-
对地质体和地质事件的年代学确定在现代地质学研究中的重要性毋庸置疑。而矿物的原位定年方法越来越受到青睐。原位定年又可以采用离子探针、激光等离子质谱同位素定年以及电子探针化学定年法。电子探针化学定年法(Chemical Th-U-total Pb Isochron Method,CHIME)最早由Suzuki et al.(1991)提出,基于独居石中普通Pb含量很少,相对于由U和Th衰变产生的放射性Pb基本可以忽略(Parrish,1990; Cocherie et al.,1998),另外一个前提条件是体系封闭,未发生放射性Pb的丢失。如果Th含量超过3%,放射性成因的Pb便可以通过电子探针分析出来。这个方法调整后也可以用于其他矿物的定年,前人已经成功对褐帘石、锆石、磷钇矿、晶质铀矿等副矿物进行了电子探针定年。由于电子探针化学定年法能够实现原位定年、具有极高的空间分辨率、样品制备简单方便、不破坏样品、成本低等优点,近年来得到很多关注(Suzuki et al.,1994a,1994b; Montel et al.,1996; Förster et al.,2000; Dahl et al.,2005; Williams et al.,2006;Mahdy et al.,2020)。钍石具有高Th(±U)含量,在没有发生蚀变或者蜕晶化作用的前提下,更适合进行电子探针化学定年。但由于钍石颗粒通常较小,定年难度较大,该定年方法尚不成熟,到目前为止,利用电子探针成功进行钍石定年的研究很少(Förster et al.,2000; Mahdy et al.,2020),本研究中,我们对华北克拉通南缘的小秦岭金多金属矿集区伟晶岩进行了详细的岩相学研究,发现其中含有大量的褐帘石。这些褐帘石发生了强烈蚀变并伴随U的丢失,不能给出明确的年龄信息。但褐帘石分解形成了细小的钍石颗粒(最大30 μm),尽管颗粒细小,我们仍然成功获得了这些颗粒的年龄信息。由于小秦岭金矿产于变质地层中且可能经历了多期变质-变形和岩浆热事件,尽管前人已经做了很多的研究,对本区金矿成矿年龄、成矿期次以及与构造-热事件的对应关系仍然有不少争论(黄典豪等,1994; 薛良伟等,1999; Li Qiangzhi et al.,2002; Wang Yitian et al.,2002; Zhao Taiping et al.,2004; 李厚民等,2007a,2007b; 李诺等,2008; Mao Jingwen et al.,2008; Li Nuo et al.,2011; Zhao Haixiang et al.,2011,2012,2015a,2015b; 孙卫志和王振强,2012; 赵海香等,2015,2017;王雷等,2018)。小秦岭是我国重要的金矿集区,对多期构造-热事件以及成岩成矿年代的确定,对探讨矿床成因、指导找矿勘查,具有重要的理论和实际意义。而新的电子探针钍石年龄的获得使得我们能更全面地认识小秦岭地区构造-热运动历史,从而更好地理解成矿作用时代。
-
1 区域地质背景
-
小秦岭金矿区是我国第二大金矿产地,位于华北克拉通南缘一个基底隆起带中,长50 km,宽7~15 km。地理位置上位于河南和陕西的交界处。矿区出露1200多条金矿脉,金储量约800 t。围岩主要是太华群的角闪岩相变质基底。近东西向的太要断裂以及小河断裂分别作为本区北部和南部的界线(图1)。另外,还存在多条近东西向的褶皱和断裂,本区含金石英脉主要分布在近东西向的次级脆韧性—脆性断裂带中。太华群基底岩石是金矿的主要赋矿围岩,岩性主要为角闪岩、黑云斜长片麻岩。华北南缘大面积分布的熊耳群(1800~1750 Ma,Zhao Taiping et al.,2004)在小秦岭地区缺失。
-
小秦岭地区发育多期岩浆活动,形成的岩体包括古元古代桂家峪黑云角闪花岗岩、中元古代小河黑云母花岗岩,以及晚中生代华山、文峪、娘娘山花岗岩基(毛景文等,2005; Zhao Haixiang et al.,2012)。
-
本区广泛发育伟晶岩脉、辉绿岩脉、煌斑岩脉以及含金石英脉。对于基性岩脉,目前存在不同的定年结果,其中包括古元古代、加里东期、早燕山期和晚燕山期的形成年龄(栾世伟等,1985; 王团华等,2008; 毕诗健等,2011),因此,本区可能存在多期基性岩浆侵位活动。研究区内伟晶岩脉分布普遍,多呈脉状、树枝状、不规则岩株状分布,多产在太华群古老变质基底中,部分产在太华群变质岩和中生代花岗岩的接触带中,与围岩界线清楚。伟晶岩脉多呈灰白色、浅肉红色,也有浅绿色调,花岗变晶结构或伟晶结构,块状构造。区内伟晶岩也可能是多期构造热液活动的产物。对于其精确成岩年龄,前人也有过报道。李厚民等(2007a) 对小秦岭地区大湖金矿井下一花岗伟晶岩脉中的锆石进行了SHRIMP U-Pb同位素定年,得到其207Pb/206Pb的平均年龄为1955±30 Ma。陆松年等(1997)对采自金硐岔矿区11号检查站南伟晶岩露头区的伟晶岩样品进行了单颗粒锆石U-Pb化学法定年,得到U-Pb同位素年龄为1806±3 Ma。而我们对本文的研究对象——枪马矿区的伟晶岩脉,岩浆锆石U-Pb定年结果为1814±6 Ma(Zhao Haixiang et al.,2015b)。
-
图1 小秦岭地区金矿床分布及地质简图
-
Fig.1 Geological map and distribution of gold deposits in the Xiaoqinling area
-
(a)—小秦岭大地构造位置;(b)—小秦岭地质图及主要金矿床分布(修改自Fan Hongrui et al.,2000; 范宏瑞等,2003; 陈衍景,2006; 蒋少涌等,2009; Zhao Haixiang et al.,2015a,2015b)
-
(a) —tectonic location of the Xiaoqinling area; (b) —geological map and distribution of main gold deposits in the Xiaoqinling area (modified from Fan Hongrui et al., 2000, 2003; Chen Yanjing, 2006; Jiang Shaoyong et al., 2009; Zhao Haixiang et al., 2015a, 2015b)
-
小秦岭金矿集中分布在三个矿带中:北矿带(大湖、灵湖等)、中矿带(桐沟等)和南矿带(文峪、崟鑫、枪马、东闯等)。金品位在6~15 g/t之间(Fan Hongrui et al.,2000),矿石种类分为黄铁矿型和多金属硫化物型。矿化石英脉包括石英(70%~90%)、黄铁矿(5%~15%)、方铅矿、黄铜矿、闪锌矿、碳酸盐以及局部存在的辉钼矿。与金矿化有关的围岩蚀变包括硅化、钾化、黄铁矿化、绢云母化和碳酸盐化(Fan Hongrui et al.,2000)。关于小秦岭石英脉型金矿的成因,尤其是成矿年龄和成矿动力学背景尚存在争议。有学者建立的成矿模型认为金成矿时代为晚侏罗世—早白垩世,与燕山期花岗岩岩浆活动密切相关(王亨治,1987; 栾世伟和陈尚迪,1990; 聂凤军等,2001; Zhao Shaorui et al.,2019; Liu Junwei et al.,2020)。另外一些学者则认为小秦岭金矿属于造山带型金矿,与印支期华北和华南克拉通的碰撞有关,可能与秦岭造山带大规模的挤压构造具有空间上的联系,成矿流体形成于中深度,具有中高温、低盐度、富CO2、δ18O偏高的特征,以黄铁矿为主的金属硫化物δ34S 和 Pb同位素值指示成矿物质的壳幔混合来源,这些特征与造山型矿床一致(陈衍景等,1993; Goldfarb et al.,1998; Mao Jingwen et al.,2002; 王义天等,2002; 陈衍景,2006; 蒋少涌等,2009)。还有一些学者认为小秦岭金矿是自古元古代开始多阶段成矿作用(薛良伟等,1999),或是印支期和燕山期两阶段成矿作用形成的(李诺等,2008; Zhao Haixiang et al.,2011; 谢亘等,2021)。近年来在大湖金矿深部发现有工业品位的石英脉型Mo矿化,在其他矿区也发现了金与辉钼矿伴生。另外,在娘娘山岩体与太古宙基底岩石的内接触带也发现了一处小型Mo矿。目前,华北克拉通南缘已有的辉钼矿Re-Os年龄数据集中在三个年龄峰值233~221 Ma、148~138 Ma 和131~112 Ma,表明存在三期Mo矿化作用(Mao Jingwen et al.,2008; 赵海香等,2015)。
-
2 样品采集与岩相学观察
-
所有分析的样品均采自枪马金矿区的伟晶岩脉。枪马金矿是小秦岭地区具有代表性的大型石英脉型金矿,13条含金石英脉中有10条近东西向分布。本文样品取自枪马金矿10号坑附近(图2),坐标位置为34°23′17.3″N,110°31′19.3″E(海拔1498 m)。该矿脉穿插在太华岩群基底岩石中,未见明显变形。
-
伟晶岩脉呈灰绿色(图3a),花岗伟晶结构,块状构造。主要由斜长石(约40%)、钾长石(约30%)、石英(约25%)和磁铁矿(约4%)组成(图3b)。副矿物有褐帘石、独居石、金红石、锆石、磷灰石等。蚀变矿物有白云母、绿泥石、绿帘石及方解石。
-
图2 枪马金矿地质简图
-
Fig.2 Geological map of Qiangma gold deposit
-
图3 小秦岭枪马金矿伟晶岩脉手标本和显微镜下特征
-
Fig.3 Photos and microphotographs of pegmatite dykes in the Qiangma deposit, Xiaoqinling gold district
-
(a)—伟晶岩手标本;(b)—伟晶岩中褐连石由边部到中心颜色逐渐变暗;(c)—斜长石部分蚀变为白云母、绢云母和绿帘石;(d)—局部斜长石的双晶叶片被他形磁铁矿、金红石和白云母切断;(e)—磁铁矿与锆石、金红石共生,局部被氧化成赤铁矿;(f)—独居石被包裹在褐帘石中; Pl—斜长石; Kfs—钾长石; Qz—石英; Aln—褐帘石; Mag—磁铁矿; Ser—绢云母; Zrn—锆石; Ms—白云母; Ep—绿帘石; Rt—金红石; Hem—赤铁矿; Mnz—独居石
-
(a) —specimen of pegmatite; (b) —the color of allanite in pegmatite gradually darkens from the edge to the center; (c) —plagioclase partially altered to muscovite, sericite and epidote; (d) —twin lamellae of local plagioclase cut by magnetite, rutile and muscovite; (e) —magnetite coexisting with zircon and rutile, and locally oxidized to hematite; (f) —monazite included in allanite; Pl—plagioclase; Kfs—alkali feldspar; Qz—quartz; Aln—allanite; Mag—magnetite; Ser—sericite; Zrn—zircon; Ms—muscovite; Ep—epidote; Rt—rutile; Hem— hematite; Mnz— monazite
-
斜长石(1.6~10 mm)多为他形,聚片双晶,核部牌号较高更偏基性,出现钠黝帘石化。白云母平行于斜长石的解理排列(图3c)。局部斜长石的双晶叶片被他形磁铁矿、金红石和白云母切断(图3d)。钾长石(2.4~7.2 mm)以具有格子双晶的微斜长石为主,并且蚀变程度远小于斜长石。粗大的石英呈他形(0.4~10 mm),具有明显的波状消光现象。小的磁铁矿颗粒零星分布在整个岩石中,较大的他形磁铁矿颗粒与褐帘石、金红石和锆石共生(图3e),显微镜下可见磁铁矿的裂隙或者边缘被氧化成赤铁矿(图3e)。他形金红石分布在磁铁矿边缘或者以包裹体的形式分布在磁铁矿的裂隙中。斜长石蚀变形成绿泥石和绿帘石。绿泥石呈半自形的板条状(<0.1 mm);绿帘石无色,呈半自形(0.06~0.3 mm)。白云母由斜长石蚀变形成,绢云母填充部分磁铁矿和长石裂隙。锆石呈淡粉色、边缘平滑的半自形颗粒(0.25~1.6 mm),并且每颗锆石可有不同颜色强度的区域,有几颗存在振荡环带。磷灰石呈他形—半自形结构(0.08~0.6 mm)分布在石英颗粒边缘。
-
褐帘石颗粒直径可达5 mm,整体呈黄色—深棕色,由边部到中心,颜色逐渐变暗,矿物成分不均一(图3b),有他形独居石和钍石小颗粒包裹其中(图3f)。独居石出现在两种结构位置: ① 包裹在褐帘石中(图3f,图4a、b),可以单独的颗粒出现(粒度可达200 μm),也可成群出现(可达2 mm大小),其中有些较大的他形独居石可见到不规则的振荡环带碎片; ② 与白云母共生,围绕褐帘石分布,呈颗粒状(10~20 μm)以及集合体(可达300 μm)形式出现(图4c)。
-
细小的自形或他形钍石包裹在褐帘石中(图4b、d~f),单个颗粒大小从几微米到30 μm不等。在背散射电子图像(BSE)中,有的颗粒边缘或整个钍石颗粒呈现亮度不均的斑杂状结构,反映内部成分的不均一性,可能遭受了后期蚀变作用,有的颗粒表现为内部亮而边部暗的核幔结构(图4g、h),电子探针结果显示边部总质量百分含量低于100%且Pb、U、Th和Y含量低于核部。在进行电子探针化学定年时,我们选取BSE图像中看起来均一的核部进行分析,当然并不能保证看起来均一的钍石颗粒没有发生蚀变或蜕晶化,还要结合电子探针分析结果来判断测试样品点是否适合定年。
-
图4 小秦岭枪马金矿伟晶岩脉中褐帘石、独居石、钍石背散射电子图像
-
Fig.4 Back scattered electron images of allanite, monazite and thorite from pegmatite dykes in Qiangma deposit, Xiaoqinling gold district
-
(a)—暗色不均一的褐帘石中他形独居石呈亮白色,框中放大为图4b,样品XQL148A-1;(b)—独居石颗粒中含有小的半自形钍石,有的独居石含具有振荡环带的碎片;(c)—褐帘石、磁铁矿、金红石、白云母、独居石之间的共生关系,框中放大为图4d;样品XQL148A-2;(d)—独居石中呈他形的钍石;(e、f)—褐连石中包裹细小的钍石,图4e框中放大为图4f,样品XQL148A-4;(g、h)—样品XQL148A5-2中1-3号点分析前后图像; Thr—钍石,其余矿物缩写同图3
-
(a) —anhedral monazite grains appear brightwhite in heterogeneous darkallanite grains, rectangle is enlarged to Fig.4b. Sample XQL148A-1; (b) —small subhedral thorite grains included in monazite grains. Some monazite fragments show oscillatory zonation; (c) —allanite, magnetite, rutile, muscovite and monazite coexist, rectangle is enlarged to Fig.4d. Sample XQL148A-2; (d) —anhedral thorite grains in monazite grains; (e, f) —fine thorite included in allanite, rectangle in Fig.4e marks enlarged area of Fig.4f, Sample XQL148A-4; (g, h) —point 1 to 3 thorite grains in Sample XQL148A5-2 before and after analysis; Thr—thorite; other mineral abbreviations are the same as Fig.3
-
3 分析方法
-
电子探针分析在德国北拜仁州厄尔兰根-纽伦堡大学完成,仪器型号为JEOL JXA-8200,按照Schulz et al.(2007,2009)分析方法改进后对钍石和少量独居石进行测试,分析电压为20 kV,电流为100 nA,束斑大小为5 μm。分析元素包括Th、U、Pb、Ca、Si、LREE、Y等。根据Jercinovic et al.(2005)有关测试条件的讨论,分析时选择的线系为Pb-Mα1、Th-M α1、U-Mβ1,使用PETH晶体,Pb、Th、U测试时间分别为310 s、30 s、100 s,校正所用的标样分别为钒铅矿(Pb5(VO4)3Cl)、含5% UO2的玻璃、马达加斯加伟晶岩中的独居石(MadmonD-A);轻稀土元素分析采用的标样为稀土磷酸盐((REE)PO4(Jarosewich et al.,1991)。对Y2O3含量分别为5%和12%且不含Pb的Y玻璃标样进行了测试,然后用线性外推法校正Y-Lγ对Pb-Mα产生的干扰(Montel et al.,1996; Schulz et al.,2009)和Th-Mγ对U-Mβ的干扰。利用CITZAF进行基体校正(Armstrong,1995)。通过以上测试和校正获得Pb、Th和U的检测限分别为50×10-6、60×10-6和50×10-6。实验选择马达加斯加伟晶岩中的独居石(MadmonD-A)做年龄检测标样(Schulz et al.,2007)。MadmonD-A中ThO2含量大约为10%(Finger et al.,1998),该标样SHRIMP、TIMS和LA-ICP-MS定年结果分别为496±9 Ma、497±2 Ma 和523±12 Ma(Schulz et al.,2007)。在德国萨尔兹堡和厄尔兰根两个实验室获得该钍石标样的电子探针化学模式年龄分别为502±6 Ma(25个点平均值)和 503±6 Ma(50个点平均值),与SHRIMP和TIMS年龄在误差范围内一致,而低于LA-ICP-MS定年结果。
-
每个分析点根据式(1)(Montel et al.,1996),由电子探针分析并校正的Th、U和Pb元素含量,利用迭代法计算得到模式年龄:
-
式中t为模式年龄,单位为Ma; λ232、 λ235、 λ238分别是232Th、235U和238U放射性衰变常数。(λ232=4.9475×10-11/a,λ235=9.8485×10-10/a,λ238=1.55125×10-10/a)。
-
然后根据式(2)(Suzuki et al.,1994a,1994b)计算氧化物含量ThO*2(UO2换算成ThO2,然后加上ThO2):
-
式中t为模式年龄,单位为Ma;W为每种氧化物的分子量(WTh=264,WU=270)。
-
最终以ThO*2为横坐标,PbO为纵坐标进行投图,拟合出过原点的直线,计算等时线年龄。
-
4 结果
-
对钍石进行电子探针分析发现,有的钍石发生蚀变后会含有水(Lumpkin et al.,1988),使得钍石总重量百分含量偏低。另有部分分析点P2O5含量在1.1%~1.9%之间,可能是因为钍石颗粒太小,束斑打在周围的褐帘石上。因此本文将这些点剔除,仅留下总重量百分含量在98%~102%的分析点,分析结果见表1。
-
为了监测年龄数据的可靠性,实验每隔5个钍石分析点插入测试独居石标样MadmonD-A一次。共获得MadmonD-A 21个分析数据,获得模式年龄介于492±49~538±44 Ma(2σ)之间,加权平均年龄为509.6±5.3 Ma(95 %置信区间, MSWD=0.82),在ThO*2-PbO相关图中,通过零点的线性回归方程计算得到等时线年龄为510 Ma(图5a)。基于加权平均年龄和等时线年龄具有良好的一致性,我们认为加权平均年龄509.6±5.3 Ma可以作为MadmonD-A的年龄。该年龄值在误差范围内与上文提到的其他方法获得的年龄数据一致,因此证明本实验获得钍石年龄数据可信。
-
对小秦岭枪马金矿伟晶岩脉中的钍石电子探针定年分析,计算获得模式年龄介于117±4~126±4 Ma(2σ)之间,计算得到的加权平均值为120.9±2.1 Ma(95%置信区间,MSWD=2.3)。在ThO*2-PbO相关图中,通过零点的线性回归方程(Finger et al.,1998)得到等时线年龄为119 Ma(图5b)。基于加权平均值、线性回归值良好的一致性,我们认为模式年龄加权平均值120.9±2.1 Ma可以作为钍石结晶年龄的最佳估算值。
-
为讨论独居石的成因,我们对6个独居石电子探针进行分析,结果见表2,其ThO2含量在0.02%~3.60%之间,平均值为1.48%。
-
注:-表示低于检测限。
-
图5 MadmonD-A标样(a)和小秦岭枪马金矿伟晶岩脉中钍石样品(b)的ThO2*-PbO图
-
Fig.5 ThO*2-PbO diagrams of standard MadmonD-A (a) and thorite samples (b) in pegmatite dykes from Qiangma gold deposit, Xiaoqinling
-
注:-代表检测结果低于检测限。
-
5 讨论
-
通过显微镜下观察发现,伟晶岩中褐帘石自形程度较高(图3b,图4a),但在显微镜下以及BSE图像中亮暗不一,说明其成分变化大,可能遭受了蚀变作用。图4a显示褐帘石颗粒上部被独居石和钍石颗粒集合体替代,但是保留了褐帘石的晶形,说明独居石和钍石可能是热液交代褐帘石后形成。独居石中ThO2含量是作为判断岩浆成因或热液成因独居石的指标。典型的岩浆成因独居石ThO2含量通常大于3%(Catlos,2013; Wu Liguang et al.2019)。对褐帘石中独居石电子探针测试发现ThO2含量在0.02%~3.60%之间(平均值1.48%,表2),比典型岩浆成因独居石ThO2含量低,进一步证明独居石和钍石可能为热液成因。
-
根据锆石U-Pb定年结果,本文研究的伟晶岩脉形成于1814±6 Ma(Zhao Haixiang et al.,2015b)。本研究试图对褐帘石、独居石和钍石进行定年,但由于前两者发生蚀变并且U、Th含量偏低,没有积累足够含量的放射成因Pb,同时非放射成因Pb含量较高不能忽略,导致未获得褐帘石和独居石电子探针化学定年结果。而钍石中的高Th含量保证足够含量的放射性Pb积累,因此,本研究获得钍石的结晶年龄为120.9±2.1 Ma。电子探针Th-U-Pb化学定年分析的前提是矿物自形成后整个体系保持封闭,Th-U-Pb系统未受到扰动,要求矿物未发生蚀变或者蜕晶化作用。通常蜕晶化作用以及由此产生的水合作用会扰动Th-U-Pb系统(Forster et al.,2000),也会导致电子探针分析结果中总量偏小。故本研究中选择测试背散射图像均一的钍石颗粒(避免测试蚀变边),并且电子探针分析总含量接近100%。此外,分析结果中Al、Fe、Ca等元素含量均很低,表明选定的钍石适合定年,并且由此得到钍石定年结果120.9±2.1 Ma可信。
-
本研究中热液钍石年龄代表了小秦岭枪马金矿区一期构造-热事件的形成年龄。前人对枪马金矿中与含金黄铁矿和绢云母共生的热液金红石进行定年结果为128.1±7.4 Ma(Zhao Shaorui et al.,2022),这代表了枪马金矿的成矿时代。本研究对枪马元古宙伟晶岩中热液钍石的定年结果与金成矿时代在误差范围内一致,表明钍石的形成对应了一期金成矿作用。华北克拉通南缘成矿具有多阶段性,且每个阶段成矿作用均与构造-热事件密切相关。扬子克拉通与华北克拉通在晚二叠世—三叠纪发生碰撞之后,在约140 Ma发生伸展作用(Mao Jingwen et al.,2003),岩石圈减薄约在130~110 Ma达到峰值(Yang Jinhui et al.,2003; Mao Jingwen et al.,2008)。Mao Jingwen et al.(2008) 曾总结华北克拉通南缘存在的三次钼矿化事件,分别发生在233~221 Ma、148~138 Ma和131~112 Ma。在小秦岭地区,碰撞造山期钼成矿以大湖金钼多金属矿床为代表,前人获得辉钼矿Re-Os年龄为233~215 Ma(李厚民等,2007a; 李诺等,2008; Mao Jingwen et al.,2008; 蒋少涌等,2009; Zhao Shaorui et al.,2019),造山后伸展期文峪、娘娘山大型花岗岩基的侵入共同导致了小秦岭南北边缘拆离断层形成和小秦岭变质核杂岩的隆升(Zhang Jinjiang et al.,1999),进一步隆升又导致垮塌,这个过程伴随了钼矿化作用(李厚民等,2007b; 王团华等,2008),以车仓峪钼矿为代表,辉钼矿Re-Os年龄为134~133 Ma(Zhao Haixiang et al.,2015)。
-
在华北克拉通南缘与清晰的钼成矿时代不同的是,金的成矿年代存在着较多争议,争议集中在主成矿期为印支期、燕山期还是印支期—燕山期叠加成矿。根据Re-Os辉钼矿年龄数据,一些与含金石英脉密切共生的热液辉钼矿年龄在233~221 Ma(李厚民等,2007a; 李诺等,2008; Mao Jingwen et al.,2008; 蒋少涌等,2009; 谢亘等,2021),支持小秦岭地区金矿床主要形成于华北克拉通与扬子克拉通发生碰撞的印支期这一观点(蒋少涌等,2009)。也有一些年龄数据在130~110 Ma之间(Li Qiangzhi et al.,2002;Wang yitian et al.,2002; Zhao Shaorui et al.,2022),代表了金成矿年代为岩石圈减薄期,代表性矿床如熊耳山祁雨沟金矿床,钾长石40Ar-39Ar年龄和自形黄铁矿Rb-Sr等时线年龄在126~115 Ma之间和125~115 Ma之间(Han Yigui et al.,2007;李诺等,2008; Mao Jingwen et al.,2008; 蒋少涌等,2009; Zhao Shaorui et al.,2019; Liu Junwei et al.,2020)。越来越多的证据表明华北南缘在燕山晚期岩石圈减薄过程中存在一个重要的金矿化阶段。而钍石的形成与金矿化同时代,可能是同一期构造-热液事件的结果。
-
值得注意的是在大湖矿床中发现了自形—半自形热液独居石(矿物大小约10~100 μm)与辉钼矿共存,其SHRIMP U-Th-Pb年龄为216±5 Ma。但是部分独居石在~125 Ma发生了热液蚀变作用(Li Nuo et al.,2011),在误差范围内与本研究获得的热液钍石年龄一致。因此,存在一种可能性即本研究中的独居石与大湖金矿中的独居石一样,形成于印支期而接受了燕山期的蚀变作用,该解释需要更多后续研究来支持。而形成于120.9±2.1 Ma的钍石,对应于130~110 Ma岩石圈减薄过程以及金钼多金属成矿过程。
-
6 结论
-
对小秦岭元古宙伟晶岩进行详细镜下研究,发现褐帘石中存在热液独居石和钍石。尽管钍石粒径很小(<30 μm),但本研究通过电子探针分析成功地从钍石颗粒中获得了具有地质意义的年龄信息。新获得的钍石电子探针Th-U-Pb化学年龄加权平均值为120.9±2.1 Ma,代表了钍石的结晶年龄。结合邻近地区的岩浆活动、钼成矿和金成矿作用,热液蚀变形成钍石是华北克拉通岩石圈减薄过程中构造-热事件的矿物学响应,可能与燕山期金钼成矿是同一期热液作用的结果。
-
致谢:感谢河南灵宝地质矿产局在野外工作中给予的帮助,感谢三位审稿人提出的宝贵意见和建议。
-
参考文献
-
Armstrong J T. 1995. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4: 177~200.
-
Bi Shijian, Li Jianwei, Li Zhanke. 2011. Geological Significance and geochronology of Paleoproterozoic mafic dykes of Xiaoqinling Gold district, southern margin of the North Chinca Craton. Earth Science—Journal of China University of Geoscience, 36(1): 17~32 (in Chinese with English abstract).
-
Catlos E J. 2013. Versatile Monazite: Resolving geological records and solving challenges in materials science: Generalizations about monazite: Implications for geochronologic studies. American Mineralogist, 98: 819~832.
-
Chen Yanjing. 2006. Orogenic-type deposits and their metallogenic model and exploration potential. Chinese Geology, 33(6): 1181~1196 (in Chinese with English abstract).
-
Chen Yanjing, Wang Hengzhi, Zhang Meimei, Ding Yuying. 1993. Geological and geochemical characteristics and mineralization model of quartz vein type gold deposits of Xiaoqinling area. Journal of Shijiazhuang University of Economics, 16(6): 594~604 (in Chinese with English abstract).
-
Cocherie A. 1998. The limited extent of Pb diffusion in monazite. Mineralogical Magazine, 62(1): 339~340.
-
Dahl P S, Hamilton M A, Jercinovic M J, Williams M L, Terry M P, Frei R. 2005. Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U. S. A. ). American Mineralogist, 90(4): 619~638.
-
Fan Hongrui, Xie Yihan, Zhao Rui, Wang Yinglan. 2000. Dual origins of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidence. Chinese Science Bulletin, 45(15): 1424~1430.
-
Fan Hongrui, Xie Yihan, Zhai Mingguo, Jin Chengwei. 2003. A three stages fluid flow model for Xiaoqinling lode gold metallogenesis in the He'nan and Shanxi Provinces, central China. Acta Petrologica Sinica, 19(2): 260~266 (in Chinese with English abstract).
-
Finger F, Helmy H M. 1998. Composition and total-Pb model ages of monazite from high-grade paragneisses in the Abu Swayel area, southeastern Desert, Egypt. Mineralogy and Petrology, 62: 269~289.
-
Förster H J, Harlov D E, Milke R. 2000. Composition and Th-U-total Pb ages of huttonite and thorite from Gillespie's Beach, South Island, New Zealand. The Canadian Mineralogist, 38: 675~684.
-
Goldfarb R J, Phillips G N, Nokleberg W J. 1998. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geology Reviews, 13(1-5): 185~218.
-
Han Yigui, Li Xianghui, Zhang Shihong, Zhang Yuanhou, Chen Fukun. 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan. Chinese Science Bulletin, 52: 1820~1826.
-
Huang Dianhao, Wu Chengyu, Du Andao, He Hongliao. 1994. Re-Os isotope ages of molybdenum deposits in east Qinling and their significance. Mineral Deposits, 13(3): 221~230 (in Chinese with English abstract).
-
Jarosewich E, Boatner L A. 1991. Rare-earth element reference samples for electron microprobe analysis. Geostandards and Geoanalytical Research, 15: 397~399.
-
Jercinovic M J, Williams M L. 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. American Mineralogist, 90: 526~546.
-
Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Zhao Haixiang, Hou Minglan. 2009. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings. Acta Petrologica Sinica, 25(11): 2727~2738 (in Chinese with English abstract).
-
Li Houmin, ChenYuchuan, Wang Denghong, Ye Huishou, Wang Yanbin, Zhang Changqing, Dai Junzhi. 2007a. SHRIMP U-Pb ziron ages of metamorphic rocks and veins in the Xiaoqinling area, Henan, and their geological significance. Acta Petrologica Sinica, 23(10): 2504~2512 (in Chinese with English abstract).
-
Li Houmin, Ye Huishou, Mao Jingwen, Wang Denghong, Chen Yuchuan, Qu Wenjun, Du Andao. 2007b. Re-Os dating of molybdenites from Au (Mo) deposits in Xiaoqinling gold ore district and its geological significance. Mineral Deposits, 26(4): 417~424 (in Chinese with English abstract).
-
Li Nuo, SunYali, Li Jing, Xue Liangwei, Li Wenbo. 2008. Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the Indosinian mineralizaiton. Acta Petrologica Sinica, 24(4): 810~816 (in Chinese with English abstract).
-
Li Nuo, Chen Yanjing, Fletcher I R, ZengQingtao. 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Research, 20(2-3): 543~552.
-
Li Qiangzhi, Chen Yanjing, Zhong Zengqiu, Li Wenliang, Li Shaoru, Guo Xiaodong, Jin Baoyi. 2002. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area. Acta Geologica Sinica, 76(4): 488~493.
-
Liu Junwei, Wang Yitian, HuQiaoqing, Wei Ran, Huang Shikang, Sun Zhenghao, Hao Jiaolong. 2020. Ore genesis of the Fancha gold deposit, Xiaoqinling goldfield, southern margin of the North China Craton: Constraints from pyrite Re-Os geochronology and He-Ar, in-situ S-Pb isotopes. Ore Geology Reviews, 119: 103~373.
-
Luan Shiwei, Cao Dianchun, Fang Yaokui, Wang Jiayun. 1985. Geochemistry of Xiaoqinling gold deposits. Journal of Mineralogy and Petrology, 5(2): 1~118 (in Chinese with English abstract).
-
Luan Shiwei, Chen Shangdi. 1990. Main ore-controlling factors and metallogenic model of gold deposits in Xiaoqinling area. Contributions to Geology and Mineral Resources Research, 5(4): 1~14 (in Chinese with English abstract).
-
Lumpkin G R, Chakoumakos B C. 1988. Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 73: 1405~1419.
-
Mahdy N M, Ntaflos T, Pease V, Sami M, Slobodnik M, Abu Steet A A, Abdelfadil K M, Fathy D. 2020. Combined zircon U-Pb dating and chemical Th-U-total Pb chronology of monazite and thorite, Abu Diab A-type granite, Central Eastern Desert of Egypt: Constraints on the timing and magmatic-hydrothermal evolution of rare metal granitic magmatism in the Arabian Nubian Shield. Geochemistry, 80(4): 125669.
-
Mao Jingwen, Goldfarb R J, Zhang Zhengwei, Xu Wenyi, Qiu Yumin, Deng Jun. 2002. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Mineralium Deposita, 37: 306~325.
-
Mao Jingwen, Wang Yitian, Zhang Zuoheng, Yu Jinjie, Niu Baogui. 2003. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas. Science in China Series D: Earth Sciences, 46: 838~851.
-
Mao Jingwen, Xie Guiqing, Zhang Zuoheng, Li Xiaofeng, Wang Yitian, Zhang Changqing, Li Yongfeng. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169~188 (in Chinese with English abstract).
-
Mao Jingwen, Xie G Q, Bierlein F, Qu W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J, Li Y F, Yang Z Q. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607~4626.
-
Montel J M, Foret S, Veschambre M, Nicollet C, Provost A. 1996. Electron microprobe dating of monazite, Chemical Geology, 131: 37~53.
-
Nie Fengjun, Jiang Sihong, Zhao Yueming. 2001. Lead and sulfur isotopic studies of the Wenyu and the Dongchuang quartz vein type gold deposits in Xiaoqinling area, Henan and Shanxi provinces, central China. Mineral Deposits, 20(2): 163~173 (in Chinese with English abstract).
-
Parrish R R. 1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27(11): 1431~1450.
-
Schulz B, Brätz H, Bombach K, Krenn E. 2007. in-situ Th-Pb dating of monazite by 266 nm laser ablation and ICP-MS with a single collector, and its control by EMP analysis. Zeitschrift fur Angewandte Geologie, 35: 377~392.
-
Schulz B. 2009. EMP-monazite age controls on P-T paths of garnet metapelites in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Bulletin De La Societe Geologique De France, 180(3): 271~282.
-
Steiger R H, Jäger E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359~362.
-
Sun Weizhi, Wang Zhengqiang. 2012. Geological and geochemical features of gold and molybdenum ore bodies in Dahu deposit, Xiaoqinling area, and an analysis on their differences. Geological Review, 58(4): 671~680 (in Chinese with English abstract).
-
Suzuki K, Adachi M, Tanaka T. 1991. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sedimentary Geology, 75(1-2): 141~147.
-
Suzuki K, Adachi M, Kazjizuka I. 1994a. Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters, 128(3-4): 391~405.
-
Suzuki K, Adachi M. 1994b. Middle Precambrian detrital monazite and zircon from the Hida gneiss in the Oki-Dogo Island, Japan: Their origin and implication for the correlation of the basement of Southwest Japan and Korea. Tectonophysics, 235(3): 277~292.
-
Wang Hengzhi. 1987. Geological characteristics and ore genesis of the Xiaoqinling gold field. Mineral Deposits, 6(1): 57~67 (in Chinese with English abstract).
-
Wang Lei, Liu Jiajun, Zhai Degao, Zhu Wenbing, Meng Xuyang. 2018. Material sources and ore-forming process of the Lianzigou gold deposit in Xiaoqinling. Acta Petrologica Sinica, 92(2): 341~358 (in Chinese with English abstract).
-
Wang Tuanhua, Mao Jingwen, Wang Yanbin. 2008. Research on SHRIMP U-Pb chronology in Xiaoqinling-Xionger'shan area: The evidence of delamination of lithosphere in Qinling orogenic belt. Acta Petrologica Sinica, 24(6): 1273~1287 (in Chinese with English abstract).
-
Wang Yitian, MaoJingwen, Lu Xinxiang. 2001. 40Ar-39Ar Dating and geochronological constraints on the ore-forming epoch of the Qiyugou gold deposit in Songxian County, Henan Province. Geological Review, 47(5): 551~555 (in Chinese with English abstract).
-
Wang Yitian, MaoJingwen. 2002. Mineralization in the post-collisional orogenic extensional regime: A case study of the Xiaoqinling gold deposit clustering area. Geological Bulletin of China, 21(8-9): 562~566 (in Chinese with English abstract).
-
Wang Yitian, MaoJingwen, Lu Xinxiang, Ye Anwang. 2002. 40Ar-39Ar dating and geological implication of auriferous altered rocks from the middle-deep section of Q875 gold-quartz vein in Xiaoqinling area, Henan, China. Chinese Science Bulletin, 47(20): 1750~1755.
-
Williams M L, Jercinovic M J, Goncalves P, Mahan K. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology, 225(1-2): 1~15.
-
Wu Liguang, Li Xianhua, Ling Xiaoxiao, Yang Yueheng, Li Chaofeng, Li Youlian, Mao Qian, Li Qiuli, Putlitz B. 2019. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis. Minerals (Basel), 9(10): 583
-
Xie Gen, Yu Guangming, Shi Guanghai, Yang Guoqiang, Wang Yuxiang, Wang Jian, Shi Lianwu 2021. Re-Os and Ar-Ar isotopic dating of the Dahu gold (molybdenum) deposit in the Xiaoqinling region of western Henan: A limitation on the metallogenic period. Geology of China . Online. https: //kns. cnki. net/kcms/detail/11. 1167. P. 20211018. 1441. 002. html (in Chinese with English abstract).
-
Xue Liangwei, Pang Jiqun, Wang Xiangguo, Zhou Changming. 1999. Rb-Sr and 40Ar-39Ar dating of fluid inclusion of the No1303 quartz vein in Xiaoqinling region. Geochemica, 28(5): 473~478 (in Chinese with English abstract).
-
Yang Jinhui, Wu Fuyuan, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geology Reviews, 23: 125~152.
-
Zhang Jinjiang, Zheng Yadong. 1999. Multistage extension and age dating of the Xiaoqinling metamorphic core complex, central China. Acta Geologica Sinica, 73: 139~147.
-
Zhao Taiping, Zhai Mingguo, Xia Bin, Li Huimin, Zhang Yixing, Wan, Yusheng. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49: 2495~2502.
-
Zhao Haixiang, Frimmel H E, Jiang Shaoyong, Dai Baozhang. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 43(1): 142~153.
-
Zhao Haixiang, Jiang Shaoyong, Frimmel H E, Dai Baozhang, Ma Liang. 2012. Geochemistry, geochronology and Sr-Nd-Hf isotopes of two Mesozoic granitoids in the Xiaoqinling gold district: Implication for large-scale lithospheric thinning in the North China Craton. Chemical Geology, 294-295: 173~189.
-
Zhao Haixiang, Dai Baozhang, Li Bin, Zhu Zhiyong. 2015a. Genesis of the Checangyu molybdenum deposit in the Xiaoqinling district: Constraints from the Re-Os dating of molybdenite and in situ trace element analysis of pyrite. Acta Petrologica Sinica, 31(3): 784~790 (in Chinese with English abstract).
-
Zhao Haixiang, Jiang Shaoyong, Dai Baozhang, Ma Liang, Li Jianwei. 2015b. Geochronology and Hf isotope study of pegmatite in the Xiaoqinling area of NW China: Implication for petrogenesis and regional metamorphism. Journal of Earth Science, 3(26): 295~305.
-
Zhao Haixiang, Ji Jing, Zhao Zhi, Chen Jiansheng, Li Bin. 2017. Fluid inclusion characteristics and ore genesis of the Dahu gold and molybdenum deposits in the Xiaoqinling gold belt. Geological Journal of China Universities, 23(1): 72~82 (in Chinese with English abstract).
-
Zhao Shaorui, Li Jianwei, Lentz D, Bi Shijian, Zhao Xinfu, Tang Kefei. 2019. Discrete mineralization events at the Hongtuling Au-(Mo) vein deposit in the Xiaoqinling district, southern North China Craton: Evidence from monazite U-Pb and molybdenite Re-Os dating. Ore Geology Reviews, 109: 413~425.
-
Zhao Shaorui, Li Zhanke, Zhao Xinfu, Lin Haitao, Duan Zhuang, Wu Xiaojing. 2022. New constraints on genesis of the Qiangma gold deposit, southern North China Craton: Evidence from rutile U-Pb dating, pyrite trace element composition and S-Pb isotopes. Ore Geology Reviews, 141: 104647.
-
毕诗健, 李建威, 李占轲. 2011. 华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义. 地球科学(中国地质大学学报), 36(1): 17~32.
-
陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181~1196.
-
陈衍景, 王亨治, 张玫玫, 丁玉影. 1993. 小秦岭石英脉型金矿的地质地球化学特征和成矿模式. 石家庄经济学院学报, 16(6): 594~604.
-
范宏瑞, 谢奕汉, 翟明国, 金成伟. 2003. 豫陕小秦岭脉状金矿床三期流体运移成矿作用. 岩石学报, 19(2): 260~266.
-
黄典豪, 吴澄宇, 杜安道, 何红蓼. 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义. 矿床地质, 13(3): 221~230.
-
蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省. 岩石学报, 25(11): 2727~2738.
-
李厚民, 陈毓川, 王登红, 叶会寿, 王彦斌, 张长青, 代军治. 2007a. 小秦岭变质岩及脉体锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 23(10): 2504~2512.
-
李厚民, 叶会寿, 毛景文, 王登红, 陈毓川, 屈文俊, 杜安道. 2007b. 小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义. 矿床地质, 26(4): 417~424.
-
李诺, 孙亚莉, 李晶, 薛良伟, 李文博. 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件. 岩石学报, 24(4): 810~816.
-
陆松年, 李怀坤, 李惠民, 杨春亮, 胡正德, 蒋明媚. 1997. 金矿密集区的基底特征与成矿作用研究——以小秦岭、冀北和胶北金矿密集区为例. 北京: 地质出版社. 1~113.
-
栾世伟, 曹殿春, 方耀奎, 王嘉运. 1985. 小秦岭金矿床地球化学. 矿物岩石, 5(2): 1~118.
-
栾世伟, 陈尚迪. 1990. 小秦岭金矿主要控矿因素及成矿模式. 地质找矿论丛, 5(4): 1~14.
-
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169~188.
-
聂凤军, 江思宏, 赵月明. 2001. 小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究. 矿床地质, 20(2): 163~173.
-
孙卫志, 王振强. 2012. 小秦岭大湖矿区钼、金矿体地质、地球化学特征与差异性分析. 地质论评, 58(4): 671~680.
-
王亨治. 1987. 小秦岭金矿田地质特征及矿床成因. 矿床地质, 6(1): 57~67.
-
王雷, 刘家军, 翟德高, 朱文兵, 孟旭阳. 2018. 小秦岭镰子沟金矿床成矿物质来源与成矿过程. 地质学报, 92(2): 341~358.
-
王团华, 毛景文, 王彦斌. 2008. 小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据. 岩石学报, 24(6): 1273~1287.
-
王义天, 毛景文, 卢欣祥. 2001. 嵩县祁雨沟金矿成矿时代的40Ar-39Ar年代学证据. 地质论评, 47(5): 551~555.
-
王义天, 毛景文. 2002. 碰撞造山作用期后伸展体制下的成矿作用——以小秦岭金矿集中区为例. 地质通报, 21(8-9): 562~566.
-
谢亘, 喻光明, 施光海, 杨国强, 王玉往, 王建, 石连武. 2021. 豫西小秦岭地区大湖金(钼)矿床Re-Os和Ar-Ar同位素定年: 对成矿期次的限定. 中国地质. https: //kns. cnki. net/kcms/detail/11. 1167. P. 20211018. 1441. 002. html.
-
薛良伟, 庞继群, 王祥国, 周长命. 1999. 小秦岭303号石英脉流体包裹体Rb-Sr、40Ar-39Ar成矿年龄测定. 地球化学, 28(5): 473~478.
-
赵海香, 戴宝章, 李斌, 朱志勇. 2015. 小秦岭车仓峪钼矿成因研究: 辉钼矿Re-Os年龄及黄铁矿微量元素制约. 岩石学报, 31(3): 784~790.
-
赵海香, 嵇静, 赵智, 陈建生, 李斌. 2017. 小秦岭大湖金钼矿流体包裹体研究及矿床成因. 高校地质学报, 23(1): 72~82.
-
摘要
电子探针化学定年法(Chemical Th-U-total Pb Isochron Method,CHIME)以其原位、极高的空间分辨率、样品制备简单方便、不破坏样品、测试速度快、成本低等优点,被成功用于独居石、褐帘石、锆石、磷钇矿、晶质铀矿等副矿物定年,但应用于钍石定年仍不成熟。本文尝试利用电子探针对小秦岭矿集区元古宙伟晶岩脉中的钍石进行定年。显微镜下观察发现,热液钍石颗粒细小(<30 μm),多与独居石共生,包裹在褐帘石中。我们对未发生蚀变或者蜕晶化的小颗粒钍石进行了电子探针Th-U-Pb化学法定年,得到的加权平均年龄为120.9±2.1 Ma (95%置信区间)。这一年龄与枪马金矿的矿化年龄一致,代表继该地区大规模花岗岩侵位活动之后,华北克拉通减薄过程中的又一次热液蚀变过程。
Abstract
Electron Microprobe Chemical dating (Chemical Th-U-total Pb Isochron Method ,CHIME) has been successfully used on monazite, allanite, zircon, xenotime, uraninite and other accessory minerals. A rare study focused on thorite dating by Electron Microprobe. This paper attempts to use Electron Microprobe to date thorite in Proterozoic pegmatite dikes in the Xiaoqinling gold district, China. In this study we dated minute thorite grains (<30 μm in size) by electron microprobe analysis. A geologically significant chemical Th-U-total Pb age mean value of 120.9±2.1 Ma (95% confidence interval) was determined. This age is in agreement with the mineralization age of the Qiangma gold deposit and reflects a hydrothermal overprint in the course of lithospheric thinning of the North China Craton, following widespread granite intrusion.