-
岩石的流变性是影响大陆地壳变形的重要因素,对主要造岩矿物微观变形机制的观测与分析是理解大陆岩石流变过程的重要依据(刘俊来,2004,2017; 张国伟等,2002,2011; 张进江等,2019)。花岗质岩石作为大陆地壳最基本的物质组成,其主要造岩矿物长石和石英的变形机制与流变行为直接控制了大陆地壳的流变性质(Kilian et al.,2011; Getsinger et al.,2013; Wintsch and Yeh,2013; Haertel and Herwegh,2014; Rahl and Skemer,2016)。大陆地壳常以应变局部化的形式承载板块边界的变形,发育区域规模韧性剪切带,这为研究花岗质岩石内长石和石英的显微结构与构造、流变特征以及变形机制及转变提供了天然实验室(Tullis,2002; Pennacchioni and Mancktelow,2007; 张国伟等,2007; Menegon and Pennacchioni,2010; Oliot et al.,2010; Kilian et al.,2011; Sullivan et al.,2013; Czaplinska et al.,2015; Viegas et al.,2016)。
-
利用高温高压岩石学实验和物理模拟研究,人们对长石和石英的变形行为和流变机制有所了解(Patterson and Luan,1990; Hirth and Tullis,1992; Stünitz et al.,2003; Rybacki and Dresen,2004; 高名迪等,2018)。然而,岩石学实验大多是针对单相矿物材料的变形进行研究,在延伸到多相矿物集合体的天然岩石变形过程时依然存在许多问题。在天然岩石的变形过程中,多种变形机制的共同作用、应力应变条件的变化、流体对变形的影响等因素都使实际的变形过程更加复杂(刘俊来等,2009; Viegas et al.,2016; Gilgannon et al.,2017; Ceccato et al.,2018; Hentschel et al.,2019)。如在变形模拟实验中,长石只有在高于900℃的条件下才会发生由位错蠕变主导的变形(Rybacki and Dresen,2004),但在自然界绿片岩相变形条件下就可观察到长石位错蠕变导致的细粒化及动态重结晶现象(Stünitz and Gerald,1993; Prior and Wheeler,1999; Ishii et al.,2007)。
-
天然岩石中不同矿物组分对变形的控制和影响也存在差异。通常认为在中地壳层次中,石英的强度弱于长石(Handy,1990; Tullis,2002),自然样品观测发现石英往往形成联通的网脉结构或基质结构承载主要变形,变形机制为位错蠕变,而长石则以脆性破裂变形为主(Handy et al.,2007; 刘良等,2008; Viegas et al.,2016)。在中地壳韧性变形过程中,尽管长石的矿物强度相对高于石英(Handy,1990; Tullis,2002),但也有观测发现韧性变形导致长石粒径显著减小,形成细粒化颗粒集合体,这一过程的长石变形机制被解释为粒径敏感蠕变,细粒化长石集合体的流变强度显著降低并弱于石英集合体,成为承载变形的主要矿物(Tullis,2002; Kilian et al.,2011; Platt,2015)。因此,花岗质岩石的变形行为和变形机制研究依然是当今大陆流变学研究的重点和热点(张国伟等,2007; 张进江等,2019),其主要矿物的显微构造和变形机制(如晶界动力学、晶格取向、滑移系等)等问题依然有待定量观测和表征。
-
本文对喜马拉雅造山带中东部亚东地区藏南拆离系中花岗质超糜棱岩的主要变形矿物(石英和长石)的显微结构、矿物相平衡关系、组构和晶界特性进行定量观测和表征,探讨多矿物相集合体在韧性变形过程中的显微构造特征与变形机制及其转变方式,为理解大陆地壳的流变学特征提供基本观测数据和依据。
-
1 区域地质背景
-
亚东地区位于喜马拉雅中东部,其西侧为印度—锡金地区,东侧为不丹地区(Wu et al.,1998; Gong et al.,2006,2012; Liu et al.,2017)。该地区藏南拆离系主要由两部分组成,低角度的韧性剪切带和韧脆性至脆性变形的高角度正断层(Wu et al.,1998),韧性剪切带宽度400~500 m,呈高地形出露(图1a~d),剪切带将上盘特提斯喜马拉雅沉积地层与下盘高喜马拉雅高级变质岩分隔(图1 a~c)(Wu et al.,1998; Kellett et al.,2013; Liu et al.,2017)。剪切带下盘的高喜马拉雅结晶岩系由混合岩、花岗质片麻岩与副片麻岩组成,上盘特提斯喜马拉雅地层主要为古生代碳酸盐岩至新生代碎屑沉积岩(Wu et al.,1998; Kellett et al.,2013; Liu et al.,2017)。下盘高压麻粒岩的锆石U-Pb年龄与花岗质岩石的黑云母Ar-Ar年龄分别为~17 Ma与~11 Ma,这一时期也被解释为亚东地区中地壳折返与藏南拆离系活动的时期(Gong et al.,2006,2012)。对亚东地区藏南拆离系下盘混合岩化片麻岩进行变质与测年研究表明,高喜马拉雅地体在26~23 Ma处于进变质阶段,峰期变质温压条件为800℃,0.8~0.9 GPa(Rubatto et al.,2013),23~20 Ma期间,遭遇快速等温降压,抬升至0.3~0.5 GPa的中地壳层次(Rubatto et al.,2013; Sorcar et al.,2014; Chakraborty et al.,2016); 在20~18.5 Ma又遭受快速降温过程,温度由峰期变质温度800℃降至500℃左右(Sorcar et al.,2014)。折返后期快速降温冷却历史在北锡金地区亦有记录,对淡色花岗岩与高级变质岩的热年代学分析揭示,15~13 Ma期间藏南拆离系下盘岩石经历了由700℃至120℃的快速降温过程(Kellett et al.,2013)。本研究选取韧性剪切带顶部的花岗质超糜棱岩(YD-002)开展研究(图1d)。
-
2 实验方法
-
针对岩石的微观结构和组构观测与分析,本文采用了扫描电子显微镜(SEM)、阴极发光(cathodo luminescence,CL)、综合矿物分析系统(Tescan Integrated Mineral Analyzer,TIMA)和电子背散射衍射系统(electron backscattered diffraction,EBSD)。平行于矿物线理、垂直于面理方向对定向样品进行薄片制备,测试与分析过程中所有的光学显微照片、阴极发光图像以及结晶学组构数据都是在此方位进行。所有测试均在北京大学造山带与地壳演化教育部重点实验室完成,测试环境见表1。
-
2.1 阴极发光(CL)
-
阴极发光(CL)是指具有不同化学成分的矿物受到电子束轰击而激发出不同光色的现象,据此可以识别岩石中矿物的种类以及内部结构等特征(Ishii et al.,2007; Götze et al.,2013; Higgins,2017)。在花岗质岩石中,斜长石的阴极发光特征一般呈现为黄色,根据其成分变化也可能会偏向红色或绿色,钾长石呈现为蓝色,石英、云母等表现为黑色或暗色,无明显的发光特征(Oliot et al.,2014; Higgins,2017; 董彦龙等,2019)。
-
图1 亚东地区构造地质简图及藏南拆离系构造特征
-
Fig.1 Geological sketch map of Yadong area and structural features of the South Tibetan Detachment System (STDS)
-
(a)—亚东地区地质构造简图;(b)—横穿特提斯喜马拉雅沉积岩系-藏南拆离系-高喜马拉雅结晶岩系构造剖面(修改自地质图亚东县幅1∶25万);(c)—藏南拆离系野外露头(YD-002观测点),极射赤平投影数据为藏南拆离系韧性剪切带糜棱岩面理和矿物拉伸线理(等面积、下半球投影);(d)—韧性拆离剪切带内低角度的糜棱岩面理和北顷伏矿物拉伸线理(采样点YD-002); 分析样品糜棱岩YD-002
-
(a) —Geological sketch map of Yadong area; (b) —structural profile across the Tethyan Himalaya Sequence (THS) , the STDS and the Greater Himalaya Sequence (GHS) ; (c) —outcrop of the STDS and equal-area, lower hemisphere projections showing the orientations of mylonitic foliation and lineation of the STDS; (d) —sampled mylonite YD-002 showing low-angle mylonitic foliation and north-dipping stretching lineation
-
2.2 综合矿物分析(TIMA)
-
综合矿物分析系统(TIMA)是高效矿物相自动识别与组分定量分析仪器(Hrstka et al.,2018)。该系统包括一台扫描电子显微镜和四台能谱探测器,能对微区进行元素丰度分析,具有测试速度快、分辨率高、矿物自动识别率高等优点。在扫描测试中能谱与背散射的步长按照3∶1进行分布,能谱与背散射信号同步确定矿物相边界。之后TIMA软件根据矿物相边界信息将相应像素的能谱信号进行整合,矿物标定过程中,人机互动进行矿物谱峰匹配,实现矿物相种类的标定,矿物种类标定结束后,可继续对矿物百分含量、主量元素丰度等重要参数进行定量分析。
-
2.3 电子背散射衍射(EBSD)
-
电子背散射衍射技术(EBSD)是基于扫描电镜的矿物晶体空间取向分析方法,通过检测电子束对晶体激发出的菊池条带,测定矿物晶体的空间取向定量信息(Prior et al.,1999; Bhattacharya and Weber,2004)(图2)。测试过程中根据具体的颗粒粒径大小选择合适的步长,且标定点的平均角偏差(MAD)小于1.0。测试完成后使用Channel5软件与MatLab工具包MTEX进行取向面图和组构成图分析(Hielscher and Schaeben,2008)。组构极图采用等面积下半球赤平投影法,单颗粒只取单一像素点,以样品中的X方向(线理方向)与Z方向(面理法线方向)为参考系进行投影并绘制极图。取向面图通过降噪处理,去除噪点及误标点,并使用Cross et al.(2017) 所提出的晶内变形区分法对本研究样品中动态重结晶的基质颗粒与残斑进行定量标定和区分。
-
图2 EBSD工作原理示意图
-
Fig.2 EBSD working principle diagram
-
3 变形显微构造特征
-
本研究选取的花岗质超糜棱岩样品(YD-002)采于藏南拆离系韧性剪切带顶部(27°55′08″N,88°56′58″E)(图1a~d),主要由钾长石、斜长石、石英、黑云母以及微量的绿泥石、萤石等矿物组成(图3a~f)。该花岗质超糜棱岩显微构造特征呈现为单相矿物集合体条带与多相矿物混合的基质,两种结构相互交错,所有矿物条带和基质矿物强烈定性,形成糜棱面理(图3a~e)。单矿物相条带包括钾长石条带和石英条带,这些单矿物条带约占总面积的35%; 多矿物相混合的基质面积占比约65%(图3a、b)。
-
3.1 单相域的显微构造特征
-
超糜棱岩样品中单相域主要由长石和石英为主的单相多晶集合体条带组成(图3c、e; 图4a~f),多晶集合体条带呈定向拉长,平行于线理方向(图3a、b)。在长石单相域条带内,钾长石含量约为55%,斜长石含量约为20%,石英含量约为20%,黑云母含量约1%,其他副矿物约4%(图3f,表2)。钾长石主要表现为残斑和动态重结晶的基质颗粒,形成核-幔构造(图4a、b)。钾长石残斑呈现强烈拉长而定向,长轴方向平行于线理方向或与线理方向呈约45°夹角,颗粒内部表现出波状消光或不均匀消光等塑性变形特征(图4a、b)。基质中的动态重结晶颗粒呈等粒状(平均粒径7.1±1.7 μm)(表2)。钾长石的阴极发光图像呈现蓝色荧光,其中残斑呈淡蓝色,具有较为明亮的发光特征,而细粒化的基质颗粒发光较暗,呈深蓝色(图4c~e)。
-
在石英集合体的单相域条带内,石英含量为75%,长石和云母等其他矿物含量为25%左右(图3f,表2)。石英颗粒全部发生细粒化(平均粒径13.9±4.9 μm)(图4f)。光学显微镜下难以区分部分颗粒边界,细粒化的石英颗粒平行于线理方向定向排列(图4f)。二次电子(SE)图像揭示石英颗粒边界发育大量孔隙与空穴(图5a),石英的颗粒表面亦发育流体的溶蚀结构与新结晶的细小石英晶核(图5b)。
-
3.2 混合相域的显微构造特征
-
超糜棱岩混合相域主要由少量的钾长石和斜长石残斑(含量10%左右)和细粒化的基质(含量70%左右)组成,混合相域内的变形矿物与显微结构平行于线理方向定向排列(图3a、b)。在混合相域中也可以观测到由暗色矿物形成的微剪切带(宽度10~30 μm),这些微剪切带与超糜棱岩宏观面理平行,微剪切带内长石和石英颗粒强烈细粒化,细小的云母颗粒充填于石英和长石之间(图6a、b)。在混合相域细粒基质中,斜长石和钾长石含量约为60%,石英含量为35%,黑云母含量3%,其他副矿物2%(图3f,表2)。CL与TIMA图像揭示长石主要以斜长石为主,阴极发光呈红色,石英颗粒则为暗色或受斜长石荧光特征影响呈暗红色,此外还有少量淡蓝色荧光的钾长石颗粒(图6c、d)。斜长石颗粒粒径范围约10~15 μm,为单颗粒或少数颗粒孤立分布并与石英等其他矿物相混合,局部形成较为集中的颗粒集合体(图6c、d)。长石除与石英相发生混合外,在斜长石颗粒边界还广泛分布微米级别的黑云母颗粒,黑云母粒径大多小于5 μm,呈鳞片状填充在斜长石的颗粒边界(图6e、f)。混合相域内的石英颗粒亦可在颗粒边界观测到流体的溶蚀结构与新结晶的细小晶核(图5c、d)。
-
图3 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩(YD-002)显微结构与矿物组合
-
Fig.3 Microstructural features and mineral content for the granitic ultramylonite (YD-002) in the STDS
-
(a)—背散射电子图像(BSE)显示的长石单相域、石英单相域与混合相域组成相互交错的结构,各类矿物强烈定向和剪切变形,形成强烈糜棱面理;(b~e)—TIMA矿相自动识别图像揭示的超糜棱岩各变形矿物结构-构造特征与矿相微区组合分布特征;(f)—TIMA对不同变形域内矿物含量(体积百分比)定量分析对比,其中钾长石单相域内钾长石含量超过50%,混合相域内石英含量为35%,斜长石为40%,石英单相域内石英含量超过70%
-
(a) —BSE images showing combination of monophase domains and polyphase domains, and the foliation is indicated by the intensively deformed minerals; (b~e) —TIMA images showing microstructural features and mineral spatial distribution in different domains; (f) —TIMA analysis of the mineral volume (%) in different domains
-
图4 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩中单相域的显微构造特征
-
Fig.4 Microstructural features for the monophase domains in the granitic ultramylonite from the STDS
-
(a)—钾长石单相域发育核-幔构造且核部钾长石残斑定向拉长平行于线理方向,正交偏光;(b)—钾长石变形残斑的长轴方向与线理方向呈45°夹角,正交偏光;(c~e)—阴极荧光图像显示的单相域内钾长石颗粒构造特征,钾长石呈蓝色荧光,残斑阴极发光较基质颗粒明亮;(f)—石英单相域内颗粒全部发生细粒化,无残斑,石英颗粒平行于线理方向排列,正交偏光
-
(a) —Core-and-mantle structures for the K-feldspar grains and the K-feldspar porphyroclasts are stretched parallel to the lineation, cross-polarized light; (b) —K-feldspar porphyroclasts are stretched and oriented at an angle of 45° to the lineation, cross-polarized light; (c~e) —CL images showing the microstructures of K-feldspar in monophase domain with blue fluorescent; (f) —quartz grains in the monophase domain are completely dynamically recrystallized and parallel to the lineation, cross-polarized light
-
4 相平衡模拟温压计算
-
相平衡分析方法主要利用内洽性热力学数据库和计算软件(如Thermolcalc,Perple_X等)对变形变质岩石的温压条件、化学成分和矿物组合之间的关系进行模拟计算,并常用来推测岩石变质或变形的温度-压力条件以及化学成分等对岩石的影响。藏南拆离系超糜棱岩样品中钾长石单相域、石英单相域和混合相域的矿物含量以及化学组分存在明显差别,可能会导致成分变化对相平衡模拟的准确性产生影响,因此使用TIMA对不同区域分别进行化学成分分析并用以绘制平衡剖面(表3)。平衡剖面以及矿物等值线使用软件Perple_X 6.9.0版本(Connolly,2005)进行模拟,热力学数据库采用HP02版本(Holland and Powell,1998)。模式体系为Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O(NCKFMASH体系)并设置水过量。活度模型选择Bi(W)、Amph(DPW)、Chl(W)、Pl(h)(Newton et al.,1980; Dale et al.,2005; White et al.,2014)并排除Cz(斜黝帘石)和Zo(黝帘石)端元。
-
为估算超糜棱岩的变形温度范围,我们使用混合相域的化学成分绘制P-T视剖面图和矿物成分摩尔等值线(图7a)。斜长石内的钙含量摩尔等值线在P-T视剖面图内斜率较陡,主要受到温度的控制,因此可以用来判别花岗质岩石的变形温度(Oliot et al.,2010; Bukovská et al.,2016; Ribeiro et al.,2020)。通过电子探针对混合相域内的斜长石成分进行分析,其钙含量(XCaO = CaO/(CaO + Na2O))位于0.20~0.23之间,得到变形温度为390~410℃(图7a)。此外,使用单相域与混合相域的化学成分绘制T-X视剖面图,可以看到随着化学成分由单相域逐渐过渡到混合相域,矿物组合的种类基本没有改变而只受到变形温度的控制(图7b)。然而黑云母的模式含量等值线表明,在400℃的变形温度下,随着化学成分向混合相域过渡,黑云母的体积百分含量逐渐增大(由0.4%增大至1.2%)(图7b),这也与背散射(BSE)图像对黑云母的观测保持一致。
-
图5 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩内石英表面形貌结构(二次电子图像分析)
-
Fig.5 SE images showing deformation features on the surface of the quartz grains in the granitic ultramylonite from the STDS
-
(a)—石英单相域内细粒化石英颗粒边界发育大量微米-纳米级孔隙与空穴结构;(b)—石英单相域内空穴侧壁石英颗粒表面发育溶蚀结构和新结晶石英晶核;(c)—混合相域内石英颗粒表面发育的溶蚀结构;(d)—混合相域内石英颗粒表面发育大量新结晶的晶核
-
(a) —Cavities between quartz grain boundaries in the monophase domain; (b) —dissolution structures and newly crystallized quartz nuclei developed in the monophase domain; (c) —dissolution structures developed on the surface of quartz grains in the polyphase domain; (d) —newly crystallized nuclei developed in the polyphase domain
-
注:化学成分单位为物质的量的百分比。
-
5 花岗质超糜棱岩组构学定量分析
-
5.1 石英组构特征
-
为定量分析超糜棱岩单相域与混合相域的组构和微观动力学特征,本次研究对该样品进行了EBSD面取向定量分析(图8~12)。在单相域和混合相域中,石英均表现为强烈的细粒化,并形成集合体,表明经历了强烈动态重结晶过程(图8a、d)。EBSD取向面图的定量化统计表明单相域内石英平均粒径为13.9±4.9 μm(图8b),混合相域内石英平均粒径为6.2±3.4 μm(图8e),两个域内的细粒石英集合体长轴方向皆平行于X方向(线理方向),形态学长轴与X方向夹角大多小于30°(图8a、d); 石英c轴<0001>表现为X方向极密,柱面m()在Y-Z面上形成大圆环带(图8c、f); 单相域内石英的菱面r()形成较弱的极密(图8c),混合相域的石英的菱面r()组构强度相对较弱(图8f)。
-
图6 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩混合相域显微构造特征
-
Fig.6 Microstructural features for the polyphase domain of the granitic ultramylonite from the STDS
-
(a、b)—混合相域内发育暗色微剪切带,单偏光与正交偏光;(c、d)—阴极发光图像揭示的混合相域矿物相和微观构造特征,长石以具有红色荧光的斜长石为主,少量蓝色荧光的钾长石,石英荧光为暗色;(e、f)—填充在斜长石颗粒边界的微米—纳米级黑云母颗粒(背散射电子图像)
-
(a, b) —Micro-shear bands developed in the polyphase domain, plane polarized light and cross-polarized light; (c, d) —CL images showing microstructural and mineral features of plagioclase (red) , K-feldspar (blue) and quartz (dark) ; (e, f) —BSE images showing fine-grained biotite filled between the boundaries of plagioclase grains
-
5.2 长石组构特征
-
长石在超糜棱岩单相域与混合相域内的矿物含量、显微结构、动态重结晶程度、组构特征等均呈现明显差异(图9a~e,10a~d)。单相域内长石成分主要为钾长石,呈典型的核幔构造(图9a),变形的钾长石残斑发生塑性变形,晶内变形具有不均匀性(图9b),如发育大量位错壁或亚颗粒边界,动态重结晶的基质颗粒则无明显晶内变形(图9b)。使用Cross et al.(2017) 所提出的方法对钾长石颗粒的残斑与基质分别进行粒径统计,得出其残斑的粒径范围为17~100 μm,基质颗粒的平均粒径为7.1±1.7 μm(图9f)。单相域钾长石组构特征(CPOs)表现出明显极密,(001)面在平行Y方向极密,(100)面在平行X方向极密,(010)面在平行于Z方向附近极密,且钾长石基质颗粒与残斑具有相似的空间取向(图10a)。单相域内钾长石的取向差角分布分析表明,非相邻颗粒的取向差角峰值在40°至80°之间,而随机分布曲线的峰值为90°,两者存在较大的差异(图10b),亦表明钾长石具有强的组构。超糜棱岩中混合相域内的长石以斜长石为主(图9a),颗粒发生强烈细粒化,只残留极少斑晶(图9c),基质颗粒内部无明显变形,颗粒边界则具有典型的四联点结构(图9d、e),细粒斜长石平均粒径为5.5±2.1 μm(图9g)。混合相中斜长石组构(CPOs)具随机分布特点,(001)面、(100)面与(010)面均无特征优选定向(图10c),非相邻颗粒的取向差角峰值也与随机分布曲线峰值高度重合(图10d),也表明混合相中斜长石组构的随机分布特征。
-
图7 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩的相平衡模拟分析
-
Fig.7 Phase equilibrium analysis for the granitic ultramylonite from the STDS
-
(a)—混合相域的温度-压力视剖面图与斜长石的钙摩尔含量等值线;(b)—花岗质超糜棱岩的温度-成分视剖面图与黑云母的模式含量等值线; C0—钾长石单相域的化学成分; C1—混合相域的化学成分; q—石英; ab—钠长石; mic—微斜长石; mu—白云母; pump—绿纤石; pre—葡萄石; amph—闪石; pl—斜长石; bi—黑云母; chl—绿泥石; san—透长石
-
(a) —pressure-temperature pseudosection for the polyphase domain and Ca isopleths of plagioclase; (b) —temperature-composition pseudosection and biotite model abundance isopleths; C0—chemical composition for the monophase domain of K-feldspar; C1—chemical composition for the polyphase domain; q—quartz; ab—albite, mic-microcline; mu—muscovite; pump—pumpellyite; pre—prehnite, amph—amphibole; pl—plagioclase; bi—biotite; chl—chlorite; san—sanidine
-
单相域内钾长石残斑具有位错壁或亚颗粒边界等位错蠕变特征(图9b),为进一步分析其发生塑性变形时的主要滑移系,本次研究使用施密特因子法对局部微区开展变形残斑滑移系活动特征分析(图11a~d)(Miranda et al.,2016; Kilian and Heilbronner,2017)。对微区内多个残斑进行施密特因子量化分析(共计9残斑)(图11b~d),并以施密特因子强弱评估钾长石斑晶滑移系的活跃性(Miranda et al.,2016; Kilian and Heilbronner,2017)(图11b~d)。结果显示,超糜棱岩内单相域钾长石2和3号残斑对(001)[100]滑移系具有较高的施密特因子响应(图11b); 钾长石1、2、5和9残斑对(010)[001]滑移系具有较高的施密特因子响应(图11c); 而残斑1、4、5、7和9对于(100)[010]滑移系具有较高的施密特因子(图11d)。因此,在超糜棱岩化过程中,钾长石残斑经历晶内塑性变形,并以(100)[010]、(010)[001]和(001)[100]滑移系滑动为主,且调节变形过程中,不同斑晶的滑移系活跃性也存在一定差异。
-
为进一步分析单相域内钾长石残斑与细粒化基质之间的空间取向关系,本文对两个核幔构造进行精细微组构分析(图12a~d)。动态重结晶颗粒的40 °(图12b),表明动态重结晶钾长石颗粒在一定程度上继承了残斑钾长石的晶体取向。两粒残斑各自相关的空间取向域存在一定的交织(图12b)。对两粒残斑分别进行取向差剖面观测(图12c、d),结果显示:① 残斑内部存在明显的亚颗粒边界结构(图12c、d),② 自钾长石残斑核部到幔部的重结晶颗粒,积累的空间取向差逐渐增大(图12 c、d)。这些颗粒边界和内部取向定量观测结果表明,基质的细粒化过程明显受到亚颗粒旋转重结晶作用的控制。
-
6 讨论
-
6.1 超糜棱岩的变形机制
-
6.1.1 石英的变形机制
-
在超糜棱岩的单相域和混合相域内,石英<c>轴组构表现为典型的X轴极密(图8c、f),如果位错蠕变为组构形成机制,则以柱面<c>滑移系为主导,变形温度可能高于650℃(Mainprice et al.,1986; Bhattacharya and Weber,2004; 夏浩然和刘俊来,2011; 孙丽静等,2019)。然而,斜长石内钙摩尔含量等值线的计算结果表明,韧性变形温度为中温或低温环境(400℃左右)(图7a),结合石英的微观构造特征,如颗粒强烈细粒化,以及并未观测到高温条件下的颗粒边界迁移重结晶特征(图8a、b、d、e)(Stipp et al.,2002; Passchier and Trouw,2005)。因此,我们推测藏南拆离系中的超糜棱岩化过程中,石英的变形以及组构形成过程应存在非位错蠕变机制。
-
图8 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩中单相域与混合相域石英微结构与组构定量分析
-
Fig.8 Quantitative quartz fabric analysis within the monophase domain and polyphase domain in the granitic ultramylonite from the STDS
-
(a)—超糜棱岩单相域取向面图(石英形态优选取向面图)与形态优选玫瑰花统计图,其中深红色代表石英长轴平行于线理方向(0°),深蓝色代表石英长轴垂直于线理方向(90°);(b)—超糜棱岩单相域石英粒径统计,平均粒径为13.9±4.9 μm;(c)—超糜棱岩单相域内细粒石英颗粒的CPOs特征,投影方式为等面积下半球极射赤平投影,单颗粒提取单一像素,颗粒数为347;(d)—超糜棱岩混合相域内石英颗粒取向面图(形态优选取向面图)与形态优选玫瑰花统计图,深红色代表石英颗粒长轴平行于线理方向(0°),深蓝色代表石英颗粒长轴垂直于线理方向(90°);(e)—超糜棱岩混合相域石英颗粒粒径统计,平均粒径为6.2±3.4 μm;(f)—超糜棱岩混合相域内石英颗粒CPOs特征,投影方式为等面积下半球极射赤平投影,单颗粒提取单一像素,分析颗粒数为325; m.u.d—均匀分布倍数
-
(a) —SPO analysis for quartz grains in the monophase domain, where dark red represents the long axis parallel to the lineation (0°) and dark blue represents the long axis perpendicular to the lineation (90°) ; (b) —average grain size of 13.9±4.9 μm for quartz grains in the monophase domain; (c) —CPO patterns for quartz grains in the monophase domain, pole figures plotted as equal-area, lower hemisphere projections, one point per grain and the grain numbers are347; (d) —SPO analysis for quartz grains in the polyphase domain; (e) —average grain size of 6.2±3.4 μm for quartz grains in the polyphase domain; (f) —CPO patterns for quartz grains (325 grains) in the polyphase domain; m.u.d—multiples of uniform distribution
-
图9 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩内单相域与混合相域长石微构造特征定量分析
-
Fig.9 Quantitative microstructure analysis for feldspar within the monophase domain and polyphase domain in the granitic ultramylonite from the STDS
-
(a)—超糜棱岩单相域与混合相域的晶内取向差面图; 图中上半部分红色矿物区域为单相域钾长石区域; 下半部分绿色矿物区域为混合相域斜长石为主的区域;(b)—单相钾长石域局部区域晶内取向差面图(KAM),可见钾长石发育核幔构造,残斑晶内具有局部位错壁等特征,基质颗粒晶内变形较弱;(c)—混合相域局部区域晶内取向差面图(KAM),可见少量的斜长石残斑;(d、e)—混合相域斜长石局部区域晶内取向差面图(KAM),显示弱的晶内变形和斜长石细颗粒之间存在钾长石细颗粒的充填,斜长石颗粒边界可以观测到四联点结构;(f)—单相域钾长石斑晶与基质颗粒粒径统计,斑晶/残斑粒径为17~100 μm,基质颗粒平均粒径为7.1±1.7 μm;(g)—混合相域斜长石的粒径统计,平均粒径为5.5±2.1 μm
-
(a) —EBSD Kernel Average Misorientation (KAM) mapping for monophase domain and polyphase domain; (b) —EBSD KAM mapping for K-feldspar in monophase domain showing core-and-mantle structures with subgrain boundaries in the relict grains and weak deformation in the matrix grains; (c) —EBSD KAM mapping for part of the polyphase domain showing few content of relict plagioclase grains; (d, e) —EBSD KAM mappings for plagioclase in polyphase domain showing weak deformation within grains and quadruple junctions within the grain boundaries; (f) —average grain size in monophase domain with 17~100 μm for relict K-feldspar grains and 7.1±1.7 μm for matrix K-feldspar grains; (g) —average grain size in the polyphase domain with 5.5±2.1 μm for plagioclase grains
-
石英的晶格优选定向(CPOs)通常被视为位错蠕变的标志(Schmid and Casey,1986; Passchier and Trouw,2005),然而,在以溶解-沉淀蠕变为主要变形机制的形变过程中,石英也可能发育<c>轴的定向排列(Bons and Brok,2000; Heidelbach et al.,2001)。溶解-沉淀蠕变会导致矿物颗粒在某些特定的晶体取向上发生定向生长,使矿物晶体同时发育结晶学的优选取向与形态优选取向(Bons and Brok,2000; Heidelbach et al.,2001; Menegon et al.,2008)。在单相域和混合相域内石英皆发育平行于X轴方向的组构优选(CPOs)和形态优选(SPO),符合溶解-沉淀蠕变的这一特征(图8 a、c、d、f)。此外,在强烈细粒化的石英颗粒边界以及三联点位置,粒间孔隙会由于蠕变空穴效应而发生聚结现象,这些都为晶界流体运移提供有利条件(图5a~d),促进溶解-沉淀作用(Zavada et al.,2007; Rybacki et al.,2008; Delle Piane et al.,2009; Fusseis et al.,2009; Gilgannon et al.,2017)。
-
图10 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩内单相域与混合相域长石组构特征分析
-
Fig.10 Feldspar fabric analysis within the monophase domain and polyphase domain in the granitic ultramylonite from the STDS
-
(a)—单相域钾长石颗粒CPOs组构,投影方式等面积下半球极射赤平投影,单颗粒提取单一像素,分析颗粒数为541,其中黑色单点取向代表钾长石残斑颗粒取向;(b)—单相域钾长石颗粒的组构取向差角分布图;(c)—混合相域斜长石颗粒CPOs组构,投影方式为等面积下半球极射赤平投影,单颗粒提取单一像素,分析颗粒数为594;(d)—混合相域斜长石颗粒的组构取向差角分布图
-
(a) —CPO patterns for K-feldspar grains in the monophase domain where the black points represent the orientation of relict K-feldspar grains, pole figures plotted as equal-area, lower hemisphere projections, one point per grain and the grain numbers are541; (b) —misorientation angle distribution for K-feldspar in the monophase domain; (c) —CPO patterns for plagioclase grains in the polyphase domain, 594 grains; (d) —misorientation angle distribution for plagioclase in the polyphase domain
-
为进一步探讨地壳韧性流变过程中溶解-沉淀蠕变贡献以及流变律本构方程与天然样品观测的关联性,本次研究模拟计算了藏南拆离系超糜棱岩化过程中石英的变形机制图解曲线(变形温度界定为400℃)(图13)。石英的位错蠕变选择Hirth et al.(2001) 描述的本构关系,溶解-沉淀蠕变选择流体薄膜模型(Den Brok,1998)。在位错蠕变机制占据主导的条件下,石英的动态重结晶颗粒粒径在一定范围内与所受到的差异应力呈负相关性(图13),称为古应力计(Twiss,1977),变形机制图解中的古应力计选择Cross et al.(2017) 提出的方程。结果表明,石英所处的变形机制位于位错蠕变与溶解-沉淀蠕变的边界附近(图13)。超糜棱岩变形过程中位错蠕变导致石英颗粒发生强烈的细粒化,在颗粒边界为流体活动提供有利通道并进而促进了溶解-沉淀蠕变机制的发生。如果在差异应力保持恒定的条件下,随着局部粒径的减小,变形受到溶解-沉淀蠕变的影响将会逐渐增强(图13),这与我们所观测的微观结构特征基本一致。因此,在超糜棱岩化过程中,溶解-沉淀蠕变机制可能发挥了重要作用。
-
6.1.2 长石的变形机制
-
相对于石英较为简单的晶体结构和矿物成分,长石在变形过程中受到诸多因素影响,如化学成分的变化、变形温度的改变、流体活动以及第二相矿物对变形的影响等(Tullis and Yund,1987; Ceccato et al.,2018)。长石的变形机制主要包括脆性破裂与碎裂流动(Tullis and Yund,1987; Viegas et al.,2016; Hentschel et al.,2019)、位错蠕变与动态重结晶(Tullis and Yund,1987; Miranda et al.,2016; Ceccato et al.,2018; Hentschel et al.,2019)、扩散蠕变与颗粒边界滑动(Tullis and Yund,1991; Miranda et al.,2016)以及溶解-沉淀蠕变等(Ishii et al.,2007; Menegon et al.,2008)。
-
图11 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩内单相域钾长石残斑的施密特因子与晶体滑移系响应关系分析
-
Fig.11 The relationship analysis between Schmid factor and slip systems within the K-feldspar porphyroclast grains in the granitic ultramylonite from the STDS
-
(a)—微区欧拉角晶体取向面图,显示钾长石具有典型的核-幔构造;(b~d)—钾长石残斑不同滑移系((001)[100]滑移系、(010)[001]滑移系和(100)[010]滑移系)活动所对应的施密特因子强度变化及其对应关系
-
(a) —EBSD mapping by Euler angle showing core-and-mantle structures; (b~d) —EBSD mappings by Schmid factor with different slip systems ( (001) [100]slip system, (010) [001]slip system and (100) [010]slip system) for the K-feldspar porphyroclast grains
-
在藏南拆离系内,超糜棱岩中单相域内长石的成分主要以钾长石为主,其显微构造特征表现为:① 由变形残斑以及动态重结晶的基质构成核-幔构造(图4a~e); ② 残斑的晶内变形存在差异性,发生多边形化或亚颗粒化,发育位错壁或亚颗粒边界(图9a、b; 图12); ③ 动态重结晶的基质颗粒继承了残斑的晶体空间取向,并随着与残斑距离的增大基质颗粒与残斑的取向差也逐渐增大(图12); ④ 残斑和基质都具有强烈的晶格优选定向,非相邻颗粒的取向差角峰值与随机分布曲线的峰值存在较大差异(图10 a、b)。以上微观结构与组构特征表明单相域内的钾长石变形主要受到位错蠕变机制的控制(Passchier and Trouw,2005; Stipp and Kunze,2008; Miranda et al.,2016; Hentschel et al.,2019; 巴合达尔等,2019; 董彦龙等,2019)。施密特因子分析进一步揭示了单相域内钾长石残斑在位错蠕变过程中活跃的滑移系有(100)[010]、(010)[001]和(001)[100](图11),这与冯·米塞斯准则所要求的位错蠕变为实现均匀变形需同时启动多组滑移系相吻合(von Mises,1928)。
-
混合相域内长石的成分主要以斜长石为主,显微构造具有以下特点:① 无明显的晶格优选定向,各晶轴的组构呈随机分布,非相邻颗粒的取向差角峰值与随机分布曲线的峰值高度重合(图10c、d); ② 颗粒粒径相比单相域内的钾长石基质颗粒更小,细粒化程度更强(图9f、g); ③ 颗粒边界发育典型的四联点结构(图9d、e); ④ 发生强烈的相混合作用(图6c~f)。以上证据表明混合相域斜长石的变形机制以颗粒边界滑动为主(Miranda et al.,2016; Fukuda et al.,2018; Papa et al.,2020; 董彦龙等,2019; 韩宁等,2021)。在混合相域内斜长石的粒径显著小于单相域内动态重结晶的钾长石基质颗粒(图9f、g),促使斜长石的粒径敏感蠕变机制占据主导作用,因此导致组构弱化或无序化(Kilian et al.,2011; Fukuda et al.,2018; Papa et al.,2020; 韩宁等,2021)。此外,变形过程中细小的粒径有利于颗粒边界产生蠕变空穴(Fusseis et al.,2009; Kilian et al.,2011),从而促使混合相域内的流体活动性增强,黑云母在斜长石的颗粒边界发生定向结晶生长(图6e、f),黑云母的沉淀导致斜长石的颗粒生长受到抑制,使变形机制永久性的过渡为颗粒边界滑动等粒径敏感的蠕变机制,并对地壳岩石的流变弱化产生影响(Herwegh and Berger,2004; Bercovici and Ricard,2005; Ebert et al.,2008; Linckens et al.,2015; 董彦龙等,2019)。
-
图12 喜马拉雅造山带藏南拆离系中花岗质超糜棱岩中单相域内钾长石核-幔构造局部取向差定量分析
-
Fig.12 Local misorientation analysis for the K-feldspar grains in the monophase domain in the granitic ultramylonite from the STDS
-
(a)—分析区域的欧拉角晶体取向面图,显示钾长石具有典型的核-幔构造和高角度晶界;(b)—钾长石残斑的相对取向差面图,选取两粒残斑晶内的某一取向为参考点(标记为十字叉1和十字叉2),分析动态重结晶的基质与残斑的取向差变化,可见颗粒内部大量低角度颗粒边界出现(白色细线)和取向差角的变化(色度的变化);(c~d)—两粒残斑由晶内向基质颗粒过渡的取向差剖面图,显示存在亚颗粒晶界和动态重结晶颗粒边界
-
(a) —EBSD mapping by Euler angle showing core-and-mantle structures and high-angle grain boundaries; (b) —EBSD mapping showing relative misorientation to the reference point (red cross) within the K-feldspar porphyroclast, exhibiting low-angle grain boundaries and orientation variations; (c~d) —misorientation profiles from porphyroclast grains to the recrystallized grains showing subgrain boundaries and newly-formed grain boundaries
-
6.2 超糜棱岩的相混合过程
-
在花岗质岩石中,随着应变的增强矿物相组分也会发生变化,单相矿物的钾长石通常会演化为由斜长石、石英与云母等组成的混合相(Ree et al.,2005; Ceccato et al.,2018)。应力蠕英构造的发育往往被认为是这一演化过程的重要机制,在流体及应力的作用下,钾长石发生分解形成细粒斜长石以及蠕虫状的石英颗粒,促进矿物相混合(Simpson and Wintsch,1989; Menegon et al.,2006; Ceccato et al.,2018; 董彦龙等,2019)。然而,在花岗质超糜棱岩中,由于岩石的强烈变形已无法观察到明显的应力蠕英结构,但流体作用对相混合的过程依然具有不可忽视的意义(Ree et al.,2005; Oliot et al.,2010; Wintsch and Yeh,2013; Spruzeniece and Piazolo,2015),钾长石与流体的成分差异会产生化学自由能的不平衡进而导致矿物的分解(Ree et al.,2005; Spruzeniece and Piazolo,2015),形成斜长石与石英,这一过程可表示为:钾长石+ Na++ Ca2+=斜长石+石英+K+。在超糜棱岩样品的混合相域内,石英颗粒边界发育大量的溶蚀结构与新结晶晶核(图5c、d),斜长石的颗粒边界出现大量微米级的黑云母(图6e、f),这些证据均表明流体在单相域向混合相域转变的过程中具有极其重要的作用。反应产生的K+可能与外来流体中的Fe2+共同为黑云母的产生提供化学组分(图7b),并在斜长石的颗粒边界发生沉淀结晶(Wintsch and Yeh,2013; Papa et al.,2020)。单相域内的钾长石受到流体交代形成由斜长石、石英等组成的混合相域,并导致变形机制的转变,变形机制由单相域内钾长石的位错蠕变逐渐转变为混合相域内斜长石的颗粒边界滑动,此外,石英颗粒也具有由位错蠕变转变为溶解-沉淀蠕变的特征。而变形机制由位错蠕变向非位错蠕变的转变过程也进一步增强了岩石的流变弱化效应(Ceccato et al.,2018; 董彦龙等,2019; 韩宁等,2021)。
-
图13 喜马拉雅造山带藏南拆离系超糜棱岩化过程中(400℃)石英变形机制图解
-
Fig.13 Quartz deformation mechanism map during ultramylonization at 400℃ with paleopiezometer in the dislocation creep domain in the ultramylonite from the STDS
-
位错蠕变区域内红色线为古应力计方程; 单相域与混合相域的石英粒径位于位错蠕变与溶解-沉淀蠕变的边界,粒间孔隙和空穴为晶界流体运移提供有利条件,石英粒径的减小与溶解-沉淀蠕变作用相互促进
-
The quartz grain sizefrom the monophase and polyphase domains are located near the boundary between dislocation creep and dissolution-precipitation creep; the cavities between grain boundaries enhanced fluid transport and grain size reduction, further enhancing dissolution-precipitation creep
-
7 结论
-
(1)在中—低温(400℃)韧性剪切变形过程中,花岗质超糜棱岩显微结构呈石英单相域、钾长石单相域和混合相域。
-
(2)石英颗粒在位错蠕变的作用下发生强烈细粒化,颗粒边界的蠕变空穴能够为流体活动提供有利条件,使变形机制转换为溶解-沉淀蠕变,并形成平行于线理X方向的石英<c>轴晶格优选定向及长轴的形态优选定向。
-
(3)长石单相域主要以钾长石为主,发育典型的核-幔构造,具有强烈晶格优选定向,主控变形机制为位错蠕变; 钾长石残斑变形所启动的滑移系主要有(100)[010],(010)[001]和(001)[100]; 基质钾长石主要通过亚颗粒旋转的动态重结晶方式形成。
-
(4)混合相域主要以细粒化斜长石为主,斜长石变形机制为颗粒边界滑动,组构不发育; 超糜棱岩化过程中,流体活动促使黑云母在斜长石的颗粒边界沉淀结晶,抑制斜长石颗粒生长,从而导致变形机制永久性的过渡为颗粒边界滑动等粒径敏感的蠕变机制。
-
(5)由单相域向混合相域演化的过程中流体发挥重要作用,流体通过交代单相域的钾长石使其分解为细粒的斜长石和石英,并导致变形机制由位错蠕变向非位错蠕变的转换以及岩石的流变弱化。
-
致谢:衷心感谢审稿人提出的宝贵意见,极大提高了本文质量。感谢北京大学董杰博士在相平衡模拟分析上给予的指导和帮助。
-
参考文献
-
Baletabieke Bahedaer, Zhao Zhongbao, Wang Genhou, Sun Lijing, Zhao Pengbin. 2019. Research advances of microstructural deformation mechanism of feldspar. Acta Geologica Sinica, 93(10): 2678~2697 (in Chinese with English abstract).
-
Bercovici D, Ricard Y. 2005. Tectonic plate generation and two-phase damage: void growth versus grain size reduction. Journal of Geophysical Research, 110(3): B03401.
-
Bhattacharya A R, Weber K. 2004. Fabric development during shear deformation in the main central thrust zone, NW-Himalaya, India. Tectonophysics, 387: 23~46.
-
Bons P D, den Brok B. 2000. Crystallographic preferred orientation development by dissolution-precipitation creep. Journal of Structural Geology, 22 (11-12): 1713~1722.
-
Bukovská Z, Jeřábek P, Morales L F G. 2016. Major softening at brittle-ductile transition due to interplay between chemical and deformation processes: an insight from evolution of shear bands in the South Armorican Shear Zone. Journal of Geophysical Research Solid Earth, 121: 1158~1182.
-
Ceccato A, Menegon L, Pennacchioni G, Morales L F. 2018. Myrmekite and strain weakening in granitoid mylonites. Solid Earth, 9: 1399~1419.
-
Chakraborty S, Anczkiewicz R, Gaidies F, Rubatto D, Sorcar N, Faak K, Mukhopadhyay D K, Dasgupta S. 2016. A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. Journal of Metamorphic Geology, 34: 785~803.
-
Connolly J A D. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1): 524~541.
-
Cross A J, Prior D J, Stipp M, Kidder S B. 2017. The recrystallized grain size piezometer for quartz: an EBSD-based calibration. Geophysical Research Letters, 44: 6667~6674.
-
Czaplinska D, Piazolo S, Zibra I. 2015. The influence of phase and grain size distribution on the dynamics of strain localization in polymineralic rocks. Journal of Structural Geology, 72: 15~32.
-
Dale J, Powell R, White R W, Elmer F L, Holland T J B. 2005. A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological calculations. Journal of Metamorphic Geology, 23: 771~791.
-
Delle Piane C, Wilson C J L, Burlini L. 2009. Dilatant plasticity in high-strain experiments on calcite-muscovite aggregates. Journal of Structural Geology, 31(10): 1084~1099.
-
Den Brok S W J. 1998. Effect of microcracking on pressure-solution strain rate: the Gratz grain-boundary model. Geology, 26: 915~918.
-
Dong Yanlong, Cao Shuyun, Cheng Xuemei, Liu Junlai, Cao Hanchen. 2019. Grain-size reduction of feldspar and flow of deformed granites within the Gaoligong shear zone, southwestern Yunnan, China. Science China: Earth Sciences, 49 (in Chinese with English abstract).
-
Ebert A, Herwegh M, Berger A, Pfiffner O A. 2008. Grain coarsening maps for polymineralic carbonate mylonites: a calibration based on data from different Helvetic nappes (Switzerland). Tectonophysics, 457(3-4): 128~142.
-
Fukuda J I, Holyoke III C W, Kronenberg A K. 2018. Deformation of fine-grained quartz aggregates by mixed diffusion and dislocation creep. Journal of Geophysical Research Solid Earth, 123 (6): 4676~4696.
-
Fusseis F, Regenauer-Lieb K, Liu J, Hough R M, De Carlo F. 2009. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature, 459(7249): 974~977.
-
Gao Mingdi, Xu haijin, Zhang junfeng, Chen Hui. 2018. Incipient melt during partial melting of the deeply subducted continental crust: evidence from leucosome of migmatite in Sulu ultra-high pressure terrane. Acta Petrologica Sinica, 34(3): 547~566 (in Chinese with English abstract).
-
Getsinger A J, Hirth G, Stünitz H, Goergen E T. 2013. Influence of water on rheology and strain localization in the lower continental crust. Geochemistry Geophysics Geosystems, 14: 2247~2264.
-
Gilgannon J, Fusseis F, Menegon L, Regenauer-Lieb K, Buckman J. 2017. Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing. Solid Earth, 8: 1193~1209.
-
Gong Junfeng, Ji Jianqing, Sang Haiqing, Han Baofu, Li Baolong, Chen Jianjun. 2006. 40Ar/39Ar geochronology of high-pressure granulite xenolith and its surrounding granite in central Himalaya. Acta Petrologica Sinica, 22: 2677~2686.
-
Gong Junfeng, Ji Jianqing, Han Baofu, Chen Jianjun, Sun Dongxia, Li Baolong, Zhou Jing, TuJiyao, Zhong Dalai. 2012. Early subduction-exhumation and late channel flow of the Greater Himalayan Sequence: implications from the Yadong section in the eastern Himalaya. International Geology Review, 54: 1184~1202.
-
Götze J, Schertl H P, Neuser R D, Kempe U, Hanchar J M. 2013. Optical microscope-cathodoluminescence (OM-CL) imaging as a powerful tool to reveal internal textures of minerals. Mineral Petrology, 107: 373~392.
-
Gou Zhengbin, Zhang Zeming, Dong Xin, Xiang Hua, Ding Huixia, Tian Zuolin, Lei Hengcong. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos, 256-257: 300~310.
-
Haertel M, Herwegh M. 2014. Microfabric memory of vein quartz for strain localization in detachment faults: a case study on the Simplon fault zone. Journal of Structural Geology, 68: 16~32.
-
Handy M R. 1990. The solid-state flow of polymineralic rocks. Journal of Geophysical Research, 95: 8647~8661.
-
Handy M R, Hirth G, Bürgmann R. 2007. Continental fault structure and rheology from the frictional to-viscous transition downward. In: Handy M R, Hirth G, Hovius N, eds. Dahlem Workshop Reports, Cambridge: The MIT Press, 139~181.
-
Han Ning, Zhao Zhongbao, Wang Genhou, Sun Lijing, Baletabieke Bahedaer. 2021. Effect of the second phase on the strain localization in multiphase mylonite: a case study on the felsic mylonite in the Qinling Group. Acta Geologica Sinica, 95(5): 1614~1629 (in Chinese with English abstract).
-
Heidelbach F, Stretton I C, Kunze K. 2001. Texture development of polycrystalline anhydrite experimentally deformed in torsion. International Journal of Earth Sciences, 90(1): 118~126.
-
Hentschel F, Trepmannl C, Janots E. 2019. Deformation of feldspar at greenschist facies conditions-the record of mylonitic pegmatites from the Pfunderer Mountains, Eastern Alps. Solid Earth, 10: 95~116.
-
Herwegh M, Berger A. 2004. Deformation mechanisms in second-phase affected microstructures and their energy balance. Journal of Structural Geology, 26(8): 1483~1498.
-
Hielscher R, Schaeben H. 2008. A novel pole figure inversion method: specification of the MTEX algorithm. Journal of Applied Crystallography, 41: 1024~1037.
-
Higgins M D. 2017. Quantitative investigation of felsic rock textures using cathodoluminescence images and other techniques. Lithos, 277: 259~268.
-
Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14: 145~159.
-
Hirth G, Teyssier C, Dunlap J W. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90: 77~87.
-
Holland T, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16: 309~343.
-
Hrstka T, Gottlieb P, Skala R, Breiter K, Motl D. 2018. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences-Czech, 63: 47~63.
-
Ishii K, Kanagawa K, Shigematsu N, Okudaira T. 2007. High ductility of K-feldspar and development of granitic banded ultramylonite in the Ryoke metamorphic belt, SW Japan. Journal of Structural Geology, 29: 1083~1098.
-
Kellett D A, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32: 252~270.
-
Kilian R, Heilbronner R, Stunitz H. 2011. Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep. Journal of Structural Geology, 33: 1265~1284.
-
Kilian R, Heilbronner R. 2017. Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite. Solid Earth, 8: 1095~1117.
-
Linckens J, Herwegh M, Müntener O. 2015. Small quantity but large effect—How minor phases control strain localization in upper mantle shear zones. Tectonophysics, 643: 26~43.
-
Liu Junlai. 2004. Microstructures of deformed rocks and rheology of lithosphere. Geological Bulletin of China, 23(9-10): 980~985 (in Chinese with English abstract).
-
Liu Junlai. 2017. Strain localization and strain weakening in the continental middle crust. Acta Petrologica Sinica, 33(6): 1653~1666 (in Chinese with English abstract).
-
Liu Junlai, Ji Mo, Xia Haoran, Liu Zhenghong, Zhou Yongsheng, Yu Xinqi, Zhang Hongyuan, Cheng Suhua. 2009. Crustal-mantle detachment of the North China craton in Late Mesozoic: rheological constraints. Acta Petrologica Sinica, 25(8): 1819~1829.
-
Liu Zhichao, Wu Fuyuan, Qiu Zhili, Wang Jiangang, Liu Xiaochi, Ji Weiqiang, Liu CZ. 2017. Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics, 721: 106~122.
-
Mainprice D, Bouchez J L, Blumenfeld P, Tubià J M. 1986. Dominant c slip in naturally deformed quartz: implications for dramatic plastic softening at high temperature. Geology, 14: 819~822.
-
Menegon L, Pennacchioni G, Spiess R. 2008. Dissolution-precipitation creep of K-feldspar in mid-crustal granite mylonites. Journal of Structural Geology, 30: 565~579.
-
Menegon L, Pennacchioni G. 2010. Local shear zone pattern and bulk deformation in the Gran Paradiso metagranite (NW Italian Alps), International Journal of Earth Sciences, 99: 1805~1825.
-
Miranda E, Hirth G, John B. 2016. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase. Journal of Structural Geology, 92: 30~45.
-
Newton R C, Charlu T V, Kleppa O J. 1980. Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta, 44: 933~41.
-
Oliot E, Goncalves P, Marquer D. 2010. Role of plagioclase and reaction softening in a metagranite shear zone at mid-crustal conditions (Gotthard Massif, Swiss Central Alps). Journal of Metamorphic Geology, 28: 849~871.
-
Oliot E, Goncalves P, Schulmann K, Marquer D, Lexa O. 2014. Mid-crustal shear zone formation in granitic rocks: constraints from quantitative textural and crystallographic preferred orientations analyses. Tectonophysics, 612-613: 63~80.
-
Papa S, Pennacchionia G, Menegon L, Thielmann M. 2020. High-stress creep preceding coseismic rupturing in amphibolite-facies ultramylonites. Earth and Planetary Science Letters, 541: 116260.
-
Passchier C W, Trouw R A. 2005. Microtectonics. 2nd ed. Berlin: Springer Science & Business Media.
-
Paterson M, Luan F C. 1990. Quartzite rheology under geological conditions. Geological Society, London, Special Publications, 54: 299~307.
-
Pennacchioni G, Mancktelow N S. 2007. Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions. Journal of Structural Geology, 29: 1757~1780.
-
Platt J. 2015. Rheology of two-phase systems: a microphysical and observational approach. Journal of Structural Geology, 77: 213~227.
-
Prior D J, Wheeler J. 1999. Feldspar fabrics in a greenschist facies albite-rich mylonite from electron backscatter diffraction. Tectonophysics, 303: 29~49.
-
Prior D J, Boyle A P, Brenker F, Cheadle M C, Day A, Lopez G, Peruzzi L, Potts G, Reddy S, Spiess R, Timms N E, Trimby P, Wheeler J, Zetterstrom L. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Miner, 84: 1741~1759.
-
Rahl J M, Skemer P. 2016. Microstructural evolution and rheology of quartz in a mid-crustal shear zone. Tectonophysics, 680: 129~139.
-
Ree H, Kim S, Han R, Jung H. 2005. Grain-size reductionof feldspars by fracturing and neocrystallization in a low-gradegranitic mylonite and its rheological effect. Tectonophysics, 407: 227~237.
-
Ribeiroa B, Lagoeiro L, Faleiros F, Hunter N, Queiroga G, Raveggi M, Cawood P, Finch M, Campanha G. 2020. Strain localization and fluid-assisted deformation in apatite and its influence on trace elements and U-Pb systematics. Earth and Planetary Science Letters 545: 116421.
-
Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contribution of Mineral Petrology, 165: 349~372.
-
Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics, 382: 173~187.
-
Rybacki E, Wirth R, Dresen G. 2008. High-strain creep of feldspar rocks: implications for cavitation and ductile failure in the lower crust. Geophysical Research Letters, 35(4): L04304.
-
Schmid S M, Casey M. 1986. Complete Fabric Analysis of Some Commonly Observed Quartz C-axis Patterns. Mineral and Rock Deformation: Laboratory Studies: The Paterson Volume. 263~286.
-
SimpsonC, Wintsch P. 1989. Evidence for deformation-induced K-feldspar replacement by myrmekite. Journal of Metamorphic Geology, 7: 261~275.
-
Sorcar N, Hoppe U, Dasgupta S, Chakraborty S. 2014. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: rapid cooling unrelated to exhumation? Contributions to Mineralogy and Petrology, 167: 957.
-
Spruzeniece L, Piazolo S. 2015. Strain localization in brittle-ductileshear zones: fluid-abundant vs. fluid-limited conditions (an examplefrom Wyangala area, Australia). Solid Earth, 6: 881~901.
-
Stipp M, Stünitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24: 1861~1884.
-
Stipp M, Kunze K. 2008. Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates. Tectonophysics, 448: 77~97.
-
Stünitz H, Gerald F. 1993. Deformation of granitoids at low metamorphic grade. II: Granular flow in albite-rich mylonites. Tectonophysics, 221: 299~324.
-
Stünitz H, Gerald F, Tullis J. 2003. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics, 372: 215~233.
-
Sullivan W A, Boyd A S, Monz M E. 2013. Strain localization in homogeneous granite near the brittle-ductile transition: a case study of the Kellyland fault zone, Maine, USA. Journal of Structural Geology, 56: 70~88.
-
Sun Lijing, Zhao Zhongbao, Wang Genhou, Baletabieke Bahedaer, Han Ning, Zhao Pengbin, Li Yan, Li Wei. 2019. Research advances of microstructural deformation mechanism and rheological features of quartz. Acta Geologica Sinica, 93(10): 2698~2714 (in Chinese with English abstract).
-
Tullis J. 2002. Deformation of granitic rocks; experimental studies and natural examples. In: Plastic Deformation of Minerals and Rocks. Reviews In Mineralogy and Geochemistry, 51: 51~95.
-
Tullis J, Yund R A. 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures. Geology, 15: 606.
-
Tullis J, Yund R A. 1991. Diffusion creep in feldspar aggregates: experimental evidence. Journal of Structural Geology, 13: 987~1000.
-
Twiss R J. 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics, 115(1-2): 227~244.
-
Viegas G, Menegon L, Archanjo C. 2016. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil). Solid Earth, 7: 375~396.
-
von Mises R. 1928. Mechanik der plastischen Formanderung von Kristallen. Zeitschrift fur Angewandte Mathematik und Mechanik, 8: 161~185.
-
White R, Powell R, Holland T, Johnson T, Green E. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.
-
Wintsch R P, Yi M W. 2013. Oscillating brittle and viscous behavior through the earthquake cycle in the red river shear zone: Monitoring flips between reaction and textural softening and hardening. Tectonophysics, 587: 46~62.
-
Wu C D, Nelson K D, Wortman G, Samson S D, Yue Y J, Li J X, Kidd W S F, Edwards M A. 1998. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89°~90°E). Tectonics, 17: 28~45.
-
Xia Haoran, Liu Junlai. 2011. The crystallographic preferred orientation of quartz and its applications. Geological Bulletin of China, 30(1): 58~70 (in Chinese with English abstract).
-
Zavada P, Schulmann K, Konopásek J, Ulrich S, Lexa O. 2007. Extreme ductility of feldspar aggregates—melt-enhanced grain boundary sliding and creep failure: rheological implications for felsic lower crust. Journal of Geophysical Research, 112: B10210.
-
Zhang Guowei, Dong Yunpeng, Yao Anping. 2002. Some thoughts on the study of continental dynamics and orogenic belts. Geology in China, 29(1): 7~13 (in Chinese with English abstract).
-
Zhang Guowei, Guo Anlin. 2007. Suggestions on enhancing rheological study in structural geology. Chinese Journal of Geology, 42(1): 10~15 (in Chinese with English abstract).
-
Zhang Guowei, Guo Anlin, Dong Yunpeng, Yao Anping. 2011. Continental geology, tectonics and dynamics. Earth Science Frontiers, 18(3): 1~12.
-
Zhang Jinjiang, Liu Junlai, Liu Yongjiang, Shang Shan, Wei Chunjing, Zhang Nan, Zhang Guowei, Dong Yunpeng, Jin Zhenmin, Zhang Junfeng. 2019. Present status and development prospect of studies of rheology of continental lithosphere. Atca Geoscientica Sinica, 40(1): 9~16 (in Chinese with English abstract).
-
巴合达尔·巴勒塔别克, 赵中宝, 王根厚, 孙丽静, 赵鹏彬. 2019. 长石显微变形机制研究进展. 地质学报, 93(10): 2678~2697.
-
董彦龙, 曹淑云, 程雪梅, 刘俊来, 曹汉琛. 2019. 高黎贡剪切带变形花岗质岩石中的长石细粒化和岩石流动特性. 中国科学: 地球科学, 49.
-
高名迪, 续海金, 章军锋, 陈辉. 2018. 深俯冲陆壳部分熔融初始熔体的厘定: 来自苏鲁超高压地体混合岩中浅色体证据. 岩石学报, 34(3): 547~566.
-
韩宁, 赵中宝, 王根厚, 孙丽静, 巴合达尔·巴勒塔别克. 2021. 多相糜棱岩内第二相对应变局部化的影响——以秦岭群花岗质糜棱岩研究为例. 地质学报, 95(5): 1614~1629.
-
刘俊来, 纪沫, 夏浩然, 刘正宏, 周永胜, 余心起, 张宏远, 程素华. 2009. 华北克拉通晚中生代壳-幔拆离作用: 岩石流变学约束. 岩石学报, 25(8): 1819~1829.
-
刘俊来. 2004. 变形岩石的显微构造与岩石圈流变学. 地质通报, 23(9-10): 980~985.
-
刘俊来. 2017. 大陆中部地壳应变局部化与应变弱化. 岩石学报, 33(6): 1653~1666.
-
刘良, 杨家喜, 章军锋, 陈丹玲, 王超, 杨文强. 2008. 超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战. 科学通报, 27(z1): 1387~1400.
-
孙丽静, 赵中宝, 王根厚, 巴合达尔·巴勒塔别克, 韩宁, 赵鹏彬, 李岩, 李薇. 2019. 石英显微变形机制及流变学特征研究进展. 地质学报, 93(10): 2698~2714.
-
夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(11): 58~70.
-
张国伟, 董云鹏, 姚安平. 2002. 关于中国大陆动力学与造山带研究的几点思考. 中国地质, 29(1): 7~13.
-
张国伟, 郭安林, 董云鹏, 姚安平. 2011. 大陆地质与大陆构造和大陆动力学. 地学前缘, 18(3): 1~12.
-
张国伟, 郭安林. 2007. 关于加强流变构造学研究的建议. 地质科学, 42(1): 10~15.
-
张进江, 刘俊来, 刘永江, 商姗, 魏春景, 张南, 张国伟, 董云鹏, 金振民, 章军锋. 2019. 大陆岩石圈流变学研究的发展现状与前景. 地球学报, 40(1): 9~16.
-
摘要
花岗质岩石的变形方式和过程决定大陆地壳的流变学特性。本文聚焦藏南拆离系超糜棱岩化的花岗质岩石,借助传统显微构造分析方法和扫描电镜、阴极发光、矿相自动分析系统和电子背散射衍射等新技术手段,开展微观组分、结构、组构定量化观测和分析。超糜棱岩主要造岩矿物为钾长石、斜长石、石英、黑云母等,显微构造呈现为单矿物相域与多相矿物混合域交织结构。相平衡模拟与斜长石钙含量等值线变形温度估算结果为390~410℃。单相域的矿物集合体条带主要分为钾长石条带与石英条带,其中钾长石条带内变形颗粒呈现典型的核-幔构造。组构分析表明钾长石颗粒具有强烈的晶格优选定向,残斑与动态重结晶的钾长石颗粒具有相似的晶格优选方位(CPOs)特征。施密特因子法分析揭示钾长石残斑变形过程中主要活动的滑移系为(100)[010]、(010)[001]和(001)[100],基质钾长石颗粒形成机制主要为位错蠕变驱动的亚颗粒旋转重结晶。在混合相域,矿物颗粒发生强烈细粒化而只含有少量残斑,基质颗粒主要为斜长石,斜长石颗粒间广泛分布微米级黑云母颗粒。斜长石无组构或弱组构,主导变形机制为颗粒边界滑动。在单相域条带与混合相域基质内,石英颗粒均发生强烈细粒化,颗粒表面发育溶蚀结构以及细小的新晶晶核,石英<c>轴晶格优选定向及形态学长轴优选定向皆平行于线理X方向,变形机制为溶解-沉淀蠕变。这显示在由单相域向混合相域的演化过程中,流体作用至关重要,流体与单相域钾长石进行交代使其分解为细粒的斜长石与石英,并导致花岗质岩石变形机制由位错蠕变向非位错蠕变转换,并诱发岩石的流变弱化。
Abstract
The deformation patterns and processes of granitic rocks determine the rheological behavior in the continental crust. In this contribution, we focused on the granitic ultramylonite in the South Tibetan Detachment System to investigate the microstructures, fabrics and compositions by various methods, including scanning electron microscopy, cathode luminescence, automatic mineral analyzer and electron backscattered diffraction. The mainly mineral compositions of the ultramylonite are K-feldspar, plagioclase, quartz and biotite, etc. The microstructure is characterized by significant mylonitic foliation defined by compositional banding, namely, a combination of monophase domains and polyphase domains. The deformation temperatures estimated by phase equilibrium simulation and compositional isopleths of Ca component in plagioclase range from 390℃ to 410℃. The monophase domains are mainly divided into K-feldspar domains and quartz domains. The microstructures of K-feldspar domains show typical core-and-mantle structures. K-feldspars show intense fabrics and the similar CPO patterns for both porphyroclasts and matrix grains. The Schmid factor analysis for the porphyroclasts of K-feldspar indicates that active slip systems are (100)[010], (010)[001] and (001)[100] during ductile deformation. The formation mechanism of K-feldspar matrix grains is the dynamic recrystallization by subgrain rotation. Dislocation creep is the dominant deformation mechanism for K-feldspar in the monophase domains. In the polyphase domains, the minerals are featured by fine-grained matrix and only a few porphyroclasts exist. The matrix grains are mainly plagioclases and the micron-sized biotites are widely distributed at the grain boundaries of the plagioclases. Plagioclases show random fabrics or weakly fabrics in the polyphase domains. The deformation mechanism is dominated by grain boundary sliding in plagioclase. In the monophase and polyphase domains, the fine-grained quartz crystal show dissolution structures on their surfaces. The crystallized preferred orientation of the quartz c-axes and the preferred orientation of the quartz morphology long axis are both parallel to the lineation direction. Dissolution-precipitation creep is the major deformation mechanism in quartz. Fluid can make an important impact on the evolution from monophase domains to polyphase domains during ultramylonization. The fluid promotes the monophase K-feldspar to break into fine-grained plagioclase and quartz, which can further lead to the deformation mechanism transition from dislocation creep to non-dislocation creep and the rheological weakening of the rock.