en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王河锦,男,1958年生。教授,从事甚低级变质作用和黏土矿物学研究。E-mail:hjwang@pku.edu.cn。

参考文献
Abad I, Nieto F, Gutierrez-Alonso G, Murphy J B, Braid J A, Rodriguez-Navarro A B. 2012. Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia, Canada). Swiss Journal of Geosciences, 105(2): 283~297.
参考文献
Abd Elmola A, Charpentier D, Buatier M, Lanari P, Monie P. 2017. Textural-chemical changes and deformation conditions registered by phyllosilicates in a fault zone (Pic de Port Vieux thrust, Pyrenees). Applied Clay Science, 144: 88~103.
参考文献
Amireh B S. 2020. Weathering, recycling, hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana Lower Cambrian—Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228.
参考文献
An Jiali, Wang Hejin, Yuan Lei. 2018. Very low-grade metamorphism of the Precambrian along profile Kaili-Rongjiang-Congjiang, southeast of Guizhou Province, China. Acta Petrologica Sinica, 34(3): 669~684 (in Chinese with English abstract).
参考文献
Anderson R B, Long S P, Horton B K, Calle A Z, Soignard E. 2021. Late Paleozoic Gondwanide deformation in the Central Andes: insights from RSCM thermometry and thermal modeling, southern Bolivia. Gondwana Research, 94: 222~242.
参考文献
Arkai P. 1991. Chlorite crystallinity—an empirical-approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Paleozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9(6): 723~734.
参考文献
Arkai P, Ghabrial D S. 1997. Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bukk Mountains, northeast Hungary. Clay Minerals, 32(2): 205~222.
参考文献
Baludikay B K, Francois C, Sforna M C, Beghin J, Cornet Y, Storme J Y, Fagel N, Fontaine F, Littke R, Baudet D, Delvaux D, Javaux E J. 2018. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). International Journal of Coal Geology, 191: 80~94.
参考文献
Bi Xianmei, Mo Xuanxue. 2004. Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Science Frontiers, 11(1): 287~294 (in Chinese with English abstract).
参考文献
Bisevac V, Balogh K, Balen D, Tibljas D. 2010. Eoalpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia). Geologica Carpathica, 61(6): 469~481.
参考文献
Bozkaya O, Yalcin H, Goncuoglu M C. 2012. Diagenetic and very low-grade metamorphic characteristics of the Paleozoic series of the Istanbul Terrane (NW Turkey). Swiss Journal of Geosciences, 105(2): 183~205.
参考文献
Bozkaya O, Gunal-Turkmenoglu A, Goncuoglu M C, Unluce O, Yilmaz I O, Schroeder P A. 2016. Illitization of Late Devonian-Early Carboniferous K-bentonites fromwestern Pontides, NW Turkey: implications for their origin and age. Applied Clay Science, 134(3): 257~274.
参考文献
Bucher K, Frey M. 1994. Petrogenesis of Metamorphic Rocks. London: Springer-Verlag, 99~146.
参考文献
Brant Campos L F B, Guimaraes E M, Barroso R H G, Gomes A W. 2015. Influence of pressure and temperature in the illite crystallinity in Proterozoic sequences: North of Distrito Federal and Goias, Brazil. Brazilian Journal of Geology, 45(3): 383~398.
参考文献
Chamley H. 1989. Clay Sedimentology. Hongkong: Springer-Verlag, 20~562.
参考文献
Coombs D S. 1961. Some recent work on the lower grade of metamorphism. The Australian Journal of Science, 24(5): 203~215.
参考文献
Coombs D S, Ellis A J, Fyfe W S, Taylor A M. 1959. The zeolite facies with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17: 53~107.
参考文献
Cruz M D R, Jimenez P R. 2002. Correlation between crystallochemical parameters of phyllosilicates and mineral facies in very low-grade metasediments of the Betic Cordilleras, Spain: a synthesis. Clay Minerals, 37(1): 169~185.
参考文献
Das A K, Khaoash S, Mishra P, Mohapatra B K, Mohanty J. 2021. Chromite-bearing quartzite in the southern fringe of Singhbhum Craton around Ghutrigaon, eastern India: petrogenetic implication. Geological Journal, 56(7): 3472~3496.
参考文献
Do Campo M, Nieto F, Albanesi G L, Ortega G, Monaldi C R. 2017. Outlining the thermal posdepositional evolution of the Ordovician successions of northwestern Argentina by clay mineral analysis, chlorite geothermometry and Kubler index. Andean Geology, 44(2): 179~212.
参考文献
Dong Shenbao, Shen Qihan, Sun Dazhong. 1986. Metamorphic Map of China (1: 40000000). Beijing: Geological Publishing House (in Chinese).
参考文献
Eberl D D, Środoń J, Kralik M, Taylor B, Peterman Z E. 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248: 474~477.
参考文献
Ellero A, Leoni L, Marroni M, Nicolae I, Pandolfi L, Sartori F. 2002. Deformation and metamorphism in the Fenes Nappe (southern Apuseni Mountains, Romania). Comptes Rendus Geoscience, 334(5): 347~354.
参考文献
Fagereng A, Cooper A F. 2010. The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand. Journal of Metamorphic Geology, 28(9): 935~954.
参考文献
Frey M. 1987a. Very low-grade metamorphism of clastic sedimentary rocks. In: Frey M, ed. Low Temperature Metamorphism. New York: Chapman and Hall, 9~58.
参考文献
Frey M. 1987b. The reaction-isograd kaolinite+quartz=pyrophyllite+H2O, Helvetic Alps Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 67: 1~11.
参考文献
Frey M, Roggwill P, Schindle C. 1973. Progressive low-grade metamorphism of glauconite-bearing formations, Helvetic Alps, Switzerland. Contributions to Mineralogy and Petrology, 39: 185~218.
参考文献
Frey M, Robinson D. 1999. Low-Grade Metamorphism. Oxford: Blackwell Science Ltd.
参考文献
Girard M, Steck A, Thelin P. 1999. The Dutung-Thaktote extensional fault zone and nappe structures documented by illite crystallinity and clay-mineral paragnesis in the Tethys Himalaya between SpitiRiver and Tso Morari, NW India. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(3): 419~430.
参考文献
Goncuoglu M C, Gunal-Turkmenoglu A, Bozkaya O, Unluce-Yucel O, Okuyucu C, Yilmaz I O. 2016. Geological features and geochemical characteristics of Late Devonian—Early Carboniferous K-bentonites from northwestern Turkey. Clay Minerals, 51(4): 539~562.
参考文献
Gonzalez V M, Carbonell P J T, Turienzo M M. 2021. Structural overprinting and style of deformation at sierra Beauvoir and sierra de Apen: a geometric and kinematic model for the evolution of the internal thrust-fold belt, Fuegian Andes, Argentina. Journal of Southern American Earth Sciences, 112(part 1): 103575.
参考文献
Hara H, Wakita K, Ueno K, Kamata Y, Hisada K, Charusiri P, Charoentitirat T, Chaodumrong P. 2009. Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: constraints from melange kinematics and illite crystallinity. Gondwana Research, 16(2): 310~320.
参考文献
Hu Daqian, Yu Jiejiang. 2009. Study of illite in the Upper Paleozoic, in northestern Inner Mongolia. Acta Petrologica Sinica, 25(8): 2017~2022 (in Chinese with English abstract).
参考文献
Katagas C, Tsoliskatagas P, Baltatzis E. 1991. Chemicalmineralogy and illite crystallinity in low-grade metasediments, Zarouchla Group, northern Peloponnesus, Grece. Mineralogy and Petrology, 44(1-2): 57~71.
参考文献
Kisch H J. 1987. Correlation between indicators of very low-grade metamorphism. In: Frey M, eds. Low Temperature Metamorphism. New York: Chapman and Hall, 227~300.
参考文献
Kisch H J. 1990. Calibration of the anchizone—a critical comparasion of illite crystallinity scales used for definition. Journal of Metamorphic Geology, 8(1): 31~46.
参考文献
Kisch H J. 1991a. Development of slaty cleavage and degree of very-low-grade metamorphism—a review. Journal of Metamorphic Geology, 9(6): 735~750.
参考文献
Kisch H J. 1991b. Illite crystallinity: recommendations on samples preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9(6): 665~670.
参考文献
Kisch H J, Arkai P, Brime C. 2004. On the calibration of the illite Kubler index (illite "crystallinity"). Schweizerische Mineralogische und Petrographische Mitteilungen, 84: 323~331.
参考文献
Kübler B. 1964. Les argiles, indicateurs de métamorphisme. Revue Instituté de la Francais de Pétrole, 19: 1093~1112.
参考文献
Kübler B. 1967. Anchimetamorphisme et schistosite. Bulletin Centre Recherche Pau-SNPA, 1: 259~278.
参考文献
Kübler B. 1968. Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bulletin Centre Recherche Pau-SNPA, 2: 385~397.
参考文献
Liu Yiqun. 1996. The boundary between diagenesis and metamorphism-a discussion with reference to zeolite facies. Geological Review, 42(3): 215~222 (in Chinese with English abstract).
参考文献
Lowey G W. 2021. Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the northern Cordillera of Alaska and Yukon. AIMS Geosciences, 7(3): 355~389.
参考文献
Makeen Y M, Abdullah W H, Ayinla H A, Hakimi M H, Sia S G. 2016. Sedimentology, diagenesis and reservoir quality of the upper Abu Gabra Formation sandstones in the Fula sub-basin, Muglad basin, Sudan. Marine and Petroleum Geology, 77: 1227~1242.
参考文献
Maza S N, Collo G, Morata D, Lizana C, Camus E, Taussi M, Renzulli A, Mattioli M, Godoy B, Alvear B, Pizarro M, Ramirez C, Rivera G. 2018. Clay mineral associations in the clay cap from the Cerro Pabellon blind geothermal system, Andean Cordillera, Northern Chile. Clay Minerals, 53(2): 117~141.
参考文献
Meere P A. 1995. Sub-greenschist facies metamorphism from the Variscides of SW Ireland—an Early syn-extensional peak thermal event. Journal of the Geological Society, 152: 511~521.
参考文献
Merriman R J. 1991. Phyllosilicates as indicators of very low-grade metamorphism and diagenesis-introduction. Journal of Metamorphic Geology, 9(6): 663~664.
参考文献
Merriman R J, Frey M. 1999a. Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 61~107.
参考文献
Merriman R J, Peacor D R. 1999b. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 10~60.
参考文献
Montomoli C, Iaccarino S, Simonetti M, Lezzerini M, Carosi R. 2018. Structural setting, kinematics and metamorphism in a km-scale shear zone in the Inner Nappes of Sardinia (Italy). Italian Journal of Geosciences, 137(2): 294~310.
参考文献
Mullis J, Rahn M K, Schwer P, de Capitani C, Stern W B, Frey M. 2002. Correlation of fluid inclusion temperatures with illite "crystallinity" data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps. Symposium on Diagenesis and Low-Grade Metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2): 325~340.
参考文献
Mullis J, Mahlmann R F, Wolf M. 2017. Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 degrees C), illite Kithler-Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science, 143: 307~319.
参考文献
Offler R, McKnight S, Morand V. 1998. Tectonothermal history of the western Lachlanfold belt, Australia: insights from white mica studies. Journal of Metamorphic Geology, 16(4): 531~540.
参考文献
Ospinara E. 1968. Thermodynamicaspects of origin of oil gas and coal. Magyar Kemikusok Lapja, 23 (2): 69.
参考文献
Pepiper G, Kotopouli C N. 1981. Very low-grade metamorphism of Triassic volcanics, West Hellenic Nappes, southern Peloponnese, Greece-summary. Geological Society of America Bulletin, 92 (12): 914~916.
参考文献
Potel S, Maison T, Maillet M, Sarr A C, Doublier M P, Trullenque G, Mahlmann R F. 2016. Reliability of very low-grade metamorphic methods to decipher basin evolution: case study from the Markstein basin (southern Vosges, NE France). Applied Clay Science, 134(3): 175~185.
参考文献
Ren Leifu, Chen Yunqing. 1984. On the division of diagenesis stages according to the transformation of clay minerals. Oil & Gas Geology, 5(4): 325~334 (in Chinese with English abstract).
参考文献
Reynolds R C Jr. 1985. NEWMOD@A computer program for the calculation of one-dimensional diffraction patterns of mixed layered clays. R. C. Reynolds, Jr. , 8 Brook Dr. , Hanover, USA, release 2017.
参考文献
Rieder M, Cavazzini G, D'Yakonov Y, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval P V, Müller G, Neiva A M R, Radoslovich E W, Robert J-L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. Canadian Mineralogist, 46(5): 586~595.
参考文献
Ruiz G M H, Helg U, Negro F, Adatte T, Burkhard M. 2008. Illite crystallinity patterns in the Anti-Atlas of Morocco. Swiss Journal of Geosciences, 101(2): 387~395.
参考文献
Scherrer P. 1918. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr. Math. Phys. 2: 98~100.
参考文献
Shen Qihan, Geng Yuansheng, Liu Fulai. 2016. Metamorphic Map of China (1: 50000000), Beijing: Geological Publishing House (in Chinese).
参考文献
Shen Qihan, Geng Yuansheng, Song Huixia. 2018. Strengthening the study of very low-grade metamorphism. Acta Petrologica et Mineralogica, 37(2): 342~348.
参考文献
Siissenberger A, Wemmer K, Schmidt S T. 2018. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Applied Clay Science, 165: 52~63.
参考文献
Smithard T, Bordy E M, Reid D. 2015. The effect of dolerite intrusions on the hydrocarbon potential of the Lower Permain Whitehill Formation (Karoo supergroup) in South Africa and southern Namibia: a preliminary study. South African Journal of Geology, 118(4): 489~510.
参考文献
Sokalska E T, Dubinska E, Kapron G, Kozubowski J A, Walski M. 2008. Clay minerals from Permo-Carboniferous very low-grade metamorphic rocks from the central part of the Fore Sudetic monocline (western Poland). Clay Minerals, 43(4): 561~574.
参考文献
Suo Shutian, You Zhendong, Zhou Hanwen. 1995. Very-low-grade metamorphism and metamorphic belt: a review. Geological Science and Technology Information, 14(1): 1~8 (in Chinese with English abstract).
参考文献
Teichmuller M. 1974. The origin and transformation of bituminous substances in coals in relation to the origin and transformation of petroleum. Fortschritte in der Geologie von Rheinland und Westfalen, 24: 65~112.
参考文献
Tetiker S, Yalcin H, Bozkaya O. 2016. Diagenesis/metamorphism history of Lower Triassic Cigli Group rocks in Uludere-Uzungecit (Sirnak) area (eastern Part of the Southeast Anatolian Autochthone). Turkiye Jeoloji Bulteni-Geological Bulletin of Turkey, 59(3): 323~340.
参考文献
Vazquez M, Asebriy L, Azdimousa A, Jabaloy A, Booth-Rea G, Barbero L, Mellini M, Gonzalez-Lodeiro F. 2013. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian passive margin: the Tanger-Ketama Unit (External Rif, northern Morocco). Geologica Acta, 11(3): 277~293.
参考文献
Wang Hejin. 1998. On the error calculation of the Kubler index of illite crystallinity. Geological Review, 44(3): 328~335 (in Chinese with English abstract).
参考文献
Wang Hejin, Zhou Jian. 1998. On theindices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395~405 (in Chinese with English abstract).
参考文献
Wang Hejin, Tao Xifeng, Rahn M. 2007. Determination ofconstants C1-C14 in 14 equations of the relationships between the Kübler, weaver and weber indices and their applications. Geological Journal of China Universities, 13(3): 561~565 (in Chinese with English abstract).
参考文献
Wang Hejin, Zhou Zhao, Wang Ling, Yuan Lei, An Jiali, Huang Baoling. 2015. Calibration of illite crystallinity Kübler index and determination of anchizone. Acta Geologica Sinica, 89(2): 406~411 (in Chinese with English abstract).
参考文献
Wang Hejing, Frey M, Stern W B. 1996. Diagenesis and metamorphism of clay minerals in the Helvetic Alps of eastern Switzerland. Clays and Clay Minerals, 44: 96~112.
参考文献
Wang Hejing, Zhou Jian. 2000a. Data smoothing and distortion of X-ray diffraction peaks. I. Theory. Journal of Applied Crystallography, 33: 1128~1135.
参考文献
Wang Hejing, Zhou Jian. 2000b. The relationships between the Kübler index, Weaver index and Weber index of illite crystallinity and their applications. Schweizerische Mineralogische und Petrographische Mitteilungen, 80: 187~198.
参考文献
Wang Hejing, Rahn M, Tao Xiaofeng, Zheng Nan, Xu Tingjing. 2008. Diagenesis and metamorphism of Triassic flysch along profile Zoige-Lushan, northwest Sichuan, China. Acta Geologica Sinica (English Edition), 82(4): 917~926.
参考文献
Wang Hejing, Ma Yongsheng, Zhou Jian, Xu Tingjing. 2012. Diagenesis and very low-grade metamorphism in a 7012 m-deep well Hongcan 1, eastern Tibetan plateau. Swiss Journal of Geosciences, 105(2): 249~261.
参考文献
Wang Hejing, Rahn M, Zhou Jian, Tao Xiaofeng. 2013. Tectonothermal evolution of the Triassic flysch in the Songpan-Garzê orogen, eastern Tibetan plateau. Tectonophysics, 608: 505~516.
参考文献
Wang Hejing, Rahn M, Zhou Jian. 2018. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau. Tectonophysics, 723: 277~287.
参考文献
Warr L N. 1996. Standardized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of souther New Zealand. European Journal of Mineralogy, 8: 115~127.
参考文献
Warr L N, Rice A H N. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12: 141~152.
参考文献
Warr L N, Ferreiro Mählmann R. 2015. Recommendations for Kubler Index standardization. Clay Minerals, 50: 283~286.
参考文献
Warr L N, Cox S C. 2016. Correlating illite (Kübler) and chlorite (Árkai) “crystallinity” indices with metamorphic mineral zones of the South Island, New Zealand. Applied Clay Science, 134: 164~174.
参考文献
Weaver C E. 1960. Possible use of clay minerals in search for oil. Bulletin American Association of Petroleum Geologists, 44: 1505~1518.
参考文献
Weber K. 1972. Note on the determination of illite crystallinity. Neues Jahrbuch fur Mineralogie Monatshefte, 6: 267~276.
参考文献
Wolf M. 1995. Reflectance and composition of dispersed organic matter at DSDP Leg 67 Hole. Palaeontologische Zeitschrift, 69(1-2): 1~6.
参考文献
Wonglak S, Sutthirat C, Assawincharoenkij T. 2020. Petrochemistry of Lan Sang metamorphic suites. Scienceasia, 46(4): 481~489.
参考文献
Wu Hanquan, Feng Yuemei, Song Suguang. 1993. Metamorphism and deformation of blueschist belts and their tectonic implications, north Qilian Mountains, China. Journal of Metamorphic Geology, 11(4): 523~536.
参考文献
Wu Hanquan, Tian Bai, Song Suguang, Su Li. 1992. Very low grade metamorphism-on achievements and problems. Northwest Geosciences, 13(2): 161~178 (in Chinese with English abstract).
参考文献
Zaheer M, Khan M S, Mughal M S, Abbasi N. 2017. Petrography, provenance, diagenesis and depositional environment of Murree Formation in Jhelum Valley, Sub Himalayas, Azad Jammu and Kashmir, Pakistan. Arabian Journal of Geosciences, 10(23): 514.
参考文献
Zanoni G, Segvic B, Moscariello A. 2016. Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon Basin) and its impact on regional geology and basin evolution history. Applied Clay Science, 134(3): 186~209.
参考文献
Zhang Lifei. 1992. Burialmetamorphism of the Ordos basin in northern Shaanxi. Acta Geologica Sinica, 66(4): 339~349 (in Chinese with English abstract).
参考文献
Zhao Mengwei. 1995. Theindicators and boundary for separating diagenesis from burial metamorphism. Geological Review, 41(3): 238~244 (in Chinese with English abstract).
参考文献
Zhao Zongpu. 1984. Diagenesis, burial metamorphism and anchimetamorphism. Geological Review, 30(5): 501~509 (in Chinese with English abstract).
参考文献
Zhou Jian, Wang Hejin. 2003. Thephysical meanings of 5 basic parameters for an X-Ray diffraction peak and their application. Chinese Journal of Geochemistry, 22(1): 38~44.
参考文献
Zhu Guang. 1995. Grading the extremely-low metamorphic clastic sedimentary rocks by the crystallinity of the illite. Petroleum Exploration and Development, 22(1): 33~34 (in Chinese with English abstract).
参考文献
安佳丽, 王河锦, 苑蕾. 2018. 黔东南凯里-榕江-从江前寒武系甚低级变质作用研究. 岩石学报, 34(3): 669~684.
参考文献
毕先梅, 莫宣学. 2004. 成岩—极低级变质—低级变质作用及有关矿产. 地学前缘, 11(1): 287~294.
参考文献
董申保, 沈其韩, 孙大中. 1986. 中国变质地质图(1∶400万). 北京: 地质出版社.
参考文献
胡大千, 于介江. 2009. 内蒙古东北地区上古生界伊利石研究. 岩石学报, 25(8): 2017~2022.
参考文献
柳益群. 1996. 关于成岩作用与变质作用界线的讨论: 从沸石相谈起. 地质论评, 42(3): 215~222.
参考文献
任磊夫, 陈芸菁. 1984. 从粘土矿物的转变讨论沉积成岩到变质过程中的阶段划分. 石油与天然气地质, 5(4): 325~334.
参考文献
沈其韩, 耿元生, 刘福来. 2016. 中国变质地质图(1∶500万). 北京: 地质出版社.
参考文献
沈其韩, 耿元生, 宋会侠. 2018. 加强极低级变质作用研究. 岩石矿物学杂志, 37(2): 342~348.
参考文献
索书田, 游振东, 周汉文. 1995. 极低级变质作用和极低级变质带综述. 地质科技情报, 14: 1~8.
参考文献
王河锦. 1998. 关于伊利石结晶度指数的误差计算. 地质论评, 44(3): 328~335.
参考文献
王河锦, 周健. 1998. 关于伊利石结晶度诸指数的评价. 岩石学报, 14(3): 395~405.
参考文献
王河锦, 陶晓风, Rahn M. 2007. 伊利石结晶度Kübler, Weaver 和Weber 指数关系式常数的确定与应用. 高校地质学报, 13(3): 561~565.
参考文献
王河锦, 周钊, 王玲, 苑蕾, 安佳丽, 黄宝玲. 2015. 伊利石结晶度Kübler指数的校正与近变质带的确定. 地质学报, 89(2): 406~411.
参考文献
吴汉泉, 田白, 宋述光, 苏犁. 1992. 多种地球动力学背景条件下甚低级变质作用的一些问题. 西北地质科学, 13(2): 161~178.
参考文献
张立飞. 1992. 陕北鄂尔多斯盆地埋藏变质作用研究. 地质学报, 66(4): 339~349.
参考文献
赵孟为. 1995. 划分成岩作用与埋藏变质作用的指标及其界线. 地质论评, 41(3): 238~244.
参考文献
赵宗溥. 1984. 成岩作用、埋藏变质作用与近变质作用. 地质论评, 30(5): 501~509.
参考文献
朱光. 1995. 用伊利石结晶度确定碎屑沉积岩甚低级变质等级. 石油勘探与开发, 22(1): 33~34.
目录contents

    摘要

    本文集中讨论了甚低级变质作用研究中涉及到的几个问题,包括:① 近变质带的创立及其在解决划分成岩作用与变质作用界线这一国际难题中所取得的进步;② 伊利石结晶度对碎屑岩甚低级变质作用研究起到的作用与贡献;③ 仪器校正、粒度大小及其与Kübler指数的经验关系式;④ 泥质碎屑岩中的成岩指示矿物与变质指示矿物;⑤ 松潘-甘孜、巴颜喀拉造山带的甚低级变质作用的模式与新的成因解释;⑥ 讨论了涉及到的科学研究的相关规则。提出了运用指示矿物结合伊利石结晶度划分成岩作用/变质作用界线的方案和建立喜马拉雅伊利石结晶度标样的重要性与必要性;提出碎屑岩甚低级变质作用的新成因模式。

    Abstract

    Several aspects of very low-grade metamorphism were discussed in this article, including ① Kübler's creation of “anchizone” and its role in the solution of the boundary between diagenesis and metamorphism, which is an internationally-agreed puzzle in geology; ② contribution and role of “illite crystallinity” in the research of very low-grade metamorphism of clastic rocks; ③ calibration of instrumental, and a proposed calibration formula between Kübler Index and domain size; ④ diagenetic and metamorphic index minerals; ⑤ new pattern and genetic interpretation for very low-grade metamorphism of Songpan-Garzê and Bayan Har orogens; ⑥ in addition, some scientific regulations were discussed. It is proposed that the boundary between diagenesis and metamorphism can be ascertained by a combination of index minerals with “illite crystallinity”. It is realized that to establish a set of standards of “illite crystallinity” from Himalaya is very important and essential. New interpretation of metamorphic pattern of Triassic flysches in the Tibet plateau could be used for genetic analysis of very low-grade metamorphism of clastic rocks beyond the only model burial metamorphism.

  • 甚低级变质作用指碎屑岩所经历的介于成岩作用和绿片岩相变质作用之间的地质过程(Frey,1987a; Merriman,1991; Frey et al.,1999; Merriman et al.,1999a)。与甚低级变质作用相关的成岩带(Diagenetic zone)/近变质带(Anchizone)/浅变质带(Epizone)在变质相图中的位置见图1。甚低级变质作用与有机矿产资源关系密切,石油、天然气的保存(Ospinara,1968; Mullis et al.,20022017)、煤的形成(Ospinara,1968; Teichmuller,1974; Wolf,1995)都与甚低级变质作用相关。此外,许多岩石的变形与断裂、片理的形成也与甚低级变质作用相关(Kisch,1991a; Gonzalez et al.2021)。因此,甚低级变质作用也可促进岩石变形与应力作用的研究。

  • 由于甚低级变质作用发生的温度较低(150~200℃至350~400℃)(Frey,1987a),只有对温度最敏感的最细小的黏土矿物颗粒(<2 μm)、保留在矿物中的流体包裹体和保留在岩石中的有机质(如植物碎片、镜质体等)才能响应这样的环境条件的变化。因此,黏土矿物学、流体包裹体学和有机质热演化学是研究碎屑岩甚低级变质作用的重要方法,其中黏土矿物学是基础。用肉眼和在光学偏光显微镜下(其物镜光性分辨率无法分辨2 μm以下的颗粒)无法观察到甚低级变质作用所引发的黏土矿物颗粒中的变化,只有使用X-射线衍射分析和在透射电子显微镜(纳米级的分辨率)下才可观察记录到黏土颗粒的变化。已经证实由甚低级变质作用引发的黏土矿物的变化有结晶度变化和蒙脱石—伊蒙混层—伊利石—白云母(2∶1结构)系列的转变,以及包含1∶1结构系列黏土矿物和包含2∶1∶1结构系列黏土矿物的变化以及它们的混合变化,如蒙脱石—高蒙混层—高岭石—叶腊石(Frey,1987a1987b; Wang Hejing et al.,1996),蒙脱石—绿蒙混层—绿泥石—硬绿泥石,蛭石—蛭绿混层—绿泥石的转变(Arkai,1991; Cruz et al.,2002; Bozkaya et al.,2012)。X-射线衍射仪除了可以分析测试黏土矿物的物相及其组合外,还可确定矿物的结晶度以及结构。由于碎屑岩含有大量的黏土矿物,因此,野外采集的碎屑岩通常都可以得到黏土矿物的组合、结晶度和结构信息,没有“哑地层”。这是甚低级变质作用研究中有关黏土矿物研究的一个优点。相比之下,流体包裹体和岩石中的有机质体的研究往往会因为没有样品(如前寒武系往往没有有机质而无法开展有机质热演化研究或十分困难)或没有采集到达标的样品(原生包裹体样品)而产生“哑地层”现象。

  • 图1 泥质碎屑岩成岩带、近变质带、浅变质带与变质相P-T关系图(据Frey,1987a; Bucher et al.,1994; Frey et al.,1999; 安佳丽等,2018修改)

  • Fig.1 Positions of diagenetic zone, anchizone and epizone of pelitic rocks in P-T plot of metamorphic facies (after Frey, 1987a; Bucher et al., 1994; Frey et al., 1999; An Jiali et al., 2018)

  • Ky—蓝晶石; Sil—矽线石; And—红柱石

  • Ky—Kyanite; Sil—sillimanite; And—andalusite

  • 成岩作用与变质作用的界线划分是地学界公认的一个未解决的难题(Frey,1987a; Kisch,1987),也是甚低级变质作用研究直接面对的一个课题。我国学者在甚低级变质作用方面已做了不少的工作(赵宗溥,1984; 任磊夫等,1984; 吴汉泉等,1992; 张立飞,1992; Wu Hanquan et al.,1993; 赵孟为,1995; 朱光,1995; 索书田等,1995; 柳益群,1996; 毕先梅等,2004; 胡大千等,2009; 沈其韩等,2018)。本文就甚低级变质作用研究中的几个问题加以讨论。

  • 1 近变质带的创立和推广

  • Kübler(196419671968)在成岩带和变质带之间创立了一个“近变质带”,以便将变质作用(带)和成岩作用(带)区别开来。介于成岩作用和变质作用之间的这个“近变质带”(也称成岩-变质转变带)可以混合有成岩带的物质(矿物)也可以有变质带的物质(矿物),而成岩带和变质带则分别只含有成岩矿物和变质矿物。这一思想及其实践——“伊利石结晶度和近变质带界线的建立”使得成岩/变质的界线划分大大向前推进了一步。人们可以通过像“测量线性变量”一样测试伊利石结晶度,从而“测量出”成岩作用和变质作用之间的界线。1987年Frey出版了《Low Temperature Metamorphism》,1999年Frey和Robinson出版了《Low Grade Metamorphism》。这两本书的出版使得Kübler这种在成岩作用和变质作用之间划分出一个“过渡的近变质带”的创造性的做法,在国际地学界获得了广泛的推广。历经几十年的实践,已经在全世界不同地区(如阿尔卑斯、喜马拉雅、安第斯、阿巴拉契亚、西太平洋岛屿、非洲、南美洲、印度次大陆、澳大利亚、新西兰等)取得了众多的成果(Pepiper et al.,1981; Katagas et al.,1991; Meere,1995; Arkai et al.,1997; Offler et al.,1998; Girard et al.,1999; Ellero et al.,2002; Ruiz et al.,2008; Sokalska et al.,2008; Wang Hejing et al.,2008201220132018; Hara et al.,2009; Bisevac et al.,2010; Fagereng et al.,2010; Abad et al.,2012; Vazquez et al.,2013; Campos et al.,2015; Smithard et al.,2015; Makeen et al.,2016; Zaheer et al.,2017; Wonglak et al.,2020; Amireh,2020; Anderson et al.,2021; Gonzalez et al.,2021; Das et al.,2021; Lowey,2021)。在众多的“绿片岩相”之下(之内)发现了甚低级变质岩及其向沉积岩过渡(界线)的现象。绿片岩相之下直接为沉积岩不符合沉积-变质地质体的基本性质。图2表示泥质碎屑岩成岩带/近变质带/浅变质带的伊利石结晶度界线、伊利石c*(结晶学倒易c轴)方向厚度、K-云母多型和指示矿物在变质带中的分布。

  • 2 伊利石结晶度Kisch对比方案(Alps标样)与喜马拉雅(Himalaya)伊利石结晶度标样建立的重要性

  • 地壳岩石圈不是均质体,而是由众多不同性质、成分、成因的各种岩石构成的。碎屑岩也是由不同粒度不同成分不同性质的各类沉积岩石(包括火山碎屑沉积岩)组成的。碎屑岩伊利石结晶度的测试需要多个数据来描述。仅凭几个数据描述一个地区的结晶度变化,不符合碎屑岩的多种岩石类型不同性质不同成分的本质。

  • 众所周知,用仪器测量物体的任何一个物理量,都会产生误差,伊利石结晶度的测试同样会产生误差。类似于物理学用“砝码”传递物质质量的方法,伊利石结晶度的分析测试也需要“砝码”进行结晶度数据的传递(王河锦等,2015)。这个砝码就是伊利石结晶度标样,即伊利石结晶度的分析测试需要使用标样进行数据的校正。只有使用标样校正的测量数据才能够达到伊利石结晶度数据的对比,所划分的变质带才具有可对比的意义。否则,测量产生的误差可能超过一个变质带的范围。同一块标本同一块样品被人为地测量为不同的结晶度,最终确定为不同的变质级别,并由此产生各种“争议”,没有任何意义。幸运的是,人们找到了克服这种错误的方法即“标样砝码”。所以,伊利石结晶度的测试一定要使用具有砝码特征的“标样”进行校正。

  • 使得Kübler建立“近变质带”思想在50多年里世界范围内广泛实践(应用)的一个重要原因是伊利石结晶度国际对比方案的建立。Kisch(1991b)为此做出了伟大的贡献:提供了一套不同结晶度的标样供全世界研究学者使用,以校正不同实验室之间测量伊利石结晶度时产生的偏差。该标样的使用使全世界参加标样测试的实验室所测量的伊利石结晶度值达到一致(小于实验偏差),从而由这些实验室测试的伊利石结晶度值及所划分出的“近变质带”完全可以对比。

  • 图2 阿尔卑斯-喜马拉雅(Alps-Himalaya)三叠系复理石变质带、伊利石结晶度、粒度大小、多型与指示矿物分布图(据Frey,1987a1987b; Wang Hejing et al.,19962008201220132018; Frey et al.,1999绘制)

  • Fig.2 Illite crystallinity, domain size, polytype and index minerals distribution of Triassic flysches in the Alps-Himalaya orogens (modified after Frey, 1987a, 1987b; Wang Hejing et al., 1996, 2008, 2012, 2013, 2018; Frey et al., 1999)

  • Kisch(19901991b)提供的伊利石结晶度标样是由采自阿尔卑斯三叠系复理石中一系列具不同伊利石结晶度的岩芯(片)构成的。使用了衍射仪直接测量的1 nm衍射峰的半高宽表达伊利石结晶度,并给定Kübler指数等于0.21~0.38为近变质带的上下界线。由于仅有一套岩芯标样,Kisch标样无法提供给各实验室长期保留使用。此外,Kisch et al.(2004)修正了其标样的近变质带界线为“老界线”Kübler指数加0.04即0.25~0.42,保持了与Kübler近变质带界线的一致。

  • Warret al.(1994)提供了一套采自英国西海岸的岩屑样品,使用了拟合并“校正”的1 nm衍射峰的半高宽表达伊利石结晶度,并给定Kübler指数等于0.25~0.42为近变质带的上下界线。由于其近变质带界线与Kübler所提出的近变质带界线一致,也得到了大量的使用。但是,很遗憾,Warr et al.(2015)在用Warr et al.(1994)标样与阿尔卑斯样品进行对比时,发现Warr et al.(1994)提供的标样完全偏离了阿尔卑斯样品的近变质带界线,因而把Warr et al.,(1994)标样的近变质带界线移动(Shift)至0.32~0.52。这说明Warr et al.(1994)标样在21年时间里(1994~2015年)是与阿尔卑斯复理石的成岩作用—变质作用的实际资料相差了半个多变质带。由于Warr et al.(1994)标样确定的“近变质带”是一个偏离了半个多原Kübler近变质带的假近变质带,因此,自我否定了他们之前的工作。自然界是不以人们的意志为转移的,不会随人为所定“界线值”的改变而改变。根据Warr(1996)Warr et al.(2016)Coombs et al.(1959)Coombs(1961)在新西兰南岛三叠系火山岩中划分出的沸石相、葡萄石-绿纤石相、绿纤石-阳起石相和绿片岩相进行比较,采用变化后的 0.32~0.52为Warr et al.(1994)标样的近变质带界线,所对应的变质相与变质矿物组合发生了如下变动:① 由原来的浅变质带含绿片岩相(GS)变为浅变质带含有绿片岩相加绿纤石-阳起石相(GS+PA); ② 近变质带由绿纤石-阳起石相加葡萄石-绿纤石相(PA+PP)变为葡萄石-绿纤石相加沸石相(PP+Z); ③ 成岩带减少了沸石相(Z)范围(见图3)。同样,根据Cruz et al.(2002)资料,西班牙Maláguide杂岩体中若以0.32~0.52为近变质带界线,则地开石、珍珠陶石、云母-绿泥石混层、蛭石-蛭石/绿泥石混层物相进入浅变质带(绿片岩相),成为绿片岩相的矿物,这有悖于绿片岩相的矿物共生组合。根据Baludikay et al.(2018)资料,澳大利亚Officer盆地的近变质带温度范围为350~200℃,若以0.32和0.52为界线,其近变质带温度范围将变化为250~160℃,即250℃就开始绿片岩相变质,与经典泥质岩等化学系列绿片岩相T-P区域相悖(见图1)。

  • 根据Frey(1987a)近变质带上、下界线的温度值(150~200℃和350~400℃),按照平均温度界线375℃和175℃计算,Warr et al.(1994)标样的近变质带(0.32~0.52)对应的温度范围将下移至292~57℃,即浅变质带的温度下限低于300℃,而成岩带的温度上限低于60℃。根据已经发表的地质温度计的数据计算,这一近变质带界线的移动(由0.25~0.42移至0.32~0.52),使得近变质带的温度界线将下移50~100℃。如此,成岩作用的最高温度不到60℃和绿片岩相的温度下限低于300℃,这与大量地质事实不符(大量沉积物在低于60℃条件下处于埋藏压实阶段,而代表绿片岩相开始的硬绿泥石在≥300℃出现,黑云母在420℃出现(Bucher et al.,1994))。说明近变质带界线由0.25~0.42到0.32~0.52的移动,不符合沉积物(碎屑岩)埋藏—压实—成岩—变质的地质实际情况。如果将近变质带界线由0.25~0.42移动到0.32~0.52,可在已发表的多达几十篇文章中出现这种与地质实际情况相悖的现象(Potel et al.,2016; Zanoni et al.,2016; Bozkaya et al.,2016; Goncuoglu et al.,2016; Tetiker et al.,2016; Abd Elmola et al.,2017; Mullis et al.,2017; Do Campo et al.,2017; Wang Hejing et al.,2018; Siissenberger et al.,2018; Maza et al.,2018; Montomoli et al.,2018; Baludikay et al.,2018)。

  • 由于:① Kisch标样不易获得,且其物相组成为混合物,其相对统计误差较大,其早期的近变质带界线较Kübler界线偏小0.04,后期才更正与Kübler界线一致; ② Warr et al.(1994)“标样”早期(1994~2015年)与Kübler近变质带界线假一致,而后期(2015年以后)大大偏离Kübler界线,故此,新的与Kübler界线标样一致并与阿尔卑斯有相同的大地构造背景和地质演化历史的伊利石结晶度标样的建立就十分有必要。我国青藏高原广泛发育了三叠系复理石(出露约90万km2,面积是阿尔卑斯三叠系复理石出露区的10倍以上),是阿尔卑斯三叠系复理石区古特提斯东缘的对应出露区,有着十分丰富的各种甚低级变质作用区、带,其伊利石结晶度Kübler指数(KI)分布范围从>1到<0.15,是建立伊利石结晶度标样的极好选区。该区产出的样品在区域大地构造和区域地球化学背景和时间因素上都与阿尔卑斯标样完全一致,可建成更好的(Himalaya)伊利石结晶度标样组,也可为我国碎屑岩甚低级变质作用研究奠定国际对比的基础。

  • 图3 近变质带界线由0.25~0.42(Küber指数)移动到0.32~0.52(Küber指数)而产生的变质相变化(据Wang Hejing et al.,2018

  • Fig.3 Variations of metamorphic facies resulted from the shift of anchizone boundaries from 0.25~0.42 (Küber Index) to 0.32~0.52 (Küber Index) (after Wang Hejing et al., 2018)

  • E、A、D—以近变质带界线0.25~0.42划分的浅变质带、近变质带和成岩带; EAD —以近变质带界线0.32~0.52划分的浅变质带、近变质带和成岩带; GS—绿片岩相; PA—绿纤石-阳起石相; PP—葡萄石-绿纤石相; Z—沸石相

  • E, A, D—Epizone, anchizone and diagenetic zone divided by the boundaries of 0.25~0.42; E, A, D —epizone, anchizone and diagenetic zone divided by the boundaries of 0.32~0.52; GS—greenschist facies; PA—pumpellyite-actionlite facies; PP—prehnite-pumpellyite facies; Z—zeolite facies

  • 3 仪器校正、粒度计算与X射线伊利石结晶度诸指数的定量关系式

  • 3.1 X射线衍射仪的校正

  • 需要指出的是,伊利石结晶度测量涉及1 nm单个衍射峰。X射线单个衍射峰是由5个基本要素构成的,即衍射峰位置(d值)、最大强度、半高宽、形态、不对称性(图4),每个要素都具有特定的物理学意义(Wang Hejing,1994; Wang Hejing et al.,2000a; Zhou Jian et al.,2003)。众所周知,任何衍射仪都需在d值校正后才可运行。然而,由于伊利石结晶度Kübler指数是由衍射峰半高宽描述的,d值的校正并不等于半高宽的校正。因此,在进行伊利石结晶度测试时,除了d值校正外,衍射仪还需进行半高宽的校正。

  • 3.2 粒度大小与Kübler指数的关系

  • 由于Kübler指数是建立在结晶学Scherrer(1918)公式基础上的,其结晶度数值与粒度大小直接相关。因而,Kübler指数近变质带的界线,也反映了伊利石在甚低级变质作用影响下生长出的粒度大小,即结晶学倒易c轴(c*,下同)方向的厚度。近变质带界线的伊利石c*方向厚度可由透射电镜实验测试,再经统计求得平均值,也可由Scherrer公式计算。由于Scherrer公式假定颗粒为球形或等轴粒形,与伊利石片状相差很大,且不考虑颗粒的生长分布情况(模式),因此,与伊利石实际生长情况不符,计算误差大,按照Kübler近变质带界线0.42~0.25°Δ2θ,常数K取0.94,由Scherrer公式计算出c *方向厚度为20~33 nm。本文运用充分考虑颗粒生长遵循Ostwald模式(Eberl et al.,1990)与对数正态分布模式的NEWMOD软件(Reynolds,1985,2017),消除应力作用的效应,进行理论计算,给出近变质带的理论粒度值为23~40 nm(图2)。值得指出的是,在TEM(透射电镜)实验测试伊利石c *方向厚度时,100%精准的c *定向尚有难度。通过定向岩石芯片所切制的“定向芯片”往往是偏离c *方向的,而一旦偏离,就是斜向切片,结果往往是增加c *方向的视厚度。多颗粒统计的平均值,实际上是制片技术偏离准确c *方向程度的衡量。随着岩石遭受的变质作用强度的增强,伊利石结晶度变好,颗粒增大,片状性质更明显,更难切制垂直c *晶片,更易斜切、增大斜距,统计的平均粒度便偏大。另一方面,由于黏土矿物颗粒细小,在透射电镜高能量电子束的轰击下,极不稳定(数秒内即可非晶化),拍到的往往是已经从三维尺度部分非晶化的照片(颗粒变小)。因此,透射电镜的数据也是有偏差的。这就是Merriman et al.(1999b)提出的伊利石近变质带c *方向厚度界线(22~38~52 nm)与NEWMOD理论计算值相差-1 nm、+5 nm、+12 nm的原因(图2)。样品RW-75的实测Kübler(KI)指数为1.979,由NEWMOD理论计算的c *方向厚度介于3 nm(KI =2.073)和4 nm(KI =1.64)之间(3.5 nm),即成核厚度,非常符合黏土矿物2∶1基本结构单元层(1个2∶1基本结构层厚度=1 nm)稳定存在的最低层数(≥3层)。NEWMOD计算的近变质带c *方向厚度界线值与TEM平均界线值的关系见图5。根据图5,可建立伊利石结晶度Kübler指数KIc *方向厚度D的关系式:

  • 图4 单个衍射峰的5个构成要素

  • Fig.4 Five basic parameters of a single X-ray diffraction peak

  • PP—衍射峰位置; I max—最大衍射强度; MN—半高宽; Sc—形态参数; As—不对称性参数(据Wang Hejing et al.,2000a

  • PP—Peak position; I max—maximum intensity; MN—full width at half maximum; Sc—shape coefficient; As—asymmetry (after Wang Hejing et al., 2000a)

  • D=7.9524KI-1.184
    (1)
  • R2=0.9995

  • 式中,D单位为nm,KI单位为°Δ2θ,CuKα。

  • 若以TEM平均近变质带c *方向厚度界线值(Merriman et al.,1999b)建立与KI的关系式,则KI指数1.979对应1.7 nm厚度(不到2个基本层)。显然这样小于2个基本层的颗粒是不存在的。由此说明了TEM实验数据存在较大的偏差,即大的偏大,小的偏小,存在不合理性; 而且,现有的TEM技术也很难得到晚期成岩带伊利石c *的照片(数据)。

  • 图5 Kübler指数KIc *方向厚度D的关系

  • Fig.5 The relationship between Kübler index KI and domain size D along c *

  • 黑圆圈为NEWMOD计算厚度数据; 黑菱形为TEM平均厚度数据; 虚线为DKI的指数负相关函数曲线

  • Full circles are calculated with NEWMOD; full diamonds are TEM statistics cited from Merriman and Peacor 1999b; dashed line is a negative exponent relationship between KI and D

  • 3.3 伊利石结晶度诸指数的关系式

  • 除Kübler指数外,用X射线方法描述伊利石结晶度的还有Weaver指数(Weaver,1960)和Weber指数(Weber,1972),由于Kübler指数、Weaver指数和Weber指数之间存在定量关系式(表1)(Wang Hejing et al.,2000b; 王河锦等,2007),因此,只需测量Kübler指数来描述伊利石结晶度(王河锦,1998; 王河锦等,1998),其他指数可由这些定量关系式转换而来。现在Weaver指数和Weber指数已很少使用。

  • 表1 Kübler(KI),Weaver(Wv)和Weber(Wb)指数的定量关系式(据Wang Hejing et al.,2000b; 王河锦等,2007

  • Table1 Relationships among Kübler (KI) , Weaver (Wv) and Weber (Wb) indices (after Wang Hejing et al., 2000b; Wang Hejin et al., 2007)

  • 注:*参考王河锦等(2007)中图1; **参考王河锦等(2007)中图2。

  • 4 成岩作用与变质作用的界线划分

  • 按照原有岩石在温度压力升高条件下形成新的矿物的变质作用定义,只有变质矿物开始形成时,变质作用(过程)才开始。因此,原有岩石中的沉积-成岩自生矿物和火山玻璃、火成矿物随着温度压力的升高产生新的变质矿物时,标志着变质作用的开始。对于碎屑岩而言,泥质岩类第一个变质反应与伊利石结晶度关系的确定,富铁镁质岩类第一个变质反应与伊利石结晶度关系的确定,成岩带膨胀层黏土矿物的分布与伊利石结晶度关系的确定是碎屑岩甚低级变质作用研究的重要内容,在以上三大关系确定的基础上得出以矿物分布为基础的成岩作用与变质作用的分界线,确定成岩带/近变质带/浅变质带各带的矿物组合类型,近变质带中混合矿物的类型,可为成岩/变质界线的划分提供以矿物学岩石学为依据的方案。

  • 碎屑岩按照化学成分的特点,主要为富Si-Al系列岩石,其在成岩→变质转变过程中,矿物发生的主要变化是成岩自生矿物向变质矿物的转变,如:蒙脱石±伊蒙混层±绿蒙混层±高岭石(成岩带)→伊利石±绿泥石±叶蜡石(近变质带)→白云母±绿泥石(浅变质带),达到绿片岩相时可出现白云母、钠云母、黑云母、黑硬绿泥石、硬绿泥石等矿物,即随着变质程度的加深混层矿物中膨胀层消失,层间电荷逐渐增加直至饱和。泥质岩中发生的第一个变质反应是高岭石+石英生成叶腊石的反应(Frey,1987b),而富铁镁系列的岩石,其第一个变质反应是海绿石+石英±绿泥石黑硬绿泥石+碱性长石+H2O+O2的反应(Frey et al.,1973)。控制黏土矿物形成、转变的因素有很多,除了温度和岩石化学系列外,压力、pH值、水介质等条件不同,引起的变质作用强度不同,对应的矿物组合不同,结晶度不同,结构参数不同。由于碎屑岩在低温条件下,岩石往往达不到完全封闭的系统状态,甚低级变质岩岩石成因格子的分析达不到经典的绿片岩相及其以上变质相的研究程度,所以以某种矿物出现或消失划分变质带的方法一直使用至今。

  • Wang Hejing et al.(2018)指出碎屑岩经成岩作用形成的成岩指示矿物为:蒙脱石、伊蒙混层、绿蒙混层、1M伊利石、高岭石。此外还有海绿石、高蒙混层。碎屑岩受甚低级变质作用影响形成的变质指示矿物为:钠云母、叶腊石、黑硬绿泥石、硬绿泥石、黑云母和石墨; 基性火山碎屑岩受甚低级变质作用的影响产生的变质指示矿物为:浊沸石、葡萄石、绿纤石、阳起石。值得注意的是高岭石和钠云母常常会出现在近变质带中,这也是近变质带的一个特点。

  • 根据这些指示矿物及其分布,结合伊利石结晶度的变化就可划分出一个地区碎屑岩中的近变质带/成岩带的界线,即成岩作用/变质作用的界线。这是定性物相分析与定量结晶度分析相结合的划分方案。

  • 关于绿泥石,就其成因而言,可在风化到沉积到成岩到低温变质的过程中形成(Frey,1987; Chamley,1989)。因此,绿泥石像石英一样可称为“贯通”矿物。铁镁质矿物在地表风化过程中通过水化很容易风化成绿泥石,长英质矿物也可在风化、沉积、成岩过程中通过增加铁镁质和水化形成自生绿泥石,沉积物(包括自生矿物)在埋藏过程中随埋藏深度的增加,引起温度压力增加最终可形成新的变质的绿泥石。因此,并不是所有绿泥石都是变质绿泥石,也不能把绿泥石当成变质指示矿物。正是绿泥石可在沉积—成岩—变质的过程中大量出现在碎屑岩中,其与环境的平衡生长(通过成分与结构的调整)记录了环境的各种温压和介质条件,从而使得绿泥石成为了能够反映成岩到甚低级、到绿片岩相变质过程的有效地质温度计。

  • 另一个值得再提的是绢云母(Sericite)。在地质学领域,绢云母除了用于描述热液蚀变绢云母化外,还用于低温变质研究中,用绢云母-绿泥石组合描述绿片岩相的变质级别。然而,1998年国际矿物学会矿物命名委员会云母分会15位委员联名在4个国际矿物学刊物——《American Mineralogist》《Canadian Mineralogist》《Mineralogical Magazine》《Clays and Clay Minerals》)上发表了云母类矿物的新分类方案,该方案取消了绢云母(Sericite)(Rieder et al.,1998)。以前发表的描述为绢云母(Sericite)的“矿物”,实际上是伊利石,或>95%的“绢云母”都落入到了伊利石的分布区内。因此,绢云母-绿泥石组合应该为伊利石-绿泥石组合,而“伊利石向绢云母的转变”自然是不存在的。

  • 5 青藏高原松潘-甘孜、巴颜喀拉造山带三叠系复理石区的甚低级变质作用与变质带

  • 根据1400多个可进行国际对比的青藏高原三叠系复理石黏土矿物物相组成、伊利石结晶度、绿泥石结晶度、矿物温度计、K-云母 b 0值数据,较完整揭示了青藏高原三叠系复理石中保留的十几个成岩带、近变质带和浅变质带(Wang Hejing et al.,2008201220132018)。这是阿尔卑斯-喜马拉雅三叠系复理石甚低级变质作用研究中的第一个完整的变质带分布图。它揭示了青藏高原从古特提斯洋到喜马拉雅造山过程中甚低级变质所起的作用,也为建立成岩作用与变质作用界线划分方案奠定了实例基础。这一研究成果表明了在青藏高原北缘至青藏高原东北出露的三叠系并非全是区域低绿片岩相变质(董申保等,1986; 沈其韩等,2016),而是一个汇聚了沉积岩(成岩带)到浅变质岩(绿片岩相)的区域。由北西向东南龙门山断裂带,总体从成岩作用区转变到绿片岩相变质作用区,成岩作用与变质作用的界线穿越地层界线,同时穿越褶皱轴线(图6)。说明甚低级变质不是埋藏变质作用引起的,而是构造增厚-埋藏产生温压升高引起的,称为“构造-埋藏变质作用”或“构造-埋藏变质模式”。这是除了唯一的“埋藏变质”解释模式外,甚低级变质作用新的成因解释模式。

  • 图6 松潘-甘孜造山带和巴颜喀拉造山带变质带分布图(据Wang Hejing et al.,2008201220132018修改)

  • Fig.6 Distribution of metamorphic zones in Songpan-Garzê and Bayan Har orogens (modified from Wang Hejing et al., 2008, 2012, 2013, 2018)

  • (a)—成岩带-变质带分布图;(b)—变质带与褶皱(背斜)轴关系图; 1—壤塘浅变质带,; 2—丹巴-金川浅变质带; 3—小金近变质带; 4—两河口近变质带; 5—松潘近变质带; 6—久治近变质带; 7—兴海-同德-泽库近变质带; 8—扎陵湖-鄂陵湖近变质带; 9—巴颜喀拉成岩带

  • (a) —Distribution of diagenetic zone and metamorphic zones; (b) —relation between metamorphic zones and folding axes (anticline) ; 1—Rangtang epizone; 2—Danba-Jinchuan epizone; 3—Xiaojin anchizone; 4—Lianghekou anchizone; 5—Songpan anchizone; 6—Jiuzhi anchizone; 7—Xinghai-Tongde-Zeku anchizone; 8—Zhalinghu-elinghu anchizone; 9—Bayan Har diagenetic zone

  • 图6表明,松潘-甘孜造山带和巴颜喀拉造山带的三叠系复理石仅局部(约40%)遭受了低级到甚低级变质作用的影响,而大部分地区依然处于成岩作用阶段,尚未变质。这与2016版中国变质地质图所划分的松潘-甘孜造山带和巴颜喀拉造山带都属于区域中低压低绿片岩相变质不同,也与1986年版中国变质地质图所划分的区域绿片岩相型低温动力变质不同。

  • 6 相关科学术语与引用

  • 1993年7月5~17日,在西安召开了地科联294项目的“Very low-grade metamorphism: Mechanisms and geological applications”国际研讨会,会议将Very Low-Grade Metamorphism翻译为甚低级变质作用。会议组委会成员有沈其韩(中国科学院院士,变质岩专家)、马福臣(时任国家自然科学基金委地学部副主任)、 Day H W(美国加利福尼亚大学教授,变质岩专家)、 Liou J G(美国斯坦福大学教授,《Low Temperature Metamorphism》作者之一)、 Robinson D(英国布里斯托大学教授,《Low Grade Metamorphism》编者之一,作者之一,长期担任过《Journal of Metamorphic Geology》副主编)、 Bevins R E(英国威尔士国家博物馆,博士)。地科联294项目(Very Low-Grade Metamorphism)伊利石结晶度小组负责人以色列Kisch H J教授参加了会议。

  • 根据科学术语翻译的优先性、国际会议的广泛影响性和专家权威性原则,本文沿用1993年地科联294项目会议翻译的术语“甚低级变质作用”(图7)(注:1995年,出现将“Very low-grade metamorphism”翻译为“极低级变质作用”,并出现“成岩变质作用”一词,2004年还出现“伊利石向绢云母转变”的提法)。

  • 7 结论

  • (1)碎屑岩甚低级变质作用的研究属于定量分析的科学范畴,其科学术语的使用包括翻译须遵循科学界优先性的基本规则。

  • (2)用肉眼和光学偏光显微镜无法观察到甚低级变质作用所引发的碎屑岩中黏土矿物颗粒的物相及其组成、结晶度和结构的变化; X-射线衍射仪是碎屑岩甚低级变质作用研究最常规有效的仪器。

  • (3)以指示矿物结合伊利石结晶度可进行碎屑岩成岩作用与变质作用界线的划分,泥质碎屑岩成岩指示矿物有:蒙脱石、伊蒙混层、绿蒙混层、高岭石/蒙脱石混层、高岭石、海绿石、1M伊利石等,变质指示矿物有:叶腊石、钠云母、黑硬绿泥石、黑云母、硬绿泥石、石墨等。

  • 图7 地科联294项目西安研讨会论文摘要封面与对应的中文页面

  • Fig.7 Cover page of abstracts of Xi'an international symposium of IGCP 294 and corresponding Chinese page

  • (4)近变质带以阿尔卑斯三叠系复理石伊利石结晶度标样划分,其Kübler指数为0.42~0.25°Δ2θ,CuKα; 近变质带的温度范围约为150~200℃至350~400℃。

  • (5)建立新的与Kübler创立的阿尔卑斯近变质带界线一致的喜马拉雅(Himalaya)伊利石结晶度标样十分重要、十分有必要。

  • (6)甚低级变质作用的成因模式有待进一步发展。

  • 致谢:感谢二位审者对本文提出的宝贵意见和建议。

  • 注释

  • ❶ 地科联294项目.1993. 甚低级变质作用:机制及地质应用. 会议论文摘要(英中文).西安.

  • 参考文献

    • Abad I, Nieto F, Gutierrez-Alonso G, Murphy J B, Braid J A, Rodriguez-Navarro A B. 2012. Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia, Canada). Swiss Journal of Geosciences, 105(2): 283~297.

    • Abd Elmola A, Charpentier D, Buatier M, Lanari P, Monie P. 2017. Textural-chemical changes and deformation conditions registered by phyllosilicates in a fault zone (Pic de Port Vieux thrust, Pyrenees). Applied Clay Science, 144: 88~103.

    • Amireh B S. 2020. Weathering, recycling, hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana Lower Cambrian—Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228.

    • An Jiali, Wang Hejin, Yuan Lei. 2018. Very low-grade metamorphism of the Precambrian along profile Kaili-Rongjiang-Congjiang, southeast of Guizhou Province, China. Acta Petrologica Sinica, 34(3): 669~684 (in Chinese with English abstract).

    • Anderson R B, Long S P, Horton B K, Calle A Z, Soignard E. 2021. Late Paleozoic Gondwanide deformation in the Central Andes: insights from RSCM thermometry and thermal modeling, southern Bolivia. Gondwana Research, 94: 222~242.

    • Arkai P. 1991. Chlorite crystallinity—an empirical-approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Paleozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9(6): 723~734.

    • Arkai P, Ghabrial D S. 1997. Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bukk Mountains, northeast Hungary. Clay Minerals, 32(2): 205~222.

    • Baludikay B K, Francois C, Sforna M C, Beghin J, Cornet Y, Storme J Y, Fagel N, Fontaine F, Littke R, Baudet D, Delvaux D, Javaux E J. 2018. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). International Journal of Coal Geology, 191: 80~94.

    • Bi Xianmei, Mo Xuanxue. 2004. Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Science Frontiers, 11(1): 287~294 (in Chinese with English abstract).

    • Bisevac V, Balogh K, Balen D, Tibljas D. 2010. Eoalpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia). Geologica Carpathica, 61(6): 469~481.

    • Bozkaya O, Yalcin H, Goncuoglu M C. 2012. Diagenetic and very low-grade metamorphic characteristics of the Paleozoic series of the Istanbul Terrane (NW Turkey). Swiss Journal of Geosciences, 105(2): 183~205.

    • Bozkaya O, Gunal-Turkmenoglu A, Goncuoglu M C, Unluce O, Yilmaz I O, Schroeder P A. 2016. Illitization of Late Devonian-Early Carboniferous K-bentonites fromwestern Pontides, NW Turkey: implications for their origin and age. Applied Clay Science, 134(3): 257~274.

    • Bucher K, Frey M. 1994. Petrogenesis of Metamorphic Rocks. London: Springer-Verlag, 99~146.

    • Brant Campos L F B, Guimaraes E M, Barroso R H G, Gomes A W. 2015. Influence of pressure and temperature in the illite crystallinity in Proterozoic sequences: North of Distrito Federal and Goias, Brazil. Brazilian Journal of Geology, 45(3): 383~398.

    • Chamley H. 1989. Clay Sedimentology. Hongkong: Springer-Verlag, 20~562.

    • Coombs D S. 1961. Some recent work on the lower grade of metamorphism. The Australian Journal of Science, 24(5): 203~215.

    • Coombs D S, Ellis A J, Fyfe W S, Taylor A M. 1959. The zeolite facies with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17: 53~107.

    • Cruz M D R, Jimenez P R. 2002. Correlation between crystallochemical parameters of phyllosilicates and mineral facies in very low-grade metasediments of the Betic Cordilleras, Spain: a synthesis. Clay Minerals, 37(1): 169~185.

    • Das A K, Khaoash S, Mishra P, Mohapatra B K, Mohanty J. 2021. Chromite-bearing quartzite in the southern fringe of Singhbhum Craton around Ghutrigaon, eastern India: petrogenetic implication. Geological Journal, 56(7): 3472~3496.

    • Do Campo M, Nieto F, Albanesi G L, Ortega G, Monaldi C R. 2017. Outlining the thermal posdepositional evolution of the Ordovician successions of northwestern Argentina by clay mineral analysis, chlorite geothermometry and Kubler index. Andean Geology, 44(2): 179~212.

    • Dong Shenbao, Shen Qihan, Sun Dazhong. 1986. Metamorphic Map of China (1: 40000000). Beijing: Geological Publishing House (in Chinese).

    • Eberl D D, Środoń J, Kralik M, Taylor B, Peterman Z E. 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248: 474~477.

    • Ellero A, Leoni L, Marroni M, Nicolae I, Pandolfi L, Sartori F. 2002. Deformation and metamorphism in the Fenes Nappe (southern Apuseni Mountains, Romania). Comptes Rendus Geoscience, 334(5): 347~354.

    • Fagereng A, Cooper A F. 2010. The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand. Journal of Metamorphic Geology, 28(9): 935~954.

    • Frey M. 1987a. Very low-grade metamorphism of clastic sedimentary rocks. In: Frey M, ed. Low Temperature Metamorphism. New York: Chapman and Hall, 9~58.

    • Frey M. 1987b. The reaction-isograd kaolinite+quartz=pyrophyllite+H2O, Helvetic Alps Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 67: 1~11.

    • Frey M, Roggwill P, Schindle C. 1973. Progressive low-grade metamorphism of glauconite-bearing formations, Helvetic Alps, Switzerland. Contributions to Mineralogy and Petrology, 39: 185~218.

    • Frey M, Robinson D. 1999. Low-Grade Metamorphism. Oxford: Blackwell Science Ltd.

    • Girard M, Steck A, Thelin P. 1999. The Dutung-Thaktote extensional fault zone and nappe structures documented by illite crystallinity and clay-mineral paragnesis in the Tethys Himalaya between SpitiRiver and Tso Morari, NW India. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(3): 419~430.

    • Goncuoglu M C, Gunal-Turkmenoglu A, Bozkaya O, Unluce-Yucel O, Okuyucu C, Yilmaz I O. 2016. Geological features and geochemical characteristics of Late Devonian—Early Carboniferous K-bentonites from northwestern Turkey. Clay Minerals, 51(4): 539~562.

    • Gonzalez V M, Carbonell P J T, Turienzo M M. 2021. Structural overprinting and style of deformation at sierra Beauvoir and sierra de Apen: a geometric and kinematic model for the evolution of the internal thrust-fold belt, Fuegian Andes, Argentina. Journal of Southern American Earth Sciences, 112(part 1): 103575.

    • Hara H, Wakita K, Ueno K, Kamata Y, Hisada K, Charusiri P, Charoentitirat T, Chaodumrong P. 2009. Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: constraints from melange kinematics and illite crystallinity. Gondwana Research, 16(2): 310~320.

    • Hu Daqian, Yu Jiejiang. 2009. Study of illite in the Upper Paleozoic, in northestern Inner Mongolia. Acta Petrologica Sinica, 25(8): 2017~2022 (in Chinese with English abstract).

    • Katagas C, Tsoliskatagas P, Baltatzis E. 1991. Chemicalmineralogy and illite crystallinity in low-grade metasediments, Zarouchla Group, northern Peloponnesus, Grece. Mineralogy and Petrology, 44(1-2): 57~71.

    • Kisch H J. 1987. Correlation between indicators of very low-grade metamorphism. In: Frey M, eds. Low Temperature Metamorphism. New York: Chapman and Hall, 227~300.

    • Kisch H J. 1990. Calibration of the anchizone—a critical comparasion of illite crystallinity scales used for definition. Journal of Metamorphic Geology, 8(1): 31~46.

    • Kisch H J. 1991a. Development of slaty cleavage and degree of very-low-grade metamorphism—a review. Journal of Metamorphic Geology, 9(6): 735~750.

    • Kisch H J. 1991b. Illite crystallinity: recommendations on samples preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9(6): 665~670.

    • Kisch H J, Arkai P, Brime C. 2004. On the calibration of the illite Kubler index (illite "crystallinity"). Schweizerische Mineralogische und Petrographische Mitteilungen, 84: 323~331.

    • Kübler B. 1964. Les argiles, indicateurs de métamorphisme. Revue Instituté de la Francais de Pétrole, 19: 1093~1112.

    • Kübler B. 1967. Anchimetamorphisme et schistosite. Bulletin Centre Recherche Pau-SNPA, 1: 259~278.

    • Kübler B. 1968. Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bulletin Centre Recherche Pau-SNPA, 2: 385~397.

    • Liu Yiqun. 1996. The boundary between diagenesis and metamorphism-a discussion with reference to zeolite facies. Geological Review, 42(3): 215~222 (in Chinese with English abstract).

    • Lowey G W. 2021. Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the northern Cordillera of Alaska and Yukon. AIMS Geosciences, 7(3): 355~389.

    • Makeen Y M, Abdullah W H, Ayinla H A, Hakimi M H, Sia S G. 2016. Sedimentology, diagenesis and reservoir quality of the upper Abu Gabra Formation sandstones in the Fula sub-basin, Muglad basin, Sudan. Marine and Petroleum Geology, 77: 1227~1242.

    • Maza S N, Collo G, Morata D, Lizana C, Camus E, Taussi M, Renzulli A, Mattioli M, Godoy B, Alvear B, Pizarro M, Ramirez C, Rivera G. 2018. Clay mineral associations in the clay cap from the Cerro Pabellon blind geothermal system, Andean Cordillera, Northern Chile. Clay Minerals, 53(2): 117~141.

    • Meere P A. 1995. Sub-greenschist facies metamorphism from the Variscides of SW Ireland—an Early syn-extensional peak thermal event. Journal of the Geological Society, 152: 511~521.

    • Merriman R J. 1991. Phyllosilicates as indicators of very low-grade metamorphism and diagenesis-introduction. Journal of Metamorphic Geology, 9(6): 663~664.

    • Merriman R J, Frey M. 1999a. Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 61~107.

    • Merriman R J, Peacor D R. 1999b. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 10~60.

    • Montomoli C, Iaccarino S, Simonetti M, Lezzerini M, Carosi R. 2018. Structural setting, kinematics and metamorphism in a km-scale shear zone in the Inner Nappes of Sardinia (Italy). Italian Journal of Geosciences, 137(2): 294~310.

    • Mullis J, Rahn M K, Schwer P, de Capitani C, Stern W B, Frey M. 2002. Correlation of fluid inclusion temperatures with illite "crystallinity" data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps. Symposium on Diagenesis and Low-Grade Metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2): 325~340.

    • Mullis J, Mahlmann R F, Wolf M. 2017. Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 degrees C), illite Kithler-Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science, 143: 307~319.

    • Offler R, McKnight S, Morand V. 1998. Tectonothermal history of the western Lachlanfold belt, Australia: insights from white mica studies. Journal of Metamorphic Geology, 16(4): 531~540.

    • Ospinara E. 1968. Thermodynamicaspects of origin of oil gas and coal. Magyar Kemikusok Lapja, 23 (2): 69.

    • Pepiper G, Kotopouli C N. 1981. Very low-grade metamorphism of Triassic volcanics, West Hellenic Nappes, southern Peloponnese, Greece-summary. Geological Society of America Bulletin, 92 (12): 914~916.

    • Potel S, Maison T, Maillet M, Sarr A C, Doublier M P, Trullenque G, Mahlmann R F. 2016. Reliability of very low-grade metamorphic methods to decipher basin evolution: case study from the Markstein basin (southern Vosges, NE France). Applied Clay Science, 134(3): 175~185.

    • Ren Leifu, Chen Yunqing. 1984. On the division of diagenesis stages according to the transformation of clay minerals. Oil & Gas Geology, 5(4): 325~334 (in Chinese with English abstract).

    • Reynolds R C Jr. 1985. NEWMOD@A computer program for the calculation of one-dimensional diffraction patterns of mixed layered clays. R. C. Reynolds, Jr. , 8 Brook Dr. , Hanover, USA, release 2017.

    • Rieder M, Cavazzini G, D'Yakonov Y, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval P V, Müller G, Neiva A M R, Radoslovich E W, Robert J-L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. Canadian Mineralogist, 46(5): 586~595.

    • Ruiz G M H, Helg U, Negro F, Adatte T, Burkhard M. 2008. Illite crystallinity patterns in the Anti-Atlas of Morocco. Swiss Journal of Geosciences, 101(2): 387~395.

    • Scherrer P. 1918. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr. Math. Phys. 2: 98~100.

    • Shen Qihan, Geng Yuansheng, Liu Fulai. 2016. Metamorphic Map of China (1: 50000000), Beijing: Geological Publishing House (in Chinese).

    • Shen Qihan, Geng Yuansheng, Song Huixia. 2018. Strengthening the study of very low-grade metamorphism. Acta Petrologica et Mineralogica, 37(2): 342~348.

    • Siissenberger A, Wemmer K, Schmidt S T. 2018. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Applied Clay Science, 165: 52~63.

    • Smithard T, Bordy E M, Reid D. 2015. The effect of dolerite intrusions on the hydrocarbon potential of the Lower Permain Whitehill Formation (Karoo supergroup) in South Africa and southern Namibia: a preliminary study. South African Journal of Geology, 118(4): 489~510.

    • Sokalska E T, Dubinska E, Kapron G, Kozubowski J A, Walski M. 2008. Clay minerals from Permo-Carboniferous very low-grade metamorphic rocks from the central part of the Fore Sudetic monocline (western Poland). Clay Minerals, 43(4): 561~574.

    • Suo Shutian, You Zhendong, Zhou Hanwen. 1995. Very-low-grade metamorphism and metamorphic belt: a review. Geological Science and Technology Information, 14(1): 1~8 (in Chinese with English abstract).

    • Teichmuller M. 1974. The origin and transformation of bituminous substances in coals in relation to the origin and transformation of petroleum. Fortschritte in der Geologie von Rheinland und Westfalen, 24: 65~112.

    • Tetiker S, Yalcin H, Bozkaya O. 2016. Diagenesis/metamorphism history of Lower Triassic Cigli Group rocks in Uludere-Uzungecit (Sirnak) area (eastern Part of the Southeast Anatolian Autochthone). Turkiye Jeoloji Bulteni-Geological Bulletin of Turkey, 59(3): 323~340.

    • Vazquez M, Asebriy L, Azdimousa A, Jabaloy A, Booth-Rea G, Barbero L, Mellini M, Gonzalez-Lodeiro F. 2013. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian passive margin: the Tanger-Ketama Unit (External Rif, northern Morocco). Geologica Acta, 11(3): 277~293.

    • Wang Hejin. 1998. On the error calculation of the Kubler index of illite crystallinity. Geological Review, 44(3): 328~335 (in Chinese with English abstract).

    • Wang Hejin, Zhou Jian. 1998. On theindices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395~405 (in Chinese with English abstract).

    • Wang Hejin, Tao Xifeng, Rahn M. 2007. Determination ofconstants C1-C14 in 14 equations of the relationships between the Kübler, weaver and weber indices and their applications. Geological Journal of China Universities, 13(3): 561~565 (in Chinese with English abstract).

    • Wang Hejin, Zhou Zhao, Wang Ling, Yuan Lei, An Jiali, Huang Baoling. 2015. Calibration of illite crystallinity Kübler index and determination of anchizone. Acta Geologica Sinica, 89(2): 406~411 (in Chinese with English abstract).

    • Wang Hejing, Frey M, Stern W B. 1996. Diagenesis and metamorphism of clay minerals in the Helvetic Alps of eastern Switzerland. Clays and Clay Minerals, 44: 96~112.

    • Wang Hejing, Zhou Jian. 2000a. Data smoothing and distortion of X-ray diffraction peaks. I. Theory. Journal of Applied Crystallography, 33: 1128~1135.

    • Wang Hejing, Zhou Jian. 2000b. The relationships between the Kübler index, Weaver index and Weber index of illite crystallinity and their applications. Schweizerische Mineralogische und Petrographische Mitteilungen, 80: 187~198.

    • Wang Hejing, Rahn M, Tao Xiaofeng, Zheng Nan, Xu Tingjing. 2008. Diagenesis and metamorphism of Triassic flysch along profile Zoige-Lushan, northwest Sichuan, China. Acta Geologica Sinica (English Edition), 82(4): 917~926.

    • Wang Hejing, Ma Yongsheng, Zhou Jian, Xu Tingjing. 2012. Diagenesis and very low-grade metamorphism in a 7012 m-deep well Hongcan 1, eastern Tibetan plateau. Swiss Journal of Geosciences, 105(2): 249~261.

    • Wang Hejing, Rahn M, Zhou Jian, Tao Xiaofeng. 2013. Tectonothermal evolution of the Triassic flysch in the Songpan-Garzê orogen, eastern Tibetan plateau. Tectonophysics, 608: 505~516.

    • Wang Hejing, Rahn M, Zhou Jian. 2018. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau. Tectonophysics, 723: 277~287.

    • Warr L N. 1996. Standardized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of souther New Zealand. European Journal of Mineralogy, 8: 115~127.

    • Warr L N, Rice A H N. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12: 141~152.

    • Warr L N, Ferreiro Mählmann R. 2015. Recommendations for Kubler Index standardization. Clay Minerals, 50: 283~286.

    • Warr L N, Cox S C. 2016. Correlating illite (Kübler) and chlorite (Árkai) “crystallinity” indices with metamorphic mineral zones of the South Island, New Zealand. Applied Clay Science, 134: 164~174.

    • Weaver C E. 1960. Possible use of clay minerals in search for oil. Bulletin American Association of Petroleum Geologists, 44: 1505~1518.

    • Weber K. 1972. Note on the determination of illite crystallinity. Neues Jahrbuch fur Mineralogie Monatshefte, 6: 267~276.

    • Wolf M. 1995. Reflectance and composition of dispersed organic matter at DSDP Leg 67 Hole. Palaeontologische Zeitschrift, 69(1-2): 1~6.

    • Wonglak S, Sutthirat C, Assawincharoenkij T. 2020. Petrochemistry of Lan Sang metamorphic suites. Scienceasia, 46(4): 481~489.

    • Wu Hanquan, Feng Yuemei, Song Suguang. 1993. Metamorphism and deformation of blueschist belts and their tectonic implications, north Qilian Mountains, China. Journal of Metamorphic Geology, 11(4): 523~536.

    • Wu Hanquan, Tian Bai, Song Suguang, Su Li. 1992. Very low grade metamorphism-on achievements and problems. Northwest Geosciences, 13(2): 161~178 (in Chinese with English abstract).

    • Zaheer M, Khan M S, Mughal M S, Abbasi N. 2017. Petrography, provenance, diagenesis and depositional environment of Murree Formation in Jhelum Valley, Sub Himalayas, Azad Jammu and Kashmir, Pakistan. Arabian Journal of Geosciences, 10(23): 514.

    • Zanoni G, Segvic B, Moscariello A. 2016. Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon Basin) and its impact on regional geology and basin evolution history. Applied Clay Science, 134(3): 186~209.

    • Zhang Lifei. 1992. Burialmetamorphism of the Ordos basin in northern Shaanxi. Acta Geologica Sinica, 66(4): 339~349 (in Chinese with English abstract).

    • Zhao Mengwei. 1995. Theindicators and boundary for separating diagenesis from burial metamorphism. Geological Review, 41(3): 238~244 (in Chinese with English abstract).

    • Zhao Zongpu. 1984. Diagenesis, burial metamorphism and anchimetamorphism. Geological Review, 30(5): 501~509 (in Chinese with English abstract).

    • Zhou Jian, Wang Hejin. 2003. Thephysical meanings of 5 basic parameters for an X-Ray diffraction peak and their application. Chinese Journal of Geochemistry, 22(1): 38~44.

    • Zhu Guang. 1995. Grading the extremely-low metamorphic clastic sedimentary rocks by the crystallinity of the illite. Petroleum Exploration and Development, 22(1): 33~34 (in Chinese with English abstract).

    • 安佳丽, 王河锦, 苑蕾. 2018. 黔东南凯里-榕江-从江前寒武系甚低级变质作用研究. 岩石学报, 34(3): 669~684.

    • 毕先梅, 莫宣学. 2004. 成岩—极低级变质—低级变质作用及有关矿产. 地学前缘, 11(1): 287~294.

    • 董申保, 沈其韩, 孙大中. 1986. 中国变质地质图(1∶400万). 北京: 地质出版社.

    • 胡大千, 于介江. 2009. 内蒙古东北地区上古生界伊利石研究. 岩石学报, 25(8): 2017~2022.

    • 柳益群. 1996. 关于成岩作用与变质作用界线的讨论: 从沸石相谈起. 地质论评, 42(3): 215~222.

    • 任磊夫, 陈芸菁. 1984. 从粘土矿物的转变讨论沉积成岩到变质过程中的阶段划分. 石油与天然气地质, 5(4): 325~334.

    • 沈其韩, 耿元生, 刘福来. 2016. 中国变质地质图(1∶500万). 北京: 地质出版社.

    • 沈其韩, 耿元生, 宋会侠. 2018. 加强极低级变质作用研究. 岩石矿物学杂志, 37(2): 342~348.

    • 索书田, 游振东, 周汉文. 1995. 极低级变质作用和极低级变质带综述. 地质科技情报, 14: 1~8.

    • 王河锦. 1998. 关于伊利石结晶度指数的误差计算. 地质论评, 44(3): 328~335.

    • 王河锦, 周健. 1998. 关于伊利石结晶度诸指数的评价. 岩石学报, 14(3): 395~405.

    • 王河锦, 陶晓风, Rahn M. 2007. 伊利石结晶度Kübler, Weaver 和Weber 指数关系式常数的确定与应用. 高校地质学报, 13(3): 561~565.

    • 王河锦, 周钊, 王玲, 苑蕾, 安佳丽, 黄宝玲. 2015. 伊利石结晶度Kübler指数的校正与近变质带的确定. 地质学报, 89(2): 406~411.

    • 吴汉泉, 田白, 宋述光, 苏犁. 1992. 多种地球动力学背景条件下甚低级变质作用的一些问题. 西北地质科学, 13(2): 161~178.

    • 张立飞. 1992. 陕北鄂尔多斯盆地埋藏变质作用研究. 地质学报, 66(4): 339~349.

    • 赵孟为. 1995. 划分成岩作用与埋藏变质作用的指标及其界线. 地质论评, 41(3): 238~244.

    • 赵宗溥. 1984. 成岩作用、埋藏变质作用与近变质作用. 地质论评, 30(5): 501~509.

    • 朱光. 1995. 用伊利石结晶度确定碎屑沉积岩甚低级变质等级. 石油勘探与开发, 22(1): 33~34.

  • 参考文献

    • Abad I, Nieto F, Gutierrez-Alonso G, Murphy J B, Braid J A, Rodriguez-Navarro A B. 2012. Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia, Canada). Swiss Journal of Geosciences, 105(2): 283~297.

    • Abd Elmola A, Charpentier D, Buatier M, Lanari P, Monie P. 2017. Textural-chemical changes and deformation conditions registered by phyllosilicates in a fault zone (Pic de Port Vieux thrust, Pyrenees). Applied Clay Science, 144: 88~103.

    • Amireh B S. 2020. Weathering, recycling, hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana Lower Cambrian—Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228.

    • An Jiali, Wang Hejin, Yuan Lei. 2018. Very low-grade metamorphism of the Precambrian along profile Kaili-Rongjiang-Congjiang, southeast of Guizhou Province, China. Acta Petrologica Sinica, 34(3): 669~684 (in Chinese with English abstract).

    • Anderson R B, Long S P, Horton B K, Calle A Z, Soignard E. 2021. Late Paleozoic Gondwanide deformation in the Central Andes: insights from RSCM thermometry and thermal modeling, southern Bolivia. Gondwana Research, 94: 222~242.

    • Arkai P. 1991. Chlorite crystallinity—an empirical-approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Paleozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9(6): 723~734.

    • Arkai P, Ghabrial D S. 1997. Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bukk Mountains, northeast Hungary. Clay Minerals, 32(2): 205~222.

    • Baludikay B K, Francois C, Sforna M C, Beghin J, Cornet Y, Storme J Y, Fagel N, Fontaine F, Littke R, Baudet D, Delvaux D, Javaux E J. 2018. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). International Journal of Coal Geology, 191: 80~94.

    • Bi Xianmei, Mo Xuanxue. 2004. Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Science Frontiers, 11(1): 287~294 (in Chinese with English abstract).

    • Bisevac V, Balogh K, Balen D, Tibljas D. 2010. Eoalpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia). Geologica Carpathica, 61(6): 469~481.

    • Bozkaya O, Yalcin H, Goncuoglu M C. 2012. Diagenetic and very low-grade metamorphic characteristics of the Paleozoic series of the Istanbul Terrane (NW Turkey). Swiss Journal of Geosciences, 105(2): 183~205.

    • Bozkaya O, Gunal-Turkmenoglu A, Goncuoglu M C, Unluce O, Yilmaz I O, Schroeder P A. 2016. Illitization of Late Devonian-Early Carboniferous K-bentonites fromwestern Pontides, NW Turkey: implications for their origin and age. Applied Clay Science, 134(3): 257~274.

    • Bucher K, Frey M. 1994. Petrogenesis of Metamorphic Rocks. London: Springer-Verlag, 99~146.

    • Brant Campos L F B, Guimaraes E M, Barroso R H G, Gomes A W. 2015. Influence of pressure and temperature in the illite crystallinity in Proterozoic sequences: North of Distrito Federal and Goias, Brazil. Brazilian Journal of Geology, 45(3): 383~398.

    • Chamley H. 1989. Clay Sedimentology. Hongkong: Springer-Verlag, 20~562.

    • Coombs D S. 1961. Some recent work on the lower grade of metamorphism. The Australian Journal of Science, 24(5): 203~215.

    • Coombs D S, Ellis A J, Fyfe W S, Taylor A M. 1959. The zeolite facies with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17: 53~107.

    • Cruz M D R, Jimenez P R. 2002. Correlation between crystallochemical parameters of phyllosilicates and mineral facies in very low-grade metasediments of the Betic Cordilleras, Spain: a synthesis. Clay Minerals, 37(1): 169~185.

    • Das A K, Khaoash S, Mishra P, Mohapatra B K, Mohanty J. 2021. Chromite-bearing quartzite in the southern fringe of Singhbhum Craton around Ghutrigaon, eastern India: petrogenetic implication. Geological Journal, 56(7): 3472~3496.

    • Do Campo M, Nieto F, Albanesi G L, Ortega G, Monaldi C R. 2017. Outlining the thermal posdepositional evolution of the Ordovician successions of northwestern Argentina by clay mineral analysis, chlorite geothermometry and Kubler index. Andean Geology, 44(2): 179~212.

    • Dong Shenbao, Shen Qihan, Sun Dazhong. 1986. Metamorphic Map of China (1: 40000000). Beijing: Geological Publishing House (in Chinese).

    • Eberl D D, Środoń J, Kralik M, Taylor B, Peterman Z E. 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248: 474~477.

    • Ellero A, Leoni L, Marroni M, Nicolae I, Pandolfi L, Sartori F. 2002. Deformation and metamorphism in the Fenes Nappe (southern Apuseni Mountains, Romania). Comptes Rendus Geoscience, 334(5): 347~354.

    • Fagereng A, Cooper A F. 2010. The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand. Journal of Metamorphic Geology, 28(9): 935~954.

    • Frey M. 1987a. Very low-grade metamorphism of clastic sedimentary rocks. In: Frey M, ed. Low Temperature Metamorphism. New York: Chapman and Hall, 9~58.

    • Frey M. 1987b. The reaction-isograd kaolinite+quartz=pyrophyllite+H2O, Helvetic Alps Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 67: 1~11.

    • Frey M, Roggwill P, Schindle C. 1973. Progressive low-grade metamorphism of glauconite-bearing formations, Helvetic Alps, Switzerland. Contributions to Mineralogy and Petrology, 39: 185~218.

    • Frey M, Robinson D. 1999. Low-Grade Metamorphism. Oxford: Blackwell Science Ltd.

    • Girard M, Steck A, Thelin P. 1999. The Dutung-Thaktote extensional fault zone and nappe structures documented by illite crystallinity and clay-mineral paragnesis in the Tethys Himalaya between SpitiRiver and Tso Morari, NW India. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(3): 419~430.

    • Goncuoglu M C, Gunal-Turkmenoglu A, Bozkaya O, Unluce-Yucel O, Okuyucu C, Yilmaz I O. 2016. Geological features and geochemical characteristics of Late Devonian—Early Carboniferous K-bentonites from northwestern Turkey. Clay Minerals, 51(4): 539~562.

    • Gonzalez V M, Carbonell P J T, Turienzo M M. 2021. Structural overprinting and style of deformation at sierra Beauvoir and sierra de Apen: a geometric and kinematic model for the evolution of the internal thrust-fold belt, Fuegian Andes, Argentina. Journal of Southern American Earth Sciences, 112(part 1): 103575.

    • Hara H, Wakita K, Ueno K, Kamata Y, Hisada K, Charusiri P, Charoentitirat T, Chaodumrong P. 2009. Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: constraints from melange kinematics and illite crystallinity. Gondwana Research, 16(2): 310~320.

    • Hu Daqian, Yu Jiejiang. 2009. Study of illite in the Upper Paleozoic, in northestern Inner Mongolia. Acta Petrologica Sinica, 25(8): 2017~2022 (in Chinese with English abstract).

    • Katagas C, Tsoliskatagas P, Baltatzis E. 1991. Chemicalmineralogy and illite crystallinity in low-grade metasediments, Zarouchla Group, northern Peloponnesus, Grece. Mineralogy and Petrology, 44(1-2): 57~71.

    • Kisch H J. 1987. Correlation between indicators of very low-grade metamorphism. In: Frey M, eds. Low Temperature Metamorphism. New York: Chapman and Hall, 227~300.

    • Kisch H J. 1990. Calibration of the anchizone—a critical comparasion of illite crystallinity scales used for definition. Journal of Metamorphic Geology, 8(1): 31~46.

    • Kisch H J. 1991a. Development of slaty cleavage and degree of very-low-grade metamorphism—a review. Journal of Metamorphic Geology, 9(6): 735~750.

    • Kisch H J. 1991b. Illite crystallinity: recommendations on samples preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9(6): 665~670.

    • Kisch H J, Arkai P, Brime C. 2004. On the calibration of the illite Kubler index (illite "crystallinity"). Schweizerische Mineralogische und Petrographische Mitteilungen, 84: 323~331.

    • Kübler B. 1964. Les argiles, indicateurs de métamorphisme. Revue Instituté de la Francais de Pétrole, 19: 1093~1112.

    • Kübler B. 1967. Anchimetamorphisme et schistosite. Bulletin Centre Recherche Pau-SNPA, 1: 259~278.

    • Kübler B. 1968. Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bulletin Centre Recherche Pau-SNPA, 2: 385~397.

    • Liu Yiqun. 1996. The boundary between diagenesis and metamorphism-a discussion with reference to zeolite facies. Geological Review, 42(3): 215~222 (in Chinese with English abstract).

    • Lowey G W. 2021. Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the northern Cordillera of Alaska and Yukon. AIMS Geosciences, 7(3): 355~389.

    • Makeen Y M, Abdullah W H, Ayinla H A, Hakimi M H, Sia S G. 2016. Sedimentology, diagenesis and reservoir quality of the upper Abu Gabra Formation sandstones in the Fula sub-basin, Muglad basin, Sudan. Marine and Petroleum Geology, 77: 1227~1242.

    • Maza S N, Collo G, Morata D, Lizana C, Camus E, Taussi M, Renzulli A, Mattioli M, Godoy B, Alvear B, Pizarro M, Ramirez C, Rivera G. 2018. Clay mineral associations in the clay cap from the Cerro Pabellon blind geothermal system, Andean Cordillera, Northern Chile. Clay Minerals, 53(2): 117~141.

    • Meere P A. 1995. Sub-greenschist facies metamorphism from the Variscides of SW Ireland—an Early syn-extensional peak thermal event. Journal of the Geological Society, 152: 511~521.

    • Merriman R J. 1991. Phyllosilicates as indicators of very low-grade metamorphism and diagenesis-introduction. Journal of Metamorphic Geology, 9(6): 663~664.

    • Merriman R J, Frey M. 1999a. Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 61~107.

    • Merriman R J, Peacor D R. 1999b. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D, eds. Low Grade Metamorphism. Oxford: Blackwell Science, 10~60.

    • Montomoli C, Iaccarino S, Simonetti M, Lezzerini M, Carosi R. 2018. Structural setting, kinematics and metamorphism in a km-scale shear zone in the Inner Nappes of Sardinia (Italy). Italian Journal of Geosciences, 137(2): 294~310.

    • Mullis J, Rahn M K, Schwer P, de Capitani C, Stern W B, Frey M. 2002. Correlation of fluid inclusion temperatures with illite "crystallinity" data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps. Symposium on Diagenesis and Low-Grade Metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2): 325~340.

    • Mullis J, Mahlmann R F, Wolf M. 2017. Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 degrees C), illite Kithler-Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science, 143: 307~319.

    • Offler R, McKnight S, Morand V. 1998. Tectonothermal history of the western Lachlanfold belt, Australia: insights from white mica studies. Journal of Metamorphic Geology, 16(4): 531~540.

    • Ospinara E. 1968. Thermodynamicaspects of origin of oil gas and coal. Magyar Kemikusok Lapja, 23 (2): 69.

    • Pepiper G, Kotopouli C N. 1981. Very low-grade metamorphism of Triassic volcanics, West Hellenic Nappes, southern Peloponnese, Greece-summary. Geological Society of America Bulletin, 92 (12): 914~916.

    • Potel S, Maison T, Maillet M, Sarr A C, Doublier M P, Trullenque G, Mahlmann R F. 2016. Reliability of very low-grade metamorphic methods to decipher basin evolution: case study from the Markstein basin (southern Vosges, NE France). Applied Clay Science, 134(3): 175~185.

    • Ren Leifu, Chen Yunqing. 1984. On the division of diagenesis stages according to the transformation of clay minerals. Oil & Gas Geology, 5(4): 325~334 (in Chinese with English abstract).

    • Reynolds R C Jr. 1985. NEWMOD@A computer program for the calculation of one-dimensional diffraction patterns of mixed layered clays. R. C. Reynolds, Jr. , 8 Brook Dr. , Hanover, USA, release 2017.

    • Rieder M, Cavazzini G, D'Yakonov Y, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval P V, Müller G, Neiva A M R, Radoslovich E W, Robert J-L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. Canadian Mineralogist, 46(5): 586~595.

    • Ruiz G M H, Helg U, Negro F, Adatte T, Burkhard M. 2008. Illite crystallinity patterns in the Anti-Atlas of Morocco. Swiss Journal of Geosciences, 101(2): 387~395.

    • Scherrer P. 1918. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr. Math. Phys. 2: 98~100.

    • Shen Qihan, Geng Yuansheng, Liu Fulai. 2016. Metamorphic Map of China (1: 50000000), Beijing: Geological Publishing House (in Chinese).

    • Shen Qihan, Geng Yuansheng, Song Huixia. 2018. Strengthening the study of very low-grade metamorphism. Acta Petrologica et Mineralogica, 37(2): 342~348.

    • Siissenberger A, Wemmer K, Schmidt S T. 2018. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Applied Clay Science, 165: 52~63.

    • Smithard T, Bordy E M, Reid D. 2015. The effect of dolerite intrusions on the hydrocarbon potential of the Lower Permain Whitehill Formation (Karoo supergroup) in South Africa and southern Namibia: a preliminary study. South African Journal of Geology, 118(4): 489~510.

    • Sokalska E T, Dubinska E, Kapron G, Kozubowski J A, Walski M. 2008. Clay minerals from Permo-Carboniferous very low-grade metamorphic rocks from the central part of the Fore Sudetic monocline (western Poland). Clay Minerals, 43(4): 561~574.

    • Suo Shutian, You Zhendong, Zhou Hanwen. 1995. Very-low-grade metamorphism and metamorphic belt: a review. Geological Science and Technology Information, 14(1): 1~8 (in Chinese with English abstract).

    • Teichmuller M. 1974. The origin and transformation of bituminous substances in coals in relation to the origin and transformation of petroleum. Fortschritte in der Geologie von Rheinland und Westfalen, 24: 65~112.

    • Tetiker S, Yalcin H, Bozkaya O. 2016. Diagenesis/metamorphism history of Lower Triassic Cigli Group rocks in Uludere-Uzungecit (Sirnak) area (eastern Part of the Southeast Anatolian Autochthone). Turkiye Jeoloji Bulteni-Geological Bulletin of Turkey, 59(3): 323~340.

    • Vazquez M, Asebriy L, Azdimousa A, Jabaloy A, Booth-Rea G, Barbero L, Mellini M, Gonzalez-Lodeiro F. 2013. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian passive margin: the Tanger-Ketama Unit (External Rif, northern Morocco). Geologica Acta, 11(3): 277~293.

    • Wang Hejin. 1998. On the error calculation of the Kubler index of illite crystallinity. Geological Review, 44(3): 328~335 (in Chinese with English abstract).

    • Wang Hejin, Zhou Jian. 1998. On theindices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395~405 (in Chinese with English abstract).

    • Wang Hejin, Tao Xifeng, Rahn M. 2007. Determination ofconstants C1-C14 in 14 equations of the relationships between the Kübler, weaver and weber indices and their applications. Geological Journal of China Universities, 13(3): 561~565 (in Chinese with English abstract).

    • Wang Hejin, Zhou Zhao, Wang Ling, Yuan Lei, An Jiali, Huang Baoling. 2015. Calibration of illite crystallinity Kübler index and determination of anchizone. Acta Geologica Sinica, 89(2): 406~411 (in Chinese with English abstract).

    • Wang Hejing, Frey M, Stern W B. 1996. Diagenesis and metamorphism of clay minerals in the Helvetic Alps of eastern Switzerland. Clays and Clay Minerals, 44: 96~112.

    • Wang Hejing, Zhou Jian. 2000a. Data smoothing and distortion of X-ray diffraction peaks. I. Theory. Journal of Applied Crystallography, 33: 1128~1135.

    • Wang Hejing, Zhou Jian. 2000b. The relationships between the Kübler index, Weaver index and Weber index of illite crystallinity and their applications. Schweizerische Mineralogische und Petrographische Mitteilungen, 80: 187~198.

    • Wang Hejing, Rahn M, Tao Xiaofeng, Zheng Nan, Xu Tingjing. 2008. Diagenesis and metamorphism of Triassic flysch along profile Zoige-Lushan, northwest Sichuan, China. Acta Geologica Sinica (English Edition), 82(4): 917~926.

    • Wang Hejing, Ma Yongsheng, Zhou Jian, Xu Tingjing. 2012. Diagenesis and very low-grade metamorphism in a 7012 m-deep well Hongcan 1, eastern Tibetan plateau. Swiss Journal of Geosciences, 105(2): 249~261.

    • Wang Hejing, Rahn M, Zhou Jian, Tao Xiaofeng. 2013. Tectonothermal evolution of the Triassic flysch in the Songpan-Garzê orogen, eastern Tibetan plateau. Tectonophysics, 608: 505~516.

    • Wang Hejing, Rahn M, Zhou Jian. 2018. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau. Tectonophysics, 723: 277~287.

    • Warr L N. 1996. Standardized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of souther New Zealand. European Journal of Mineralogy, 8: 115~127.

    • Warr L N, Rice A H N. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12: 141~152.

    • Warr L N, Ferreiro Mählmann R. 2015. Recommendations for Kubler Index standardization. Clay Minerals, 50: 283~286.

    • Warr L N, Cox S C. 2016. Correlating illite (Kübler) and chlorite (Árkai) “crystallinity” indices with metamorphic mineral zones of the South Island, New Zealand. Applied Clay Science, 134: 164~174.

    • Weaver C E. 1960. Possible use of clay minerals in search for oil. Bulletin American Association of Petroleum Geologists, 44: 1505~1518.

    • Weber K. 1972. Note on the determination of illite crystallinity. Neues Jahrbuch fur Mineralogie Monatshefte, 6: 267~276.

    • Wolf M. 1995. Reflectance and composition of dispersed organic matter at DSDP Leg 67 Hole. Palaeontologische Zeitschrift, 69(1-2): 1~6.

    • Wonglak S, Sutthirat C, Assawincharoenkij T. 2020. Petrochemistry of Lan Sang metamorphic suites. Scienceasia, 46(4): 481~489.

    • Wu Hanquan, Feng Yuemei, Song Suguang. 1993. Metamorphism and deformation of blueschist belts and their tectonic implications, north Qilian Mountains, China. Journal of Metamorphic Geology, 11(4): 523~536.

    • Wu Hanquan, Tian Bai, Song Suguang, Su Li. 1992. Very low grade metamorphism-on achievements and problems. Northwest Geosciences, 13(2): 161~178 (in Chinese with English abstract).

    • Zaheer M, Khan M S, Mughal M S, Abbasi N. 2017. Petrography, provenance, diagenesis and depositional environment of Murree Formation in Jhelum Valley, Sub Himalayas, Azad Jammu and Kashmir, Pakistan. Arabian Journal of Geosciences, 10(23): 514.

    • Zanoni G, Segvic B, Moscariello A. 2016. Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon Basin) and its impact on regional geology and basin evolution history. Applied Clay Science, 134(3): 186~209.

    • Zhang Lifei. 1992. Burialmetamorphism of the Ordos basin in northern Shaanxi. Acta Geologica Sinica, 66(4): 339~349 (in Chinese with English abstract).

    • Zhao Mengwei. 1995. Theindicators and boundary for separating diagenesis from burial metamorphism. Geological Review, 41(3): 238~244 (in Chinese with English abstract).

    • Zhao Zongpu. 1984. Diagenesis, burial metamorphism and anchimetamorphism. Geological Review, 30(5): 501~509 (in Chinese with English abstract).

    • Zhou Jian, Wang Hejin. 2003. Thephysical meanings of 5 basic parameters for an X-Ray diffraction peak and their application. Chinese Journal of Geochemistry, 22(1): 38~44.

    • Zhu Guang. 1995. Grading the extremely-low metamorphic clastic sedimentary rocks by the crystallinity of the illite. Petroleum Exploration and Development, 22(1): 33~34 (in Chinese with English abstract).

    • 安佳丽, 王河锦, 苑蕾. 2018. 黔东南凯里-榕江-从江前寒武系甚低级变质作用研究. 岩石学报, 34(3): 669~684.

    • 毕先梅, 莫宣学. 2004. 成岩—极低级变质—低级变质作用及有关矿产. 地学前缘, 11(1): 287~294.

    • 董申保, 沈其韩, 孙大中. 1986. 中国变质地质图(1∶400万). 北京: 地质出版社.

    • 胡大千, 于介江. 2009. 内蒙古东北地区上古生界伊利石研究. 岩石学报, 25(8): 2017~2022.

    • 柳益群. 1996. 关于成岩作用与变质作用界线的讨论: 从沸石相谈起. 地质论评, 42(3): 215~222.

    • 任磊夫, 陈芸菁. 1984. 从粘土矿物的转变讨论沉积成岩到变质过程中的阶段划分. 石油与天然气地质, 5(4): 325~334.

    • 沈其韩, 耿元生, 刘福来. 2016. 中国变质地质图(1∶500万). 北京: 地质出版社.

    • 沈其韩, 耿元生, 宋会侠. 2018. 加强极低级变质作用研究. 岩石矿物学杂志, 37(2): 342~348.

    • 索书田, 游振东, 周汉文. 1995. 极低级变质作用和极低级变质带综述. 地质科技情报, 14: 1~8.

    • 王河锦. 1998. 关于伊利石结晶度指数的误差计算. 地质论评, 44(3): 328~335.

    • 王河锦, 周健. 1998. 关于伊利石结晶度诸指数的评价. 岩石学报, 14(3): 395~405.

    • 王河锦, 陶晓风, Rahn M. 2007. 伊利石结晶度Kübler, Weaver 和Weber 指数关系式常数的确定与应用. 高校地质学报, 13(3): 561~565.

    • 王河锦, 周钊, 王玲, 苑蕾, 安佳丽, 黄宝玲. 2015. 伊利石结晶度Kübler指数的校正与近变质带的确定. 地质学报, 89(2): 406~411.

    • 吴汉泉, 田白, 宋述光, 苏犁. 1992. 多种地球动力学背景条件下甚低级变质作用的一些问题. 西北地质科学, 13(2): 161~178.

    • 张立飞. 1992. 陕北鄂尔多斯盆地埋藏变质作用研究. 地质学报, 66(4): 339~349.

    • 赵孟为. 1995. 划分成岩作用与埋藏变质作用的指标及其界线. 地质论评, 41(3): 238~244.

    • 赵宗溥. 1984. 成岩作用、埋藏变质作用与近变质作用. 地质论评, 30(5): 501~509.

    • 朱光. 1995. 用伊利石结晶度确定碎屑沉积岩甚低级变质等级. 石油勘探与开发, 22(1): 33~34.