en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

许谱林,男,1989年生。高级工程师,主要从事铀矿地质找矿与研究工作。E-mail:710138062@qq.com。

通讯作者:

郭福生,男,1962年生。教授,博士生导师,主要从事区域地质、铀矿地质、沉积学等研究。E-mail:fshguo@ecut.edu.cn。

参考文献
Battaglia S. 1999. Applying x-ray geothermomenter diffraction to a chlorite. Clays and Clay Minerals, 47(1): 54~63.
参考文献
Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).
参考文献
Chen Xu. 2020. Metallogenic geological characteristics of granite-related uranium deposit in the Sanjiu uranium ore field, middle section of Zhuguangshan complex massif. PhD dissertation of East China University of Techonlogy, 1~214 (in Chinese with English abstract).
参考文献
Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.
参考文献
De Caritat P, Hutcheon I, Walshe J L. 1993. Chlorite geothermometry: A review. Clays and Clay Minerals, 41(2): 219~239.
参考文献
Deer W A, Howie R A, Zussman J. 1962. Rock-Forming Mineral: Sheet Silicates. Londin: Longman, 270.
参考文献
Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(14): 1231~1241 (in Chinese with English abstract).
参考文献
Grigsby J D. 2001. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg formation, South Texas. Journal of Sedimentary Research, 71(1): 27~36.
参考文献
Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).
参考文献
Guo Guolin, Liu Xiaodong, Pan Jiayong, Zhang Zhanshi, Li Xingbin. 2012. Character of chlorite and its relationship to uranium mineralization in uranium deposit No. 302. Uranium Geology, 28(1): 35~41 (in Chinese with English abstract).
参考文献
Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).
参考文献
Hillier S, Velde B. 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 47(2): 284~293.
参考文献
Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).
参考文献
Hua Renmin, Li Xiaofeng, Zhang Kaiping, Ji Junfeng, Zhang Wenlan. 2003. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: Implication for the environment of water-bock interaction. Acta Mineralogica Sinica, 23(1): 23~30 (in Chinese with English abstract).
参考文献
Inoue A. 1995. Formation of clay minerals in hydrothermal environment. Velde B: Origin and Mineralogy of Clays. Berlin: Springer, 268~330.
参考文献
Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).
参考文献
Laird J. 1988. Chlorites: Metamorphic petrology. Reviews in Mineralogy, 19: 405~453.
参考文献
Li Haidong, Pan Jiayong, Liu Wenquan, Jiang Weibing, Li Jun, Liang Yuanyuan, Xie Qiang, Lu Yan. 2016. Mineral characterisics and geological significance of chlorite from the Julong'an uranium deposit in Le'an, Jiangxi Province. Acta Petrlogica et Mineralogica, 36(4): 535~548 (in Chinese with English abstract).
参考文献
Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).
参考文献
Li Jianhong, Luo Yi, Wang Mingtai, Sun Zhifu. 2001. Assessment study of solution leaching of fractured-altered uranium ore at Lujing granite-type uranium deposit. Uranium Geology, 17(3): 168~173 (in Chinese with English abstract).
参考文献
Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).
参考文献
Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Fang Shiyi, Zou Mingliang. 2021. LA-ICP-MS U-Pb ages and trace element compositions of ziron fromIndosinian granite in middle Zhuguangshan. Geotectonica et Metallogenia, 45(6): 1216~1232.
参考文献
Li Renze, Liu Chengdong, Liang Liang, Kong Ming, Wang Bing, Wan Jianjun. 2016. Characterisics and geological significance of chlorite from the Dafushang uranium deposit in Taoshan area, Jiangxi Province. Acta Petrlogica et Mineralogica, 35(2): 297~305 (in Chinese with English abstract).
参考文献
Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi Provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).
参考文献
Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).
参考文献
Ling Hongfei. 2011. Origin of hydrothermal fluids of grantie-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 193~206 (in Chinese with English abstract).
参考文献
Liu Yingjun, Cao Liming. 1987. Element Geochemistry Principle. Beijing: Geological Publishing House, 124~128 (in Chinese with English abstract).
参考文献
Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian South Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).
参考文献
Min M Z, Luo X Z, Du G S. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huanggao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.
参考文献
Nieto F. 1997. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy, 9(4): 829~841.
参考文献
Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).
参考文献
Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).
参考文献
Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master degree dissertation of East China University of Techonlogy, 1~94 (in Chinese with English abstract).
参考文献
Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).
参考文献
Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).
参考文献
Walshe J L. 1986. A six-component chlorite solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems. Economic Geology, 81(3): 681~703.
参考文献
Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master degree dissertation of East China University of Techonlogy, 1~60(in Chinese with English abstract).
参考文献
Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).
参考文献
Wu Dehai, Pan Jiayong, Xia Fei, Huang Guangwen, Zhong Fujun, Qi Jiaming, Hong Binyue, Zhou Tangbo. 2018. Characterisics and formation conditions of chlorite in the Shangjiao uranium deposit in the southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393~405 (in Chinese with English abstract).
参考文献
Wu D H, Pan J Y, Xia F, Huang G W, Lai J. 2019. The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the middle Nanling range, SE China. Minerals, 9: 199.
参考文献
Wu Dehai. 2020. Geochemical characteristics of hydrothermal alteration minerals and uranium mineralization in Mianhuakeng deposit, northern Guangdong Province. PhD dissertation of East China University of Techonlogy, 1~156 (in Chinese with English abstract).
参考文献
Xia Fei, Meng Hua, Nie Fengjun, Yan Zhaobin, Zhang Chengyong, Li Mangen. 2016. Characterstics of chlorite from the Nalinggou uranium deposit in the Ordos basin and its geological significance. Acta Geologica Sinica, 90(12): 3473~3482 (in Chinese with English abstract).
参考文献
Xie X G, Byerly G R, Ferrel R E. 1997. IIb trioctahedral chlorite from the Barberton greenstone belt crystal structure and rock composition constraints with implication to geothermometry. Contribution to Mineralogy and Prtrology, 126: 275~291.
参考文献
Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Li Zhipeng, Wu Zhichun, Xu Jianjun, Zhong Pengfei. 2022. The hydrothermal alteration of U-bearing accessory minerals: An example from the mineralogical study of cataclastic alteration granite-type uranium deposit in the Lujing ore field, South China. Acta Geologica Sinica, 96(11): 3799~3818 (in Chinese with English abstract).
参考文献
Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Wu Zhichun, Li Zhipeng. 2023. The geological features of QF2 faults and its relationship with uranium mineralization in Lujing uranium ore-field, South China. Geotectonica et Metallogenia, 47(1): 98~114 (in Chinese with English abstract).
参考文献
Yang Shanghai. 2008. Uranium metallogenic features and prospecting potentialities in the areas around Shabazi uranium deposit in Nanling metallogenic belt. World Nuclear Geoscience, 25(4): 195~202 (in Chinese with English abstract).
参考文献
Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).
参考文献
Zang W, Fyfe W S. 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit Carajás Brazil. Mineralium Deposita, 30(1): 30~38.
参考文献
Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).
参考文献
Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: Implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).
参考文献
Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).
参考文献
Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).
参考文献
Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).
参考文献
Zhang Wei, Zhang Shuting, Cao Huawen, Wu Junde, Xiao Changxian, Chen Huijun, Tang Li. 2014. Characteristics of chlorite minerals from Xiaolonghe Ti deposit in west Yunnan, China and their geological omplication. Journal of Chengdu University of Technology, 41(3): 318~328 (in Chinese with English abstract).
参考文献
Zhang Xiaotian, Pan Jiayong, Xia Fei, Liu Yin, Huang Di, Zhao Qifeng, Zhang Yong, Liu Guoqi, Zhong Fujun. 2022. Fluid inclusion constraints on ore-forming mechanism of Lujing uranium deposit in Jiangxi-Hunan border region. Earth Science, 47(1): 192~205 (in Chinese with English abstract).
参考文献
Zhang Zhanshi, Hua Renmin, Ji Junfeng, Zhang Yanchun, Guo Guolin, Yin Zhengping. 2007. Characteristics and formation conditions of chlorite in No. 201 and No. 361 uranium deposits. Acta Mineralogica Sinica, 27(2): 161~172 (in Chinese with English abstract).
参考文献
Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional diffenerces of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).
参考文献
Zheng Qiaorong. 1983. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineralogica Sinica, (1): 55~62 (in Chinese with English abstract).
参考文献
Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling range: Constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).
参考文献
Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).
参考文献
Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).
参考文献
蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.
参考文献
陈旭. 2020. 诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究. 东华理工大学博士学位论文, 1~214.
参考文献
邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.
参考文献
郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.
参考文献
郭国林, 刘晓东, 潘家永, 张展适, 李兴斌. 2012. 302铀矿床绿泥石特征及其与铀成矿的关系. 铀矿地质, 28(1): 35~41.
参考文献
韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.
参考文献
胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.
参考文献
华仁民, 李晓峰, 张开平, 季峻峰, 张文兰. 2003. 金山金矿热液蚀变粘土矿物特征及水岩反应环境研究. 矿物学报, 23(1): 23~30.
参考文献
蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.
参考文献
李海东, 潘家永, 刘文泉, 江卫兵, 李俊, 梁园园, 谢强, 鲁彦. 2016. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535~548.
参考文献
李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.
参考文献
李建红, 罗毅, 王明太, 孙志富. 2001. 鹿井碎裂蚀变花岗岩型铀矿床溶浸评价研究. 铀矿地质, 17(3): 168~173.
参考文献
李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.
参考文献
李杰, 黄宏业, 刘子杰, 张涛, 王前林, 方适宜, 邹明亮. 2021. 诸广中段印支期花岗岩LA-ICP-MS锆石U-Pb年龄及微量元素特征. 大地构造与成矿学, 45(6): 1216~1232.
参考文献
李仁泽, 刘成东, 梁良, 孔明, 王冰, 万建军. 2016. 江西省桃山铀矿田大府上绿泥石特征及其地质意义. 岩石矿物学杂志, 35(2): 297~305.
参考文献
李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.
参考文献
李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.
参考文献
凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.
参考文献
刘英俊, 曹厉明. 1987. 元素地球化学导论. 北京: 地质出版社, 124~128.
参考文献
马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.
参考文献
祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.
参考文献
秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士学位论文, 1~94.
参考文献
覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.
参考文献
邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.
参考文献
孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.
参考文献
王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征、铀的赋存状态及成矿机制探讨. 东华理工大学硕士学位论文, 1~60.
参考文献
王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1) : 48~54.
参考文献
吴德海. 2020. 粤北棉花坑铀矿床热液蚀变矿物地球化学特征与铀成矿作用研究. 东华理工大学博士学位论文, 1~156.
参考文献
吴德海, 潘家永, 夏菲, 黄广文, 钟福军, 祁家明, 洪斌跃, 周堂波. 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4) : 393~405.
参考文献
夏菲, 孟华, 聂逢君, 严兆斌, 张成勇, 李满根. 2016. 鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义. 地质学报, 90(12): 3473~3482.
参考文献
许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 李志鹏, 吴志春, 许健俊, 钟鹏飞. 2022. 含铀副矿物的热液蚀变: 来自华南鹿井矿田碎裂蚀变岩型铀矿床的矿物学研究. 地质学报, 96(11): 3799~3818.
参考文献
许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 吴志春, 李志鹏. 2023. 华南鹿井铀矿田NE向QF2断裂特征及其与铀成矿关系探讨. 大地构造与成矿学, 47(1): 98~114.
参考文献
杨尚海. 2008. 南岭成矿带沙坝子矿床外围铀成矿特征及找矿前景. 世界核地质科学, 25(4): 195~202.
参考文献
余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.
参考文献
张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.
参考文献
张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.
参考文献
张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.
参考文献
张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.
参考文献
张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.
参考文献
张伟, 张寿庭, 曹华文, 武俊德, 肖常先, 陈慧军, 唐利. 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版), 41(3): 318~328.
参考文献
张笑天, 潘家永, 夏菲, 刘颖, 黄迪, 赵奇峰, 张勇, 刘国奇, 钟福军. 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192~205.
参考文献
张展适, 华仁民, 季峻峰, 张彦春, 郭国林, 尹征平. 2007. 201和361铀矿床中绿泥石的特征及其形成环境研究. 矿物学报, 27(2): 161~172.
参考文献
郑巧荣. 1983. 由电子探针分析值计算Fe3+和Fe2+. 矿物学报, (1): 55~62.
参考文献
章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.
参考文献
钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.
参考文献
周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.
参考文献
朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.
目录contents

    摘要

    鹿井铀矿田位于桃山-诸广铀成矿带的南西部,是华南最主要花岗岩型铀矿田之一,碎裂蚀变岩型铀矿化在该矿田占主导地位,小山铀矿床是近年来新发现的碎裂蚀变岩型铀矿床之一。绿泥石化是该铀矿化重要的蚀变类型和找矿标志,然而针对绿泥石特征及其与铀成矿的关系研究较为薄弱。本文以钻孔ZK1-1揭露的热液蚀变带为研究对象,对绿泥石开展精细矿物学研究。结果表明:① 小山铀矿床主要存在4种形态类型的绿泥石,分别为黑云母蚀变型、长石蚀变型、裂隙充填型和与铀矿物密切共生型;② 绿泥石以富铁的铁镁绿泥石为主,部分为蠕绿泥石;③ 绿泥石的形成温度在213.5~249.8℃之间,平均值为233.4℃,属中低温条件;④ 绿泥石形成于低氧逸度、高硫逸度的还原环境,形成机制包括溶解—沉淀和溶解—迁移—沉淀,其中晶质铀矿、独居石以及磷钇矿矿物发生溶解,形成铀石—钍石矿物;⑤ 绿泥石蚀变改变了围岩性质、铀的赋存状态以及物理化学环境,促使铀的活化、迁移以及沉淀。

    Abstract

    The Lujing uranium ore field which is located in the southwest part of Taoshan-Zhuguang metallogenic belt is one of the most important granite type uranium ore field in South China. This ore field is dominated by the uranium mineralization related cataclastic alteration. The Xiaoshan uranium deposit is one of newly discovered cataclastic alteration granite-type deposits during recent years. Chloritization is the most important alteration type and prospecting indicator of the cataclastic alteration granite-type uranium deposits. However, the course of chloritization and its relationship with uranium mineralization has not been paid much attention. In this study, the mineralogy of chloritization from hydrothermal zone that was uncovered by drill core ZK-1 in Xiaoshan deposit has been carried out. The following conclusions have been reached in this study. ①There are four types of chlorites, including chlorite of biotite alteration, chlorite of feldspar alteration, chlorite vein/veinlet filling in fissures, chlorite closely associated with uranium minerals. ② The chlorites are mainly plotted in the brunsvigite area, partly plotted in the pycnochlorite. ③ The formation temperature of chlorites varies from 213.5℃ to 249.8℃, at an average of 233.4℃, suggesting the chlorites were formed under medium to low temperature conditions. ④ The chlorites were formed under the reduced condition with low oxygen fugacity and high sulfur fugacity through two formation mechanisms of the dissolution-precipitation and the dissolution-migration-precipitation. The uraninite, monazite and xenotime are redissolved to form coffinite-thorite. ⑤ The chloritization has changed the properties of wall rocks, the occurring state of uranium in rocks and physicochemical environment and promoted the activation, migration and precipitation of uranium.

  • 花岗岩型铀矿床是我国最主要的铀矿床类型之一(蔡煜琦等,2015; 朱鹏飞等,2018),主要分布于华南诸广和贵东两个印支期—燕山期复式岩体内。鹿井铀矿田处于诸广山复式岩体中部,是我国最重要的花岗岩型铀矿田之一(余达淦等,2005)。该矿田从20世纪50年代被发现至今,前人对其开展了大量工作,包括在岩石矿物学(张术根等,2014; 王冰,2016; 王冰等,2016)、成岩时代(邓平等,2012; 郭爱民等,2017; 张万良等,2018; 李嘉等,2019; 李杰等,2021)、成矿时代(韩娟等,2011; 蒋红安等,2020)、岩石地球化学(覃金宁等,2003; 马铁球等,2006)、成矿流体(李紫金等,1998; 杨尚海,2008; 张笑天等,2022)、构造性质(李先福等,1999; 孙岳等,2020; 许谱林等,2023)、控矿因素(李建威等,2000; 张万良等,2011)以及成矿潜力和找矿思路(邵飞等,2010; 周肖华等,2014)等方面进行了大量深入研究。不过,针对该矿田成因以及成矿作用过程研究还较为薄弱,尤其是对于铀矿化的形成温度以及物理化学环境还不清晰,这严重制约了对铀成矿机制的了解。

  • 绿泥石广泛分布于各类岩石和地质环境中,是一种常见的热液交代蚀变矿物(Deer et al.,1962; De Caritat et al.,1993)。众多学者针对绿泥石开展了大量的研究,总结出绿泥石化学成分与其形成温度、氧逸度、硫逸度等物理化学环境关系密切,还建立了一系列定量的研究模型(Battaglia,1999; Grigsby,2001),常利用绿泥石特征来反映成矿流体的性质、热液成矿过程中物理化学环境的变化情况(Nieto,1997)。在热液型铀矿床中绿泥石蚀变特别发育,近些年,前人通过研究绿泥石的特征来分析铀矿床的成因以及形成环境(张展适等,2007; 郭国林等,2012; 李海东等,2016; 夏菲等,2016; 吴德海等,2018; 陈旭,2020),显示该方法已经得到学者的普遍认可。

  • 绿泥石在鹿井矿田碎裂蚀变岩型铀矿床中较为发育,绿泥石化也是该类型铀矿化最为典型的蚀变之一。本文拟在前人研究基础上,选取鹿井矿田中部新发现的小山铀矿床为研究对象,采用显微镜鉴定和电子探针微区分析等方法对钻孔ZK1-1揭露的典型热液蚀变岩带中的绿泥石特征进行系统研究,探讨绿泥石形成环境及其与铀成矿之间的关系,以期揭示该类型铀矿化的形成机制。

  • 1 地质背景

  • 鹿井铀矿田位于华夏板块武功—诸广断隆区,处于桃山-诸广铀成矿带的南西部,受遂川-热水断裂组成的地堑式断陷带控制(邵飞等,2010)。矿田内出露有寒武系碳质板岩、变质砂岩,白垩系紫红色砂砾岩及第四系。岩浆岩以印支期中粗粒似斑状黑云母二长花岗岩( γ15)为主,其次为燕山早期第二、三阶段花岗岩(γ2-25、γ2-35),在燕山晚期见有很多花岗岩(γ3-15)、石英斑岩、花岗斑岩、辉绿岩、煌斑岩脉侵入。矿田内断裂较为发育,以NE方向为主,从北往南依次发育有QF1、QF2、QF3、QF4及QF5 5条规模较大以白色块状石英为主组成的NE向断裂带,该断裂带构成鹿井矿田基本构造格架,也控制了区内铀矿化的展布(图1)。

  • 矿田内已探明有鹿井、黄峰岭、小山等10余个铀矿床(图1)。区内铀矿化根据其赋矿围岩和产出部位可分为花岗岩外带型和花岗岩内带型铀矿化。花岗岩外带型铀矿化主要赋存于寒武系碳质板岩当中; 花岗岩内带型铀矿化主要赋存于印支期黑云母花岗岩之中,是鹿井矿田重要组成部分,矿化类型又以碎裂蚀变岩亚型为主。

  • 小山铀矿床位于鹿井铀矿田中部,为典型的碎裂蚀变岩亚型铀矿床,主要受北东向QF2断裂控制,矿体主要产于QF2断裂旁侧次级断裂或者碎裂花岗岩中,多呈脉状、透镜状分布。矿石成分相对简单,呈暗红色,矿石矿物主要为铀石和铀石—钍石,呈肾状、葡萄状、分散球粒状等形式产出。主要脉石矿物有石英、长石,次要矿物为绢云母、赤铁矿、黄铁矿和方铅矿等。围岩蚀变明显发育,与铀矿化关系密切的围岩蚀变包括绿泥石化、赤铁矿化、黄铁矿化、伊利石化、硅化和钾长石化,其中以绿泥石化蚀变在该矿床分布最广。

  • 图1 鹿井铀矿田地质简图(据张万良等,2018修编)

  • Fig.1 The geological map of Lujing uranium ore-field (modified from Zhang Wanliang et al., 2018)

  • 2 样品特征及分析方法

  • 为了系统地研究绿泥石化蚀变在小山铀矿床成矿过程中的作用,笔者选取了钻孔ZK1-1揭露的典型热液蚀变岩带岩芯,首先通过肉眼观察划分出5个围岩蚀变带,再依次从未蚀变中粗粒似斑状黑云母花岗岩到强绿泥石化、赤铁矿化花岗碎裂岩各个蚀变带采集典型岩芯样品(编号为LX-J1~LX-J5,图2),将采集的样品制成薄片和电子探针片。电子探针分析是在东华理工大学核资源与环境国家重点实验室电子探针室完成,仪器型号为JEOL JXA-8530,工作条件为:加速电压15.0 kV,高真空模式,最高分辨率1.0 nm。测试过程按照硅酸盐矿物电子探针定量分析国家标准(GB/T15617—2002)进行。Mg、Fe、A1、Si4个元素均采用绿泥石作为标样,而Na选用硬玉,K选用钾长石,Ca选用磷灰石,Ti选用金红石、Cr选用氧化铬,Mn选用蔷薇辉石作为标样。

  • 图2 小山铀矿床 ZK1-1钻孔岩芯铀矿化围岩蚀变柱状面(据许谱林等,2022修编)

  • Fig.2 The histogram of wall rock alteration revealed by drill core ZK1-1 of Xiaoshan uranium deposit (modified from Xu Pulin et al., 2022)

  • 1 —未蚀变黑云母花岗岩; 2—弱伊利石化、绿泥石化黑云母花岗岩; 3—中—强伊利石化、绿泥石化黑云母花岗岩; 4—强绿泥石化、弱赤铁矿化碎裂花岗岩; 5—强绿泥石化、赤铁矿化花岗碎裂岩; 6—取样位置及编号; 7—伽玛曲线

  • 1 —unaltered biotite granite; 2—weak illited, chloritezed biotite granite; 3—medium-strong illited, chloritized biotite granite; 4—strong chloritized, weak hematitized cataclastic granite; 5—strong chloritized, hematitized granitic cataclastic rock; 6—sampling location and its number; 7—gamma logging curve

  • 所有绿泥石的电子探针分析结果以28个氧原子为标准计算绿泥石的结构式,由于电子探针不能检测Fe3+郑巧荣(1983)提出利用电价差值法计算Fe3+值。电子探针数据中的FeO值是把Fe3+当成Fe2+,分子式中的阳离子总电价低于理论电价值,所以根据矿物阳离子正电价总和与阴离子负电价总和平衡原理,可计算出Fe3+的含量。绿泥石的结构中阳离子占位有限,当绿泥石中Na2+、K+和Ca2+在最大限度的占位情况下,Na2O+K2O+CaO<0.5%,若大于0.5%,则表明绿泥石中存在云母类、蒙脱石或硅酸盐的混层或混入物,指示绿泥石受到了混染,因此以Na2O+K2O+CaO>0.5%为标准判别绿泥石是否被混染(Hiller and Velde,1991; Zang and Fyfe,1995),本次测试分析共有4组数据Na2O+K2O+CaO>0.5%,占所有测试数据比值为7.4%,本文已剔除了不符合的数据。

  • 3 绿泥石的形貌特征

  • 根据野外、手标本以及详细的显微镜下观察,发现小山铀矿床热液蚀变带中存在4种不同形态类型的绿泥石,分别为黑云母蚀变型绿泥石(I)、长石蚀变型绿泥石(II)、裂隙充填型绿泥石(III)以及与铀矿物密切共生型绿泥石(IV)。黑云母蚀变型绿泥石(I)在整个热液蚀变带中分布最广,在单偏光下具黄绿色多色性,正交偏光镜下呈一级灰—靛蓝—锈褐色等异常干涉色,自形—半自形板状、叶片状,常部分或全部交代黑云母并保留黑云母假象(图3a),解理缝和粒间隙中常包含锆石、金红石、磷灰石、独居石以及其蚀变形成的直氟碳钙铈矿等副矿物(图3e),该类型绿泥石中很少发育铀石—钍石矿物,在矿化中心部位黑云母蚀变型绿泥石(I)中发育有比其形成要晚的与铀矿物密切共生型细小的绿泥石(IV),显示该类型绿泥石可能是由铀成矿前热液流体交代黑云母蚀变而成。长石蚀变型绿泥石(II)主要是由含铁镁质热液流体交代钾长石、斜长石形成的绿泥石; 在单偏光下具淡绿—黄绿色多色性,正交偏光镜下呈一级灰—靛蓝异常干涉色; 与钾长石、斜长石关系密切,呈交代蚀变结构,颗粒细小破碎(图3b),通常呈他形板状或不规则状分布在钾长石、斜长石中或者钾长石、斜长石边缘(图3f),常与石英、磷灰石共存,在该类型绿泥石周围常发育有黑云母蚀变型绿泥石(I),因此推测它是在铀成矿前由含铁镁质热液流体交代长石而形成。裂隙充填型绿泥石(III)在正交偏光镜下呈一级灰—墨蓝色干涉色,多为细小的蠕虫状沿着长石、石英的裂隙和晶隙间呈脉状充填(图3c),在该绿泥石周围未见铀石—钍石矿物发育,推测其是由铀成矿期早阶段热液流体充填矿物裂隙沉淀而成(图3g)。与铀矿物密切共生型绿泥石(IV)是由主成矿阶段热液流体交代黑云母蚀变而成,偶见保留的黑云母假象,与黑云母蚀变型绿泥石(I)的不同之处为无明显的多色性,自形程度较黑云母蚀变型绿泥石(I)要差,破碎程度较强,粒径相对较小,呈不规则状、鳞片状,且常与褐铁矿、黄铁矿、铀石密切共生,表面吸附有大量呈云雾状、微粒状的赤铁矿,与铀矿物关系密切(图3d、h、i)。

  • 4 绿泥石的化学成分特征

  • 通过对上述不同类型和成因的绿泥石进行电子探针微区化学成分分析(表1),结果显示:

  • 黑云母蚀变型绿泥石(I):SiO2介于24.99%~26.24%之间,平均为25.45%; Al2O3介于17.07%~19.87%之间,平均为18.09%; FeO介于29.79%~33.16%之间,平均为31.60%; MgO介于8.60%~10.29%之间,平均为9.54%。

  • 长石蚀变型绿泥石(II):SiO2介于23.36%~25.00%之间,平均为24.17%; Al2O3介于18.17%~19.84%之间,平均为19.14%; FeO介于30.75%~32.54%之间,平均为 31.86%; MgO介于8.08%~9.04%之间,平均为8.43%。

  • 裂隙充填型绿泥石(III):SiO2介于23.71%~25.10%之间,平均为24.33%; Al2O3介于18.55%~20.51%之间,平均为 19.36%; FeO介于29.95%~33.35%之间,平均为 31.64%; MgO介于6.74%~9.02%之间,平均为7.96%。

  • 与铀矿物密切共生型绿泥石(IV):SiO2介于24.73%~26.59%之间,平均为 25.59%; Al2O3介于16.24%~18.13%之间,平均为17.20%; FeO介于28.78%~30.93%之间,平均为29.87%; MgO介于9.61%~12.64%之间,平均为10.84%。

  • 小山铀矿床绿泥石的MgO、FeO和Al2O3含量变化范围均较小,不过三者之间存在“消长”关系,指示了绿泥石中的Mg、Fe、Al相互置换较为普遍。不同类型的绿泥石在化学成分上具明显差异,其中II和III类绿泥石呈现出富Al贫Mg的特征,I和IV类绿泥石呈现出富Mg贫Al的特征,IV类绿泥石中Fe含量明显偏低,这种成分上的差异一方面表现为绿泥石蚀变前矿物成分的差异,比如钾长石、斜长石中Al元素含量较高,其蚀变形成的绿泥石中Al元素含量也相对较高; 黑云母中Mg元素含量较高,其蚀变形成的绿泥石中Mg元素含量也较高; 另一方面表现为在热液活动过程中流体与绿泥石可能发生了物质成分的置换(Wu et al.,2019)。

  • 图3 小山铀矿床中绿泥石的形貌特征

  • Fig.3 Morphological features of chlorites from the Xiaoshan uranium deposit

  • Qtz—石英; Kfs—钾长石; Pl—斜长石; Ab—钠长石; Ap—磷灰石; Ru—金红石; Zrn—锆石; Syn—直氟碳钙铈矿; Cof—铀石; Chl—绿泥石; Ms—白云母; Cal—碳酸盐; Lm—褐铁矿; Py—黄铁矿

  • Qtz—quartz; Kfs—K-feldspar; Pl—plagioclase; Ab—albite; Ap—apatite; Ru—rutile; Zrn—zircon; Syn—synchysite; Cof—coffinite; Chl—chlorite; Ms—muscovite; Cal—carbonation; Lm—limonite; Py—pyritization

  • 小山铀矿床绿泥石电子探针化学成分结果以28个氧原子为基准计算的阳离子数和特征值见表2。本文采用绿泥石的Fe-Si图解来对绿泥石进行分类和命名(Deer et al.,1962),从绿泥石分类命名可以看出,大多数点落入铁镁绿泥石范围内,少部分点落入蠕绿泥石中(图4)。由黑云母蚀变的绿泥石主要为铁镁绿泥石,由长石蚀变的绿泥石为蠕绿泥石和铁镁绿泥石,裂隙充填型绿泥石主要为蠕绿泥石和铁镁绿泥石,与铀矿密切共生的绿泥石主要为铁镁绿泥石。有学者指出在相对酸性的还原环境下更容易形成富铁绿泥石,且富铁绿泥石的形成可能与流体的沸腾作用有关(Inoue,1995),也有人认为当绿泥石的TFe/(TFe+Mg)>0.55,可指示热液流体偏酸性(刘英俊和曹厉明,1987),从表3中可知,小山铀矿床绿泥石的TFe/(TFe+Mg)在0.56~0.73之间,平均值为0.65,均大于0.55,说明热液流体为酸性,且小山矿床中的绿泥石均属富铁绿泥石,进一步证明该铀矿床形成于相对酸性的还原环境,同时也表明相对酸性的还原环境有利于使U6+转化为U4+发生沉淀富集成矿,这与前人研究华南地区桃山矿田、长江矿田和三九地区的铀成矿作用结果相一致(郭国林等,2012; 李仁泽等,2016; 张龙等,2017; 陈旭,2020)。

  • 表1 鹿井矿田小山铀矿床绿泥石电子探针成分分析结果(%)

  • Table1 Electronic microprobe analyses (%) of chlorites in Xiaoshan uranium deposit, Lujing ore field

  • 注:分析测试单位:东华理工大学核资源与环境国家重点实验室,仪器型号:电子探针JEOL JXA-8530; 绿泥石类型:I—黑云母蚀变型绿泥石,II—长石蚀变型绿泥石,III—裂隙充填型绿泥石,IV—与铀矿化密切共生型绿泥石。

  • 表2 鹿井矿田小山铀矿床绿泥石主要阳离子数

  • Table2 Main cations of chlorites in Xiaoshan uranium deposit, Lujing ore field

  • 注:分析测试单位:东华理工大学核资源与环境国家重点实验室,仪器型号:电子探针JEOL JXA-8530; 绿泥石类型:I—黑云母蚀变型绿泥石,II—长石蚀变型绿泥石,III—裂隙充填型绿泥石,IV—与铀矿化密切共生型绿泥石。

  • 表3 鹿井矿田小山铀矿床绿泥石的特征值

  • Table3 Characteristic parameters of chlorites in Xiaoshan uranium deposit, Lujing ore field

  • 注:a3—第3端元组分活度; a6—第6端元组分活度; K1—平衡常数一; K2—平衡常数二。

  • 图4 鹿井矿田小山铀矿床绿泥石分类图解(底图据Deer et al.,1962

  • Fig.4 Classification of chlorite in the Xiaoshan uranium deposit, Lujing ore field (base map after Deer et al., 1962)

  • I—黑云母蚀变型绿泥石; II—长石蚀变型绿泥石; III—裂隙充填型绿泥石; IV—与铀矿物密切共生型绿泥石

  • I—chlorite of biotite alteration type; II—chlorite of feldspar alteration type; III—chlorite vein /veinlet filling in fissures; IV—uranium-associated chlorite

  • 5 绿泥石的结构特征

  • 绿泥石结构式为(R2+μ,R3+yQzVI(Si4-xAlxIVO10+ω(OH),其中IV、VI分别代表4次配位和6次配位; R2+代表Mg2+、Fe2+,可能含有Mn2+、Zn2+、Ni2+等; R3+代表Al3+、Fe3+,可能含有Cr3+等; Q代表结构空穴,μ+y+z=6,z =(y-ω-x)/2,ω通常为0或者很小(De Caritat et al.,1993)。不同温度下形成的绿泥石离子间相互替换关系以及离子占据空间能力存在明显不同,这也是绿泥石可作为地质温度计的依据。因此,常利用绿泥石主要阳离子间的相互关系来阐述其结构特征。

  • 5.1 绿泥石的Mg/(Fe+Mg)与Al/(Al+Mg+Fe)值

  • 前人研究认为,高Mg/(Fe+Mg)值的绿泥石一般产于基性岩中,而低Mg/(Fe+Mg)值的绿泥石产于含铁建造中(Laird,1988),小山铀矿床I、II和III类绿泥石的Mg/(Fe+Mg)值介于0.27~0.37之间,平均值为0.33,指示绿泥石的形成环境应为含铁建造; IV类绿泥石的Mg/(Fe+Mg)值介于0.36~0.44之间,平均值为0.39,明显稍I、II和III类绿泥石比值要大,显示IV类绿泥石的形成环境可能有基性岩的混染。

  • 在Mg/(Fe+Mg)-Al/(Al+Mg+Fe)关系图解中(图5a),I、III和IV类绿泥石投影点较为分散,而II类绿泥石投影点相对集中,总体上呈现出一定的负相关性,表明绿泥石可能是多次热液活动的产物。

  • 5.2 绿泥石的AlIV、AlVI、(AlVI+Fe)与Mg的关系

  • 通常利用绿泥石的AlIV、AlVI值以及(AlVI+Fe)与Mg的关系图解来分析绿泥石四面体和八面体位置上不同离子之间的相互替代关系。Xie(1997)研究表明,当四面体位置的离子替代关系是完全的钙镁闪石型替代时,AlIV与AlVI之间的比值具有接近1∶1的线性关系(相关系数为0.95)。小山铀矿床绿泥石的AlIV值介于2.08~2.55之间,AlVI值介于2.15~3.01之间,大部分样品的AlIV<AlVI,仅有一个测点AlIV稍大AlVI一点,AlIV/AlVI值在0.76~1.01,变化幅度较大,AlVI=1.01AlIV+0.2003(图5b),因此小山铀矿床绿泥石的四面体位置不属于单纯的钙镁闪石型替代关系。AlIV在四面体上对Si4+置换时产生的电荷需要AlVI在八面体上对Fe或Mg进行置换来补充,才能使其达到电荷平衡(华仁民等,2003),小山铀矿床各产状类型绿泥石的AlVI值基本大于AlIV,它们的比值变化也可以说明无论何种成因和产状的绿泥石,其Fe3+含量较低,可能是由于AlVI在八面体上对Fe或Mg置换所导致。

  • 通过(AlVI+Fe)-Mg关系图可以反映出绿泥石的八面体位置替换关系(Xie et al.,1997)。图5c反映了绿泥石的投点具良好的线性负相关关系(AlVI+Fe)=0.8271Mg+11.09,这说明八面体位置主要被AlVI、Fe和Mg三种元素占据,并且在该位置上AlVI和Fe都可以替换Mg。

  • 5.3 绿泥石的Si、Fe、Al阳离子与Mg的关系

  • 一次热液蚀变作用形成的绿泥石,其Si、Fe、Al等主要阳离子与Mg具有较好的相关性,因此这些阳离子与Mg的关系图解可以反映原岩经历的蚀变过程。小山铀矿床绿泥石主要阳离子与Mg的关系图解显示,Mg与Si具有弱正相关性,Si=0.229Mg+0.5302; Mg与AlVI表现为良好的线性关系,显示为负相关性,AlVI= 0.4295Mg+3.9247; 而Mg与Fe和Mg与AlIV相关性不明显(图6),表明小山铀矿床中的绿泥石可能是多次热液活动的产物。

  • 图5 小山铀矿床绿泥石Fe-Mg-Al 关系图解

  • Fig.5 The Fe-Mg-Al diagram of chlorites in Xiaoshan uranium deposit

  • (a)—Al/(Al+Mg+Fe)与Mg/(Fe+Mg)的关系;(b)—AlVI与AlIV的关系;(c)—AlVI+Fe与Mg的关系

  • (a) —Al/ (Al+Mg+Fe) -Mg/ (Fe+Mg) diagram; (b) —AlVI-AlIV diagram; (c) — (AlVI+Fe) -Mg diagram

  • 图6 小山铀矿床绿泥石主要阳离子与镁的关系图

  • Fig.6 Relationship between major cations and magnesium of chlorites in Xiaoshan uranium deposit

  • 6 绿泥石形成环境探讨

  • 6.1 绿泥石形成的温度

  • 前人认为绿泥石的形成温度与绿泥石结构、化学组成以及多型等之间存在密切的联系(Nieto,1997),并研究了绿泥石成分与d001之间的线性关系,提出了相应的关系式,后经修正得到公式d001/0.1=14.339-0.115AlIV-0.0201n(Fe2+)来计算面网d001值,再根据Battaglia(1999)提出的d001与温度之间的关系,t= [14.379-(d001/0.1)]/0.001来计算绿泥石的形成温度(表3)。

  • 小山铀矿床绿泥石的形成温度在213.5~249.8℃之间,平均值为233.4℃(图7),其中I型绿泥石的形成温度在220.1~238.3℃之间,平均值为230.4℃; II型绿泥石的形成温度在233.7~249.8℃之间,平均值为233.7℃; III型绿泥石的形成温度在229.3~248.5℃之间,平均值为240.2℃; IV型绿泥石的形成温度在213.5~232.7℃之间,平均值为223.6℃。各成因产状类型绿泥石的形成温度表明,从成矿前形成的I、II型绿泥石到矿化早阶段III型绿泥石形成温度具有逐渐升高的趋势,再到成矿期形成的IV型绿泥石,温度具有逐渐下降的趋势,属于中低温热液蚀变的范畴,与前人通过流体包裹体测得鹿井、沙坝子、黄蜂岭铀矿床形成温度较为相近(Min et al.,1999; 杨尚海,2008; 张笑天等,2022),并且与鹿井矿田邻区长江矿田、桃山矿田、三九地区、百顺矿田铀矿床通过电子探针检测绿泥石化学成分计算出的温度相近(张展适等,2007; 李仁泽等,2016; 吴德海等,2020; 陈旭,2020),进一步证实绿泥石计算温度的有效性。

  • 图7 小山铀矿床绿泥石温度柱状图

  • Fig.7 The histogram of formation temperatures for chlorites in Xiaoshan uranium deposit

  • 6.2 绿泥石形成的氧逸度和硫逸度

  • 绿泥石的氧逸度和硫逸度能够很好地反映绿泥石生成时的物理化学条件,前人分别根据绿泥石成分来计算其形成时的氧逸度、硫逸度、温度等(Walshe,1986)。本文选取Walshe(1986)提出的计算方法,采用张伟等(2014)经过拟合后的反应平衡常数与温度的函数关系式来计算小山铀矿床形成绿泥石的氧逸度和硫逸度,计算过程与方法参考李海东等(2016)。计算结果显示,各种类型绿泥石的lgfO2在50.9~41.9之间,平均值为44.41。lgfS2在7.6~0.2之间,平均值为2.40(图8),说明绿泥石形成于低氧逸度和高硫逸度的环境。其中I型绿泥石的lgfO2在46.6~43.2之间,平均值为44.7,lgfS2在3.8~1.8之间,平均值为2.91。II型绿泥石的lgfO2在45.1~42.5之间,平均值为43.2,lgfS2在1.7~0.2之间,平均值为0.63。III型绿泥石的lgfO2在44.5~41.9之间,平均值为43.08,lgfS2在2.2~0.2之间,平均值为0.89。IV型绿泥石的lgfO2在50.9~44.1之间,平均值为46.02,lgfS2在7.6~2.3之间,平均值为4.41。上述特征表明,从成矿前期至成矿期,绿泥石的氧逸度和硫逸度总体具有下降的趋势,中间存在一个先升高再降低的过程,可能是由于热液活动过程中有高氧逸度的大气降水的混合,张笑天等(2022)证实了该矿床北西侧鹿井铀矿床在成矿过程中伴随有大气降水的加入,有学者也指出高氧逸度流体有利于对富铀花岗岩中铀的萃取(凌洪飞,2011)。红盆有利于高氧逸度的地表水往下渗透,这可能也是鹿井铀矿田中大部分铀矿床围绕丰州盆地分布的原因之一。上述特征指示了小山铀矿床的热液交代蚀变过程中总体是向低氧逸度、高硫逸度的环境逐渐演化,从成矿前期到主成矿期还原性逐渐增强,热液流体可能具有多源性。

  • 6.3 绿泥石的形成机制

  • 绿泥石的形成过程是一个由反应动力学控制的水-岩反应过程,受温度、压力及水/岩比、流体和岩石化学成分等多种因素的综合制约(张展适等,2007)。小山铀矿床绿泥石化蚀变广泛发育,铀成矿前期,含铁镁质热液流体部分或完全交代黑云母形成黑云母假象特征的绿泥石(I)和交代长石蚀变形成的绿泥石(II),产生绿泥石所需的Fe、Mg质组分主要来源于围岩(花岗岩)中的铁镁质矿物(如黑云母),也有Fe、Mg质组分的带入; 成矿期早阶段热液流体充填于长石、石英矿物的粒间隙和裂隙中形成脉状绿泥石(III); 主成矿阶段形成与铀石—钍石、磷灰石、锆石以及稀土矿物等密切伴生的绿泥石(IV)。从小山矿床绿泥石的化学成分可以得知该矿床的绿泥石均为富铁绿泥石(以铁镁绿泥石为主,部分蠕绿泥石)),反映出流体富Fe或流体在运移过程中萃取了围岩中的Fe元素。前人研究认为Fe元素的运移介质具有还原性(刘英俊和曹厉明,1987),也有人指出热液型矿床在发生交代蚀变过程中,在相对酸性的还原环境中更容易形成富铁绿泥石(Inoue,1995)。综上所述,小山铀矿床各成因和不同类型绿泥石均形成于相对酸性的还原环境。

  • 图8 小山铀矿床绿泥石氧逸度和硫逸度柱状图

  • Fig.8 The histogram of oxygen fugacity and sulfur fugacity for chlorites in Xiaoshan uranium deposit

  • 绿泥石可以由热液流体交代围岩中的铁镁质矿物或由富铁质组分的热液流体交代钾长石及斜长石矿物形成,也可以从热液流体中直接沉淀结晶,对应的有溶蚀—结晶和溶蚀—迁移—结晶两种形成机制(夏菲等,2016; Wu et al.,2019)。上述特征可进一步归纳,即I、II和IV类绿泥石为含Fe、Mg质热液流体交代了长石和黑云母等矿物,蚀变成绿泥石并保留交代蚀变结构和黑云母假象,据此可判断它们为溶蚀—结晶与溶蚀—迁移—结晶机制的共同产物; 而III类绿泥石为热液流体在溶蚀了部分富铁和富镁矿物之后,形成了富含Fe、Mg质组分的热液流体,经过迁移,在其他矿物的裂隙或者晶隙中沉淀结晶,据此可判断它们主要为溶蚀—迁移—结晶机制的产物。

  • 6.4 绿泥石与铀成矿的关系

  • 小山铀矿床早期的绿泥石在蚀变花岗岩中主要呈面状分布。成矿期早阶段热液流体中可能有盆地热卤水的加入,在萃取围岩中Fe、Mg质组分时,还带来了富Fe、Mg的成矿流体。相较于主成矿阶段的绿泥石(Ⅳ),成矿前期(I和II)和成矿期早阶段的绿泥石(III)指示更高温、更高氧逸度的氧化环境,此时相对高温的氧化性流体在萃取围岩中Fe、Mg质组分的同时,也很利于萃取围岩黑云母中发育的铀矿物和含铀副矿物中的U4+形成富Fe、Mg、U6+的成矿流体(凌洪飞,2011),在成矿早阶段成矿流体沿矿物裂隙充填,其中的Fe、Mg质组分在适当的条件下沉淀结晶形成脉状绿泥石。至主成矿阶段,富Fe、Mg、U6+成矿流体逐渐向相对低温、低氧逸度的还原环境演化,成矿流体中的U6+被还原成U4+,并且随着绿泥石的形成,U发生大规模的沉淀而逐渐富集成矿。总体而言,绿泥石化对铀成矿的贡献可从成矿元素的地球化学行为和成矿元素的源—运—储过程归纳为以下4个方面:

  • (1)改变岩石的物理化学性质:花岗岩体在与成矿前热液流体发生水-岩反应形成面状绿泥石化蚀变过程中,岩石的物理化学性质发生改变,使坚硬的岩石变得疏松、易碎,孔隙度加大和渗透性增强,这不仅有助于成矿期热液流体与围岩发生反应(使流体与岩石产生交代反应的表面积大大增加),并且疏松、易碎的围岩也可为铀成矿作用提供良好的沉淀结晶空间。李建红等(2001)指出鹿井碎裂蚀变岩型铀矿床从未蚀变花岗岩→弱蚀变花岗岩→强蚀变花岗岩,总体表现为含水率、吸水率、孔隙度、水渗透率等参数值逐渐增高,而密度、硬度、抗压强度、抗剪强度、抗拉强度却逐渐降低。因此,绿泥石化蚀变通过改变岩石的物理化学性质为铀成矿作用提供了良好的运矿、储矿条件。

  • (2)改变铀的赋存状态:铀在自然界中主要以分散于造岩矿物、赋存于副矿物(钍石、锆石、独居石等)、吸附态的铀以及铀的独立矿物(晶质铀矿)四种形式存在(Cuney and Kyser,2008)。产铀花岗岩中黑云母的铀含量较低,铀主要集中于黑云母包裹着的含铀副矿物(独居石、磷钇矿、锆石)中(章健等,2011; 钟福军等,2017; 张丽等,2018),在黑云母发生绿泥石化蚀变过程中,以类质同象形式赋存在含铀副矿物中的惰性铀会被释放,如晶质铀矿和原生铀石—钍石逐渐发生溶蚀,铀含量较高的独居石和磷钇矿逐渐蚀变为直氟碳钙铈矿和次生磷灰石,其中的U元素逐渐析出(胡欢等,2012; 祁家明等,2014; 秦蕾胜,2018),形成以分散吸附态为主的活性铀,其中一部分会进入热液流体,还有一部分会被绿泥石吸附叠加富集,形成绿泥石+铀矿物的共生组合(图3i)。因此,绿泥石化蚀变通过改变铀的赋存状态为铀成矿作用创造了有利的铀源条件。

  • (3)促进铀的沉淀:铀在氧化条件下呈六价态(U6+)以碳酸铀酰络合物或氟酸铀酰络合物的形式迁移,在还原条件下以四价态(U4+)形式沉淀,形成铀石、铀石—钍石等铀矿物(余达淦等,2005)。小山铀矿床富铁的铁镁绿泥石形成于中低温、酸性的还原环境中,当围岩广泛发生铁镁绿泥石化时,热液体系会保持或加剧向酸性、低温的还原环境演化。酸性会不断破坏成矿流体原有的物理化学平衡(如酸碱平衡),使得含铀矿物和副矿物(独居石和磷钇矿)发生蚀变导致迁移态的铀酰配位阴离子如[UO2F3]-、[UO2(CO32]2-、[UO2(PO42]4-等不稳定而发生解聚,如蚀变形成的直氟碳钙铈矿和次生磷灰石中U元素含量明显较独居石和磷钇矿含量要低(许谱林等,2022)。降温会导致成矿流体中铀酰配位阴离子溶解度下降,成矿流体会不断产生游离的[UO2]2+,当[UO2]2+浓度达到饱和时,还原环境会进一步将[UO2]2+中的U6+还原成U4+以铀石、铀石—钍石等形式沉淀成矿。因此,绿泥石化蚀变通过破坏铀载体的物理化学平衡,有效地促进了铀的迁移和沉淀结晶(运矿、储矿条件)。

  • (4)指示铀成矿环境:小山铀矿床主成矿期绿泥石(Ⅳ)均为富铁的铁镁绿泥石,TFe/(TFe+Mg)平均值0.61>0.55,指示成矿流体呈酸性; 主成矿期绿泥石(IV)形成温度平均值为223.6℃,氧逸度lgfO2平均值为46.02,硫逸度lgfS2平均值为4.41,这些特征指示了该矿床形成于中低温、低氧逸度、高硫逸度和相对酸性的还原环境,同时也反映绿泥石是反演铀成矿环境重要、有效且可靠的标型矿物。

  • 7 结论

  • (1)鹿井矿田中部小山铀矿床绿泥石主要有4种形态产状类型,分别为黑云母蚀变型、长石蚀变型、裂隙充填型、与铀矿物密切共生型。绿泥石均属于富铁绿泥石且以铁镁绿泥石为主,部分为蠕绿泥石。

  • (2)小山铀矿床绿泥石的形成温度在213.5~249.8℃之间,氧逸度在50.9~41.9之间,硫逸度在7.6~0.2之间,形成于中低温、低氧逸度和高硫逸度的还原环境。绿泥石形成机制包括溶解—沉淀和溶解—迁移—沉淀,其中晶质铀矿、独居石以及磷钇矿矿物发生溶解,形成铀石—钍石矿物。

  • (3)绿泥石化蚀变与铀成矿存在密切关系,表现为绿泥石化蚀变改变了岩石的物理化学性质,使得坚硬岩石变得疏松,这不仅有助于成矿期热液流体与围岩发生反应,也可为铀成矿作用提供良好的沉淀结晶空间; 同时改变了铀的赋存状态,促使铀发生预富集; 通过破坏铀载体的物理化学平衡,促进铀的沉淀成矿。

  • 致谢:感谢审稿专家对文章修订提出的宝贵意见,使文章在内容和理论上都得到了升华。在岩矿鉴定过程中获得了核工业二七○研究所张万良研究员和李余亮工程师的指导,在做电子探针实验时得到了东华理工大学邬斌副教授、张辉博士、段建兵博士和赵娇博士的帮助,在论文编写过程中获得了江西应用技术职业学院吴德海博士、东华理工大学钟福军博士的悉心指导,在此深表感谢。

  • 参考文献

    • Battaglia S. 1999. Applying x-ray geothermomenter diffraction to a chlorite. Clays and Clay Minerals, 47(1): 54~63.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Chen Xu. 2020. Metallogenic geological characteristics of granite-related uranium deposit in the Sanjiu uranium ore field, middle section of Zhuguangshan complex massif. PhD dissertation of East China University of Techonlogy, 1~214 (in Chinese with English abstract).

    • Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.

    • De Caritat P, Hutcheon I, Walshe J L. 1993. Chlorite geothermometry: A review. Clays and Clay Minerals, 41(2): 219~239.

    • Deer W A, Howie R A, Zussman J. 1962. Rock-Forming Mineral: Sheet Silicates. Londin: Longman, 270.

    • Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(14): 1231~1241 (in Chinese with English abstract).

    • Grigsby J D. 2001. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg formation, South Texas. Journal of Sedimentary Research, 71(1): 27~36.

    • Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).

    • Guo Guolin, Liu Xiaodong, Pan Jiayong, Zhang Zhanshi, Li Xingbin. 2012. Character of chlorite and its relationship to uranium mineralization in uranium deposit No. 302. Uranium Geology, 28(1): 35~41 (in Chinese with English abstract).

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hillier S, Velde B. 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 47(2): 284~293.

    • Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).

    • Hua Renmin, Li Xiaofeng, Zhang Kaiping, Ji Junfeng, Zhang Wenlan. 2003. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: Implication for the environment of water-bock interaction. Acta Mineralogica Sinica, 23(1): 23~30 (in Chinese with English abstract).

    • Inoue A. 1995. Formation of clay minerals in hydrothermal environment. Velde B: Origin and Mineralogy of Clays. Berlin: Springer, 268~330.

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • Laird J. 1988. Chlorites: Metamorphic petrology. Reviews in Mineralogy, 19: 405~453.

    • Li Haidong, Pan Jiayong, Liu Wenquan, Jiang Weibing, Li Jun, Liang Yuanyuan, Xie Qiang, Lu Yan. 2016. Mineral characterisics and geological significance of chlorite from the Julong'an uranium deposit in Le'an, Jiangxi Province. Acta Petrlogica et Mineralogica, 36(4): 535~548 (in Chinese with English abstract).

    • Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).

    • Li Jianhong, Luo Yi, Wang Mingtai, Sun Zhifu. 2001. Assessment study of solution leaching of fractured-altered uranium ore at Lujing granite-type uranium deposit. Uranium Geology, 17(3): 168~173 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).

    • Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Fang Shiyi, Zou Mingliang. 2021. LA-ICP-MS U-Pb ages and trace element compositions of ziron fromIndosinian granite in middle Zhuguangshan. Geotectonica et Metallogenia, 45(6): 1216~1232.

    • Li Renze, Liu Chengdong, Liang Liang, Kong Ming, Wang Bing, Wan Jianjun. 2016. Characterisics and geological significance of chlorite from the Dafushang uranium deposit in Taoshan area, Jiangxi Province. Acta Petrlogica et Mineralogica, 35(2): 297~305 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi Provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).

    • Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).

    • Ling Hongfei. 2011. Origin of hydrothermal fluids of grantie-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 193~206 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming. 1987. Element Geochemistry Principle. Beijing: Geological Publishing House, 124~128 (in Chinese with English abstract).

    • Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian South Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).

    • Min M Z, Luo X Z, Du G S. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huanggao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.

    • Nieto F. 1997. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy, 9(4): 829~841.

    • Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).

    • Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).

    • Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master degree dissertation of East China University of Techonlogy, 1~94 (in Chinese with English abstract).

    • Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).

    • Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).

    • Walshe J L. 1986. A six-component chlorite solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems. Economic Geology, 81(3): 681~703.

    • Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master degree dissertation of East China University of Techonlogy, 1~60(in Chinese with English abstract).

    • Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).

    • Wu Dehai, Pan Jiayong, Xia Fei, Huang Guangwen, Zhong Fujun, Qi Jiaming, Hong Binyue, Zhou Tangbo. 2018. Characterisics and formation conditions of chlorite in the Shangjiao uranium deposit in the southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393~405 (in Chinese with English abstract).

    • Wu D H, Pan J Y, Xia F, Huang G W, Lai J. 2019. The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the middle Nanling range, SE China. Minerals, 9: 199.

    • Wu Dehai. 2020. Geochemical characteristics of hydrothermal alteration minerals and uranium mineralization in Mianhuakeng deposit, northern Guangdong Province. PhD dissertation of East China University of Techonlogy, 1~156 (in Chinese with English abstract).

    • Xia Fei, Meng Hua, Nie Fengjun, Yan Zhaobin, Zhang Chengyong, Li Mangen. 2016. Characterstics of chlorite from the Nalinggou uranium deposit in the Ordos basin and its geological significance. Acta Geologica Sinica, 90(12): 3473~3482 (in Chinese with English abstract).

    • Xie X G, Byerly G R, Ferrel R E. 1997. IIb trioctahedral chlorite from the Barberton greenstone belt crystal structure and rock composition constraints with implication to geothermometry. Contribution to Mineralogy and Prtrology, 126: 275~291.

    • Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Li Zhipeng, Wu Zhichun, Xu Jianjun, Zhong Pengfei. 2022. The hydrothermal alteration of U-bearing accessory minerals: An example from the mineralogical study of cataclastic alteration granite-type uranium deposit in the Lujing ore field, South China. Acta Geologica Sinica, 96(11): 3799~3818 (in Chinese with English abstract).

    • Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Wu Zhichun, Li Zhipeng. 2023. The geological features of QF2 faults and its relationship with uranium mineralization in Lujing uranium ore-field, South China. Geotectonica et Metallogenia, 47(1): 98~114 (in Chinese with English abstract).

    • Yang Shanghai. 2008. Uranium metallogenic features and prospecting potentialities in the areas around Shabazi uranium deposit in Nanling metallogenic belt. World Nuclear Geoscience, 25(4): 195~202 (in Chinese with English abstract).

    • Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).

    • Zang W, Fyfe W S. 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit Carajás Brazil. Mineralium Deposita, 30(1): 30~38.

    • Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: Implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).

    • Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).

    • Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).

    • Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).

    • Zhang Wei, Zhang Shuting, Cao Huawen, Wu Junde, Xiao Changxian, Chen Huijun, Tang Li. 2014. Characteristics of chlorite minerals from Xiaolonghe Ti deposit in west Yunnan, China and their geological omplication. Journal of Chengdu University of Technology, 41(3): 318~328 (in Chinese with English abstract).

    • Zhang Xiaotian, Pan Jiayong, Xia Fei, Liu Yin, Huang Di, Zhao Qifeng, Zhang Yong, Liu Guoqi, Zhong Fujun. 2022. Fluid inclusion constraints on ore-forming mechanism of Lujing uranium deposit in Jiangxi-Hunan border region. Earth Science, 47(1): 192~205 (in Chinese with English abstract).

    • Zhang Zhanshi, Hua Renmin, Ji Junfeng, Zhang Yanchun, Guo Guolin, Yin Zhengping. 2007. Characteristics and formation conditions of chlorite in No. 201 and No. 361 uranium deposits. Acta Mineralogica Sinica, 27(2): 161~172 (in Chinese with English abstract).

    • Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional diffenerces of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).

    • Zheng Qiaorong. 1983. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineralogica Sinica, (1): 55~62 (in Chinese with English abstract).

    • Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling range: Constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).

    • Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).

    • Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈旭. 2020. 诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究. 东华理工大学博士学位论文, 1~214.

    • 邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.

    • 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.

    • 郭国林, 刘晓东, 潘家永, 张展适, 李兴斌. 2012. 302铀矿床绿泥石特征及其与铀成矿的关系. 铀矿地质, 28(1): 35~41.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.

    • 华仁民, 李晓峰, 张开平, 季峻峰, 张文兰. 2003. 金山金矿热液蚀变粘土矿物特征及水岩反应环境研究. 矿物学报, 23(1): 23~30.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李海东, 潘家永, 刘文泉, 江卫兵, 李俊, 梁园园, 谢强, 鲁彦. 2016. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535~548.

    • 李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.

    • 李建红, 罗毅, 王明太, 孙志富. 2001. 鹿井碎裂蚀变花岗岩型铀矿床溶浸评价研究. 铀矿地质, 17(3): 168~173.

    • 李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.

    • 李杰, 黄宏业, 刘子杰, 张涛, 王前林, 方适宜, 邹明亮. 2021. 诸广中段印支期花岗岩LA-ICP-MS锆石U-Pb年龄及微量元素特征. 大地构造与成矿学, 45(6): 1216~1232.

    • 李仁泽, 刘成东, 梁良, 孔明, 王冰, 万建军. 2016. 江西省桃山铀矿田大府上绿泥石特征及其地质意义. 岩石矿物学杂志, 35(2): 297~305.

    • 李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.

    • 李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 刘英俊, 曹厉明. 1987. 元素地球化学导论. 北京: 地质出版社, 124~128.

    • 马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.

    • 祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.

    • 秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士学位论文, 1~94.

    • 覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.

    • 邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.

    • 孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.

    • 王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征、铀的赋存状态及成矿机制探讨. 东华理工大学硕士学位论文, 1~60.

    • 王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1) : 48~54.

    • 吴德海. 2020. 粤北棉花坑铀矿床热液蚀变矿物地球化学特征与铀成矿作用研究. 东华理工大学博士学位论文, 1~156.

    • 吴德海, 潘家永, 夏菲, 黄广文, 钟福军, 祁家明, 洪斌跃, 周堂波. 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4) : 393~405.

    • 夏菲, 孟华, 聂逢君, 严兆斌, 张成勇, 李满根. 2016. 鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义. 地质学报, 90(12): 3473~3482.

    • 许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 李志鹏, 吴志春, 许健俊, 钟鹏飞. 2022. 含铀副矿物的热液蚀变: 来自华南鹿井矿田碎裂蚀变岩型铀矿床的矿物学研究. 地质学报, 96(11): 3799~3818.

    • 许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 吴志春, 李志鹏. 2023. 华南鹿井铀矿田NE向QF2断裂特征及其与铀成矿关系探讨. 大地构造与成矿学, 47(1): 98~114.

    • 杨尚海. 2008. 南岭成矿带沙坝子矿床外围铀成矿特征及找矿前景. 世界核地质科学, 25(4): 195~202.

    • 余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.

    • 张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.

    • 张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.

    • 张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.

    • 张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.

    • 张伟, 张寿庭, 曹华文, 武俊德, 肖常先, 陈慧军, 唐利. 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版), 41(3): 318~328.

    • 张笑天, 潘家永, 夏菲, 刘颖, 黄迪, 赵奇峰, 张勇, 刘国奇, 钟福军. 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192~205.

    • 张展适, 华仁民, 季峻峰, 张彦春, 郭国林, 尹征平. 2007. 201和361铀矿床中绿泥石的特征及其形成环境研究. 矿物学报, 27(2): 161~172.

    • 郑巧荣. 1983. 由电子探针分析值计算Fe3+和Fe2+. 矿物学报, (1): 55~62.

    • 章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.

    • 钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.

    • 周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.

    • 朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.

  • 参考文献

    • Battaglia S. 1999. Applying x-ray geothermomenter diffraction to a chlorite. Clays and Clay Minerals, 47(1): 54~63.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Chen Xu. 2020. Metallogenic geological characteristics of granite-related uranium deposit in the Sanjiu uranium ore field, middle section of Zhuguangshan complex massif. PhD dissertation of East China University of Techonlogy, 1~214 (in Chinese with English abstract).

    • Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.

    • De Caritat P, Hutcheon I, Walshe J L. 1993. Chlorite geothermometry: A review. Clays and Clay Minerals, 41(2): 219~239.

    • Deer W A, Howie R A, Zussman J. 1962. Rock-Forming Mineral: Sheet Silicates. Londin: Longman, 270.

    • Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(14): 1231~1241 (in Chinese with English abstract).

    • Grigsby J D. 2001. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg formation, South Texas. Journal of Sedimentary Research, 71(1): 27~36.

    • Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).

    • Guo Guolin, Liu Xiaodong, Pan Jiayong, Zhang Zhanshi, Li Xingbin. 2012. Character of chlorite and its relationship to uranium mineralization in uranium deposit No. 302. Uranium Geology, 28(1): 35~41 (in Chinese with English abstract).

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hillier S, Velde B. 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 47(2): 284~293.

    • Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).

    • Hua Renmin, Li Xiaofeng, Zhang Kaiping, Ji Junfeng, Zhang Wenlan. 2003. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: Implication for the environment of water-bock interaction. Acta Mineralogica Sinica, 23(1): 23~30 (in Chinese with English abstract).

    • Inoue A. 1995. Formation of clay minerals in hydrothermal environment. Velde B: Origin and Mineralogy of Clays. Berlin: Springer, 268~330.

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • Laird J. 1988. Chlorites: Metamorphic petrology. Reviews in Mineralogy, 19: 405~453.

    • Li Haidong, Pan Jiayong, Liu Wenquan, Jiang Weibing, Li Jun, Liang Yuanyuan, Xie Qiang, Lu Yan. 2016. Mineral characterisics and geological significance of chlorite from the Julong'an uranium deposit in Le'an, Jiangxi Province. Acta Petrlogica et Mineralogica, 36(4): 535~548 (in Chinese with English abstract).

    • Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).

    • Li Jianhong, Luo Yi, Wang Mingtai, Sun Zhifu. 2001. Assessment study of solution leaching of fractured-altered uranium ore at Lujing granite-type uranium deposit. Uranium Geology, 17(3): 168~173 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).

    • Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Fang Shiyi, Zou Mingliang. 2021. LA-ICP-MS U-Pb ages and trace element compositions of ziron fromIndosinian granite in middle Zhuguangshan. Geotectonica et Metallogenia, 45(6): 1216~1232.

    • Li Renze, Liu Chengdong, Liang Liang, Kong Ming, Wang Bing, Wan Jianjun. 2016. Characterisics and geological significance of chlorite from the Dafushang uranium deposit in Taoshan area, Jiangxi Province. Acta Petrlogica et Mineralogica, 35(2): 297~305 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi Provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).

    • Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).

    • Ling Hongfei. 2011. Origin of hydrothermal fluids of grantie-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2): 193~206 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming. 1987. Element Geochemistry Principle. Beijing: Geological Publishing House, 124~128 (in Chinese with English abstract).

    • Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian South Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).

    • Min M Z, Luo X Z, Du G S. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huanggao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.

    • Nieto F. 1997. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy, 9(4): 829~841.

    • Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).

    • Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).

    • Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master degree dissertation of East China University of Techonlogy, 1~94 (in Chinese with English abstract).

    • Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).

    • Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).

    • Walshe J L. 1986. A six-component chlorite solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems. Economic Geology, 81(3): 681~703.

    • Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master degree dissertation of East China University of Techonlogy, 1~60(in Chinese with English abstract).

    • Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).

    • Wu Dehai, Pan Jiayong, Xia Fei, Huang Guangwen, Zhong Fujun, Qi Jiaming, Hong Binyue, Zhou Tangbo. 2018. Characterisics and formation conditions of chlorite in the Shangjiao uranium deposit in the southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393~405 (in Chinese with English abstract).

    • Wu D H, Pan J Y, Xia F, Huang G W, Lai J. 2019. The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the middle Nanling range, SE China. Minerals, 9: 199.

    • Wu Dehai. 2020. Geochemical characteristics of hydrothermal alteration minerals and uranium mineralization in Mianhuakeng deposit, northern Guangdong Province. PhD dissertation of East China University of Techonlogy, 1~156 (in Chinese with English abstract).

    • Xia Fei, Meng Hua, Nie Fengjun, Yan Zhaobin, Zhang Chengyong, Li Mangen. 2016. Characterstics of chlorite from the Nalinggou uranium deposit in the Ordos basin and its geological significance. Acta Geologica Sinica, 90(12): 3473~3482 (in Chinese with English abstract).

    • Xie X G, Byerly G R, Ferrel R E. 1997. IIb trioctahedral chlorite from the Barberton greenstone belt crystal structure and rock composition constraints with implication to geothermometry. Contribution to Mineralogy and Prtrology, 126: 275~291.

    • Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Li Zhipeng, Wu Zhichun, Xu Jianjun, Zhong Pengfei. 2022. The hydrothermal alteration of U-bearing accessory minerals: An example from the mineralogical study of cataclastic alteration granite-type uranium deposit in the Lujing ore field, South China. Acta Geologica Sinica, 96(11): 3799~3818 (in Chinese with English abstract).

    • Xu Pulin, Tang Xiangsheng, Guo Fusheng, Dang Feipeng, Li Guangrong, Lü Chuan, Huang Di, Xu Xunsheng, Wu Zhichun, Li Zhipeng. 2023. The geological features of QF2 faults and its relationship with uranium mineralization in Lujing uranium ore-field, South China. Geotectonica et Metallogenia, 47(1): 98~114 (in Chinese with English abstract).

    • Yang Shanghai. 2008. Uranium metallogenic features and prospecting potentialities in the areas around Shabazi uranium deposit in Nanling metallogenic belt. World Nuclear Geoscience, 25(4): 195~202 (in Chinese with English abstract).

    • Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).

    • Zang W, Fyfe W S. 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit Carajás Brazil. Mineralium Deposita, 30(1): 30~38.

    • Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: Implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).

    • Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).

    • Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).

    • Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).

    • Zhang Wei, Zhang Shuting, Cao Huawen, Wu Junde, Xiao Changxian, Chen Huijun, Tang Li. 2014. Characteristics of chlorite minerals from Xiaolonghe Ti deposit in west Yunnan, China and their geological omplication. Journal of Chengdu University of Technology, 41(3): 318~328 (in Chinese with English abstract).

    • Zhang Xiaotian, Pan Jiayong, Xia Fei, Liu Yin, Huang Di, Zhao Qifeng, Zhang Yong, Liu Guoqi, Zhong Fujun. 2022. Fluid inclusion constraints on ore-forming mechanism of Lujing uranium deposit in Jiangxi-Hunan border region. Earth Science, 47(1): 192~205 (in Chinese with English abstract).

    • Zhang Zhanshi, Hua Renmin, Ji Junfeng, Zhang Yanchun, Guo Guolin, Yin Zhengping. 2007. Characteristics and formation conditions of chlorite in No. 201 and No. 361 uranium deposits. Acta Mineralogica Sinica, 27(2): 161~172 (in Chinese with English abstract).

    • Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional diffenerces of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).

    • Zheng Qiaorong. 1983. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineralogica Sinica, (1): 55~62 (in Chinese with English abstract).

    • Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling range: Constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).

    • Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).

    • Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈旭. 2020. 诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究. 东华理工大学博士学位论文, 1~214.

    • 邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.

    • 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.

    • 郭国林, 刘晓东, 潘家永, 张展适, 李兴斌. 2012. 302铀矿床绿泥石特征及其与铀成矿的关系. 铀矿地质, 28(1): 35~41.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.

    • 华仁民, 李晓峰, 张开平, 季峻峰, 张文兰. 2003. 金山金矿热液蚀变粘土矿物特征及水岩反应环境研究. 矿物学报, 23(1): 23~30.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李海东, 潘家永, 刘文泉, 江卫兵, 李俊, 梁园园, 谢强, 鲁彦. 2016. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535~548.

    • 李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.

    • 李建红, 罗毅, 王明太, 孙志富. 2001. 鹿井碎裂蚀变花岗岩型铀矿床溶浸评价研究. 铀矿地质, 17(3): 168~173.

    • 李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.

    • 李杰, 黄宏业, 刘子杰, 张涛, 王前林, 方适宜, 邹明亮. 2021. 诸广中段印支期花岗岩LA-ICP-MS锆石U-Pb年龄及微量元素特征. 大地构造与成矿学, 45(6): 1216~1232.

    • 李仁泽, 刘成东, 梁良, 孔明, 王冰, 万建军. 2016. 江西省桃山铀矿田大府上绿泥石特征及其地质意义. 岩石矿物学杂志, 35(2): 297~305.

    • 李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.

    • 李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 刘英俊, 曹厉明. 1987. 元素地球化学导论. 北京: 地质出版社, 124~128.

    • 马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.

    • 祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.

    • 秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士学位论文, 1~94.

    • 覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.

    • 邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.

    • 孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.

    • 王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征、铀的赋存状态及成矿机制探讨. 东华理工大学硕士学位论文, 1~60.

    • 王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1) : 48~54.

    • 吴德海. 2020. 粤北棉花坑铀矿床热液蚀变矿物地球化学特征与铀成矿作用研究. 东华理工大学博士学位论文, 1~156.

    • 吴德海, 潘家永, 夏菲, 黄广文, 钟福军, 祁家明, 洪斌跃, 周堂波. 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4) : 393~405.

    • 夏菲, 孟华, 聂逢君, 严兆斌, 张成勇, 李满根. 2016. 鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义. 地质学报, 90(12): 3473~3482.

    • 许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 李志鹏, 吴志春, 许健俊, 钟鹏飞. 2022. 含铀副矿物的热液蚀变: 来自华南鹿井矿田碎裂蚀变岩型铀矿床的矿物学研究. 地质学报, 96(11): 3799~3818.

    • 许谱林, 唐湘生, 郭福生, 党飞鹏, 黎广荣, 吕川, 黄迪, 徐勋胜, 吴志春, 李志鹏. 2023. 华南鹿井铀矿田NE向QF2断裂特征及其与铀成矿关系探讨. 大地构造与成矿学, 47(1): 98~114.

    • 杨尚海. 2008. 南岭成矿带沙坝子矿床外围铀成矿特征及找矿前景. 世界核地质科学, 25(4): 195~202.

    • 余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.

    • 张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.

    • 张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.

    • 张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.

    • 张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.

    • 张伟, 张寿庭, 曹华文, 武俊德, 肖常先, 陈慧军, 唐利. 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版), 41(3): 318~328.

    • 张笑天, 潘家永, 夏菲, 刘颖, 黄迪, 赵奇峰, 张勇, 刘国奇, 钟福军. 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192~205.

    • 张展适, 华仁民, 季峻峰, 张彦春, 郭国林, 尹征平. 2007. 201和361铀矿床中绿泥石的特征及其形成环境研究. 矿物学报, 27(2): 161~172.

    • 郑巧荣. 1983. 由电子探针分析值计算Fe3+和Fe2+. 矿物学报, (1): 55~62.

    • 章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.

    • 钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.

    • 周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.

    • 朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.