en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈国超,男,博士,主要从事造山带构造岩浆作用研究。E-mail:chaoschen@126.com。

通讯作者:

张晓飞,男,博士,主要从事区域地质矿产调查与研究。E-mail:zhangxiaofei521125@163.com。

参考文献
Anderson T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.
参考文献
Bader T, Franz L, Ratschbacher L, Capitani C D, Webb A A G, Yang Z, Pfänder J A, Hofmann M, Linnemann U. 2013. The Heart of China revisited: II Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonophysics, 32: 922~947.
参考文献
Belousova E, Griffin W, O’Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5) : 602~622.
参考文献
Borba M L, Tassinari C C G, Matos F M V, Sato K, Huhn S, Ferreira S N, Medeiros C. 2021. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil. Journal of Geochemical Exploration, 221: 106679.
参考文献
Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elservier, 63~114.
参考文献
Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.
参考文献
Chen Xiaozhen, Chen Guochao, Li Ruibao, Zhang Yafeng, Ji Xianjun, Zhang Xiaofei. 2021. Zircon U-Pb geochronology and trace element characteristics of Wuduoshan granitic pegmatite in the eastern Part of East Qinling and its geological significance. Earth Science, 1~25 [2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html (in Chinese with English abstract).
参考文献
Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.
参考文献
Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41: 213~237.
参考文献
Dong Yunpeng, Liu Xiaoming, Neubauer F, Zhang Guowei, Tao Ni, Zhang Yiguo, Zhang Xiaoning, Li Wei. 2013. Timing of Paleozoic amalgamation between the North China and South China blocks: Evidence from detrital zircon U-Pb ages. Tectonophysics, 586: 173~191.
参考文献
Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.
参考文献
Dong Yunpeng, Shi Xiaohui, Sun Shengsi, Sun Jiaopeng, Hui Bo, He Dengfeng, Chong Fuhao, Yang Zhao. 2022. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems and Geoenvironment, 1(2): 100032.
参考文献
Erdmann S, Wodicka N, Jackson S E, Corrigan D. 2013. Zircon textures and composition: Refractory recorders of magmatic volatile evolution? Contributions to Mineralogy and Petrology, 165: 45~71.
参考文献
Ewing R C, Meldrum A, Wang L, Weber W J, Corrales L R. 2003. Radiation effects in zircon. Reviews in Mineralogy and Geochemistry, 53: 387~425.
参考文献
Feng Yonggang, Liang Ting, Wang Mengxi, Zhang Ze, Hao Yuanyuan, Cen Jubiao, Dong Ziyan. 2022. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization. Acta Petrologica Sinica, 38(2): 428~444 (in Chinese with English abstract).
参考文献
Geisler T. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67(3): 485~508.
参考文献
Geisler T, Seydoux-Guillaume A M, Wiedenbeck M, Wirth R, Berndt J, Zhang M, Mihailova B, Putnis A, Salje E K, Schlüter J. 2004. Periodic precipitation pattern formation in hydrothermally treated metamict zircon. American Mineralogist, 89: 1341~1347.
参考文献
Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43~50.
参考文献
Han Jinsheng, Chen Huayong, Hollings P, Jiang Hongjun, Xu Haijin, Zhang Le, Xiao Bing, Xing Changming, Tan Zhixiong. 2019. The formation of modified zircons in F-rich highly-evolved granites: An example from the Shuangji granites in Eastern Tianshan, China. Lithos, 324~325: 776~788.
参考文献
Hogmalm K J, Zack T, Karlsson A K O, Sjoqvist A S L, Garbe-Schonberg D. 2017. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: An evaluation of N2O and SF6 as reaction gases. Journal of Analytical Atomic Spectrometry, 32(2): 305~313.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.
参考文献
Hoskin P W O. 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637~648.
参考文献
Lai Ya, Zhao Guochun, Li Wenlan, Lai Qunsheng, Fan Zhongling, Yi Zhiqiang, Wen Jing. 2017. Lithogeochemical characteristics and geological significance of granitoids in Zhenping area, eastern Qinling Mountains. Geology and Mineral Resources of South China, 32(4): 330~343 (in Chinese with English abstract).
参考文献
Lei Ming. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the east part of Qinling orogenic belt. Doctoral dissertation of Chinese Academy of Geological Science (in Chinese with English abstract).
参考文献
Li Huan, Li Jianwei, Algeo T J, Wu Jinghua, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multistage hydrothermal system: The Dongping Au deposit in North China. Lithos, 314-315: 463~478.
参考文献
Li Kaiwen, Fang Huaibin, Guo Jungong, Liu Kun, Zhao Huan, Wang Xiaojun. 2019. Petrogeochemistry, LA-ICP-MS zircon U-Pb dating and geological significance of two-mica granites from Wuduoshan granite in Nanzhao County, eastern Qinling Mountains. Earth Science, 44(1): 123~134 (in Chinese with English abstract).
参考文献
Li Qiuli. 2016. “High-U Effect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).
参考文献
Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somevile I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.
参考文献
Liang Shuang, Zhang Qian, Liu Jiahui, Li Zhen, Yan Quanren, Wu Chunming. 2021. LA-ICP-MS U-Pb dating of metamorphic monazite and zircon of the Qinling metamorphic complex, Xixia and Neixiang areas, Henan Province. Acta Petrologica Sinica, 37(12): 3797~3814 (in Chinese with English abstract).
参考文献
Liu Bingxiang. 2014. Magmatism and crustal evolution in the eastern North Qinling terrain. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Liu Liang, Liao Xiaoying, Wang Yawei, Wang Chao, Santosh M, Yang Min, Zhang Chengli, Chen Danling. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth Science Reviews, 159: 58~81.
参考文献
Liu Yan, Hou Zengqian, Zhang Rongqing, Wang Ping, Gao Jianfeng, Raschke M B. 2019. Zircon alteration as a proxy for rare earth element mineralization processes in Carbonatite-Nordmarkite complexes of the Mianning-Dechang rare earth element belt, China. Economic Geology, 114(4): 719~744.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
参考文献
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
参考文献
Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the para-metamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310 (in Chinese with English abstract).
参考文献
Lu Xinxiang, Zhu Zhaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. 2010. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30 (in Chinese with English abstract).
参考文献
Ludwig K R. 2003. Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1~70.
参考文献
Martin L A J, Duchêne S, Deloule E, Vanderhaeghe O. 2008. Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth and Planetary Science Letters, 267: 161~174.
参考文献
Miao Zhuang, Zhao Zhidan, Lei Hangshan, Wu Jingkai, Yang Yiyun, Tong Xin. 2020. Genesis of LREE-enriched zircons and their highly radiogenic Hf compositions: A case study from Zhuopan alkaline complex in western Yunnan. Acta Petrologica Sinica, 36(9): 2765~2784 (in Chinese with English abstract).
参考文献
Nasdala L, Miletich R, Ruschel K, Váczi T. 2008. Raman study of radiation-damaged zircon under hydrostatic compression. Physics and Chemistry of Minerals, 35: 597~602.
参考文献
Park C, Song Y, Chung D, Kang I M, Khulganakhuu C, Yi K. 2016. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos, 260: 268~285.
参考文献
Putnis A, Austrheim H. 2010. Fluid-induced processes: metasomatism and metamorphism. Frontiers in Geofluids, 10, 254~269.
参考文献
Putnis C V, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C. 2007. An experimental study of the replacement of leucite by analcime. American Mineralogist, 92: 19~26.
参考文献
Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay. Mineral Deposits, 38(5): 970~982 (in Chinese with English abstract).
参考文献
Redaa A, Farkaš J, Hassan A, Collins A S, Gilbert S, Lohr S C. 2020. Constraints from in-situ Rb-Sr dating on the timing of tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au mineralisation in the southern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 224: 105037.
参考文献
Schaltegger U. 2007. Hydrothermal zircon. Elements, 3(1): 51~79.
参考文献
Subarkah D, Blades M L, Collins A S, Farkaš J, Gilbert S, Lohr S C, Redaa A, Cassidy E, Zack T. 2022. Unraveling the histories of Proterozoic shales through in situ Rb-Sr dating and trace element laser ablation analysis. Geology, 50(1): 66~70.
参考文献
Sun Yuhan, Wu Liqun, Jiao Yangquan, Rong Hui. 2020. Effect of zircon self-radiation damage on lattice destruction and elements migration. Geotectonica et Metallogenia, 44(4): 772~782 (in Chinese with English abstract).
参考文献
Takehara M, Horie K, Hokada T, Kiyokawa S. 2018. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth gabbro. Chemical Geology, 484: 168~178.
参考文献
Tomaschek F, Kennedy A K, Villa I M, Lagos M, Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44: 1977~2002.
参考文献
Toscano M T, Pascual E, Nesbitt R W, Almodóvar G R, Sáez R, Donaire T. 2014. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain. Ore Geology Reviews, 56: 301~311.
参考文献
Valley J W, Cavosie A J, Ushikubo T, Reinhard D A, Lawrence D F, Larson D J, Clifton P H, Kelly T F, Wilde S A, Moser D E, Spicuzza M J. 2014. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7: 219~223.
参考文献
Veksler I V, Dorfman A M, Kamenetsky M, Dulski P, Dingwell D B. 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69: 2847~2860.
参考文献
Wang Haijie, Chen Danling, Ren Yunfei, Zhu Xiaohui, Gong Xiangkuan. 2021. The relationship between the North Qinling belt and the North China craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping complex. Acta Petrologica Sinica, 37(5): 1489~1507 (in Chinese with English abstract).
参考文献
Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Chengli, Li Wuping, Li Shan. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science China: Earth Sciences, 52(9): 1359~1384.
参考文献
Wang Xiaoxia, Wang Tao, Zhang Chengli. 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Science China: Earth Sciences, 45: 1109~1125 (in Chinese).
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4) : 413~433.
参考文献
Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling Orogen and its geodynamic significance. Earth Science, 44(12): 4173~4177 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).
参考文献
Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.
参考文献
Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xixheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.
参考文献
Yang Shijie, Chen Danling, Gong Xiangkuan, Zhao Jiao. 2015. The geochemistry, chronology and its geological implications of leucosomes in the basic volcanics of Erlangping Group in eastern segment of the North Qinling. Acta Petrologica Sinica, 31(7): 2009~2022 (in Chinese with English abstract) .
参考文献
Yi Zhiqiang, Wen Jing, Lai Qunsheng, Xie Ke, Yan Helong, Wang Zhongjian, Li Shuai. 2017. Zircon U-Pb age of Wuduo Mountain compound batholith and its geological significance. Contributions to Geology and Mineral Resources Research, 32(4): 594~306 (in Chinese with English abstract).
参考文献
Yuan Feng, Liu Jiajun, Carranza E J M, Zhang Shuai, Zhai Degao, Liu Gang, Wang Gongwen, Zhang Hongyuan, Sha Yazhou, Yang Shangsong. 2018. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling orogen, Central China. Lithos, 302-303: 20~36.
参考文献
Yuan Feng, Jiang Shaoyong, Liu Jiajun, Liu Gang, Zhang Shuai, Sha Yazhou. 2020. Origin and evolution of uraniferous pegmatite: A case study from the xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China. Lithos, 356-357: 105379.
参考文献
Zeng Zhiyao, Liu Yan. 2022. Magmatic-hydrothermal zircons in syenite: A record of Nb-Ta mineralization processes in the Emeishan large igneous province, SW China. Chemical Geology, 589: 120675.
参考文献
Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chinese Science Bulletin, 58(23): 2323~2329 (in Chinese).
参考文献
Zhang Guowei, Zhang Benren, Yuan Xuecheng. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855 (in Chinese with English abstract).
参考文献
Zhang Hongfu, Yu Hong, Zhou Dingwu, Zhang Juan, Dong Yunpeng, Zhang Guowei. 2015. The meta-gabbroic complex of Fushui in north Qinling orogen: A case of syn-subduction mafic magmatism. Gondwana Research, 28(1): 262~275.
参考文献
Zhao Zhidan, Liu Dong, Wang Qing, Zhu Dicheng, Dong Guochen, Zhou Su, Mo Xuanxue. 2018. Zircon trace elements and their use in probing deep processes. Earth Science Frontiers, 25(6): 124~135 (in Chinese with English abstract).
参考文献
Zhi Jun, Lei Ruxiong, Chen Boyang, Muhtar M N, Feng Zhijie, Zhang Kai, Cai Yuanfeng, Wu Changzhi. 2021. Zircon genesis and geochronology for the Zhangbaoshan super-large Rubidium deposit in eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes. Frontiers in Earth Science, 9: 480.
参考文献
Zhou Qifeng, Qin Kezhang, Tang Dongmei, Wang Chunlong, Ma Liusuo. 2019. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999~2012 (in Chinese with English abstract).
参考文献
Zhou Qifeng, Qin Kezhang, Tang Dongmei. 2021. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, Central China: Implications for formation times and ore genesis. Journal of Asian Earth Sciences, 218: 104879.
参考文献
Zhou Shu. 2019. Geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Master degree thesis of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Zhou Shu, Zhang He, Chen Fukun. 2019. Zircon U-Pb geochronology, geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Geological Journal of China Universities, 25(6): 901~913 (in Chinese with English abstract).
参考文献
Zou Xinyu, Jiang Jilian, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 985~999 (in Chinese with English abstract).
参考文献
陈孝珍, 陈国超, 李瑞保, 张亚峰, 季宪军, 张晓飞. 2021. 东秦岭东段五垛山花岗伟晶岩锆石U-Pb年代学和微量元素特征及地质意义. 地球科学: 1-25[2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html.
参考文献
凤永刚, 梁婷, 王梦玺, 张泽, 郝媛媛, 岑炬标, 董紫艳. 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义. 岩石学报, 38(2): 428~444.
参考文献
赖亚, 赵国春, 李文兰, 赖群生, 樊中玲, 易志强, 文景. 2017. 东秦岭镇平地区花岗岩岩石地球化学特征及地质意义. 华南地质与矿产, 32(4): 330~343.
参考文献
雷敏. 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系. 中国地质科学院博士学位论文.
参考文献
李开文, 方怀宾, 郭君功, 刘坤, 赵焕, 王小娟. 2019. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义. 地球科学, 44(1): 123~134.
参考文献
李秋立. 2016. 离子探针锆石U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.
参考文献
梁爽, 张谦, 刘嘉惠, 李真, 闫全人, 吴春明. 2021. 西峡-内乡地区秦岭岩群变质独居石和锆石的U-Pb定年. 岩石学报, 37(12): 3797~3814.
参考文献
刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化. 中国科学技术大学博士学位论文.
参考文献
陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.
参考文献
卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.
参考文献
苗壮, 赵志丹, 雷杭山, 武精凯, 杨逸云, 佟鑫. 2020. 锆石轻稀土富集与Hf同位素异常成因: 以滇西卓潘碱性杂岩体为例. 岩石学报, 36(9): 2765~2784.
参考文献
秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比. 矿产地质, 38(5): 970~982.
参考文献
孙钰函, 吴立群, 焦养泉, 荣辉. 2020. 锆石自辐射损伤对晶格破坏与元素运移的影响. 大地构造与成矿学, 44(4): 772~782.
参考文献
王海杰, 陈丹玲, 任云飞, 朱小辉, 宫相宽. 2021. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石U-Pb年代学与变质作用证据. 岩石学报, 37(5): 1489~1507.
参考文献
王晓霞, 王涛, 张成立. 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学: 地球科学, 45: 1109~1125.
参考文献
吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173~4177.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
杨士杰, 陈丹玲, 宫相宽, 赵娇. 2015. 北秦岭东段二郎坪群基性火山岩中浅色岩体的地球化学、年代学及其地质意义. 岩石学报, 31(7): 2009~2022.
参考文献
易志强, 文景, 赖群生, 谢珂, 闫贺龙, 王忠建, 李帅. 2017. 五垛山复式岩基锆石U-Pb年龄及其地质意义. 地质找矿论丛, 32(4): 594~306.
参考文献
张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323~2329.
参考文献
张国伟, 张本仁, 袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.
参考文献
赵志丹, 刘栋, 王青, 朱弟成, 董国臣, 周肃, 莫宣学. 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124~135.
参考文献
周起凤, 秦克章, 唐冬梅, 王春龙, 马留锁. 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999~2012.
参考文献
周澍. 2019. 北秦岭地区早古生代五垛山岩体的地球化学特征及岩石成因. 中国地质科学院博士学位论文.
参考文献
周澍, 张贺, 陈福坤. 2019. 北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因. 高校地质学报, 25(6): 901~913.
参考文献
邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 985~999.
目录contents

    摘要

    锆石是岩石中常见的副矿物,锆石晶体结构和地球化学特征的变化可以记录热液蚀变过程。东秦岭东段白草垛花岗伟晶岩中识别出三种类型锆石。类型一锆石具有明显的振荡环带,部分锆石边部有少量裂隙,微量元素含量相对较低,重稀土元素(HREE)富集,具明显Ce的正异常和Eu的负异常,指示其为岩浆锆石。类型二锆石具核-幔-边结构,边部裂隙发育,核部与类型一锆石具有相似的CL和微量元素特征,为岩浆锆石;幔部呈深色海绵状,内部结构不均匀,偶见环带锆石残留,微量元素含量较高,具有较高的U和Th含量,Ce异常不明显,具热液锆石特征,为热液沿着裂隙进入锆石内部不完全热液改造的结果。类型三锆石的结构特征和微量元素含量与类型二锆石的幔部相似,具有异常高U和Th含量以及较高的Dα值,为类型二锆石近完全热液改造的结果。花岗伟晶岩作为岩浆演化晚期的产物,经过结晶分异,残留的岩浆热液富集微量元素,岩浆热液沿着锆石的裂隙进入晶体内部对锆石经过不同程度热液改造,形成了花岗伟晶岩中不同类型的锆石。

    Abstract

    Zircon is an accessory mineral in igneous rocks and can provide a record of hydrothermal alteration through variations in crystal structures, and geochemical properties. In samples of altered granitic pegmatite from the Baicaoduo region in the eastern part of East Qinling, three different forms of zircon were found. Type 1 zircons feature pronounced oscillatory zones, low trace element levels, and are concentrated in the heavy rare earth elements (HREE). Some Type 1 zircons also have a modest number of fractures near the rim. They are magmatic zircons because the Ce exhibits clear positive anomalies and significant negative Eu anomalies. Type 2 zircons have developed rim fractures and a core-mantle-rim structure. The core has similar CL and trace element characteristics to Type 1 zircon, which is magmatic zircon. Type 2 zircon mantle has dark spongy, uneven internal structure, occasionally contains zircon residue, a high trace element content, and inconspicuous Ce anomaly. It has hydrothermal zircon characteristics due to incomplete reworking of hydrothermal solution into zircon along the fracture. The Type 3 and Type 2 zircon mantles have comparable structural characteristics and trace element content, with abnormally high U and Th content and high Dα value, which is the result of complete hydrothermal reworking of Type 2 zircon. As a byproduct of later magmatic development known as granitic pegmatite, leftover magmatic hydrothermal enhances trace elements by crystallization differentiation. In granitic pegmatite, the zircon is reworked to varied degrees by the magmatic hydrothermal that penetrates the crystal via the zircon's fracture.

  • 锆石是一种常见的副矿物,广泛存在于火成岩、沉积岩和变质岩中。由于其具有较高的U、Th和较低的普通Pb,以及高的封闭温度和稳定的物理化学性质,常被用来进行U-Pb测年(Watson et al.,2006; Yan Lili et al.,20182020; 赵志丹等,2018; Zhi Jun et al.,2021)。锆石在结晶过程中混入大量与温度或演化过程敏感的微量元素,包括Hf、Y、Ti和REE,这使得锆石成为研究地壳形成和演化,以及热液蚀变过程中识别矿物-熔融-流体相互作用的有用工具(Geisler et al.,2007; 邹心宇等,2021; Zeng Zhiyao et al.,2022)。

  • 花岗伟晶岩作为岩浆演化晚期的产物,其热液活动丰富,这些岩浆热液对稀有金属元素富集具有重要影响,因此,花岗伟晶岩的热液演化过程一直是研究的热点(London,2018)。锆石容易受到热液蚀变的影响(Erdmann et al.,2013; Takehara et al.,2018),在岩浆热液系统中,后期高度演化的花岗岩和伟晶岩中出溶的流体可以对岩浆锆石进行热液改造(Schaltegger,2007),导致锆石的晶体结构、化学成分和同位素系统受到干扰(Geisler,2003; Burnham,2020; 孙钰函等,2020)。因此,热液锆石的内部结构、形态与地球化学特征常用来研究热液过程。另外,由于热液对锆石的改造,高度演化岩浆系统中的锆石通常比较复杂,在解释其元素和同位素数据时应谨慎。

  • 东秦岭造山带花岗伟晶岩分布广泛,是我国重要的花岗伟晶岩产地,特别是商南北部和卢氏东南部地区分布最为广泛,研究也最为深入(卢新祥等,2010; 秦克章等,2019; 凤永刚等,2022)。这些花岗伟晶岩与稀有元素成矿关系密切,近年来,已发现了小花岔U、官坡Rb等矿床(Yuan Feng et al.,20182020; 周起凤等,2019)。这些花岗伟晶岩形成的峰值年龄为417 Ma(陈孝珍等,2021)。早期研究主要关注于花岗伟晶岩及其附近花岗岩体的岩石学和地球化学特征,较少涉及花岗伟晶岩后期热液对伟晶岩的影响。笔者近年在东秦岭造山带东段内乡马山口北部发现大量花岗伟晶岩脉,这些花岗伟晶岩多呈岩脉状侵位于五垛山大型花岗岩基中,可能由秦岭群部分熔融形成的原生岩浆经过演化形成(陈孝珍等,2021)。因此,对五垛山花岗岩基中花岗伟晶岩岩浆热液锆石的研究对于解译花岗质岩浆的演化过程具有重要意义。

  • 本文通过对东秦岭造山带东段五垛山花岗岩基白草垛一带花岗伟晶岩脉中的锆石进行矿物学和微量元素成分分析,划分出三种锆石类型,并揭示了不同类型锆石成因和岩浆热液过程。此外,我们还利用锆石U-Pb年代学和黑云母原位Rb-Sr年代学限定了白草垛花岗伟晶岩的演化年代。

  • 1 地质背景

  • 秦岭造山带作为经历长期多次不同造山作用形成的复合型大陆造山带,是我国中央造山系的重要组成部分(张国伟等,2001; Liu Liang et al.,2016; Dong Yunpeng et al.,2022)。东秦岭造山带北邻华北板块南缘,南接华南板块,以商南-丹凤断裂和勉略-巴山-襄广断裂为界从北到南可以划分为北秦岭构造带、南秦岭构造带和扬子板块北缘构造带(图1a; Dong Yunpeng et al.,2016; Li Sanzhong et al.,2018)。

  • 北秦岭构造带主要由秦岭群、宽坪群、丹凤群和二郎坪群组成。秦岭群作为东秦岭最古老变质基底,为一套多期变质变形改造的石英片岩、片麻岩、斜长角闪岩和钙硅酸盐岩、大理岩等陆源碎屑岩-碳酸盐岩组合的麻粒岩相—角闪岩相变质岩系(陆松年等,2006; 梁爽等,2021)。宽坪群为一套中—低级变质岩系,主要由斜长角闪岩、绿片岩、石英片岩和大理岩组成(王海杰等,2021)。丹凤群呈狭长透镜状断续沿着商丹断裂带北侧展布,以斜长角闪岩和变钙碱性火山岩为主的一套早古生代绿片岩相至低角闪岩相的变质火山-沉积岩系,发育蛇绿混杂岩带,代表了早古生代商丹洋(张国伟等,2001)。二郎坪群主体为一套早古生代弧后盆地火山-沉积岩系(杨士杰等,2015),其形成与商丹洋的俯冲相对应。

  • 东秦岭造山带经历了原特提斯和古特提斯构造演化,岩浆活动多样,以花岗岩类最为丰富,新元古代、早古生代和三叠纪皆有分布,主体分布于北秦岭构造带(Wang Tao et al.,2009; 张成立等,2013; 吴元保,2019)。东秦岭造山带是我国重要的花岗伟晶岩带,以东秦岭中段和东段最为丰富。东秦岭中段花岗伟晶岩主体侵位于北秦岭早古生代花岗岩体周边的秦岭群基底变质岩系; 东秦岭东段花岗伟晶岩与中段不同,主体侵位于北秦岭早古生代花岗岩体(陈孝珍等,2021)。

  • 五垛山大型花岗岩基是东秦岭造山带的重要组成部分,位于北秦岭构造带东部内乡—镇平一带,主要由花岗闪长岩和黑云母二长花岗岩组成(李开文等,2018),出露面积约1420 km2(图1b)。岩基南部侵入秦岭群,北部和西部侵入二郎坪群,东部与石门花岗岩体相接触。五垛山花岗岩基形成时代主体介于451~415 Ma(赖亚等,2017; 易志强等,2017; 李开文等,2019),由于其岩石类型多样和形成年代跨度较大,构造环境较为复杂,有俯冲、洋陆转换和后碰撞等不同观点(刘丙祥,2014; 李开文等,2019)。岩基中不同类型岩石多具弧岩浆岩特征,其成因主要与古老地壳的部分熔融和加厚下地壳物质部分熔融相关(李开文等,2019; 周澍等,2019)。五垛山花岗岩基东部的石门花岗岩体主体为二云母花岗岩,形成时代较为集中,为433~428 Ma(易志强等,2017)。板山坪岩体位于五垛山花岗岩基北东部,主体为闪长岩,两个岩体中间由一套早古生代沉积地层相隔,其形式时代早于五垛山花岗岩基和石门花岗岩体,为496~487 Ma(雷敏,2010)。

  • 五垛山花岗岩基富含花岗伟晶岩脉,在白草垛一带花岗伟晶岩脉密度较高,伟晶岩脉侵位于似斑状黑云母二长花岗岩(图2a)。岩脉宽度变化较大,主体为0.1~2 m,主要为黑云母花岗伟晶岩(图2a~c)。花岗伟晶岩与围岩接触部位未见冷凝边,成分较为均匀,从边部到核部未见成分分异; 部分花岗伟晶岩可见塑性变形(图2d)。

  • 图1 秦岭造山带大地构造背景图(a)(修改自Dong Yunpeng et al.,2011)和东秦岭东段马山口一带地质简图(b)(修改自周澍等,2019

  • Fig.1 Simplified tectonic map of the Qinling Orogenic Belt showing the tectonic divisions (a) (modified after Dong Yunpeng et al., 2011) and simplified geological map of northern Mashankou area in eastern section of the East Qinling (b) (modified after Zhou Shu et al., 2019)

  • LWF—灵宝-鲁山-舞阳断裂; LLF—洛南-栾川断裂; SNF—商州-南召断裂; SDS—商丹缝合带; MLS—勉略缝合带; MBXF—勉略-巴山-襄广逆冲断裂

  • LWF—Lingbao-Lushan-Wuyang fault; LLF—Luonan-Luanchuan fault; SNF—Shangzhou-Nanzhao fault; SDS—Shangdan suture; MLS—Mianlue suture; MBXF—Mianlue-Bashan-Xiangguang fault

  • 2 岩相学特征

  • 白草垛花岗伟晶岩呈灰白色,矿物颗粒变化较大,大部分呈巨粒,具花岗伟晶结构,块状构造(图2)。主要造岩矿物由钠长石(30%~35%)、微斜长石(20%~25%)、条纹长石(15%~20%)、石英(15%~20%)和黑云母(2%~5%)组成。巨晶主要为微斜长石、条纹长石和钠长石(图3a~c),粒径约0.5~2 cm。微斜长石自形—半自形,具格子双晶(图3a)。钠长石呈自形,发育聚片双晶,部分钠长石具轻微的绢云母化(图3c、d)。黑云母和石英分别呈他形片状和粒状分布在长石间(图3d)。

  • 3 样品采集及分析方法

  • 花岗伟晶岩样品采集于五垛山花岗岩基白草垛一带,样品编号为WDS006,采样位置地理坐标为N 33°14′15.77″,E 112°17′17.39″,具体采集位置见图1b。

  • 图2 东秦岭东段白草垛花岗伟晶岩野外地质特征

  • Fig.2 Outcrop photos for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • (a)—花岗伟晶岩脉侵入似斑状二长花岗岩;(b、c)—巨粒花岗伟晶岩;(d)—花岗伟晶岩局部具塑性变形

  • (a) —granitic pegmatite dike intrusive porphyry monzogranite; (b, c) —giant grained granitic pegmatite; (d) —local plastic deformation of granitic pegmatite

  • 3.1 锆石U-Pb定年

  • 样品粉碎、锆石的反射光和透射光显微照相及阴极发光(CL)显微照相由西安瑞石地质科技有限公司进行。样品采用常规方法进行粉碎,并用常规浮选方法分选出锆石后,再用双目镜挑选出晶形和透明度较好的锆石颗粒作为测定对象。将锆石颗粒粘在双面胶上,经环氧树脂固定、环氧树脂固化、表面抛光工序后,进行锆石显微照相和阴极发光照相。

  • 锆石U-Pb同位素组成分析在西北大学大陆动力学国家重点实验室激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)仪上完成。分析仪器为配备有193nmA Rf-excimer激光器的Geo-Las200M型(Microlas Gottingen Germany)激光剥蚀系统和Elan6100 DRC型四极杆质谱仪。分析采用激光剥蚀孔径30 μm,剥蚀深度20~40 μm,激光脉冲为10 Hz,能量为32~36 mJ。测试中用人工合成的硅酸盐玻璃标准参考物质NIST610进行仪器最佳化。锆石年龄计算采用国际标准锆石SRM610作为外标校正。在所测锆石样品分析前后各测一次SRM610,同时以29Si作为内标测定锆石的U、Th、Pb含量。为保证测试精度,在测试过程中每测定5个样品点后,以标准锆石GJ-1为盲样来检验U-Pb定年的数据质量。所有标样锆石测试值的重现性均在1%(2σ)左右。单次时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。样品的同位素比值和元素含量数据处理采用ICPMSDataCal程序,以执行背景和分析物信号的离线检查和集成、时间漂移校正以及微量元素分析的定量校准(Liu Yongsheng et al.,2008); 年龄计算及谐和图绘制采用ISOPLOT(3.0版)软件完成。所有数据点年龄值的误差均为1σ,采用206Pb/238U年龄,其加权平均值具95%的置信度(Anderson,2002; Ludwig,2003),分析结果见表1、表2。

  • 3.2 黑云母原位Rb-Sr定年

  • 微区原位Rb-Sr同位素组分分析在西北大学大陆动力学国家重点实验室利用激光剥蚀-串联四极杆等离子体质谱仪(LA-ICP-MS/MS)上完成。激光剥蚀系统为257 nm飞秒激光剥蚀系统(ESI NWR FemtoUC,USA),含一台257 nm/206 nm双波长Pharos飞秒激光器,一个双室样品室和电脑控制的高精度X-Y样品台移动、定位系统。分析Rb-Sr同位素时使用的激光能量密度为2.0~3.5 J/cm2,频率为5~8 Hz,剥蚀斑束为30 μm,剥蚀方式为线扫描剥蚀,剥蚀线长60 μm,载气为高纯氦气(650 mL/min),补充气体为Ar 0.95 L/min。Rb-Sr同位素分析采用串联四极杆等离子体质谱仪(Agilent 8900 ICP-MS/MS),质量分辨率优于1AMU。实验中采用N2O作为碰撞反应气。数据采集模式为TRA模式,积分时间为0.1 s,背景采集时间为30 s,样品信号采集总积分时间为60 s,吹扫时间为30 s。利用标样NIST610作为外标校正仪器质量歧视和分馏效应。标样BCR-2G和BHVO-2G作为监控标样。Rb-Sr同位素等时线年龄计算采用ISOPLOT(3.0版)。分析结果见表3。

  • 图3 东秦岭东段白草垛花岗伟晶岩显微照片(正交偏光)

  • Fig.3 Microphotographs for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • (a)—花岗伟晶岩中巨粒微斜长石;(b)—花岗伟晶岩中巨粒条纹长石;(c)—花岗伟晶岩中巨粒钠长石;(d)—钠长石聚片双晶和微斜长石格子双晶; Q—石英; Mc—微斜长石; Alb—钠长石; Per—条纹长石; Bi—黑云母

  • (a) —giant grained microcline in granitic pegmatite; (b) —giant grained perthite in granitic pegmatite; (c) —giant grained albite in granitic pegmatite; (d) —albite polysynthetic twinning and microcline grid twin; Q—quartz; Mc—microcline; Alb—albite; Per—perthite; Bi—biotite

  • 4 分析结果

  • 4.1 锆石内部结构

  • 白草垛花岗伟晶岩中锆石的CL如图4所示。大多数锆石呈自形短柱状,长轴长度从100~170 μm不等。锆石显示出复杂的内部结构,反映它们经历了后期的改造(图4)。根据锆石的内部结构特征,白草垛花岗伟晶岩中的锆石可以分为三种类型(表4)。

  • 类型一锆石具振荡环带,自形且裂隙较少,大多数锆石未变质,为岩浆锆石(图4a)。类型二锆石具核-幔-边结构:核部具明显的浅色振荡环带; 幔部为深色海绵状,部分幔部包裹有不明显振荡环带锆石残留(图4b测点20和21); 边部与核部相似,具振荡环带; 核部与幔部以及幔部与边部为不规则接触,多呈港湾状; 大部分锆石边部具有明显的裂隙(图4b)。类型三锆石与类型二锆石的幔部相似,具深色海绵状,部分锆石边部具有较窄呈环带状边部,环带分为两类,一类为颜色较浅的振荡环带(图4c测点5、26、32),另一类为颜色较暗的振荡环带(图4c测点19、38)。

  • 4.2 锆石微量元素

  • 对白草垛花岗伟晶岩的锆石样品进行了微量元素分析,测试结果见表1、表2。

  • 类型一锆石的微量元素含量相对较低,例如:La为0.64×10-6~25.65×10-6,U为847×10-6~1845×10-6,Th为433×10-6~1802×10-6,REE为710×10-6~3324×10-6。LREE/HREE比值为0.08~0.18(平均为0.11),LaN/YbN为0.001~0.033(平均为0.013); Ce/Ce*为1.00~38.51(平均为8.79),具有明显的Ce正异常(图5a)。

  • 表1 东秦岭东段白草垛花岗伟晶岩(WDS006)中锆石微量及稀土元素(×10-6)分析结果

  • Table1 Zircon trace and REE (×10-6) elemental compositions analysis results for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 注:Dα计算公式据李秋立,2016

  • 表2 东秦岭东段白草垛花岗伟晶岩(WDS006)LA-ICP-MS锆石U-Pb同位素分析结果

  • Table2 LA-ICP-MS zircon U-Pb isotope analysis results for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 类型二锆石具核-幔-边结构,由于边部较窄,未能对其进行微量元素分析。锆石核部的元素特征与类型一锆石相似,具有较低的微量元素含量,但是其含量变化范围较大,整体稍高于类型一锆石,可能与部分锆石核部较窄,进行元素分析时,部分测点横跨核部和幔部相关(图5a)。锆石核部La为2.48×10-6~421×10-6,U为702×10-6~2694×10-6,Th为692×10-6~2786×10-6,REE为955×10-6~3244×10-6。LREE/HREE为0.07~1.24(平均为0.21),LaN/YbN为0.003~0.950(平均为0.099); Ce/Ce*为0.42~12.78(平均为4.01),Ce正异常明显。锆石幔部具有较高的元素含量,La为27.44×10-6~221.05×10-6,U为1707×10-6~5470×10-6,Th为1166×10-6~16498×10-6,REE为981×10-6~7238×10-6。LREE/HREE为0.18~0.34(平均为0.25),LaN/YbN为0.035~0.183(平均为0.076); Ce/Ce*为0.34~1.23(平均为0.85),Ce异常不明显(图5b)。

  • 表3 东秦岭东段白草垛花岗伟晶岩(WDS006)LA-ICP-MS/MS原位黑云母Rb-Sr同位素分析结果

  • Table3 LA-ICP-MS/MS in-situ biotite Rb-Sr isotope analysis results for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 表4 白草垛花岗伟晶岩中不同类型锆石主要特征

  • Table4 Summary of applied zircon classification main features in Baicaoqiao granitic pegmatite

  • 图4 东秦岭东段白草垛花岗伟晶岩中锆石的CL图像

  • Fig.4 CL images of zircons from the Baicaoduo area in eastern section of the East Qinling

  • (a)—类型一锆石:具振荡环带,部分锆石具有裂隙,导致幔部有轻微的热液作用,锆石具有相对较低的微量元素含量;(b)—类型二锆石:具核-幔-边结构,锆石裂隙发育,核部和边部具振荡环带,微量元素含量较低; 幔部呈深色海绵状,微量元素含量较高;(c)—类型三锆石:呈深色海绵状,微量元素含量较高; 图中蓝色虚线方框中为锆石边部裂隙,红色数字为测点号

  • (a) —Type1 zircons: there are oscillating zones and some zircons have fissures, resulting in slight hydrothermal action in the mantle and low content of trace elements in zircons; (b) —Type2 zircon: with core-mantle-rim texture, zircon fissures are developed, there are oscillating zones in the core and rim, the content of trace elements is low, and the mantle is dark spongy with high content of trace elements; (c) —Type3 zircon: dark spongy and high in trace elements, the blue dotted box in the figure shows the rim fissures of zircon, the red number is the point number

  • 类型三锆石与类型一锆石明显不同,其微量元素含量明显高于类型一锆石,与类型二锆石幔部近似,例如:La为15.30×10-6~277×10-6,U为2615×10-6~10806×10-6,Th为883×10-6~5436×10-6,REE为2294×10-6~17580×10-6。LREE/HREE为0.05~0.25(平均为0.12),LaN/YbN为0.010~0.067(平均为0.027); Ce/Ce*为0.35~1.68(平均为0.81),Ce异常不明显(图5b)。

  • 4.3 锆石U-Pb测年

  • 锆石样品(WDS006)共测试了40个点,由于受到后期岩浆热液作用,大部分锆石U-Pb体系受到破坏,33个测点谐和性较差,未参与年龄计算。剩余7个测点的206Pb/238U和207Pb/235U较为谐和,其中4个为类型一锆石,3个为类型二锆石的核部。7个测点的206Pb/238U年龄介于462±9~445±4 Ma之间,206Pb/238U加权平均年龄为454.2±4.7 Ma(MSWD=0.23)(图6a)。

  • 4.4 黑云母原位Rb-Sr年龄

  • 为了计算白草垛花岗伟晶岩的Rb-Sr等时线年龄,对伟晶岩中的富K矿物黑云母进行了LA-ICP-MS/MS原位Rb-Sr同位素分析,分析结果见表4。结果显示黑云母Rb-Sr等时线年龄为300.3±7.4 Ma,初始87Sr/86Sr比值为0.7090±0.008(图6b)。

  • 图5 东秦岭东段白草垛花岗伟晶岩锆石球粒陨石标准化稀土元素配分图(标准化值据Boynton,1984

  • Fig.5 REE chondrite-normalized distribution pattern for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling (normalized values after Boynton, 1984)

  • 岩浆锆石和热液锆石区域据Hoskin,2005;(c)中岩浆锆石和热液锆石来自攀西正长花岗岩(Zeng Zhiyao et al.,2022);(d)中岩浆锆石和热液锆石来自东秦岭小花岔花岗伟晶岩(Yuan Feng et al.,2020

  • Magmatic zircon and hydrothermal zircon area according to Hoskin, 2005; magmatic zircons and hydrothermal zircons in (c) are from Panxi syenite (Zeng Zhiyao et al., 2022) , and magmatic and hydrothermal zircons in (d) are from Xiaohuacha granite pegmatite in the East Qinling (Yuan Feng et al., 2020)

  • 图6 东秦岭东段白草垛花岗伟晶岩LA-ICP-MS锆石U-Pb年龄谐合图及其锆石206Pb/238U 加权平均年龄图(a)和LA-ICP-MS/MS黑云母原位Rb-Sr等时线年龄(b)

  • Fig.6 LA-ICP-MS zircon U-Pb concordant age diagram, 206Pb/238U weighted mean ages of zircons (a) and LA-ICP-MS/MS biotite in-situ Rb-Sr isochrones age diagram (b) for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 5 讨论

  • 5.1 花岗伟晶岩脉的年龄

  • 锆石的辐射损伤会引起强烈的放射性Pb丢失,破坏锆石封闭系统,影响定年的准确性(Putnis et al.,2010; Valley et al.,2014; Takehara et al.,2018)。锆石蜕晶质化与锆石中U含量密切相关,含U高的锆石蜕晶质化明显,经常引起强烈的Pb丢失(Geisler et al.,20032007)。

  • 白草垛花岗伟晶岩中类型二锆石的幔部和类型三锆石具有异常高的U含量,部分类型一锆石和类型二锆石的核部也不同程度受到热液的影响,U含量也存在异常。考虑到U含量较高的锆石具有较高的放射性损伤强度,从而导致放射性成因铅的损失,这些锆石的U-Pb年龄不能代表白草垛花岗伟晶岩的岩浆结晶年龄。剩余锆石的U含量较低,环带明显,加权平均年龄为454.2±4.7 Ma。

  • 五垛山花岗岩基作为东秦岭东段大型花岗岩基,其岩石类型丰富,形成时代跨度较大,主体介于451~415 Ma(赖亚等,2017; 易志强等,2017; 李开文等,2019),分布417 Ma、432 Ma和449 Ma三个峰值(图7a)。白草垛花岗伟晶岩的锆石U-Pb年龄与五垛山花岗岩基北部黄龙庙一带岩体的形成时代近似(451~448 Ma; 刘丙祥,2014),显示花岗伟晶岩的形成可能与其有成因联系。白草垛花岗伟晶岩野外特征显示,部分较窄的花岗伟晶岩脉在侵入过程中具塑性变形特征(图2d),这显示花岗伟晶岩在侵位时岩体还未完全固结,花岗伟晶岩与围岩具有近似的形成时代。因此,白草垛花岗伟晶岩可能为五垛山花岗岩基中黄龙庙这期岩浆活动演化晚期的产物,在岩体呈晶粥状态下侵入的结果。最近,东秦岭中段官坡南部前田一带发现了晚奥陶世花岗伟晶岩(446~442 Ma,Zhou Qifeng et al.,2021),也印证了东秦岭在这一时期存在花岗伟晶岩浆活动。

  • 图7 五垛山花岗岩基和东秦岭东段花岗伟晶岩年龄频谱直方图(修改自陈孝珍等,2021

  • Fig.7 Age spectra histograms for Wuduoshan granite batholith and granitic pegmatites in eastern section of the East Qinling (modified after Chen Xiaozhen et al., 2021)

  • 最近,随着激光剥蚀-串联四极杆等离子体质谱仪(LA-ICP-MS/MS)新型原位Rb-Sr定年技术的发展,为富含K和Rb的硅酸盐矿物提供了一种快速且经济高效的定年方法(Hogmalm et al.,2017)。长英质侵入体常含有富K和Rb的矿物,如云母和长石,Rb-Sr同位素系统可用于确定其时间关系(Redaa et al.,2022; Subarkah et al.,2022)。为了更好限定白草垛花伟晶岩的年龄,我们对花岗伟晶岩中的黑云母进行了LA-ICP-MS/MS原位Rb-Sr定年。测得白草垛花岗伟晶岩中黑云母的原位Rb-Sr等时线年龄为300.3±7.4 Ma,明显年轻于白草垛花岗伟晶岩的锆石U-Pb年龄。

  • 东秦岭早古生代花岗质岩浆作用可划分为507~470 Ma、460~422 Ma和415~400 Ma三个演化阶段,分别解释为俯冲、同碰撞和后碰撞环境(王晓霞等,2015)。这三个阶段岩浆活动对应于东秦岭造山带的高压—超高压变质作用(~500 Ma)、麻粒岩相退变质作用(~450 Ma)和角闪石相退变质作用(~420 Ma)三个阶段(Liu Liang et al.,2016)。通过云母40Ar/39Ar年龄、锆石SIMS年龄以及独居石和钛铁矿U-Pb年龄等研究显示,北秦岭角闪岩相退变质作用时间可持续到335~324 Ma(Bader et al.,2013; Dong Yunpeng et al.,2013; Zhang Hongfu et al.,2015)。白草垛花岗伟晶岩中黑云母的原位Rb-Sr等时线年龄300.3±7.4 Ma明显晚于东秦岭造山带早古生代浆活动时限。东秦岭造山带印支期岩浆活动时限主体为250~185 Ma,分为250~240 Ma和225~185 Ma两个阶段,分别对应于勉略洋的俯冲和后碰撞阶段(王晓霞等,2015); 白草垛花岗伟晶岩中黑云母的原位Rb-Sr等时线年龄也与其无关。因此,白草垛花岗伟晶岩中黑云母的原位Rb-Sr等时线年龄可能为原特提斯演化结束之后和古特提斯演化开始之前板内局部剪切和走滑引起的变质作用年龄。

  • 5.2 锆石成因

  • 白草垛花岗伟晶岩中锆石结构复杂,显示其经历了复杂的演化过程,根据其内部结构和微量元素特征,分为以下二种类型。

  • 5.2.1 岩浆锆石

  • 白草垛花岗伟晶岩中的类型一锆石呈自形,显示出清晰的振荡环带(图4a),与岩浆锆石一致(Corfu et al.,2003)。其微量元素含量较低,Th/U比值大于0.1(图8a); 稀土元素呈现LREE亏损,HREE富集的左倾特征,显示明显Eu的负异常和Ce的正异常(图5a、b),与攀西地区正长花岗岩和东秦岭小花岔花岗伟晶岩中的岩浆锆石相似(图5c、d),具岩浆锆石特征(吴元保等,2004; 赵志丹等,2018)。在锆石类型判别图中,白草垛花岗伟晶岩中的类型一锆石靠近岩浆锆石区域(图8b~d)。以上显示,白草垛花岗伟晶岩中的类型一锆石为岩浆锆石。

  • 白草垛花岗伟晶岩中类型二锆石核部和边部与类型一锆石近似,具有明显的振荡环带,较低的稀土元素和微量元素含量(图5、9),在锆石类型判别图中也靠近岩浆锆石区域(图8),因此类型二锆石核部也为岩浆锆石。

  • 5.2.2 热液锆石

  • 类型二锆石幔部和类型三锆石与类型一锆石明显不同,具有深色海绵状构造(图4b),与热液锆石的CL特征一致(Corfu et al.,2003; Hoskin and Schaltegger,2003; Tomaschek et al.,2003)。类型二锆石幔部和类型三锆石微量元素含量明显高于类型一锆石(图9),并且变化范围较大,Ce异常不明显,主体呈负异常,高LREE和HREE含量,也同热液成因锆石一致(图5; Hoskin,2005; Toscano et al.,2014)。因此,类型二锆石幔部和类型三锆石为热液锆石。

  • 6 花岗伟晶岩与岩浆热液过程

  • 研究表明,锆石容易受到热液蚀变的影响,岩浆和热液成因的锆石通常出现在高度演化的花岗岩和伟晶岩中(Erdmann et al.,2013; Liu Yan et al.,2019)。岩浆作用的晚期,残余热液熔体富集U、Th和REE等微量元素,这些热液流体与锆石相互作用可能导致锆石的晶体结构、化学成分和同位素体系受到干扰,包括重结晶、溶解-再沉淀和变质作用(Veksler et al.,2005; Martin et al.,2008; Han Jinsheng et al.,2019)。

  • 白草垛花岗伟晶岩类型二锆石具核-幔-边结构,由于核部和边部具有岩浆锆石特征,而幔部具有热液锆石特征,显示类型二的原生锆石可能经历了热液改造和后期岩浆再结晶。但是,类型二锆石的边部裂隙发育(图4b),这就为后期热液进入锆石内部提供了通道。因此,类型二锆石不是原生锆石经历了后期热液改造和岩浆结晶两次演化的结果,而是与岩浆热液沿着裂隙进入类型二锆石内部进行热液改造相关。在部分类型二锆石的幔部还残留少量具振荡环带岩浆锆石(图4b),这表明热液对锆石未完全改造。类型二锆石具有宽窄不同的边部,类型一锆石中少量锆石幔部具有很窄的深色部分(图4a),这反映了热液对锆石改造的程度不同。类型二锆石核部和边部与幔部之间的蚀变边界尖锐且不规则状(4b),表明幔部的形成受热液主导的反应控制(Geisler et al.,2003; Putnis et al.,2007; Nasdala et al.,2008)。

  • 图8 东秦岭东段白草垛花岗伟晶岩锆石成因判别图解(b,底图据Hoskin,2005; c-d,底图据Li Huan et al.,2018

  • Fig.8 Discriminant diagrams of zircons for granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling (b, after Hoskin, 2005; c-d, after Li Huan et al., 2018)

  • 岩浆锆石和热液锆石数据据Park et al.,2016; 苗壮等,2020; Yuan Feng et al.,2020; Borba et al.,2021; Zeng Zhiyao et al.,2022

  • The data of magmatic zircon and hydrothermal zircon from Park et al., 2016; Miao Zhuang et al., 2020; Yuan Feng et al., 2020; Borba et al., 2021; Zeng Zhiyao et al., 2022

  • 锆石辐射损伤主要受α衰变控制(李秋立,2016; 孙钰函等,2020),锆石中高U+Th放射性衰变可导致辐射损伤,使锆石结构从晶体转变为非晶态(Ewing et al.,2003; Geisler et al.,2007)。在未经过后期热愈合影响的前提下,当Dα(锆石形成以来经受α粒子轰击的程度)<2×1018α/g时,锆石总体处于晶格完整状态,2×1018α/g<Dα<8×1018α/g时处于过渡阶段,锆石物理性质转变快,当Dα>8×1018α/g时,锆石总体处于完全蜕晶化状态(Ewing et al.,2003; 李秋立,2016)。类型二锆石幔部具高的U+Th含量,Dα值为3.46×1018~11.53×1018α/g,平均为7.50×1018α/g,明显高于类型二锆石核部(1.47×1018~6.48×1018α/g,平均为3.37×1018α/g)和类型一锆石(1.76×1018~3.83×1018α/g,平均为2.76×1018α/g),显示类型二锆石幔部接近完全蜕晶化,而类型二锆石核部和类型一锆石靠近晶格完整状态(李秋立,2016)。类型三锆石具有最高的Dα值(4.38×1018~23.76×1018α/g,平均为9.38×1018α/g),说明类型三锆石处于完全蜕晶化。以上显示,类型二锆石幔部和类型三锆石经历了更多的α衰变辐射损伤。由于锆石向非晶结构转变过程中可能导致断裂发育(Geisler et al.,2004),为热液进入锆石内部提供通道,进而加速锆石的破坏过程(Belousova et al.,2002)。类型三锆石中未见环带锆石的热液改造残留,部分类型三锆石边部可见较窄的振荡环带,显示类型三锆石应该为类型二锆石近完全热液改造的结果。

  • 图9 东秦岭东段白草垛花岗伟晶岩锆石代表性元素箱型图

  • Fig.9 Zircon representative element box diagram of granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 图10 东秦岭东段白草垛花岗伟晶岩锆石形成示意图

  • Fig.10 Schematic model of the formation of zircons from granitic pegmatites in the Baicaoduo area in eastern section of the East Qinling

  • 白草垛花岗伟晶岩具塑性变形(图2d),说明花岗伟晶岩和围岩都还未完全固结,呈晶粥状,这与白草垛花岗伟晶岩的锆石U-Pb年龄和五垛山黄龙庙一带岩体具有近似的形成时代相一致(周澍,2019)。因此,白草垛花岗伟晶岩中类型二锆石和类型三锆石可能是原生锆石受到残留岩浆中的热液熔体不同程度改造的结果。

  • 侵入白草垛一带岩体的花岗伟晶岩作为岩浆房演化晚期的产物,经过早期矿物的分离结晶,使花岗伟晶岩的残留热液熔体富集U、Th和REE等微量元素,这些残留岩浆热液沿着锆石的裂隙进入晶体内部对锆石进行热液改造,由于残留岩浆热液中具有异常高U+Th含量,经过辐射性衰变,使锆石由晶体向非晶体结构转变,导致锆石内部断裂发育,加速热液对锆石的破坏过程(图10)。由于热液改造程度不同,形成了白草垛花岗伟晶岩中不同类型锆石。

  • 7 结论

  • (1)白草垛花岗伟晶岩中的锆石可分为三种类型。类型一锆石是花岗伟晶岩中的岩浆锆石; 类型二锆石是热液沿着锆石边部裂隙进入锆石内部未完全热液改造的锆石,具核-幔-边结构; 类型三锆石是类型二锆石近完全热液改造的结果。

  • (2)花岗伟晶岩中晚期残留岩浆热液富含U、Th、Ti、Hf和REE等微量元素,残留岩浆热液沿着锆石的裂隙进入晶体内部对锆石进行不同程度热液改造,形成了白草垛花岗伟晶岩中不同类型锆石。

  • 参考文献

    • Anderson T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Bader T, Franz L, Ratschbacher L, Capitani C D, Webb A A G, Yang Z, Pfänder J A, Hofmann M, Linnemann U. 2013. The Heart of China revisited: II Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonophysics, 32: 922~947.

    • Belousova E, Griffin W, O’Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5) : 602~622.

    • Borba M L, Tassinari C C G, Matos F M V, Sato K, Huhn S, Ferreira S N, Medeiros C. 2021. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil. Journal of Geochemical Exploration, 221: 106679.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elservier, 63~114.

    • Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.

    • Chen Xiaozhen, Chen Guochao, Li Ruibao, Zhang Yafeng, Ji Xianjun, Zhang Xiaofei. 2021. Zircon U-Pb geochronology and trace element characteristics of Wuduoshan granitic pegmatite in the eastern Part of East Qinling and its geological significance. Earth Science, 1~25 [2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html (in Chinese with English abstract).

    • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41: 213~237.

    • Dong Yunpeng, Liu Xiaoming, Neubauer F, Zhang Guowei, Tao Ni, Zhang Yiguo, Zhang Xiaoning, Li Wei. 2013. Timing of Paleozoic amalgamation between the North China and South China blocks: Evidence from detrital zircon U-Pb ages. Tectonophysics, 586: 173~191.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Dong Yunpeng, Shi Xiaohui, Sun Shengsi, Sun Jiaopeng, Hui Bo, He Dengfeng, Chong Fuhao, Yang Zhao. 2022. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems and Geoenvironment, 1(2): 100032.

    • Erdmann S, Wodicka N, Jackson S E, Corrigan D. 2013. Zircon textures and composition: Refractory recorders of magmatic volatile evolution? Contributions to Mineralogy and Petrology, 165: 45~71.

    • Ewing R C, Meldrum A, Wang L, Weber W J, Corrales L R. 2003. Radiation effects in zircon. Reviews in Mineralogy and Geochemistry, 53: 387~425.

    • Feng Yonggang, Liang Ting, Wang Mengxi, Zhang Ze, Hao Yuanyuan, Cen Jubiao, Dong Ziyan. 2022. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization. Acta Petrologica Sinica, 38(2): 428~444 (in Chinese with English abstract).

    • Geisler T. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67(3): 485~508.

    • Geisler T, Seydoux-Guillaume A M, Wiedenbeck M, Wirth R, Berndt J, Zhang M, Mihailova B, Putnis A, Salje E K, Schlüter J. 2004. Periodic precipitation pattern formation in hydrothermally treated metamict zircon. American Mineralogist, 89: 1341~1347.

    • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43~50.

    • Han Jinsheng, Chen Huayong, Hollings P, Jiang Hongjun, Xu Haijin, Zhang Le, Xiao Bing, Xing Changming, Tan Zhixiong. 2019. The formation of modified zircons in F-rich highly-evolved granites: An example from the Shuangji granites in Eastern Tianshan, China. Lithos, 324~325: 776~788.

    • Hogmalm K J, Zack T, Karlsson A K O, Sjoqvist A S L, Garbe-Schonberg D. 2017. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: An evaluation of N2O and SF6 as reaction gases. Journal of Analytical Atomic Spectrometry, 32(2): 305~313.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Hoskin P W O. 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637~648.

    • Lai Ya, Zhao Guochun, Li Wenlan, Lai Qunsheng, Fan Zhongling, Yi Zhiqiang, Wen Jing. 2017. Lithogeochemical characteristics and geological significance of granitoids in Zhenping area, eastern Qinling Mountains. Geology and Mineral Resources of South China, 32(4): 330~343 (in Chinese with English abstract).

    • Lei Ming. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the east part of Qinling orogenic belt. Doctoral dissertation of Chinese Academy of Geological Science (in Chinese with English abstract).

    • Li Huan, Li Jianwei, Algeo T J, Wu Jinghua, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multistage hydrothermal system: The Dongping Au deposit in North China. Lithos, 314-315: 463~478.

    • Li Kaiwen, Fang Huaibin, Guo Jungong, Liu Kun, Zhao Huan, Wang Xiaojun. 2019. Petrogeochemistry, LA-ICP-MS zircon U-Pb dating and geological significance of two-mica granites from Wuduoshan granite in Nanzhao County, eastern Qinling Mountains. Earth Science, 44(1): 123~134 (in Chinese with English abstract).

    • Li Qiuli. 2016. “High-U Effect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somevile I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.

    • Liang Shuang, Zhang Qian, Liu Jiahui, Li Zhen, Yan Quanren, Wu Chunming. 2021. LA-ICP-MS U-Pb dating of metamorphic monazite and zircon of the Qinling metamorphic complex, Xixia and Neixiang areas, Henan Province. Acta Petrologica Sinica, 37(12): 3797~3814 (in Chinese with English abstract).

    • Liu Bingxiang. 2014. Magmatism and crustal evolution in the eastern North Qinling terrain. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Liu Liang, Liao Xiaoying, Wang Yawei, Wang Chao, Santosh M, Yang Min, Zhang Chengli, Chen Danling. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth Science Reviews, 159: 58~81.

    • Liu Yan, Hou Zengqian, Zhang Rongqing, Wang Ping, Gao Jianfeng, Raschke M B. 2019. Zircon alteration as a proxy for rare earth element mineralization processes in Carbonatite-Nordmarkite complexes of the Mianning-Dechang rare earth element belt, China. Economic Geology, 114(4): 719~744.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the para-metamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310 (in Chinese with English abstract).

    • Lu Xinxiang, Zhu Zhaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. 2010. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30 (in Chinese with English abstract).

    • Ludwig K R. 2003. Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1~70.

    • Martin L A J, Duchêne S, Deloule E, Vanderhaeghe O. 2008. Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth and Planetary Science Letters, 267: 161~174.

    • Miao Zhuang, Zhao Zhidan, Lei Hangshan, Wu Jingkai, Yang Yiyun, Tong Xin. 2020. Genesis of LREE-enriched zircons and their highly radiogenic Hf compositions: A case study from Zhuopan alkaline complex in western Yunnan. Acta Petrologica Sinica, 36(9): 2765~2784 (in Chinese with English abstract).

    • Nasdala L, Miletich R, Ruschel K, Váczi T. 2008. Raman study of radiation-damaged zircon under hydrostatic compression. Physics and Chemistry of Minerals, 35: 597~602.

    • Park C, Song Y, Chung D, Kang I M, Khulganakhuu C, Yi K. 2016. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos, 260: 268~285.

    • Putnis A, Austrheim H. 2010. Fluid-induced processes: metasomatism and metamorphism. Frontiers in Geofluids, 10, 254~269.

    • Putnis C V, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C. 2007. An experimental study of the replacement of leucite by analcime. American Mineralogist, 92: 19~26.

    • Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay. Mineral Deposits, 38(5): 970~982 (in Chinese with English abstract).

    • Redaa A, Farkaš J, Hassan A, Collins A S, Gilbert S, Lohr S C. 2020. Constraints from in-situ Rb-Sr dating on the timing of tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au mineralisation in the southern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 224: 105037.

    • Schaltegger U. 2007. Hydrothermal zircon. Elements, 3(1): 51~79.

    • Subarkah D, Blades M L, Collins A S, Farkaš J, Gilbert S, Lohr S C, Redaa A, Cassidy E, Zack T. 2022. Unraveling the histories of Proterozoic shales through in situ Rb-Sr dating and trace element laser ablation analysis. Geology, 50(1): 66~70.

    • Sun Yuhan, Wu Liqun, Jiao Yangquan, Rong Hui. 2020. Effect of zircon self-radiation damage on lattice destruction and elements migration. Geotectonica et Metallogenia, 44(4): 772~782 (in Chinese with English abstract).

    • Takehara M, Horie K, Hokada T, Kiyokawa S. 2018. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth gabbro. Chemical Geology, 484: 168~178.

    • Tomaschek F, Kennedy A K, Villa I M, Lagos M, Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44: 1977~2002.

    • Toscano M T, Pascual E, Nesbitt R W, Almodóvar G R, Sáez R, Donaire T. 2014. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain. Ore Geology Reviews, 56: 301~311.

    • Valley J W, Cavosie A J, Ushikubo T, Reinhard D A, Lawrence D F, Larson D J, Clifton P H, Kelly T F, Wilde S A, Moser D E, Spicuzza M J. 2014. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7: 219~223.

    • Veksler I V, Dorfman A M, Kamenetsky M, Dulski P, Dingwell D B. 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69: 2847~2860.

    • Wang Haijie, Chen Danling, Ren Yunfei, Zhu Xiaohui, Gong Xiangkuan. 2021. The relationship between the North Qinling belt and the North China craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping complex. Acta Petrologica Sinica, 37(5): 1489~1507 (in Chinese with English abstract).

    • Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Chengli, Li Wuping, Li Shan. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science China: Earth Sciences, 52(9): 1359~1384.

    • Wang Xiaoxia, Wang Tao, Zhang Chengli. 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Science China: Earth Sciences, 45: 1109~1125 (in Chinese).

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4) : 413~433.

    • Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling Orogen and its geodynamic significance. Earth Science, 44(12): 4173~4177 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xixheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.

    • Yang Shijie, Chen Danling, Gong Xiangkuan, Zhao Jiao. 2015. The geochemistry, chronology and its geological implications of leucosomes in the basic volcanics of Erlangping Group in eastern segment of the North Qinling. Acta Petrologica Sinica, 31(7): 2009~2022 (in Chinese with English abstract) .

    • Yi Zhiqiang, Wen Jing, Lai Qunsheng, Xie Ke, Yan Helong, Wang Zhongjian, Li Shuai. 2017. Zircon U-Pb age of Wuduo Mountain compound batholith and its geological significance. Contributions to Geology and Mineral Resources Research, 32(4): 594~306 (in Chinese with English abstract).

    • Yuan Feng, Liu Jiajun, Carranza E J M, Zhang Shuai, Zhai Degao, Liu Gang, Wang Gongwen, Zhang Hongyuan, Sha Yazhou, Yang Shangsong. 2018. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling orogen, Central China. Lithos, 302-303: 20~36.

    • Yuan Feng, Jiang Shaoyong, Liu Jiajun, Liu Gang, Zhang Shuai, Sha Yazhou. 2020. Origin and evolution of uraniferous pegmatite: A case study from the xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China. Lithos, 356-357: 105379.

    • Zeng Zhiyao, Liu Yan. 2022. Magmatic-hydrothermal zircons in syenite: A record of Nb-Ta mineralization processes in the Emeishan large igneous province, SW China. Chemical Geology, 589: 120675.

    • Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chinese Science Bulletin, 58(23): 2323~2329 (in Chinese).

    • Zhang Guowei, Zhang Benren, Yuan Xuecheng. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855 (in Chinese with English abstract).

    • Zhang Hongfu, Yu Hong, Zhou Dingwu, Zhang Juan, Dong Yunpeng, Zhang Guowei. 2015. The meta-gabbroic complex of Fushui in north Qinling orogen: A case of syn-subduction mafic magmatism. Gondwana Research, 28(1): 262~275.

    • Zhao Zhidan, Liu Dong, Wang Qing, Zhu Dicheng, Dong Guochen, Zhou Su, Mo Xuanxue. 2018. Zircon trace elements and their use in probing deep processes. Earth Science Frontiers, 25(6): 124~135 (in Chinese with English abstract).

    • Zhi Jun, Lei Ruxiong, Chen Boyang, Muhtar M N, Feng Zhijie, Zhang Kai, Cai Yuanfeng, Wu Changzhi. 2021. Zircon genesis and geochronology for the Zhangbaoshan super-large Rubidium deposit in eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes. Frontiers in Earth Science, 9: 480.

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei, Wang Chunlong, Ma Liusuo. 2019. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999~2012 (in Chinese with English abstract).

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei. 2021. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, Central China: Implications for formation times and ore genesis. Journal of Asian Earth Sciences, 218: 104879.

    • Zhou Shu. 2019. Geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Master degree thesis of University of Science and Technology of China (in Chinese with English abstract).

    • Zhou Shu, Zhang He, Chen Fukun. 2019. Zircon U-Pb geochronology, geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Geological Journal of China Universities, 25(6): 901~913 (in Chinese with English abstract).

    • Zou Xinyu, Jiang Jilian, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 985~999 (in Chinese with English abstract).

    • 陈孝珍, 陈国超, 李瑞保, 张亚峰, 季宪军, 张晓飞. 2021. 东秦岭东段五垛山花岗伟晶岩锆石U-Pb年代学和微量元素特征及地质意义. 地球科学: 1-25[2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html.

    • 凤永刚, 梁婷, 王梦玺, 张泽, 郝媛媛, 岑炬标, 董紫艳. 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义. 岩石学报, 38(2): 428~444.

    • 赖亚, 赵国春, 李文兰, 赖群生, 樊中玲, 易志强, 文景. 2017. 东秦岭镇平地区花岗岩岩石地球化学特征及地质意义. 华南地质与矿产, 32(4): 330~343.

    • 雷敏. 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系. 中国地质科学院博士学位论文.

    • 李开文, 方怀宾, 郭君功, 刘坤, 赵焕, 王小娟. 2019. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义. 地球科学, 44(1): 123~134.

    • 李秋立. 2016. 离子探针锆石U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.

    • 梁爽, 张谦, 刘嘉惠, 李真, 闫全人, 吴春明. 2021. 西峡-内乡地区秦岭岩群变质独居石和锆石的U-Pb定年. 岩石学报, 37(12): 3797~3814.

    • 刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化. 中国科学技术大学博士学位论文.

    • 陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.

    • 卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.

    • 苗壮, 赵志丹, 雷杭山, 武精凯, 杨逸云, 佟鑫. 2020. 锆石轻稀土富集与Hf同位素异常成因: 以滇西卓潘碱性杂岩体为例. 岩石学报, 36(9): 2765~2784.

    • 秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比. 矿产地质, 38(5): 970~982.

    • 孙钰函, 吴立群, 焦养泉, 荣辉. 2020. 锆石自辐射损伤对晶格破坏与元素运移的影响. 大地构造与成矿学, 44(4): 772~782.

    • 王海杰, 陈丹玲, 任云飞, 朱小辉, 宫相宽. 2021. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石U-Pb年代学与变质作用证据. 岩石学报, 37(5): 1489~1507.

    • 王晓霞, 王涛, 张成立. 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学: 地球科学, 45: 1109~1125.

    • 吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173~4177.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 杨士杰, 陈丹玲, 宫相宽, 赵娇. 2015. 北秦岭东段二郎坪群基性火山岩中浅色岩体的地球化学、年代学及其地质意义. 岩石学报, 31(7): 2009~2022.

    • 易志强, 文景, 赖群生, 谢珂, 闫贺龙, 王忠建, 李帅. 2017. 五垛山复式岩基锆石U-Pb年龄及其地质意义. 地质找矿论丛, 32(4): 594~306.

    • 张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323~2329.

    • 张国伟, 张本仁, 袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.

    • 赵志丹, 刘栋, 王青, 朱弟成, 董国臣, 周肃, 莫宣学. 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124~135.

    • 周起凤, 秦克章, 唐冬梅, 王春龙, 马留锁. 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999~2012.

    • 周澍. 2019. 北秦岭地区早古生代五垛山岩体的地球化学特征及岩石成因. 中国地质科学院博士学位论文.

    • 周澍, 张贺, 陈福坤. 2019. 北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因. 高校地质学报, 25(6): 901~913.

    • 邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 985~999.

  • 参考文献

    • Anderson T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Bader T, Franz L, Ratschbacher L, Capitani C D, Webb A A G, Yang Z, Pfänder J A, Hofmann M, Linnemann U. 2013. The Heart of China revisited: II Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonophysics, 32: 922~947.

    • Belousova E, Griffin W, O’Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5) : 602~622.

    • Borba M L, Tassinari C C G, Matos F M V, Sato K, Huhn S, Ferreira S N, Medeiros C. 2021. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil. Journal of Geochemical Exploration, 221: 106679.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elservier, 63~114.

    • Burnham A D. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765.

    • Chen Xiaozhen, Chen Guochao, Li Ruibao, Zhang Yafeng, Ji Xianjun, Zhang Xiaofei. 2021. Zircon U-Pb geochronology and trace element characteristics of Wuduoshan granitic pegmatite in the eastern Part of East Qinling and its geological significance. Earth Science, 1~25 [2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html (in Chinese with English abstract).

    • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41: 213~237.

    • Dong Yunpeng, Liu Xiaoming, Neubauer F, Zhang Guowei, Tao Ni, Zhang Yiguo, Zhang Xiaoning, Li Wei. 2013. Timing of Paleozoic amalgamation between the North China and South China blocks: Evidence from detrital zircon U-Pb ages. Tectonophysics, 586: 173~191.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Dong Yunpeng, Shi Xiaohui, Sun Shengsi, Sun Jiaopeng, Hui Bo, He Dengfeng, Chong Fuhao, Yang Zhao. 2022. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems and Geoenvironment, 1(2): 100032.

    • Erdmann S, Wodicka N, Jackson S E, Corrigan D. 2013. Zircon textures and composition: Refractory recorders of magmatic volatile evolution? Contributions to Mineralogy and Petrology, 165: 45~71.

    • Ewing R C, Meldrum A, Wang L, Weber W J, Corrales L R. 2003. Radiation effects in zircon. Reviews in Mineralogy and Geochemistry, 53: 387~425.

    • Feng Yonggang, Liang Ting, Wang Mengxi, Zhang Ze, Hao Yuanyuan, Cen Jubiao, Dong Ziyan. 2022. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization. Acta Petrologica Sinica, 38(2): 428~444 (in Chinese with English abstract).

    • Geisler T. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67(3): 485~508.

    • Geisler T, Seydoux-Guillaume A M, Wiedenbeck M, Wirth R, Berndt J, Zhang M, Mihailova B, Putnis A, Salje E K, Schlüter J. 2004. Periodic precipitation pattern formation in hydrothermally treated metamict zircon. American Mineralogist, 89: 1341~1347.

    • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43~50.

    • Han Jinsheng, Chen Huayong, Hollings P, Jiang Hongjun, Xu Haijin, Zhang Le, Xiao Bing, Xing Changming, Tan Zhixiong. 2019. The formation of modified zircons in F-rich highly-evolved granites: An example from the Shuangji granites in Eastern Tianshan, China. Lithos, 324~325: 776~788.

    • Hogmalm K J, Zack T, Karlsson A K O, Sjoqvist A S L, Garbe-Schonberg D. 2017. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: An evaluation of N2O and SF6 as reaction gases. Journal of Analytical Atomic Spectrometry, 32(2): 305~313.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Hoskin P W O. 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637~648.

    • Lai Ya, Zhao Guochun, Li Wenlan, Lai Qunsheng, Fan Zhongling, Yi Zhiqiang, Wen Jing. 2017. Lithogeochemical characteristics and geological significance of granitoids in Zhenping area, eastern Qinling Mountains. Geology and Mineral Resources of South China, 32(4): 330~343 (in Chinese with English abstract).

    • Lei Ming. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the east part of Qinling orogenic belt. Doctoral dissertation of Chinese Academy of Geological Science (in Chinese with English abstract).

    • Li Huan, Li Jianwei, Algeo T J, Wu Jinghua, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multistage hydrothermal system: The Dongping Au deposit in North China. Lithos, 314-315: 463~478.

    • Li Kaiwen, Fang Huaibin, Guo Jungong, Liu Kun, Zhao Huan, Wang Xiaojun. 2019. Petrogeochemistry, LA-ICP-MS zircon U-Pb dating and geological significance of two-mica granites from Wuduoshan granite in Nanzhao County, eastern Qinling Mountains. Earth Science, 44(1): 123~134 (in Chinese with English abstract).

    • Li Qiuli. 2016. “High-U Effect” during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405~412 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somevile I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.

    • Liang Shuang, Zhang Qian, Liu Jiahui, Li Zhen, Yan Quanren, Wu Chunming. 2021. LA-ICP-MS U-Pb dating of metamorphic monazite and zircon of the Qinling metamorphic complex, Xixia and Neixiang areas, Henan Province. Acta Petrologica Sinica, 37(12): 3797~3814 (in Chinese with English abstract).

    • Liu Bingxiang. 2014. Magmatism and crustal evolution in the eastern North Qinling terrain. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Liu Liang, Liao Xiaoying, Wang Yawei, Wang Chao, Santosh M, Yang Min, Zhang Chengli, Chen Danling. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth Science Reviews, 159: 58~81.

    • Liu Yan, Hou Zengqian, Zhang Rongqing, Wang Ping, Gao Jianfeng, Raschke M B. 2019. Zircon alteration as a proxy for rare earth element mineralization processes in Carbonatite-Nordmarkite complexes of the Mianning-Dechang rare earth element belt, China. Economic Geology, 114(4): 719~744.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the para-metamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310 (in Chinese with English abstract).

    • Lu Xinxiang, Zhu Zhaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. 2010. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30 (in Chinese with English abstract).

    • Ludwig K R. 2003. Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1~70.

    • Martin L A J, Duchêne S, Deloule E, Vanderhaeghe O. 2008. Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth and Planetary Science Letters, 267: 161~174.

    • Miao Zhuang, Zhao Zhidan, Lei Hangshan, Wu Jingkai, Yang Yiyun, Tong Xin. 2020. Genesis of LREE-enriched zircons and their highly radiogenic Hf compositions: A case study from Zhuopan alkaline complex in western Yunnan. Acta Petrologica Sinica, 36(9): 2765~2784 (in Chinese with English abstract).

    • Nasdala L, Miletich R, Ruschel K, Váczi T. 2008. Raman study of radiation-damaged zircon under hydrostatic compression. Physics and Chemistry of Minerals, 35: 597~602.

    • Park C, Song Y, Chung D, Kang I M, Khulganakhuu C, Yi K. 2016. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos, 260: 268~285.

    • Putnis A, Austrheim H. 2010. Fluid-induced processes: metasomatism and metamorphism. Frontiers in Geofluids, 10, 254~269.

    • Putnis C V, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C. 2007. An experimental study of the replacement of leucite by analcime. American Mineralogist, 92: 19~26.

    • Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay. Mineral Deposits, 38(5): 970~982 (in Chinese with English abstract).

    • Redaa A, Farkaš J, Hassan A, Collins A S, Gilbert S, Lohr S C. 2020. Constraints from in-situ Rb-Sr dating on the timing of tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au mineralisation in the southern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 224: 105037.

    • Schaltegger U. 2007. Hydrothermal zircon. Elements, 3(1): 51~79.

    • Subarkah D, Blades M L, Collins A S, Farkaš J, Gilbert S, Lohr S C, Redaa A, Cassidy E, Zack T. 2022. Unraveling the histories of Proterozoic shales through in situ Rb-Sr dating and trace element laser ablation analysis. Geology, 50(1): 66~70.

    • Sun Yuhan, Wu Liqun, Jiao Yangquan, Rong Hui. 2020. Effect of zircon self-radiation damage on lattice destruction and elements migration. Geotectonica et Metallogenia, 44(4): 772~782 (in Chinese with English abstract).

    • Takehara M, Horie K, Hokada T, Kiyokawa S. 2018. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth gabbro. Chemical Geology, 484: 168~178.

    • Tomaschek F, Kennedy A K, Villa I M, Lagos M, Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44: 1977~2002.

    • Toscano M T, Pascual E, Nesbitt R W, Almodóvar G R, Sáez R, Donaire T. 2014. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain. Ore Geology Reviews, 56: 301~311.

    • Valley J W, Cavosie A J, Ushikubo T, Reinhard D A, Lawrence D F, Larson D J, Clifton P H, Kelly T F, Wilde S A, Moser D E, Spicuzza M J. 2014. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7: 219~223.

    • Veksler I V, Dorfman A M, Kamenetsky M, Dulski P, Dingwell D B. 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69: 2847~2860.

    • Wang Haijie, Chen Danling, Ren Yunfei, Zhu Xiaohui, Gong Xiangkuan. 2021. The relationship between the North Qinling belt and the North China craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping complex. Acta Petrologica Sinica, 37(5): 1489~1507 (in Chinese with English abstract).

    • Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Chengli, Li Wuping, Li Shan. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science China: Earth Sciences, 52(9): 1359~1384.

    • Wang Xiaoxia, Wang Tao, Zhang Chengli. 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Science China: Earth Sciences, 45: 1109~1125 (in Chinese).

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4) : 413~433.

    • Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling Orogen and its geodynamic significance. Earth Science, 44(12): 4173~4177 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xixheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 542: 119596.

    • Yang Shijie, Chen Danling, Gong Xiangkuan, Zhao Jiao. 2015. The geochemistry, chronology and its geological implications of leucosomes in the basic volcanics of Erlangping Group in eastern segment of the North Qinling. Acta Petrologica Sinica, 31(7): 2009~2022 (in Chinese with English abstract) .

    • Yi Zhiqiang, Wen Jing, Lai Qunsheng, Xie Ke, Yan Helong, Wang Zhongjian, Li Shuai. 2017. Zircon U-Pb age of Wuduo Mountain compound batholith and its geological significance. Contributions to Geology and Mineral Resources Research, 32(4): 594~306 (in Chinese with English abstract).

    • Yuan Feng, Liu Jiajun, Carranza E J M, Zhang Shuai, Zhai Degao, Liu Gang, Wang Gongwen, Zhang Hongyuan, Sha Yazhou, Yang Shangsong. 2018. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling orogen, Central China. Lithos, 302-303: 20~36.

    • Yuan Feng, Jiang Shaoyong, Liu Jiajun, Liu Gang, Zhang Shuai, Sha Yazhou. 2020. Origin and evolution of uraniferous pegmatite: A case study from the xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China. Lithos, 356-357: 105379.

    • Zeng Zhiyao, Liu Yan. 2022. Magmatic-hydrothermal zircons in syenite: A record of Nb-Ta mineralization processes in the Emeishan large igneous province, SW China. Chemical Geology, 589: 120675.

    • Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chinese Science Bulletin, 58(23): 2323~2329 (in Chinese).

    • Zhang Guowei, Zhang Benren, Yuan Xuecheng. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855 (in Chinese with English abstract).

    • Zhang Hongfu, Yu Hong, Zhou Dingwu, Zhang Juan, Dong Yunpeng, Zhang Guowei. 2015. The meta-gabbroic complex of Fushui in north Qinling orogen: A case of syn-subduction mafic magmatism. Gondwana Research, 28(1): 262~275.

    • Zhao Zhidan, Liu Dong, Wang Qing, Zhu Dicheng, Dong Guochen, Zhou Su, Mo Xuanxue. 2018. Zircon trace elements and their use in probing deep processes. Earth Science Frontiers, 25(6): 124~135 (in Chinese with English abstract).

    • Zhi Jun, Lei Ruxiong, Chen Boyang, Muhtar M N, Feng Zhijie, Zhang Kai, Cai Yuanfeng, Wu Changzhi. 2021. Zircon genesis and geochronology for the Zhangbaoshan super-large Rubidium deposit in eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes. Frontiers in Earth Science, 9: 480.

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei, Wang Chunlong, Ma Liusuo. 2019. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999~2012 (in Chinese with English abstract).

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei. 2021. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, Central China: Implications for formation times and ore genesis. Journal of Asian Earth Sciences, 218: 104879.

    • Zhou Shu. 2019. Geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Master degree thesis of University of Science and Technology of China (in Chinese with English abstract).

    • Zhou Shu, Zhang He, Chen Fukun. 2019. Zircon U-Pb geochronology, geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane. Geological Journal of China Universities, 25(6): 901~913 (in Chinese with English abstract).

    • Zou Xinyu, Jiang Jilian, Qin Kezhang, Zhang Yigang, Yang Wei, Li Xianhua. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 985~999 (in Chinese with English abstract).

    • 陈孝珍, 陈国超, 李瑞保, 张亚峰, 季宪军, 张晓飞. 2021. 东秦岭东段五垛山花岗伟晶岩锆石U-Pb年代学和微量元素特征及地质意义. 地球科学: 1-25[2022-03-27]. http: //kns. cnki. net/kcms/detail/42. 1874. p. 20211125. 1838. 010. html.

    • 凤永刚, 梁婷, 王梦玺, 张泽, 郝媛媛, 岑炬标, 董紫艳. 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义. 岩石学报, 38(2): 428~444.

    • 赖亚, 赵国春, 李文兰, 赖群生, 樊中玲, 易志强, 文景. 2017. 东秦岭镇平地区花岗岩岩石地球化学特征及地质意义. 华南地质与矿产, 32(4): 330~343.

    • 雷敏. 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系. 中国地质科学院博士学位论文.

    • 李开文, 方怀宾, 郭君功, 刘坤, 赵焕, 王小娟. 2019. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义. 地球科学, 44(1): 123~134.

    • 李秋立. 2016. 离子探针锆石U-Pb定年的“高U效应”. 矿物岩石地球化学通报, 35(3): 405~412.

    • 梁爽, 张谦, 刘嘉惠, 李真, 闫全人, 吴春明. 2021. 西峡-内乡地区秦岭岩群变质独居石和锆石的U-Pb定年. 岩石学报, 37(12): 3797~3814.

    • 刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化. 中国科学技术大学博士学位论文.

    • 陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.

    • 卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.

    • 苗壮, 赵志丹, 雷杭山, 武精凯, 杨逸云, 佟鑫. 2020. 锆石轻稀土富集与Hf同位素异常成因: 以滇西卓潘碱性杂岩体为例. 岩石学报, 36(9): 2765~2784.

    • 秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比. 矿产地质, 38(5): 970~982.

    • 孙钰函, 吴立群, 焦养泉, 荣辉. 2020. 锆石自辐射损伤对晶格破坏与元素运移的影响. 大地构造与成矿学, 44(4): 772~782.

    • 王海杰, 陈丹玲, 任云飞, 朱小辉, 宫相宽. 2021. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石U-Pb年代学与变质作用证据. 岩石学报, 37(5): 1489~1507.

    • 王晓霞, 王涛, 张成立. 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学: 地球科学, 45: 1109~1125.

    • 吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173~4177.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 杨士杰, 陈丹玲, 宫相宽, 赵娇. 2015. 北秦岭东段二郎坪群基性火山岩中浅色岩体的地球化学、年代学及其地质意义. 岩石学报, 31(7): 2009~2022.

    • 易志强, 文景, 赖群生, 谢珂, 闫贺龙, 王忠建, 李帅. 2017. 五垛山复式岩基锆石U-Pb年龄及其地质意义. 地质找矿论丛, 32(4): 594~306.

    • 张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323~2329.

    • 张国伟, 张本仁, 袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.

    • 赵志丹, 刘栋, 王青, 朱弟成, 董国臣, 周肃, 莫宣学. 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124~135.

    • 周起凤, 秦克章, 唐冬梅, 王春龙, 马留锁. 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999~2012.

    • 周澍. 2019. 北秦岭地区早古生代五垛山岩体的地球化学特征及岩石成因. 中国地质科学院博士学位论文.

    • 周澍, 张贺, 陈福坤. 2019. 北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因. 高校地质学报, 25(6): 901~913.

    • 邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 985~999.