en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘帮军,男,1990年生。博士,讲师,主要从事有机和同位素地球化学研究。E-mail:liubangjun@hebeu.edu.cn。

通讯作者:

赵存良,男,1982年生。教授,博士生导师,主要从事煤地质学与地球化学研究。E-mail:zhaocunliang@hebeu.edu.cn。

参考文献
Alexander G, Hazai I, Grimalt J, Albaigés J. 1987. Occurrence and transformation of phyllocladanes in brown coals from Nograd basin, Hungary. Geochimica et Cosmochimica Acta, 51(8): 2065~2073.
参考文献
Anderson K B, Crelling J C. 1995. Amber, resinite, and fossil resins—introduction. American Chemical Society, Washington DC, USA.
参考文献
Antoine P O, De Franceschi D, Flynn J J, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas G R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences of the United States of America, 103(37): 13595~13600.
参考文献
Bao Jianping, Chen Xiwen, Zhu Cuishan. 2016. C15 New sesquiterpene alkanes in crude oils from the Pearl River Mouth basin and their parent sources. Earth Science, 46(9): 1241~1251 (in Chinese).
参考文献
Barbour M, Andrews T, Farquhar G. 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Functional Plant Biology, 28(5): 335~348.
参考文献
Bechtel A, Gratzer R, Sachsenhofer R F, Gusterhuber J, Lücke A, Püttmann W. 2008. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeogr, Palaeoclimatol, Palaeoecol, 262(3): 166~175.
参考文献
Bechtel A, Chekryzhov I Y, Nechaev V P, Kononov V V. 2016. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. International Journal of Coal Geology, 167: 176~183.
参考文献
Bechtel A, Chekryzhov I Y, Pavlyutkin B I, Nechaev V P, Vysotskiy S V, Velivetskaya T A, Tarasenko I A. 2020. Composition of lipids from coal deposits of the Far East: Relations to vegetation and climate change during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109479.
参考文献
Bemis B E, Spero H J, Bijma J, Lea D W. 1989. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150~160.
参考文献
Bojesen-koefoed J A, Christiansen F G, Petersen H I, Jiang Feng. 1999. Resin rich coal in northeastern Greenland: An unrecognized Jurassic source rock with high oil abundance. Natural Gas Geoscience, 10: 69~75 (in Chinese).
参考文献
Bray P S, Anderson K B. 2009. Identification of Carboniferous (320 million years old) Class Ic amber. Science, 326: 132~134.
参考文献
Cheng Lin, Han Dexin. 1999. Characteristics and genesis analysis of resinite in main coal seams in dongning coalfield Heilongjiang Province. Coal Geology of China, 11(4): 14~16 (in Chinese).
参考文献
Dal Corso J, Schmidt A R, Schmidt L J, Preto N, Ragazzi E, Jenkyns H C, Delclòs X, Néraudeau D, Roghi G. 2017. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. Geochimica et Cosmochimica Acta, 199: 351~369.
参考文献
Dai Qinglin, Mei Bowen. 1988. Diagenetic products and thermo-transformation of resinous diterpenoids. Oil and Gas Geology, 9(2): 115~124 (in Chinese with English abstract).
参考文献
Delclòs X, Arillo A, Peñalver E, Barrón E, Soriano C, Valle R L, Bernárdez E, Corral C, Ortuño V M. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus-Palevol, 6(1): 135~149.
参考文献
DeNiro M J, Epstein S. 1979. Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science, 204(4388): 51~53.
参考文献
Dev S. 1989. Terpenoids. In: Rowe J W, ed. Natural Products of Woody Plants. Springer Series in Wood Science. Berlin, Heidelberg: Springer, 691~807.
参考文献
Rowe J W. 1989. Natural Products of Woody Plants. Berlin: Springer, 691~807.
参考文献
Dutta S, Mallick M, Bertram N, Greenwood P F, Mathews R P. 2009. Terpenoid composition and class of Tertiary resins from India. International Journal of Coal Geology, 80(1): 44~50.
参考文献
Dutta S, Tripathi S M, Mallick M, Mathews R P, Greenwood P F, Summons R E. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology, 166(1): 63~68.
参考文献
Dutta S, Saxena R, Singh H. 2014. Exceptional preservation of angiosperm markers in Miocene and Eocene ambers. Geology, 42(2): 155~158.
参考文献
Gaigalas A, Halas S. 2009. Stable isotopes (H, C, S) and the origin of baltic amber. Geochronometria, 33(1): 33~36.
参考文献
Gessler A, Ferrio J P, Hommel R, Treydte K, Werner R A, Monson R K. 2014. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol, 34(8): 796~818.
参考文献
Girard V, Schmidt A R, Struwe S, Perrichot V, Breton G, Néraudeau D. 2009. Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas, 31(1): 153~162.
参考文献
Grantham P J, Douglas A G. 1980. The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochimica et Cosmochimica Acta, 44(11): 1801~1810.
参考文献
Grimaldi D, Agosti D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13678~13683.
参考文献
Jia Rongfen, Fu Jiamo, Xu Shiping, Liu Dehan, Zhang Huizhi. 1987. Preliminary experimental study on hydrocarbon generation of Fushun coal resinite (I) hydrocarbon yield and properties. Scientia Sinica (Chimica), 17(1): 88~94 (in Chinese).
参考文献
Jiang L, George S C. 2020. Geochemical comparison of three oil families from the Gippsland basin, SE Australia. Marine and Petroleum Geology, 121: 104575.
参考文献
Jiang Yaofa, Dai Shifeng, Wang Weiming, Zhao Lei, et al. 2021. Petrology, Palynology, and Geochemistry of Cenooic Coal in China. Beijing: Geology Press (in Chinese).
参考文献
Jin Jianhua, Shang Ping. 1998. Discovery of Early Tertiary floar in Shenbei coalfield, Liaoning. Acta Scientiarum Naturalium Universitatis Sunyatseni, 37(6): 129~130 (in Chinese with English abstract).
参考文献
Kocsis L, Usman A, Jourdan A L, Hassan S H, Jumat N, Daud D, Briguglio A, Slik F, Rinyu L, Futó I. 2019. The Bruneian record of “Borneo Amber”: A regional review of fossil tree resins in the Indo-Australian Archipelago. Earth-Science Reviews, 201: 103005.
参考文献
Langenheim J H. 1969. Amber: A botanical inquiry. Science, 163(3872): 1157~1169.
参考文献
Liu Bangjun, Vrabec M, Markič M, Püttmann W. 2019. Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje basin, Slovenia, by molecular and stable isotope analysis of lignites. International Journal of Coal Geology, 206: 31~45.
参考文献
Liu Bangjun, Bechtel A, Gross D, Zhao Qiaojing, Guo Wenmu, Ajuaba S, Sun Yuzhuang, Zhao Cunliang. 2022. Molecular and carbon isotope composition of hydrocarbons from ambers of the Eocene Shenbei coalfield (Liaoning Province, NE China). Organic Geochemistry, 104436.
参考文献
Liu Muling. 1990. Sequence of Late Cretaceous Tertiary sporopollen assemblages in Northeast China. Journal of Stratigraphy, 14(4): 277~285 (in Chinese).
参考文献
Lu Jing, Zhou Kai, Yang Minfang, Eley Y, Shao Longyi, Hilton J. 2020. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global and Planetary Change, 195: 103331.
参考文献
Lu Y, Hautevelle Y, Michels R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy—Part 1: The Araucariaceae family. Biogeosciences, 10(3): 1943~1962.
参考文献
Meng Qingtao, Liu Zhaojun, Bruch A A, Liu Rong, Hu Fei. 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Sciences, 45: 95~105.
参考文献
Menor S C, Najarro M, Velasco F, Rosales I, Tornos F, Simoneit B R. 2010. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian basin (El Soplao, Cantabria, Spain): Pleochemotaxonomic aspects. Organic Geochemistry, 41(10): 1089~1103.
参考文献
Menor S C, Simoneit B, Ruiz B M, Alonso J. 2016. The molecular composition of Cretaceous amber: Identification and chemosystematic relevance of 1, 6-dimethyl-5-alkyltetralins and related bisnorlabdane biomarkers. Organic Geochemistry, 93: 7~21.
参考文献
Murray A P, Edwards D, Hope J M, Boreham C J, Booth W E, Alexander R A, Summons R E. 1998. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Organic Geochemistry, 29(5): 1199~1214.
参考文献
Neri M, Roghi G, Ragazzi E, Papazzoni C A. 2017. First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy). Geobios, 50(1): 49~63.
参考文献
Nissenbaum A, Yakir D. 1995. Stable isotope composition of amber. ACS Symposium Series, 617: 32~42.
参考文献
Nissenbaum A, Yakir D, Langenheim J H. 2005. Bulk carbon, oxygen, and hydrogen stable isotope composition of recent resins from amber-producing Hymenaea. Die Naturwissenschaften, 92(1): 26~29.
参考文献
Nohra Y A, Perrichot V, Jeanneau L, Pollès L, Azar D. 2015. Chemical characterization and botanical origin of French ambers. Journal of Natural Products, 78(6): 1284~1293.
参考文献
Otto A, Simoneit B. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65(20): 3505~3527.
参考文献
Otto A, Wilde V. 2001. Sesqui-, di-, and triterpenoids as chemosystematie markers in extant conifers—a review. The Botanical Review, 67(2): 142~224.
参考文献
Otto A, Simoneit B. 2002. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Organic Geochemistry, 33(11): 1241~1251.
参考文献
Otto A, Simoneit B, Wilde V, Kunzmann L, Püttmann W. 2002. Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Review of Palaeobotany & Palynology, 120(3): 203~215.
参考文献
Otto A, Simoneit B, Wilde V. 2007. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Botanical Journal of the Linnean Society, 154(1): 129~140.
参考文献
Paul S, Sharma J, Singh B D, Saraswati P K, Dutta S. 2015. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay basin, western India. International Journal of Coal Geology, 149: 77~92.
参考文献
Pereira R, Carvalho ID, Simoneit B, Azevedo D D. 2009. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recncavo basins, Brazil. Organic Geochemistry, 40: 863~875.
参考文献
Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press.
参考文献
Philp R P. 1985. Fossil Fuel Biomarkers. New York: Elsevier.
参考文献
Philippe M, Cuny G, Suteethorn V, Teerarungsigul N, Barale G, Thévenard F, Le Loeuff J, Buffetaut E, Gaona T, Košir A, Tong H. 2005. A Jurassic amber deposit in southern Thailand. Historical Biology, 17: 1~6.
参考文献
Ren Deyi, Xu Dewei, Zhao Fenghua. 2004. A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57(3): 187~196.
参考文献
Royer D L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23): 5665~5675.
参考文献
Sachse D, Billault I, Bowen G J, Chikaraishi Y, Dawson T E, Feakins S J, Freeman K H, Magill C R, McInerney F A, Polissar P, Robins R J, Sachs J P, Schmidt H L, Sessions A L, White J, West J B, Kahmen A. 2012. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth & Planetary Sciences, 40: 221~249.
参考文献
Schmidt A R, Ragazzi E, Coppellotti O, Roghi G. 2006. A microworld in Triassic amber. Nature, 444(7121): 835.
参考文献
Schmidt A R, Perrichot V, Svojtka M, Anderson K B, Belete K H, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E. 2010. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the United States of America, 107: 7329~7334.
参考文献
Schmidt A R, Jancke S, Lindquist E E, Ragazzi E, Roghi G, Nascimbene P C, Schmidt K, Wappler T, Grimaldif D A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences of the United States of America, 109(37): 14796~14801.
参考文献
Schouten S, Woltering M, Rijpstra W, Sluijs A, Brinkhuis H, Sinninghe D. 2007. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic. Earth & Planetary Science Letters, 258(3): 581~592.
参考文献
Sessions A L, Burgoyne T W, Schimmelmann A, Hayes J M. 1999. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30(9): 1193~1200.
参考文献
Shi G, Dutta S, Paul S, Wang B, Jacques F. 2014. Terpenoid compositions and botanical origins of late cretaceous and Miocene amber from China. PLOS One, 9(10): 1~8.
参考文献
Simoneit B. 1986. Cyclic terpenoids of the geosphere. In: Jones R B, ed. Biological Markers in the Sedimentary Record. New York: Elsevier.
参考文献
Simoneit B, Grimalt J O, Wang T G, Cox R E, Hatcher P G, Nissenbaum A. 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry, 10(4): 877~889.
参考文献
Simoneit B, Oros D R, Karwowski Ł, Szendera Ł, Smolarek L J, Goryl M, Bucha M, Rybicki M, Marynowski L. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430.
参考文献
Simoneit B, Otto A, Menor S C, Oros D R, Wilde V, Riegel W. 2021. Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Organic Geochemistry, 152: 104138.
参考文献
Stern B, Moore C, Heron C, Pollard A M. 2008. Bulk stable light isotopic ratios in recent and archaeological resins: Towards detecting the transport of resins in antiquity? Archaeometry, 50(2): 351~370.
参考文献
Sternberg L. 1989. Oxygen and Hydrogen Isotope Ratios in Plant Cellulose: Mechanisms and Applications. New York: Springer.
参考文献
Strachan M G, Alexander R, Kagi R I. 1988. Trimethylnaphthalenes in crude oils and sediments: Effects of source and maturity. Geochimica et Cosmochimica Acta, 52(5): 1255~1264.
参考文献
Strauss H, Peters K W. 2003. The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter. Geochemistry, Geophysics, Geosystems, 4(10): 1~15.
参考文献
Tappert R, McKellar R C, Wolfe A P, Tappert M C, Ortega B J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, 121(128): 240~262.
参考文献
Tian Zhongfu, Hu Zhongjuan, Kong Lingzhen. 2011. Gas-bearing properties of coal-bed gas in Shenbei coalfield. Coal Technology, 30(1): 136~137 (in Chinese with English abstract).
参考文献
Wang Bo, Zhang Haichun, Azar D. 2011. The first Psychodidae (Insecta: Diptera) from the lower Eocene Fushun amber of China. Journal of Paleontology, 85(6): 1154~1159.
参考文献
Wang He, Dutta S, Kelly R S, Rudra A, Li Sha, Zhang Qingqing, Zhang Qianqi, Wu Yixiao, Cao Meizhen, Wang Bo, Li Jianguo, Zhang Haichun. 2018. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet. Palaeoworld, 27: 506~513.
参考文献
Wang Qing, Ferguson D K, Feng Guangping, Ablaev A G, Wang Yufei, Yang Jian, Li Yelaing, Li Chensen. 2010. Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1): 323~331.
参考文献
Wang Tieguan, Zhong Ningning. 1990. Geochemical investigation of hydrocarbon generation of resinites-on Tertiary resin-originated immature-low matuer oil and gas resources in China. Journal of Oil and Gas Technology, (1): 1~8 (in Chinese with English abstract).
参考文献
Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L. 2002. Spirochete and protist symbionts of a termite(Mastotermes electrodominicus) in Miocene amber. Proceedings of the National Academy of Sciences, 99(3): 1410~1413.
参考文献
Xi Jin, Hu Sherong, Guo Biao, Wang Haosen, Wang Enman. 2012. Study on hydrocarbon generation features of kochenite in Paleogene coal of Huangxian basin. Coal Science and Technology, 40(7): 108~111 (in Chinese with English abstract).
参考文献
Xiao Xianming. 1991. The origin of types of resinite and their hydrocarbon-generating characteristics in coal and oil source rocks. Petroleum Exploration and Development, 18(4): 33~39 (in Chinese with English abstract).
参考文献
Xu Dewei, Zhang Yiyong, Ren Deyi, Du Meili, Sui Guangren. 1998. Characteristic of sporopollen assemblage in Shenbei coalfield. Coal Geology of China, 10(4): 3 (in Chinese with English abstract).
参考文献
包建平, 陈希文, 朱翠山. 2016. 珠江口盆地原油中C15新倍半萜烷及其母源. 中国科学: 地球科学, 46(9): 1241~1251.
参考文献
Bojesen-koefoed J A, Christiansen F G, Petersen H I, 姜峰. 1999. 格陵兰东北地区的富树脂煤: 一种从未认识的高富油侏罗系源岩. 天然气地球科学, 10: 69~75.
参考文献
程林, 韩德馨. 1999. 黑龙江东宁煤田主要煤层的树脂体特征及成因分析. 中国煤炭地质, 11(4): 14~16.
参考文献
戴卿林, 梅博文. 1988. 树脂二萜类的成岩产物及其热转变. 石油与天然气地质, 9(2): 115~124.
参考文献
贾蓉芬, 傅家谟, 徐世平, 刘德汉, 张惠之. 1987. 抚顺煤树脂体成烃的初步实验研究——Ⅰ. 烃的产率与性质. 中国科学(B辑), 17(1): 88~94.
参考文献
姜尧发, 代世峰, 王伟铭, 赵蕾. 2021. 中国新生代煤的煤岩学孢粉学和地球化学研究. 北京: 地质出版社.
参考文献
金建华, 商平. 1998. 辽宁沈北煤田早第三纪植物群的发现. 中山大学学报: 自然科学版, 37(6): 129~130.
参考文献
刘牧灵. 1990. 东北地区晚白垩世—第三纪孢粉组合序列. 地层学杂志, 14(4): 277~285.
参考文献
田忠福, 胡忠娟, 孔令珍. 2011. 沈北煤田煤层含气性特征. 煤炭技术, 30(1): 136~137.
参考文献
王铁冠, 钟宁宁. 1990. 树脂体成烃的地球化学研究——兼论我国第三系树脂体成因的未成熟-低成熟油气资源. 石油天然气学报, (1): 1~8.
参考文献
席晋, 胡社荣, 郭彪, 王浩森, 汪恩满. 2012. 黄县盆地古近纪煤中琥珀树脂体生烃特征研究. 煤炭科学技术, 40(7): 108~111.
参考文献
肖贤明. 1991. 中国煤及生油岩中树脂体的成因类型及成烃特征. 石油勘探与开发, 18(4): 33~39.
参考文献
许德伟, 张一勇, 任德贻, 杜美利, 隋广仁. 1998. 沈北煤田孢粉组合特征. 中国煤田地质, 10(4): 3.
目录contents

    摘要

    琥珀是由古代植物代谢产生的树脂聚合物形成的化石。琥珀中的有机质保存环境稳定、封闭,能很好地记载其形成时期的古植物和古环境等信息。本次研究运用气象色谱质谱联用仪(GC-MS)和元素分析稳定同位素质谱仪(EA-IRMS)等测试方法,研究了沈北煤田煤中琥珀的有机地球化学组成、稳定同位素和化合物单体碳同位素特征。结果表明,琥珀中的饱和烃以二萜化合物为主(占73.45%),芳香烃以松香烷型化合物为主(56.17%);高含量的贝壳杉烷、雪松烷、扁枝烷和松香烷型化合物指示琥珀来源于松柏类植物,且以柏科植物为主。沈北琥珀的δ13C值为-22.8‰~-21.2‰,与同时期其他地区琥珀的δ13C值相似;氢同位素变化范围较小(-297.2‰~-276.0‰),氧同位素值为17.4‰~31.6‰。琥珀的稳定同位素组成(碳、氢和氧)进一步证明琥珀来源于裸子植物。琥珀的δ13C值主要与其形成时的全球气温变化和大气组成有关。沈北琥珀的氢和氧同位素组成主要受植物种类(松柏类)以及植物生长的局部气温和降水条件有关。琥珀稳定碳同位素有望成为研究古气候和古大气组成的良好载体,琥珀的氢和氧同位素可以反映形成时期的古环境条件,但仍需进一步深入研究。

    Abstract

    Ambers are fossils formed from resinous polymers produced by the metabolism of ancient plants. The organic matter in amber is preserved in a stable and closed environment and could provide a good record of information about the ancient plants and palaeoenvironment during the formation of ambers. In this study, the organic geochemical composition, stable isotope and carbon isotope of individual compounds in ambers from the Shenbei coalfield were investigated using gas chromatography-mass spectrometry (GC-MS) and elemental analysis isotope ratio mass spectrometry (EA-IRMS). The results show that the saturated hydrocarbons in amber are dominated by diterpane compounds (73.45%) and the aromatic hydrocarbons are dominated by abietane-type compounds (56.17%); the high content ofkaurane, cedrane, phyllocladane, and abietane-type compounds indicate that ambers originated from conifers and are dominated by the Cupressaceae family. The δ13C values for ambers from the Shenbei coalfield are -22.8‰~-21.2‰, similar to those of ambers from other regions of the same period; the hydrogen isotopes are less variable (-297.2‰~-276.0‰) and the oxygen isotope values range from 17.4‰ to 31.6‰. The stable isotopic composition of amber (carbon, hydrogen, and oxygen) provides further evidence that amber is of gymnosperm origin. The δ13C values of amber are mainly related to global temperature variations and atmospheric composition at the time during its formation. The hydrogen and oxygen isotopic compositions of ambers from the Shenbei coalfield are mainly related to the plant species (Pinus) and the local temperature and precipitation conditions in which the plants grew. Stable carbon isotopes of ambers are expected to be a good indicator for the study of palaeoclimate and palaeo-atmospheric composition, and the hydrogen and oxygen isotopes of ambers may reflect paleoenvironmental conditions at the time of formation, but further research is needed on the stable isotope of ambers.

    关键词

    琥珀碳同位素植物来源始新世古环境

  • 琥珀,又被称为树脂化石,通常保存在煤层和富木质沉积岩中(Simoneit et al.,2020)。对琥珀的地球化学的研究历久弥新,因为琥珀不仅可以形成未成熟—低成熟煤成烃(王铁冠等,1990; 肖贤明,1991; Bojesen-koefoed et al.,1999; 席晋等,2012),而且能够以三维立体的形式保存各种动物、植物和微生物,极具科学价值(Langenheim,1969; Schmidt et al.,20062012; Dutta et al.,2014)。琥珀主要分布在新生代含煤地层(贾蓉芬等,1987; 程林等,1999; Dutta et al.,2009; 席晋等,2012; Wang He et al.,2018; Simoneit et al.,2020),中生代特别是白垩纪煤中的琥珀也常见报道(Philippe et al.,2005; Wang Bo et al.,2011; Schmidt et al.,2012; Shi Gongle et al.,2014; Menor-Salván et al.,2016; Neri et al.,2017),最古老的琥珀发现于古生代石炭纪(~320 Ma)的煤中(Bray et al.,2009)。琥珀是植物代谢产生的树脂聚合物的化石(Nohra et al.,2015),一般来源于裸子和被子植物等高等植物(Dutta et al.,2014; Bechtel et al.,2016; Simoneit et al.,2021)。琥珀的化学组成因受植物来源、气候条件和成岩作用影响,具有多样化,但通常存在多种萜类化合物(Dutta et al.,2014; Simoneit et al.,2020)。

  • 绝大多数情况下,化石化过程会导致古生物学信息会产生重大改变或损失。然而,树脂在这一过程中能够保存良好的古生物学和古环境信息(Delclòs et al.,2007),极具研究价值。琥珀是有机软组织(如节肢动物、植物遗骸和微生物等)化石化的最佳载体之一(Grimaldi et al.,2000; Wier et al.,2002; Schmidt et al.,2006),其包裹物中的生物体是最好化石记录,能记录古生态系统信息(Antoine et al.,2006; Girard et al.,2009; Schmidt et al.,2010)。同时,琥珀本身的地球化学组成对古生态研究也具有十分重要的研究意义(Menor-Salván et al.,2010)。与其他陆生植物成分相比,琥珀作为高度聚合的化合物,其化学性质十分稳定,是研究地质时期环境变化的良好载体(Tappert et al.,2013)。虽然琥珀的化学成分会受到成岩作用的影响,如不饱和键减少和芳香化基团增多等,但其中的多种萜类化合物及其衍生物仍可以保留生物前体的基本骨架结构,是良好的生物标志化合物(Otto and Simoneit,2001; Peters et al.,2005; Menor-Salván et al.,2010),且其稳定同位素组成受成岩作用影响很小(Nissenbaum et al.,2005),保留了原始植物来源和古气候的同位素等信息(Tappert et al.,2013)。近期研究表明,琥珀的碳同位素组成和变化特征可以作为古大气(O2,CO2)重建的工具(Tappert et al.,2013; Dal Corso et al.,2017)。因此,通过研究琥珀的地球化学组成特征不仅能够了解琥珀形成的生物多样性和生物地球化学过程,还能提取其形成时的陆地生态系统和古气候变化等信息(Anderson et al.,1995)。

  • 我国的琥珀化石主要分布在中、新生代沉积盆地中,典型代表有辽宁抚顺和沈北,山东黄县和广西百色等地的褐煤盆地(王铁冠等,1990; 肖贤明,1991; 程林等,1999)。前期研究主要集中在琥珀的分类和琥珀煤的生烃潜力等方面(贾蓉芬等,1987; 戴卿林等,1988; 席晋等,2012),对其植物学来源和同位素组成特征研究较少。本文以辽宁沈北煤田煤层中的琥珀为研究对象,分析琥珀的生物标志化合物组成和稳定同位素组成特征,讨论沈北煤田煤中琥珀的植物学来源与分类,探讨琥珀稳定同位素的地质意义,剖析琥珀形成时期的古环境与古气候特征。

  • 1 地质背景

  • 沈北煤田位于华北克拉通北缘,面积大约400 km2,褐煤储量约800 Mt(Ren Deyi et al.,2004),有蒲河、大桥、清水和前屯等多个煤矿(图1),地层由老到新依次为震旦系、侏罗系、白垩系、古近系、新近系和第四系(金建华等,1998)。盆地基地为震旦纪灰白色中厚层石英岩或石英砂岩,始新世陆相沉积物包含丰富的砾岩、含动物化石层、含植物化石、褐煤、泥岩和凝灰岩层。含煤地层主要为始新世杨连屯组,含煤层厚8~60 m,平均为31 m,自上而下划分为甲组一号煤,甲组二号煤(甲2煤)和乙组煤层,其中甲组煤层全区可采(图1)。研究区蒲河矿区位于沈北煤田东部,地理坐标为东经123°30′~123°38′,北纬41°56′~42°00′,矿区内断层较为发育(田忠福等,2011)。琥珀主要赋存在甲2煤中,呈现层状和集合体的形式,琥珀颗粒形态各异,有球状、针状、片状和透镜状等,粒度在0.3~1 cm之间(图2)。

  • 图1 沈北煤田地理位置图和地层柱状图

  • Fig.1 Location and the stratigraphic column of the Puhe mine in Shenbei coalfield

  • 研究区始新世时期裸子植物以衫科和柏科为主,被子植物以华科、胡桃科和山毛榉科为主(刘牧灵,1990),并有一定量的蕨类植物。孢粉组合为水龙骨单缝孢(Polypodiaceaesporites)~杉科粉(Taxodiaceaepollenites hiatus)~栎粉(Quercoidites)组合(许德伟等,1998),整体上与同时期抚顺、吉林珲春和黑龙江嘉荫等地的植物特征相似(金建华等,1998)。蒲河矿区孢粉结果表明被子植物花粉以衫科、栎科和胡桃科为主,含量为55.18%,裸子植物花粉以衫科为主,含量为27%,还有较多的PinuspollenitesCedripites,蕨类孢子含量为17.82%(许德伟等,1998)。甲2号煤中的孢粉以衫科、桦科、榆科等为主,松科花粉十分常见,而蕨类孢子较为稀少(姜尧发等,2021),植被组合特征表明研究区始新世为温暖潮湿的暖温带-亚热带气候(许德伟等,1998; 姜尧发等,2021)。根据其植被组成特征与抚顺盆地早始新世植被的差异性,沈北煤田蒲河矿区煤层可能形成于中晚始新世(姜尧发等,2021)。

  • 2 样品采集和实验方法

  • 2.1 样品采集和制备

  • 琥珀样品来源于沈北煤田甲2煤。室内利用镊子和刻刀将琥珀颗粒从煤样中剥离出来,并仔细去除附着的原煤颗粒,得到纯的琥珀集合体,然后研磨至200目粉末,备用。

  • 2.2 族组分分离与测试

  • 取4 g琥珀粉末,使用快速萃取仪(Dionex ASE 350)提取其中的可溶有机质,然后利用色谱层析柱进行族组分分离。饱和烃和芳香烃的组成使用气相色谱质谱仪(Agilent 7890B-Agilent 5977A)测试,而后利用安捷伦定量分析软件对所得色谱图进行定性和定量分析,通过对比色谱总离子流图的保留时间、对比NIST数据库和已发表文献(Philp,1985; Menor-Salván et al.,2016; Liu Bangjun et al.,2019)鉴定所得化合物。对化合物在总离子流图上的面积进行积分,定量计算各化合物的相对百分比含量。相关实验在河北省资源勘测重点实验室完成。

  • 2.3 稳定同位素测试

  • 碳同位素(δ13C)、氢同位素(δD)、氧同位素(δ18O)由连接元素分析仪(Flash EA 1112)的MAT253plus型气体同位素质谱仪进行在线分析,其中碳同位素详细分析步骤与前人相同(Bechtel et al.,2008),利用高温裂解还原法测定琥珀的氢同位素,氧同位素采用五氟化溴离线制样法制样后,进行双路测定。用于测试碳、氢和氧稳定同位素的标准物质分别为国家标准物质GBW04407(-22.43‰±0.07‰)、国际原子能机构IAEA标准物质IAEA-CH-7(-100.3‰±2‰)和USGS-56(27.12‰±0.1‰),测试误差分别小于0.2‰、3‰和0.4‰。所有样品均测试两次取平均值。相关实验在北京锆年领航科技有限公司完成。

  • 3 结果与讨论

  • 3.1 生物标志化合物组成及植物学意义

  • Liu Bangjun et al.(2022)对沈北煤田琥珀中的生物标志化合物组成进行了初步研究。因此,本研究在简述琥珀生物标志化合物组成的同时,进一步定量分析琥珀中化合物的组成特征及其植物学贡献,同时提出沈北煤田琥珀中主要化合物的合成途径。

  • 图2 沈北煤田煤中观察到的琥珀(a~c)

  • Fig.2 Ambers observed in the coal (a~c) from the Shenbei coalfield

  • 3.1.1 饱和烃

  • 饱和烃主要由倍半萜和二萜化合物组成,以二萜化合物为主,其含量占饱和烃的73.45%,倍半萜含量较少,含量为8.45%,另外还有部分未知化合物占18.1%,化合物的详细含量占比见表1。

  • 表1 沈北煤田琥珀饱和烃中主要的化合物及其相对含量

  • Table1 Major compounds identified in the saturated fraction of ambers from the Shenbei coalfield

  • (1)倍半萜。它在褐煤、原油和树脂中较为常见(Bechtel et al.,2016; 包建平等,2016; Liu Bangjun et al.,2019),通常来源于高等植物和微生物作用(Philp,1985; 包建平等,2016)。沈北煤田琥珀煤中的倍半萜以饱和、不饱和C15化合物为主,其中雪松烷含量最高,占饱和烃含量的2.74%,长叶蒎烯次之(1.28%),其余化合物含量均<1%(表1)。倍半萜通常来源于裸子植物(Otto and Wilde,2001),雪松烷和花侧柏烯常见于柏科类植物(Grantham et al.,1980; Bechtel et al.,2016),长叶烷/烯类化合物在松科和柏科类植物中较为常见(Otto and Simoneit,2001),而桉叶烷在除南洋杉科和红豆杉科以外的裸子植物中普遍存在(Otto and Simoneit,2001; Liu Bangjun et al.,2019)。虽然近期研究发现花侧柏烯类化合物也能在龙脑香科中检测到(Dutta et al.,2011; Paul et al.,2015),但琥珀中未发现其他被子植物生物标志化合物。综上,琥珀中少量的倍半萜化合物主要来自于柏科类裸子植物。

  • (2)二萜。二萜化合物在饱和烃中的比例远大于倍半萜化合物,除部分三环二萜化合物的含量低于1%,其他二萜类化合物均高于1%,其中含量最高的是18-降松香烷(15.26%),其次为松香烷(11.06%),贝壳杉烷类化合物也有相当大的比例(>10%,表1)。二萜化合物是指示沉积物、烃源岩和原油中裸子植物来源的良好生物标志化合物(Bechtel et al.,2008; Jiang Lian et al.,2020; Liu Bangjun et al.,2022),不同类型的二萜类化合物可以指示不同类别的裸子植物(Otto and Wilde,2001)。含量最高的松香烷类化合物,如18-降松香烷/烯和松香烷,广泛分布于针叶类植物中,酚类二萜和海松烷可能是这类化合物的生物源前体物(Dev,1989; Bechtel et al.,2016);对映-贝壳杉烷和扁枝烷是琥珀中较为常见的二萜化合物(Simoneit et al.,1986; Pereira et al.,2009),通常来源于柏科、罗汉松科和杉科植物,但在松科植物中少见(Otto and Wilde,2001);异海松烷也是裸子植物中较为常见的二萜化合物,通常用来指示松科、柏科和衫科植物。上述二萜化合物可以由半日花烷型化合物演化形成(图3)。沈北煤田琥珀的海松烷类化合物含量很低而对映-贝壳杉烷含量较高的特征,表明松科植物对琥珀的形成贡献较小。此外,琥珀中还检测到一些低含量三环二萜化合物,可能也具有裸子植物起源。

  • 3.1.2 芳香烃

  • 芳香烃化合物主要包括双环和三环萜类化合物以及部分烷基化合物(表2),其中松香烷型芳烃化合物在芳烃中占比最多,总量为56.17%。脱氢松香烷和西蒙内利烯在芳香烃中的含量最高,均超过10%,降松香烷化合物种类较多,如降松香烷三烯、双降松香烷三烯和三降松香烷三烯等(含量均为2%~4%)。此外,卡达烯结构的倍半萜芳香化合物种类较多,如卡达烯和四氢-卡达烯等,但含量较低(0.5%~4%)。烷基类化合物,如紫罗烯、三甲基-萘和四甲基-四氢化萘等,含量在0.2%~3%之间。

  • 图3 琥珀烯、升琥珀烯和常见二萜化合物的成岩作用形成途径(*表示在沈北琥珀中检测到)

  • Fig.3 Proposed diagenetic pathways for the amberene, homoamberene, and common diterpenoids in ambers (compounds marked with an asterisk indicate that they have been detected in the studied ambers)

  • (1)松香烷型芳烃化合物。它是琥珀中常见的组成物质(Pereira et al.,2009; Bechtel et al.,2016; Menor-Salván et al.,2016),可能是由脱氢松香酸或者松香烯类化合物衍生而来(图4)(Simoneit et al.,1986)。脱氢松香烷也可以通过脱甲基和芳香化作用形成西蒙内利烯,最终形成惹烯类化合物(图4)(Otto and Simoneit,2002),而其他的降松香烷类芳烃化合物也可以由脱氢松香烷或者其他松香烷结构萜类化合物演化生成(Otto and Simoneit,2002; Pereira et al.,2009)。饱和烃中检测到的贝壳杉烷也可以在酸性环境中形成松香烷类化合物(Alexander et al.,1987)。此类化合物常常在松科和柏科的树脂中发现,具有明显的裸子植物起源(Otto et al.,2007),与饱和烃的分析结果一致。

  • (2)琥珀烯(amberene)和升琥珀烯(homoamberene)。这是近期被命名为指示琥珀的生物标志化合物(Bechtel et al.,2016; Menor-Salván et al.,2016),这两种化合物的鉴定过程最近被详细研究过(Menor-Salván et al.,2016),其结构式见图3。琥珀烯曾被认为只存在于白垩纪琥珀中(Menor-Salvánet al.,2016),但近期在俄罗斯始新世Voznovo褐煤和Sakhalin岛上的琥珀中也发现了此类化合物(Bechtel et al.,2016),此外升琥珀烯在南洋杉科植物的热解产物也被检测到(Lu et al.,2013)。沈北煤田琥珀中琥珀烯和升琥珀烯的含量分别占芳烃化合物的1.60%和1.49%(表2)。Menor-Salván et al.(2016)认为琥珀烯作为四氢化萘的衍生物,与半日花烷类化合物有紧密的关系,它们可能有相同的植物学来源或者琥珀烯是由半日花烷的聚合物老化形成(图3)。琥珀烯和松香烷类化合物的组成比例也可以推测琥珀的植物学来源,沈北煤田琥珀中较低含量的琥珀烯和较高含量的松香烷类化合物特征,指示其起源于柏科类植物。

  • 表2 沈北煤田琥珀芳香烃中主要的化合物及其相对含量

  • Table2 Major compounds identified in the aromatic fraction of ambers from the Shenbei coalfield

  • 图4 沈北琥珀中松香型化合物的形成途径(*表示在沈北琥珀中检测到)

  • Fig.4 Proposed diagenetic pathways for abietane-type compounds in the ambers from the Shenbei coalfield (compounds marked with an asterisk indicate that they have been detected in the studied ambers)

  • (3)其他化合物。琥珀中检测到的卡达烯类化合物既可以来自于柏科植物,也可以来源于被子植物(Simoneit,1986)。但本次研究未发现被子植物的其它生物标志化合物,因此推断此类化合物主要来自于柏科植物。烷基类化合物如三甲基萘等,是成岩过程中萜类化合物降解形成的产物(Strachan et al.,1988);紫罗烯、烷基苯和烷基萘等也是琥珀中常见的化合物,可由倍半萜和二萜化合物经成岩作用降解所形成的(Otto et al.,2002; Menor-Salván et al.,2010)。此类化合物的出现表明沈北煤田中的琥珀经历了一定程度的降解作用。

  • 3.2 琥珀的稳定同位素组成及其古环境意义

  • 植物代谢过程中天然稳定同位素的分馏是追踪近代和古代生物地球化学过程的有力工具(Murray et al.,1998; Nissenbaum et al.,2005; Tappert et al.,2013),特别是植物纤维素、脂类和叶蜡等有机碳同位素的广泛运用极大地丰富了古环境和古气候研究(Schouten et al.,2007; Bechtel et al.,2008; Gessler et al.,2014; Lu Jing et al.,2020)。琥珀或树脂作为陆生植物的代谢产物,与其他有机质相比能够更好地保存关于古植物和古环境的原始信息(Tappert et al.,2013)。地质体中琥珀的化学成分和同位素组成在并不会像其他化合物一样发生显著的改变(Nissenbaum et al.,1995),能更好地指示古气候变化(Tappert et al.,2013; Dal Corso et al.,2017),但目前关于琥珀同位素的研究和相关数据仍然很少(Murray et al.,1998; Kocsis et al.,2019)。沈北煤田中琥珀集合体和单颗粒(HP-1到HP-10)的稳定同位素(C、H、O)组成见表3。

  • 表3 沈北煤田琥珀原样、可抽提物和抽提残渣的碳、氢和氧同位素对比

  • Table3 Stale carbon, hydrogen and oxygen composition of bulk amber, extractable organic matter and extracted residues of ambers from the Shenbei coalfield

  • 3.2.1 稳定碳同位素组成

  • 沈北煤田中琥珀原样的碳同位素(δ13C)的变化范围为-22.8‰~-21.2‰,可抽提物和抽提残渣的碳同位素分别为-21.5‰和-22.4‰,均在琥珀原样的变化范围内,可见琥珀及其各组成成分的碳同位素差异很小。但其生物标志化合物的δ13C值的变化范围相对较大(Liu Bangjun et al.,2022),仅二萜化合物的δ13C值与原样十分相近,倍半萜和芳香烃与原样的δ13C值有一定的差距,可能与化合物的生物合成过程不同有关(Liu Bangjun et al.,2022)。沈北琥珀的碳同位素值在C3植物和现代柏科类植物的范围内(Tappert et al.,2013),与生物标志化合物的结果一致,表明琥珀来自于以柏科植物为主的裸子植物。与常见有机质的碳同位素组成相比,沈北琥珀的δ13C值与琥珀化石的δ13C值较为接近,但高于现代树脂(图5),可能是琥珀中δ13C值较低的单萜或者倍半萜等挥发导致(Tappert et al.,2013)。琥珀化石的碳同位素组成更接近于煤和纤维素的碳同位素组成,而略高于脂类物质,可能也是由于上述原因所导致(Tappert et al.,2013)。

  • 与其他陆相有机物(如煤、煤化植物和角质层)相比,琥珀的δ13C值更稳定,且不同植物产生的琥珀其δ13C值具有相似性(Strauss et al.,2003; Tappert et al.,2013)。沈北琥珀的δ13C值与北美中晚始新世琥珀的δ13C值(-22.5‰~-21.7‰)相近(图6;Tappert et al.,2013),也证实了这一结论。由于13C值较高的纤维素在化石化过程中被破坏,白垩纪以来的陆相总有机质的δ13C值比同时期琥珀的δ13C值要低2.5‰左右。植物的稳定碳同位素组成受多种因素的影响,如植物种类、降水、温度和大气组成等,但琥珀在硬化后不久就成为一个封闭的碳同位素系统(Dal Corso et al.,2017),其碳同位素受外部因素(如成岩作用)影响很小,因此能成为推断中新生代古大气(O2,CO2)组成的重要指标(Tappert et al.,2013; Dal Corso et al.,2017)。Tappert等发现新生代地层中琥珀的平均δ13C值负偏移与海洋碳酸盐岩δ18O值的负偏移趋势一致,δ18O值的负偏移代表较高的全球温度(Bemis et al.,1989),全球气温的升高与CO2高含量密不可分(Royer,2006),因此认为琥珀δ13C值的变化可能与大气中CO2含量变化有关(Tappert et al.,2013)。Tappert et al.(2013)利用琥珀稳定碳同位素预测了白垩纪以来大气中氧气含量变化,发现大气中O2含量与CO2含量呈明显负相关,大气中氧气含量越高,通过光呼吸作用消耗的氧气越多,这导致植物细胞内二氧化碳的增加,从而增加13C分馏,因此强调,大气中含氧量的变化才是植物碳同位素分馏长期变化的重要影响因素,因为低氧量条件下生长的植物会比高含氧量条件下生长的植物更富集13C。通过对比白垩纪以来全球范围内琥珀的δ13C值发现(图6),琥珀的δ13C值与全球气温变化有着良好的相关性(除早始新世暖期和古新世—始新世极热事件等特殊事件外),表明植物的碳同位素分馏与气温变化(O2与CO2的比例)紧密相关。植物学和地层学结果表明沈北煤中琥珀形成于中晚始新世,其δ13C值与同时期全球琥珀的稳定碳同位素值十分相近,且更接近于中始新世琥珀的δ13C值(图6),这也从侧面说明琥珀的稳定碳同位素组成受地域和植物种类的影响较小,是指示古气候变化和大气组成的有力指标。近期基于白垩纪琥珀对大气组成的研究也证实了这一推断(Dal Corso et al.,2017)。

  • 图5 沈北煤田琥珀稳定碳同位素组成及其和常见有机质的碳同位素对比(据Tappert et al.,2013修改; 倍半萜、二萜和芳香烃同位素数据来自于Liu Bangjun et al.,2022

  • Fig.5 Stable carbon isotope compositions of the Shenbei ambers and their comparison with carbon isotopes of common organic matters (modified after Tappert et al., 2013; data of sesquiterpenoids, diterpenoids and aromatics from Liu Bangjun et al., 2022)

  • 图6 沈北煤田琥珀的δ13C值与白垩纪以来全球琥珀的δ13C值对比以及琥珀的δ13C值与主要气候事件的关系(据Tappert et al.,2013修改)

  • Fig.6 The comparison of the δ13C values of amber from Shenbei coalfield and those from all the world and the relationship between the δ13C values of amber and major climate events since the Cretaceous (modified after Tappert et al., 2013)

  • 3.2.2 稳定氢同位素组成

  • 虽然对琥珀的氢、氧同位素组成研究较少(Nissenbaum et al.,19952005; Gaigalas et al.,2009),但有机化合物的氢、氧同位素正逐渐成为古水文和古气候研究的重要工具(Sachse et al.,2012)。由于琥珀的化学结构在埋藏过程中几乎不受影响(Simoneit et al.,1986),因此其氢、氧同位素组成可以很好地反映原始的古水文和古气候条件。

  • 沈北煤田中琥珀的氢同位素组成与常见有机质的对比见图7。可以发现,琥珀原样的氢同位素值(δD)为-297.2‰~-276.0‰,氢同位素分馏较小(~20‰),且各组成部分的氢同位素值(δD)差别不大,均在原样的δD值范围内,但明显低于其他有机质(如植物、煤、石油等)的δD值,也位于其他琥珀和树脂δD值的低值区(图7)。有机质氢同位素分馏主要受外部环境中水的氢同位素组成的影响,温度、蒸发和降水等是影响环境水中δD值的重要因素(Bechtel et al.,2020)。此外,水与生物质之间的氢同位素分馏是恒定的,只受有机化合物形成的生物地球化学途径控制,如光合作用等(Sessions et al.,1999)。Bechtel et al.(2020)发现来源于松柏科类的海松烷等二萜化合物的δD值很低(-300‰左右),认为是由于该类植物特定的生物合成途径导致。沈北煤田琥珀的δD值很低,推测与琥珀中含有大量的来自于松柏科植物的二萜类化合物有关。但是降水和温度的变化对沈北煤田琥珀氢同位素的影响也不能排除,因为蒸腾作用或者较冷的气温也可能导致有机质的δD值降低(Sachse et al.,2012; Bechtel et al.,2020),这可能与研究区中晚始新世时期气候变化有关(Wang Qing et al.,2010; Meng Qingtao et al.,2012)。

  • 3.2.3 稳定氧同位素组成

  • 由于琥珀的生物合成路径不同于其它碳水化合物,琥珀氧同位素的缺乏在一定程度上限制了对其形成过程和其形成时期古环境的了解(Nissenbaum et al.,1995)。有机质的氧同位素组成主要受水中氧的同位素影响(DeNiro et al.,1979; Sternberg,1989),由于水向有机质转化过程中的生物合成分馏,琥珀的氧同位素值(δ18O)要高于全球大气降水线(Stern et al.,2008)。沈北煤田琥珀的δ18O值为17.4‰~31.6‰,变化范围较大,但仍在陆相木化石纤维素氧同位素的变化范围内,且大部分与松属植物δ18O值重合(图7),进一步说明沈北煤田琥珀来源于松柏类植物。琥珀可抽提物和抽提残渣的δ18O值变化较大,但在琥珀原样的δ18O值的范围内。Barbour et al.(2001)发现,松属木材抽提物的δ18O值有较大的变化范围,且全木的δ18O值比抽提物和木质素的δ18O值高,但纤维素的δ18O值最高,此外,全木和纤维素的δ18O值与雨水的δ18O值和年平均气温呈正相关,表明氧同位素变化与局部气候紧密相关。对现代树脂的研究结果表明,树脂与碳水化合物的生物合成过程不同,其氧同位素富集可能是因为环境中蒸发的水参与了树脂的合成而不是降水(Nissenbaum et al.,2005)。沈北琥珀相对较为富集18O值,但变化范围较大,可能是与植物种类(松柏类)以及受气温影响局部降水不同有关,因为研究区中上新世的年平均气温和年降雨量要高于现在(Wang Qing et al.,2010; Meng Qingtao et al.,2012)。

  • 4 结论与展望

  • (1)沈北煤田始新世琥珀的饱和烃以二萜类化合物为主,芳烃化合物中以松香烷型化合物为主,松香烷型芳香化合物主要来自于琥珀或植物中的松香烷和松香酸。

  • 图7 沈北煤田琥珀氢和氧同位素组成(a)与常见有机质氢氧同位素(b)对比(据Nissenbaum et al.,1995修改)

  • Fig.7 Comparison of hydrogen and oxygen isotopic compositions of the ambers from the Shenbei coalfield (a) with the hydrogen and oxygen isotopes of common organic matters (b) (modified after Nissenbaum et al., 1995)

  • (2)饱和烃和芳香烃中高含量的二萜类化合物(>50%)表明沈北煤田中的琥珀来源于裸子植物;饱和烃中高含量的松香烷、雪松烷、长叶蒎烯、贝壳杉烷和扁枝烷,以及芳香烃中高含量的松香烷型化合物表明柏科植物是琥珀的主要植物前体,但也不能排除少量松科植物对琥珀的贡献。进一步研究极性烃的组成可以更加深入地了解琥珀的植物学起源。

  • (3)沈北琥珀的碳同位素值变化很小(-22.8‰~-21.2‰),且与同时期其他地区琥珀的δ13C值相似。琥珀的稳定碳同位素受成岩作用影响很小,主要与其形成时的全球气温变化相关(O2与CO2的比例),因此可能成为指示古气候变化和大气组成的有效指标。

  • (4)沈北琥珀的氢同位素变化范围较小,而氧同位素变化范围较大,可能是因为它们具有在生物合成过程中具有不同的分馏特征。氢和氧同位素组成主要受植物种类(松柏类)以及植物生长的局部气温和降水条件有关。琥珀稳定同位素有望成为良好的古气候研究指标,为了更加详细可靠地利用琥珀的稳定同位素来反映其形成时期的古环境(如降水等)和古气候(气温和大气组成等)条件,需要对更多具有明确年龄的琥珀开展研究,同时对比其他相关地球化学参数和海相记录,以提高数据的分辨率和准确性。

  • 参考文献

    • Alexander G, Hazai I, Grimalt J, Albaigés J. 1987. Occurrence and transformation of phyllocladanes in brown coals from Nograd basin, Hungary. Geochimica et Cosmochimica Acta, 51(8): 2065~2073.

    • Anderson K B, Crelling J C. 1995. Amber, resinite, and fossil resins—introduction. American Chemical Society, Washington DC, USA.

    • Antoine P O, De Franceschi D, Flynn J J, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas G R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences of the United States of America, 103(37): 13595~13600.

    • Bao Jianping, Chen Xiwen, Zhu Cuishan. 2016. C15 New sesquiterpene alkanes in crude oils from the Pearl River Mouth basin and their parent sources. Earth Science, 46(9): 1241~1251 (in Chinese).

    • Barbour M, Andrews T, Farquhar G. 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Functional Plant Biology, 28(5): 335~348.

    • Bechtel A, Gratzer R, Sachsenhofer R F, Gusterhuber J, Lücke A, Püttmann W. 2008. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeogr, Palaeoclimatol, Palaeoecol, 262(3): 166~175.

    • Bechtel A, Chekryzhov I Y, Nechaev V P, Kononov V V. 2016. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. International Journal of Coal Geology, 167: 176~183.

    • Bechtel A, Chekryzhov I Y, Pavlyutkin B I, Nechaev V P, Vysotskiy S V, Velivetskaya T A, Tarasenko I A. 2020. Composition of lipids from coal deposits of the Far East: Relations to vegetation and climate change during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109479.

    • Bemis B E, Spero H J, Bijma J, Lea D W. 1989. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150~160.

    • Bojesen-koefoed J A, Christiansen F G, Petersen H I, Jiang Feng. 1999. Resin rich coal in northeastern Greenland: An unrecognized Jurassic source rock with high oil abundance. Natural Gas Geoscience, 10: 69~75 (in Chinese).

    • Bray P S, Anderson K B. 2009. Identification of Carboniferous (320 million years old) Class Ic amber. Science, 326: 132~134.

    • Cheng Lin, Han Dexin. 1999. Characteristics and genesis analysis of resinite in main coal seams in dongning coalfield Heilongjiang Province. Coal Geology of China, 11(4): 14~16 (in Chinese).

    • Dal Corso J, Schmidt A R, Schmidt L J, Preto N, Ragazzi E, Jenkyns H C, Delclòs X, Néraudeau D, Roghi G. 2017. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. Geochimica et Cosmochimica Acta, 199: 351~369.

    • Dai Qinglin, Mei Bowen. 1988. Diagenetic products and thermo-transformation of resinous diterpenoids. Oil and Gas Geology, 9(2): 115~124 (in Chinese with English abstract).

    • Delclòs X, Arillo A, Peñalver E, Barrón E, Soriano C, Valle R L, Bernárdez E, Corral C, Ortuño V M. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus-Palevol, 6(1): 135~149.

    • DeNiro M J, Epstein S. 1979. Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science, 204(4388): 51~53.

    • Dev S. 1989. Terpenoids. In: Rowe J W, ed. Natural Products of Woody Plants. Springer Series in Wood Science. Berlin, Heidelberg: Springer, 691~807.

    • Rowe J W. 1989. Natural Products of Woody Plants. Berlin: Springer, 691~807.

    • Dutta S, Mallick M, Bertram N, Greenwood P F, Mathews R P. 2009. Terpenoid composition and class of Tertiary resins from India. International Journal of Coal Geology, 80(1): 44~50.

    • Dutta S, Tripathi S M, Mallick M, Mathews R P, Greenwood P F, Summons R E. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology, 166(1): 63~68.

    • Dutta S, Saxena R, Singh H. 2014. Exceptional preservation of angiosperm markers in Miocene and Eocene ambers. Geology, 42(2): 155~158.

    • Gaigalas A, Halas S. 2009. Stable isotopes (H, C, S) and the origin of baltic amber. Geochronometria, 33(1): 33~36.

    • Gessler A, Ferrio J P, Hommel R, Treydte K, Werner R A, Monson R K. 2014. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol, 34(8): 796~818.

    • Girard V, Schmidt A R, Struwe S, Perrichot V, Breton G, Néraudeau D. 2009. Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas, 31(1): 153~162.

    • Grantham P J, Douglas A G. 1980. The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochimica et Cosmochimica Acta, 44(11): 1801~1810.

    • Grimaldi D, Agosti D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13678~13683.

    • Jia Rongfen, Fu Jiamo, Xu Shiping, Liu Dehan, Zhang Huizhi. 1987. Preliminary experimental study on hydrocarbon generation of Fushun coal resinite (I) hydrocarbon yield and properties. Scientia Sinica (Chimica), 17(1): 88~94 (in Chinese).

    • Jiang L, George S C. 2020. Geochemical comparison of three oil families from the Gippsland basin, SE Australia. Marine and Petroleum Geology, 121: 104575.

    • Jiang Yaofa, Dai Shifeng, Wang Weiming, Zhao Lei, et al. 2021. Petrology, Palynology, and Geochemistry of Cenooic Coal in China. Beijing: Geology Press (in Chinese).

    • Jin Jianhua, Shang Ping. 1998. Discovery of Early Tertiary floar in Shenbei coalfield, Liaoning. Acta Scientiarum Naturalium Universitatis Sunyatseni, 37(6): 129~130 (in Chinese with English abstract).

    • Kocsis L, Usman A, Jourdan A L, Hassan S H, Jumat N, Daud D, Briguglio A, Slik F, Rinyu L, Futó I. 2019. The Bruneian record of “Borneo Amber”: A regional review of fossil tree resins in the Indo-Australian Archipelago. Earth-Science Reviews, 201: 103005.

    • Langenheim J H. 1969. Amber: A botanical inquiry. Science, 163(3872): 1157~1169.

    • Liu Bangjun, Vrabec M, Markič M, Püttmann W. 2019. Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje basin, Slovenia, by molecular and stable isotope analysis of lignites. International Journal of Coal Geology, 206: 31~45.

    • Liu Bangjun, Bechtel A, Gross D, Zhao Qiaojing, Guo Wenmu, Ajuaba S, Sun Yuzhuang, Zhao Cunliang. 2022. Molecular and carbon isotope composition of hydrocarbons from ambers of the Eocene Shenbei coalfield (Liaoning Province, NE China). Organic Geochemistry, 104436.

    • Liu Muling. 1990. Sequence of Late Cretaceous Tertiary sporopollen assemblages in Northeast China. Journal of Stratigraphy, 14(4): 277~285 (in Chinese).

    • Lu Jing, Zhou Kai, Yang Minfang, Eley Y, Shao Longyi, Hilton J. 2020. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global and Planetary Change, 195: 103331.

    • Lu Y, Hautevelle Y, Michels R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy—Part 1: The Araucariaceae family. Biogeosciences, 10(3): 1943~1962.

    • Meng Qingtao, Liu Zhaojun, Bruch A A, Liu Rong, Hu Fei. 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Sciences, 45: 95~105.

    • Menor S C, Najarro M, Velasco F, Rosales I, Tornos F, Simoneit B R. 2010. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian basin (El Soplao, Cantabria, Spain): Pleochemotaxonomic aspects. Organic Geochemistry, 41(10): 1089~1103.

    • Menor S C, Simoneit B, Ruiz B M, Alonso J. 2016. The molecular composition of Cretaceous amber: Identification and chemosystematic relevance of 1, 6-dimethyl-5-alkyltetralins and related bisnorlabdane biomarkers. Organic Geochemistry, 93: 7~21.

    • Murray A P, Edwards D, Hope J M, Boreham C J, Booth W E, Alexander R A, Summons R E. 1998. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Organic Geochemistry, 29(5): 1199~1214.

    • Neri M, Roghi G, Ragazzi E, Papazzoni C A. 2017. First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy). Geobios, 50(1): 49~63.

    • Nissenbaum A, Yakir D. 1995. Stable isotope composition of amber. ACS Symposium Series, 617: 32~42.

    • Nissenbaum A, Yakir D, Langenheim J H. 2005. Bulk carbon, oxygen, and hydrogen stable isotope composition of recent resins from amber-producing Hymenaea. Die Naturwissenschaften, 92(1): 26~29.

    • Nohra Y A, Perrichot V, Jeanneau L, Pollès L, Azar D. 2015. Chemical characterization and botanical origin of French ambers. Journal of Natural Products, 78(6): 1284~1293.

    • Otto A, Simoneit B. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65(20): 3505~3527.

    • Otto A, Wilde V. 2001. Sesqui-, di-, and triterpenoids as chemosystematie markers in extant conifers—a review. The Botanical Review, 67(2): 142~224.

    • Otto A, Simoneit B. 2002. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Organic Geochemistry, 33(11): 1241~1251.

    • Otto A, Simoneit B, Wilde V, Kunzmann L, Püttmann W. 2002. Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Review of Palaeobotany & Palynology, 120(3): 203~215.

    • Otto A, Simoneit B, Wilde V. 2007. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Botanical Journal of the Linnean Society, 154(1): 129~140.

    • Paul S, Sharma J, Singh B D, Saraswati P K, Dutta S. 2015. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay basin, western India. International Journal of Coal Geology, 149: 77~92.

    • Pereira R, Carvalho ID, Simoneit B, Azevedo D D. 2009. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recncavo basins, Brazil. Organic Geochemistry, 40: 863~875.

    • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press.

    • Philp R P. 1985. Fossil Fuel Biomarkers. New York: Elsevier.

    • Philippe M, Cuny G, Suteethorn V, Teerarungsigul N, Barale G, Thévenard F, Le Loeuff J, Buffetaut E, Gaona T, Košir A, Tong H. 2005. A Jurassic amber deposit in southern Thailand. Historical Biology, 17: 1~6.

    • Ren Deyi, Xu Dewei, Zhao Fenghua. 2004. A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57(3): 187~196.

    • Royer D L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23): 5665~5675.

    • Sachse D, Billault I, Bowen G J, Chikaraishi Y, Dawson T E, Feakins S J, Freeman K H, Magill C R, McInerney F A, Polissar P, Robins R J, Sachs J P, Schmidt H L, Sessions A L, White J, West J B, Kahmen A. 2012. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth & Planetary Sciences, 40: 221~249.

    • Schmidt A R, Ragazzi E, Coppellotti O, Roghi G. 2006. A microworld in Triassic amber. Nature, 444(7121): 835.

    • Schmidt A R, Perrichot V, Svojtka M, Anderson K B, Belete K H, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E. 2010. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the United States of America, 107: 7329~7334.

    • Schmidt A R, Jancke S, Lindquist E E, Ragazzi E, Roghi G, Nascimbene P C, Schmidt K, Wappler T, Grimaldif D A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences of the United States of America, 109(37): 14796~14801.

    • Schouten S, Woltering M, Rijpstra W, Sluijs A, Brinkhuis H, Sinninghe D. 2007. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic. Earth & Planetary Science Letters, 258(3): 581~592.

    • Sessions A L, Burgoyne T W, Schimmelmann A, Hayes J M. 1999. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30(9): 1193~1200.

    • Shi G, Dutta S, Paul S, Wang B, Jacques F. 2014. Terpenoid compositions and botanical origins of late cretaceous and Miocene amber from China. PLOS One, 9(10): 1~8.

    • Simoneit B. 1986. Cyclic terpenoids of the geosphere. In: Jones R B, ed. Biological Markers in the Sedimentary Record. New York: Elsevier.

    • Simoneit B, Grimalt J O, Wang T G, Cox R E, Hatcher P G, Nissenbaum A. 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry, 10(4): 877~889.

    • Simoneit B, Oros D R, Karwowski Ł, Szendera Ł, Smolarek L J, Goryl M, Bucha M, Rybicki M, Marynowski L. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430.

    • Simoneit B, Otto A, Menor S C, Oros D R, Wilde V, Riegel W. 2021. Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Organic Geochemistry, 152: 104138.

    • Stern B, Moore C, Heron C, Pollard A M. 2008. Bulk stable light isotopic ratios in recent and archaeological resins: Towards detecting the transport of resins in antiquity? Archaeometry, 50(2): 351~370.

    • Sternberg L. 1989. Oxygen and Hydrogen Isotope Ratios in Plant Cellulose: Mechanisms and Applications. New York: Springer.

    • Strachan M G, Alexander R, Kagi R I. 1988. Trimethylnaphthalenes in crude oils and sediments: Effects of source and maturity. Geochimica et Cosmochimica Acta, 52(5): 1255~1264.

    • Strauss H, Peters K W. 2003. The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter. Geochemistry, Geophysics, Geosystems, 4(10): 1~15.

    • Tappert R, McKellar R C, Wolfe A P, Tappert M C, Ortega B J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, 121(128): 240~262.

    • Tian Zhongfu, Hu Zhongjuan, Kong Lingzhen. 2011. Gas-bearing properties of coal-bed gas in Shenbei coalfield. Coal Technology, 30(1): 136~137 (in Chinese with English abstract).

    • Wang Bo, Zhang Haichun, Azar D. 2011. The first Psychodidae (Insecta: Diptera) from the lower Eocene Fushun amber of China. Journal of Paleontology, 85(6): 1154~1159.

    • Wang He, Dutta S, Kelly R S, Rudra A, Li Sha, Zhang Qingqing, Zhang Qianqi, Wu Yixiao, Cao Meizhen, Wang Bo, Li Jianguo, Zhang Haichun. 2018. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet. Palaeoworld, 27: 506~513.

    • Wang Qing, Ferguson D K, Feng Guangping, Ablaev A G, Wang Yufei, Yang Jian, Li Yelaing, Li Chensen. 2010. Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1): 323~331.

    • Wang Tieguan, Zhong Ningning. 1990. Geochemical investigation of hydrocarbon generation of resinites-on Tertiary resin-originated immature-low matuer oil and gas resources in China. Journal of Oil and Gas Technology, (1): 1~8 (in Chinese with English abstract).

    • Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L. 2002. Spirochete and protist symbionts of a termite(Mastotermes electrodominicus) in Miocene amber. Proceedings of the National Academy of Sciences, 99(3): 1410~1413.

    • Xi Jin, Hu Sherong, Guo Biao, Wang Haosen, Wang Enman. 2012. Study on hydrocarbon generation features of kochenite in Paleogene coal of Huangxian basin. Coal Science and Technology, 40(7): 108~111 (in Chinese with English abstract).

    • Xiao Xianming. 1991. The origin of types of resinite and their hydrocarbon-generating characteristics in coal and oil source rocks. Petroleum Exploration and Development, 18(4): 33~39 (in Chinese with English abstract).

    • Xu Dewei, Zhang Yiyong, Ren Deyi, Du Meili, Sui Guangren. 1998. Characteristic of sporopollen assemblage in Shenbei coalfield. Coal Geology of China, 10(4): 3 (in Chinese with English abstract).

    • 包建平, 陈希文, 朱翠山. 2016. 珠江口盆地原油中C15新倍半萜烷及其母源. 中国科学: 地球科学, 46(9): 1241~1251.

    • Bojesen-koefoed J A, Christiansen F G, Petersen H I, 姜峰. 1999. 格陵兰东北地区的富树脂煤: 一种从未认识的高富油侏罗系源岩. 天然气地球科学, 10: 69~75.

    • 程林, 韩德馨. 1999. 黑龙江东宁煤田主要煤层的树脂体特征及成因分析. 中国煤炭地质, 11(4): 14~16.

    • 戴卿林, 梅博文. 1988. 树脂二萜类的成岩产物及其热转变. 石油与天然气地质, 9(2): 115~124.

    • 贾蓉芬, 傅家谟, 徐世平, 刘德汉, 张惠之. 1987. 抚顺煤树脂体成烃的初步实验研究——Ⅰ. 烃的产率与性质. 中国科学(B辑), 17(1): 88~94.

    • 姜尧发, 代世峰, 王伟铭, 赵蕾. 2021. 中国新生代煤的煤岩学孢粉学和地球化学研究. 北京: 地质出版社.

    • 金建华, 商平. 1998. 辽宁沈北煤田早第三纪植物群的发现. 中山大学学报: 自然科学版, 37(6): 129~130.

    • 刘牧灵. 1990. 东北地区晚白垩世—第三纪孢粉组合序列. 地层学杂志, 14(4): 277~285.

    • 田忠福, 胡忠娟, 孔令珍. 2011. 沈北煤田煤层含气性特征. 煤炭技术, 30(1): 136~137.

    • 王铁冠, 钟宁宁. 1990. 树脂体成烃的地球化学研究——兼论我国第三系树脂体成因的未成熟-低成熟油气资源. 石油天然气学报, (1): 1~8.

    • 席晋, 胡社荣, 郭彪, 王浩森, 汪恩满. 2012. 黄县盆地古近纪煤中琥珀树脂体生烃特征研究. 煤炭科学技术, 40(7): 108~111.

    • 肖贤明. 1991. 中国煤及生油岩中树脂体的成因类型及成烃特征. 石油勘探与开发, 18(4): 33~39.

    • 许德伟, 张一勇, 任德贻, 杜美利, 隋广仁. 1998. 沈北煤田孢粉组合特征. 中国煤田地质, 10(4): 3.

  • 参考文献

    • Alexander G, Hazai I, Grimalt J, Albaigés J. 1987. Occurrence and transformation of phyllocladanes in brown coals from Nograd basin, Hungary. Geochimica et Cosmochimica Acta, 51(8): 2065~2073.

    • Anderson K B, Crelling J C. 1995. Amber, resinite, and fossil resins—introduction. American Chemical Society, Washington DC, USA.

    • Antoine P O, De Franceschi D, Flynn J J, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas G R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences of the United States of America, 103(37): 13595~13600.

    • Bao Jianping, Chen Xiwen, Zhu Cuishan. 2016. C15 New sesquiterpene alkanes in crude oils from the Pearl River Mouth basin and their parent sources. Earth Science, 46(9): 1241~1251 (in Chinese).

    • Barbour M, Andrews T, Farquhar G. 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Functional Plant Biology, 28(5): 335~348.

    • Bechtel A, Gratzer R, Sachsenhofer R F, Gusterhuber J, Lücke A, Püttmann W. 2008. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeogr, Palaeoclimatol, Palaeoecol, 262(3): 166~175.

    • Bechtel A, Chekryzhov I Y, Nechaev V P, Kononov V V. 2016. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. International Journal of Coal Geology, 167: 176~183.

    • Bechtel A, Chekryzhov I Y, Pavlyutkin B I, Nechaev V P, Vysotskiy S V, Velivetskaya T A, Tarasenko I A. 2020. Composition of lipids from coal deposits of the Far East: Relations to vegetation and climate change during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109479.

    • Bemis B E, Spero H J, Bijma J, Lea D W. 1989. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150~160.

    • Bojesen-koefoed J A, Christiansen F G, Petersen H I, Jiang Feng. 1999. Resin rich coal in northeastern Greenland: An unrecognized Jurassic source rock with high oil abundance. Natural Gas Geoscience, 10: 69~75 (in Chinese).

    • Bray P S, Anderson K B. 2009. Identification of Carboniferous (320 million years old) Class Ic amber. Science, 326: 132~134.

    • Cheng Lin, Han Dexin. 1999. Characteristics and genesis analysis of resinite in main coal seams in dongning coalfield Heilongjiang Province. Coal Geology of China, 11(4): 14~16 (in Chinese).

    • Dal Corso J, Schmidt A R, Schmidt L J, Preto N, Ragazzi E, Jenkyns H C, Delclòs X, Néraudeau D, Roghi G. 2017. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. Geochimica et Cosmochimica Acta, 199: 351~369.

    • Dai Qinglin, Mei Bowen. 1988. Diagenetic products and thermo-transformation of resinous diterpenoids. Oil and Gas Geology, 9(2): 115~124 (in Chinese with English abstract).

    • Delclòs X, Arillo A, Peñalver E, Barrón E, Soriano C, Valle R L, Bernárdez E, Corral C, Ortuño V M. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus-Palevol, 6(1): 135~149.

    • DeNiro M J, Epstein S. 1979. Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science, 204(4388): 51~53.

    • Dev S. 1989. Terpenoids. In: Rowe J W, ed. Natural Products of Woody Plants. Springer Series in Wood Science. Berlin, Heidelberg: Springer, 691~807.

    • Rowe J W. 1989. Natural Products of Woody Plants. Berlin: Springer, 691~807.

    • Dutta S, Mallick M, Bertram N, Greenwood P F, Mathews R P. 2009. Terpenoid composition and class of Tertiary resins from India. International Journal of Coal Geology, 80(1): 44~50.

    • Dutta S, Tripathi S M, Mallick M, Mathews R P, Greenwood P F, Summons R E. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology, 166(1): 63~68.

    • Dutta S, Saxena R, Singh H. 2014. Exceptional preservation of angiosperm markers in Miocene and Eocene ambers. Geology, 42(2): 155~158.

    • Gaigalas A, Halas S. 2009. Stable isotopes (H, C, S) and the origin of baltic amber. Geochronometria, 33(1): 33~36.

    • Gessler A, Ferrio J P, Hommel R, Treydte K, Werner R A, Monson R K. 2014. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol, 34(8): 796~818.

    • Girard V, Schmidt A R, Struwe S, Perrichot V, Breton G, Néraudeau D. 2009. Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas, 31(1): 153~162.

    • Grantham P J, Douglas A G. 1980. The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochimica et Cosmochimica Acta, 44(11): 1801~1810.

    • Grimaldi D, Agosti D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13678~13683.

    • Jia Rongfen, Fu Jiamo, Xu Shiping, Liu Dehan, Zhang Huizhi. 1987. Preliminary experimental study on hydrocarbon generation of Fushun coal resinite (I) hydrocarbon yield and properties. Scientia Sinica (Chimica), 17(1): 88~94 (in Chinese).

    • Jiang L, George S C. 2020. Geochemical comparison of three oil families from the Gippsland basin, SE Australia. Marine and Petroleum Geology, 121: 104575.

    • Jiang Yaofa, Dai Shifeng, Wang Weiming, Zhao Lei, et al. 2021. Petrology, Palynology, and Geochemistry of Cenooic Coal in China. Beijing: Geology Press (in Chinese).

    • Jin Jianhua, Shang Ping. 1998. Discovery of Early Tertiary floar in Shenbei coalfield, Liaoning. Acta Scientiarum Naturalium Universitatis Sunyatseni, 37(6): 129~130 (in Chinese with English abstract).

    • Kocsis L, Usman A, Jourdan A L, Hassan S H, Jumat N, Daud D, Briguglio A, Slik F, Rinyu L, Futó I. 2019. The Bruneian record of “Borneo Amber”: A regional review of fossil tree resins in the Indo-Australian Archipelago. Earth-Science Reviews, 201: 103005.

    • Langenheim J H. 1969. Amber: A botanical inquiry. Science, 163(3872): 1157~1169.

    • Liu Bangjun, Vrabec M, Markič M, Püttmann W. 2019. Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje basin, Slovenia, by molecular and stable isotope analysis of lignites. International Journal of Coal Geology, 206: 31~45.

    • Liu Bangjun, Bechtel A, Gross D, Zhao Qiaojing, Guo Wenmu, Ajuaba S, Sun Yuzhuang, Zhao Cunliang. 2022. Molecular and carbon isotope composition of hydrocarbons from ambers of the Eocene Shenbei coalfield (Liaoning Province, NE China). Organic Geochemistry, 104436.

    • Liu Muling. 1990. Sequence of Late Cretaceous Tertiary sporopollen assemblages in Northeast China. Journal of Stratigraphy, 14(4): 277~285 (in Chinese).

    • Lu Jing, Zhou Kai, Yang Minfang, Eley Y, Shao Longyi, Hilton J. 2020. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global and Planetary Change, 195: 103331.

    • Lu Y, Hautevelle Y, Michels R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy—Part 1: The Araucariaceae family. Biogeosciences, 10(3): 1943~1962.

    • Meng Qingtao, Liu Zhaojun, Bruch A A, Liu Rong, Hu Fei. 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Sciences, 45: 95~105.

    • Menor S C, Najarro M, Velasco F, Rosales I, Tornos F, Simoneit B R. 2010. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian basin (El Soplao, Cantabria, Spain): Pleochemotaxonomic aspects. Organic Geochemistry, 41(10): 1089~1103.

    • Menor S C, Simoneit B, Ruiz B M, Alonso J. 2016. The molecular composition of Cretaceous amber: Identification and chemosystematic relevance of 1, 6-dimethyl-5-alkyltetralins and related bisnorlabdane biomarkers. Organic Geochemistry, 93: 7~21.

    • Murray A P, Edwards D, Hope J M, Boreham C J, Booth W E, Alexander R A, Summons R E. 1998. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Organic Geochemistry, 29(5): 1199~1214.

    • Neri M, Roghi G, Ragazzi E, Papazzoni C A. 2017. First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy). Geobios, 50(1): 49~63.

    • Nissenbaum A, Yakir D. 1995. Stable isotope composition of amber. ACS Symposium Series, 617: 32~42.

    • Nissenbaum A, Yakir D, Langenheim J H. 2005. Bulk carbon, oxygen, and hydrogen stable isotope composition of recent resins from amber-producing Hymenaea. Die Naturwissenschaften, 92(1): 26~29.

    • Nohra Y A, Perrichot V, Jeanneau L, Pollès L, Azar D. 2015. Chemical characterization and botanical origin of French ambers. Journal of Natural Products, 78(6): 1284~1293.

    • Otto A, Simoneit B. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65(20): 3505~3527.

    • Otto A, Wilde V. 2001. Sesqui-, di-, and triterpenoids as chemosystematie markers in extant conifers—a review. The Botanical Review, 67(2): 142~224.

    • Otto A, Simoneit B. 2002. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Organic Geochemistry, 33(11): 1241~1251.

    • Otto A, Simoneit B, Wilde V, Kunzmann L, Püttmann W. 2002. Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Review of Palaeobotany & Palynology, 120(3): 203~215.

    • Otto A, Simoneit B, Wilde V. 2007. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Botanical Journal of the Linnean Society, 154(1): 129~140.

    • Paul S, Sharma J, Singh B D, Saraswati P K, Dutta S. 2015. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay basin, western India. International Journal of Coal Geology, 149: 77~92.

    • Pereira R, Carvalho ID, Simoneit B, Azevedo D D. 2009. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recncavo basins, Brazil. Organic Geochemistry, 40: 863~875.

    • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press.

    • Philp R P. 1985. Fossil Fuel Biomarkers. New York: Elsevier.

    • Philippe M, Cuny G, Suteethorn V, Teerarungsigul N, Barale G, Thévenard F, Le Loeuff J, Buffetaut E, Gaona T, Košir A, Tong H. 2005. A Jurassic amber deposit in southern Thailand. Historical Biology, 17: 1~6.

    • Ren Deyi, Xu Dewei, Zhao Fenghua. 2004. A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57(3): 187~196.

    • Royer D L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23): 5665~5675.

    • Sachse D, Billault I, Bowen G J, Chikaraishi Y, Dawson T E, Feakins S J, Freeman K H, Magill C R, McInerney F A, Polissar P, Robins R J, Sachs J P, Schmidt H L, Sessions A L, White J, West J B, Kahmen A. 2012. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth & Planetary Sciences, 40: 221~249.

    • Schmidt A R, Ragazzi E, Coppellotti O, Roghi G. 2006. A microworld in Triassic amber. Nature, 444(7121): 835.

    • Schmidt A R, Perrichot V, Svojtka M, Anderson K B, Belete K H, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E. 2010. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the United States of America, 107: 7329~7334.

    • Schmidt A R, Jancke S, Lindquist E E, Ragazzi E, Roghi G, Nascimbene P C, Schmidt K, Wappler T, Grimaldif D A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences of the United States of America, 109(37): 14796~14801.

    • Schouten S, Woltering M, Rijpstra W, Sluijs A, Brinkhuis H, Sinninghe D. 2007. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic. Earth & Planetary Science Letters, 258(3): 581~592.

    • Sessions A L, Burgoyne T W, Schimmelmann A, Hayes J M. 1999. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30(9): 1193~1200.

    • Shi G, Dutta S, Paul S, Wang B, Jacques F. 2014. Terpenoid compositions and botanical origins of late cretaceous and Miocene amber from China. PLOS One, 9(10): 1~8.

    • Simoneit B. 1986. Cyclic terpenoids of the geosphere. In: Jones R B, ed. Biological Markers in the Sedimentary Record. New York: Elsevier.

    • Simoneit B, Grimalt J O, Wang T G, Cox R E, Hatcher P G, Nissenbaum A. 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry, 10(4): 877~889.

    • Simoneit B, Oros D R, Karwowski Ł, Szendera Ł, Smolarek L J, Goryl M, Bucha M, Rybicki M, Marynowski L. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430.

    • Simoneit B, Otto A, Menor S C, Oros D R, Wilde V, Riegel W. 2021. Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Organic Geochemistry, 152: 104138.

    • Stern B, Moore C, Heron C, Pollard A M. 2008. Bulk stable light isotopic ratios in recent and archaeological resins: Towards detecting the transport of resins in antiquity? Archaeometry, 50(2): 351~370.

    • Sternberg L. 1989. Oxygen and Hydrogen Isotope Ratios in Plant Cellulose: Mechanisms and Applications. New York: Springer.

    • Strachan M G, Alexander R, Kagi R I. 1988. Trimethylnaphthalenes in crude oils and sediments: Effects of source and maturity. Geochimica et Cosmochimica Acta, 52(5): 1255~1264.

    • Strauss H, Peters K W. 2003. The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter. Geochemistry, Geophysics, Geosystems, 4(10): 1~15.

    • Tappert R, McKellar R C, Wolfe A P, Tappert M C, Ortega B J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, 121(128): 240~262.

    • Tian Zhongfu, Hu Zhongjuan, Kong Lingzhen. 2011. Gas-bearing properties of coal-bed gas in Shenbei coalfield. Coal Technology, 30(1): 136~137 (in Chinese with English abstract).

    • Wang Bo, Zhang Haichun, Azar D. 2011. The first Psychodidae (Insecta: Diptera) from the lower Eocene Fushun amber of China. Journal of Paleontology, 85(6): 1154~1159.

    • Wang He, Dutta S, Kelly R S, Rudra A, Li Sha, Zhang Qingqing, Zhang Qianqi, Wu Yixiao, Cao Meizhen, Wang Bo, Li Jianguo, Zhang Haichun. 2018. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet. Palaeoworld, 27: 506~513.

    • Wang Qing, Ferguson D K, Feng Guangping, Ablaev A G, Wang Yufei, Yang Jian, Li Yelaing, Li Chensen. 2010. Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1): 323~331.

    • Wang Tieguan, Zhong Ningning. 1990. Geochemical investigation of hydrocarbon generation of resinites-on Tertiary resin-originated immature-low matuer oil and gas resources in China. Journal of Oil and Gas Technology, (1): 1~8 (in Chinese with English abstract).

    • Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L. 2002. Spirochete and protist symbionts of a termite(Mastotermes electrodominicus) in Miocene amber. Proceedings of the National Academy of Sciences, 99(3): 1410~1413.

    • Xi Jin, Hu Sherong, Guo Biao, Wang Haosen, Wang Enman. 2012. Study on hydrocarbon generation features of kochenite in Paleogene coal of Huangxian basin. Coal Science and Technology, 40(7): 108~111 (in Chinese with English abstract).

    • Xiao Xianming. 1991. The origin of types of resinite and their hydrocarbon-generating characteristics in coal and oil source rocks. Petroleum Exploration and Development, 18(4): 33~39 (in Chinese with English abstract).

    • Xu Dewei, Zhang Yiyong, Ren Deyi, Du Meili, Sui Guangren. 1998. Characteristic of sporopollen assemblage in Shenbei coalfield. Coal Geology of China, 10(4): 3 (in Chinese with English abstract).

    • 包建平, 陈希文, 朱翠山. 2016. 珠江口盆地原油中C15新倍半萜烷及其母源. 中国科学: 地球科学, 46(9): 1241~1251.

    • Bojesen-koefoed J A, Christiansen F G, Petersen H I, 姜峰. 1999. 格陵兰东北地区的富树脂煤: 一种从未认识的高富油侏罗系源岩. 天然气地球科学, 10: 69~75.

    • 程林, 韩德馨. 1999. 黑龙江东宁煤田主要煤层的树脂体特征及成因分析. 中国煤炭地质, 11(4): 14~16.

    • 戴卿林, 梅博文. 1988. 树脂二萜类的成岩产物及其热转变. 石油与天然气地质, 9(2): 115~124.

    • 贾蓉芬, 傅家谟, 徐世平, 刘德汉, 张惠之. 1987. 抚顺煤树脂体成烃的初步实验研究——Ⅰ. 烃的产率与性质. 中国科学(B辑), 17(1): 88~94.

    • 姜尧发, 代世峰, 王伟铭, 赵蕾. 2021. 中国新生代煤的煤岩学孢粉学和地球化学研究. 北京: 地质出版社.

    • 金建华, 商平. 1998. 辽宁沈北煤田早第三纪植物群的发现. 中山大学学报: 自然科学版, 37(6): 129~130.

    • 刘牧灵. 1990. 东北地区晚白垩世—第三纪孢粉组合序列. 地层学杂志, 14(4): 277~285.

    • 田忠福, 胡忠娟, 孔令珍. 2011. 沈北煤田煤层含气性特征. 煤炭技术, 30(1): 136~137.

    • 王铁冠, 钟宁宁. 1990. 树脂体成烃的地球化学研究——兼论我国第三系树脂体成因的未成熟-低成熟油气资源. 石油天然气学报, (1): 1~8.

    • 席晋, 胡社荣, 郭彪, 王浩森, 汪恩满. 2012. 黄县盆地古近纪煤中琥珀树脂体生烃特征研究. 煤炭科学技术, 40(7): 108~111.

    • 肖贤明. 1991. 中国煤及生油岩中树脂体的成因类型及成烃特征. 石油勘探与开发, 18(4): 33~39.

    • 许德伟, 张一勇, 任德贻, 杜美利, 隋广仁. 1998. 沈北煤田孢粉组合特征. 中国煤田地质, 10(4): 3.