en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

胡萌萌,女,1992年生。博士,助理研究员,活动构造与地震地质研究方向。E-mail:hmm@ief.ac.cn。

通讯作者:

吴中海,男,1974年生。博士,研究员,新构造与活动构造研究方向。E-mail:wzhh4488@sina.cn。

参考文献
Allen C R, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, Huang Weishi. 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.
参考文献
Armijo R, Tapponnier P, Mercier J L, Han Tonglin. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Atmospheres, 91(B14): 13803~13872.
参考文献
Armijo R, Tapponnier P, Tonglin H. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. 94(B3): 2787~2838.
参考文献
Bai Mingkun, Chevalier Marie-Luce, Pan Jiawei, Replumaz Anne, Leloup Philippe. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.
参考文献
Blisniuk P M, Sharp W D. 2003. Rates of Late Quaternary normal faulting in Central Tibet from U-series dating of pedogenic carbonate in displaced fluviall gravel deposits. Earth and Planetary Science Letters, 215: 169~186.
参考文献
Brown D K. 2011. Creating slope-enhanced shaded relief using global mapper. https: //www. geosoluciones. cl/documentos/globalmaper/Creating Slope-Enhanced Shaded-Relief Using Global Mapper. pdf.
参考文献
Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yuegau. 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe fault system, eastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 90(2): 537~554.
参考文献
Chen Lide. 1988. China Earthquake Case: The January 5, 1970 Tonghai M 7. 7 Earthquake, Yunnan Province. Beijing: Seismological Press, 57~76 (in Chinese with English abstract).
参考文献
Chen Rui, Li Ping. 1988. Slip rates and earthquake recurrence interval of the western branch of the Xiaojiang fault zone. Seismology and Geology, 10(2): 1~12 (in Chinese with English abstract).
参考文献
Chen Wenji, Peng Gui. 1991. Dating of Young Geological Systems. Beijing: Seismological Press (in Chinese).
参考文献
Cheng Jianwu. 2010. A study on the stratigraghy and tectonic activity during the late Quaternary of the Anning river fault in western Sichuan Province of China. PhD thesis of Institute of Geology, China Earthquake Administration (in Chinese with English Abstract).
参考文献
Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen river site along the Altyn Tagh fault, NW China. Earth and Planetary Science Letters, 254: 239~255.
参考文献
Daout S, Jolivet R, Lasserre C, Doin M P, Barbot S, Tapponnier P, Peltzer G, Socquet A, Sun Jimin. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophysical Journal International, 205(1): 536~547.
参考文献
Deng Tiangang. 1989. Xianshuihe Active Fault Zone. Chengdu: Sichuan Science Press (in Chinese).
参考文献
Department of earthquake disaster prevention, State Seismological Bureau. 1995. Historical Earthquake Catalog in China (A. D. 2300 to B. C. 1911). Beijing: Seismological Press (in Chinese).
参考文献
Department of earthquake disaster prevention, State Seismological Bureau. 1999. Catalogue of Modern Earthquakes in China (1912~1990, Ms≥4. 7). Beijing: China Science and Technology Press (in Chinese).
参考文献
Gaudemer Y, Tanpponnier P, Meyer B, Peltzer G, Guo Shunmin, Chen Zhitai, Dai Huagung, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599~645.
参考文献
Gold R D, Cowgill E. 2011. Deriving fault-slip histories to test for secular variation in slip, with examples from the Kunlun and Awatere faults. Earth and Planetary Science Letters, 301(1-2): 52~64.
参考文献
Gold R D, Cowgill E, Arrowsmith J R, Friedrich A M. 2016. Pulsed strain release on the AltynTagh Fault, northwest China. Earth and Planetary Science Letters, 459: 291~300.
参考文献
Han Zhujun, Dong Shaopeng, Tan Xibin, Hu Nan, Tan Xibin, Yuan Renmao, Guo Peng. 2017. The Holocene activity and strike-slip rate of the southern segment of the Xiaojiang fault in the southeastern Yunnan region, China. Seismology and Geology, 39(1): 1~18 (in Chinese with English abstract).
参考文献
Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255 (5052): 1663~1670.
参考文献
He Honglin, Fang Zhongjing, Li Ping. 1993. A preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault. Journal of Seismological Research, 16(3): 291~298 (in Chinese with English abstract).
参考文献
He Honglin, Yasutaka I, Song Fangmin, Dong Xingquan. 2002. Late Quaternary slip rate of the Xiaojiang fault and its implication. Seismology and Geology, 24(1): 14~26.
参考文献
He Honglin, Oguchi T. 2008. Late Quaternary activity of the Zemuhe and Xiaojiang faults in Southwest China from geomorphological mapping. Geomorphology, 96(1-2): 62~85.
参考文献
He Zexin, Zhang Xujiao, Bao Shuyan, QiaoYansong, Sheng Yuyingm, Liu Xiaotong, He Xianglim, Yang Xingchen, Zhao Junxiang, Lu Chunyu. 2015. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau. Geomorphology, 250: 95~112.
参考文献
Hu Mengmeng, Wu Zhonghai, Huang Xiaolong, Li Haomin. 2020. Definition of seismogenic fault for the 1588 Tonghai-Qujiang M 7. 0 earthquake in Yunnan Province and future strong earthquake risk at the southern end of Xiaojiang fault zone. Acta Geologica Sinica, 94(10): 3090~3105 (in Chinese with English abstract).
参考文献
Hu Nan, Han Zhujun. 2013. Seismological study on behaviors of present-day movement of arcuate tectonic belt in southeast Yunnan. Seismology and Geology, 35(1): 1~21 (in Chinese with English abstract).
参考文献
Huangfu Gang. 2010. Seismicity of Yunnan Province. Kunming: Yunnan Science and Technology Press (in Chinese).
参考文献
Ji Fengju, Li Jianping, Zheng Rongzhang. 1999. Research on thermoluminescence chronological rod of lower terraces surface along Xiaojiang fault zone. Nuclear Techniques, 22(10): 613~616 (in Chinese with English abstract).
参考文献
Ji Fengju, Zheng Rongzhang, Li Jianping, Yin Jinhui. 2000. Chronological research of geomorphic surface of lower terraces along several major rivers in the east and west of Yunnan Province. Seismology and Geology, (3): 265~276 (in Chinese with English abstract).
参考文献
Kirby E, Whipple K X, Burchfiel B C, Tang Wenqing. 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 375~393.
参考文献
Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, Van der Woerd J, Yuan Daoyang, Ryerson F J, Finkel R C, Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): ETG 4-1-ETG 4-15.
参考文献
Li Chuanyou, Zhang Peizhen, Yin Jinhui, Min Wei. 2009. Late quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5): TC5010.
参考文献
Li Ping. 1993. Xianshuihe-Xiaojiang Fault Zone. Beijing: Seismological Press (in Chinese).
参考文献
Li Tianshao, Du Qifang, You Zeli. 1997. Xianshuihe Active Fault Zone and Strong Earthquake Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).
参考文献
Li Yalin, Wang Chengshan, Zhao Xixi, Yin An, Ma Chao. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22 (2): 482~492.
参考文献
Liu Jinrui, Ren Zhikun, Zhang Huiping, Li Chuanyou, Zhang Zhuqi, Zheng Wenjun, Li Xuemei, Liu Caicai. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics, 61(4): 1281~1297 (in Chinese with English abstract).
参考文献
Liu Yaohui, Li Jinping, Wang Liuwei. 2015. A study of crustal movement characteristics and seismic hazard of Xiaojiang fault zone. Engineering of Surveying and Mapping, 24(7): 58~61 (in Chinese with English abstract).
参考文献
Loveless J P, Meade B J. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters, 303(1-2): 11~24.
参考文献
Machette M N. 1978. Dating Quaternary faults in southwestern United States using buried calcic paleosoils. U. S. Geological Survey Journal of Research, 6(3): 369~381.
参考文献
Mao Zebin. 2017. The activity of the South Segment of Xiaojiang Fault in Late Quaternary. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (4201): 419~426.
参考文献
Molnar P, Tapponnier P. 1978. Active tectonics of Tibet. Journal of Geophysical Research Solid Earth, 83(B11): 5361~5376.
参考文献
Molnar P, Lyon-Caen H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International. 99: 123~153.
参考文献
Nawrocka D, Czernik J, Goslar T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon, 51(2): 857~866.
参考文献
Pigati S J. 2013. Radiocarbon Dating of Terrestrial Carbonates. Netherlands: Springer.
参考文献
Qian Hong, Allen R C, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Weishi. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).
参考文献
Ren Junjie, Xu Xiwei, Yeats R S, Zhang Shirain, Ding Rui, Gong Zheng, Liu Shao, Kang Wenjun. 2013. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet: implications for fault behavior and strain partitioning. Tectonics, 32: 216~238.
参考文献
Royden L, Burchfiel B, King R, Wang Erchie, Chen Zhiliang, Shen Feng, Liu Yuping. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788~790.
参考文献
Seismological Bureau of Yunnan Province. 1990. Active Faults in Northwestern Yunnan. Beijing: Seismological Press, 321 (in Chinese).
参考文献
Shen Jun, Wang Yipeng, Song Fangmin, Li Yingzhen. 1998. Relative creep rate and characteristic earthquake recurrence interval—example from the Xiaojiang fault Zone in Yunnan, China. Seismology and Geology, 20(4): 328~331 (in Chinese with English abstract).
参考文献
Shen Jun, Wang Yipeng, Song Fangmin. 2003. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan-Yunnan block of the Tibetan Plateau. Journal of Asian Earth Sciences, 21(10): 1085~1096.
参考文献
Shen Zhengkang, Lü Jiangning, Wang Min, Bürgmann Roland. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.
参考文献
Shi Faqi, You Wei, Fu Yunwen. 2012. Recent crustal movement characteristics of Xiaojiang river fault based on the GPS data. Journal of Seismological Research, 35(2): 207~213 (in Chinese with English abstract).
参考文献
Song Fangmin, Wang Yipeng, Shen Jun, Cao Zhongquan, Shen Xuhui, Yu Weixian. 1997. The grouping of strike-slip data and seismicity of the Xiaojiang active fault. Earthquake Research in China, 19(3): 211~217 (in Chinese with English abstract).
参考文献
Song Fangmin, Wang Yipeng, Yu Weixian, Cao Zhongquan, Shen Xuhui, Shen Jun. 1998. Xiaojiang Active Fault Zone. Beijing: Seismological Press (in Chinese).
参考文献
Southwest Intensity Team, National Seismological Bureau. 1977. Discussion on Seismic Geology and Intensity Zoning in Southwest China. Beijing: Seismological Press (in Chinese).
参考文献
Tzvetkov J. 2018. Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50(2): 61~71.
参考文献
Vandenberghe J. 2003. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews, 22: 2053~2060.
参考文献
Vandenberghe J. 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology, 98: 275~284.
参考文献
Wang Chunyong, Zhu Chengnan, Liu Yuquan. 1978. Deformation of earthquake fault parameter for the Tonghai earthquake from ground deformation data. Acta Geophysica Sinica, 21(3): 191~198 (in Chinese with English abstract).
参考文献
Wang Erchie, Burchfiel C B, Royden H L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America, 327.
参考文献
Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208(2): 1088~1102.
参考文献
Wang Yang, Zhang Bo, HouJianjun, Ai Sheng. 2015. Late Quaternary activity of the Qujiang fault and analysis of the slip rate. Seismology and Geology, 37(4): 1177~1192 (in Chinese with English abstract).
参考文献
Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojie, Li Tiemin, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region. Science in China Series D: Earth Sciences, 51(9): 1267~1283.
参考文献
Wei Wenxin, Jiang Zaisen, Wu Yanqiang, Liu Xiaoxia, Zhao Jing, Li Qiang, Dong Man. 2012. Study on motion characteristics and strain accumulation of Xiaojiang fault zone. Journal of Geodesy and Geodynamics, 32(2): 11~15 (in Chinese with English abstract).
参考文献
Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Earthquake Science, 11(4): 362~372 (in Chinese with English abstract).
参考文献
Wen Xueze, Du Fang, Long Feng, Fan Jun, Zhu Han. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Science China Earth Sciences, 54(10): 1563~1575.
参考文献
Wu Zhonghai, Zhou Chunjing. 2018. Distribution Map of Active Faults in China and Its Adjacent Seas (1∶5000000) and Its Specification. Beijing: Geological Publishing House.
参考文献
Xiong Tanyu, Yao Xin, Zhang Yongshuang. 2010. A review on study of Xianshuihe fault zone since the Holocene. Journal of Geomechanics, 16(2): 176~188 (in Chinese with English abstract).
参考文献
Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area. Science in China (Series D), 33(Supp. ): 151~162 (in Chinese with English abstract).
参考文献
Yan Bin, Lin Aimin. 2017. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe fault zone, Tibetan Plateau. Tectonophysics, 694: 302~318.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.
参考文献
Zhang Peizhen, Shen Zhengkang, Wang Min, Gan Weijun, Bürgmann Roland, Molnar Peter, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809~812.
参考文献
Zhang Xin. 2019. Study On The Activity and Disaster-Causing Effects of the Middle and Northern Sections of Xiaojiang Fracture. PHD thesis of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Zhang Yongshuang, Yao Xin, Yu Kai, Du Guoliang, Guo Changbao. 2016. Late-Quaternary slip rate and seismic activity of the Xianshuihe fault zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525~536.
参考文献
Zheng Gang, Wang Hua, Wright T J, Lou Yidong, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290~9312.
参考文献
Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001a. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe fault zone. Acta Seismologica Sinica (English Edition), 14(3): 263~273.
参考文献
Zhou Rongjun, He Yulin, Yang Tao, He Qiang, Li Xiaogang. 2001b. Slip rate and strong earthquake rupture on the Moxi-Mianning segment along the Xianshuihe-Anninghe fault zone. Earthquake Research in China, 17(3): 253~262 (in Chinese with English abstract).
参考文献
陈睿, 李玶. 1988. 小江西支断裂的滑动速率与强震重复周期. 地震地质, 10(2): 1~12.
参考文献
陈立德. 1988. 中国震例: 1970年1月5日云南省通海7. 7级地震. 北京: 地震出版社, 57~76.
参考文献
陈文寄, 彭贵. 1991. 年轻地质体系的年代测定. 北京: 地震出版社.
参考文献
程建武. 2010. 川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究. 中国地震局地质研究所博士学位论文.
参考文献
国家地震局西南烈度队. 1977. 西南地区地震地质及烈度区划探讨. 北京: 地震出版社, 1~141.
参考文献
国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪~公元1911年). 北京: 地震出版社.
参考文献
中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年~1990年Ms≥4. 7). 北京: 中国科学技术出版社.
参考文献
邓天岗. 1989. 鲜水河活动断裂带. 成都: 四川科学出版社.
参考文献
韩竹军, 董绍鹏, 谭锡斌, 呼楠, 谭锡斌, 袁仁茂, 郭鹏. 2017. 小江断裂带南段全新世活动的地质地貌证据与滑动速率. 地震地质, 39(1): 1~18.
参考文献
何宏林, 方仲景, 李玶. 1993. 小江断裂带西支断裂南段新活动初探. 地震研究, 16(3): 291~298.
参考文献
胡萌萌, 吴中海, 黄小龙, 李浩民. 2020. 云南1588年通海-曲江7级地震的发震断层厘定及小江断裂带南端的未来强震危险性问题. 地质学报, 94(10): 3090~3105.
参考文献
呼楠, 韩竹军. 2013. 滇东南弧形构造带现今活动性的地震学研究. 地震地质, 35(1): 1~21.
参考文献
皇甫岗, 2010. 云南地震活动性. 昆明: 云南科技出版社.
参考文献
计凤桔, 李建平, 郑荣章. 1999. 小江断裂带沿线低阶地面热释光年代学标尺的研究. 核技术, 22(10): 613~616.
参考文献
计凤桔, 郑荣章, 李建平, 尹金辉. 2000. 滇东、滇西地区主要河流低阶地地貌面的年代学研究. 地震地质, (3): 265~276.
参考文献
李玶. 1993. 鲜水河-小江断裂带. 北京: 地震出版社.
参考文献
李天袑, 杜其芳, 游泽李. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.
参考文献
刘耀辉, 李金平, 王刘伟. 2015. 小江断裂带地壳运动特征及地震危险性研究. 测绘工程, 24(7): 58~61.
参考文献
刘金瑞, 任治坤, 张会平, 李传友, 张竹琪, 郑文俊, 李雪梅, 刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报, 61(4): 1281~1297.
参考文献
毛泽斌. 2017. 小江断裂带南段晚第四纪活动性研究. 中国地质大学(北京)硕士学位论文.
参考文献
钱洪, Allen C R, 罗灼礼, 闻学泽, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.
参考文献
云南省地震局. 1990. 滇西北活动断裂. 北京: 地震出版社, 321.
参考文献
宋方敏, 汪一鹏, 沈军, 曹忠权, 申旭辉, 俞维贤. 1997. 小江断裂带中段盆地的发育阶段及其与区域构造运动的关系. 地震地质, 19(3): 211~217.
参考文献
宋方敏, 汪一鹏, 俞维贤, 曹忠权, 申旭辉, 沈军. 1998. 小江活动断裂带. 北京: 地震出版社.
参考文献
沈军, 汪一鹏, 宋方敏, 李莹甄. 1998. 相对蠕滑速率与特征地震复发间隔的估计——以小江断裂带为例. 地震地质, 20(4): 328~331.
参考文献
施发奇, 尤伟, 付云文. 2012. GPS资料揭示的小江断裂近期运动特征. 地震研究, 35(2): 207~213.
参考文献
王椿镛, 朱成男, 刘玉权. 1978. 用地形变资料测定通海地震的地震断层参数. 地球物理学报, 21(3): 191~198.
参考文献
王洋, 张波, 侯建军, 艾晟. 2015. 曲江断裂晚第四纪活动特征及滑动速率分析. 地震地质, 37(4): 1177~1192.
参考文献
闻学泽, Allen C R, 罗灼礼, 钱洪, 周华伟, 黄伟师. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.
参考文献
魏文薪, 江在森, 武艳强, 刘晓霞, 赵静, 李强, 董曼. 2012. 小江断裂带的运动及应变积累特征研究. 大地测量与地球动力学, 32(2): 11~15.
参考文献
熊探宇, 姚鑫, 张永双. 2010. 鲜水河断裂带全新世活动性研究进展综述. 地质力学学报, 16(2): 176~188.
参考文献
徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33(增刊): 151~162.
参考文献
张欣. 2019. 小江断裂中北段活动性及其致灾效应研究. 成都: 成都理工大学博士学位论文.
参考文献
周荣军, 何玉林, 杨涛, 何强, 黎小刚. 2001b. 鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错. 中国地震, 17(3): 253~262.
目录contents

    摘要

    鲜水河-小江左旋走滑断裂系是调节青藏高原东南部物质向东南挤出的大型边界断裂。云南巧家断裂作为小江断裂带北段,其晚第四纪走滑速率是认识川滇地块东部边界应变调节方式的关键。本文利用无人机航摄和地面激光扫描技术,获取了该断裂段穿过金沙江河谷区红路和蒙姑两处的高分辨率地形数据,恢复出断层错动T2和T3两期阶地陡坎上缘的左旋位错量分别为120±5~128±1 m和193±1~202±1 m。根据T3中次生碳酸盐的AMS-14C法测年结果,结合已有的类似阶地年龄数据,并经气候曲线校正后认为,区域上T2和T3被废弃应分别发生在冰后期和末次盛冰期末期,时间为8.5~11.2 ka BP和18.6~21.4 ka BP。据此估算,小江断裂带巧家段的晚第四纪平均走滑速率为10~13 mm/a。进一步统计分析小江断裂带的晚第四纪走滑速率,发现巧家至宜良以北的段落,总体保持着10~15 mm/a的高走滑速率。但从宜良向南,断裂走滑速率出现了分段递减的特征,至建水以南快速减小到中-北段的近十分之一。小江断裂带中-北段的高走滑速率以及向南的分段式递减现象,反映在宜良以北,小江断裂带的走滑剪切作用是调节川滇地块向东南旋转-挤出运动的主要方式,但向南伴随变形分解作用,调节方式转变为了伸展、旋转和逆冲等多种方式共存的复杂形式。因此,进一步精细化定量限定川滇地块东部边界断裂的应变分解作用,是深入认识青藏高原物质挤出方式及其机制的关键。

    Abstract

    The sinistral strike-slip Xianshuihe-Xiaojiang fault system is one of the largest boundary fault zones that accommodate the southeast extrusion of crustal masses from the southeastern Tibetan Plateau. The late Quaternary strike-slip rate of the Qiaojia fault, the northern segment of the Xiaojiang fault zone, is the key to understand the strain accommodation mode of the eastern boundary of the Sichuan-Yunnan Block. In this paper, high-resolution topographic data of the fault section at Honglu and Menggu along the Jinsha River Valley area are obtained, using Structure from Motion (SfM) and Terrestrial Laser Scanner (TLS) techniques. It is shown that the left-lateral displacements cutting across the upper parts of the T2 and T3 terraces are 120±5~128±1 m and 193±1~202±1 m, respectively. AMS-14C dating of secondary carbonates from the T3, in combination with the previous dating results of similar terraces and correction by climate curves, reveals that the abandonment of T2 and T3 in the region occurred at ca. 8.5~11.2 ka BP and 18.6~21.4 ka BP in the post glacial period and at the end of the last maximum glaciation period, respectively. Accordingly, the average late Quaternary strike-slip rate of the Qiaojia fault is estimated at ca. 10~13 mm/a. The late Quaternary stike-slip rates of the other two segments of the Xiaojiang fault zone are further summarized in this study. It is shown that the fault zone generally maintained a high strike-slip rate of 10~15 mm/a from Qiaojia to the north of Yiliang. However, the strike-slip rate decreases step-by-step from Yiliang southward and rapidly decreases to nearly one tenth of the rates of the middle-north segment to the south of Jianshui. The step-by-step decrease along the south part of the fault zone suggests that the extrusion movement of Sichuan-Yunnan Block has changed from sinistral strike-slip shearing to concurring extension, rotation and thrusting in this region. Therefore, further quantitative constraining the strain partitioning along the boundary faults of the Sichuan-Yunnan block may provide deep insights into the accommodation mode of mass extrusion in the southeastern Tibetan Plateau.

  • 新生代以来,印度与欧亚板块的俯冲碰撞引起了显著的地表变形(Molnar et al.,1975; Harrison et al.,1992; Yin An et al.,2000; Li Yalin et al.,2012)。两个板块之间~50 mm/a的汇聚变形由青藏高原内部及其边缘大量运动性质不同的活动断裂所调节(Molnar et al.,1989)。高原南侧的喜马拉雅断裂带和东侧的龙门山断裂运动性质以逆冲为主,变形表现为地壳的纵向缩短与增厚; 高原北侧及南东侧边界断裂均以走滑性质为主,调节高原地壳物质的横向挤出; 高原内部近南北向正断层的活动则是上述挤压引起的重力垮塌(Molnar et al.,1978)或大型走滑断裂尾端拉张作用下的响应(Armijo et al.,19861989; Royden et al.,1997)。源自印度板块与欧亚板块碰撞驱动下的变形发生以上多样分解,都与活动断裂的存在密切相关,尤其是高原边界断裂。因此认识这些边界断裂的运动性质及活动性可以直接解决高原变形的分解问题。目前,大量该方面的工作主要集中在位于高原东北缘和东缘的大型边界断裂,如阿尔金断裂(Gold et al.,2016),东昆仑断裂(Gold et al.,2011),海原断裂(Gaudemer et al.,1995; Lasserre et al.,2002; Li Chuanyou et al.,2009; Daout et al.,2016; 刘金瑞等,2018)以及龙门山断裂(Kirby et al.,2000; Ren Junjie et al.,2013)等。关于高原东南缘的鲜水河-小江断裂系的研究则集中于北段的鲜水河断裂(钱洪等,1988; 邓天岗,1989; 闻学泽等,1989; Allen et al.,1991; 李天袑等,1997; Zhou Rongjun et al.,2001a; 周荣军等,2001b; 徐锡伟等,2003; 熊探宇等,2010; Chen Guihua et al.,2016; Zhang Yongshuang et al.,2016; Yan Bin et al.,2017; Bai Mingkun et al.,2018),而关于该断裂系中南段,尤其是小江断裂带的活动性目前还存在不同认识。

  • 现有的GPS观测结果和地质资料表明,鲜水河-小江断裂系是青藏高原东南缘最活跃的一条断裂带(Shen Zhengkang et al.,2005; Wu Zhonghai et al.,2018),它与哀牢山-红河断裂带构成了川滇地块的东、南边界,该地块主动向SSE方向的运动是印度与欧亚板块碰撞的远场效应。作为川滇地块的东边界,小江断裂带的滑动速率对于揭示该地块的运动学至关重要。但是已有研究显示,对小江断裂带地质时间尺度的活动性研究还停留在21世纪初期(陈睿等,1988; 云南省地震局,1990; 宋方敏等,1998; Wang Erchie et al.,1998; He Honglin et al.,2002; Shen Jun et al.,2003; He Honglin et al.,2008),且在部分段落存在较大分歧。例如,Wang Erchie et al.(1998)假设断裂的初始左旋走滑运动发生在距今约4~2 Ma,以此估算巧家断裂的左旋走滑速率为15~30 mm/a。这个结果远远高于整个断裂系上任意段落的滑动速率,也高于高原其他大型边界走滑断裂的活动速率。皇甫岗(2010)则认为巧家断裂晚第四纪滑动速率约为4~8.6 mm/a。随着高分辨率地形数据的出现以及高精度测年方法的兴起,有必要对该断裂段的晚第四纪活动速率进行重新约束。

  • 本文在巧家断裂金沙江河谷段的宽谷区和峡谷区分别选取一个点进行断裂的晚第四纪走滑速率研究。采用SfM(Structure from Motion)和地面三维激光扫描(Terrestrial Laser Scanning,TLS)方法获取高分辨率地形数据,用于位错量测量。采集相关的次生碳酸盐样品进行14C法测年。随后将本文及前人获得的阶地年龄进行气候曲线校正,获得区域上T2和T3阶地的废弃年龄,进而计算断裂在这两期的滑动速率。在此基础上,总结小江断裂带其余段落的走滑速率,讨论了该断裂带晚第四纪走滑速率的空间变化规律及其对川滇地块运动学机制的指示意义。

  • 1 地质背景

  • 小江断裂带全长约410 km,整体走向近SN,以左旋走滑运动为特征,主断裂向南逐渐变宽,从东川附近的10 km左右南延到通海一带,达到40 km(图1)。断裂自北向南可分为三段,依次是北段的巧家断裂,主要沿金沙江及其支流小江河谷分布,可从巧家延至小江口,呈NNW走向,长约80 km,连续性好且结构单一。中段走向近南北向,分为东、西两支,东支东川断裂主要经东川、寻甸、宜良; 西支嵩明断裂经乌龙镇、金源乡、甸沙乡、清水海、羊街镇、嵩明盆地和阳宗海。东、西两支断裂之间还发育一系列近于平行展布的北东向羽状次级断裂,这种结构类似于剪切带内部的羽状破裂,其中单条破裂与主断层之间的夹角一般为35°~40°(李玶,1993)。南段分别从中段的东、西两支南延,东支从华宁、曲江盆地与建水盆地东侧延伸,截止于红河谷地元阳段的北侧。西支则仅发育在抚仙湖至高大乡南一带。断裂带内次级左旋走滑断裂以小角度与主干断层相交,类似于Reid剪切模式中的R′剪切破裂,两者交织形成网状或辫状结构(李玶,1993)。小江断裂带上发育的走滑断陷盆地主要形成于距今约4 Ma的上新世中期以来,可能代表了断裂出现左旋走滑的时代(宋方敏等,1997; 沈军等,1998)。

  • 小江断裂带中段两条分支断裂的晚更新世以前的滑动速率之和约为12 mm/a(宋方敏等,1998)。晚第四纪以来,中段两条分支断裂的走滑速率之和在12.8~18±5 mm/a之间(陈睿等,1988; 云南省地震局,1990; 宋方敏等,1998; He Honglin et al.,20022008; Shen Jun et al.,2003)。韩竹军等(2017)在南段主干断裂——建水断裂上获得该段的走滑速率大于7.0 mm/a。何宏林等(1993)在建水东南部放马坪北西坡实测了3条冲沟的左旋错动量,根据冲沟长度与推断的冲沟平均溯源侵蚀速率,估算了该段全新世以来的平均走滑速率约为1.7 mm/a。GPS资料显示,整个断裂带的现今滑动速率介于5.1~12.7 mm/a之间(Shen Zhengkang et al.,2005; Wang Yanzhao et al.,2008; Wen Xueze et al.,2011; Loveless et al.,2011; 施发奇等,2012; 魏文薪等,2012; 刘耀辉等,2015; Wang Wei et al.,2017; Zheng Gang et al.,2017)。

  • 小江断裂带还是云南地区历史上发生M≥7.0大地震活动数量最多的断裂带,属于云南地区最显著的强震控震构造带。据史料记载(国家地震局震害防御司,1995; 中国地震局震害防御司,1999),沿该断裂带曾先后发生包括1500年宜良M 7.0级地震、1713年寻甸M 6.8级地震、1725年宜良M 6.8级地震、1733年东川M 7.8级地震、1789年华宁M 7.0级地震和1833年嵩明M 8.0级地震等震级≥6.8的强震事件。其中嵩明8级大地震是云南地区历史上记载的最大震级地震。

  • 图1 小江断裂带构造地貌图

  • Fig.1 Tectonic and geomorphic map of the Xiaojiang faul zone

  • (a)—青藏高原变形分解图(改自Molnar et al.,1989);(b)—小江断裂带展布图(底图为ASTERDEM-30 m,地震、水系、断裂等要素来自Wu Zhonghai et al.,2018

  • (a) —deformation map of the Tibetan Plateau (modified from Molnar et al., 1989) ; (b) —distribution of Xiaojiang fault zone (the base map shows ASTERDEM with a30 m resolution, and the earthquake, river, active fault and other elements are from Wu Zhonghai et al., 2018)

  • 巧家断裂整体呈NNW走向,形迹较为单一且连续性好,总长约80 km(图2)。其北端与则木河断裂和大凉山断裂带南段交际河断裂相接,向南南东方向顺金沙江河谷经巧家县城、红路村与小田村、溜姑乡、扒戛坪和蒙姑乡后,延入小江河谷,顺其左岸依次穿过刺棵田、豆腐沟和大树脚村等地,至小江口—新田坝一带后,向南分为东、西两支。东支穿过小江河谷过绿茂乡后顺大白河河谷的东坡延向东川方向,西支过达朵村后向南延向嵩明方向。无论是遥感影像上还是地表观察中都可以发现,沿巧家断裂的左旋走滑现象是十分突出的。断裂在遥感图中表现出如刀切般的笔直线性影像,金沙江跨该段断裂出现约63 km的左旋偏转量,这也是整个小江断裂带中跨单条断裂可观察到的最大的水系左旋偏转量,基本代表了金沙江形成以来的最大走滑位错量。巧家断裂上最显著的宏观构造地貌标志是顺金沙江和小江河谷发育线性沟谷地貌(图3a),在线性沟谷中可见断层错动冲洪积扇体、河流阶地和基岩山咀等形成的挡水凸起、断槽和水系左旋错动或偏转等现象(图3b、c)。但由于河谷的强烈改造作用,断裂错动的微地貌证据并不易保存,断面在多种外部因素,如:沿线较为发育的泥石流和滑坡等堆积体的掩埋(图3d; 张欣,2019)、植被生长以及人工改造等作用下,也往往遭到破坏。现存的断面仅见于晚第四纪早期及之前的沉积物中,如巧家盆地内部早中更新世的巧家梁子砾石层和晚更新世早期的堰塞湖相砂层(图3e、f)。

  • 图2 巧家断裂几何展布图(底图为ASTERDEM:30 m分辨率)

  • Fig.2 Geometric distribution of Qiaojia fault (the base map shows ASTERDEM with a30 m resolution)

  • 2 地貌体位错量获取及其年代学测定

  • 2.1 红路调查点(Site1)

  • 红路调查点(N26°50′58.13″,E102°57′48.79″)位于巧家盆地南端金沙江由峡谷转为宽谷的地方。巧家断裂在该点附近表现为断层槽谷(图4b)和左旋错开该点处一系列冲沟,其中以红路沟的左旋偏转现象最为典型(图4a、c)。红路沟两侧展布4级阶地(T1、T2、T3和T4),拔河依次为2~3 m、8~10 m,20~25 m和40 m。由于侧向水流侵蚀和阶地陡坎的局部退化,阶地在冲沟两侧发育或保留并不均匀,这给重建其偏移之前的几何结构带来了不确定性。但整体来看,T2和T3在断层上、下游均有分布,而最新的T1和最老的T4分别只在下游较开阔的入江口处和上游峡谷一侧局部发育,其中T2和T3阶地陡坎的位错现象最为明显(图4d)。针对T2和T3阶地的位错,本文基于无人机航摄的SfM(Struture from Motion)技术获取的60 cm分辨率的巧家盆地数字表面模型(Digital Surface Models,DSM)地形数据上,提取了坡度增强的山体阴影图(enhanced-slope hillshade)(Brown,2011),随后在QGIS软件中对原始DSM数据进行渲染并与山体阴影图层混合以实现图像的高清效果(Tzvetkov,2018)。以此为底图,测得南岸T2/T3陡坎上缘的位错量为193±1 m,北岸T1/T2陡坎上缘的位错量约为128±1 m(图4d)。所测的T2/T3阶地坎的位错距离大于河道宽度,且其下游位于远离河道的一岸,而上游处于峡谷内,本身纵向下切速率大于横向侵蚀速率,因此可以忽略受河流冲刷侵蚀作用对阶地坎位错恢复的影响。

  • 根据阶地坎位错重建的“上、下阶地模式”(Cowgill,2007),上阶地面的年龄应更接近位错开始的年龄。地表调查发现,T3上部为含小砾中粗砂土层,而顶部发育有与阶地面土壤化作用相关的钙积层(图4e)。因为研究区属于干热河谷区,在阶地面被下切后的表层土壤发育过程中,因地表水淋滤作用会在土壤层底部淀积形成结节状或片状的钙积层,因此钙积层可代表阶地面的土壤化年龄(Machette,1978),但其通常会略晚于阶地面的废弃年龄,因而可被用于约束阶地面年龄的下限,这在双湖地堑边界正断层的滑动速率研究中得到了较好应用(Blisniuk and Sharp,2003)。因此,为约束该阶地面年龄,笔者在断层西侧的T3顶部采集了钙积层样品,并使用AMS-14C方法进行年龄测试。考虑到钙积层形成后可能经历重结晶作用,而现代碳的加入可导致其年龄结果较实际值偏年轻(陈文寄等,1991)。因此,在样品制备过程中,利用不同年代碳与酸反应快慢不同的原理来区分新、老碳(Nawrocka et al.,2009),并通过加速器质谱法(AMS)测量多份样品,分步溶出不同年代的碳,进而有效提高测年精度及年龄结果的可靠性(Pigati,2013)。整个测试过程在Beta分析测试实验室完成,年龄结果为17.93±0.07 ka BP(样品SHL1,图4f),可代表T3阶地面被废弃的年龄下限。基于该年龄结果可知,红路调查点处断层的左旋走滑速率应该小于10.8 mm/a。

  • 图3 巧家断裂宏观地貌与露头地质证据的野外照片(照片拍摄地点见图2)

  • Fig.3 Field photos of macroscopic landform and outcrop geological evidence of Qiaojia fault (see Fig.2 for photo shooting location)

  • (a)—线性沟谷地貌;(b)—挡水凸起与水系偏转;(c)—阶地错动;(d)—小江沿岸滑坡;(e)—砾石层中断层露头;(f)—堰塞湖相砂层中断层露头

  • (a) —linear valley landform; (b) —water retention bulge and stream deflection; (c) —terrace dislocation; (d) —landslides along Xiaojiang River; (e) —fault in gravel layer; (f) —fault in barrier lacustrine sand layer

  • 2.2 蒙姑调查点(Site2)

  • 蒙姑调查点(N26°34′6.24″,E103°2′51.98″)位于小江汇入金沙江以北约5 km处的晚更新世冲积台地上(图5a~e)。该台地后缘顶部海拔超过880 m,高出金沙江面190 m,高出邻侧蒙姑沟底部约65 m左右,台地面相当于区域上的T3阶地。在切割台地的蒙姑沟中还可见拔河分别约20~25 m和2~3 m的T2和T1阶地(图5e)。从Google Earth影像中,可以清晰地看到蒙姑沟发生了左旋错动(图5a)。为了精确测量不同阶地陡坎的断错位移,本文基于地面激光扫描(Terrestrial Laser Scanner,TLS)技术获取了蒙姑沟附近分辨率为12 cm的DSM数据。为消除民房、梯田以及植被等地物对地形的影响,尽量避免位错恢复中的相关误差,本文采用PCI Geomatica软件(https://www.pcigeomatics. com/software/geomatica/professional)对DSM数据中的上述地物综合使用多个过滤器进行清除,最终生成数字地形模型(DTM)(具体操作流程可见https://support.pcigeomatics.com/hc/en-us/articles/360015130032-DSM-to-DTM-Conversion)。然后,在QGIS软件中基于DTM数据提取等高线(contours),并简化生成该区的高精度地形图,从中识别测量出蒙姑沟南岸T3陡坎上缘的左旋位错量为202±1 m,南岸T2阶地陡坎上缘的位错量为120±5 m(图5d)。

  • 图4 红路调查点地貌特征及采样位置

  • Fig.4 Geomorphologic characteristics and sampling location at the Honglu site

  • (a)—红路沟周围数字正射影像;(b)—巧家断裂在红路沟北侧以断层槽谷形式展布的野外照片;(c)—红路沟左旋偏转野外照片;(d)—红路沟河流阶地位错特征解译图(底图为enhanced-slope hillshade);(e)—采样剖面;(f)—样品及其年龄

  • (a) —digital orthophoto around Honglugou; (b) —field photo of Qiaojia fault in the form of fault trough valley on the north side of Honglugou; (c) —field photo showing left deflection of Honglugou; (d) —interpretation of terraces dislocation of Honglugou (the base map is enhanced-slope hillshade) ; (e) —sampling profile; (f) —sample and its age

  • 图5 蒙姑调查点地貌特征及采样位置

  • Fig.5 Geomorphologic characteristics and sampling location at Menggu site

  • (a)—小江断裂带横切蒙姑点处巨厚冲洪积台地(影像源自Google Earth);(b)—冲洪积台地剖面及采样位置;(c)—DSM与Hillshade混合影像;(d)—蒙姑调查点处微地貌及位错量(底图为从DTM提取的等高距为1 m的地形图),图中红色箭头指示断层迹线;(e)—冲沟横剖面,剖面线位置见图5d

  • (a) —the Xiaojiang fault zone cuts through the thick alluvial proluvial platform at Menggu site (image from Google Earth) ; (b) —alluvial proluvial platform profile and sampling location; (c) —mixed images of DSM and Hillshade; (d) —microgeomorphology and dislocation amount (the base map is the topographic map with contour interval of 1 m extracted from DTM) , in which the red arrow indicates the fault trace; (e) —gully cross-section, see Fig.5d for section line position

  • 地表调查中,在T3台地后缘约19 m的剖面中可见粗细相间且间夹巨砾的厚层冲积砾石层,砾石以次棱角状为主,少量次圆状,砾径以1~12 cm为主,少量12~20 cm,个别20~40 cm左右,零星可见最大直径超过1.5 m的巨砾。砾石成分以砂岩、泥质砂岩、灰岩、白云岩等沟谷上游出露的岩石为主,属于典型的近源冲积相沉积。该套砾石层局部存在钙质胶结现象,其中的砾石表面可见厚度 <1 mm的薄层钙膜(图5b)。另外,在剖面中至少见4~5层红黏土团块混在于砾石层中,疑似为强震活动引发的崩塌物质。该套砾石层中的钙质胶结现象显然与地处金沙江干热河谷区有关,因为该套冲积砾石层的透水性好,在砾石层堆积过程中,必然会伴随反复的地表降水-蒸发过程,而干热环境下的二氧化碳加入过饱和易于在砾石孔隙间形成次生碳酸钙沉积(Machette,1978),从而产生局部钙质胶结现象,这在巧家一带的金沙江现今河床附近也可见到。因此,该套沉积中的砾石表层钙膜应是砾石层堆积过程中同时形成的,其形成时代可反映阶地砾石层的堆积时代,并为阶地面废弃年龄提供上限。笔者在上述剖面距顶6 m左右的砾石层中采集了砾石钙膜样品,在去除外部腐蚀部分后,采用AMS-14C法获得钙膜年龄为27.86±0.11 ka BP(样品SMG1),指示此处T3阶地面的废弃应发生在此年龄之后。基于这一年龄结果可知,蒙姑沟处的断层左旋走滑速率应该大于7.3 mm/a。

  • 3 讨论

  • 3.1 巧家断裂的晚第四纪左旋走滑速率

  • 小江断裂带的巧家段因地处金沙江干热河谷区,加上金沙江及其支流强烈切割与改造作用,无论是合适的测年样品还是保存较完好的位错标志等都相对难以获取,这也是该断裂段在早期调查研究中一直相对缺乏可靠的地质走滑速率的主要原因。近年来伴随无人机航摄和地表LiDAR测量获取高分辨率地形技术的发展,使得精确恢复复杂地形环境下的断层走滑位错量成为可能。综合红路和蒙姑两个调查点的测量结果,可测得该区T2和T3两个阶地陡坎上缘的左旋位错量分别为120~128 m和193~202 m。

  • 在阶地面定年方面,根据巧家断裂所穿越干热河谷中常见土壤成因碳酸钙和砾石钙膜等特点,采用AMS-14C法测试阶地沉积中次生的无机碳酸盐年龄来限定阶地面年代。综合红路和蒙姑两个调查点的T3阶地测年结果,可限定该阶地面的废弃年龄应在17.93~27.86 ka BP之间。但因未能在T2阶地沉积物中采集到合适的测年样品,因而对该阶地面的废弃年龄缺乏直接约束。另外,因为阶地沉积物或其顶部土壤层的直接定年结果往往只能给出阶地面废弃年龄的上限或下限,而且有时两者的年龄范围较大,此时如果直接采用年龄实测值计算断层走滑速率,显然会导致较大的误差。为了尽量减少速率估算的误差,并合理推断T2的阶地面年龄,笔者进一步搜集了前人给出的金沙江及其支流的T2和T3的年龄。已有研究揭示,第四纪的冰期-间冰期气候循环通常是高山峡谷区河谷充填-切割行为的主要驱动力,一般气候冷期对应阶地的堆积期,冷期向暖期过渡时期一般为阶地的下切期(Vandenberghe,20032008; He Zexin et al.,2015)。已有研究发现,在滇东及川西地区的主干河流及其一级支流中常发育具有可对比的5~6级河流阶地(计凤桔等,2000; He Zexin et al.,2015)。如前所述,笔者对巧家断裂滑动速率中所涉及的是其中的T2和T3阶地。将区域上已有的阶地年龄投影至古里雅冰芯气候曲线上(图6),进行气候校正后可进一步约束区域的T2和T3阶地面被废弃的年龄。其中T3阶地面被废弃应发生在18.6~21.4 ka BP的末次盛冰期末期,而T2阶地面被废弃应发生在8.5~11.2 ka BP的冰后期。

  • 根据巧家断裂上红路和蒙姑两个调查点的阶地位错量和阶地面废弃年龄,可综合估算出该断裂的晚第四纪平均走滑速率。在Site1处,T2的位移为128±1 m,取校正后的T2阶地面的年龄(8.5~11.2 ka BP)计算该处T2形成以来(全新世期间)断裂的走滑速率为13.2±2.0 mm/a; T3的位移为193±1 m,采用本文获取的17.93±0.07 ka BP和校正后的T3阶地面的年龄计算出T3形成以来(晚更新世以来)巧家断裂的走滑速率分别是10.7±0.1 mm/a和9.7±0.7 mm/a。在Site2处,T2的位移为120±5 m,同样采用校正后的 T2阶地面的年龄计算该处T2形成以来(全新世期间)断裂的走滑速率为12.4±2.2 mm/a; T3阶地的位移为202±1 m,对应校正前后的两个年龄分别为27.86±0.110 ka BP和18.6~21.4 ka BP,得出T3形成以来(晚更新世以来)巧家断裂的走滑速率分别是7.2± 0.1 mm/a和10.1±0.7 mm/a。因此,综合T2和T3的校正年龄值以及本文的实测值估算两个阶地位错量所对应的断层走滑速率,共获得6个速率值,其中2个是根据实测年龄给出的T3形成以来实测速率值,4个是气候校正年龄给出的校正速率值,取平均后可得出巧家断裂的晚第四纪走滑速率应介于10~13 mm/a之间(图7)。

  • 3.2 小江断裂带走滑速率的空间变化及其运动学意义

  • 结合前人关于小江断裂带中段和南段走滑速率的研究可知(表1):小江断裂带宜良以北段落自左旋走滑以来,总体上保持着10~15 mm/a的高走滑速率。自宜良向南至华宁,断裂的左旋走滑速率显著减小,过华宁后速率衰减至中北段的一半左右,至建水以南后进一步衰减至中北段的十分之一左右(图8)。

  • 图6 金沙江下游地区T2和T3阶地面年龄气候校正图(参考He Zexin et al.,2015

  • Fig.6 Correlation ages of river terraces with the oxygen isotope curve of Gguriya ice core (modified from He Zexin et al., 2015)

  • 小江断裂带的走滑速率由北向南分段递减的现象对于分析川滇地块的挤出过程具有重要意义。在川滇地块中观测到相对于华南块体的向南东约20 mm/a的挤出分量(Zhang Peizhen et al.,2004),小江断裂带整体的走滑速率占据其一半以上,因此按照刚性块体的动力学模式来解释(国家地震局西南烈度队,1977; 徐锡伟等,2003),绝大部分应变被小江断裂带的左旋走滑剪切作用所调节,少量为块体内部次级断裂所吸收。但小江断裂带自北向南的调节方式存在差异:小江断裂带北段和中段较高且相当的走滑速率,指示在调节川滇地块挤出时,形式较为单一,以左旋走滑方式为主。南段的走滑速率虽明显减小,但现今GPS观测到红河断裂带南北两侧应变率仍处于均衡状态(Shen Zhengkang et al.,2005),因此,在中北段以走滑剪切调节为主的挤出应变,向南可能转变为多种调节方式共存的状态。川滇地块南端,近南北向左旋走滑小江断裂带与北西向右旋走滑的曲江-石屏断裂带以共轭的形式相互切割,使得该区的构造格局相对复杂(胡萌萌等,2020)。震源机制解、深部地壳速度结构剖面、地质证据和GPS等多学科研究(王椿镛等,1978; 陈立德等,1988; Shen Zhengkang et al.,2005; 呼楠等,2013; 毛泽斌,2017)显示该区应力场为伸展性质,且两组断裂交汇部位还发育多个拉分盆地,共同指示挤出应变很大程度上转化为伸展变形。不过GPS数据还显示菱形地块南端内部次级断块存在一定的旋转分量(Wang Wei et al.,2017),另外,局部北西向具有逆冲性质的断层活动,如曲江断裂第四纪以来以右旋走滑为主兼SW向逆冲(王洋等,2015),也是调节挤出应变的一种方式。关于这些调节方式,到底以哪一种占主导,未来需要进一步做定量化研究。

  • 图7 巧家断裂(Site1和Site2)阶地位错与年代计算位移速率值

  • Fig.7 Slip rate from terrace offsets and ages at Site1 and Site2 on the Qiaojia fault

  • 表1 小江断裂带晚第四纪走滑速率统计表

  • Table1 Statistical table of late Quaternary strike-slip rate of Xiaojiang fault zone

  • 图8 小江断裂带沿走向走滑速率变化

  • Fig.8 Spatial variation of strike slip rate of Xiaojiang fault zone

  • 4 结论

  • 本文基于Structure from Motion(SfM)和Terrestrial Laser Scanner(TLS)方法获取的高分辨地形数据,获得了小江断裂带巧家段2个调查点的阶地陡坎左旋位错量。同时,结合阶地沉积中的次生碳酸盐样品AMS-14C法测年,以及阶地面年龄的气候校正结果,定量计算巧家断裂晚第四纪不同时期的平均走滑速率,并综合小江断裂带上已有的晚第四纪走滑速率,分析了其空间变化特征,最后可得出以下主要结论:

  • (1)小江断裂带巧家段在晚第四纪期间具有较高的左旋走滑速率,其全新世走滑速率为12.4±2.2~13.2±2.0 mm/a,晚更新世以来的平均走滑速率为7.2±0.1~10.7±0.1 mm/a,晚第四纪期间总体的走滑速率为10~13 mm/a。

  • (2)小江断裂带在宜良以北的段落总体保持着10~15 mm/a的高走滑速率。从宜良向南存在断裂走滑速率分段递减的现象,过华宁后速率衰减至中-北段的一半左右,至建水以南后进一步衰减至中-北段的近十分之一。

  • (3)小江断裂带左旋走滑速率从巧家向南的空间变化显示川滇地块东边界断裂在晚第四纪期间存在明显的应变分解作用。在宜良以北,小江断裂带的走滑剪切作用是调节川滇地块向东南旋转-挤出运动的主要方式,但向南伴随变形分解作用,调节方式转变为了伸展、旋转和逆冲等多种方式共存的复杂形式。

  • 致谢:江苏地质调查院的李浩民工程师曾参加野外调查与样品采集,匿名审稿人对本文提出了建设性的修改意见与建议,在此一并表示衷心感谢。

  • 参考文献

    • Allen C R, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, Huang Weishi. 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.

    • Armijo R, Tapponnier P, Mercier J L, Han Tonglin. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Atmospheres, 91(B14): 13803~13872.

    • Armijo R, Tapponnier P, Tonglin H. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. 94(B3): 2787~2838.

    • Bai Mingkun, Chevalier Marie-Luce, Pan Jiawei, Replumaz Anne, Leloup Philippe. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Blisniuk P M, Sharp W D. 2003. Rates of Late Quaternary normal faulting in Central Tibet from U-series dating of pedogenic carbonate in displaced fluviall gravel deposits. Earth and Planetary Science Letters, 215: 169~186.

    • Brown D K. 2011. Creating slope-enhanced shaded relief using global mapper. https: //www. geosoluciones. cl/documentos/globalmaper/Creating Slope-Enhanced Shaded-Relief Using Global Mapper. pdf.

    • Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yuegau. 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe fault system, eastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 90(2): 537~554.

    • Chen Lide. 1988. China Earthquake Case: The January 5, 1970 Tonghai M 7. 7 Earthquake, Yunnan Province. Beijing: Seismological Press, 57~76 (in Chinese with English abstract).

    • Chen Rui, Li Ping. 1988. Slip rates and earthquake recurrence interval of the western branch of the Xiaojiang fault zone. Seismology and Geology, 10(2): 1~12 (in Chinese with English abstract).

    • Chen Wenji, Peng Gui. 1991. Dating of Young Geological Systems. Beijing: Seismological Press (in Chinese).

    • Cheng Jianwu. 2010. A study on the stratigraghy and tectonic activity during the late Quaternary of the Anning river fault in western Sichuan Province of China. PhD thesis of Institute of Geology, China Earthquake Administration (in Chinese with English Abstract).

    • Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen river site along the Altyn Tagh fault, NW China. Earth and Planetary Science Letters, 254: 239~255.

    • Daout S, Jolivet R, Lasserre C, Doin M P, Barbot S, Tapponnier P, Peltzer G, Socquet A, Sun Jimin. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophysical Journal International, 205(1): 536~547.

    • Deng Tiangang. 1989. Xianshuihe Active Fault Zone. Chengdu: Sichuan Science Press (in Chinese).

    • Department of earthquake disaster prevention, State Seismological Bureau. 1995. Historical Earthquake Catalog in China (A. D. 2300 to B. C. 1911). Beijing: Seismological Press (in Chinese).

    • Department of earthquake disaster prevention, State Seismological Bureau. 1999. Catalogue of Modern Earthquakes in China (1912~1990, Ms≥4. 7). Beijing: China Science and Technology Press (in Chinese).

    • Gaudemer Y, Tanpponnier P, Meyer B, Peltzer G, Guo Shunmin, Chen Zhitai, Dai Huagung, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599~645.

    • Gold R D, Cowgill E. 2011. Deriving fault-slip histories to test for secular variation in slip, with examples from the Kunlun and Awatere faults. Earth and Planetary Science Letters, 301(1-2): 52~64.

    • Gold R D, Cowgill E, Arrowsmith J R, Friedrich A M. 2016. Pulsed strain release on the AltynTagh Fault, northwest China. Earth and Planetary Science Letters, 459: 291~300.

    • Han Zhujun, Dong Shaopeng, Tan Xibin, Hu Nan, Tan Xibin, Yuan Renmao, Guo Peng. 2017. The Holocene activity and strike-slip rate of the southern segment of the Xiaojiang fault in the southeastern Yunnan region, China. Seismology and Geology, 39(1): 1~18 (in Chinese with English abstract).

    • Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255 (5052): 1663~1670.

    • He Honglin, Fang Zhongjing, Li Ping. 1993. A preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault. Journal of Seismological Research, 16(3): 291~298 (in Chinese with English abstract).

    • He Honglin, Yasutaka I, Song Fangmin, Dong Xingquan. 2002. Late Quaternary slip rate of the Xiaojiang fault and its implication. Seismology and Geology, 24(1): 14~26.

    • He Honglin, Oguchi T. 2008. Late Quaternary activity of the Zemuhe and Xiaojiang faults in Southwest China from geomorphological mapping. Geomorphology, 96(1-2): 62~85.

    • He Zexin, Zhang Xujiao, Bao Shuyan, QiaoYansong, Sheng Yuyingm, Liu Xiaotong, He Xianglim, Yang Xingchen, Zhao Junxiang, Lu Chunyu. 2015. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau. Geomorphology, 250: 95~112.

    • Hu Mengmeng, Wu Zhonghai, Huang Xiaolong, Li Haomin. 2020. Definition of seismogenic fault for the 1588 Tonghai-Qujiang M 7. 0 earthquake in Yunnan Province and future strong earthquake risk at the southern end of Xiaojiang fault zone. Acta Geologica Sinica, 94(10): 3090~3105 (in Chinese with English abstract).

    • Hu Nan, Han Zhujun. 2013. Seismological study on behaviors of present-day movement of arcuate tectonic belt in southeast Yunnan. Seismology and Geology, 35(1): 1~21 (in Chinese with English abstract).

    • Huangfu Gang. 2010. Seismicity of Yunnan Province. Kunming: Yunnan Science and Technology Press (in Chinese).

    • Ji Fengju, Li Jianping, Zheng Rongzhang. 1999. Research on thermoluminescence chronological rod of lower terraces surface along Xiaojiang fault zone. Nuclear Techniques, 22(10): 613~616 (in Chinese with English abstract).

    • Ji Fengju, Zheng Rongzhang, Li Jianping, Yin Jinhui. 2000. Chronological research of geomorphic surface of lower terraces along several major rivers in the east and west of Yunnan Province. Seismology and Geology, (3): 265~276 (in Chinese with English abstract).

    • Kirby E, Whipple K X, Burchfiel B C, Tang Wenqing. 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 375~393.

    • Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, Van der Woerd J, Yuan Daoyang, Ryerson F J, Finkel R C, Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): ETG 4-1-ETG 4-15.

    • Li Chuanyou, Zhang Peizhen, Yin Jinhui, Min Wei. 2009. Late quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5): TC5010.

    • Li Ping. 1993. Xianshuihe-Xiaojiang Fault Zone. Beijing: Seismological Press (in Chinese).

    • Li Tianshao, Du Qifang, You Zeli. 1997. Xianshuihe Active Fault Zone and Strong Earthquake Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).

    • Li Yalin, Wang Chengshan, Zhao Xixi, Yin An, Ma Chao. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22 (2): 482~492.

    • Liu Jinrui, Ren Zhikun, Zhang Huiping, Li Chuanyou, Zhang Zhuqi, Zheng Wenjun, Li Xuemei, Liu Caicai. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics, 61(4): 1281~1297 (in Chinese with English abstract).

    • Liu Yaohui, Li Jinping, Wang Liuwei. 2015. A study of crustal movement characteristics and seismic hazard of Xiaojiang fault zone. Engineering of Surveying and Mapping, 24(7): 58~61 (in Chinese with English abstract).

    • Loveless J P, Meade B J. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters, 303(1-2): 11~24.

    • Machette M N. 1978. Dating Quaternary faults in southwestern United States using buried calcic paleosoils. U. S. Geological Survey Journal of Research, 6(3): 369~381.

    • Mao Zebin. 2017. The activity of the South Segment of Xiaojiang Fault in Late Quaternary. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (4201): 419~426.

    • Molnar P, Tapponnier P. 1978. Active tectonics of Tibet. Journal of Geophysical Research Solid Earth, 83(B11): 5361~5376.

    • Molnar P, Lyon-Caen H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International. 99: 123~153.

    • Nawrocka D, Czernik J, Goslar T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon, 51(2): 857~866.

    • Pigati S J. 2013. Radiocarbon Dating of Terrestrial Carbonates. Netherlands: Springer.

    • Qian Hong, Allen R C, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Weishi. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).

    • Ren Junjie, Xu Xiwei, Yeats R S, Zhang Shirain, Ding Rui, Gong Zheng, Liu Shao, Kang Wenjun. 2013. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet: implications for fault behavior and strain partitioning. Tectonics, 32: 216~238.

    • Royden L, Burchfiel B, King R, Wang Erchie, Chen Zhiliang, Shen Feng, Liu Yuping. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788~790.

    • Seismological Bureau of Yunnan Province. 1990. Active Faults in Northwestern Yunnan. Beijing: Seismological Press, 321 (in Chinese).

    • Shen Jun, Wang Yipeng, Song Fangmin, Li Yingzhen. 1998. Relative creep rate and characteristic earthquake recurrence interval—example from the Xiaojiang fault Zone in Yunnan, China. Seismology and Geology, 20(4): 328~331 (in Chinese with English abstract).

    • Shen Jun, Wang Yipeng, Song Fangmin. 2003. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan-Yunnan block of the Tibetan Plateau. Journal of Asian Earth Sciences, 21(10): 1085~1096.

    • Shen Zhengkang, Lü Jiangning, Wang Min, Bürgmann Roland. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Shi Faqi, You Wei, Fu Yunwen. 2012. Recent crustal movement characteristics of Xiaojiang river fault based on the GPS data. Journal of Seismological Research, 35(2): 207~213 (in Chinese with English abstract).

    • Song Fangmin, Wang Yipeng, Shen Jun, Cao Zhongquan, Shen Xuhui, Yu Weixian. 1997. The grouping of strike-slip data and seismicity of the Xiaojiang active fault. Earthquake Research in China, 19(3): 211~217 (in Chinese with English abstract).

    • Song Fangmin, Wang Yipeng, Yu Weixian, Cao Zhongquan, Shen Xuhui, Shen Jun. 1998. Xiaojiang Active Fault Zone. Beijing: Seismological Press (in Chinese).

    • Southwest Intensity Team, National Seismological Bureau. 1977. Discussion on Seismic Geology and Intensity Zoning in Southwest China. Beijing: Seismological Press (in Chinese).

    • Tzvetkov J. 2018. Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50(2): 61~71.

    • Vandenberghe J. 2003. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews, 22: 2053~2060.

    • Vandenberghe J. 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology, 98: 275~284.

    • Wang Chunyong, Zhu Chengnan, Liu Yuquan. 1978. Deformation of earthquake fault parameter for the Tonghai earthquake from ground deformation data. Acta Geophysica Sinica, 21(3): 191~198 (in Chinese with English abstract).

    • Wang Erchie, Burchfiel C B, Royden H L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America, 327.

    • Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208(2): 1088~1102.

    • Wang Yang, Zhang Bo, HouJianjun, Ai Sheng. 2015. Late Quaternary activity of the Qujiang fault and analysis of the slip rate. Seismology and Geology, 37(4): 1177~1192 (in Chinese with English abstract).

    • Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojie, Li Tiemin, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region. Science in China Series D: Earth Sciences, 51(9): 1267~1283.

    • Wei Wenxin, Jiang Zaisen, Wu Yanqiang, Liu Xiaoxia, Zhao Jing, Li Qiang, Dong Man. 2012. Study on motion characteristics and strain accumulation of Xiaojiang fault zone. Journal of Geodesy and Geodynamics, 32(2): 11~15 (in Chinese with English abstract).

    • Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Earthquake Science, 11(4): 362~372 (in Chinese with English abstract).

    • Wen Xueze, Du Fang, Long Feng, Fan Jun, Zhu Han. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Science China Earth Sciences, 54(10): 1563~1575.

    • Wu Zhonghai, Zhou Chunjing. 2018. Distribution Map of Active Faults in China and Its Adjacent Seas (1∶5000000) and Its Specification. Beijing: Geological Publishing House.

    • Xiong Tanyu, Yao Xin, Zhang Yongshuang. 2010. A review on study of Xianshuihe fault zone since the Holocene. Journal of Geomechanics, 16(2): 176~188 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area. Science in China (Series D), 33(Supp. ): 151~162 (in Chinese with English abstract).

    • Yan Bin, Lin Aimin. 2017. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe fault zone, Tibetan Plateau. Tectonophysics, 694: 302~318.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Zhang Peizhen, Shen Zhengkang, Wang Min, Gan Weijun, Bürgmann Roland, Molnar Peter, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809~812.

    • Zhang Xin. 2019. Study On The Activity and Disaster-Causing Effects of the Middle and Northern Sections of Xiaojiang Fracture. PHD thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Zhang Yongshuang, Yao Xin, Yu Kai, Du Guoliang, Guo Changbao. 2016. Late-Quaternary slip rate and seismic activity of the Xianshuihe fault zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525~536.

    • Zheng Gang, Wang Hua, Wright T J, Lou Yidong, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290~9312.

    • Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001a. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe fault zone. Acta Seismologica Sinica (English Edition), 14(3): 263~273.

    • Zhou Rongjun, He Yulin, Yang Tao, He Qiang, Li Xiaogang. 2001b. Slip rate and strong earthquake rupture on the Moxi-Mianning segment along the Xianshuihe-Anninghe fault zone. Earthquake Research in China, 17(3): 253~262 (in Chinese with English abstract).

    • 陈睿, 李玶. 1988. 小江西支断裂的滑动速率与强震重复周期. 地震地质, 10(2): 1~12.

    • 陈立德. 1988. 中国震例: 1970年1月5日云南省通海7. 7级地震. 北京: 地震出版社, 57~76.

    • 陈文寄, 彭贵. 1991. 年轻地质体系的年代测定. 北京: 地震出版社.

    • 程建武. 2010. 川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究. 中国地震局地质研究所博士学位论文.

    • 国家地震局西南烈度队. 1977. 西南地区地震地质及烈度区划探讨. 北京: 地震出版社, 1~141.

    • 国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪~公元1911年). 北京: 地震出版社.

    • 中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年~1990年Ms≥4. 7). 北京: 中国科学技术出版社.

    • 邓天岗. 1989. 鲜水河活动断裂带. 成都: 四川科学出版社.

    • 韩竹军, 董绍鹏, 谭锡斌, 呼楠, 谭锡斌, 袁仁茂, 郭鹏. 2017. 小江断裂带南段全新世活动的地质地貌证据与滑动速率. 地震地质, 39(1): 1~18.

    • 何宏林, 方仲景, 李玶. 1993. 小江断裂带西支断裂南段新活动初探. 地震研究, 16(3): 291~298.

    • 胡萌萌, 吴中海, 黄小龙, 李浩民. 2020. 云南1588年通海-曲江7级地震的发震断层厘定及小江断裂带南端的未来强震危险性问题. 地质学报, 94(10): 3090~3105.

    • 呼楠, 韩竹军. 2013. 滇东南弧形构造带现今活动性的地震学研究. 地震地质, 35(1): 1~21.

    • 皇甫岗, 2010. 云南地震活动性. 昆明: 云南科技出版社.

    • 计凤桔, 李建平, 郑荣章. 1999. 小江断裂带沿线低阶地面热释光年代学标尺的研究. 核技术, 22(10): 613~616.

    • 计凤桔, 郑荣章, 李建平, 尹金辉. 2000. 滇东、滇西地区主要河流低阶地地貌面的年代学研究. 地震地质, (3): 265~276.

    • 李玶. 1993. 鲜水河-小江断裂带. 北京: 地震出版社.

    • 李天袑, 杜其芳, 游泽李. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.

    • 刘耀辉, 李金平, 王刘伟. 2015. 小江断裂带地壳运动特征及地震危险性研究. 测绘工程, 24(7): 58~61.

    • 刘金瑞, 任治坤, 张会平, 李传友, 张竹琪, 郑文俊, 李雪梅, 刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报, 61(4): 1281~1297.

    • 毛泽斌. 2017. 小江断裂带南段晚第四纪活动性研究. 中国地质大学(北京)硕士学位论文.

    • 钱洪, Allen C R, 罗灼礼, 闻学泽, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.

    • 云南省地震局. 1990. 滇西北活动断裂. 北京: 地震出版社, 321.

    • 宋方敏, 汪一鹏, 沈军, 曹忠权, 申旭辉, 俞维贤. 1997. 小江断裂带中段盆地的发育阶段及其与区域构造运动的关系. 地震地质, 19(3): 211~217.

    • 宋方敏, 汪一鹏, 俞维贤, 曹忠权, 申旭辉, 沈军. 1998. 小江活动断裂带. 北京: 地震出版社.

    • 沈军, 汪一鹏, 宋方敏, 李莹甄. 1998. 相对蠕滑速率与特征地震复发间隔的估计——以小江断裂带为例. 地震地质, 20(4): 328~331.

    • 施发奇, 尤伟, 付云文. 2012. GPS资料揭示的小江断裂近期运动特征. 地震研究, 35(2): 207~213.

    • 王椿镛, 朱成男, 刘玉权. 1978. 用地形变资料测定通海地震的地震断层参数. 地球物理学报, 21(3): 191~198.

    • 王洋, 张波, 侯建军, 艾晟. 2015. 曲江断裂晚第四纪活动特征及滑动速率分析. 地震地质, 37(4): 1177~1192.

    • 闻学泽, Allen C R, 罗灼礼, 钱洪, 周华伟, 黄伟师. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.

    • 魏文薪, 江在森, 武艳强, 刘晓霞, 赵静, 李强, 董曼. 2012. 小江断裂带的运动及应变积累特征研究. 大地测量与地球动力学, 32(2): 11~15.

    • 熊探宇, 姚鑫, 张永双. 2010. 鲜水河断裂带全新世活动性研究进展综述. 地质力学学报, 16(2): 176~188.

    • 徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33(增刊): 151~162.

    • 张欣. 2019. 小江断裂中北段活动性及其致灾效应研究. 成都: 成都理工大学博士学位论文.

    • 周荣军, 何玉林, 杨涛, 何强, 黎小刚. 2001b. 鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错. 中国地震, 17(3): 253~262.

  • 参考文献

    • Allen C R, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, Huang Weishi. 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.

    • Armijo R, Tapponnier P, Mercier J L, Han Tonglin. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Atmospheres, 91(B14): 13803~13872.

    • Armijo R, Tapponnier P, Tonglin H. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. 94(B3): 2787~2838.

    • Bai Mingkun, Chevalier Marie-Luce, Pan Jiawei, Replumaz Anne, Leloup Philippe. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Blisniuk P M, Sharp W D. 2003. Rates of Late Quaternary normal faulting in Central Tibet from U-series dating of pedogenic carbonate in displaced fluviall gravel deposits. Earth and Planetary Science Letters, 215: 169~186.

    • Brown D K. 2011. Creating slope-enhanced shaded relief using global mapper. https: //www. geosoluciones. cl/documentos/globalmaper/Creating Slope-Enhanced Shaded-Relief Using Global Mapper. pdf.

    • Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yuegau. 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe fault system, eastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 90(2): 537~554.

    • Chen Lide. 1988. China Earthquake Case: The January 5, 1970 Tonghai M 7. 7 Earthquake, Yunnan Province. Beijing: Seismological Press, 57~76 (in Chinese with English abstract).

    • Chen Rui, Li Ping. 1988. Slip rates and earthquake recurrence interval of the western branch of the Xiaojiang fault zone. Seismology and Geology, 10(2): 1~12 (in Chinese with English abstract).

    • Chen Wenji, Peng Gui. 1991. Dating of Young Geological Systems. Beijing: Seismological Press (in Chinese).

    • Cheng Jianwu. 2010. A study on the stratigraghy and tectonic activity during the late Quaternary of the Anning river fault in western Sichuan Province of China. PhD thesis of Institute of Geology, China Earthquake Administration (in Chinese with English Abstract).

    • Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen river site along the Altyn Tagh fault, NW China. Earth and Planetary Science Letters, 254: 239~255.

    • Daout S, Jolivet R, Lasserre C, Doin M P, Barbot S, Tapponnier P, Peltzer G, Socquet A, Sun Jimin. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophysical Journal International, 205(1): 536~547.

    • Deng Tiangang. 1989. Xianshuihe Active Fault Zone. Chengdu: Sichuan Science Press (in Chinese).

    • Department of earthquake disaster prevention, State Seismological Bureau. 1995. Historical Earthquake Catalog in China (A. D. 2300 to B. C. 1911). Beijing: Seismological Press (in Chinese).

    • Department of earthquake disaster prevention, State Seismological Bureau. 1999. Catalogue of Modern Earthquakes in China (1912~1990, Ms≥4. 7). Beijing: China Science and Technology Press (in Chinese).

    • Gaudemer Y, Tanpponnier P, Meyer B, Peltzer G, Guo Shunmin, Chen Zhitai, Dai Huagung, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599~645.

    • Gold R D, Cowgill E. 2011. Deriving fault-slip histories to test for secular variation in slip, with examples from the Kunlun and Awatere faults. Earth and Planetary Science Letters, 301(1-2): 52~64.

    • Gold R D, Cowgill E, Arrowsmith J R, Friedrich A M. 2016. Pulsed strain release on the AltynTagh Fault, northwest China. Earth and Planetary Science Letters, 459: 291~300.

    • Han Zhujun, Dong Shaopeng, Tan Xibin, Hu Nan, Tan Xibin, Yuan Renmao, Guo Peng. 2017. The Holocene activity and strike-slip rate of the southern segment of the Xiaojiang fault in the southeastern Yunnan region, China. Seismology and Geology, 39(1): 1~18 (in Chinese with English abstract).

    • Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255 (5052): 1663~1670.

    • He Honglin, Fang Zhongjing, Li Ping. 1993. A preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault. Journal of Seismological Research, 16(3): 291~298 (in Chinese with English abstract).

    • He Honglin, Yasutaka I, Song Fangmin, Dong Xingquan. 2002. Late Quaternary slip rate of the Xiaojiang fault and its implication. Seismology and Geology, 24(1): 14~26.

    • He Honglin, Oguchi T. 2008. Late Quaternary activity of the Zemuhe and Xiaojiang faults in Southwest China from geomorphological mapping. Geomorphology, 96(1-2): 62~85.

    • He Zexin, Zhang Xujiao, Bao Shuyan, QiaoYansong, Sheng Yuyingm, Liu Xiaotong, He Xianglim, Yang Xingchen, Zhao Junxiang, Lu Chunyu. 2015. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau. Geomorphology, 250: 95~112.

    • Hu Mengmeng, Wu Zhonghai, Huang Xiaolong, Li Haomin. 2020. Definition of seismogenic fault for the 1588 Tonghai-Qujiang M 7. 0 earthquake in Yunnan Province and future strong earthquake risk at the southern end of Xiaojiang fault zone. Acta Geologica Sinica, 94(10): 3090~3105 (in Chinese with English abstract).

    • Hu Nan, Han Zhujun. 2013. Seismological study on behaviors of present-day movement of arcuate tectonic belt in southeast Yunnan. Seismology and Geology, 35(1): 1~21 (in Chinese with English abstract).

    • Huangfu Gang. 2010. Seismicity of Yunnan Province. Kunming: Yunnan Science and Technology Press (in Chinese).

    • Ji Fengju, Li Jianping, Zheng Rongzhang. 1999. Research on thermoluminescence chronological rod of lower terraces surface along Xiaojiang fault zone. Nuclear Techniques, 22(10): 613~616 (in Chinese with English abstract).

    • Ji Fengju, Zheng Rongzhang, Li Jianping, Yin Jinhui. 2000. Chronological research of geomorphic surface of lower terraces along several major rivers in the east and west of Yunnan Province. Seismology and Geology, (3): 265~276 (in Chinese with English abstract).

    • Kirby E, Whipple K X, Burchfiel B C, Tang Wenqing. 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 375~393.

    • Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, Van der Woerd J, Yuan Daoyang, Ryerson F J, Finkel R C, Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): ETG 4-1-ETG 4-15.

    • Li Chuanyou, Zhang Peizhen, Yin Jinhui, Min Wei. 2009. Late quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5): TC5010.

    • Li Ping. 1993. Xianshuihe-Xiaojiang Fault Zone. Beijing: Seismological Press (in Chinese).

    • Li Tianshao, Du Qifang, You Zeli. 1997. Xianshuihe Active Fault Zone and Strong Earthquake Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).

    • Li Yalin, Wang Chengshan, Zhao Xixi, Yin An, Ma Chao. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22 (2): 482~492.

    • Liu Jinrui, Ren Zhikun, Zhang Huiping, Li Chuanyou, Zhang Zhuqi, Zheng Wenjun, Li Xuemei, Liu Caicai. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics, 61(4): 1281~1297 (in Chinese with English abstract).

    • Liu Yaohui, Li Jinping, Wang Liuwei. 2015. A study of crustal movement characteristics and seismic hazard of Xiaojiang fault zone. Engineering of Surveying and Mapping, 24(7): 58~61 (in Chinese with English abstract).

    • Loveless J P, Meade B J. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters, 303(1-2): 11~24.

    • Machette M N. 1978. Dating Quaternary faults in southwestern United States using buried calcic paleosoils. U. S. Geological Survey Journal of Research, 6(3): 369~381.

    • Mao Zebin. 2017. The activity of the South Segment of Xiaojiang Fault in Late Quaternary. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (4201): 419~426.

    • Molnar P, Tapponnier P. 1978. Active tectonics of Tibet. Journal of Geophysical Research Solid Earth, 83(B11): 5361~5376.

    • Molnar P, Lyon-Caen H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International. 99: 123~153.

    • Nawrocka D, Czernik J, Goslar T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon, 51(2): 857~866.

    • Pigati S J. 2013. Radiocarbon Dating of Terrestrial Carbonates. Netherlands: Springer.

    • Qian Hong, Allen R C, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Weishi. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).

    • Ren Junjie, Xu Xiwei, Yeats R S, Zhang Shirain, Ding Rui, Gong Zheng, Liu Shao, Kang Wenjun. 2013. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet: implications for fault behavior and strain partitioning. Tectonics, 32: 216~238.

    • Royden L, Burchfiel B, King R, Wang Erchie, Chen Zhiliang, Shen Feng, Liu Yuping. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788~790.

    • Seismological Bureau of Yunnan Province. 1990. Active Faults in Northwestern Yunnan. Beijing: Seismological Press, 321 (in Chinese).

    • Shen Jun, Wang Yipeng, Song Fangmin, Li Yingzhen. 1998. Relative creep rate and characteristic earthquake recurrence interval—example from the Xiaojiang fault Zone in Yunnan, China. Seismology and Geology, 20(4): 328~331 (in Chinese with English abstract).

    • Shen Jun, Wang Yipeng, Song Fangmin. 2003. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan-Yunnan block of the Tibetan Plateau. Journal of Asian Earth Sciences, 21(10): 1085~1096.

    • Shen Zhengkang, Lü Jiangning, Wang Min, Bürgmann Roland. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Shi Faqi, You Wei, Fu Yunwen. 2012. Recent crustal movement characteristics of Xiaojiang river fault based on the GPS data. Journal of Seismological Research, 35(2): 207~213 (in Chinese with English abstract).

    • Song Fangmin, Wang Yipeng, Shen Jun, Cao Zhongquan, Shen Xuhui, Yu Weixian. 1997. The grouping of strike-slip data and seismicity of the Xiaojiang active fault. Earthquake Research in China, 19(3): 211~217 (in Chinese with English abstract).

    • Song Fangmin, Wang Yipeng, Yu Weixian, Cao Zhongquan, Shen Xuhui, Shen Jun. 1998. Xiaojiang Active Fault Zone. Beijing: Seismological Press (in Chinese).

    • Southwest Intensity Team, National Seismological Bureau. 1977. Discussion on Seismic Geology and Intensity Zoning in Southwest China. Beijing: Seismological Press (in Chinese).

    • Tzvetkov J. 2018. Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50(2): 61~71.

    • Vandenberghe J. 2003. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews, 22: 2053~2060.

    • Vandenberghe J. 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology, 98: 275~284.

    • Wang Chunyong, Zhu Chengnan, Liu Yuquan. 1978. Deformation of earthquake fault parameter for the Tonghai earthquake from ground deformation data. Acta Geophysica Sinica, 21(3): 191~198 (in Chinese with English abstract).

    • Wang Erchie, Burchfiel C B, Royden H L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America, 327.

    • Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208(2): 1088~1102.

    • Wang Yang, Zhang Bo, HouJianjun, Ai Sheng. 2015. Late Quaternary activity of the Qujiang fault and analysis of the slip rate. Seismology and Geology, 37(4): 1177~1192 (in Chinese with English abstract).

    • Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojie, Li Tiemin, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region. Science in China Series D: Earth Sciences, 51(9): 1267~1283.

    • Wei Wenxin, Jiang Zaisen, Wu Yanqiang, Liu Xiaoxia, Zhao Jing, Li Qiang, Dong Man. 2012. Study on motion characteristics and strain accumulation of Xiaojiang fault zone. Journal of Geodesy and Geodynamics, 32(2): 11~15 (in Chinese with English abstract).

    • Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Earthquake Science, 11(4): 362~372 (in Chinese with English abstract).

    • Wen Xueze, Du Fang, Long Feng, Fan Jun, Zhu Han. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Science China Earth Sciences, 54(10): 1563~1575.

    • Wu Zhonghai, Zhou Chunjing. 2018. Distribution Map of Active Faults in China and Its Adjacent Seas (1∶5000000) and Its Specification. Beijing: Geological Publishing House.

    • Xiong Tanyu, Yao Xin, Zhang Yongshuang. 2010. A review on study of Xianshuihe fault zone since the Holocene. Journal of Geomechanics, 16(2): 176~188 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area. Science in China (Series D), 33(Supp. ): 151~162 (in Chinese with English abstract).

    • Yan Bin, Lin Aimin. 2017. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe fault zone, Tibetan Plateau. Tectonophysics, 694: 302~318.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Zhang Peizhen, Shen Zhengkang, Wang Min, Gan Weijun, Bürgmann Roland, Molnar Peter, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809~812.

    • Zhang Xin. 2019. Study On The Activity and Disaster-Causing Effects of the Middle and Northern Sections of Xiaojiang Fracture. PHD thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Zhang Yongshuang, Yao Xin, Yu Kai, Du Guoliang, Guo Changbao. 2016. Late-Quaternary slip rate and seismic activity of the Xianshuihe fault zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525~536.

    • Zheng Gang, Wang Hua, Wright T J, Lou Yidong, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290~9312.

    • Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001a. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe fault zone. Acta Seismologica Sinica (English Edition), 14(3): 263~273.

    • Zhou Rongjun, He Yulin, Yang Tao, He Qiang, Li Xiaogang. 2001b. Slip rate and strong earthquake rupture on the Moxi-Mianning segment along the Xianshuihe-Anninghe fault zone. Earthquake Research in China, 17(3): 253~262 (in Chinese with English abstract).

    • 陈睿, 李玶. 1988. 小江西支断裂的滑动速率与强震重复周期. 地震地质, 10(2): 1~12.

    • 陈立德. 1988. 中国震例: 1970年1月5日云南省通海7. 7级地震. 北京: 地震出版社, 57~76.

    • 陈文寄, 彭贵. 1991. 年轻地质体系的年代测定. 北京: 地震出版社.

    • 程建武. 2010. 川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究. 中国地震局地质研究所博士学位论文.

    • 国家地震局西南烈度队. 1977. 西南地区地震地质及烈度区划探讨. 北京: 地震出版社, 1~141.

    • 国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪~公元1911年). 北京: 地震出版社.

    • 中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年~1990年Ms≥4. 7). 北京: 中国科学技术出版社.

    • 邓天岗. 1989. 鲜水河活动断裂带. 成都: 四川科学出版社.

    • 韩竹军, 董绍鹏, 谭锡斌, 呼楠, 谭锡斌, 袁仁茂, 郭鹏. 2017. 小江断裂带南段全新世活动的地质地貌证据与滑动速率. 地震地质, 39(1): 1~18.

    • 何宏林, 方仲景, 李玶. 1993. 小江断裂带西支断裂南段新活动初探. 地震研究, 16(3): 291~298.

    • 胡萌萌, 吴中海, 黄小龙, 李浩民. 2020. 云南1588年通海-曲江7级地震的发震断层厘定及小江断裂带南端的未来强震危险性问题. 地质学报, 94(10): 3090~3105.

    • 呼楠, 韩竹军. 2013. 滇东南弧形构造带现今活动性的地震学研究. 地震地质, 35(1): 1~21.

    • 皇甫岗, 2010. 云南地震活动性. 昆明: 云南科技出版社.

    • 计凤桔, 李建平, 郑荣章. 1999. 小江断裂带沿线低阶地面热释光年代学标尺的研究. 核技术, 22(10): 613~616.

    • 计凤桔, 郑荣章, 李建平, 尹金辉. 2000. 滇东、滇西地区主要河流低阶地地貌面的年代学研究. 地震地质, (3): 265~276.

    • 李玶. 1993. 鲜水河-小江断裂带. 北京: 地震出版社.

    • 李天袑, 杜其芳, 游泽李. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.

    • 刘耀辉, 李金平, 王刘伟. 2015. 小江断裂带地壳运动特征及地震危险性研究. 测绘工程, 24(7): 58~61.

    • 刘金瑞, 任治坤, 张会平, 李传友, 张竹琪, 郑文俊, 李雪梅, 刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报, 61(4): 1281~1297.

    • 毛泽斌. 2017. 小江断裂带南段晚第四纪活动性研究. 中国地质大学(北京)硕士学位论文.

    • 钱洪, Allen C R, 罗灼礼, 闻学泽, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.

    • 云南省地震局. 1990. 滇西北活动断裂. 北京: 地震出版社, 321.

    • 宋方敏, 汪一鹏, 沈军, 曹忠权, 申旭辉, 俞维贤. 1997. 小江断裂带中段盆地的发育阶段及其与区域构造运动的关系. 地震地质, 19(3): 211~217.

    • 宋方敏, 汪一鹏, 俞维贤, 曹忠权, 申旭辉, 沈军. 1998. 小江活动断裂带. 北京: 地震出版社.

    • 沈军, 汪一鹏, 宋方敏, 李莹甄. 1998. 相对蠕滑速率与特征地震复发间隔的估计——以小江断裂带为例. 地震地质, 20(4): 328~331.

    • 施发奇, 尤伟, 付云文. 2012. GPS资料揭示的小江断裂近期运动特征. 地震研究, 35(2): 207~213.

    • 王椿镛, 朱成男, 刘玉权. 1978. 用地形变资料测定通海地震的地震断层参数. 地球物理学报, 21(3): 191~198.

    • 王洋, 张波, 侯建军, 艾晟. 2015. 曲江断裂晚第四纪活动特征及滑动速率分析. 地震地质, 37(4): 1177~1192.

    • 闻学泽, Allen C R, 罗灼礼, 钱洪, 周华伟, 黄伟师. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.

    • 魏文薪, 江在森, 武艳强, 刘晓霞, 赵静, 李强, 董曼. 2012. 小江断裂带的运动及应变积累特征研究. 大地测量与地球动力学, 32(2): 11~15.

    • 熊探宇, 姚鑫, 张永双. 2010. 鲜水河断裂带全新世活动性研究进展综述. 地质力学学报, 16(2): 176~188.

    • 徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33(增刊): 151~162.

    • 张欣. 2019. 小江断裂中北段活动性及其致灾效应研究. 成都: 成都理工大学博士学位论文.

    • 周荣军, 何玉林, 杨涛, 何强, 黎小刚. 2001b. 鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错. 中国地震, 17(3): 253~262.