞萍. 2013b. 滇西北羊拉铜矿床稳定同位素特征及其地质意义. 岩石学报, 29(4): 1290~1300.
-
陈应华, 蓝廷广, 王洪, 唐燕文, 戴智慧. 2018. 莱芜张家洼铁矿磁铁矿LA-ICP-MS微量元素特征及其对成矿过程的制约. 地学前缘, 25(4): 32~49.
-
董涛. 2009. 德钦县羊拉铜矿床地球化学特征及成因研究. 昆明理工大学硕士学位论文, 1~64.
-
杜丽娟. 2017. 滇西北羊拉铜矿床热液体系演化与成矿机制研究. 中国科学院研究生院博士学位论文, 1~165.
-
李雨健, 朱俊, 尹光侯, 余海军, 刘月东. 2018. 滇西北羊拉铜矿矿床成因及找矿方向. 有色金属(矿山部分), 70(1): 35~39.
-
路远发, 陈开旭, 战明国. 1999. 羊拉地区含矿矽卡岩成因的地球化学证据. 地球科学, (3): 83~88.
-
路远发, 陈开旭, 黄惠兰. 2004. 云南羊拉地区不同类型铜矿床流体包裹体研究. 地质科技情报, (2): 13~20.
-
孟旭阳. 2016. 滇西地区羊拉铜矿矽卡岩成因与岩浆来源. 中国地质大学(北京)硕士学位论文, 1~102.
-
莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉, 邓晋福, 刘祥品, 何昌祥, 林培英, 张保民, 邰道乾, 陈美华, 胡享生, 叶松, 薛迎喜, 谭劲, 魏启荣, 范例. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社, 1~267.
-
潘家永, 张乾, 马东升, 李朝阳. 2001. 滇西羊拉铜矿区硅质岩特征及与成矿的关系. 中国科学: D辑, 31(1): 10~16.
-
王潇逸, 张静, 边晓龙, 佟子达, 李登峰. 2022. 云南马厂箐铜钼矿床石榴子石LA-ICP-MS原位U-Pb定年及成分研究. 岩石学报, 38(1): 124~142.
-
王训诚, 刘良根, 郭祥焱, 周育才, 王次松. 2007. 铜陵地区喷流-沉积块状硫化物矿床. 安徽地质, 15(2): 95~97.
-
魏君奇, 陈开旭. 2004. 云南羊拉地区铜矿成矿系列. 地质科技情报, 23(2): 21~21.
-
解世雄. 2018. 滇西北羊拉铜矿床矽卡岩矿物特征和成矿机制. 中国地质大学(北京)硕士学位论文, 1~86.
-
熊风, 陶琰, 邓贤泽. 2015. 云南富宁洞哈铁矿磁铁矿微量元素地球化学特征. 矿物学报, 35(S1): 172~173.
-
张小波, 张世涛, 陈华勇, 刘俊安, 程佳敏, 初高彬, 李莎莎. 2020. 石榴子石U-Pb定年在矽卡岩矿床中的应用: 以鄂东南高椅山硅灰石(-铜)矿床为例. 地球科学, 45(3): 856~868.
-
赵盼捞, 袁顺达, 原垭斌. 2018. 湘南黄沙坪多金属矿床石榴子石地球化学特征及其对Cu与W-Sn复合成矿机理的指示. 岩石学报, 34(9): 2581~2597.
-
朱经经. 2012. 滇西北羊拉铜矿成矿地质背景及成因机制. 中国科学院研究生院博士学位论文, 1~179.
-
摘要
羊拉铜矿是金沙江缝合带中部已发现的规模最大的印支期铜矿床,矿体以层状—似层状产出于花岗闪长岩外围、变质砂岩与碳酸盐岩地层的层间破碎带中。该矿床在成因类型上存在喷流-沉积成因、复合成因、矽卡岩成因等多种观点。本文以矽卡岩矿石中石榴子石、磁铁矿为研究对象,利用LA-ICP-MS原位微区分析技术开展了石榴子石U-Pb年代学和石榴子石、磁铁矿成分测试分析,以进一步限定该矿床成矿时代和成因类型。分析结果显示,石榴子石中U、Th、Pb的含量分别为1.18×10-6~6.69×10-6、0.04×10-6~1.43×10-6、0.11×10-6~1.16×10-6,获得Tera-Wasserburg下交点年龄为231.0±5.3 Ma(2σ,n=32,MSWD=2.1),与矿区花岗闪长岩形成时代高度一致。结合磁铁矿微量元素组成与全球矽卡岩型矿床可类比等特征,明确羊拉铜矿床属于典型矽卡岩型铜矿床。石榴子石以钙铁榴石组分为主,具轻稀土富集、重稀土亏损的配分模式,这可能受晶体化学和吸附作用共同控制;其显著Eu正异常和较低的U含量等特征综合表明,该石榴子石形成于弱酸性、富Cl和较氧化的流体环境。与国内外其他矽卡岩型铜矿床相比,羊拉铜矿石榴子石中含有显著高的Sn(485×10-6~7433×10-6,平均值为3931×10-6)和W(0.20×10-6~736×10-6,平均值为156×10-6),磁铁矿中含有较高的Sn(115×10-6~778×10-6,平均值为405×10-6),这与全球含钨-锡矽卡岩型矿床特征相似。据此,初步推测区内存在寻找W、Sn矿化的潜力。
Abstract
The Yangla Cu deposit is the largest Indosinian Cu deposit in the middle segment of the Jinshajiang suture zone. The ore bodies are mainly developed in the periphery of the granodiorite and between carbonate and metamorphic sandstone with stratiform-like shape. Its genesis has been debated for decades with ideas including sedimentary exhalative, skarn, and superimposed models. In this contribution, garnet U-Pb age and the composition of garnet and magnetite were determined to further define the timing and genetic type of this deposit. The analysis showed that the garnets have U, Th and Pb contents of 1.18×10-6~6.69×10-6, 0.04×10-6~1.43×10-6, 0.11×10-6~1.16×10-6, respectively, and yielded an intercept age of 231.0±5.3 Ma (2σ, n=32, MSWD=2.1). This represents the timing of skarn formation coeval with the generation of granodiorite. In combination with magnetite showing compositions similar to skarn deposits around the world, it is confirmed that the Yangla is a typical skarn Cu deposit. Garnets belong to andradite and are mainly characterized by enriched LREE and depleted HREE, which was controlled by both crystal chemistry and adsorption. In combination with their high Eu positive anomalies and low U concentrations, it is suggested they formed in a slightly low pH, enriched Cl, and relatively oxidized environment. Compared with other Cu skarn deposits worldwide, garnets at Yangla contain significantly higher Sn (485×10-6~7433×10-6, average 3931×10-6) and W (0.20×10-6~736×10-6, average 156×10-6), and magnetites also have higher Sn (115×10-6~778×10-6, average 405×10-6). This is similar to the characteristics of W-Sn skarn deposits around the world. Combined with garnet U-W and Sn-U diagrams, it is proposed that W and Sn mineralization may have developed in the ore field.
关键词
石榴子石原位U-Pb定年 ; 矽卡岩型铜矿 ; 石榴子石-磁铁矿微量元素 ; W-Sn矿化 ; 氧逸度