-
柴达木盆地北缘(柴北缘)造山带由于其特殊的构造位置和广泛发育的超高压变质榴辉岩(杨经绥等,1998),受到学者们的普遍关注(许志琴等,2003;Yang Jingsui et al.,2006;Zhang Guibin et al.,2009,2014;Zhang Jianxin et al.,2010,2017;Zhang Cong et al.,2012;Song Shuguang et al.,2014a,2014b;张聪等,2016;Yu Shenyao et al.,2019a,2019b)。前人对区内不同类型的超高压岩石研究表明,柴北缘为中国境内平行于大别-苏鲁的又一条超高压变质带(杨经绥等,2000;陈丹玲等,2005;张贵宾等,2005,2012;张建新等,2007)。在该超高压变质带中广泛出露与陆壳深俯冲—折返同期的早古生代—晚古生代早期花岗岩体,学者们对此形成了较为一致的认识,认为其经历① 洋壳俯冲阶段(吴才来等,2001,2008,2014;路增龙等,2020);② 陆壳深俯冲阶段(Zhao Zhixin et al.,2017);③ 俯冲陆壳发生板片断离并开始折返阶段(Sun Guochao et al.,2020);④ 造山后伸展阶段(吴才来等,2007;Zhao Zhixin et al.,2018;庄玉军等,2019;李治华等,2020)的完整构造岩浆旋回(董增产等,2015a,2015b)。
-
相比于早古生代—晚古生代早期,晚古生代晚期—中生代的岩浆岩出露面积较小且分散,主要分布于柴北缘东段(郭安林等,2009;陈宣华等,2011;Chen Xuanhua et al.,2015;吴才来等,2016;彭渊等,2016;牛漫兰等,2018;李善平等,2021;岳悦等,2021),目前对其形成机制和构造环境存在不同认识。其中,吴才来等(2008)通过对三岔沟岩体(260~275 Ma)的研究发现,其形成与陆内俯冲作用有关;王苏里等(2016)研究宗务隆山的角闪辉长岩(254 Ma)及黑云花岗岩(236 Ma)时发现其形成于岛弧环境,进而认为柴北缘宗务隆构造带在该时期存在洋壳俯冲;彭渊等(2016)通过对晒勒克郭来花岗闪长岩(249 Ma、242 Ma)与察汗诺花岗闪长岩(243 Ma)的研究,认为该时期柴北缘为活动大陆边缘环境,其形成可能与西秦岭沿共和坳拉谷强烈斜向碰撞柴达木地块有关;而牛漫兰等(2018)通过研究柴北缘东段果可山石英闪长岩及其中的镁铁质微粒,发现柴北缘早—中三叠世岩浆活动与古特提斯洋向北俯冲诱发的幔源岩浆底侵和岩浆混合作用有关;另外,Wu Cailai et al.(2019)认为柴北缘中二叠世—早三叠世岩浆岩与东昆仑古特提斯洋北向俯冲和宗务隆洋南向俯冲于欧龙布鲁克陆块之下有关。上述前人研究的差异很大程度上制约了对柴北缘区域构造演化的深入探索。
-
近年来,有学者在柴北缘西段发现晚古生代晚期—中生代岩浆岩(杨明慧,2002;吴才来等,2008;董增产等,2014a,2014b,2015a,2015b;邱世东等,2015,徐旭明等,2017;辜平阳等,2018;高万里等,2019;席斌等,2019;庄玉军等,2020),这对认识及刻画柴北缘晚古生代晚期构造演化提供了重要的岩石探针。但位于柴北缘西段的小赛什腾山地区,因交通不便,基础地质研究工作相对薄弱,相关岩浆岩的报道较少(陈世悦等,2016;高万里等,2019)。其中,陈世悦等(2016)通过年代学研究表明小赛什腾山地区花岗岩类侵位时间、形成期次与整个柴北缘其他地区基本一致,故小赛什腾山也是柴北缘的重要组成部分;而高万里等(2019)在小赛什腾山西部发现中二叠世花岗岩(268~260 Ma),通过极高的正εHf(t)值和年轻的二阶段模式年龄认为其与北部宗务隆小洋盆俯冲板片的部分熔融有关,但该项工作缺乏详细的岩石地球化学证据。因此,本文以小赛什腾山中东部黑云母二长花岗岩和石英闪长岩为研究对象,对其开展系统的年代学、岩石地球化学和岩石Lu-Hf同位素研究,探讨岩石成因及构造环境,为柴北缘晚古生代晚期的构造演化研究提供新线索。
-
1 区域地质概况
-
柴北缘位于青藏高原东北部,自阿尔金山向东到鄂拉山呈北西—南东向展布(Wu Cailai et al.,2019;李治华等,2021),东部被哇洪山断裂所截,西部被阿尔金左行走滑断裂所截,南部被柴达木北缘断裂所切割并与柴达木盆地相接,北部以中祁连南缘断裂为界与祁连地块相邻(陆松年等,2002;王惠初等,2005)。柴北缘地区为一地层组成多样、岩浆活动频繁、变质变形作用复杂、构造演化时间跨度较大的多单元复合构造带(郝国杰等,2004;孟繁聪等,2005;郭安林等,2009)。以鱼卡断裂和宗务隆—青海南山断裂为界,从南到北可依次划分为柴北缘早古生代俯冲带、欧龙布鲁克微陆块和宗务隆构造带3个构造单元(陆松年等,2002;潘桂棠等,2002)。
-
研究区位于柴北缘西段呈近东西向展布的小赛什腾山(图1a),其西部为阿尔金山,东部紧挨赛什腾山(陈世悦等,2016;高万里等,2019)。区内地层以古元古界达肯大坂岩群(欧龙布鲁克地块基底变质岩系)的变质岩为主,按其岩性组合差异及变质变形程度划分为片麻岩夹混合片麻岩段、片麻岩夹条带状片麻岩段、片麻岩夹片岩段、片岩夹大理岩段,与上覆滩间山群呈断层接触;滩间山群为一套由浅变质碎屑岩夹中酸性火山岩、生物碎屑灰岩、大理岩组成的地层,整体上呈北西或北北西向展布,与下伏达肯大坂岩群呈断层接触关系,与上覆上泥盆统牦牛山组和上新统油砂山组呈角度不整合接触;此外出露少量泥盆系牦牛山组、中生界干柴沟组及油砂山组,以及在盆地边沿山前、沟谷分布第四系坡洪积物等(图1b)。区内侵入岩较为发育,基性—中性—酸性岩均有出露,但以中—酸性岩为主,岩浆岩整体呈北东—南西和北西—南东向展布。中—酸性岩(脉)主要为英云闪长岩、石英闪长岩、二长花岗岩以及花岗伟晶岩等,岩浆侵位时代包括志留纪、二叠纪及三叠纪,集中侵位时间为志留纪、二叠纪;基性岩(脉)则以辉长岩、辉长闪长岩为主,呈岩体或岩脉状侵入达肯大坂岩群和滩间山群。
-
2 样品采集
-
本文研究的花岗岩体分布在小赛什腾山中东部,岩性为黑云母二长花岗岩和石英闪长岩(图1b,图2)。其中,石英闪长岩体呈北西—南东向展布,其北东部侵入志留纪花岗岩体,南西部侵入滩间山群黑云母石英片岩中,西部被第四系沉积物覆盖,局部可见达肯大坂岩群和滩间山群残留体;黑云母二长花岗岩体主要呈北东—南西向展布,与石英闪长岩呈不规则港湾状、弯曲状接触,两者无明显侵入接触关系,暗示两者侵位时间相近。本次研究采集1件新鲜的小赛什腾山黑云母二长花岗岩样品,用于开展锆石U-Pb测年和原位Hf同位素分析,样品编号PM008-26-1TW,采样点坐标为:93°48′54″E,38°46′10″N。采集1件新鲜的石英闪长岩样品,用于开展锆石U-Pb测年,样品编号D0020-2TW,采样点坐标为:93°46′10″E,38°46′40″N(图2)。另外,分别从黑云母二长花岗岩和石英闪长岩采集锆石U-Pb测年样品附近的不同露头处各采集6件新鲜样品用于岩石地球化学分析,样品编号分别为PM008-26-1-1HX~PM008-26-1-6HX和D0020-2HX-1~D0020-2HX-6。
-
图1 柴北缘地质简图(a)(据杨经绥等,2001修编)及研究区地质图(b)
-
Fig.1 Simplified geological map of the northern margin of the Qaidam Basin (a) (modified after Yang Jingsui et al., 2001) and the geological map of the study areas (b)
-
1 —冲积物;2—冲洪积物;3—早三叠世二长花岗岩;4—晚二叠世石英闪长岩;5—早二叠世黑云母二长花岗岩;6—早二叠世石英闪长岩;7—晚志留世黑云母花岗岩;8—中志留世黑云母花岗岩;9—滩间山群第二岩性段;10—达肯大坂岩群第三岩性段;11—基性-超基性岩脉;12—花岗岩脉;13—角岩化带;14—断层和推测断层;15—剖面位置;16—采样位置
-
1 —alluvial deposits; 2—alluvial-pluvial deposits; 3—Early Triassic monzonitic granite; 4—Late Permian quartz diorite; 5—Early Permian biotite monzonitic granite; 6—Early Permian quartz diorite; 7—Late Silurian biotite granite; 8—Middle Silurian biotite granite; 9—2nd member of Tanjianshan Group; 10—3rd member of Dakendaban Group; 11—basic-ultrabasic dyke; 12—granite veins; 13—hornfelsification zone; 14—faults and speculated faults; 15—profile location; 16—sampling location
-
通过岩石样品手标本和显微镜下观察,黑云母二长花岗岩和石英闪长岩的岩相学特征如下:① 黑云母二长花岗岩具不等粒结构,块状构造。岩石矿物成分主要由碱性长石、斜长石、石英及黑云母等组成,其中碱性长石(~45%)呈板状或粒状,种属为正长石、微斜长石以及条纹长石,粒径大小不等约为0.6~6.2 mm;斜长石(~28%)呈自形—半自形板状,粒径大小约为0.3~3.2 mm;石英(~22%)呈不规则粒状,粒径大小约为0.3~2.5 mm;黑云母(<10%)呈细小片状,常蚀变为绿泥石。岩石中含少量副矿物,主要为榍石和黝帘石等(图3a、b)。
-
石英闪长岩具斑状结构,块状构造,主要由斜长石(~55%)、角闪石(~25%)、石英(~10%)、黑云母(~8%)、磷灰石(~2%)及少量榍石组成。斜长石多呈半自形板状或柱状,粒径大小约为1~2 mm,大部分斜长石绢云母化。石英呈粒状,粒径大小约为0.5~1 mm。角闪石呈柱状,常与黑云母组成集合体,矿物种属为普通闪石。磷灰石呈柱状或粒状,零星分布。榍石呈细粒状,仅零星分布(图3c、d)。
-
3 分析方法
-
样品的主量、微量及稀土元素分析测试在中国地质调查局西安地质调查中心实验测试中心完成。其中,主量元素采用SX45型X荧光光谱仪(XRF)分析,分析误差小于1%;微量和稀土元素利用SX50型电感耦合等离子体光谱仪(ICP-MS)测定,分析误差小于5%~10%。锆石挑选由河北省欣航测绘院完成,锆石制靶、反射光和阴极发光照相在自然资源部岩浆作用成矿与找矿重点实验室完成。锆石定年的测试点选取首先根据锆石反射光和透射光照片进行初选,再与阴极发光图像反复对比,力求避开内部裂隙和包裹体,以获得较准确的年龄信息。LA-ICP-MS锆石微区U-Pb测年在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193 nm ArF准分子(excimer)激光器Geo Las200M剥蚀系统,ICP-MS为Agilent 7700,激光束斑直径为24 μm,以GJ-1为同位素监控标样,91500为年龄标定标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正。采用Glitter(ver 4.0,Macquarie University)程序对锆石的同位素比值及元素含量进行计算,并按照Anderson的方法(Andersen,2002),用LAMICPMS Common Lead Correction(ver 3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver 3.0)完成(Ludwig,2003)。
-
锆石原位Lu-Hf同位素分析在配备了Geolas 2500激光剥蚀系统的Nu Plasma HR多接收电感耦合等离子体质谱仪(MC-ICP-MS)上完成,激光剥蚀脉冲频率为10 Hz,激光束斑直径为44 μm,剥蚀时间约50 s。用176Lu/175Lu=0.02669和176Yb/172Yb=0.5886进行同量异位干扰校正计算,测定样品的176Lu/177Hf和176Hf/177Hf值(Chu et al.,2002)。εHf(t)值计算采用176Lu衰变常数为1.867×10-11a-1(Albarède et al.,2006),球粒陨石现今的176Hf/177Hf=0.282785、176Lu/177Hf=0.0336(Bouvier et al.,2008);Hf亏损地幔模式年龄(tDM1)计算采用现今的亏损地幔176Hf/177Hf=0.28325和176Lu/177Hf=0.0384值(Nowell et al.,1998)。
-
图2 小赛什腾山岩体A—B剖面图(剖面位置见图1b)
-
Fig.2 A—B profile of the Xiaosaishiteng Mountain rock mass (profile position is shown in Fig.1b)
-
1 —冲积物;2—黑云母片岩;3—石英闪长岩;4—黑云母二长花岗岩;5—黑云母花岗岩;6—推测断层;7—产状;8—采样位置
-
1 —alluvial deposits; 2—biotite schist; 3—quartz diorite; 4—biotite monzonitic granite; 5—biotite granite; 6—inferred faults; 7—occurrence; 8—sampling location
-
图3 小赛什腾山黑云母二长花岗岩、石英闪长岩野外及镜下照片
-
Fig.3 Outcrop and microphotographs of biotite monzonitic granite and quartz diorite in the Xiaosaishiteng Mountain
-
(a)—黑云母二长花岗岩;(b)—黑云母二长花岗显微岩镜下照片;(c)—石英闪长岩;(d)—石英闪长岩镜下照片;Qz—石英;Hbl—角闪石;Bt—黑云母;Kfs—钾长石;Pl—斜长石
-
(a) —biotite monzonitic granite; (b) —photomicrograph of biotite monzonitic granite; (c) —quartz diorite; (d) —photomicrograph of quartz diorite; Qz—quartz; Hbl—hornblende; Bt—biotite; Kfs—K-feldspar; Pl—plagioclase
-
4 分析结果
-
4.1 锆石U-Pb年代学
-
在黑云母二长花岗岩和石英闪长岩中挑选的锆石大多为无色透明或浅黄色,多呈长轴状,少数为短轴状、粒状,大部分锆石颗粒自形程度较好,少部分呈断头晶出现。黑云母二长花岗岩和石英闪长岩中锆石分别长约150~290 μm和100~280 μm,宽约100~150 μm和80~130 μm,长宽比分别为1∶1~2.9∶1和1.2∶1~3.5∶1(图4a、b)。根据锆石U-Pb测试分析(表1)结果可见,黑云母二长花岗岩和石英闪长岩的Th含量分别为103.19×10-6~1352.31×10-6和34.70×10-6~587.71×10-6;U含量分别为253.75×10-6~3413.22×10-6和40.39×10-6~685.00×10-6,Th/U值较高,分别为0.33~0.99和0.29~2.15,平均值分别为0.67和1.07。由阴极发光图像可见,锆石自形程度较好,具有清晰的环带结构,指示两件样品中的锆石均为岩浆成因(Hoskin et al.,2000)。选择两件样品中具有代表性锆石进行LA-ICP-MS测年分析,结果显示黑云母二长花岗岩所有锆石测点均位于谐和线上,206Pb/238U表观年龄值变化于265~281 Ma(图4a;表1),获得加权平均年龄为272±3 Ma(n=19,MSWD=0.23)(图4c);石英闪长岩所有锆石测点同样均位于谐和线上,206Pb/238U表观年龄值变化于265~280 Ma之间(图4b;表1),获得加权平均年龄为273±2 Ma(n=27,MSWD=1.04)(图4d)。另外,两件样品所有锆石测点206Pb/207Pb值非常接近,分别为0.0506~0.0533和0.0511~0.0524(表1),因此272±3 Ma和273±2 Ma可代表黑云母二长花岗岩和石英闪长岩的结晶年龄。
-
图4 小赛什腾山黑云母二长花岗岩、石英闪长岩锆石CL图像、表面年龄值、U-Pb年龄谐和图和直方图
-
Fig.4 CL images of zircon, surface age, zircon U-Pb concordia diagrams and age histogram of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
(a)—黑云母二长花岗岩锆石CL图像、表面年龄值;(b)—石英闪长岩锆石CL图像、表面年龄值;(c)—黑云母二长花岗岩U-Pb谐和图和加权平均年龄;(d)—石英闪长岩U-Pb谐和图和加权平均年龄
-
(a) —CL images of zircon and surface age of biotite monzonitic granite; (b) —CL images of zircon and surface age of quartz diorite; (c) —zircon U-Pb concordia diagrams and weighted mean ages of biotite monzonitic granite; (d) —zircon U-Pb concordia diagrams and weighted mean ages of quartz diorite
-
4.2 主量元素特征
-
黑云母二长花岗岩具有较高的SiO2含量(76.37%~77.10%)和全碱含量(K2O+Na2O=8.11%~8.37%),相对富钾贫钠(K2O/Na2O=2.06~2.12)。其主量元素特征具有较低的Al2O3(12.36%~12.76%)、TiO2(0.12%~0.14%)、TFe2O3(0.89%~0.98%)、MgO(0.24%~0.28%)、CaO(1.02%~1.08%)、MnO(0.01%~0.02%)和P2O5(0.03%)含量(表2)。在TAS图(图5a)中,黑云母二长花岗岩样品因SiO2含量高,位于花岗岩区域;碱度率AR值均>3.3,变化范围3.51~3.57,属碱性岩石。黑云母二长花岗岩样品K2O含量为5.47%~5.65%,属钾玄岩系列岩石(图5b);A/NK比值为1.20~1.21,A/CNK比值均为1.02,在A/NK-A/CNK图解(图5c)中黑云母二长花岗岩样品落入弱过铝质区域,因此,黑云母二长花岗岩属于弱过铝质钾玄岩系列。
-
续表1
-
石英闪长岩中SiO2含量变化较大(52.65%~62.91%);TiO2(0.62%~1.53%)和Al2O3(17.38%~18.87%)含量较高;中等含量的TFe2O3(4.00%~9.19%)、MgO(1.84%~4.61%)和CaO(5.87%~7.87%);低含量的MnO(0.06%~0.13%)和P2O5(0.21%~0.60%);全碱含量中等(K2O+Na2O=5.31%~5.90%),相对富钠贫钾(Na2O/K2O=2.70~3.25)。在TAS图(图5a)中,石英闪长岩样品因变化的SiO2含量,位于闪长岩和辉长闪长岩区域;里特曼指数(σ)为1.63~3.00,属于钙碱性岩石;在K2O-SiO2图解(图5b)中,石英闪长岩位于钙碱性区域,与里特曼指数一致。石英闪长岩样品A/NK为2.10~2.29,A/CNK为0.83~0.97,在A/NK-A/CNK图解(图5c)中石英闪长岩样品均落入准铝质范围。因此,石英闪长岩属于准铝质钙碱性系列。
-
在黑云母二长花岗岩和石英闪长岩的主量元素哈克图解中(图6),演化趋势有较为明显的差异。其中石英闪长岩中TiO2、Al2O3、TFe2O3、MgO、MnO、CaO、P2O5和SiO2呈显著的负线性演化关系,表明斜长石、磷灰石以及铁镁矿物等在岩浆演化过程中发生了分离结晶;而黑云母二长花岗岩中如TiO2、Al2O3、TFe2O3、MgO、MnO、CaO与SiO2有一定的负线性演化关系,但因部分元素含量较低,从而相关性不强。
-
4.3 稀土和微量元素特征
-
小赛什腾山黑云母二长花岗岩中稀土元素总量偏低(表2;ΣREE=49.31×10-6~63.87×10-6),LREE明显富集(ΣLREE=48.13×10-6~62.44×10-6),HREE含量极低(ΣHREE=1.18×10-6~1.97×10-6),ΣLREE/ΣHREE=27.26~44.88,显示轻稀土元素富集的特征。(La/Yb)N=33.2~53.6,(La/Sm)N=2.31~3.15,(Gd/Yb)N=1.80~2.66,表明轻重稀土分馏明显,轻稀土较重稀土分馏更好。在稀土元素球粒陨石标准化图解中表现出十分一致的右倾特征(图7a),显示出较强的Eu正异常(δEu=1.57~1.92)。微量元素原始地幔标准化蛛网图中(图7b),样品具有较为一致的配分模式,富集大离子亲石元素(LILE:Rb、Th、U、K等),不同程度的亏损Nb、Ta、P、Ti等高场强元素(HFSE)和HREE,呈现显著的“Ta-Nb-Ti”负异常,总体表现出与俯冲带相关的弧岩浆特征(Maniar et al.,1989)。
-
图5 小赛什腾山黑云母二长花岗岩、石英闪长岩岩石分类和系列划分图解
-
Fig.5 Classification and series diagrams of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
(a)—TAS图解(据Middlemost,1994);(b)—SiO2-K2O图解(据Peccerillo et al.,1976);(c)—A/NK-A/CNK图解(据Maniar et al.,1989)
-
(a) —TAS diagram (after Middlemost, 1994) ; (b) —SiO2-K2O diagram (after Peccerillo et al., 1976) ; (c) —A/NK-A/CNK diagram (after Maniar et al., 1989)
-
石英闪长岩稀土元素总量较低(ΣREE=87.72×10-6~155.49×10-6),LREE明显富集(LREE=77.44×10-6~135.95×10-6),HREE含量低(HREE=10.28×10-6~19.54×10-6),轻重稀土分馏明显,在稀土元素球粒陨石标准化图解中表现出相对一致的右倾特征(图7a),具有弱的Eu负异常(δEu=0.6~0.94),说明在岩浆演化过程中斜长石分离结晶作用不明显。在微量元素原始地幔标准化蛛网图中(图7b),除U、Zr元素外,所有样品显示相似的分配型式,富集大离子亲石元素(LILE:Rb、Ba、Th、K)和LREE等,不同程度的亏损Nb、Ta、Ti等高场强元素(HFSE)和HREE,同样显示俯冲带相关的弧岩浆特征(Maniar et al.,1989)。
-
4.4 Lu-Hf同位素特征
-
在黑云母二长花岗岩U-Pb定年基础上,挑选19颗锆石进行了原位Hf同位素分析,所有Hf同位素测试位置位于原U-Pb测年靶位附近(图4a),测试点号与U-Pb测年点号对应,分析结果见表3。
-
图6 小赛什腾山黑云母二长花岗岩、石英闪长岩Harker图解
-
Fig.6 Harker diagrams of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
图7 小赛什腾山黑云母二长花岗岩、石英闪长岩稀土元素配分曲线(a)和微量元素蛛网图(b)(标准化值据 Sun et al.,1989)
-
Fig.7 Chondrite-normalized REE pattern plots (a) and primitive mantle-normalized trace element spider plots (b) of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite (normalized values after Sun et al., 1989)
-
续表2
-
注:TFe2O3表示全铁;Mg#=100×Mg2+/(Mg2++Fe2+);δEu=2×EuN/(SmN+GdN);σ=(Na2O+K2O)2/(SiO2-43),当SiO2在<43%或>70%时,采用AR=(Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O),K2O/Na2O大于1而小于2.5时,公式中的(Na2O+K2O)用2Na2O代替,而不考虑K2O含量;比值中的下标N为球粒陨石标准化值,标准化值引自Sun et al.,1989;表中和正文中的数据为去除烧失量后重新计算百分化数据。
-
计算εHf(t)值以及模式年龄时采用黑云母二长花岗岩结晶年龄t=272 Ma进行校正。结果表明,19颗锆石的176Yb/177Hf、176Lu/177Hf分别为0.033153~0.083729、0.000874~0.002421,176Lu/177Hf比值基本小于0.002(仅两点S24-18、S24-30值略大于0.002),由此可以忽略锆石形成后由176Lu衰变形成的放射成因176Hf,所测176Hf/177Hf值代表锆石形成时岩浆体系的Hf同位素组成(吴福元等,2007a)。锆石的fLu/Hf为-0.97~-0.93,显著小于镁铁质地壳和硅铝质地壳(分别为-0.34和-0.72),因此二阶段模式年龄能更真实地反映其源区物质从亏损地幔抽取的时间或源区物质在地壳中平均存留年龄(第五春荣等,2007),用锆石U-Pb年龄计算的Hf同位素初始比值176Hf/177Hf=0.282669~0.282844,对应的εHf(t)=2.04~8.16,tDM1=0.84~0.59 Ga,tDM2=1.16~0.77 Ga。
-
5 讨论
-
5.1 岩石成因
-
自然界中的花岗岩主要可以分为I、A和S型(Whalen et al.,1987;Chappell et al.,1992;吴福元等,2007b),花岗岩的岩石类型的确定需要综合岩石矿物学以及地球化学证据(吴福元等,2007b)。依据岩相学特征,黑云母二长花岗岩中未见碱性暗色矿物出现,可以排除碱性花岗岩的可能。其10000Ga/Al比值为1.68~1.90,Zr+Nb+Ce+Y值为(78~117)×10-6(图8a),均低于A型花岗岩的相应值(10000Ga/Al比值为2.6,Zr+Nb+Ce+Y值为350×10-6,据Whalen et al.,1987),故黑云母二长花岗岩不属于A型花岗岩。另外,前人研究表明,典型S型花岗岩是指含白云母、堇青石和石榴子石等矿物的强过铝质花岗岩类岩石,其A/CNK比值大于1.1,刚玉含量大于1%(Sylvester,1998)。黑云母二长花岗岩属弱过铝质系列,铝饱和指数为1.02,全部小于1.1(图5c),CIPW标准矿物中刚玉含量(0.26%~0.38%)均小于1%(计算过程从略),暗色矿物主要为黑云母,具有明显不同于S型花岗岩的特征。另外,Rb/Ba-(Zr+Ce+Y)(图8b)图解中,样品全部落入I型花岗岩区域,综上所述,岩相学与岩石地球化学特征共同表明黑云母二长花岗岩应为弱过铝质I型花岗岩。
-
图8 小赛什腾山黑云母二长花岗岩、石英闪长岩类型判别图解
-
Fig.8 Type discrimination diagrams of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
(a)—(Zr+Nb+Ce+Y)-10000Ga/Al图解(据Whalen et al.,1987);(b)—Rb/Ba-(Zr+Ce+Y)图解(据Whalen et al.,1987)
-
(a) — (Zr+Nb+Ce+Y) -10000Ga/Al diagram (after Whalen et al., 1987) ; (b) —Rb/Ba- (Zr+Ce+Y) diagram (after Whalen et al., 1987)
-
岩相学表明,石英闪长岩中有较多的角闪石矿物产出,从矿物学角度初步认为其为I型花岗岩。主量元素显示该岩体具有较高的Na2O含量(4.45%~5.39%,平均为5.21%),较低的A/CNK(0.96~0.98,平均0.97)和P2O5含量(0.2%~0.27%,平均为0.25%),在显微镜下没有观察到白云母、石榴子石等富铝矿物。所有样品σ值较低(2.24~2.90),属于钙碱性准铝质系列。石英闪长岩中轻稀土富集,Nb、Ta、Ti显著亏损,且具有弱的负Eu异常以及较低的104Ga/Al比值(2.12~2.36,平均为2.21)(图8a)等特征,这些特征与I型花岗岩相似。另外,样品P2O5含量与SiO2含量表现为负相关(图6),具有I型花岗岩变化特征(Chappell et al.,1992)。这也与Rb/Ba-(Zr+Ce+Y)(图8b)图解中,样品全部落入I型花岗岩区域相一致。综上所述,岩相学与岩石地球化学特征共同表明石英闪长岩应为准铝质I型花岗岩。
-
岩相学和地球化学特征共同表明小赛什腾山黑云母二长花岗岩和石英闪长岩分别为弱过铝质钾玄岩系列I型花岗岩和钙碱性准铝质I型花岗岩。另外,微量元素Sr和Rb的含量在不同类型岩石中的变化具有特定的规律性,Rb/Sr>0.9时具有S型花岗岩的特征,Rb/Sr<0.9时则为I型花岗岩(高慧等,2020),本文黑云母二长花岗岩和石英闪长岩的Rb/Sr比值分别介于0.65~0.84和0.05~0.09之间,均小于0.9,进一步表明黑云母二长花岗岩和石英闪长岩都具I型花岗岩类地球化学特征。
-
5.2 岩浆源区
-
实验岩石学证明,玄武质岩石的部分熔融会产生偏基性的准铝质花岗岩类(Beard et al.,1991;Rapp et al.,1995;Johannes et al.,1996;Sisson et al.,2005),而碎屑岩类部分熔融会产生偏酸性的过铝质花岗岩类(Johannes et al.,1996;Patiño-Douce et al.,1998a,1998b)。在C/MF-A/MF图解中(图9a),黑云母二长花岗岩样品大部落入变质杂砂岩部分熔融形成的岩浆区域范围内,石英闪长岩样品均落入变玄武岩部分熔融形成的岩浆区域范围内。由上述推测,小赛什腾山黑云母二长花岗岩和石英闪长岩可能分别来源于杂砂岩和玄武质岩类的部分熔融。
-
岩相学特征表明,小赛什腾山黑云母二长花岗岩中有条纹长石出现,暗示岩浆源区温度较高(Wang Mengjue et al.,2014)。另外黑云母二长花岗岩样品具较高的SiO2(76.37%~77.10%)、Al2O3(12.36%~12.76%)和K2O/Na2O(2.06~2.12)比值,低的MgO(0.24%~0.28%)、TiO2(0.12%~0.14%)、Mg#(34.82~36.24)、Ni(2.08×10-6~2.32×10-6)和Cr(1.96×10-6~6.48×10-6)含量,表明壳源物质在其形成过程中扮演着重要角色。黑云母二长花岗岩样品的Nb/Ta(9.67~12.47,平均10.87)比值远小于地幔来源岩浆(~17.5)(Sun et al.,1989)而接近于地壳物质(11~12)(Wedepohl,2013);Zr/Hf(23.93~28.76,平均25.78)比值与地壳岩石的Zr/Hf比值(33)(Taylor et al.,1995)较为接近,远低于幔源岩石比值(~36.3)(Hofmann et al.,1988);Rb/Sr(0.65~0.84)比值高于地幔组分(0.01~0.1),也大于壳幔混合源花岗岩(Rb/Sr=0.05~0.5),与壳源(Rb/Sr>0.5)范围一致(Sylvester,1998)。以往研究成果显示当源区主要为石榴子石残留相时,形成的熔体显著亏损重稀土元素,具有倾斜的HREE配分模式和较大的Y/Yb比值(大于10)(Hu Zilong et al.,2014);而当角闪石为源区主要残留相时,形成的熔体具有轻微向上凸的HREE配分模式,Y/Yb比值一般接近于10(Rollinson,1993)。本研究获得黑云母二长花岗岩的Y/Yb比值为5.00~8.11,平均值为6.28。球粒陨石标准化稀土元素配分曲线图解(图5a)显示LREE富集、MREE亏损和HREE富集的特征,表明岩浆源区残留相以角闪石为主,无石榴子石(Wang Mengjue et al.,2014),属于角闪石相稳定区(岩浆源区压力较低)。此外,斜长石同时富集Eu和Sr,钾长石同时富集Eu和Ba(Hanson,1978),而黑云母二长花岗岩样品具Eu和Sr的正异常及Ba的负异常,暗示源区无斜长石残留。同时,由于派生熔体的钾含量明显受源岩钾含量的影响,小赛什腾山钾玄质I型花岗岩高K2O/Na2O(>1),反应岩浆源区具有富钾特点(Sisson et al.,2005)。
-
图9 小赛什腾山黑云母二长花岗岩、石英闪长岩A/MF-C/MF图解(a)(据Altherr et al.,2000)和 εHf(t)-锆石年龄图解(b)(据吴福元等,2007a)
-
Fig.9 A/MF-C/MF diagram (after Altherr et al., 2000) and εHf (t) -t diagram (after Wu Fuyuan et al., 2007a) of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
锆石Hf同位素分析目前被广泛用于反映花岗岩的源岩性质和源区特征。一般来说,正的εHf(t)值被解释为其源岩可能来自新生地壳或亏损地幔,负的εHf(t)值指示其源岩为古老地壳物质(Taylor et al.,1985;吴福元等,2007a)。本文所获得的黑云母二长花岗的εHf(t)值为2.04~8.16,二阶段Hf同位素模式年龄tDM2为0.77~1.16 Ga,在εHf(t)-t图解中所有数据都落入球粒陨石和亏损地幔之间的区域,表明成岩岩浆来源于中元古代晚期—新元古代早期新生地壳物质的部分熔融。以往研究表明,幔源物质参与花岗岩成岩过程的方式可能有两种情形:第一种为幔源岩浆与其诱发的地壳物质部分熔融形成的长英质岩浆在地壳深部混合形成壳幔混源岩浆,这种岩浆Hf同位素组成变化范围较大,εHf(t)值变化于正值和负值之间;第二种为幔源岩浆首先底侵到地壳基底岩石中形成新生地壳,然后在后期热事件的影响下,由新生地壳和古老基底地壳构成的混合地壳原岩发生部分熔融而形成混合岩浆。这种岩浆的Hf同位素比值变化较小,且εHf(t)均为正值(Belousova et al.,2006;Kemp et al.,2007)。就小赛什腾山黑云母二长花岗岩而言,所有锆石的Hf同位素组成均显示为正的εHf(t)值,且变化范围较小(图9b),这种Hf同位素特征与第二种壳源混合岩浆所具有的Hf同位素特征更为相似,因此推测小赛什腾山黑云母二长花岗岩的岩浆源区更可能经历了后一种壳幔混合模式。
-
小赛什腾山石英闪长岩A/CNK比值为0.83~0.97,属于准铝质花岗岩,加之稀土元素配分曲线显示其存在较弱的负Eu异常(δEu=0.6~0.94),同时具有较为平坦的重稀土元素配分模式,暗示其源岩很可能为下地壳基性岩类,且岩浆源区可能残留斜长石和角闪石等矿物。另外,中、酸性岩浆产生主要有以下几种模式:①幔源岩浆高度结晶分异;②幔源岩浆同化混染壳源物质(Bonin,2004);③幔源岩浆加热地壳,使地壳物质脱水重熔而形成(Tepper et al.,1993)。区域地质资料表明,在研究区很少有大规模出露的基性岩浆,且小赛什腾山石英闪长岩SiO2含量(55.1%~62.91%,仅一点为52.65%)和Al2O3含量(17.38%~18.87%)较高,表明石英闪长岩并不是由幔源岩浆直接分异而成。此外,Rb/Sr、Nb/Ta、Zr/Hf比值同样是判别岩浆源区很好的标志之一。石英闪长岩样品Rb/Sr比值(0.05~0.09)介于壳幔混合源花岗岩Rb/Sr比值之间(地幔组分、壳幔混合源花岗岩和壳源Rb/Sr值分别为0.01~0.1、0.05~0.5和>0.5)(Sylvester,1998);Nb/Ta比值(11.94~14.67)略高于大陆地壳平均值(12~13)(Barth et al.,2000),而在下地壳(8.3)(Rudnick et al.,2003)和原始地幔(17.5)(Sun et al.,1989)范围内,表明其岩浆可能来源于下地壳,但受到不同程度的地幔岩浆的混合;Zr/Hf比值(20.19~44.98)部分高于地壳岩石的Zr/Hf比值(33)(Taylor et al.,1995),而接近或高于幔源岩石的Zr/Hf比值(36.3)(Hofmann,1998)。一般情况下,来自下地壳部分熔融的熔体具有低的Mg#值(<40),而Mg#>40的岩浆来源与地幔组分的部分熔融有关(Rapp et al.,1995)。小赛什腾山石英闪长岩Mg#值为46.75~54.31>40,暗示幔源物质有一定的贡献,但MgO含量较低,为1.84~4.61,表明幔源物质贡献程度有限。
-
同时,小赛什腾山石英闪长岩具有高Sr(542×10-6~824×10-6)、低Yb(1.22×10-6~1.77×10-6,仅一点为2.56×10-6)和低Y(13.2×10-6~17.1×10-6,仅一点为24.8×10-6)特征,并且相对富钠贫钾(Na2O=3.92%~4.36%,K2O=1.33%~1.54%,Na2O/K2O=2.70~3.25>2),有较高的Sr/Y比值(33.23~45.91),总体表现出俯冲洋壳形成的埃达克质岩的地球化学特征,并且结合岩石具高的Mg#值(46.75~54.31),推测俯冲的洋壳板片初始熔体在上升过程中可能受到了地幔橄榄岩的混染(Kay,1978)。
-
综上所述,小赛什腾山石英闪长岩可能为俯冲板片发生部分熔融产生的熔体遭受地幔橄榄岩混染而成,而黑云母二长花岗岩为洋壳熔融产生的岩浆底侵加热由新生地壳和古老基底地壳构成的混合地壳,在角闪岩相条件下部分熔融形成。
-
5.3 地球动力学背景
-
区域上,分布于柴北缘的泥盆系牦牛山组陆相磨拉石沉积组合标志着加里东期造山运动的结束(张耀玲等,2010;夏文静等,2014),表明柴达木地块与欧龙布鲁克地块拼合成一个整体(辜平阳等,2018)。但有学者认为,宗务隆构造带为柴北缘构造带与南祁连造山带共同构筑的加里东基底之上发育的裂陷槽(张雪婷等,2007),并将该构造带归属南祁连地块或者柴达木地块(潘桂棠等,2002;郝国杰等,2004)。宗务隆构造带东部天峻南山地区蛇绿岩岩片岩石组合及洋中脊玄武岩的发现,指示早石炭世在宗务隆构造带东段存在有限洋盆(王毅智等,2001),以及天峻南山花岗岩体(246 Ma)、青海湖南山花岗岩体(238 Ma)和二郎洞花岗岩(215 Ma)的发现指示宗务隆构造带存在早—中三叠世洋壳俯冲及晚三叠世造山期后伸展(郭安林等,2009)。许海全等(2019)通过对宗务隆构造带物质组成、变形特征的分析和研究,认为宗务隆构造带在早—中三叠世发生挤压碰撞。高万里等(2021)对剪切带同构造变形的白云母和黑云母进行40Ar/39Ar同位素年代学分析,同样得出宗务隆构造带印支期造山作用的时间为早—中三叠世期间,并认为这期造山活动可能与宗务隆有限洋盆闭合后,南祁连地块与欧龙布鲁克地块的斜向碰撞有关。另外,区域沉积资料显示柴北缘晚石炭世—早二叠世发育海相厚层碳酸盐岩的稳定沉积,晚二叠世晚期—中三叠世在宗务隆构造带中具有厚层浅海相碳酸盐岩、碎屑岩建造,这表明柴北缘地区晚石炭世—中三叠世仍存在一定规模和深度的海水(杨超等,2010;彭渊,2015)。综合所述,宗务隆构造带经历了陆内裂陷、洋盆发育、洋壳俯冲、陆陆碰撞及造山期后伸展的完整威尔逊旋回(郭安林等,2009;许海全等,2019)。
-
目前,学者们对海西晚期—印支期岩浆岩的研究主要集中于宗务隆构造带(郭安林等,2009;吴才来等,2016;彭渊等,2016;牛漫兰等,2018;陈敏等,2020;李善平等,2021;岳悦等,2021),而对柴北缘西段研究较少。随着冷湖盐场北山地区发现大量晚二叠世俯冲机制下形成的岩浆岩(董增产等,2014a,2014b,2015a,2015b;辜平阳等,2018),表明在柴北缘西段发育海西晚期岩浆活动(吴才来等,2008;徐旭明等,2017;庄玉军等,2020)。O型埃达克岩的发现则表明柴北缘西段冷湖盐场北山在中二叠世存在洋壳俯冲的证据(邱世东等,2015)。辜平阳等(2018)通过对柴达木盆地西北缘石英闪长岩(252 Ma)和宗务隆构造带东段岩浆岩的对比研究发现,东西两段岩浆岩具相类似的地球化学特征和形成环境,可能属于同期构造岩浆活动的产物。
-
图10 小赛什腾山黑云母二长花岗岩、石英闪长岩构造环境判别图解(据Pearce et al.,1984)
-
Fig.10 Discriminant diagrams (after Pearce et al., 1984) for tectonic setting of the Xiaosaishiteng Mountain biotite monzonitic granite and quartz diorite
-
WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋中脊花岗岩;syn-COLG—同碰撞花岗岩
-
WPG—within plate granites; VAG—volcanic arc granites; ORG—ocean ridge granites; syn-COLG—syn-collision granites
-
本次获得小赛什腾山黑云母二长花岗岩和石英闪长岩的锆石U-Pb年龄分别为272±3 Ma和273±2 Ma,表明其形成时代为早—中二叠世。岩相学及岩石地球化学特征表明二者均为I型花岗岩,但不同程度的富集大离子亲石元素,亏损高场强元素,总体表现出与俯冲带相关的、类似弧岩浆的地球化学特征。Salters et al.(1991)认为活动大陆边缘地区岩浆岩La/Nb比值通常大于2。小赛什腾山黑云母二长花岗岩和石英闪长岩的La/Nb均值分别为10.41和2.61,均大于2,符合活动大陆边缘特征。在Rb-(Y+Nb)图解中(图10a),黑云母二长花岗岩和石英闪长岩样品均落入火山弧花岗岩区域;在Nb-Y图解中(图10b)同样也均落入火山弧花岗岩与同碰撞花岗岩区,表明小赛什腾山黑云母二长花岗岩和石英闪长岩均形成于活动大陆边缘火山弧构造环境。同时石英闪长岩具类似于俯冲性埃达克岩的岩石地球化学特征,这为小赛什腾山经历了早—中二叠世洋壳俯冲提供了重要的证据,结合冷湖盐场发现的北山O型埃达克岩(邱世东等,2015),说明不仅在宗务隆构造带存在海西晚期—印支期的洋壳俯冲(郭安林等,2009;吴才来等,2016),可能向西经小赛什腾山延至盐场北山地区也存在海西晚期—印支期的洋壳俯冲。由此表明小赛什腾山黑云母二长花岗岩和石英闪长岩均为宗务隆洋俯冲消减的产物。
-
6 结论
-
(1)小赛什腾山黑云母二长花岗岩和石英闪长岩锆石的U-Pb年龄分别为272±3 Ma和273±2 Ma,表明形成时代为早—中二叠世。
-
(2)岩相学与岩石地球化学特征表明黑云母二长花岗岩属弱过铝质钾玄岩系列I型花岗岩,石英闪长岩为准铝质钙碱性系列I型花岗岩。
-
(3)石英闪长岩可能为俯冲板片发生部分熔融产生的熔体遭受地幔橄榄岩混染而成,而黑云母二长花岗岩为洋壳熔融产生的岩浆底侵加热由新生地壳和古老基底地壳构成的混合地壳,在角闪岩相条件下部分熔融形成。
-
(4)黑云母二长花岗岩和石英闪长岩均不同程度的富集大离子亲石元素,亏损高场强元素,具典型弧岩浆特征,形成于活动大陆边缘环境,为经小赛什腾山西向延伸至盐场北山的宗务隆洋俯冲消减的产物。
-
致谢:审稿专家和编辑老师提出的建设性修改意见极大地提高了本文的质量;野外工作期间,得到西安地质调查中心李普涛高工、西北大学司国浩博士、中国地质大学(北京)王立轩硕士等人的支持与帮助;实验过程得到西安地质调查中心李艳广博士、汪双双博士和靳梦琪博士的帮助;西安地质调查中心何世平研究员和李向民研究员在相关调研过程中进行了有益指点;写作过程中,与长安大学付浩博士和黄家瑄硕士进行了有益探讨;在此一并致以衷心的感谢。
-
参考文献
-
Albarède F, Scherer E E, Blichert T J, Rosing M, Simionovici A, Bizzarro M. 2006. Г-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70(5): 1261~1270.
-
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51~73.
-
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.
-
Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical geology, 165(3-4): 197~213.
-
Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology, 32(2): 365~401.
-
Belousova E A, Griffin W L, O'reilly S Y. 2006. Zircon crystal morphology, trace Element signatures and Hf isotope composition as a tool for petrogenetic model ling: Examples from eastern Australian granitoids. Journal of Petrology, 47 (2): 329~353.
-
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1~24.
-
Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48~57.
-
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1~26.
-
Chen Danling, Sun Yong, Liu Liang, Zhang Anda, Luo Jinhai, Wang Yan. 2005. Metamorphic evolution of the Yuka eclogite in the north Qaidam, NW China: Evidences from the compositional zonation of garnet and reaction texture in the rock. Acta Petrologica Sinica, 21(4): 1039~1048 (in Chinese with English abstract).
-
Chen Min, Xue Chunji, Xue Wanwen, Zhao Wentao. 2020. Discovery and geological significance of Xuji diorite in Zongwulong tectonic belt on the northern margin of Qaidam Basin. Acta Petrologicaet Mineralogica, 39(5): 552~568 (in Chinese with English abstract).
-
Chen Shiyue, Zhang yue, Sun Jiaopeng, Peng Yuan, Ma Shuai, Shao Pengcheng, Liu Jin. 2016. LA-ICP-MS U-Pb dating for Paleozoic granite from Xiaosaishiteng Mountain and its geological significance. Acta Mineralogica Sinica, 36(1): 119~124 (in Chinese with English abstract).
-
Chen Xuanhua, Yin An, George Gehrels, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam Basin, northern Qinghai-Tibet plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).
-
Chen Xuanhua, George Gehrels, Yin An, Zhou Qi, Huang Penghui. 2015. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau: Implications for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674~692.
-
Chu N C, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, German C R, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567~1574.
-
Diwu Chunrong, Sun Yong, Lin Ciluan, Liu Xiaoming, Wang Hongliang. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China. Acta Petrologica Sinica, 23(2): 253~262 (in Chinese with English abstract).
-
Dong Zengchan, Gu Pingyang, Jiao He, Zha Xianfeng, Chen Ruiming, Zhang Haidi. 2014a. Geochemistry and chronology of Yanchangbeishan gabrro in Lenghu area at the west segment of the north margin of Qaidam. Chinese Journal of Geology, 49(4): 1132~1149 (in Chinese with English abstract).
-
Dong Zengchan, Xiao Peixi, Gu Pingyang, Zhang Haidi, Chen Ruiming, Zha Xianfeng. 2014b. Geochronology, geochemistry and Hf isotope characteristics of Yanchangbeishan granodiorite of Lenghu area in Qinghai. Northwestern Geology, 47(4): 141~155 (in Chinese with English abstract).
-
Dong Zengchan, Gu Pingyang, Chen Ruiming, Zha Xianfeng, Zhang Haidi. 2015a. Geochronology, geochemistry, and Hf isotope of Yanchangbeishan adamellite of Lenghu Area in Qinghai. Earth Science (Journal of China University of Geosciences), 2015a, 40(1): 130~144 (in Chinese with English abstract).
-
Dong Zengchan, Yang Cheng, Gu Pingyang, Wang Hong, Zha Xianfeng, Chen Ruiming, Zhang Haidi. 2015b. Geochronology and geochemistry of Yanchangbeishan biotite adamellite of Lenghu Area in Qinghai and their geological significance. Geotectonica et Metallogenia, 39(1): 167~178 (in Chinese with English abstract).
-
Gao Hui, Cao Yuting, Liu Liang, Wang Chao, Kang Lei, Yang Wenqiang, Chen Xiaohong. 2020. Origin of quartz diorite in the Munabulake area, south Altyn Tagh: Constraints from geochemical characteristics, zircon U-Pb dating and Lu-Hf isotopic composition. Acta Geologica Sinica, 94(8): 2262~2278 (in Chinese with English abstract).
-
Gao Wanli, Wang Zongxiu, Li Leilei, Cui Mingming, Qian Tao, Hu Junjie. 2019. Discovery of the permian granite in Saishiteng mountain of the northern Qaidam Basin and its tectonic significance. Acta Geologica Sinica, 93(4) : 816~829 (in Chinese with English abstract).
-
Gao Wanli, Wang Zongxiu, Li Leilei, Qian Tao, Cui Mingming. 2021. 40Ar/39Ar laser dating of the Zongwulong ductile shear zone in northeastern Tibetan Plateau: Constraints on the time of Indosinian orogeny. Geology in China, 48(1): 149~160 (in Chinese with English abstract).
-
Gu Pingyang, Chen Ruiming, Zha Xianfeng, Dong Zengchan, Zhuang Yujun, Zha Fangyong, Li Peiqing. 2018. The age, petrogenesis and geological significance of quartz diorite on the northwestern margin of Qaidam basin. Acta Petrologica et Mineralogica, 37(1): 19~33 (in Chinese with English abstract).
-
Guo Anlin, Zhang Guowei, Qiang Juan, Sun Yangui, Li Guang, Yao Anping. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet plateau. Acta Petrologica Sinica, 25(1): 1~12 (in Chinese with English abstract).
-
Hanson G N. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and planetary science letters, 38(1): 26~43.
-
Hao Guojie, Lu Songnian, Wang Huichu, Xin Houtian, Li Huaikun. 2004. The Pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block. Earth Science Frontiers, 11(03): 115~122 (in Chinese with English abstract).
-
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
-
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 18(4): 423~439.
-
Hu Zilong, Yang Xiaoyong, Duan Livan, Sun Weidong. 2014. Geochronological and geochemical constraints on genesis of the adakitic rocks in Outang, South Tan-Lu fault belt (northeastern Yangtze Block). Tectonophysics, 626: 86~104.
-
Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic Rocks. Berlin: Springer, 202~228.
-
Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117~132.
-
Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980~983.
-
Li Shanping, Pan Tong, Wang Bingzhang, Yan Xingpeng, Ren Hua, Yu Fucheng, Qiu Wei, Wang Jianjun, Tang Jian, Wang Jinshou, Jin Tingting. 2021. Characteristics and tectonic significance of beryl-bearing pegmatites in Qiemoge mountain, northern margin of Qaidam basin. Geotectonica et Metallogenia, 45(3): 608~619 (in Chinese with English abstract).
-
Li Zhihua, Li Bile, Li Peng. 2020. Zircon U-Pb geochronology, geochemistry, and Hf isotope of the granite porphyry in the Dushugou gold deposit, Tanjianshan area, North Qaidam. Acta Geologica Sinica, 94(12): 3625~3642 (in Chinese with English abstract).
-
Li Zhihua, Li Bile, Wang Bin, Chen Sulong, Li Peng, Liao Yubin, Yu Runtao. 2021. Geochronology, geochemistry, Hf isotope, and their geological significance of the tonalite and fine-grained diorite from Kushuiquan gold deposit, North Qaidam. Acta Petrologica Sinica, 37(6): 1653~1673 (in Chinese with English abstract).
-
Ludwig K R. 2003. ISOPLOT 3. 0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2003, 4: 1~70.
-
Lu Songnian, Wang Huichu, Li Huaikun, Yuan Guibang, Xin Houtian, Zheng Jiankang. 2002. Redefinition of the “Dakendaban Group” on the northern margin of the Qaidam Basin. Geological Bulletin of China, 21(1): 19~23 (in Chinese with English abstract).
-
Lu Zenglong, Zhang Jianxin, Mao Xiaohong, Zhou Guisheng, Teng Xia, Wu Yawei. 2020. Ordovician adakite-Nb-enriched basalt suite in the eastern north Qaidam mountains: Implications for oceanic subduction and crustal accretion prior to deep continental subduction. Acta Petrologica Sinica, 36(10): 2995~3017 (in Chinese with English abstract).
-
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635~643.
-
Meng Fancong, Zhang Jianxin, Yang Jingsui. 2005. Tectono-thermal event of post-HP/UHP metamorphism in the Xitieshan area of the north Qaidam mountains, western China: Isotopic and geochemical evidence of granite and gneiss. Acta Petrologica Sinica, 21(1): 45~56 (in Chinese with English abstract).
-
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science reviews, 37(3-4): 215~224.
-
Niu Manlan, Zhao Qiqi, Wu Qi, Li Xiucai, Yan Zhen, Li Jiliang, Sun Yi, Yuan Xiaoyu. 2018. Magma mixing identified in the Guokeshan pluton, northern margin of the Qaidam basin: Evidences from petrography, mineral chemistry, and whole- rock geochemistry. Acta Petrologica Sinica, 34(7): 1991~2016 (in Chinese with English abstract).
-
Nowell G M, Kempton P D, Noble S R, Fitton J G, Saunders A D, Mahoney J J, Taylor R N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Iinsights into the depleted mantle. Chemical Geology, 149(3-4): 211~233.
-
Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang. 2002. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions. Geological Bulletin of China, 21(11): 701~707 (in Chinese with English abstract).
-
Patiño Douce A E, Harris N. 1998a. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689~710.
-
Patiño Douce A E, Mccarthy T C. 1998b. Melting of crustal rocks during continental collision and subduction. Netherlands: Kluwer Academic Publisher, 27~55.
-
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4): 956~983.
-
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1): 63~81.
-
Peng Yuan. 2015. The Late Hercynian-Indosinian structural characteristics of the Zongwulong tectonic belt in north Qaidam Basin. Doctor degree thesis of Chinese Academy of Geological Sciences (in Chinese with English summary).
-
Peng Yuan, Ma Yinsheng, Liu Chenglin, Li Zongxing, Sun Jiaopeng, Shao Pengcheng. 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam. Earth Science Frontiers, 23(2): 206~221 (in Chinese with English abstract).
-
Qiu Shidong, Dong Zengchan, Gu Pingyang. 2015. The discovery of adakitic granite in the west segment of the north margin of Qaidam and its geological significance. Acta Geologica Sinica, 89(7): 1231~1243 (in Chinese with English abstract).
-
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.
-
Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretati-on. London: Longman Scientific and Technical, 1~352.
-
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1~64.
-
Salters V, Hart S R. 1991. The mantle sources of ocean ridges, islands and arcs: The Hf isotope connection. Earth and Planetary Science Letters, 104(2-4), 364~380.
-
Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635~661.
-
Song Shuguang, Niu Yaoling, Su Li, Wei Chunjing, Zhang Lifei. 2014a. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta, 130: 42~62.
-
Song Shuguang, Niu Yaoling, Su Li, Zhang Cong, Zhang Lifei. 2014b. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the north Qaidam UHPM belt, NW China. Earth-science Reviews, 129: 59~84.
-
Sun Guochao, Gao Peng, Zhao Zifu, Zheng Yongfei. 2020. Syn-exhumation melting of the subducted continental crust: Geochemical evidence from early Paleozoic granitoids in north Qaidam, northern Tibet. Lithos, 374, 105707.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
-
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.
-
Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution. Blackwell Scientific Publications, Oxford, 1~312.
-
Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241~265.
-
Tepper J H, Nelson B K, Bergantz G W, Irving A J. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113(3): 333~351.
-
Wang Huichu, Lu Songnian, Mo Xuanxue, Li Huaikun, Xin Houtian. 2005. An early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China. Geological Bulletin of China, 24(7): 603~612 (in Chinese with English abstract).
-
Wang Mengjue, Song Shuguang, Niu Yaoling, Su Li. 2014. Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 210, 181~198.
-
Wang Suli, Zhou Lifa. 2016. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implication of the bojite in the Zongwulong mountain. Journal of Northwest University (Natural Science Edition), 46(5): 716~724 (in Chinese with English abstract).
-
Wang Yizhi, Bai Yongshan, Lu Hailian. 2001. Geological characteristics of Tianjunnanshan ophiolite in Qinghai and its forming environment. Qinghai Geology, 10(1): 29~35 (in Chinese with English abstract).
-
Wedepohl. 2013. Composition of the continental crust. Treatise on Geochemistry, 3-9: 1~64.
-
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to mineralogy and petrology, 95(4): 407~419.
-
Wu Cailai, Yang Jingsui, Ireland T, Wooden J, Li Haibing, Wan Yusheng and Shi Rendeng. 2001. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance. Acta Petrologica Sinica, 17(2): 215~221 (in Chinese with English abstract).
-
Wu Cailai, Gao Yuanhong, Wu Suoping, Chen Qilong, Wooden J L, Mazadab F K, Mattinson C. 2007. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China. Acta Petrologica Sinica, 23(8): 1861~1875 (in Chinese with English abstract).
-
Wu Cailai, Gao Yuanhong, Wu Suoping , Chen Qilong, Wooden J L, Mazadab F K, Mattinson C. 2008. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment in the north Qaidam. Science China(Ser. D): Earth Science, 38(8): 930~949 (in Chinese).
-
Wu Cilai, Gao Yuanhong. Li Zhaoli, Lei Min, Qin Haipeng, Li Mingze, Liu Chunhua, Frost R B, Robinson P T, Wooden J L. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Science China (Ser. D): Earth Science, 44(10): 2142~2159 (in Chinese).
-
Wu Cailai, Lei Min, Wu Di, Li Tianxiao. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam. Acta Geoscientica Sinica, 37(4): 493~516 (in Chinese with English abstract).
-
Wu Cailai, Wu Di, Mattinson C, Lei Min, Chen Hongjie. 2019. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the north Qaidam, NW China. Gondwana Research, 67: 147~171.
-
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007a. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).
-
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007b. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217~1238 (in Chinese with English abstract).
-
Xi Bin, Niu Huapeng, Zhang Yongshu, Xie Qingbin, Wu Zhixiong, Li Junwei, Wang Bo, Li Xin, Jiao Xiaoqin, Yang Xin. 2019. Zircon U-Pb age and geochemistry of basalt in the Lenghu area of the northern Qaidam Basin and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry. 38(4): 819~827 (in Chinese with English abstract).
-
Xia Wenjing, Niu Manlan, Yan Zhen, Wu Qi, Guo Xianqing, Fu Changlei, Li Jiliang. 2014. Sedimentary facies of the Maoniushan Formation in Maoniushan area along the northern margin of Qaidam Terrane. Acta Geologica Sinica, 88(5): 943~955 (in Chinese with English abstract).
-
Xu Haiquan, Yan Yufeng, Qu Guangju, Yuan Jinpeng, Wang Qinyuan. 2019. Material composition and evolutionary characteristics of the western section of Zongwulong tectonic belt. Journal of Qinghai University, 37(3): 87~93 (in Chinese with English abstract).
-
Xu Xuming, Liu Guang, Liang Guoqing. 2017. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the volcanic rocks in the area of Saishiteng mountain. Xinjiang Geology, 35(3): 250~254 (in Chinese with English abstract).
-
Xu Zhiqin, Yang Jingsui, Wu Cailai, Li Haibing. Zhang Jianxin, Qi Xuexiang, Song Shuguang, Wan Yusheng, Chen Wen, Qiu Haijun. 2003. Timing and machanism of formation and exhumation of the Qaidam ultra-pressure metamorphic belt. Acta Geologica Sinica, 77(2): 163~176 (in Chinese with English abstract).
-
Yang Chao, Chen Qinghua, Wang Guanmin, Pang Xiaojun, Ma Tingting. 2010. Sedimentary and tectonic evolution of Qaidam areas in Late Paleozoic. Journal of China University of Petroleum. 34(5): 38~43 (in Chinese with English abstract).
-
Yang Jingsui, Xu Zhiqin, Li Haibing, Wu Cailai, Cui Junwen, Zhang Jianxin, Chen Wen. 1998. Discovery of eclogite at northern margin of Qaidam Basin, NW China. Chinese Science Bulletin, 43(14): 1544~1549 (in Chinese with English abstract).
-
Yang Jingsui, Xu Zhiqin, Song Shuguang, Wu Cailai, Shi Rendeng, Zhang Jianxin, Wan Yusheng, Li Haibing, Jin Xiaochi, Marc Jolivet. 2000. Discovery of cclogite in Dulan, Qinghai province and its significance for studying the HP—UHP metamorphic belt along the central orogenic belt of China. Acta Geologica Sinica, 74(2): 156~168 (in Chinese with English abstract).
-
Yang Jingsui, Song Shuguang, Xu Zhiqin, Wu Cailail, Shi Rendeng, Zhang Jianxin, Li Haibing, Wan Yusheng, Liu Yan, Qiu Haijun, Liu Fulai, Shigenori Maruyama. 2001. Discovery of Coesite in the north Qaidam Early Paleozoic ultrahigh-high pressure (UHP-HP) metamorphic belt, NW China. Acta Geologica Sinica, 75(2): 175~179 (in Chinese with English abstract).
-
Yang Jingsui, Wu Cailai, Zhang Jianxin, Shi Rendeng, Meng Fancong, Wooden J, Yang Houngyi. 2006. Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust?. Journal of Asian Earth Sciences, 2006, 28(2-3): 185~204.
-
Yang Minghui, Song Jianjun. 2002. Petrology of the Lenghu granite mass, northwestern Qaidam basin, China. Northwestern Geology, 35(3): 94~98 (in Chinese with English abstract).
-
Yu Shenyao, Li Sanzhong, Zhang Jianxin, Peng Yinbiao, Somerville I, Liu Yongjiang, Wang Zhengyi, Li Zhuofan, Yao Yong, Li Yan. 2019a. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the north Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190~211.
-
Yu Shenyao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Li Xiyao, Peng Yinbiao, Sun Deyou, Wang Zhengyi, Lv Pei. 2019b. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the north Qaidam UHP terrane, Western China. Tectonics, 38(3): 791~822.
-
Yue Yue, Sun Deyou, Hou Kejun, Peng Yinbiao. 2021. Geochronology and geochemistry of Triassic gabbro in northern Wulan, northern margin of Qaidam basin. Journal of Jilin University(Earth Science Edition), 51(1): 154~168 (in Chinese with English abstract).
-
Zhang Cong, van Roermund H, Zhang Lifei, Spiers C. 2012. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China: In-situ EMP monazite-and U-Pb zircon SHRIMP dating. Lithos, 136: 27~45.
-
Zhang Cong, Liu Xiaoyu, Yang Jingsui, Li Peng, Zhang Lifei. 2016. The Neoproterozoic metamorphism of North Qaidam UHPM belt, western China: Constrain from petrological study and monazite dating of paragneiss. Acta Petrologica Sinica, 32(12): 3715~3728 (in Chinese with English abstract).
-
Zhang Guibin, Song Shuguang, Zhang Lifei, Niu Yaoling, Shu Guiming. 2005. Ophiolite-type mantle peridotite from Shaliuhe, north Qaidam UHPM belt, NW China and its tectonic implications. Acta Petrologica Sinica, 21(4): 1049~1058 (in Chinese with English abstract).
-
Zhang Guibin, Ellis D J, Christy A G, Zhang Lifei, Niu Yaoling, Song Shuguang. 2009. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. European Journal of Mineralogy, 21(6): 1287~1300.
-
Zhang Guibin, Zhang Lifei, Song Shuguang. 2012. An overview of the tectonic evolution of North Qaidam UHPM belt: from Oceanic subduction to continental collision. Geological Journal of China Universities, 18(1): 28~40 (in Chinese with English abstract).
-
Zhang Guibin, Zhang Lifei, Christy A G, Song Shuguang, Li Qiuli. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: Constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 2014, 205: 15~27.
-
Zhang Jianxin, Meng Fancong, Mattinson C G. 2007. Progress, controversies and challenge of studies on South Altyn Tagh-North Qaidam HP/UHP metamorphic belt. Geological Journal of China Universities, 13(3): 526~545 (in Chinese with English abstract).
-
Zhang Jianxin, Mattinson C G, Yu Shengyao, Li Jinping, Meng Fancong. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the north Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 2010, 28(9): 955~978.
-
Zhang Jianxin, Yu Shengyao, Mattinson C G. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267~289.
-
Zhang Xueting, 2007. Introduction to regional geology of Qinghai Province. Beijing: Geological Publishing House, 1~278 (in Chinese with English abstract).
-
Zhang Yaoling, Hu Daogong, Shi Yuruo, Lu Lu. 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China. Geological Bulletin of China, 29(11): 1614~1618.
-
Zhao Zhixin, Wei Junhao, Fu Lebing, Liang Shengnan, Zhao Shaoqing. 2017. The early Paleozoic Xitieshan syn-collisional granite in the north Qaidam ultrahigh-pressure metamorphic belt, NW China: Petrogenesis and implications for continental crust growth. Lithos, 278: 140~152.
-
Zhao Zhixin, Wei Junhao, Santosh M, Liang Shengnan, Fu Lebing, Zhao Shaoqing, Li Huan. 2018. Late Devonian postcollisional magmatism in the ultrahigh-pressure metamorphic belt, Xitieshan terrane, NW China. GSA Bulletin, 130(5-6): 999~1016.
-
Zhuang Yujun, Gu Pingyang, Li Peiqing, He Shiping, Chen Ruiming, Zha Xianfeng. 2019. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro-block on the northern margin of Qaidam Basin. Geological Bulletin of China, 38(11): 1801~1812 (in Chinese with English abstract).
-
Zhuang Yujun, Gu Pingyang, Gao Yongwei, Peng Xuan, He Shiping, Li Putao. 2020. Petrogenesis of Middle Permian gabbro in Saishiteng mountain of the northern Qaidam basin and its constraint to the time of Zongwulong Ocean subduction. Acta Petrologica et Mineralogica, 39(6): 718~734 (in Chinese with English abstract).
-
陈丹玲, 孙勇, 刘良, 张安达, 罗金海, 王焰. 2005. 柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据. 岩石学报, 21(4): 1039~1048.
-
陈敏, 薛春纪, 薛万文, 赵文涛. 2020. 柴北缘宗务隆构造带蓄集地区闪长岩的发现及其地质意义. 岩石矿物学杂志, 39(5): 552~568.
-
陈世悦, 张跃, 孙娇鹏, 彭渊, 马帅, 邵鹏程, 刘金. 2016. 小赛什腾山古生代花岗岩锆石U-Pb定年及地质意义. 矿物学报, 36(1): 119~124.
-
陈宣华, 尹安, George GEHRELS, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.
-
第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253~262.
-
董增产, 辜平阳, 焦和, 查显锋, 陈锐明, 张海迪. 2014a. 柴北缘西端冷湖盐场北山辉长岩地球化学及年代学研究. 地质科学, 49(4): 1132~1149.
-
董增产, 校培喜, 辜平阳, 张海迪, 陈锐明, 查显锋. 2014b. 青海冷湖盐场北山花岗闪长岩年代学、地球化学及其Hf同位素特征. 西北地质, 47(4): 141~155.
-
董增产, 辜平阳, 陈锐明, 查显锋, 张海迪. 2015a. 柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征. 地球科学(中国地质大学学报), 40(1): 130~144.
-
董增产, 杨成, 辜平阳, 王红, 查显锋, 陈锐明, 张海迪. 2015b. 青海冷湖盐场北山黑云母二长花岗岩年代学、地球化学及其地质意义. 大地构造与成矿学, 39(1): 167~178.
-
高慧, 曹玉亭, 刘良, 王超, 康磊, 杨文强, 陈晓宏. 2020. 南阿尔金木纳布拉克地区石英闪长岩的成因: 来自地球化学特征、锆石U-Pb定年和Lu-Hf同位素组成的制约. 地质学报, 94(8): 2262~2278.
-
高万里, 王宗秀, 李磊磊, 崔明明, 钱涛, 胡俊杰. 2019. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义. 地质学报, 93(4): 816~829.
-
高万里, 王宗秀, 李磊磊, 钱涛, 崔明明. 2021. 青藏高原东北缘宗务隆韧性剪切带40Ar/39Ar年代学及对印支期造山时限的制约. 中国地质, 48(1): 149~160.
-
辜平阳, 陈锐明, 查显锋, 董增产, 庄玉军, 查方勇, 李培庆. 2018. 柴达木盆地西北缘石英闪长岩的形成时代、岩石成因及地质意义. 岩石矿物学杂志, 37(1): 19~33.
-
郭安林, 张国伟, 强娟, 孙延贵, 李广, 姚安平. 2009. 青藏高原东北缘印支期宗务隆造山带. 岩石学报, 25(1): 1~12.
-
郝国杰, 陆松年, 王惠初, 辛后田, 李怀坤. 2004. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化. 地学前缘, 11(3): 115~122.
-
李善平, 潘彤, 王秉璋, 严兴鹏, 任华, 余福承, 邱炜, 王建军, 唐健, 王进寿, 金婷婷. 2021. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义. 大地构造与成矿学, 45(3): 608~619.
-
李治华, 李碧乐, 李鹏. 2020. 柴北缘滩间山地区独树沟金矿花岗斑岩锆石U-Pb年代学、地球化学和Hf同位素. 地质学报, 94(12): 3625~3642.
-
李治华, 李碧乐, 王斌, 陈苏龙, 李鹏, 廖宇斌, 于润涛. 2021. 柴北缘苦水泉金矿英云闪长岩和细粒闪长岩年代学、地球化学和Hf同位素及地质意义. 岩石学报, 37(6): 1653~1673.
-
陆松年, 王惠初, 李怀坤, 袁桂邦, 辛后田, 郑健康. 2002. 柴达木盆地北缘“达肯大坂群”的再厘定. 地质通报, 21(1): 19~23.
-
路增龙, 张建新, 毛小红, 周桂生, 滕霞, 武亚威. 2020. 柴北缘东段奥陶纪埃达克岩-富Nb玄武岩: 对大陆深俯冲之前大洋俯冲及地壳增生的启示. 岩石学报, 36(10): 2995~3017.
-
孟繁聪, 张建新, 杨经绥. 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据. 岩石学报, 21(1): 45~56.
-
牛漫兰, 赵齐齐, 吴齐, 李秀财, 闫臻, 李继亮, 孙毅, 苑潇宇. 2018. 柴北缘果可山岩体的岩浆混合作用: 来自岩相学、矿物学和地球化学证据. 岩石学报, 34(7): 1991~2016.
-
潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21(11): 701~707.
-
彭渊. 2015. 柴北缘宗务隆构造带海西晚期-印支期构造特征研究. 中国地质科学院博士学位论文.
-
彭渊, 马寅生, 刘成林, 李宗星, 孙娇鹏, 邵鹏程. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义. 地学前缘, 23(2): 206~221.
-
邱士东, 董增产, 辜平阳. 2015. 柴达木盆地北缘西端埃达克质花岗岩的发现及地质意义. 地质学报, 89(7): 1231~1243.
-
王惠初, 陆松年, 莫宣学, 李怀坤, 辛后田. 2005. 柴达木盆地北缘早古生代碰撞造山系统. 地质通报, 24(7): 603~612.
-
王苏里, 周立发. 2016. 宗务隆山角闪辉长岩LA-ICP-MS锆石U-Pb定年、地球化学特征及其地质意义. 西北大学学报(自然科学版), 46(5): 716~724.
-
王毅智, 拜永山, 陆海莲. 2001. 青海天峻南山蛇绿岩的地质特征及其形成环境. 青海地质, 10(1): 29~35.
-
吴才来, 杨经绥, Trevor I, Joe W, 李海兵, 万渝生, 史仁灯. 2001. 祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义. 岩石学报, 17(2): 215~221.
-
吴才来, 郜源红, 吴锁平, 陈其龙, Joseph L W, Frank K M, Chris M. 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861~1875.
-
吴才来, 郜源红, 吴锁平, 陈其龙, JosephL W, Frank K M, Chris M. 2008. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征. 中国科学D辑: 地球科学, 38(8): 930~949.
-
吴才来, 郜源红, 李兆丽, 雷敏, 秦海鹏, 李名则, 刘春花, Ronald B F, Paul T R, Joseph L W. 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架. 中国科学D辑: 地球科学, 44(10): 2142~2159.
-
吴才来, 雷敏, 吴迪, 李天啸. 2016. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因. 地球学报, 37(4): 493~516.
-
吴福元, 李献华, 郑永飞, 高山. 2007a. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
-
吴福元, 李献华, 杨进辉, 郑永飞. 2007b. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.
-
席斌, 牛花朋, 张永庶, 谢庆宾, 吴志雄, 李俊巍, 王波, 李欣, 焦小芹, 杨鑫. 2019. 柴北缘冷湖地区玄武岩锆石U-Pb年龄和地球化学特征及其地质意义. 矿物岩石地球化学通报, 38(4): 819~827.
-
夏文静, 牛漫兰, 闫臻, 吴齐, 郭现轻, 付长垒, 李继亮. 2014. 柴北缘牦牛山地区牦牛山组沉积相组合特征. 地质学报, 88(5): 943~955.
-
许海全, 严玉峰, 屈光菊, 袁锦鹏, 王钦元. 2019. 宗务隆构造带西段物质组成及演化特征. 青海大学学报, 37(3): 87~93.
-
徐旭明, 刘广, 梁国庆. 2017. 赛什腾山一带火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征. 新疆地质, 35(3): 250~254.
-
许志琴, 杨经缓, 吴才来, 李海兵, 张建新, 戚学祥, 宋述光, 万渝生, 陈文, 邱海峻. 2003. 柴达木北缘超高压变质带形成与折返的时限及机制. 地质学报, 77(2): 163~176.
-
杨超, 陈清华, 王冠民, 庞小军, 马婷婷. 2010. 柴达木地区晚古生代沉积构造演化. 中国石油大学学报: 自然科学版, 34(5): 38~43.
-
杨经绥, 许志琴, 李海兵, 吴才来, 崔军文, 张建新, 陈文. 1998. 我国西部柴北缘地区发现榴辉岩. 科学通报, 43(14): 1544~1549.
-
杨经绥, 许志琴, 宋述光, 吴才来, 史仁灯, 张建新, 万渝生, 李海兵, 金小赤, Marc J. 2000. 青海都兰榴辉岩的发现及对中国中央造山带内高压——超高压变质带研究的意义. 地质学报, 74(2): 156~168.
-
杨经绥, 宋述光, 许志琴, 吴才来, 史仁灯, 张建新, 李海兵, 万渝生, 刘焰, 邱海峻, 刘福来, Shigenori M. 2001. 柴达木盆地北缘早古生代高压—超高压变质带中发现典型超高压矿物——柯石英. 地质学报, 75(2): 175~179.
-
杨明慧, 宋建军. 2002. 柴达木盆地冷湖花岗岩体岩石学初步研究. 西北地质, 35(3): 94~98.
-
岳悦, 孙德有, 侯可军, 彭银彪. 2021. 柴北缘乌兰北部三叠纪辉长岩的年代学和地球化学特征. 吉林大学学报(地球科学版), 51(1): 154~168.
-
张聪, 刘晓瑜, 杨经绥, 李鹏, 张立飞. 2016. 柴北缘超高压变质带的新元古代变质作用——来自锡铁山副片麻岩的岩石学及独居石年代学证据. 岩石学报, 32(12): 3715~3728.
-
张贵宾, 宋述光, 张立飞, 牛耀龄, 舒桂明. 2005. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义. 岩石学报, 21(4): 1049~1058.
-
张贵宾, 张立飞, 宋述光. 2012. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程. 高校地质学报, 18(1): 28~40.
-
张建新, 孟繁聪, Mattinson C G. 2007. 南阿尔金-柴北缘高压-超高压变质带研究进展、问题及挑战. 高校地质学报, 13(3): 526~545.
-
张雪婷. 2007. 青海省区域地质概论. 北京: 地质出版社, 1~278.
-
张耀玲, 胡道功, 石玉若, 陆露. 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义. 地质通报, 29(11): 1614~1618.
-
庄玉军, 辜平阳, 李培庆, 何世平, 陈锐明, 查显锋. 2019. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征. 地质通报, 38(11): 1801~1812.
-
庄玉军, 辜平阳, 高永伟, 彭璇, 何世平, 李普涛. 2020. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约. 岩石矿物学杂志, 39(6): 718~734.
-
摘要
位于柴北缘西段的小赛什腾山分布大量海西晚期中酸性岩浆岩,其形成时代和成因类型对揭露区域构造演化具有十分重要的意义。本研究以小赛什腾山二叠纪黑云母二长花岗岩和石英闪长岩作为研究对象,对其进行岩相学、锆石U-Pb年代学、岩石地球化学及 Lu-Hf同位素研究。结果表明,黑云母二长花岗岩和石英闪长岩的成岩年龄分别为272±3 Ma和273±2 Ma,指示两者均形成于早—中二叠世。地球化学结果显示,黑云母二长花岗岩属弱过铝质钾玄岩系列I型花岗岩,石英闪长岩为准铝质钙碱性系列I型花岗岩,两者均不同程度富集大离子亲石元素Rb、Th、K等,亏损Nb、Ta、Ti等高场强元素,具有典型的弧岩浆地球化学特征。锆石Lu-Hf同位素表明黑云母二长花岗岩具正的εHf(t)值(2.04~8.16)和较年轻的二阶段Hf模式年龄(tDM2=0.77~ 1.16 Ga)。结合前人研究成果,认为小赛什腾山早—中二叠世黑云母二长花岗岩和石英闪长岩均为宗务隆洋俯冲消减的产物,石英闪长岩为玄武质洋壳板片发生部分熔融产生的熔体遭受地幔橄榄岩混染而成,而黑云母二长花岗岩为洋壳熔融产生的岩浆底侵加热由新生地壳和古老基底地壳构成的混合地壳,在角闪岩相条件下部分熔融形成。
Abstract
There are a large number of late Hercynian intermediate-acid magmatic rocks in the Xiaosaishiteng Mountain, located in the western part of the northern margin of Qaidam basin. Their formation age and genetic types are of great significance to reveal the regional tectonic evolution. In this study, the Permian biotite monzonitic granite and quartz diorite in the Xiaosaishiteng Mountain are studied by petrology, zircon U-Pb chronology, petrogeochemistry and Lu-Hf isotopes. The results show that the ages of biotite monzonitic granite and quartz diorite are 272±3 Ma and 273±2 Ma, respectively, indicating that they were formed in Early-Middle Permian. Geochemical results show that biotite monzonitic granite belongs to I-type granite of weakly peraluminous potassium basalt series, and quartz diorite belongs to I-type granite of quasi-aluminous calc-alkaline series. Both of them are enriched in large ion lithophile elements Rb, Th, K to varying degrees, and depleted in high field strength elements such as Nb, Ta, Ti, showing typical arc magma characteristics. Lu-Hf isotopic compositions indicate that biotite monzonitic granite has a positive εHf(t) value (2.04~8.16), and younger two-stage Hf model age (tDM2=0.77~1.16 Ga). Combined with previous research results, it is considered that the Early-Middle Permian biotite monzonitic granite and quartz diorite in the Xiaosaishiteng Mountain were the products of subduction of the Zongwulong Ocean. The quartz diorite was formed by the melt contaminated by mantle peridotite caused by the partial melting of the basaltic oceanic crust plate, and the biotite monzonitic granite was formed by partial melting of the mixed crust composed of the juvenile crust and the ancient basement crust under the condition of amphibolite facies, which is caused by the magma underplating generated by oceanic crust melting.