en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张博,男,1997年生。硕士研究生,资源与环境专业。E-mail:zhangbo@mail.gyig.ac.cn。

通讯作者:

刘亮,男,1985年生。副研究员,主要从事花岗岩与钨锡成矿作用研究。E-mail:liuliang@vip.gyig.ac.cn。

参考文献
Altherr R, Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397~415.
参考文献
Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.
参考文献
Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: REE Geochemistry. Amsterdam: Elsevier.
参考文献
Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.
参考文献
Chappell B W, White A. 1974. Two contrasting granite type. Pacific Geology, 8: 173~174.
参考文献
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.
参考文献
Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology, 34(8): 633~636.
参考文献
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.
参考文献
Gardiner N J, Searle M P, Morley C K, Whitehouse M P, Spencer C J, Robb L J. 2016. The closure of Palaeo-Tethys in Eastern Myanmar andnorthern Thailand: new insights from zircon U-Pb and Hf-isotope data. Gondwana Research, 39: 401~422.
参考文献
Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 13l(3): 231~282.
参考文献
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.
参考文献
Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293~305.
参考文献
Jiang Hai, Zhao Kuidong, Jiang Shaoyong, Li Wenqiang, Zaw K, Zhang Di. 2021. Late Triassic post-collisional high-K two-mica granites in Peninsular Thailand, SE Asia: petrogenesis and Sn mineralization potential. Lithos, 398-399: 106290.
参考文献
Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Dai Baozhang. 2008. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi Provinces along the Shi-Hang belt, South China. Geological Journal of China Universities, 14(4): 496~509 (in Chinese with English abstract).
参考文献
Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lvyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: an overview. Bulletin of Science and Technology, 65(33): 3730~3745 (in Chinese with English abstract).
参考文献
Khositanont S. 1991. The genesis of the Sn-W deposits at Samoeng Mine, Thailand: evidence from fluid inclusions. Master thesis of McGill Universitery.
参考文献
Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212: 397~414.
参考文献
Lehmann B. 2020. Formation of tin ore deposits: a reassessment. Lithos, 402-403: 105756.
参考文献
Lehmann B, Ishihara S, Michel H, Miller J, Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment. Economic Geology, 85(5): 1044~1058.
参考文献
Li Jinxiang, Fan Weiming, Zhang Liyun, Evans N J, Sun Yali, Ding Lin, Guan Qiuyun, Peng Touping, Cai Fulong, Sein K. 2019. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of Late Cretaceous-Eocene granites in southern Myanmar: Petrogenetic, tectonic and metallogenic implications. Ore Geology Reviews, 112: 103031.
参考文献
Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Pergamon, 60(24): 4965~4976.
参考文献
Liu Junlai, Tran My-Dung, Tang Yuan, Nguyen Quang-Luat, Tran Thanh-Hai, Wu, Wenbin, Chen Jiafu, Zhang Zhaochong, Zhao Zhidan. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Research, 22: 628~644.
参考文献
Liu Liang, Hu Ruizhong, Zhong Hong, Yang Jiehua, Tang Yanwei. 2020. Petrogenesis of multistage S-type granites from the Malay Peninsula in the Southeast Asian tin belt and their relationship to Tethyan evolution. Gondwana Research, 84: 20~37.
参考文献
Loiselle M C. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11: 468.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635~643.
参考文献
Mao Jingwen, Xie Guiqing, Yuan Shunda, Liu Peng, Meng Xuyang, Zhou Zhenhua, Zheng Wei. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34(9): 2501~2517 (in Chinese with English abstract).
参考文献
McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.
参考文献
Metcalfe I. 2000. The Bentong-Raub suture zone. Journal of Asian Earth Sciences, 18(6): 691~712.
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4): 215~224.
参考文献
Miller C F, Mcdowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529.
参考文献
Mlynarczyk M, Williams-Jones A. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters, 240: 656~667.
参考文献
Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168(1): 55~75.
参考文献
Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic arc magmas contain 4 wt% water on average? Earth and Planetary Science Letters, 364: 168~179.
参考文献
Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granitesby inductively coupled plasma mass spectrometry. Talanta, 51(3): 507~513.
参考文献
Qian Xin, Feng Qinglai, Wang Yuejun, Zhao Tianyu, Udchachon Mongkol, Wang Yukun. 2017. Late Triassic post-collisional granites related to Paleotethyan evolution in SE Thailand: geochronological and geochemical constraints. Lithos, 286-287: 440~453.
参考文献
Ridd M F, Barber A J, Crow M J. 2011. The Geology of Thailand. Gsw Books.
参考文献
Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60~95.
参考文献
Sato K, Vrublevsky A A, Rodionov S M, Romanovsky N P, Nedachi M. 2010. Mid-Cretaceous episodic magmatism and tin mineralization in Khingan‐Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52(1): 1~14.
参考文献
Schwartz M O, Rajah S S, Askury A K, Putthapiban P, Djaswadi S. 1995. The Southeast Asian tin belt. 38(2-4): 0~293.
参考文献
Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.
参考文献
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. lithos, 45(1-4): 29~44.
参考文献
Tang Yuan, Liu Junlai, My-Dung Tran, Song Zhijie, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan, Chen Wen. 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China. International Journal of Earth Sciences, 102(3): 605~626.
参考文献
Veeravinantanakul A, Takahashi R, Agangi A, Ohba T, Watanabe Y, Elburg M A, Ueckermann H, Kanjanapayont P, Charusiri P. 2021. Zircon Hf-isotope constraints on the formation of metallic mineral deposits in Thailand. Resource Geology, 71(4): 1~33.
参考文献
Wang Dongsheng, Liu Junlai, Tran My-Dung, Ngyuen Quang Luat, Guo Qiang, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan. 2011. Geochronology, geochemistry and tectonic significance of granites in the Tinh Túc W-Sn ore deposits, Northern Vietnam. Acta Petrologica Sinica, 27(9): 2795~2808 (in Chinese with English abstract).
参考文献
Wang Rucheng, Xie Lei, Lu Jianjun, Zhu Jinchu, Chen Jun. 2017. Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions, South China: Distinctive mineralogical patterns. Science China Earth Science, 47(11): 1257~1268 (in Chinese with English abstract).
参考文献
Wang Tingyi, Li Gongjian, Wang Qingfei, Santosh M, Deng Jun. 2019. Petrogenesis and metallogenic implications of Late Cretaceous I- and S-type granites in Dachang-Kunlunguan ore belt, southwestern South China Block. Ore Geology Reviews, 113: 103079.
参考文献
Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.
参考文献
White A, Chappell B W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2): 7~22.
参考文献
Yang Jiehua, Zhou Meifu, Hu Ruizhong, Zhong Hong, Williams-Jones A E, Liu Liang, Zhang Xingchun, Fu Yazhou, Mao Wei. 2020. Granite-related tin metallogenic events and key controlling factors in peninsular malaysia, southeast asia: New insights from cassiterite U-Pb dating and zircon geochemistry. Economic Geology, 115(3): 581~601.
参考文献
Yuan Shunda, Williams-Jones A E, Mao Jingwen, Zhao Panlao, Yan Chen, Zhang Dongliang. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193~1208.
参考文献
Yuan Shunda, Williams-Jones A E, Romer R L, Zhao Panlao, Mao Jingwen. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: insights from the Nanling Region, China. Economic Geology, 114(5): 1005~1012.
参考文献
Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607~618 (in Chinese with English abstract).
参考文献
Zhao Panlao, Chu Xu, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.
参考文献
Zhao Panlao, Yuan Shunda, Williams-Jones Anthony E, Romer Rolf L, Yan Chen, Song Shiwei, Mao Jingwen. 2022b. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith: evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 117 (3): 667~682.
参考文献
Zhao Panlao, Zajacz Zoltán, Tsay Alexandra, Yuan Shunda. 2022c. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331~346.
参考文献
Zhao Zifu, Gao Peng, Zheng Yongfei. 2015. The source of Mesozoic granitoids in South China: integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology, 395: 11~26.
参考文献
Zhu Jingjing, Richards J P, Rees C, Creaser R S. Andrew D, Andrew L, Joseph A. Petrus L J. 2018. Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, northern British Columbia, Canada. Economic Geology, 113(5): 1047~1075.
参考文献
Zhu Rixiang, Zhao Pan, Zhao Liang. 2021. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 52(1): 1~25 (in Chinese with English abstract).
参考文献
蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496~509.
参考文献
蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律, 地质特征与成矿机制研究进展. 科学通报, 65(33): 16.
参考文献
毛景文, 谢桂青, 袁顺达, 刘鹏, 孟旭阳, 周振华, 郑伟. 2018. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望. 岩石学报, 34(9): 2501~2517.
参考文献
王东升, 刘俊来, Tran M D, Ngyuen Q L, 郭强, 吴文彬, 张招崇, 赵志丹. 2011. 越南东北部静足(Tinh Túc)钨锡矿区花岗岩年代学、地球化学与区域构造意义. 岩石学报, 27(9): 2795~2808.
参考文献
王汝成, 谢磊, 陆建军, 朱金初, 陈骏. 2017. 南岭及邻区中生代含锡花岗岩的多样性: 显著的矿物特征差异. 中国科学: 地球科学, 47(11): 1257~1268.
参考文献
袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39(4): 607~618.
参考文献
朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.
目录contents

    摘要

    本文围绕泰国沙蒙矿床锡成矿相关的中粗粒黑云母花岗岩及远离矿体的细粒角闪石黑云母花岗岩开展了全岩地球化学、锆石U-Pb年代学及原位Hf同位素研究。锆石U-Pb年龄显示两类花岗岩分别形成于210.9±1.1 Ma和206.5±1.0 Ma。二者均具有富碱(全碱含量为5.81%~8.22%)、弱过铝—强过铝(A/CNK=1.01~1.14)、相对富集Rb、Th、Pb等元素、低的TFeO/MgO(0.75~3.54)和10000Ga/Al(2.21~2.66)比值等特征。中粗粒黑云母花岗岩具有原生白云母,高的K2O/Na2O(1.56~2.50)和Rb/Sr(2.26~2.60)比值,且其锆石具有较高的P含量,属于典型的S型花岗岩。而细粒角闪石黑云母花岗岩普遍发育角闪石,具有低的K2O/Na2O(0.45~1.11)和Rb/Sr(0.54~1.18)比值,且其锆石具有较低的P含量,应属于典型的I型花岗岩。两种花岗岩具有截然不同的Hf同位素组成,其中中粗粒黑云母花岗岩具有明显低的εHf(t)值(20.0~8.9),对应的二阶段模式年龄tDM2值为2.5~1.8 Ga (平均值为2.0 Ga),而细粒角闪石黑云母花岗岩具有偏高的εHf(t)值(4.6~5.5),二阶段模式年龄tDM2值为1.5~0.9 Ga(平均值为1.1 Ga)。它们均形成于古特提斯洋闭合的碰撞后挤压向伸展转换构造背景下,具有相近的岩浆温度和中等演化程度(DI=79.6~88.0、SiO2=67.57%~72.97%及锆石Zr/Hf=29.8~64.9)。中粗粒黑云母花岗岩可能起源于古元古代的变质杂砂岩的部分熔融且具有较低的岩浆氧逸度(ΔFMQ平均为4.93),而细粒角闪石黑云母花岗岩源区主要为新元古代新生地壳,并具有部分古老地壳变沉积岩源区物质的加入,具较前者相对偏高的岩浆氧逸度 (ΔFMQ平均为2.76)。源区性质和岩浆氧逸度条件可能是制约沙蒙矿区花岗岩锡成矿最重要的控制因素。

    Abstract

    Our study involved zircon U-Pb dating and in-situ Hf isotope, and whole-rock geochemical analyses for the medium-coarse-grained biotite granites associated with tin mineralization and the fine-grained hornblende biotite granites far away from the ore bodies from the Samoeng deposit, in Thailand. Zircon U-Pb ages show that the two granites were formed at 210.9±1.1 Ma and 206.5±1.0 Ma, respectively. Both granites are characteristic of rich in alkali with total alkali content of 5.81%~8.22%, relatively rich in Rb, Th, and Pb, weakly to strongly peraluminous (A/CNK=1.01~1.14) and low in TFeO/MgO (0.75~3.54) and 10000Al/Ga (2.21~2.66) values. The medium-coarse-grained biotite granites have primary muscovite and relatively high K2O/Na2O (1.56~2.50) and Rb/Sr (2.26~2.60) ratios, with high P content in their zircons, belonging to typical S-type granites. While the fine-grained amphibole biotite granites are wide development of amphibole, and have relatively low K2O/Na2O (0.45~1.11) and Rb/Sr (0.54~1.18) ratios, with low content of P in their zircons, which can be classified as typical I-type granites. The two granites have quite different Hf isotopic compositions. The medium-coarse-grained biotite granites have relatively low εHf(t) values (20.0 to 8.9), with the corresponding two-stage Hf model age of 1.8 to 2.5 Ga (average values of 2.0 Ga). In contrast, the fine hornblende biotites granite have relatively high εHf (t) values (4.6 to 5.5), with the two-stage Hf model age of 0.9 to 1.5 Ga (average values of 1.1 Ga). Both two granites were formed in a post-collisional tectonic transition (from compression to extension) related to the closed Paleo-Tethys Ocean, and have similar magmatic temperatures and moderate fractionated (DI=79.6~88.0, SiO2=67.57%~72.97%, and zircon Zr/Hf values=29.8~64.9). The mid-coarse-grained biotite granites were suggested to be derived from Paleoproterozoic metagreywackes with low magmatic oxygen fugacities (average ΔFMQ 4.93), whereas the fine-grained amphibolite biotite granites mainly originated from juvenile meta-igneous rocks with the input of ancient meta-sedimentary component, and have relatively high magmatic oxygen fugacities (average ΔFMQ 2.76). We think the nature of the source region and magmatic oxygen fugacity condition could be the most important controlling factors for tin mineralization in the Samoeng deposit.

  • 锡是一种稀有金属和战略性关键金属,具有质软、延展性好,熔点低,无毒和不活泼等优良化学性质,被广泛应用于现代工业、国防科技和人类生活(蒋少涌等,2020)。锡矿在全球分布极不均一,主要集中于东南亚、华南、中安第斯(玻利维亚及秘鲁南部)和英国康沃尔等地区。全球锡矿床类型丰富多样,但95%以上的锡矿床均直接或间接与花岗岩密切相关(袁顺达等,2020)。从与锡成矿相关的花岗岩类型来看,中安第斯、欧洲中西部和马来半岛等地锡成矿花岗岩多为S型花岗岩(Romer and Kroner,2016; Liu Liang et al.,2020; Yang Jiehua et al.,2020); 我国湘南和桂东北的含锡花岗岩多为A型花岗岩,地幔物质参与成岩(蒋少涌等,2008; 王汝成等,2017); 在世界其他地区也可见锡成矿相关的I型花岗岩,如缅甸南部(Li Jinxiang et al.,2019); 因此不同类型的花岗岩如何控制区域锡成矿作用并最终造成锡资源的不均匀分布尚有待研究。目前认为花岗岩类型、源区性质、熔融条件、岩浆分异演化程度及物理化学条件等均是花岗岩制约锡成矿的主要控制因素(Yuan Shunda et al.,2019; Lehmann,2020; Zhao Panlao et al.,2022a),但是具体什么因素起决定性作用却存在争议。

  • 东南亚巨型锡矿带是世界上锡资源最为丰富的锡成矿带,北起我国滇西,经缅甸、泰国、马来西亚,南抵印度尼西亚,全长2800 km,宽400 km,锡产量曾占全球的一半以上(Schwartz et al.,1995)。泰国地处东南亚锡矿带的枢纽位置,区内锡矿床与花岗岩侵入体有密切的空间关系(Ridd et al.,2011),已有研究显示它们多与特提斯演化密切相关(朱日祥等,2021)。但围绕泰国境内锡矿及相关花岗岩的研究相对偏少(Jiang Hai et al.,2021),缺乏对这类花岗岩成因和构造背景的整体限定,进而制约对花岗岩与锡成矿关系及其与特提斯岩演化的联系的理解。沙蒙锡矿是泰国北部大型的原生锡钨矿床,前人针对该矿床的研究主要为基础地质和流体包裹体岩相学等研究(Khositanont,1991),缺乏系统的岩石学及地球化学的研究工作。本文针对沙蒙锡矿床中的典型花岗岩开展了系统的锆石原位U-Pb年代学和Hf同位素及全岩地球化学研究,旨在更好地约束矿区花岗岩的时代、成因及其所处构造背景,并进一步揭示有利于锡成矿作用的可能控制因素。

  • 1 岩体地质和岩相学特征

  • 沙蒙矿床位于东南亚锡矿带中带(主花岗岩省)的泰国北部地区,距清迈市西南约70 km处(图1a)。矿区发育三种主要的锡成矿类型,包括锡石-石英脉型,伟晶岩型和细晶岩型(Khositanont,1991)。沙蒙矿区围岩主要有寒武纪和石炭纪岩石,寒武系主要为石英云母片岩、钙硅酸盐岩和大理石,石炭系主要为长石质砂岩、粉砂岩和页岩,并可见奥陶系灰岩、大理岩和志留系—泥盆系片状砂岩、粉砂岩、页岩,局部变质为石英岩、片岩。

  • 沙蒙矿区花岗岩可分为G-1单元(中粗粒黑云母花岗岩)、LG(细粒花岗岩)、PG(伟晶岩)和G-2单元(细粒角闪石黑云母花岗岩)(图1b)。沙蒙锡石-石英脉型Sn-W矿体主要位于中粗粒黑云母花岗岩石内或/和大理岩接触带附近,而细粒角闪石黑云母花岗岩远离矿体200 m以上。本次选取G-1单元(中粗粒黑云母花岗岩)和G-2单元(细粒角闪石黑云母花岗岩)开展对比研究,两种花岗岩具有明显不同的岩相学特征(图2),中粗粒黑云母花岗岩主要矿物为钾长石(30%~35%)、斜长石(30%~35%)、石英(25%~35%)、黑云母(5%~15%)和白云母(2%~3%),呈浅灰色,细粒、自形—他形粒状结构,副矿物主要有锆石、磷灰石、电气石和独居石等。其中黑云母穿插于白云母,指示白云母先于黑云母形成(图2a、b); 细粒角闪石黑云母花岗岩主要矿物为斜长石(30%~40%)、石英(25%~35%)、钾长石(15%~25%)、黑云母(5%~10%)和角闪石(5%~7%),细粒、自形—他形粒状结构,副矿物主要有锆石、榍石、磷灰石、电气石和磁铁矿等。其中角闪石和黑云母被石英包裹,指示黑云母和角闪石在早期形成(图2c、d)。

  • 图1 泰国典型锡矿床及花岗岩分布简图(a)(据泰国矿产资源局,泰国1∶100 万地质图修改)和泰国沙蒙锡矿床地质简图(b)(据Khositanont,1991修改)

  • Fig.1 Schematic maps of typical tin deposits and granite distribution in Thailand (a) (modified after the Geological map of Thailand at the scale of 1∶1000000 from Department of Mineral Resources, Thailand) and Samoeng Sn deposit in Thailand (b) (modified after Khositanont, 1991)

  • 2 测试方法

  • 本次研究的花岗岩样品均较为新鲜,涉及的实验均在中国科学院地球化学研究所矿床国家重点实验室完成。在严格避免污染的条件下,对拟测定的全岩样品进行破碎、淘洗和磁选以及重液分离,分离出锆石精样,然后在双目镜下观察所分离锆石的特征(如颜色、透明度、晶型等),在此基础上,挑选出表面平整光洁,具不同长宽比例、不同柱锥面特征和颜色的锆石颗粒。将挑选的锆石颗粒用环氧树脂胶结,待固结后细磨至锆石颗粒核部出露,抛光成样品靶以待测试。测定前先拍摄透反射照片,并采用装有阴极荧光探头的扫描电镜对抛光后的锆石样品进行阴极发光(CL)照相,以了解被测锆石的内部结构,并作为选取分析点位的依据。CL图像拍摄仪器为JSM-7800F型热场发射扫描电子显微镜加载MonoCL4型阴极发光谱仪采集,电压10 kV,电流10 nA。

  • 选取内部结构完整和环带清晰的颗粒进行锆石原位U-Pb定年和Hf同位素测试。锆石U-Pb定年所用仪器为Agilent 7900 ICP-MS及与之配套的GeoasPro 193nm激光剥蚀系统。所选测试点大小32 μm,频率5 Hz,能量5 J/cm2,以He为载气,进入ICP-MS进行分析。数据处理采用ICPMSDataCal11.0程序,绝大多数点未进行普通铅校正,锆石年龄谐和图通过Isoplot 4.0软件绘制获得,锆石微量中粗粒黑云母花岗岩用29Si进行校正,细粒角闪石黑云母花岗岩用91Zr进行校正。锆石Hf同位素分析所用仪器型号为Nu Plasma III MC-ICP-MS与RESOlution S-155激光系统连用,束斑大小为60 μm,频率为6 Hz,能量密度为6 J/cm2,用锆石Penglai和91500作外标,本次测试期间对应标样的176Hf/177Hf比值分别为0.282703±0.000018(n=9,2σ)、0.282903±0.000011(n= 8,2σ)。

  • 图2 泰国沙蒙锡矿床中粗粒黑云母花岗岩显微照片(a和b)和细粒角闪石黑云母花岗岩显微照片(c和d)(照片a和c在单偏光下拍摄,b和d在正交偏光下拍摄)

  • Fig.2 Micrographs of medium-coarse-grained biotite granite (a and b) and fine-grained hornblende biotite granite (c and d) from the Samoeng Sn deposit in Thailand (photos a and c are taken in plane-polarized light, b and d are taken under crossed-nicols)

  • Q—石英; Bi—黑云母; Hbl—角闪石; Mus—白云母; Pl—斜长石; Kf—钾长石

  • Q—quartz; Bi—biotite; Hbl—hornblende; Mus—muscovite; Pl—plagioclase; Kf—K-feldspar

  • 全岩地球化学分析先经岩相学观察与鉴定,以选出新鲜均匀具代表性的样品,然后对样品进行破碎、研磨至200目以上。主量元素分析的样品处理采用熔片法,熔片稀释比是1∶20(0.4 g样品+8 g助熔剂),助熔剂使用硼酸锂和偏硼酸锂混合熔剂(66∶34),熔样机为澳大利亚XRFuse6型电加热自动熔样炉,主量元素分析使用型号为ARL Perform'X 4200的X射线荧光光谱仪(XRF)。测试条件为:以电压40 kV,电流60 mA,分析精度优于5%。

  • 微量元素(包括稀土元素)使用电感耦合等离子体质谱仪(ICP-MS)进行分析,型号为PlasmaQuant MS Elite型等离子体质谱仪测定,首先准确称取50 mg样品于聚四氟乙烯坩埚中,加入1 mL HF和1 mL HNO3,其次将坩埚放入钢套中密封,置于烘箱于185℃加热32 h,消解样品,然后冷却后取出坩埚,置于低温电热板上蒸干,加入1 mL的HNO3继续蒸干完全,最后于坩埚中准确加入200 mg的Rh(铑)内标溶液(配好的内标溶液1 mL)、2 mL的HNO3、3 mL去离子水。重新置于钢套中,于140℃加热5 h。冷却后取出坩埚,摇匀。取0.4 mL溶液至15 mL离心管中,定容至10 mL,进行ICP-MS测定,样品测定值和推荐值的相对误差小于10%,详细的分析方法见Qi Liang et al.(2000)

  • 3 分析结果

  • 3.1 锆石U-Pb定年及微量元素组成

  • 本次研究选取中粗粒黑云母花岗岩(19SAM-17)和细粒角闪石黑云母花岗岩(19SAM-7)两件样品进行锆石U-Pb定年及微量元素分析,相关分析结果见表1和附表1。统计结果表明,对年龄较小(<1.0 Ga)的锆石使用206Pb/238U年龄更加准确,对年龄较大的锆石则一般采用207Pb/206Pb年龄(Griffin et al.,2004)。因此,本文对较年轻的锆石采用206Pb/238U年龄,对于较老的锆石采用207Pb/206Pb年龄。所测锆石颗粒多为无色透明,自形,长度为50~150 μm,CL图像显示大多数锆石颗粒有明显的振荡环带(图3),锆石稀土元素配分曲线一致显示重稀土元素富集及明显的Ce正异常和Eu负异常,均表明其为岩浆结晶锆石。两件样品本次皆获得29个有效测试点数据。在206Pb/238U-207Pb/235U谐和图中,样品点均落在谐和线上或靠近谐和线(图4)。中粗粒黑云母花岗岩的 206Pb/238U加权平均年龄为210.9±1.1 Ma(MSWD=0.1,2σ)(图4a),可见一颗继承锆石(207Pb/206Pb年龄为2373 Ma); 细粒角闪石黑云母花岗岩206Pb/238U加权平均年龄为206.5±1.0 Ma(MSWD=0.1,2σ),存在206Pb/238U年龄为677 Ma和506 Ma的两颗继承锆石。中粗粒黑云母花岗岩锆石的Th/U比值平均值为0.4,P的含量为371×10-6~2130×10-6,REE+Y的含量为1562×10-6~9510×10-6。细粒角闪石黑云母花岗岩Th/U比值平均值为0.5,P的含量为261×10-6~934×10-6,REE+Y的含量为1069×10-6~9523×10-6(附表1)。

  • 3.2 全岩主量、微量和稀土元素特征

  • 沙蒙地区G-1单元和G-2单元全岩的主量元素、微量和稀土元素分析结果分别见表2、表3。中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩SiO2含量为67.57%~72.97%,全碱含量为5.81%~8.22%,表现出高硅、富碱特征,并具有相似的TFeO/MgO比值(0.75~3.54)和Al2O3+TFeO+MgO+TiO2含量(16.72%~20.54%)。但中粗粒黑云母花岗岩具有较高的K2O/Na2O比值(1.56~2.50),较低的Al2O3/(MgO+TFeO+TiO2)比值(2.82~4.46)和CaO/(MgO+TFeO)比值(0.47~0.51)。细粒角闪石黑云母花岗岩具有较低的K2O/Na2O比值(0.45~1.11),较高的Al2O3/(MgO+TFeO+TiO2)比值(3.73~6.15)和CaO/(MgO+TFeO)比值(0.72~1.08)(表2)。在TAS图中,两类花岗岩样品基本位于亚碱性花岗岩区域,极少量样品位于花岗闪长岩(19SAM-4L)和正长岩(19SAM-17)区域内(图5a)。全岩铝饱和度指数A/CNK在1.01~1.14范围内,在A/CNK-A/NK图解中(图5b),样品落入弱过铝质和强过铝质花岗岩区域中。中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩具有相似较低的Zr+Nb+Ce+Y含量(119×10-6~395×10-6)及10000Ga/Al(2.21~2.66)、Zr/Hf(30.5~39.8)和Rb/Ba比值(0.24~0.56),但前者具有较高的Rb/Sr比值(2.26~2.60),后者具有较低的Rb/Sr比值(0.54~1.18)(表3)。两种花岗岩一致表现为右倾型的配分形式(图6a),轻稀土元素相对富集[LREE/HREE =9.78~23.3,(La/Yb)N=17.5~41.0],稀土元素总量变化范围较大(ΣREE=114×10-6~295×10-6)。中粗粒黑云母花岗岩出现中等Eu负异常(δEu=0.34~0.51),而细粒角闪石花岗岩中大部分样品Eu负异常不明显,只有19SAM-4L出现中等Eu负异常。微量元素原始地幔标准化蛛网图显示(图6b),中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩均相对富集Rb、Th、Pb,相对亏损Ba、Sr、Ti。值得注意的是,中粗粒黑云母花岗岩微量元素蛛网图配分形式接近于中地壳,而细粒角闪石黑云母花岗岩更接近于下地壳,暗示两者可能来源于不同的源区(图6b)。

  • 表1 沙蒙花岗岩锆石LA-ICP-MS U-Pb定年结果

  • Table1 Zircon LA-ICP-MS U-Pb dating results of the Samoeng granite

  • 图3 沙蒙花岗岩代表性锆石的阴极发光图像及分析点位

  • Fig.3 Cathodoluminescence (CL) images and analysis plots of representative zircons in the Samoeng granite

  • 红圈为U-Pb年龄分析点,数据为206Pb/238U表面年龄,黄圈为Hf同位素分析点,数据为εHft)值; 圆圈直径代表分析测试直径

  • The morphology of zircon grains, their 206Pb/238U ages, and εHf (t) values are shown. Red circles indicate the U-Pb dating locations, and yellow circles indicate the positions for Hf isotope analysis, with their diameters approximating the spot sizes

  • 图4 沙蒙矿床中粗粒黑云母花岗岩(a)和细粒角闪石黑云母花岗岩(b)锆石U-Pb谐和图

  • Fig.4 U-Pb concordia diagrams of zircons for the medium-coarse-grained biotite granite (a) and fine-grained hornblende biotite granite (b) from the Samoeng deposit

  • 图5 泰国沙蒙花岗岩主量关系图

  • Fig.5 Major element variation diagrams for the Samoeng granite in Thailand

  • (a)底图据Middlemost(1994),其中碱性与亚碱性系列分界线据Irvine and Baragar(1971);(b)底图据Maniar and Piccoli(1989)

  • (a) is after Middlemost (1994) , and the boundary between the alkaline and subalkaline series is after Irvine and Baragar (1971) ; (b) is after Maniar and Piccoli (1989)

  • 表2 泰国沙蒙花岗岩样品主量元素含量(%)

  • Table2 Major element contents (%) of the Samoeng granite samples in Thailand

  • 注:TFe2O3为全铁,A/CNK=Al2O3/(Na2O+K2O+CaO); DI为分异指数; TZr(℃)为锆石饱和温度。

  • 表3 泰国沙蒙花岗岩样品微量和稀土元素含量(×10-6

  • Table3 The trace element contents (×10-6) of the Samoeng granite in Thailand

  • 续表3

  • 3.3 锆石Hf同位素组成

  • 沙蒙矿区花岗岩的锆石Hf同位素数据见表4。由图7a、b可以看出,两种花岗岩具有截然不同的Hf同位素特征,且变化范围均较大,显示出多峰的特征。其中中粗粒黑云母花岗岩具有富集的Hf同位素组成,εHft)的范围为20.0~8.9,二阶段模式年龄tDM2值在2.5~1.8 Ga之间,平均值为2.0 Ga; 而细粒角闪石黑云母花岗岩Hf同位素组成相对亏损,εHft)的范围为4.6~5.5,并主要集中在0.5~4,二阶段模式年龄tDM2值在1.5~0.9 Ga,平均值为1.1 Ga。

  • 图6 沙蒙花岗岩稀土元素球粒陨石标准化配分曲线(a,标准化值据Boynton,1984)及微量元素原始地幔标准化蛛网图(b,标准化值据McDonough and Sun,1995

  • Fig.6 Chondrited-normalized REE distribution patterns (a, the normalized values after Boynton, 1984) and primitive mantle-normalized trace elements spidergrams (b, the normalized values after McDonough and Sun, 1995) of the Samoeng granite

  • 图7 泰国沙蒙花岗岩锆石εHft)-t关系图(a)和沙蒙花岗岩锆石εHft)频率分布直方图(b)

  • Fig.7 Zircon εHf (t) -t diagram (a) and zircon εHf (t) frequency distribution diagram (b) of the Samoeng granite in Thailand

  • 泰国东南部典型I型和S型花岗岩数据引自Qian et al.(2017)

  • Data for the representative I-and S-type granites in SE Thailand are from Qian et al. (2017)

  • 4 讨论

  • 4.1 岩浆的物理化学条件

  • 4.1.1 氧逸度

  • 本文利用Smythe and Brenan(2016)的锆石氧逸度计估算岩浆氧逸度。其中温度由锆石Ti温度计获得,Ce3+/Ce4+比值采用晶格应变模型计算(Ballard et al.,2002),由于岩石中可见新鲜云母和角闪石,岩浆水含量采用弧岩浆的平均值(4%; Plank et al.,2013)。为了排除锆石中矿物包裹体的影响,我们将锆石微量元素异常的数据进行了筛除,其中Ca>200×10-6,La>0.3×10-6和Ti>20×10-6数据可能暗示存在磷灰石和榍石矿物包裹体的干扰(Zhu Jingjing et al.,2018)。计算结果表明,中粗粒黑云母花岗岩氧逸度ΔFMQ范围为7.43~3.17(平均值为4.93),细粒角闪石黑云母氧逸度ΔFMQ范围为4.14~2.00(平均值为2.76),中粗粒黑云母花岗岩岩浆总体上较细粒角闪石黑云母花岗岩具有更为还原的氧逸度条件(图8a)。

  • 表4 泰国沙蒙花岗岩锆石Hf同位素组成

  • Table4 Zircon Hf isotopic composition of the Samoeng granite in Thailand

  • 4.1.2 温度

  • 目前常用的地质温度计有全岩Zr饱和温度计(Watson and Harrison,1983)和锆石Ti温度计(Ferry and Watson,2007)。全岩Zr饱和温度计代表着岩浆初始就位时其最低温度估算值,低于岩浆在源区的形成温度(Miller et al.,2003)。运用该方法获得中粗粒黑云母花岗岩温度为747~761℃(平均温度为755℃),细粒角闪石黑云母花岗岩温度为695~818℃(平均温度为735℃)。锆石Ti温度计可能反映锆石在结晶分异过程中温度的持续变化(Coogan and Hinton,2006),假定TiO2和SiO2的活性分别为0.7和1.0,计算获得中粗粒黑云母花岗岩温度为689~847℃,细粒角闪石花岗岩温度为666~767℃(图8b,附表1),尽管该方法计算的温度变化范围较大,记录着岩浆不同阶段锆石的结晶温度,但总体上中粗粒黑云母花岗岩的岩浆温度具有更高的峰值及最大值。上述两种计算方法综合表明中粗粒黑云母花岗岩具有较细粒角闪石黑云母花岗岩略微偏高的岩浆初始温度。

  • 4.2 花岗岩成因

  • 4.2.1 花岗岩成因类型归属

  • 根据花岗岩物质来源可将花岗岩类分为I型和S型(White and Chappell,1977),而在非造山环境伸展背景下具碱性、无水特征的花岗岩被定义为A型(Loiselle,1979)。本文中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩总体具有偏低的Zr+Nb+Ce+Y含量(119×10-6~395×10-6)、10000Ga/Al(2.21~2.66)和TFeO/MgO比值(0.75~3.54),且均明显低于A型花岗岩的平均值(Whalen et al.,1987)。在(Na2O+K2O)-10000Ga/Al图解中(图9a),两种花岗岩代表性样品均位于I型和S型花岗岩范围。从矿物组合特征来看(图2),原生白云母和角闪石分别被认为是S型和I型花岗岩的特征矿物(Chappell and White,1974)。中粗粒黑云母花岗岩存在新鲜原生白云母(图2a),并未发现角闪石; 而细粒角闪石黑云母花岗岩中普遍发育新鲜角闪石,未见原生白云母(图2b)。

  • 两种花岗岩均具有偏高的A/CNK值(图5b),属于弱过铝质—强过铝质花岗岩,但中粗粒黑云母花岗岩均有明显偏高的K2O/Na2O(1.56~2.50),显示S型花岗岩的特征(Zhao Zifu et al.,2015),而细粒角闪石花岗岩均有明显偏低的K2O/Na2O(0.45~1.11),显示I型花岗岩特征。在Na2O-K2O分类判别图解中(图9b),中粗粒黑云母花岗岩样品均投影于典型S型花岗岩范围,而细粒角闪石黑云母花岗岩均落入到了I型花岗岩范围之中。在Rb/Ba-Rb/Sr判别图上(图9c),中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩分别与澳大利亚Lachlan褶皱带典型S型和I型相对应(Wang Tingyi et al.,2019)。此外,Burnham and Berry(2017)利用锆石(REE+Y)-P图解(图9d)将澳大利亚Lachlan褶皱带典型 I型和S型花岗岩进行划分,本文中粗粒黑云母花岗岩与澳大利亚S型花岗岩变化趋势相似,细粒角闪石黑云母花岗岩与澳大利亚I型花岗岩变化趋势相似。综上所述,可以确定判断沙蒙矿区中粗粒黑云母花岗岩属于S型花岗岩,细粒角闪石黑云母为I型花岗岩。

  • 图8 泰国沙蒙花岗岩温度与氧逸度关系图(a)和温度频数分布直方图(b)

  • Fig.8 The relationship between temperature and oxygen fugacity (a) and the histogram of temperature frequency distribution (b) of the Samoeng granite in Thailand

  • 氧缓冲剂: MH—磁铁矿-赤铁矿; NNO—镍-氧化镍; FMQ—铁橄榄石-磁铁矿-石英; WM—方铁矿-磁铁矿; IW—铁-方铁矿; QIF—石英-铁-铁橄榄石

  • Oxygen buffers: MH—magnetite hematite; NNO—nickel nickel oxide; FMQ—fayalite magnetite quartz; WM—wüstite magnetite; IW—iron wüstite; QIF—quartz iron fayalite

  • 图9 泰国沙蒙花岗岩Na2O+K2O-10000Ga/Al关系图(a)(底图据Whalen,1987)、 Na2O-K2O图解(b)(底图据Chappell and White,2001)、 Rb/Ba-Rb/Sr图(c)(底图据Sylvester,1998)及(REE+Y)-P图(d)(底图据Burnham and Berry,2017

  • Fig.9 Na2O+K2O versus 10000Ga/Al diagram (a) (after Whalen, 1987) , Na2O versus K2O diagram (b) (after Chappell and White, 2001) , Rb/Ba versus Rb/Sr diagram (c) (after Sylvester, 1998) and (REE+Y) versus P diagram (d) (after Burnham and Berry, 2017) of the Samoeng granite in Thailand

  • 4.2.2 花岗岩源区判别

  • 锆石Hf同位素数据显示,中粗粒黑云母花岗岩锆石具有相对富集的Hf同位素组成,εHft)的范围在20.0~8.9之间; 细粒角闪石黑云母花岗岩具有相对亏损的锆石同位素组成,εHft)的范围为4.6~5.5。总体上两类花岗岩的锆石Hf同位素变化范围均较大,显示多峰的特征(图7b),暗示两类花岗岩可能均具有多种来源的岩浆源区(Veeravinantanakul et al.,2021)。在εHft)-t图中(图7a),中粗粒黑云母花岗岩与泰国东南部典型S型花岗岩具有相似的Hf同位素组成,对应的二阶段Hf模式年龄(tDM2)约为2.6~1.2 Ga,该岩性中见约2.4 Ga的继承锆石,而泰国东南部S型花岗岩(tDM2=2.6~1.5 Ga)被认为是古元古代地壳物质重熔的产物(Qian Xin et al.,2017),因此中粗粒黑云母花岗岩可能主要为古元古代的地壳物质部分熔融形成。而细粒角闪石黑云母花岗岩样品接近球粒陨石演化线,介于泰国东南部典型I型花岗岩和S型花岗岩之间,对应的tDM2为1.5~0.9 Ga,并可见0.7~0.5 Ga的继承锆石。已有研究显示泰国东南部I型花岗岩(tDM2=0.7~0.4 Ga)主要形成于新生玄武质地壳物质的部分熔融,并有部分变沉积岩物质参与成岩(Qian Xin et al.,2017)。因此,细粒角闪石黑云母花岗岩可能是新生地壳和古老地壳两种不同源区部分熔融后的岩浆混合产物。

  • 在Al2O3/(MgO+TFeO+TiO2)-(Al2O3+TFeO+MgO+TiO2)图解中(图10a),两种花岗岩代表性样品均落入杂砂岩质熔体和角闪岩质熔体重叠区域,也显示出其源岩的多源性。在K2O摩尔数/Na2O摩尔数-CaO摩尔数/(MgO摩尔数+TFeO摩尔数)图解中(图10b),中粗粒黑云母花岗岩源区主体位于变质杂砂岩区域,细粒角闪石黑云母花岗岩源区位于变质安山岩范围,这表明前者源区以变质杂砂岩为主,而后者源区以变火成岩为主。结合两种花岗岩的成因类型归属,可以限定沙蒙矿区中粗粒黑云母花岗岩源区主要为古元古代的变质杂砂岩,而细粒角闪石黑云母花岗岩岩浆主要起源于新元古代新生地壳,并具有古老地壳变沉积岩源区物质的加入。变沉积源岩均加入两类花岗岩的成岩过程,由此导致它们都具有弱过铝—强过铝质特征,而参与的比例不同则是控制两类不同类型花岗岩形成的可能原因。

  • 4.3 成岩成矿时代及构造背景

  • 沙蒙矿区中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩形成年龄分别为210.9±1.1 Ma和 206.5±1.0 Ma,与泰国Sukhothai褶皱带花岗岩锆石U-Pb年龄237.1±2.6~201.7±0.6 Ma相近。根据中粗粒黑云母花岗岩中锡石-石英脉获得的锡石原位U-Pb定年数据约为214 Ma(未刊数据)。从区域构造演化来看,一般认为古特提斯洋在早二叠世向印支地块发生俯冲(Metcalfe,2000),并在230 Ma左右闭合(王东升等,2011; Liu Junlai et al.,2012; Tang Yuan et al.,2013; Gardiner et al.,2016),泰国Sukhothai褶皱带Doi Ngom锆石U-Pb年龄显示古特提斯洋在泰国地区的闭合时间约为237 Ma,随后Sibumasu地块与印支地块发生碰撞,分别在约237~230 Ma和230~200 Ma发生同碰撞和碰撞后造山事件。泰国Sukhothai 褶皱带南部Trok Nong角闪石二长花岗岩(锆石U-Pb年龄202 Ma)被认为形成于后碰撞的构造环境中(Veeravinantanakul et al.,2021)。新近锆石微量元素对构造判别的研究显示,与伸展有关的岩浆中形成的锆石Th/U>1.0,而挤压环境形成的岩浆中锆石Th/U<1.0(Kirkland et al.,2015)。两种花岗岩锆石Th/U比值范围平均值约为0.4~0.5,但同时可见部分锆石大于1.0(附表1),综合上述资料,初步判断沙蒙地区中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩可能形成于古特提斯洋闭合的碰撞后造山挤压向伸展转换的构造背景。

  • 4.4 对锡成矿作用的指示

  • 锡成矿富集受到花岗岩的岩浆结晶分异(Lehmann et al.,19902020)、源区(Romer and Kroner,2016)、温度和氧逸度等多种因素影响(毛景文等,2018; Zhao Panlao et al.,2022a2022b)。本文研究显示,沙蒙矿床中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩均属于中等演化程度的花岗岩(DI=79.6~88.0; Zr/Hf=29.8~64.9; SiO2=67.57%~72.97%),暗示岩浆演化程度不是该矿区花岗岩控制锡成矿的决定性因素,而最近Zhao Panlao et al.(2022c)研究也显示岩浆分异程度并不是制约岩浆锡成矿潜力的关键因素,但两种花岗岩具有明显不同的成因类型归属及源区,其中中粗粒黑云母花岗岩属S型花岗岩,主体来源于古元古代的变质杂砂岩源区,细粒角闪石黑云母花岗岩成岩尽管有部分古老地壳的变沉积岩物质加入,但主体仍为新生地壳。两类不同的岩浆源区可能控制了不同类型花岗岩的锡成矿潜力的差异。此外,锡成矿并与岩浆氧逸度密切相关,相对还原的岩浆条件更有利于锡成矿也逐渐成为共识(Sato et al.,2010),如果岩浆体系为还原环境,Sn主要以Sn2+形式存在,离子半径较大,不易进入早期结晶铁镁矿物中,导致在结晶分异晚期岩浆和流体中富集(Ishihara,1977; Linnen et al.,1996)。中粗粒黑云母花岗岩岩浆明显具有相对还原的岩浆氧逸度条件(ΔFMQ平均为3.92,代表性样品基本位于缓冲剂WM之下(图10a),而细粒角闪石黑云母花岗岩的岩浆氧逸度条件相对偏高(ΔFMQ平均值约为2.56),绝大部分样品位于缓冲剂WM之上,表现出明显的差异性。实际上,源区以变质杂砂岩或者变泥质岩为主时,往往更有利于形成还原性岩浆(Mlynarczyk and Williams-Jones,2005)。此外,中粗粒黑云母花岗岩相对细粒角闪石黑云母花岗岩具有略微偏高的初始岩浆温度(图8b),暗示岩浆温度也可能是制约该矿区花岗岩锡成矿潜力的重要因素,成锡岩浆往往具有更高的初始温度(Yuan Shunda et al,2018; Zhao Panlao et al,2022a,2022b)。综上所述,我们认为主导沙蒙矿区两类不同类型花岗岩的锡成矿能力的关键因素可能是氧逸度和源区,变质杂砂岩源区部分熔融形成的还原性岩浆更具有锡成矿潜力,此外,温度也可能是重要的控制因素。

  • 图10 泰国沙蒙花岗岩Al2O3/(MgO+TFeO+TiO2)-(Al2O3+TFeO+MgO+TiO2)图解(a)(底图据Patiño Douce,1999)和 K2O摩尔数/Na2O摩尔数-CaO摩尔数/(MgO摩尔数+TFeO摩尔数)图解(b)(底图据Altherr and Siebel,2002

  • Fig.10 Diagrams of Al2O3/ (MgO+TFeO+TiO2) versus (Al2O3+TFeO+MgO+TiO2) (a) (after Patiño Douce, 1999) and molar K2O/Na2O versus molar CaO/ (MgO+TFeO) (b) (after Altherr and Siebel, 2002) of the Samoeng granite in Thailand

  • 5 结论

  • (1)沙蒙矿区中粗粒黑云母花岗岩和细粒角闪石黑云母花岗岩分别形成于210.9±1.1 Ma和206.5±1.0 Ma,属晚三叠世岩浆活动的产物。

  • (2)沙蒙矿区中粗粒黑云母花岗岩属S型花岗岩,细粒角闪石黑云母花岗岩属I型花岗岩,两者可能均形成于古特提斯洋闭合的碰撞后造山期挤压-伸展转换的构造背景。

  • (3)中粗粒黑云母花岗岩岩浆主要起源于古元古代的变质杂砂岩,而细粒角闪石黑云母花岗岩岩浆主要起源于新元古代新生地壳,并具有部分古老地壳变沉积岩源区物质的加入。源区性质和氧逸度条件可能为该矿区花岗岩制约锡成矿的主要控制因素。

  • 附件:本文附件(附表1)详见 http://www.geojournals.cn/dzxb/dzxb/article/abstract/202304098?st=article_issue

  • 参考文献

    • Altherr R, Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397~415.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: REE Geochemistry. Amsterdam: Elsevier.

    • Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.

    • Chappell B W, White A. 1974. Two contrasting granite type. Pacific Geology, 8: 173~174.

    • Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.

    • Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology, 34(8): 633~636.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Gardiner N J, Searle M P, Morley C K, Whitehouse M P, Spencer C J, Robb L J. 2016. The closure of Palaeo-Tethys in Eastern Myanmar andnorthern Thailand: new insights from zircon U-Pb and Hf-isotope data. Gondwana Research, 39: 401~422.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 13l(3): 231~282.

    • Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.

    • Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293~305.

    • Jiang Hai, Zhao Kuidong, Jiang Shaoyong, Li Wenqiang, Zaw K, Zhang Di. 2021. Late Triassic post-collisional high-K two-mica granites in Peninsular Thailand, SE Asia: petrogenesis and Sn mineralization potential. Lithos, 398-399: 106290.

    • Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Dai Baozhang. 2008. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi Provinces along the Shi-Hang belt, South China. Geological Journal of China Universities, 14(4): 496~509 (in Chinese with English abstract).

    • Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lvyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: an overview. Bulletin of Science and Technology, 65(33): 3730~3745 (in Chinese with English abstract).

    • Khositanont S. 1991. The genesis of the Sn-W deposits at Samoeng Mine, Thailand: evidence from fluid inclusions. Master thesis of McGill Universitery.

    • Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212: 397~414.

    • Lehmann B. 2020. Formation of tin ore deposits: a reassessment. Lithos, 402-403: 105756.

    • Lehmann B, Ishihara S, Michel H, Miller J, Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment. Economic Geology, 85(5): 1044~1058.

    • Li Jinxiang, Fan Weiming, Zhang Liyun, Evans N J, Sun Yali, Ding Lin, Guan Qiuyun, Peng Touping, Cai Fulong, Sein K. 2019. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of Late Cretaceous-Eocene granites in southern Myanmar: Petrogenetic, tectonic and metallogenic implications. Ore Geology Reviews, 112: 103031.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Pergamon, 60(24): 4965~4976.

    • Liu Junlai, Tran My-Dung, Tang Yuan, Nguyen Quang-Luat, Tran Thanh-Hai, Wu, Wenbin, Chen Jiafu, Zhang Zhaochong, Zhao Zhidan. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Research, 22: 628~644.

    • Liu Liang, Hu Ruizhong, Zhong Hong, Yang Jiehua, Tang Yanwei. 2020. Petrogenesis of multistage S-type granites from the Malay Peninsula in the Southeast Asian tin belt and their relationship to Tethyan evolution. Gondwana Research, 84: 20~37.

    • Loiselle M C. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11: 468.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635~643.

    • Mao Jingwen, Xie Guiqing, Yuan Shunda, Liu Peng, Meng Xuyang, Zhou Zhenhua, Zheng Wei. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34(9): 2501~2517 (in Chinese with English abstract).

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.

    • Metcalfe I. 2000. The Bentong-Raub suture zone. Journal of Asian Earth Sciences, 18(6): 691~712.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4): 215~224.

    • Miller C F, Mcdowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529.

    • Mlynarczyk M, Williams-Jones A. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters, 240: 656~667.

    • Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168(1): 55~75.

    • Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic arc magmas contain 4 wt% water on average? Earth and Planetary Science Letters, 364: 168~179.

    • Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granitesby inductively coupled plasma mass spectrometry. Talanta, 51(3): 507~513.

    • Qian Xin, Feng Qinglai, Wang Yuejun, Zhao Tianyu, Udchachon Mongkol, Wang Yukun. 2017. Late Triassic post-collisional granites related to Paleotethyan evolution in SE Thailand: geochronological and geochemical constraints. Lithos, 286-287: 440~453.

    • Ridd M F, Barber A J, Crow M J. 2011. The Geology of Thailand. Gsw Books.

    • Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60~95.

    • Sato K, Vrublevsky A A, Rodionov S M, Romanovsky N P, Nedachi M. 2010. Mid-Cretaceous episodic magmatism and tin mineralization in Khingan‐Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52(1): 1~14.

    • Schwartz M O, Rajah S S, Askury A K, Putthapiban P, Djaswadi S. 1995. The Southeast Asian tin belt. 38(2-4): 0~293.

    • Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. lithos, 45(1-4): 29~44.

    • Tang Yuan, Liu Junlai, My-Dung Tran, Song Zhijie, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan, Chen Wen. 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China. International Journal of Earth Sciences, 102(3): 605~626.

    • Veeravinantanakul A, Takahashi R, Agangi A, Ohba T, Watanabe Y, Elburg M A, Ueckermann H, Kanjanapayont P, Charusiri P. 2021. Zircon Hf-isotope constraints on the formation of metallic mineral deposits in Thailand. Resource Geology, 71(4): 1~33.

    • Wang Dongsheng, Liu Junlai, Tran My-Dung, Ngyuen Quang Luat, Guo Qiang, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan. 2011. Geochronology, geochemistry and tectonic significance of granites in the Tinh Túc W-Sn ore deposits, Northern Vietnam. Acta Petrologica Sinica, 27(9): 2795~2808 (in Chinese with English abstract).

    • Wang Rucheng, Xie Lei, Lu Jianjun, Zhu Jinchu, Chen Jun. 2017. Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions, South China: Distinctive mineralogical patterns. Science China Earth Science, 47(11): 1257~1268 (in Chinese with English abstract).

    • Wang Tingyi, Li Gongjian, Wang Qingfei, Santosh M, Deng Jun. 2019. Petrogenesis and metallogenic implications of Late Cretaceous I- and S-type granites in Dachang-Kunlunguan ore belt, southwestern South China Block. Ore Geology Reviews, 113: 103079.

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.

    • White A, Chappell B W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2): 7~22.

    • Yang Jiehua, Zhou Meifu, Hu Ruizhong, Zhong Hong, Williams-Jones A E, Liu Liang, Zhang Xingchun, Fu Yazhou, Mao Wei. 2020. Granite-related tin metallogenic events and key controlling factors in peninsular malaysia, southeast asia: New insights from cassiterite U-Pb dating and zircon geochemistry. Economic Geology, 115(3): 581~601.

    • Yuan Shunda, Williams-Jones A E, Mao Jingwen, Zhao Panlao, Yan Chen, Zhang Dongliang. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193~1208.

    • Yuan Shunda, Williams-Jones A E, Romer R L, Zhao Panlao, Mao Jingwen. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: insights from the Nanling Region, China. Economic Geology, 114(5): 1005~1012.

    • Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607~618 (in Chinese with English abstract).

    • Zhao Panlao, Chu Xu, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.

    • Zhao Panlao, Yuan Shunda, Williams-Jones Anthony E, Romer Rolf L, Yan Chen, Song Shiwei, Mao Jingwen. 2022b. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith: evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 117 (3): 667~682.

    • Zhao Panlao, Zajacz Zoltán, Tsay Alexandra, Yuan Shunda. 2022c. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331~346.

    • Zhao Zifu, Gao Peng, Zheng Yongfei. 2015. The source of Mesozoic granitoids in South China: integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology, 395: 11~26.

    • Zhu Jingjing, Richards J P, Rees C, Creaser R S. Andrew D, Andrew L, Joseph A. Petrus L J. 2018. Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, northern British Columbia, Canada. Economic Geology, 113(5): 1047~1075.

    • Zhu Rixiang, Zhao Pan, Zhao Liang. 2021. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 52(1): 1~25 (in Chinese with English abstract).

    • 蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496~509.

    • 蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律, 地质特征与成矿机制研究进展. 科学通报, 65(33): 16.

    • 毛景文, 谢桂青, 袁顺达, 刘鹏, 孟旭阳, 周振华, 郑伟. 2018. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望. 岩石学报, 34(9): 2501~2517.

    • 王东升, 刘俊来, Tran M D, Ngyuen Q L, 郭强, 吴文彬, 张招崇, 赵志丹. 2011. 越南东北部静足(Tinh Túc)钨锡矿区花岗岩年代学、地球化学与区域构造意义. 岩石学报, 27(9): 2795~2808.

    • 王汝成, 谢磊, 陆建军, 朱金初, 陈骏. 2017. 南岭及邻区中生代含锡花岗岩的多样性: 显著的矿物特征差异. 中国科学: 地球科学, 47(11): 1257~1268.

    • 袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39(4): 607~618.

    • 朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.

  • 参考文献

    • Altherr R, Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397~415.

    • Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347~364.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: REE Geochemistry. Amsterdam: Elsevier.

    • Burnham A D, Berry A J. 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10(6): 457~461.

    • Chappell B W, White A. 1974. Two contrasting granite type. Pacific Geology, 8: 173~174.

    • Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.

    • Coogan L A, Hinton R W. 2006. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology, 34(8): 633~636.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429~437.

    • Gardiner N J, Searle M P, Morley C K, Whitehouse M P, Spencer C J, Robb L J. 2016. The closure of Palaeo-Tethys in Eastern Myanmar andnorthern Thailand: new insights from zircon U-Pb and Hf-isotope data. Gondwana Research, 39: 401~422.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 13l(3): 231~282.

    • Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.

    • Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293~305.

    • Jiang Hai, Zhao Kuidong, Jiang Shaoyong, Li Wenqiang, Zaw K, Zhang Di. 2021. Late Triassic post-collisional high-K two-mica granites in Peninsular Thailand, SE Asia: petrogenesis and Sn mineralization potential. Lithos, 398-399: 106290.

    • Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, Dai Baozhang. 2008. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi Provinces along the Shi-Hang belt, South China. Geological Journal of China Universities, 14(4): 496~509 (in Chinese with English abstract).

    • Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lvyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: an overview. Bulletin of Science and Technology, 65(33): 3730~3745 (in Chinese with English abstract).

    • Khositanont S. 1991. The genesis of the Sn-W deposits at Samoeng Mine, Thailand: evidence from fluid inclusions. Master thesis of McGill Universitery.

    • Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212: 397~414.

    • Lehmann B. 2020. Formation of tin ore deposits: a reassessment. Lithos, 402-403: 105756.

    • Lehmann B, Ishihara S, Michel H, Miller J, Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment. Economic Geology, 85(5): 1044~1058.

    • Li Jinxiang, Fan Weiming, Zhang Liyun, Evans N J, Sun Yali, Ding Lin, Guan Qiuyun, Peng Touping, Cai Fulong, Sein K. 2019. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of Late Cretaceous-Eocene granites in southern Myanmar: Petrogenetic, tectonic and metallogenic implications. Ore Geology Reviews, 112: 103031.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Pergamon, 60(24): 4965~4976.

    • Liu Junlai, Tran My-Dung, Tang Yuan, Nguyen Quang-Luat, Tran Thanh-Hai, Wu, Wenbin, Chen Jiafu, Zhang Zhaochong, Zhao Zhidan. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Research, 22: 628~644.

    • Liu Liang, Hu Ruizhong, Zhong Hong, Yang Jiehua, Tang Yanwei. 2020. Petrogenesis of multistage S-type granites from the Malay Peninsula in the Southeast Asian tin belt and their relationship to Tethyan evolution. Gondwana Research, 84: 20~37.

    • Loiselle M C. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11: 468.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635~643.

    • Mao Jingwen, Xie Guiqing, Yuan Shunda, Liu Peng, Meng Xuyang, Zhou Zhenhua, Zheng Wei. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34(9): 2501~2517 (in Chinese with English abstract).

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.

    • Metcalfe I. 2000. The Bentong-Raub suture zone. Journal of Asian Earth Sciences, 18(6): 691~712.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4): 215~224.

    • Miller C F, Mcdowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529.

    • Mlynarczyk M, Williams-Jones A. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters, 240: 656~667.

    • Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168(1): 55~75.

    • Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic arc magmas contain 4 wt% water on average? Earth and Planetary Science Letters, 364: 168~179.

    • Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granitesby inductively coupled plasma mass spectrometry. Talanta, 51(3): 507~513.

    • Qian Xin, Feng Qinglai, Wang Yuejun, Zhao Tianyu, Udchachon Mongkol, Wang Yukun. 2017. Late Triassic post-collisional granites related to Paleotethyan evolution in SE Thailand: geochronological and geochemical constraints. Lithos, 286-287: 440~453.

    • Ridd M F, Barber A J, Crow M J. 2011. The Geology of Thailand. Gsw Books.

    • Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60~95.

    • Sato K, Vrublevsky A A, Rodionov S M, Romanovsky N P, Nedachi M. 2010. Mid-Cretaceous episodic magmatism and tin mineralization in Khingan‐Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52(1): 1~14.

    • Schwartz M O, Rajah S S, Askury A K, Putthapiban P, Djaswadi S. 1995. The Southeast Asian tin belt. 38(2-4): 0~293.

    • Smythe D J, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260~266.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. lithos, 45(1-4): 29~44.

    • Tang Yuan, Liu Junlai, My-Dung Tran, Song Zhijie, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan, Chen Wen. 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China. International Journal of Earth Sciences, 102(3): 605~626.

    • Veeravinantanakul A, Takahashi R, Agangi A, Ohba T, Watanabe Y, Elburg M A, Ueckermann H, Kanjanapayont P, Charusiri P. 2021. Zircon Hf-isotope constraints on the formation of metallic mineral deposits in Thailand. Resource Geology, 71(4): 1~33.

    • Wang Dongsheng, Liu Junlai, Tran My-Dung, Ngyuen Quang Luat, Guo Qiang, Wu Wenbin, Zhang Zhaochong, Zhao Zhidan. 2011. Geochronology, geochemistry and tectonic significance of granites in the Tinh Túc W-Sn ore deposits, Northern Vietnam. Acta Petrologica Sinica, 27(9): 2795~2808 (in Chinese with English abstract).

    • Wang Rucheng, Xie Lei, Lu Jianjun, Zhu Jinchu, Chen Jun. 2017. Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions, South China: Distinctive mineralogical patterns. Science China Earth Science, 47(11): 1257~1268 (in Chinese with English abstract).

    • Wang Tingyi, Li Gongjian, Wang Qingfei, Santosh M, Deng Jun. 2019. Petrogenesis and metallogenic implications of Late Cretaceous I- and S-type granites in Dachang-Kunlunguan ore belt, southwestern South China Block. Ore Geology Reviews, 113: 103079.

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.

    • White A, Chappell B W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2): 7~22.

    • Yang Jiehua, Zhou Meifu, Hu Ruizhong, Zhong Hong, Williams-Jones A E, Liu Liang, Zhang Xingchun, Fu Yazhou, Mao Wei. 2020. Granite-related tin metallogenic events and key controlling factors in peninsular malaysia, southeast asia: New insights from cassiterite U-Pb dating and zircon geochemistry. Economic Geology, 115(3): 581~601.

    • Yuan Shunda, Williams-Jones A E, Mao Jingwen, Zhao Panlao, Yan Chen, Zhang Dongliang. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193~1208.

    • Yuan Shunda, Williams-Jones A E, Romer R L, Zhao Panlao, Mao Jingwen. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: insights from the Nanling Region, China. Economic Geology, 114(5): 1005~1012.

    • Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607~618 (in Chinese with English abstract).

    • Zhao Panlao, Chu Xu, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.

    • Zhao Panlao, Yuan Shunda, Williams-Jones Anthony E, Romer Rolf L, Yan Chen, Song Shiwei, Mao Jingwen. 2022b. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith: evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 117 (3): 667~682.

    • Zhao Panlao, Zajacz Zoltán, Tsay Alexandra, Yuan Shunda. 2022c. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331~346.

    • Zhao Zifu, Gao Peng, Zheng Yongfei. 2015. The source of Mesozoic granitoids in South China: integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology, 395: 11~26.

    • Zhu Jingjing, Richards J P, Rees C, Creaser R S. Andrew D, Andrew L, Joseph A. Petrus L J. 2018. Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, northern British Columbia, Canada. Economic Geology, 113(5): 1047~1075.

    • Zhu Rixiang, Zhao Pan, Zhao Liang. 2021. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 52(1): 1~25 (in Chinese with English abstract).

    • 蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496~509.

    • 蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律, 地质特征与成矿机制研究进展. 科学通报, 65(33): 16.

    • 毛景文, 谢桂青, 袁顺达, 刘鹏, 孟旭阳, 周振华, 郑伟. 2018. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望. 岩石学报, 34(9): 2501~2517.

    • 王东升, 刘俊来, Tran M D, Ngyuen Q L, 郭强, 吴文彬, 张招崇, 赵志丹. 2011. 越南东北部静足(Tinh Túc)钨锡矿区花岗岩年代学、地球化学与区域构造意义. 岩石学报, 27(9): 2795~2808.

    • 王汝成, 谢磊, 陆建军, 朱金初, 陈骏. 2017. 南岭及邻区中生代含锡花岗岩的多样性: 显著的矿物特征差异. 中国科学: 地球科学, 47(11): 1257~1268.

    • 袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39(4): 607~618.

    • 朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.