en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李欢,男,1985年生。教授,博导,主要从事地质学的教学与科研。E-mail:lihuan@csu.edu.cn。

参考文献
AndersenJ C Ø, Stickland R J, Rollinson G K, Shail R K. 2016. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geology Reviews, 78: 213~238.
参考文献
Baumgartner R J, Kunzmann M, Spinks S, Bian X, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104545.
参考文献
Benites D, Torró L, Vallance J, Laurent O, Quispe P, Rosas S, Uzieda M F, Holm-Denoma C S, Pianowski L S, Camprubí A, Colás V, Fernández-Baca Á, Giraldo L, Chelle-Michou C, Sáez J, Kouzmanov K, Fontboté L. 2021. Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn-Pb-Ag-In-Sn-Cu deposit, Pasco, Peru. Mineralium Deposita, 57(3): 481~507.
参考文献
Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.
参考文献
Cai Yingxiong, Tan Juanjuan, Yang Hongmei, Lu Shansong, Duan Ruichun, Qiu Xiaofei, Cheng Shunbo, Yang Xiaoli. 2015. The origin of ore-forming material in the Tongshanling Cu-polymetallic ore field in Hunan Province: Constrains from S-Pb-C isotopes. Acta Geologica Sinica, 89(10): 1792~1803(in Chinese with English abstract).
参考文献
Cao Jingya, Li Huan, Algeo T J, Yang Lizhi, Tamehe L S. 2021. Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit. American Mineralogist, 106(9): 1488~1502.
参考文献
Cao Jingya, Li Huan, Yang Xiaoyong, Tamehe L S, Esmaeili R. 2022. Multi-stage magma evolution recorded by apatite and zircon of adakite-like rocks: A case study from the Shatanjiao intrusion, Tongling region, eastern China. American Mineralogist, 107(2): 178~189.
参考文献
Carocci E, Marignac C, Cathelineau M, Truche L, Poujol M, Boiron M C, Pinto F. 2020. Incipient wolframite deposition at Panasqueira (Portugal): W-rich rutile and tourmaline compositions as proxies for the early fluid composition. Economic Geology, 116(1): 123~146.
参考文献
Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Zhang Tong, Chen Yuchuan. 2018a. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance. Mineral Deposits, 37(2): 225~245(in Chinese with English abstract).
参考文献
Chen Gongzheng, Wu Guang, Wu Wenheng, Zhang Tong, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Jiang Biao, Wang Zhili. 2018b. Fluid inclusion study and isotope characteristics of the Daolundaba copper-polymetallic deposit in the southern Great Xing'an Range. Earth Science Frontiers, 25(5): 202~221(in Chinese with English abstract).
参考文献
Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-W-Sn deposit in the southern Great Xing'an Range: Constraints from zircon and monazite U-Pb and sericite 40Ar-39Ar ages. Acta Petrologica Sinica, 37(3): 865~885(in Chinese with English abstract).
参考文献
Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-Sn-W-Ag deposit in the southern Great Xing'an Range, China: Constraints from geochronology, geochemistry, and Hf isotope. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104117.
参考文献
Chen Jiahao, Wang Qingfei, Shu Qihai, Weng Weijun, Xu Xiaojjie, Wang Tingyi, Zhang Qizuan. 2021. Geology and genesis of the Debao Cu polymetallic skarn deposit, southwestern China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104046.
参考文献
Chen Shaoqing. 2017. Genesis of the Jinkeng Cu-Sn-Pb-Zn polymetallic deposit in Jiexi, Guangdong Province. East China Geology, 38(4): 271~278(in Chinese with English abstract).
参考文献
Chen Yuanlin, Li Huan, Zheng Chaoyang, Li Dadou. 2021. Denudation degree and deep prospecting potential of gold deposits in the Guocheng-Yazi fault zone, Jiaolai basin: Evidence from apatite fission track thermochronology. The Chinese Journal of Nonferrous Metals, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17(in Chinese with English abstract).
参考文献
Cheng Gongzheng. 2018. Metallogenesis of the Daolundaba Cu-polymetallic deposit in the southern Great Xing'an Range. Master thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).
参考文献
Cheng Yanbo, Mao Jingwen, Rusk B, Yang Zongxi. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180~196.
参考文献
Cheng Yanbo, Spandler C, Chang Zhangshan, Clarke G. 2018. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo mineral field, Queensland, Australia. Earth and Planetary Science Letters, 486: 84~93.
参考文献
Chiaradia M. 2013. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, DOI: 10. 1038/ngeo2028.
参考文献
Codeço M S, Weis P, Trumbull R B, Pinto F, Lecumberri-Sanchez P, Wilke F D H. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chemical Geology, 468: 1~16.
参考文献
Codeço M S, Weis P, Trumbull R B, Van Hinsberg V, Pinto F, Lecumberri-Sanchez P, Schleicher A M. 2020. The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Mineralium Deposita, 56(3): 481~508.
参考文献
Cooke D, Hollings P, Walshe J. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.
参考文献
Deng Xiaodong, Li Jianwei, Shuster D L. 2017. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon. Earth and Planetary Science Letters, 472: 289~298.
参考文献
Feng Jiarui, Zhou Zhenhua, Che Hewei. 2017. Permian copper-polymetallic mineralization in the southern Great Xing'an Range, Northeast China: The Daolundaba copper-polymetallic deposit example. International Geology Review, 59(13): 1709~1722.
参考文献
Gonevchuk V G, Gonevchuk G A, Korostelev P G, Semenyak B I, Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Science, 57: 777~802.
参考文献
Guo Chuang, Lu Yujie. 2021. The geological characteristics and ore-controlling factors of the Zhimashan Cu-Sn deposit in Dayishan, Hunan Province. Southern Metals, 238: 14~22(in Chinese with English abstract).
参考文献
Guo Jia, Zhang Rongqing, Li Congying, Sun Weidong, Hu Yongbin, Kang Deming, Wu Junde. 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627~642.
参考文献
Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L. 2020. Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin (-copper) deposit, Peru. Economic Geology, 115(8): 1665~1697.
参考文献
Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A S, Baumgartner L P, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L. 2021. Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth and Planetary Science Letters, DOI: 10. 1016/j. epsl. 2021. 116889.
参考文献
Huang Wenting, Liang Huaying, Zhang Jian, Wu Jing, Chen Xilian, Ren Long. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103030.
参考文献
Huang Xudong, Lu Jianjun. 2014. Geological characteristics and Re-Os geochronology of Tongshanling polymetallic ore field, south Hunan, China. Acta Geologica Sinica (English Edition), 88(s2): 1626~1629.
参考文献
Huang Xudong, Lu Jianjun, Stanislas Sizaret, Wang Rucheng, Ma Dongsheng, Zhang Rongqing, Zhao Xu, Wu Jinwei. 2017. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province. Science China: Earth Sciences, 47(7): 766~782(in Chinese with English abstract).
参考文献
Huang Xudong, Lu Jianjun, Sizaret S, Wang Rucheng, Wu Jinwei, Ma Dongsheng. 2018. Reworked restite enclave: Petrographic and mineralogical constraints from the Tongshanling intrusion, Nanling Range, South China. Journal of Asian Earth Sciences, 166: 1~18.
参考文献
Ishihara S, Hoshino K, Murakami H, Endo Y. 2006. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits. Resource Geology, 56: 347~364.
参考文献
Ishihara S, Chappell B W. 2012. Petrochemistry of the Late Cretaceous-Paleogene igneous rocks in the Ikuno-Akenobe mines area, Southwest Japan. Bulletin of the Geological Survey of Japan, 63: 181~202.
参考文献
Jacques D, Vieira R, Muchez P, Sintubin M. 2015. Late- to post-orogenic, granite-related fracture reactivation and veining at the Minas da Panasqueira W-Sn-Cu ore deposit (Portugal). Geotectonic Research, 97(1): 53~55.
参考文献
Jaranowski M, Budzyń B, Rzepa G, Sláma J, Sawłowicz Z. 2021. Geochemical constraints on the distribution of trace elements and volatiles in fluorapatite from the Panasqueira tin-tungsten deposit (Portugal). Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125765.
参考文献
Jiang Chengyao, Liu Peng, Qian Longbing, Mao Jingwen. 2021. Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China. Acta Petrologica Sinica, 37(3): 747~768(in Chinese with English abstract).
参考文献
Jiang Sihong, Liang Qingling, Liu Yifei, Liu Yan. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Dajing Cu-Ag-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age. Acta Petrologica Sinica, 28(2): 495~513(in Chinese with English abstract).
参考文献
Jiang Weicheng, Li Huan, Turner S, Zhu Dapeng, Wang Chong. 2020. Timing and origin of multi-stage magmatism and related W-Mo-Pb-Zn-Fe-Cu mineralization in the Huangshaping deposit, South China: An integrated zircon study. Chemical Geology, DOI: 10. 1016/j. chemgeo. 2020. 119782.
参考文献
Kontak D J, Clark A H. 2002. Genesis of the giant Bonanza San Rafael lode tin deposit, Peru: Origin and significance of Pervasive Alteration. Economic Geology, 97(8): 1741~1777.
参考文献
Kurzweil F, Münker C, Tusch J, Schoenberg R. 2018. Accurate stable tungsten isotope measurements of natural samples using a 180W-183W double-spike. Chemical Geology, 476: 407~417.
参考文献
Kurzweil F, Münker C, Hoffmann J E, Tusch J, Schoenberg R. 2020. Stable W isotope evidence for redistribution of homogeneous 182W anomalies in SW Greenland. Geochemical Perspectives Letters, 14: 53~57.
参考文献
Launay G, Sizaret S, Guillou-Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic-hydrothermal transition: A case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal). Earth and Planetary Science Letters, 499: 1~12.
参考文献
Laznicka P. 2014. Giant metallic deposits—a century of progress. Ore Geology Reviews, 62: 259~314.
参考文献
Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, DOI: 10. 1016/j. lithos. 2020. 105756.
参考文献
Leng Chengbiao, Cooke D R, Hou Zengqian, Evans N J, Zhang Xingchun, Chen Wei T, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.
参考文献
Li Huan, Wu Jinghua, Jiang Weicheng, Ren Tao, Liu Biao. 2021a. Research progress on tin isotope and its application prospect in ore geology. Acta Geologica Sinica, 95(12): 3926~3936 (in Chinese with English abstract).
参考文献
Li Huan, Wang Chong, Zhu Dapeng, Jiang Weicheng. 2021b. Metallogenic environment of skarn-type and vein-type Pb-Zn ore body in the Huangshaping deposit and its implications of deep deposit exploration. The Chinese Journal of Nonferrous Metals, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html(in Chinese with English abstract).
参考文献
Li Xiang. 2019. Micro-geochemical analysis and metallogenic mechanism of tin-copper associated deposits: Case studies of the Neves Corvo deposit in Portugal and the Gejiu deposit in Yunnan, China. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).
参考文献
Li Xiang, Zhao Kuidong, Jiang Shaoyong, Palmer M R. 2019. In situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews, 105: 223~235.
参考文献
Li Xuekai, Yuan Yabin, Liu Xiaofei. 2013. Zircon LA-(MC)-ICP-MS U-Pb dating of ore-bearing quartz porphyry in the Yejiwei porphyry Cu-Sn deposit, Dongpo orefield, Hunan. Geological Review, 59(z1): 181~182(in Chinese with English abstract).
参考文献
Liang Jin, Zhou Yongzhang, Li Hongzhong, Yin Zhuizhui, Zhou Liuyu, Ceng Changyu, Yu Pengpeng. 2012. Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone, South China. Petrologica Sinica, 28(10): 3361~3372(in Chinese with English abstract).
参考文献
Liao Jing, Guo Lirong, Qian Longbing. 2018. Diagenesis and metallogenic epoch and genesis of the Jinkeng copper, tin, lead and zinc deposit, Guangdong. Resources Environment and Engineering, 32(2): 212~214(in Chinese with English abstract).
参考文献
Liao Shili, Tao Chunhui, Zhu Chuanwei, Li Huaiming, Li Xiaohu, Liang Jin, Yang Weifang, Wang Yejian. 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the southwest Indian Ridge: Insight from Zn isotopes. Chemical Geology, 507: 54~63.
参考文献
Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60(24): 4965~4976.
参考文献
Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinghua. 2019a. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.
参考文献
Liu Biao, Wu Qianhong, Li Huan, Evans N J, Wu Jinghua, Cao Jingya, Jiang Jiangbo. 2019b. Fault-fluid evolution in the Xitian W-Sn ore field (South China): Constraints from scheelite texture and composition. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103140.
参考文献
Liu Jianping, Rong Yanan, Gu Xiangping, Shao Yongjun, Lai Jianqing, Chen Weikang. 2017. Indium mineralization in the Yejiwei Sn-polymetallic deposit of the Shizhuyuan orefield, southern Hunan, China. Resource Geology, 68(1): 22~36.
参考文献
Liu Jingao, Pearson D G, Chacko T, Luo Yan. 2018. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica et Cosmochimica Acta, 223: 300~318.
参考文献
Liu Peng, Mao Jingwen, Lehmann B, Weyer S, Horn I, Mathur R, Wang Fangyue, Zhou Zhenhua. 2021. Tin isotopes via fs-LA-MC-ICP-MS analysis record complex fluid evolution in single cassiterite crystals. American Mineralogist, 106(12): 1980~1986.
参考文献
Liu Wei, Li Xinjun, Tan Jun. 2001. Petrogenetic and metallogenetic background of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia, and characteristics of the mineralizing fluid. Resource Geology, 51(4): 321~331.
参考文献
Liu Wei, Li Xinjun, Tan Jun. 2003. Fluid mixing as the mechanism of formation of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia. Science in China (Series D): Earth Sciences, DOI: 10. 1360/03yd9057.
参考文献
Lu Youyue, Fu Jianming, Cheng Shunbo, Liu Shusheng, Li Chuanbiao, Zhang Liguo, Ma Liyan. 2015. Rock-forming and ore-forming ages of Tongshanling copper polymetallic ore-field in southern Hunan Province. Geotectonica et Metallogenia, 39(6): 1061~1071(in Chinese with English abstract).
参考文献
Niu Shuyin, Sun Aiqun, Liu Jianming, Guo Lijun, Wang Baode, Hu Huabin. 2006. Metallogenic process of the Dajing Cu-Sn polymetallic deposit in Linxi, Inner Mongolia. Mineral Deposits, 25(S1): 185~188(in Chinese with English abstract).
参考文献
Marignac C, Cuney M, Cathelineau M, Lecomte A, Carocci E, Pinto F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W-Sn-Cu vein deposit: A petrographic, mineralogical, and geochemical study. Minerals, DOI: 10. 3390/min10060562.
参考文献
Mathur R, Mason A, Godfrey L, Yao Junming, Baker M. 2017. Preparation and measurement of cassiterite for Sn isotope analysis. Geostandards and Geoanalytical Research, 41(4): 701~707.
参考文献
Menuge J F, Barker G J, Gagnevin D, Boyce A J. 2013. Fe and Zn isotopes in the Navan Zn-Pb deposit, Ireland: Implications for mineral exploration. Mineral Deposit Research for a High-tech World, 1-4: 422~425.
参考文献
Mlynarczyk M S J, Williams-Jones A E. 2006. Zoned tourmaline associated with cassiterite: Implications for fluid evolution and tin mineralization in the San Rafael Sn Cu deposit, southeastern Peru. The Canadian Mineralogist, 44(2): 347~365.
参考文献
Moura A. 2005. Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal. Chemical Geology, 223(1-3): 153~169.
参考文献
Moura A. 2008. Metamorphosed and metamorphogenic ores of the Neves Corvo volcanogenic massive sulfide deposit, Iberian Pyrite Belt, Portugal. International Geology Review, 50(1): 89~96.
参考文献
Polya D A, Foxford K A, Stuart F, Boyce A, Fallick A E. 2000. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: New evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochimica et Cosmochimica Acta, 64(19): 3357~3371.
参考文献
Qin Gongjiong, Kawachi Y, Zhao Liqing, Wang Yongzheng, Ou Qiang. 2001. The Upper Permian sedimentary facies and its role in the Dajing Cu-Sn deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293~305.
参考文献
Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2021. Petrogenetic differences among the Middle-Late Jurassic Pb-Zn-Cu-bearing granites in the Nanling Range, South China. Geology in China, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html(in Chinese with English abstract).
参考文献
Qiu Zengwang, Wang He, Li Shasha, Li Pei, Wei Xiaopeng, Mu Shenglu. 2014. Research progress and mineral exploration of the Jinkeng Cu-Sn-Pb-Zn deposit, Jiexi, Guangdong. Mineral Deposits, 33(S1): 955~956(in Chinese with English abstract).
参考文献
Quan Tiejun, Wang Gao, Zhong Jianglin, Fei Lidong, Kong Hua, Liu Shijie, Zhao Zhiqiang, Guo Biying. 2013. Petrogenesis of granodiorites in Tongshanling deposit of Hunan Province: Constraints from petrogeochemistry, zircon U-Pb chronology and Hf isotope. Journal of Mineralogy and Petrology, 33(1): 43~52(in Chinese with English abstract).
参考文献
Relvas J M R S, Tassinari C C, Munhá J, Barriga F J. 2001. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): Strontium, neodymium and lead isotope evidence. Mineralium Deposita, 36(5): 416~427.
参考文献
Relvas J M R S, Barriga F J A S, Ferreira A, Noiva P C, Pacheco N, Barriga G. 2006a. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, Mineralogy, and Geochemistry. Economic Geology, 101(4): 753~790.
参考文献
Relvas J M R S, Barriga F J A S, Longstaffe F J. 2006b. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II. Oxygen, Hydrogen, and Carbon Isotopes. Economic Geology, 101(4): 791~804.
参考文献
Schmidt C. 2017. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Cosmochimica Acta, 220: 499~511.
参考文献
Sillitoe R. 2010. Porphyry copper systems. Economic Geology, 105: 3~41.
参考文献
Sillitoe R H, Lehmann B. 2022. Copper-rich tin deposits. Mineralium Deposita, 57(1): 1~11.
参考文献
Sinclair W D, Kooiman G J A, Martin D A, Kjarsgaard I M. 2006. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28: 123~145.
参考文献
Smith J M, Ripley E M, Li Chusi, Wasylenki L E. 2022. Cu and Ni isotope variations of country rock-hosted massive sulfides located near midcontinent rift intrusions. Economic Geology, 117(1): 195~211.
参考文献
Sun Huashan, Li Huan, Liu Liu, Chen Qiaomei, Yang Hui, Wu Pan. 2016. Exhumation history of the Jiaodong and its adjacent areas since the Late Cretaceous: Constraints from low temperature thermochronology. Science China Earth Sciences, 60(3): 531~545.
参考文献
Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.
参考文献
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.
参考文献
Tang Rankun, Lü Xinbiao, Cao Xiaofeng, Mei Wei, Ai Zhilong, Wang Xiangdong. 2013. Genetic analysis of sulfides intergrowths in the Dajing tin and copper polymetallic deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 252~261(in Chinese with English abstract).
参考文献
Tao Qin, Han Runsheng, Zhao Dong, Wu Peng, Tian Xufeng, Zhao Taicheng, Yang Hang, Zong Zhihong, Deng Anping. 2021. The mineralization and alteration zoning related to the buried granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, southern Hunan. Geology in China, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html(in Chinese with English abstract).
参考文献
Vincent V I, Li Huan, Girei M B, Förster M W, Ahmed H A, Ntekim E E. 2021. In situ trace elements and sulfur isotope analysis of sulfides from the Akiri Cu±(Ag) deposit, Benue Trough, North-central Nigeria: Implications for ore genesis. Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125801.
参考文献
Wagner T, Mlynarczyk M S J, Williams-Jones A E, Boyce A J. 2009. Stable isotope constraints on ore formation at the San Rafael Tin-copper deposit, southeast Peru. Economic Geology, 104(2): 223~248.
参考文献
Wang Jingbin, Wang Lijuan, Wang Yuwang, Li Tiejun, Shimazaki H. 2004. Oxygen isotopic characteristics of granitic intrusions related to Haobugao Zn-Pb-Cu-Sn skarn deposit, East Inner Mongolia, China. Resource Geology, 54(2): 205~208.
参考文献
Wang Lijuan, Wang Jingbin, Wang Yuwang, Zhu Heping. 2003. Ore-forming fluid and metallogeny of the Caijiaying and Dajin polymetallic deposits. Science in China (Series D), 33(10): 941~950(in Chinese with English abstract).
参考文献
Wang Lijuan, Wang Jingbin, Wang Yuwang, Long Lingli. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia. Acta Petrologica Sinica, 31(4): 991~1001(in Chinese with English abstract).
参考文献
Wang Yonglei, Wang Denghong, Zhang Changqing, Qu Wenjun, Hu Yanchun. 2010. Molybdenite Re-Os dating of Debao Cu-Sn deposit in Guangxi and its implications for Caledonian metallogeny. Mineral Deposits, 29(5): 881~889(in Chinese with English abstract).
参考文献
Wang Yue, Su Shangguo, Zhang Qi, Zhou Qiming, Zhang Yanan. 2022. Cu-S isotopic characteristics and metallogenic prediction in the ore of Dajing tin and copper polymetallic deposit, Inner Mongolia. Earth Science Frontiers, 29(3): 319~328(in Chinese with English abstract).
参考文献
Wang Yuejun, Fan Weiming, Guo Feng, Li Huiming, Liang Xinquan. 2002. U-Pb dating of early Mesozoic granodioritic intrusions in southeastern Hunan Province, South China and its petrogenetic implications. Science in China (Series D): Earth Sciences, 45(3): 280~288.
参考文献
Wang Yunfeng, Yang Hongmei, Zhang Liguo, Lu Shansong, Yang Zefei, Qiu Xiaofei, Liu Zhongpeng. 2017. Metallogenic epoch and ore-forming material source of the Tongshanling Pb-Zn polymetallic deposit in southeastern Hunan Province: Evidence from Sm-Nd isochron age and Pb isotope. Geological Bulletin of China, 36(5): 875~884(in Chinese with English abstract).
参考文献
Wang Yuwang, Wang Jingbin, Wang Lijuan, Chen Yun. 2006. Tin mineralization in the Dajing tin-polymetallic deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 28(4-6): 320~331.
参考文献
Wei Daofang, Bao Zhengyu, Fu Jianming. 2007. Geochemical characteristics and zircon SHRIMP U-Pb dating of the Tongshanling granite in Hunan Province, South China. Geotectonica et Metallogenia, 4: 482~489(in Chinese with English abstract).
参考文献
Wei Ning, Fang Weixuan, Chen Jiawei, Zhang Hai, Gan Fengwei. 2010. Study of copper, tin and coexisting ingredient occurrence of Dabaiyan copper-tin polymetallic ore deposit in Gejiu, Yunnan Province, P. R. China. Acta Mineralogica Sinica, 30(1): 115~122(in Chinese with English abstract).
参考文献
Willis-Richards J, Jackson N J. 1989. Evolution of the Cornubian ore field, southwest England; part I. batholith modeling and ore distribution. Economic Geology, 84: 1078~1100.
参考文献
Wolff R, Dunkl I, Kempe U, von Eynatten H. 2015. The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Economic Geology, 110(8): 2025~2040.
参考文献
Wu Jinghua, Kong Hua, Li Huan, Algeo T J, Yonezu K, Liu Biao, Wu Qianhong, Zhu Dapeng, Jiang Hua. 2021. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104521.
参考文献
Xiong Yiqu, Shao Yongjun, Zhou Haodi, Wu Qianhong, Liu Jianping, Wei Haotao, Zhao Ruicheng, Cao Jingya. 2017. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore Geology Reviews, 83: 152~173.
参考文献
Xu Jiajia, Lai Yong, Cui Dong, Chang Yong, Jiang Lin, Shu Qihai, Li Wenbo. 2009. Characteristics and evolution of ore-forming fluids of the Daolundaba copper-poly-metal deposit, Inner Mongolia. Acta Petrologica Sinica, 25(11): 2957~2972(in Chinese with English abstract).
参考文献
Xu Rong, Romer R L, Glodny J. 2021. External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn Cu deposit, Gejiu district, China. Lithos, DOI: 10. 1016/j. lithos. 2020. 105937.
参考文献
Xu Weijuan, Lai Jianqing, Chen Yanhui, Cao Chunxiang. 2019. Analysis of the geological characteristics and prospecting potential of the copper-tin polymetallic deposit in Qianmenchong. Southern Metals, 1: 20~27(in Chinese with English abstract).
参考文献
Yao Junming, Hua Renmin, Qu Wenjun, Qi Huawen, Lin Jinfu, Du Andao. 2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China (Series D): Earth Sciences, 50: 519~526.
参考文献
Yao Junming, Mathur R, Lehmann B, Tornos F, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.
参考文献
Yuan Yabin, Yuan Shunda, Zhao Panlao, Zhang Dongliang. 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan: Their constraints to mineralization differences. Acta Petrologica Sinica, 34(9): 2565~2580(in Chinese with English abstract).
参考文献
Zhang Chanchan, Sun Weidong, Wang Jintuan, Zhang Lipeng, Sun Saijun, Wu Kai. 2017. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343~363.
参考文献
Zhang Rongqing, Lehmann B, Seltmann R, Sun W D, Li C Y. 2017. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45(12): 1095~1098.
参考文献
Zhang Xuebing, Bao Changjia, Wu Shishan. 2021. Chronology of the Daolundaba Cu-W polymetallic deposit, southern Great Xing'an Range: Evidence from quartz fluid inclusion 40Ar-39Ar age. Journal of Xinjiang University (Natural Science Edition), 38(1): 83~90(in Chinese with English abstract).
参考文献
Zhang Zhao, Huang Sheng, Zhu Yuanchao, Yu Haibin. 2017. Guangxi Debao Qinjia copper tin ore deposit geological characteristics and mineralization regularity. World Nonferrous Metals, 18: 178~180(in Chinese with English abstract).
参考文献
Zhao Lianjie, Zhang Yu, Shao Yongjun, Li Hongbin, Ahmad Shah S, Zhou Weijian. 2021. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W-Mo-Sn-Cu polymetallic deposit, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104412.
参考文献
Zhao Panlao, Yuan Shunda, Mao Jingwen, Santosh M, Li Chao, Hou Kejun. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province: Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 78: 120~137.
参考文献
Zhao Wen, Zhou Meifu. 2018. Mineralogical and metasomatic evolution of the Jurassic Baoshan scheelite skarn deposit, Nanling, South China. Ore Geology Reviews, 95: 182~194.
参考文献
Zhao Yuehua, Chen Shouyu, Tian Huan, Zhao Jiangnan, Tong Xiang, Chen Xingshou. 2021. Trace element and S isotope characterization of sulfides from skarn Cu ore in the Laochang Sn-Cu deposit, Gejiu district, Yunnan, China: Implications for the ore-forming process. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104155.
参考文献
Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist, 107(4): 673~683.
参考文献
Zheng Yuanchuan, Liu Sheng'ao, Wu Changda, Griffin W L, Li Zhenqing, Xu Bo, Yang Zhiming, Hou Zengqian, O'Reilly S Y. 2018. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 47(2): 135~138.
参考文献
Zhu Dapeng, Li Huan, Algeo T J, Jiang Weicheng, Wang Chong. 2021. The prograde-to-retrograde evolution of the Huangshaping skarn deposit (Nanling Range, South China). Mineralium Deposita, 56(6): 1087~1110.
参考文献
Zhu Peiyun, Yan Lunming, Bu An, Xu Diankui, Qian Longbing, Guo Lirong. 2018. Research on the mineralization geological body in Jinkeng copper-tin-lead-zinc deposit, Guangdong. Mineral Exploration, 9(1): 33~44(in Chinese with English abstract).
参考文献
蔡应雄, 谭娟娟, 杨红梅, 卢山松, 段瑞春, 邱啸飞, 程顺波, 杨小莉. 2015. 湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束. 地质学报, 89(10): 1792~1803.
参考文献
陈公正. 2018. 大兴安岭南段道伦达坝铜多金属矿床成矿作用研究. 中国地质大学(北京)硕士学位论文.
参考文献
陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018a. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 37(2): 225~245.
参考文献
陈公正, 武广, 武文恒, 张彤, 李铁刚, 刘瑞麟, 武利文, 章培春, 江彪, 王志利. 2018b. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征. 地学前缘, 25(5): 202~221.
参考文献
陈公正, 武广, 李铁刚, 刘瑞麟, 李睿华, 李英雷, 杨飞. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U-Pb和绢云母40Ar-39Ar年龄的约束. 岩石学报, 37(3): 865~885.
参考文献
陈少青. 2017. 广东省揭西县金坑铜锡铅锌多金属矿床成因探讨. 华东地质, 38(4): 271~278.
参考文献
陈原林, 李欢, 郑朝阳, 李大兜. 2021. 胶莱盆地郭城-崖子断裂带金矿集区剥蚀程度及深部找矿潜力: 磷灰石裂变径迹热年代学证据. 中国有色金属学报, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17.
参考文献
郭闯, 卢玉杰. 2021. 湖南大义山地区芝麻山铜锡矿床地质特征及控矿因素分析. 南方金属, 238: 14~22.
参考文献
黄旭栋, 陆建军, Stanislas Sizaret, 王汝成, 马东升, 章荣清, 赵旭, 吴劲薇. 2017. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异: 以湘南铜山岭和魏家矿床为例. 中国科学: 地球科学, 47(7): 766~782.
参考文献
江丞曜, 刘鹏, 钱龙兵, 毛景文. 2021. 粤东金坑Sn-Cu矿成岩成矿年代学格架与Sn-Cu共生成矿作用. 岩石学报, 37(3): 747~768.
参考文献
江思宏, 梁清玲, 刘翼飞, 刘妍. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束. 岩石学报, 28(2): 495~513.
参考文献
李欢, 吴经华, 蒋维诚, 任涛, 刘飚. 2021a. 锡同位素研究进展及其在矿床学中的应用展望. 地质学报, 95(12): 3926~3936.
参考文献
李欢, 王冲, 朱大鹏, 蒋维诚. 2021b. 黄沙坪矽卡岩型和脉状铅锌矿成矿环境及其对深部找矿的指示. 中国有色金属学报, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html.
参考文献
李翔. 2019. 锡铜共生矿床微区地球化学分析及成矿机制研究. 中国地质大学博士学位论文.
参考文献
李雪凯, 原垭斌, 刘晓菲. 2013. 湖南东坡矿田野鸡尾斑岩型铜锡矿床含矿石英斑岩锆石LA-(MC)-ICP-MS U-Pb测年. 地质论评, 59(z1): 181~182.
参考文献
梁锦, 周永章, 李红中, 尹缀缀, 周留煜, 曾长育, 虞鹏鹏. 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361~3372.
参考文献
廖静, 郭丽荣, 钱龙兵. 2018. 广东金坑铜锡铅锌矿床成岩成矿时代及成因探讨. 资源环境与工程, 32(2): 212~214.
参考文献
卢友月, 付建明, 程顺波, 刘树生, 黎传标, 张利国, 马丽艳. 2015. 湘南铜山岭铜多金属矿田成岩成矿作用年代学研究. 大地构造与成矿学, 39(6): 1061~1071.
参考文献
牛树银, 孙爱群, 刘建明, 郭利军, 王宝德, 胡华斌. 2006. 林西大井铜锡多金属成矿作用研究. 矿床地质, 25(S1): 185~188.
参考文献
秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2021. 南岭成矿带中—晚侏罗世含钨、锡、铅锌(铜)花岗岩的差异性研究. 中国地质, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html.
参考文献
丘增旺, 王核, 李莎莎, 李沛, 魏小鹏, 慕生禄. 2014. 广东揭西县金坑铜锡铅锌矿床勘查和研究新进展. 矿床地质, 33(S1): 955~956.
参考文献
全铁军, 王高, 钟江临, 费利东, 孔华, 刘仕杰, 赵志强, 郭碧莹. 2013. 湖南铜山岭矿区花岗闪长岩岩石成因: 岩石地球化学、U-Pb年代学及Hf同位素制约. 矿物岩石, 33(1): 43~52.
参考文献
唐然坤, 吕新彪, 曹晓峰, 梅微, 艾智龙, 王祥东. 2013. 内蒙古大井铜锡多金属矿床金属硫化物共生体成因分析. 矿物岩石地球化学通报, 32(2): 252~261.
参考文献
陶琴, 韩润生, 赵冻, 吴鹏, 田旭峰, 赵太成, 杨航, 宗志宏, 邓安平. 2021. 湘南黄沙坪铜锡多金属矿床与隐伏花岗斑岩有关的矿化-蚀变分带模式. 中国地质, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html.
参考文献
王莉娟, 王京彬, 王玉往, 朱和平. 2003. 蔡家营、大井多金属矿床成矿流体和成矿作用. 中国科学(D 辑), 33(10): 941~950.
参考文献
王莉娟, 王京彬, 王玉往, 龙灵利. 2015. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测. 岩石学报, 31(4): 991~1001.
参考文献
王永磊, 王登红, 张长青, 屈文俊, 胡艳春. 2010. 广西德保铜锡矿床辉钼矿Re-Os同位素定年及对加里东期成矿的探讨. 矿床地质, 29(5): 881~889.
参考文献
王跃, 苏尚国, 张旗, 周奇明, 张雅南. 2022. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测. 地学前缘, 29(3): 319~328.
参考文献
王云峰, 杨红梅, 张利国, 卢山松, 杨泽飞, 邱啸飞, 刘重芃. 2017. 湘东南铜山岭铅锌多金属矿床成矿时代与成矿物质来源—Sm-Nd等时线年龄和Pb同位素证据. 地质通报, 36(5): 875~884.
参考文献
魏道芳, 鲍征宇, 付建明. 2007. 湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年. 大地构造与成矿学, 4: 482~489.
参考文献
魏宁, 方维萱, 陈家玮, 张海, 甘凤伟. 2010. 云南个旧大白岩铜锡矿床铜锡与共伴生组分赋存状态研究. 矿物学报, 30(1): 115~122.
参考文献
徐佳佳, 赖勇, 崔栋, 常勇, 蒋林, 舒启海, 李文博. 2009. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化. 岩石学报, 25(11): 2957~2972.
参考文献
徐卫娟, 赖健清, 陈燕辉, 曹春祥. 2019. 湖南耒阳铅门冲铜锡多金属矿床地质特征及找矿前景. 南方金属, 1: 20~27.
参考文献
原垭斌, 袁顺达, 赵盼捞, 张东亮. 2018. 湘南黄沙坪多金属矿床花岗质岩浆性质及演化对成矿差异的约束. 岩石学报, 34(9): 2565~2580.
参考文献
张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar-39Ar年龄的证据. 新疆大学学报(自然科学版), 38(1): 83~90.
参考文献
张钊, 黄晟, 朱元超, 余海彬. 2017. 广西德保钦甲铜锡矿矿床地质特征及矿化富集规律. 世界有色金属, 18: 178~180.
参考文献
朱沛云, 颜伦明, 卜安, 许典葵, 钱龙兵, 郭丽荣. 2018. 广东金坑铜锡铅锌矿床成矿地质体研究. 矿产勘查, 9(1): 33~44.
目录contents

    摘要

    铜与锡具有不同的地球化学性质,然而铜锡共生或复合成矿现象在世界主要铜、锡成矿带中比较常见,如中国的右江、南岭(湘南)、大兴安岭南段(内蒙东部)、葡萄牙伊比利亚、秘鲁安第斯、英格兰德文郡、德国厄尔士山、日本西南、俄罗斯远东、加拿大新不伦瑞克等成矿带均为铜锡复合矿床的集中产区。铜锡复合矿床主要为岩浆热液矿床,以矽卡岩型、脉状矿床为主,兼有火山热液沉积型、斑岩型及云英岩型等。铜矿体的主要矿石矿物为黄铜矿,兼有斑铜矿、黝铜矿、辉铜矿等;锡矿体的主要矿石矿物为锡石,兼有黝锡矿。铜锡复合矿床的成矿物质来源(尤其是铜、锡成矿元素的来源是否具有一致性)尚有不少争议,锡普遍被认为是岩浆来源,而铜的来源具有多样性。成矿流体演化过程中的氧化还原环境的改变及流体的混合是导致铜锡复合成矿的主要原因。目前对于铜锡复合成矿的研究,主要是从矿床的年代学、单矿物(黄铜矿、锡石)微量元素及传统同位素地球化学、流体包裹体等方面入手,但对厘定铜锡复合成矿过程的作用有限。铜锡复合矿床的成因及勘查模型的建立具有重要的理论价值及现实意义。本文提出未来研究可以从多种非传统稳定同位素(例如Cu、Sn、W、Zn同位素)的联合示踪探索、成矿贯通矿物(如白钨矿、闪锌矿、石榴子石、电气石、磷灰石等)的原位地球化学特征精细对比分析、流体包裹体以及低温热年代学的差异深度成矿与隆升剥蚀研究等方向入手,精确厘定铜锡复合的成矿物质来源、流体演化过程以及找矿勘查方向。

    Abstract

    Copper and tin have distinguishable geochemical properties whereas Cu-Sn paragenesis or coupled mineralization is common in the major Cu-Sn metallogenic belts of the world. For example, the Youjiang, Nanling (southern Hunan Province) and southern Great Xing'an Range (eastern Inner Mongolia) in China, the Iberia in Portugal, the Andes in Peru, the Cornubian in England, the Erzgebirge in Germany, southwest Japan, Far East Russia, and New Brunswick in Canada are all characterized by intensive distribution of coupled Cu-Sn deposits. Coupled Cu-Sn deposits are mostly magmatic hydrothermal deposits that are dominated by skarn type and vein type. Volcanic hydrothermal sedimentary type, porphyry type, and greisen type are also present. Ore minerals of Cu ore bodies mainly include chalcopyrite, with the presence of bornite, tetrahedrite, and chalcocite. In contrast, ore minerals of tin ore bodies are cassiterite and minor stannite. The source of ore-forming materials of Cu-Sn coupled deposits (especially whether the source of copper and tin elements is consistent) remains highly controversial. Tin is generally considered to be of magmatic origin, while the source of copper may be diversified. The change of redox environment and fluid mixing during the ore-forming fluid evolution may be the key trigger for Cu-Sn coupled mineralization. Available studies on Cu-Sn coupled mineralization focused on chronology of deposits, trace element and conventional isotopic geochemistry of single minerals (e.g., chalcopyrite, cassiterite), and fluid inclusions, which have limitation in determining the Cu-Sn coupled mineralization process. The genesis and the establishment of exploration model for coupled Cu-Sn deposits are of great theoretical and practical importance. In this paper, we propose that future studies can be conducted by using combined tracing of multiple unconventional stable isotopes (e.g., Cu, Sn, W, Zn isotopes), precise comparable analyses of in situ geochemical characteristics of marked ore minerals (e.g. scheelite, sphalerite, garnet, tourmaline, apatite), fluid inclusions, low-temperature thermochronology (e.g., mineralization at different depth and uplift-exhumation histories), to precisely probe into the source of ore-forming materials, fluid evolution, and mineral exploration of Cu-Sn coupled mineralization.

  • 铜和锡均为战略性矿产资源,在我国的国民经济建设中发挥着重要作用。岩浆热液矿床为全球铜和锡的供应作出了巨大贡献,包括斑岩型、矽卡岩型以及石英脉型等矿床(Sillitoe,2010; Laznicka,2014)。大量研究表明,铜和锡的成矿作用受构造环境、岩浆性质(例如氧逸度、分异程度和岩石成因类型)、流体演化过程等因素的控制(Cooke et al.,2005; Chiaradia,2013; Zhang Chanchan et al.,2017; Zhao Wen et al.,2018)。铜与锡的地球化学特征迥异:铜是亲硫元素,其矿化一般与氧化的中低分异岩浆有关,而锡具有亲氧和亲硫两重特性,为强不相容元素,其成矿与还原的高分异岩浆关系密切(Sun Weidong et al.,2013; Cheng Yanbo et al.,2018; Lehmann,2021)。低氧逸度会导致岩浆源区Cu2+的沉淀(Cu2++ Fe2++2S2-=CuFeS2),但Sn2+可以在此环境下以氯化亚锡的形式被运移至浅地壳(Wu Jinghua et al.,2021)。相反,高氧逸度的岩浆有利于铜在后期熔体中富集,但会导致Sn2+氧化为Sn4+(Sn4++2O2-=SnO2),进而致使锡在源区沉淀或进入镁铁质矿物中而难以在热液中聚集成矿(Linnen et al.,1996; Schmidt,2017)。另外,有学者指出氧逸度是通过影响硫的价态进而影响铜元素的富集; 在部分熔融过程中,高氧逸度可以提高硫在岩浆中的溶解度,硫化物在岩浆演化过程中保持不饱和状态,硫以硫酸根的形式被熔出,从而大幅度提高初始岩浆铜含量,有利于铜通过岩浆演化进一步富集(Sun Weidong et al.,2015)。因此从理论上讲,铜和锡应该很难大规模共生复合在一起。但实际上,铜锡共生或复合成矿现象在世界主要铜、锡成矿带中比较常见,如云南个旧(Zhao Yuehua et al.,2021; Xu Rong et al.,2021),广西大厂、德保(Huang Wenting et al.,2019; Chen Jiahao et al.,2021),广东金坑(江丞曜等,2021),内蒙古大井、道伦达坝、浩布高(Chen Gongzheng et al.,2021; 王跃等,2022),湖南大义山、黄沙坪、野鸡尾、铜山岭(Zhao Lianjie et al.,2021; Wu Jinghua et al.,2021),葡萄牙Neves Corvo、Panasqueira(Relvas et al.,2001; Li Xiang et al.,2019; Carocci et al.,2020; Codeço et al.,2020),秘鲁Ayawilca、San Rafael(Harlaux et al.,2020; Benites et al.,2021)以及英格兰德文郡、德国厄尔士山、日本西南、俄罗斯远东、加拿大新不伦瑞克等地的一些矿床(Sillitoe et al.,2022)。铜锡多金属矿床具有集中产出的特点,然而目前铜锡复合成矿机制并不十分清楚。造成铜锡在一个区域内大规模成矿的根本原因是什么?是多期岩浆热液成矿活动的叠加,还是同一期成矿过程中流体分化的不同产物?同一个矿床中铜锡来源是否具有相关性?氧化还原环境的转变如何控制铜和锡的分离与复合?这些问题的解决对理解铜锡复合成矿过程至关重要。

  • 本文收集并整理了目前国内外发表的关于铜锡复合成矿的主要论文数据及观点,总结了铜锡复合矿床的一般特征,探讨铜锡成矿物质来源、成矿流体演化过程以及铜锡复合成矿机制,指出铜锡复合成矿研究手段,并对铜锡复合成矿研究提出展望,旨在引起对铜锡大规模复合成矿研究的重视。

  • 1 铜锡复合矿床的一般特征

  • 世界范围内主要的铜锡复合矿田(床)主要有云南个旧(如老厂、高松、卡房、塘子凹、大白岩矿床; Xu Rong et al.,2021),广西大厂(铜坑、长坡矿床等; Huang Wenting et al.,2019),广东金坑(江丞曜等,2021),广西德保(Chen Jiahao et al.,2021),内蒙古大井(江思宏等,2012)、道伦达坝(王跃等,2022)、浩布高(Wang Jingbin et al.,2004),湖南黄沙坪(Zhao Lianjie et al.,2021)、大义山(郭闯等,2021)、野鸡尾(Liu Jianping et al.,2017)、铜山岭(Wu Jinghua et al.,2021),葡萄牙Neves Corvo(Moura,20052008)、Panasqueira(Jacques et al.,2015),秘鲁Ayawilca(Benites et al.,2021)、San Rafael(Harlaux et al.,2020)、英格兰Cornubian(Willis-Richards et al.,1989)、日本Akenobe(Ishihara et al.,2006)、俄罗斯Sobolinoe(Gonevchuk et al.,2010)、加拿大Mount Pleasan(Sinclair et al.,2006)、德国Sadisdorf(Wolff et al.,2015)等(附表1)。从矿床类型来看,铜锡复合矿床主要为岩浆热液矿床,以矽卡岩型、石英脉型矿床为主,兼有火山热液沉积型、斑岩型及云英岩型等。铜矿体的主要矿石矿物为黄铜矿,兼有斑铜矿、黝铜矿、辉铜矿等(魏宁等,2010; 郭闯等,2021; 王跃等,2022); 锡矿体的主要矿石矿物为锡石,兼有黝锡矿(王永磊等,2010; 江丞曜等,2021; 陶琴等,2021)。铜锡复合矿床的其他矿石矿物有闪锌矿、方铅矿、磁铁矿、黄铁矿、磁黄铁矿、毒砂、辉铋矿、辉锑矿、辉钼矿,脉石矿物主要为石英、矽卡岩矿物(辉石、石榴子石、透闪石、符山石、绿帘石、绿泥石)、碳酸盐矿物(方解石、菱铁矿、铁白云石、白云石等)。此外,萤石、绿泥石、电气石、绢云母等也较为常见(王永磊等,2010; 陈少青,2017; 朱沛云等,2018; 徐卫娟等,2019; 王跃等,2022)(附表1)。铜锡多金属矿床既可以以矿田的形式产出,也可以以矿床(点)的形式产出,但无论是以矿田还是以矿床(点)的形式产出,均具有丛聚性特点,如中国的右江、南岭(湘南)、大兴安岭南段(内蒙东部)、葡萄牙伊比利亚、秘鲁安第斯、英格兰德文郡、德国厄尔士山、日本西南、俄罗斯远东、加拿大新不伦瑞克等成矿带均为铜锡复合矿床的集中产区(Qin Gongqiong et al.,2001; Mlynarczyk et al.,2006; Cheng Yanbo et al.,2012; Ishihara et al.,2012; Wolff et al.,2015; Andersen et al.,2016; 陈少青,2017; Li Xiang et al.,2019; Codeço et al.,2020)。铜锡复合矿床多以大型、中型为主(附表1),除铜锡外,还伴生有钨、铅、锌、银等矿化。

  • 2 铜锡成矿物质来源

  • 前人针对铜锡复合矿床铜、锡等成矿物质的来源开展了一些研究,存在不同的认识。例如,个旧卡房铜锡矿床的S-Pb同位素研究指出不同类型的矿化属于同一成矿系统,然而成矿物质具有不同来源:矽卡岩矿石中Cu、Sn主要来源于花岗质岩浆,而层状矿体中的Cu主要来源于玄武岩(Cheng Yanbo et al.,2012)。广东金坑铜锡铅锌多金属矿床成矿流体主要为岩浆热液,受层间滑动构造控制,属于构造动力变质控制的充填交代型铜锡铅锌矿床(陈少青,2017; 廖静等,2018; 朱沛云等,2018),其S同位素研究显示矿石中的硫来源比较单一,主要为深源岩浆硫; Pb同位素表明金属成矿物质主要来源于地壳,花岗岩提供成矿物质的可能性较大; H-O同位素研究表明金坑矿区形成于低盐度、中高温的成矿环境,成矿流体以岩浆水为主,并混入部分大气降水(朱沛云等,2018)。个旧塘子凹铜锡矿床的Li-B同位素研究表明岩浆后期高δ7Li和低δ11B的外部流体含有高的Cu和S含量,其加入对Cu矿化的贡献很大,另外该外部流体还可能从弱蚀变和中等蚀变花岗岩中浸出了锡(Xu Rong et al.,2021)。王莉娟等(2003)发现大井锡铜矿体萤石中存在中高温、低盐度含Sn和中低温、中等盐度含Cu两种类型的流体包裹体,认为锡铜矿体可能是两种不同来源(铜来自幔源,锡来自壳源)的成矿流体在同一空间上的叠加成矿。矿区中心富锡及富铜流体是不同来源的流体,反映了该矿床可能存在不同的多个矿化中心,来自不同矿化中心不同矿化阶段的流体在同一空间叠加成矿(王莉娟等,2015)。大井锡铜矿体的锡石地球化学研究指出早期锡石中Ta含量高,晚期锡石中Ti和Fe含量低,表明早期锡主要来源于花岗质岩浆,而晚期锡石组分具有明显的地层来源(Wang Yuwang et al.,2006)。此外,Liu Wei et al.(2003)对大井锡铜矿体开展了S-C同位素和流体包裹体成分研究,提出了岩浆水与地层流体混合模型来解释矿石矿物的沉淀。黄铜矿Sr同位素研究表明道伦达坝铜多金属矿床的成矿矿物主要来源于地壳,但有少量地幔物质的加入(Feng Jiarui et al.,2017)。

  • 对于世界著名的Neves Corvo铜锡复合矿床,前人S同位素研究表明铜矿体与海底喷流有关,而锡矿体主要与隐伏花岗岩体有关(Li Xiang et al.,2019)。该矿床的铜矿体与锡矿体的Pb、Rb-Sr及Sm-Nd同位素具有显著差异,指示除了海底火山提供热液外,额外的岩浆热液或老基底地层循环的变质热液对成矿也可能有贡献(Relvas et al.,2001)。流体包裹体研究也指示其复杂的流体来源,海水、基底地层循环水及岩浆流体可能对成矿均有贡献(Moura,20052008)。该矿床的形成可能依赖于一个长期的热液系统,包括两个主要成矿事件:一个早期的细脉和块状锡石沉积事件,以及随后的块状硫化物成矿事件(Relvas et al.,2006a)。蚀变矿物学和地球化学表明,Neves Corvo成矿流体比区域上的典型成矿流体温度更高、更偏酸性,意味着成矿系统中还涉及其他金属来源,可能是岩浆来源; 机械和流体辅助的构造变质再活化过程可能导致铜的大量富集。石英与锡石氧同位素显示锡石沉淀是海底热液喷口含锡流体与海水广泛混合的结果。Neves Corvo矿床流体的氧、氢和碳同位素特征可以通过将岩浆和/或变质流体并入以海水为主的热液系统来解释。特别是岩浆流体可能是Neves Corvo矿石中锡和大部分铜的来源(Relvas et al.,2006b)。Codeço et al.(2017)对葡萄牙Panasqueira W-Sn-Cu矿床的电气石进行了精细的B同位素研究,指出变沉积岩及花岗岩均提供了成矿物质,并存在多期岩浆流体的出溶。该矿床电气石生长环带的内部结构和地球化学耦合研究强调了在矿脉形成和围岩交代蚀变过程中岩浆流体的贡献(图1; Launay et al.,2018)。电气石和金红石晶体化学的微米级变化表明电气石化过程中的脉动流体输入,电气石稀土元素指示流体混合过程,表明变质热液参与了成矿,铜锡等成矿元素可能为地层来源(图2; Carocci et al.,2020)。该矿床的白云母地球化学特征记录了流体成分,指示岩浆的主要成矿贡献。原生流体包裹体的惰性气体和卤素分析表明(变质)沉积地层的物质来源可能对在Panasqueira Sn-W矿床的演化过程中起到重要作用,并可示踪从氧化物为主的矿化组合到硫化物为主的矿化组合的发展过程(Polya et al.,2000)。磷灰石的年代学及微量元素地球化学记录了流体演化过程,指示了该矿床的成矿流体主要是岩浆热液(Jaranowski et al.,2021)。总之,目前对于世界范围内的铜锡复合矿床的成矿物质来源(尤其是铜、锡成矿元素的来源是否具有一致性)尚有不少争议,锡普遍被认为是岩浆来源,而铜的来源具有多样性。铜、锡成矿元素的来源是研究其复合成矿的基础,但目前的研究也仅能大概揭示成矿流体和成矿物质的来源,因此需要开展进一步示踪研究。

  • 3 铜锡成矿流体演化过程

  • 目前铜、锡成矿流体演化过程的研究主要集中在铜、锡的矿化时序及成矿环境的演变上。大多数铜锡多金属矿床可分为矽卡岩期(早矽卡岩阶段、晚矽卡岩阶段)和石英-硫化物期(高中温硫化物阶段、中温硫化物阶段和低温硫化物阶段),早期可形成锡石,晚期可形成黝铜矿和黄铜矿(郭闯等,2021)。黄铜矿、闪锌矿及磁黄铁矿相互规则交生,形成共生体,共生体成因复杂,为出溶作用和交代作用叠加(唐然坤等,2013)。锡矿化主要发生早阶段,而铜矿化主要发生在晚阶段; 流体CH4、CO2逃逸和大气降水的混入可导致铜矿化(徐佳佳等,2009)。道伦达坝矿床流体包裹体研究亦表明流体的多次沸腾和混合是矿质沉淀的主要机制(陈公正等,2018b)。首先高压、高氧逸度环境下沉淀出大量锡石。Sn倾向于在富F和Na的熔体相中富集,萤石从富F和Sn的熔体中晶出后,氟含量降低,从而导致氯的分配系数增大,从而有利于锡进入富Cl流体相,锡主要以Cl络合物的形式迁移。随着反应的进行,CO2浓度逐渐降低,CH4浓度升高,流体还原性增强,流体中的Sn开始以黝锡矿的形式沉淀; 伴随流体沸腾、温度、压力、盐度及氧逸度的进一步降低及pH值的升高,黄铜矿发生沉淀。王跃等(2022)对大井矿床的黄铜矿进行了Cu同位素研究,发现δ65Cu值总体范围为-0.46‰~+0.32‰,Cu同位素的变化是由于硫化物-岩浆分异过程导致,大井矿矿石黄铜矿δ65Cu的变化可能指示了矿化阶段成矿硫化物的演化方向,δ65Cu逐渐降低的方向可能存在隐伏矿体,研究区域东部生产区域与外围预测未生产区域具有一致的Cu同位素特征,Cu同位素证据表明大井矿外围预测区可能存深部隐伏矿体。Zhao Yuehua et al.(2021)对个旧老厂矽卡岩矿床进行了黄铜矿的微量元素研究,指出老厂的黄铜矿富Zn、Ag、In和Sn,而贫Co、Ni、Ga、Ge、As、Cd、Sb、Bi和Pb,指出其形成于高温岩浆-热液流体。个旧高松Sn-Cu矿床的锡石微量元素研究表明其具有高含量的W和Fe,低含量的Nb、Ta、Zr和Hf,与VMS/SEDEX锡矿床具有较大差别,因此推断其形成与花岗岩有关(Guo Jia et al.,2018)。

  • 图1 Panasqueira W-Sn-(Cu)矿床岩浆热液转变时的流体力学模型(据Launay et al.,2018

  • Fig.1 Hydrodynamic model of fluid flow at the magmatic-hydrothermal transition of the Panasqueira W-Sn- (Cu) deposit (after Launay et al., 2018)

  • Pf—流体压力条件; σ3—垂直应力; T—抗拉强度

  • Pf—the fluid pressure condition; σ3—the vertical stress; T—the tensile strength

  • 越来越多的研究认为,在成矿流体中存在铜与锡的条件下,氧化还原环境的改变是导致铜锡复合成矿的原因,岩浆流体和大气降水的混合是导致锡石沉淀的主要因素; 锡矿化往往发生在早期高温阶段,铜矿化产生在晚期相对低温阶段。例如,Zhao Lianjie et al.(2021)对黄沙坪铜成矿系统及锡成矿系统中的石榴子石开展了地球化学元素的对比研究,指出两者具有差异的氧化还原环境:铜成矿偏氧化,而锡成矿偏还原; 矽卡岩系统中的石榴子石具有很好地揭示复合成矿过程的潜力。广西德保铜锡矿床矽卡岩中的磁铁矿和石榴子石微量元素研究表明从进变质到退变质阶段,温度降低而氧逸度升高,导致磁铁矿和锡石的沉淀; 主成矿期随着温度的进一步降低、氧逸度的下降和pH的升高,导致了后续黄铜矿的沉淀(图3; Chen Jiahao et al.,2021)。Benites et al.(2021)对秘鲁Ayawilca锡铜多金属矿床的研究指出氧化还原条件的变化是铜锡复合成矿的关键,矿床下方的碳质千枚岩的高还原性为锡的迁移与聚集提供了还原条件(锡以二价形式进行迁移,四价形式进行沉淀)。秘鲁东南部San Rafael锡铜矿床的电气石研究指出,流体的突然冷却、稀释和氧化为锡石的大量沉淀和高品位锡矿体的形成创造了条件(Mlynarczyk et al.,2006)。该矿床的电气石的O同位素和B同位素表明岩浆热液流体和大气降水的混合是导致锡石沉淀的主要因素(Harlaux et al.,2021)。不同世代电气石的微量元素及Sr、Nd、Pb同位素表明成矿环境由还原向氧化转变,还原的富锡岩浆流体和较冷的氧化性大气降水之间的流体混合是导致锡石沉淀的主要原因(Harlaux et al.,2020)。该矿床硫同位素指示岩浆流体来源,流体包裹体研究指示流体由还原向氧化性质转变,H-O同位素亦表明大气成因的热地下水与含锡岩浆卤水的反复混合,流体的氧化、稀释、冷却和酸中和破坏了锡的氯化物络合物的稳定性,并触发锡石的大规模沉淀(Wagner et al.,2009)。富含锡和铜、温度较低、pH值较低的流体主要与冷的、低盐度、构造驱动的地下水混合,通过水解蚀变及流体中和作用,导致锡石以及随后黄铜矿的沉淀。早期非成矿热液和后期含矿热液所显示的温度和盐度平行演化也表明,锡和铜可能在后期才大量进入岩浆房(Kontak et al.,2002)。虽然人们普遍认为成矿流体演化过程中的氧化还原环境的改变及流体的混合可能是导致铜锡复合成矿的主要因素,但目前缺乏关键的证据来证明铜、锡矿化的时间关系及刻画精细的流体演化过程,这阻碍了人们对这类矿床成矿过程的深刻理解。

  • 图2 Panasqueira矿床热液系统概念模型(据 Carocci et al.,2020

  • Fig.2 Conceptual model of the crustal-scale hydrothermal system at the Panasqueira deposit (after Carocci et al., 2020)

  • 假设地热梯度约为40℃/km; 该模型涉及两个方面不同构造层(F1和F2)

  • A geothermal gradient of~40℃/km is assumed; the model involves two sources of metamorphic fluids at different structural levels (F1 and F2)

  • 图3 德宝矿床的构造背景(a)和德宝铜锡多金属矿床成因模型(b、c)(据Chen Jiahao et al.,2021

  • Fig.3 Tectonic setting of Debao deposit (a) and schematic diagram depicting the genetic model for the Debao Cu-Sn polymetallic deposit (b, c) (after Chen Jiahao et al., 2021)

  • 4 铜锡复合成矿机制

  • 目前人们对于铜锡复合成矿机制的研究方兴未艾,主要探讨矿床的成因类型以及铜锡成矿系统的关系。例如,云南个旧大白岩铜锡矿床与区内分布面积较大的变质玄武岩有关,变质玄武岩内部及与围岩的上下接触带内铜矿体富集,靠近花岗岩接触带的地方有锡出现,成因为火山热液沉积-岩浆期后热液叠加成矿(魏宁等,2010)。对于粤东金坑矿床的可能成矿机制是:含锡花岗岩的侵位、分异出的还原性流体析出锡石; 随着水岩反应的进行,流体萃取了围岩中的Cu、Pb、Zn等成矿元素,随着流体温度、盐度的持续下降,Cu、Pb、Zn和剩余的Sn在构造带内析出沉淀,从而造成了Sn-Cu共生成矿(江丞曜等,2021)。道伦达坝铜锡多金属矿床的岩浆演化过程中常可形成不同演化程度的杂岩体,花岗质岩浆多发生高度演化形成高分异花岗岩,挥发分含量很高,发生岩浆脱气作用并分异出流体开始了气成高温热液阶段,形成了以Sn-W为主的矿体; 成矿流体演化到高温热液阶段形成以W-Cu为主的矿体(图4; 陈公正,2018)。Neves Corvo矿床主要是由于在以循环海水为主的含铜喷流热液的基础上加入了含锡的岩浆热液,两者混合共同形成锡铜矿化; 而个旧卡房地区的锡铜共生是由于含锡岩浆热液流体流经富铜的玄武岩层萃取玄武岩中的铜之后沉淀形成的锡铜矿体(李翔,2019)。大井铜锡多金属矿床可用幔枝构造成矿模式来解释:矿区内部的Sn、Cu、Au、Ag、Pb、Zn成矿元素的分带性与成矿作用及结晶温度有关,幔枝活动时强时弱,成矿作用就会时断时续,时多时少(牛树银等,2006)。广西德保钦甲铜锡矿床发育斑岩型矿化和脉状矿化,深部为斑岩型锡矿床、中部为隐爆角砾岩型锡矿床、深-浅部为热液型锡铜铅锌矿床,属于为多成因复合型矿床(张钊等,2017)。中国西南部、缅甸和越南北部的铜锡复合成矿的原因是白垩纪新特提斯洋板片的俯冲和后撤:铜起源于俯冲过程中富氯地幔楔体的熔融及地壳混染,而锡与俯冲板片的后撤导致大规模地幔上涌和温度升高引起的下地壳局部熔融相关(图5; Huang Wenting et al.,2019)。另一种观点是,弧后或碰撞后环境中的减压地幔熔融产生的镁铁质岩浆通常可部分熔融其上覆变质沉积地层,以形成铝质钛铁矿系列岩浆(产生锡矿化); 而从这些镁铁质岩浆中出溶的氧化性流体可将铜贡献给同步和共存的硅质岩浆房,从而将铜添加到还原的含锡流体中,造成铜锡共生(Sillitoe et al.,2022)。因此,目前人们对于铜锡复合成矿提出了诸多可能的机制,这些机制的提出对于理解铜锡复合成矿至关重要,但对于不同地区的矿床而言,具体情况仍需进行单独分析。

  • 图4 道伦达坝铜锡多金属矿床成矿模式图(据陈公正,2018

  • Fig.4 Metallogenic model of the Daolundaba Cu-Sn polymetallic deposit (after Chen Gongzheng, 2018)

  • 例如,前人对于湘南地区的铜锡复合机制的研究取得丰硕成果,但也存在诸多争议。比如,在岩浆岩来源及性质方面,该区铜矿体在地球化学特征上显示出的具有弧岩浆作用特点,可能来自于元古宙岛弧底部玄武质基底岩石(下地壳)在中生代时期的部分熔融,在本质上带有岛弧俯冲环境的印记(梁锦等,2012)。古太平洋板块俯冲可导致软流圈上涌和玄武质岩浆底侵,加热下地壳镁铁质角闪岩相基底使其发生部分熔融,形成与铜铅锌矿化有关的花岗闪长质岩浆,而随后中-上地壳富白云母变质沉积基底发生部分熔融形成与钨锡矿化有关的花岗质岩浆(黄旭栋等,2017)。岩浆源区对区域的矿种组合和成矿强度具有决定性的作用,镁铁质下地壳中角闪岩脱水熔融对铜成矿有利(Zhao Panlao et al.,2016; Huang Xudong et al.,2018)。不同类型岩体差异的侵位深度、分异演化程度、氧逸度和温度可能是制约黄沙坪矿床既成铜又成钨锡的重要原因(原垭斌等,2018)。同时,花岗岩的岩石地球化学成分、源区物质组成、岩浆分异程度以及岩浆演化过程中物化条件(如氧逸度)的综合差异是导致南岭花岗岩形成不同金属矿床的主要原因(秦拯纬等,2021)。因此,湘南地区的铜与锡可能具有不同的岩浆源区,然而仅仅岩浆源区的差异并不能解释为什么铜锡总在同一个矿床区域中复合成矿,而且目前缺乏确切的成矿元素同位素证据证明铜和锡元素具有差异的源区。在成岩成矿时代方面,Wu Jinghua et al.(2021)指出湘南铜山岭多金属矿床的铜锡复合成矿作用是空间耦合而非时间耦合的,矿床成因可用两次成矿模式解释(早期矽卡岩型Cu-Pb-Zn和晚期脉型Sn-W-Pb-Zn),是两次独立的矿化事件,铜和锡金属并非来自单一来源(图6)。前人对于铜山岭等矿床开展了大量的岩浆岩及矿石定年(锆石U-Pb、辉钼矿Re-Os、石榴子石Sm-Nd等时线)以及传统同位素(S、Pb、C同位素)等工作(Wang Yuejun et al.,2002; 魏道芳等,2007; 全铁军等,2013; Huang Xudong et al.,2014; 蔡应雄等,2015; 卢友月等,2015; Zhao Panlao et al.,2016; 王云峰等,2017),但依旧不能区分铜、锡矿化孰早孰晚,不能确定铜、锡是否具有差异的物质来源。因此,亟需开展铜、锡来源示踪及不同矿体间的流体演化过程精细对比研究,进而建立区域铜锡复合矿床成矿模式。

  • 图5 新特提斯的构造演化与铜锡成矿关系(据Huang Wenting et al.,2019修改)

  • Fig.5 The tectonic evolution of the Neo-Tethys Plate and its relations with Cu-Sn metallogeny (modified after Huang Wenting et al., 2019)

  • (a)—新特提斯板块俯冲期间形成斑岩铜矿(约105 Ma);(b)—新特提斯板片后撤形成锡矿化花岗岩(约93 Ma)

  • (a) —formation of porphyry Cu deposit during subduction of the Neo-Tethys Plate (~105 Ma) ; (b) —formation of Sn-mineralized granites by Neo-Tethys slab roll-back (~93 Ma)

  • 5 铜锡复合成矿研究手段

  • 目前对于铜锡复合成矿研究主要从矿床的年代学、单矿物微量元素及同位素地球化学、流体包裹体等方面入手。

  • 年代学方面的研究主要包括锡石LA-ICP-MS U-Pb定年(Li Xiang et al.,2019; 江丞曜等,2021)、黄铜矿等硫化物的Rb-Sr定年(Feng Jiarui et al.,2017)、独居石的LA-ICP-MS U-Pb定年(陈公正等,2021)、石英流体包裹体40Ar-39Ar定年(张雪冰等,2021)等。例如,Feng Jiarui et al.(2017)对道伦达坝矿床进行了黄铜矿和磁黄铁矿的Rb-Sr定年,其中,5件黄铜矿的等时线年龄为290.0±11 Ma,5件磁黄铁矿的等时线年龄为283.0±2.6 Ma,综合年龄为282.7±1.7 Ma。然而,石英流体包裹体40Ar-39Ar定年研究指示道伦达坝铜钨多金属矿床成矿时代为早白垩世(140.6±2.2 Ma; 张雪冰等,2021)。该矿床Cu-W 共生矿体中独居石的LA-ICP-MS U-Pb 年龄为136~135 Ma,Cu 矿体中独居石的年龄为134.7±2.8 Ma,绢云母的40Ar-39Ar坪年龄为138.8±0.47 Ma,锡矿体锡石LA-ICP-MS U-Pb谐和年龄为136~135 Ma,说明道伦达坝矿床的铜矿体和锡矿体均形成于早白垩世,它们属于同一个成矿系统,成矿与早白垩世高分异花岗岩(锆石U-Pb年龄135±1 Ma)有密切的成因联系(陈公正等,2018a2021)。因此,年代学的研究能对铜锡的复合成矿时代提供一定的约束,但需要建立在详细的野外地质调查及合适的贯通矿物选择基础上。

  • 图6 铜山岭矿田铜锡钨多金属成矿示意图(据Wu Jinghua et al.,2021修改)

  • Fig.6 Schematic demonstrating multiple Cu-Sn- (W) metallogenesis in the Tongshanling ore field (modified after Wu Jinghua et al., 2021)

  • 在中侏罗世,软流圈地幔上升引起地壳基底岩石重熔并形成171~167 Ma石英斑岩和花岗闪长岩,伴随着矽卡岩型铜铅锌矿化; 软流圈地幔的持续上升在导致岩石圈进一步伸展和~162 Ma A型花岗岩的产生,导致魏家地区矽卡岩钨钼矿化和铜山岭地区石英脉锡钨矿化的叠加

  • In the Middle Jurassic, asthenospheric mantle upwelling caused remelting of various crustal basement rocks and generated the171~167 Ma quartz porphyry and granodiorite, along with skarn Cu-Pb-Zn mineralization; progressive upwelling of asthenospheric mantle caused further lithospheric extension and a second stage of A-type magmatism at~162 Ma, causing skarn W-Mo mineralization in the Weijia area and overprinted quartz-vein Sn-W mineralization in the Tongshanling area

  • 单矿物微量元素及同位素地球化学方面,目前黄铜矿及锡石的微量元素特征分析已成为揭示矿物形成环境及流体演化过程良好的手段,在揭示流体来源、氧化还原环境、温度等方面起到重要作用(Wang Yuwang et al.,2006; Guo Jia et al.,2018; 李翔,2019; Zhao Yuehua et al.,2021; Wu Jinghua et al.,2021)。此外,锡石的O同位素、黄铜矿的S、Pb、Sr、Cu同位素对揭示成矿物质来源、反演成矿流体的演化过程亦可起到积极的作用(王跃等,2022)。不少铜锡复合矿床均有电气石产出,当前电气石的内部结构、微量元素及O、B、Sr、Nd、Pb同位素研究在揭示铜锡精细矿化过程中起到了重要作用(Mlynarczyk et al.,2006; Codeço et al.,2017; Carocci et al.,2020; Harlaux et al.,20202021)。此外,一些副矿物(如石榴子石、磷灰石等)的原位地球化学特征对揭示铜锡复杂流体的演化行为也具有独特的作用(Chen Gongzheng et al.,2021; Jaranowski et al.,2021; Zhao Lianjie et al.,2021)。因此,多种矿物原位微量元素及同位素的分析可对铜锡复合成矿作用的研究提供有效约束。

  • 流体包裹体研究方面,与锡石、黄铜矿共生的石英流体包裹体测温及成分(包括原位微量元素、惰性气体和卤素)分析已成为研究铜锡复合成矿流体性质不可或缺的手段,尤其在示踪不同端元流体混合作用的研究中发挥着重要作用(Polya et al.,2000; 王莉娟等,2003; Liu Wei et al.,2003; Moura,20052008; Wagner et al.,2009; 陈公正等,2018b)。

  • 6 铜锡复合成矿研究展望

  • 鉴于铜锡复合矿床目前研究中存在诸多科学问题,本文提出对于该类型矿床未来的研究可以从以下几个方面入手。

  • 一是探索利用多种非传统稳定同位素(例如Cu、Sn、W、Zn同位素)来联合示踪成矿元素的来源及其矿化过程。如前所述,铜锡复合成矿很大的一个争论焦点就是铜与锡是否具有统一的物质来源,那么成矿元素本身(Cu、Sn)的同位素可以很好地解决这个问题。目前,Cu、Sn同位素在铜、锡热液矿床成矿过程示踪方面取得重要进展(Yao Junming et al.,2018; Zheng Yuanchuan et al.,2018; Brzozowski et al.,2021; 李欢等,2021a),这将为探索解决铜锡物质来源问题提供重要技术手段。例如,不同类型矿体中含铜矿物Cu同位素的比值及变化范围可以用来判断Cu元素的地幔、地壳或围岩同化混染来源,以及揭示不同的矿体是否属于同一个热液系统(Smith et al.,2022; Zhao Yun et al.,2022); 成矿热液体系中的锡石Sn同位素的比值变化可以用来揭示锡的壳-幔来源组分变化、反演流体氧化还原过程(Mathur et al.,2017; Liu Peng et al.,2021)。此外,白钨矿及闪锌矿亦是铜锡矿床中常见的矿物,它们既可以与黄铜矿共生又可以与锡石共生,所以是很好的成矿贯通矿物,对它们进行成矿元素本身(W、Zn)的同位素的研究亦对判别成矿物质来源及流体演化过程有所帮助。目前Zn同位素已被广泛应用于矿床学的研究中,用于判断多阶段成矿流体的来源及其混合过程(Menuge et al.,2013; Liao Shili et al.,2019; Baumgartner et al.,2021)。不同类型岩浆岩及沉积岩的W同位素值具有较大区分度,因此其在示踪流体来源及水岩反应过程中具有很好的利用潜力(Liu Jingao et al.,2018; Kurzweil et al.,20182020)。因此,多种非传统稳定同位素的综合分析有望解决铜锡复合矿床的成矿元素来源问题。

  • 二是以一典型矿田中的代表性矿床为研究对象,利用成矿贯通矿物(如白钨矿、闪锌矿、石榴子石、电气石、磷灰石等)的原位地球化学特征来精细对比研究Cu、Sn矿化过程中的流体演化差异。如前所述,铜锡矿床中的白钨矿、闪锌矿、石榴子石、电气石、磷灰石等矿物往往在多个成矿阶段均可出现(Codeço et al.,2017; Launay et al.,2018; Liu Biao et al.,2019a2019b; Cao Jingya et al.,2021; Zhu Dapeng et al.,2021),利用不同世代中的矿石矿物及副矿物进行精细的原位主微量元素和同位素对比分析,可以详细刻画成矿过程,进而全面掌握铜锡成矿的流体演化过程。目前电气石的B同位素、磷灰石的Sr同位素以及白钨矿的元素比值(如Rb/Sr、Nb/Ta、Zr/Hf、Y/Ho、Sr/Mo等)在揭示元素替代机制、流体演化过程、物理化学环境(如氧逸度、温度等)等方面取得重要进展(Carocci et al.,2020; Jaranowski et al.,2021; Vincent et al.,2021; 李欢等,2021b; Cao Jingya et al.,2022),因此可以利用其精细刻画铜锡复合成矿过程中的流体演化特征。

  • 三是考虑铜、锡不同的成矿深度,结合低温热年代学进行找矿方向研究。矿体的成矿深度及隆升剥蚀程度对找矿勘查意义重大,尤其对于铜锡复合矿床而言。从已有的研究来看,铜锡成矿深度可能有显著差异,例如在湘南地区,铜可能矿化比较浅,而锡较深(Wu Jinghua et al.,2021),而流体包裹体的形成温度-压力条件精细研究可以限定不同矿种的成矿深度(Xiong Yiqu et al.,2017; Zhao Wen et al.,2018)。目前低温热年代学对限定矿体隆升剥蚀程度的研究方面已取得长足进展,尤其对于铜、金矿床(Sun Huashan et al.,2016; Deng Xiaodong et al.,2017; Leng Chengbiao et al.,2018; 陈原林等,2021)。但目前对于铜锡复合矿床这方面开展的研究较少,不利于此类矿床的找矿勘查。由此,未来对于铜锡复合矿区中的铜、锡矿体分别开展成矿深度以及低温热年代学工作可能是一个很好的研究方向。

  • 7 结语

  • 铜锡复合成矿是目前矿床学研究中的热点和难点。铜锡多金属矿床具有集中产出的特点,然而目前铜锡复合成矿机制并不清楚,争议的焦点包括:① 铜锡是多期岩浆热液成矿活动的叠加,还是同一期成矿过程中流体分化的不同产物; ② 同一个矿床中铜锡来源是否具有相关性; ③ 氧化还原等成矿流体的转变如何控制铜和锡的分离与复合。因此,造成铜锡在一个区域内复合成矿的根本原因有待查明。

  • 本文提出未来铜锡复合成矿的研究可以从以下三个方面开展:① 利用多种非传统稳定同位素(例如Cu、Sn、W、Zn同位素)来联合示踪成矿元素的来源及其矿化过程; ② 利用成矿贯通矿物(如白钨矿、闪锌矿、石榴子石、电气石、磷灰石等)的原位地球化学特征来精细对比研究Cu、Sn矿化过程中的流体演化差异; ③ 利用流体包裹体以及低温热年代学方法分别限定不同矿种的成矿深度及隆升剥蚀程度。因此,未来对于此类矿床,成矿物质来源、流体精细演化过程以及找矿潜力的评价是重要的研究方向。

  • 附件:本文附件(附表1)详见 http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202301097&flag=1

  • 附表1 世界主要铜锡复合矿床特征表

  • Appendix 1 Characteristics of major Cu-Sn coupled deposits in the world

  • 续附表1

  • 参考文献

    • AndersenJ C Ø, Stickland R J, Rollinson G K, Shail R K. 2016. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geology Reviews, 78: 213~238.

    • Baumgartner R J, Kunzmann M, Spinks S, Bian X, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104545.

    • Benites D, Torró L, Vallance J, Laurent O, Quispe P, Rosas S, Uzieda M F, Holm-Denoma C S, Pianowski L S, Camprubí A, Colás V, Fernández-Baca Á, Giraldo L, Chelle-Michou C, Sáez J, Kouzmanov K, Fontboté L. 2021. Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn-Pb-Ag-In-Sn-Cu deposit, Pasco, Peru. Mineralium Deposita, 57(3): 481~507.

    • Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.

    • Cai Yingxiong, Tan Juanjuan, Yang Hongmei, Lu Shansong, Duan Ruichun, Qiu Xiaofei, Cheng Shunbo, Yang Xiaoli. 2015. The origin of ore-forming material in the Tongshanling Cu-polymetallic ore field in Hunan Province: Constrains from S-Pb-C isotopes. Acta Geologica Sinica, 89(10): 1792~1803(in Chinese with English abstract).

    • Cao Jingya, Li Huan, Algeo T J, Yang Lizhi, Tamehe L S. 2021. Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit. American Mineralogist, 106(9): 1488~1502.

    • Cao Jingya, Li Huan, Yang Xiaoyong, Tamehe L S, Esmaeili R. 2022. Multi-stage magma evolution recorded by apatite and zircon of adakite-like rocks: A case study from the Shatanjiao intrusion, Tongling region, eastern China. American Mineralogist, 107(2): 178~189.

    • Carocci E, Marignac C, Cathelineau M, Truche L, Poujol M, Boiron M C, Pinto F. 2020. Incipient wolframite deposition at Panasqueira (Portugal): W-rich rutile and tourmaline compositions as proxies for the early fluid composition. Economic Geology, 116(1): 123~146.

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Zhang Tong, Chen Yuchuan. 2018a. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance. Mineral Deposits, 37(2): 225~245(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Wu Wenheng, Zhang Tong, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Jiang Biao, Wang Zhili. 2018b. Fluid inclusion study and isotope characteristics of the Daolundaba copper-polymetallic deposit in the southern Great Xing'an Range. Earth Science Frontiers, 25(5): 202~221(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-W-Sn deposit in the southern Great Xing'an Range: Constraints from zircon and monazite U-Pb and sericite 40Ar-39Ar ages. Acta Petrologica Sinica, 37(3): 865~885(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-Sn-W-Ag deposit in the southern Great Xing'an Range, China: Constraints from geochronology, geochemistry, and Hf isotope. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104117.

    • Chen Jiahao, Wang Qingfei, Shu Qihai, Weng Weijun, Xu Xiaojjie, Wang Tingyi, Zhang Qizuan. 2021. Geology and genesis of the Debao Cu polymetallic skarn deposit, southwestern China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104046.

    • Chen Shaoqing. 2017. Genesis of the Jinkeng Cu-Sn-Pb-Zn polymetallic deposit in Jiexi, Guangdong Province. East China Geology, 38(4): 271~278(in Chinese with English abstract).

    • Chen Yuanlin, Li Huan, Zheng Chaoyang, Li Dadou. 2021. Denudation degree and deep prospecting potential of gold deposits in the Guocheng-Yazi fault zone, Jiaolai basin: Evidence from apatite fission track thermochronology. The Chinese Journal of Nonferrous Metals, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17(in Chinese with English abstract).

    • Cheng Gongzheng. 2018. Metallogenesis of the Daolundaba Cu-polymetallic deposit in the southern Great Xing'an Range. Master thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Cheng Yanbo, Mao Jingwen, Rusk B, Yang Zongxi. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180~196.

    • Cheng Yanbo, Spandler C, Chang Zhangshan, Clarke G. 2018. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo mineral field, Queensland, Australia. Earth and Planetary Science Letters, 486: 84~93.

    • Chiaradia M. 2013. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, DOI: 10. 1038/ngeo2028.

    • Codeço M S, Weis P, Trumbull R B, Pinto F, Lecumberri-Sanchez P, Wilke F D H. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chemical Geology, 468: 1~16.

    • Codeço M S, Weis P, Trumbull R B, Van Hinsberg V, Pinto F, Lecumberri-Sanchez P, Schleicher A M. 2020. The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Mineralium Deposita, 56(3): 481~508.

    • Cooke D, Hollings P, Walshe J. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.

    • Deng Xiaodong, Li Jianwei, Shuster D L. 2017. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon. Earth and Planetary Science Letters, 472: 289~298.

    • Feng Jiarui, Zhou Zhenhua, Che Hewei. 2017. Permian copper-polymetallic mineralization in the southern Great Xing'an Range, Northeast China: The Daolundaba copper-polymetallic deposit example. International Geology Review, 59(13): 1709~1722.

    • Gonevchuk V G, Gonevchuk G A, Korostelev P G, Semenyak B I, Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Science, 57: 777~802.

    • Guo Chuang, Lu Yujie. 2021. The geological characteristics and ore-controlling factors of the Zhimashan Cu-Sn deposit in Dayishan, Hunan Province. Southern Metals, 238: 14~22(in Chinese with English abstract).

    • Guo Jia, Zhang Rongqing, Li Congying, Sun Weidong, Hu Yongbin, Kang Deming, Wu Junde. 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627~642.

    • Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L. 2020. Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin (-copper) deposit, Peru. Economic Geology, 115(8): 1665~1697.

    • Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A S, Baumgartner L P, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L. 2021. Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth and Planetary Science Letters, DOI: 10. 1016/j. epsl. 2021. 116889.

    • Huang Wenting, Liang Huaying, Zhang Jian, Wu Jing, Chen Xilian, Ren Long. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103030.

    • Huang Xudong, Lu Jianjun. 2014. Geological characteristics and Re-Os geochronology of Tongshanling polymetallic ore field, south Hunan, China. Acta Geologica Sinica (English Edition), 88(s2): 1626~1629.

    • Huang Xudong, Lu Jianjun, Stanislas Sizaret, Wang Rucheng, Ma Dongsheng, Zhang Rongqing, Zhao Xu, Wu Jinwei. 2017. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province. Science China: Earth Sciences, 47(7): 766~782(in Chinese with English abstract).

    • Huang Xudong, Lu Jianjun, Sizaret S, Wang Rucheng, Wu Jinwei, Ma Dongsheng. 2018. Reworked restite enclave: Petrographic and mineralogical constraints from the Tongshanling intrusion, Nanling Range, South China. Journal of Asian Earth Sciences, 166: 1~18.

    • Ishihara S, Hoshino K, Murakami H, Endo Y. 2006. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits. Resource Geology, 56: 347~364.

    • Ishihara S, Chappell B W. 2012. Petrochemistry of the Late Cretaceous-Paleogene igneous rocks in the Ikuno-Akenobe mines area, Southwest Japan. Bulletin of the Geological Survey of Japan, 63: 181~202.

    • Jacques D, Vieira R, Muchez P, Sintubin M. 2015. Late- to post-orogenic, granite-related fracture reactivation and veining at the Minas da Panasqueira W-Sn-Cu ore deposit (Portugal). Geotectonic Research, 97(1): 53~55.

    • Jaranowski M, Budzyń B, Rzepa G, Sláma J, Sawłowicz Z. 2021. Geochemical constraints on the distribution of trace elements and volatiles in fluorapatite from the Panasqueira tin-tungsten deposit (Portugal). Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125765.

    • Jiang Chengyao, Liu Peng, Qian Longbing, Mao Jingwen. 2021. Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China. Acta Petrologica Sinica, 37(3): 747~768(in Chinese with English abstract).

    • Jiang Sihong, Liang Qingling, Liu Yifei, Liu Yan. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Dajing Cu-Ag-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age. Acta Petrologica Sinica, 28(2): 495~513(in Chinese with English abstract).

    • Jiang Weicheng, Li Huan, Turner S, Zhu Dapeng, Wang Chong. 2020. Timing and origin of multi-stage magmatism and related W-Mo-Pb-Zn-Fe-Cu mineralization in the Huangshaping deposit, South China: An integrated zircon study. Chemical Geology, DOI: 10. 1016/j. chemgeo. 2020. 119782.

    • Kontak D J, Clark A H. 2002. Genesis of the giant Bonanza San Rafael lode tin deposit, Peru: Origin and significance of Pervasive Alteration. Economic Geology, 97(8): 1741~1777.

    • Kurzweil F, Münker C, Tusch J, Schoenberg R. 2018. Accurate stable tungsten isotope measurements of natural samples using a 180W-183W double-spike. Chemical Geology, 476: 407~417.

    • Kurzweil F, Münker C, Hoffmann J E, Tusch J, Schoenberg R. 2020. Stable W isotope evidence for redistribution of homogeneous 182W anomalies in SW Greenland. Geochemical Perspectives Letters, 14: 53~57.

    • Launay G, Sizaret S, Guillou-Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic-hydrothermal transition: A case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal). Earth and Planetary Science Letters, 499: 1~12.

    • Laznicka P. 2014. Giant metallic deposits—a century of progress. Ore Geology Reviews, 62: 259~314.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, DOI: 10. 1016/j. lithos. 2020. 105756.

    • Leng Chengbiao, Cooke D R, Hou Zengqian, Evans N J, Zhang Xingchun, Chen Wei T, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.

    • Li Huan, Wu Jinghua, Jiang Weicheng, Ren Tao, Liu Biao. 2021a. Research progress on tin isotope and its application prospect in ore geology. Acta Geologica Sinica, 95(12): 3926~3936 (in Chinese with English abstract).

    • Li Huan, Wang Chong, Zhu Dapeng, Jiang Weicheng. 2021b. Metallogenic environment of skarn-type and vein-type Pb-Zn ore body in the Huangshaping deposit and its implications of deep deposit exploration. The Chinese Journal of Nonferrous Metals, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html(in Chinese with English abstract).

    • Li Xiang. 2019. Micro-geochemical analysis and metallogenic mechanism of tin-copper associated deposits: Case studies of the Neves Corvo deposit in Portugal and the Gejiu deposit in Yunnan, China. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).

    • Li Xiang, Zhao Kuidong, Jiang Shaoyong, Palmer M R. 2019. In situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews, 105: 223~235.

    • Li Xuekai, Yuan Yabin, Liu Xiaofei. 2013. Zircon LA-(MC)-ICP-MS U-Pb dating of ore-bearing quartz porphyry in the Yejiwei porphyry Cu-Sn deposit, Dongpo orefield, Hunan. Geological Review, 59(z1): 181~182(in Chinese with English abstract).

    • Liang Jin, Zhou Yongzhang, Li Hongzhong, Yin Zhuizhui, Zhou Liuyu, Ceng Changyu, Yu Pengpeng. 2012. Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone, South China. Petrologica Sinica, 28(10): 3361~3372(in Chinese with English abstract).

    • Liao Jing, Guo Lirong, Qian Longbing. 2018. Diagenesis and metallogenic epoch and genesis of the Jinkeng copper, tin, lead and zinc deposit, Guangdong. Resources Environment and Engineering, 32(2): 212~214(in Chinese with English abstract).

    • Liao Shili, Tao Chunhui, Zhu Chuanwei, Li Huaiming, Li Xiaohu, Liang Jin, Yang Weifang, Wang Yejian. 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the southwest Indian Ridge: Insight from Zn isotopes. Chemical Geology, 507: 54~63.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60(24): 4965~4976.

    • Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinghua. 2019a. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.

    • Liu Biao, Wu Qianhong, Li Huan, Evans N J, Wu Jinghua, Cao Jingya, Jiang Jiangbo. 2019b. Fault-fluid evolution in the Xitian W-Sn ore field (South China): Constraints from scheelite texture and composition. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103140.

    • Liu Jianping, Rong Yanan, Gu Xiangping, Shao Yongjun, Lai Jianqing, Chen Weikang. 2017. Indium mineralization in the Yejiwei Sn-polymetallic deposit of the Shizhuyuan orefield, southern Hunan, China. Resource Geology, 68(1): 22~36.

    • Liu Jingao, Pearson D G, Chacko T, Luo Yan. 2018. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica et Cosmochimica Acta, 223: 300~318.

    • Liu Peng, Mao Jingwen, Lehmann B, Weyer S, Horn I, Mathur R, Wang Fangyue, Zhou Zhenhua. 2021. Tin isotopes via fs-LA-MC-ICP-MS analysis record complex fluid evolution in single cassiterite crystals. American Mineralogist, 106(12): 1980~1986.

    • Liu Wei, Li Xinjun, Tan Jun. 2001. Petrogenetic and metallogenetic background of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia, and characteristics of the mineralizing fluid. Resource Geology, 51(4): 321~331.

    • Liu Wei, Li Xinjun, Tan Jun. 2003. Fluid mixing as the mechanism of formation of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia. Science in China (Series D): Earth Sciences, DOI: 10. 1360/03yd9057.

    • Lu Youyue, Fu Jianming, Cheng Shunbo, Liu Shusheng, Li Chuanbiao, Zhang Liguo, Ma Liyan. 2015. Rock-forming and ore-forming ages of Tongshanling copper polymetallic ore-field in southern Hunan Province. Geotectonica et Metallogenia, 39(6): 1061~1071(in Chinese with English abstract).

    • Niu Shuyin, Sun Aiqun, Liu Jianming, Guo Lijun, Wang Baode, Hu Huabin. 2006. Metallogenic process of the Dajing Cu-Sn polymetallic deposit in Linxi, Inner Mongolia. Mineral Deposits, 25(S1): 185~188(in Chinese with English abstract).

    • Marignac C, Cuney M, Cathelineau M, Lecomte A, Carocci E, Pinto F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W-Sn-Cu vein deposit: A petrographic, mineralogical, and geochemical study. Minerals, DOI: 10. 3390/min10060562.

    • Mathur R, Mason A, Godfrey L, Yao Junming, Baker M. 2017. Preparation and measurement of cassiterite for Sn isotope analysis. Geostandards and Geoanalytical Research, 41(4): 701~707.

    • Menuge J F, Barker G J, Gagnevin D, Boyce A J. 2013. Fe and Zn isotopes in the Navan Zn-Pb deposit, Ireland: Implications for mineral exploration. Mineral Deposit Research for a High-tech World, 1-4: 422~425.

    • Mlynarczyk M S J, Williams-Jones A E. 2006. Zoned tourmaline associated with cassiterite: Implications for fluid evolution and tin mineralization in the San Rafael Sn Cu deposit, southeastern Peru. The Canadian Mineralogist, 44(2): 347~365.

    • Moura A. 2005. Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal. Chemical Geology, 223(1-3): 153~169.

    • Moura A. 2008. Metamorphosed and metamorphogenic ores of the Neves Corvo volcanogenic massive sulfide deposit, Iberian Pyrite Belt, Portugal. International Geology Review, 50(1): 89~96.

    • Polya D A, Foxford K A, Stuart F, Boyce A, Fallick A E. 2000. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: New evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochimica et Cosmochimica Acta, 64(19): 3357~3371.

    • Qin Gongjiong, Kawachi Y, Zhao Liqing, Wang Yongzheng, Ou Qiang. 2001. The Upper Permian sedimentary facies and its role in the Dajing Cu-Sn deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293~305.

    • Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2021. Petrogenetic differences among the Middle-Late Jurassic Pb-Zn-Cu-bearing granites in the Nanling Range, South China. Geology in China, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html(in Chinese with English abstract).

    • Qiu Zengwang, Wang He, Li Shasha, Li Pei, Wei Xiaopeng, Mu Shenglu. 2014. Research progress and mineral exploration of the Jinkeng Cu-Sn-Pb-Zn deposit, Jiexi, Guangdong. Mineral Deposits, 33(S1): 955~956(in Chinese with English abstract).

    • Quan Tiejun, Wang Gao, Zhong Jianglin, Fei Lidong, Kong Hua, Liu Shijie, Zhao Zhiqiang, Guo Biying. 2013. Petrogenesis of granodiorites in Tongshanling deposit of Hunan Province: Constraints from petrogeochemistry, zircon U-Pb chronology and Hf isotope. Journal of Mineralogy and Petrology, 33(1): 43~52(in Chinese with English abstract).

    • Relvas J M R S, Tassinari C C, Munhá J, Barriga F J. 2001. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): Strontium, neodymium and lead isotope evidence. Mineralium Deposita, 36(5): 416~427.

    • Relvas J M R S, Barriga F J A S, Ferreira A, Noiva P C, Pacheco N, Barriga G. 2006a. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, Mineralogy, and Geochemistry. Economic Geology, 101(4): 753~790.

    • Relvas J M R S, Barriga F J A S, Longstaffe F J. 2006b. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II. Oxygen, Hydrogen, and Carbon Isotopes. Economic Geology, 101(4): 791~804.

    • Schmidt C. 2017. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Cosmochimica Acta, 220: 499~511.

    • Sillitoe R. 2010. Porphyry copper systems. Economic Geology, 105: 3~41.

    • Sillitoe R H, Lehmann B. 2022. Copper-rich tin deposits. Mineralium Deposita, 57(1): 1~11.

    • Sinclair W D, Kooiman G J A, Martin D A, Kjarsgaard I M. 2006. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28: 123~145.

    • Smith J M, Ripley E M, Li Chusi, Wasylenki L E. 2022. Cu and Ni isotope variations of country rock-hosted massive sulfides located near midcontinent rift intrusions. Economic Geology, 117(1): 195~211.

    • Sun Huashan, Li Huan, Liu Liu, Chen Qiaomei, Yang Hui, Wu Pan. 2016. Exhumation history of the Jiaodong and its adjacent areas since the Late Cretaceous: Constraints from low temperature thermochronology. Science China Earth Sciences, 60(3): 531~545.

    • Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Tang Rankun, Lü Xinbiao, Cao Xiaofeng, Mei Wei, Ai Zhilong, Wang Xiangdong. 2013. Genetic analysis of sulfides intergrowths in the Dajing tin and copper polymetallic deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 252~261(in Chinese with English abstract).

    • Tao Qin, Han Runsheng, Zhao Dong, Wu Peng, Tian Xufeng, Zhao Taicheng, Yang Hang, Zong Zhihong, Deng Anping. 2021. The mineralization and alteration zoning related to the buried granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, southern Hunan. Geology in China, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html(in Chinese with English abstract).

    • Vincent V I, Li Huan, Girei M B, Förster M W, Ahmed H A, Ntekim E E. 2021. In situ trace elements and sulfur isotope analysis of sulfides from the Akiri Cu±(Ag) deposit, Benue Trough, North-central Nigeria: Implications for ore genesis. Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125801.

    • Wagner T, Mlynarczyk M S J, Williams-Jones A E, Boyce A J. 2009. Stable isotope constraints on ore formation at the San Rafael Tin-copper deposit, southeast Peru. Economic Geology, 104(2): 223~248.

    • Wang Jingbin, Wang Lijuan, Wang Yuwang, Li Tiejun, Shimazaki H. 2004. Oxygen isotopic characteristics of granitic intrusions related to Haobugao Zn-Pb-Cu-Sn skarn deposit, East Inner Mongolia, China. Resource Geology, 54(2): 205~208.

    • Wang Lijuan, Wang Jingbin, Wang Yuwang, Zhu Heping. 2003. Ore-forming fluid and metallogeny of the Caijiaying and Dajin polymetallic deposits. Science in China (Series D), 33(10): 941~950(in Chinese with English abstract).

    • Wang Lijuan, Wang Jingbin, Wang Yuwang, Long Lingli. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia. Acta Petrologica Sinica, 31(4): 991~1001(in Chinese with English abstract).

    • Wang Yonglei, Wang Denghong, Zhang Changqing, Qu Wenjun, Hu Yanchun. 2010. Molybdenite Re-Os dating of Debao Cu-Sn deposit in Guangxi and its implications for Caledonian metallogeny. Mineral Deposits, 29(5): 881~889(in Chinese with English abstract).

    • Wang Yue, Su Shangguo, Zhang Qi, Zhou Qiming, Zhang Yanan. 2022. Cu-S isotopic characteristics and metallogenic prediction in the ore of Dajing tin and copper polymetallic deposit, Inner Mongolia. Earth Science Frontiers, 29(3): 319~328(in Chinese with English abstract).

    • Wang Yuejun, Fan Weiming, Guo Feng, Li Huiming, Liang Xinquan. 2002. U-Pb dating of early Mesozoic granodioritic intrusions in southeastern Hunan Province, South China and its petrogenetic implications. Science in China (Series D): Earth Sciences, 45(3): 280~288.

    • Wang Yunfeng, Yang Hongmei, Zhang Liguo, Lu Shansong, Yang Zefei, Qiu Xiaofei, Liu Zhongpeng. 2017. Metallogenic epoch and ore-forming material source of the Tongshanling Pb-Zn polymetallic deposit in southeastern Hunan Province: Evidence from Sm-Nd isochron age and Pb isotope. Geological Bulletin of China, 36(5): 875~884(in Chinese with English abstract).

    • Wang Yuwang, Wang Jingbin, Wang Lijuan, Chen Yun. 2006. Tin mineralization in the Dajing tin-polymetallic deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 28(4-6): 320~331.

    • Wei Daofang, Bao Zhengyu, Fu Jianming. 2007. Geochemical characteristics and zircon SHRIMP U-Pb dating of the Tongshanling granite in Hunan Province, South China. Geotectonica et Metallogenia, 4: 482~489(in Chinese with English abstract).

    • Wei Ning, Fang Weixuan, Chen Jiawei, Zhang Hai, Gan Fengwei. 2010. Study of copper, tin and coexisting ingredient occurrence of Dabaiyan copper-tin polymetallic ore deposit in Gejiu, Yunnan Province, P. R. China. Acta Mineralogica Sinica, 30(1): 115~122(in Chinese with English abstract).

    • Willis-Richards J, Jackson N J. 1989. Evolution of the Cornubian ore field, southwest England; part I. batholith modeling and ore distribution. Economic Geology, 84: 1078~1100.

    • Wolff R, Dunkl I, Kempe U, von Eynatten H. 2015. The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Economic Geology, 110(8): 2025~2040.

    • Wu Jinghua, Kong Hua, Li Huan, Algeo T J, Yonezu K, Liu Biao, Wu Qianhong, Zhu Dapeng, Jiang Hua. 2021. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104521.

    • Xiong Yiqu, Shao Yongjun, Zhou Haodi, Wu Qianhong, Liu Jianping, Wei Haotao, Zhao Ruicheng, Cao Jingya. 2017. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore Geology Reviews, 83: 152~173.

    • Xu Jiajia, Lai Yong, Cui Dong, Chang Yong, Jiang Lin, Shu Qihai, Li Wenbo. 2009. Characteristics and evolution of ore-forming fluids of the Daolundaba copper-poly-metal deposit, Inner Mongolia. Acta Petrologica Sinica, 25(11): 2957~2972(in Chinese with English abstract).

    • Xu Rong, Romer R L, Glodny J. 2021. External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn Cu deposit, Gejiu district, China. Lithos, DOI: 10. 1016/j. lithos. 2020. 105937.

    • Xu Weijuan, Lai Jianqing, Chen Yanhui, Cao Chunxiang. 2019. Analysis of the geological characteristics and prospecting potential of the copper-tin polymetallic deposit in Qianmenchong. Southern Metals, 1: 20~27(in Chinese with English abstract).

    • Yao Junming, Hua Renmin, Qu Wenjun, Qi Huawen, Lin Jinfu, Du Andao. 2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China (Series D): Earth Sciences, 50: 519~526.

    • Yao Junming, Mathur R, Lehmann B, Tornos F, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.

    • Yuan Yabin, Yuan Shunda, Zhao Panlao, Zhang Dongliang. 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan: Their constraints to mineralization differences. Acta Petrologica Sinica, 34(9): 2565~2580(in Chinese with English abstract).

    • Zhang Chanchan, Sun Weidong, Wang Jintuan, Zhang Lipeng, Sun Saijun, Wu Kai. 2017. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343~363.

    • Zhang Rongqing, Lehmann B, Seltmann R, Sun W D, Li C Y. 2017. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45(12): 1095~1098.

    • Zhang Xuebing, Bao Changjia, Wu Shishan. 2021. Chronology of the Daolundaba Cu-W polymetallic deposit, southern Great Xing'an Range: Evidence from quartz fluid inclusion 40Ar-39Ar age. Journal of Xinjiang University (Natural Science Edition), 38(1): 83~90(in Chinese with English abstract).

    • Zhang Zhao, Huang Sheng, Zhu Yuanchao, Yu Haibin. 2017. Guangxi Debao Qinjia copper tin ore deposit geological characteristics and mineralization regularity. World Nonferrous Metals, 18: 178~180(in Chinese with English abstract).

    • Zhao Lianjie, Zhang Yu, Shao Yongjun, Li Hongbin, Ahmad Shah S, Zhou Weijian. 2021. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W-Mo-Sn-Cu polymetallic deposit, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104412.

    • Zhao Panlao, Yuan Shunda, Mao Jingwen, Santosh M, Li Chao, Hou Kejun. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province: Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 78: 120~137.

    • Zhao Wen, Zhou Meifu. 2018. Mineralogical and metasomatic evolution of the Jurassic Baoshan scheelite skarn deposit, Nanling, South China. Ore Geology Reviews, 95: 182~194.

    • Zhao Yuehua, Chen Shouyu, Tian Huan, Zhao Jiangnan, Tong Xiang, Chen Xingshou. 2021. Trace element and S isotope characterization of sulfides from skarn Cu ore in the Laochang Sn-Cu deposit, Gejiu district, Yunnan, China: Implications for the ore-forming process. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104155.

    • Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist, 107(4): 673~683.

    • Zheng Yuanchuan, Liu Sheng'ao, Wu Changda, Griffin W L, Li Zhenqing, Xu Bo, Yang Zhiming, Hou Zengqian, O'Reilly S Y. 2018. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 47(2): 135~138.

    • Zhu Dapeng, Li Huan, Algeo T J, Jiang Weicheng, Wang Chong. 2021. The prograde-to-retrograde evolution of the Huangshaping skarn deposit (Nanling Range, South China). Mineralium Deposita, 56(6): 1087~1110.

    • Zhu Peiyun, Yan Lunming, Bu An, Xu Diankui, Qian Longbing, Guo Lirong. 2018. Research on the mineralization geological body in Jinkeng copper-tin-lead-zinc deposit, Guangdong. Mineral Exploration, 9(1): 33~44(in Chinese with English abstract).

    • 蔡应雄, 谭娟娟, 杨红梅, 卢山松, 段瑞春, 邱啸飞, 程顺波, 杨小莉. 2015. 湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束. 地质学报, 89(10): 1792~1803.

    • 陈公正. 2018. 大兴安岭南段道伦达坝铜多金属矿床成矿作用研究. 中国地质大学(北京)硕士学位论文.

    • 陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018a. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 37(2): 225~245.

    • 陈公正, 武广, 武文恒, 张彤, 李铁刚, 刘瑞麟, 武利文, 章培春, 江彪, 王志利. 2018b. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征. 地学前缘, 25(5): 202~221.

    • 陈公正, 武广, 李铁刚, 刘瑞麟, 李睿华, 李英雷, 杨飞. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U-Pb和绢云母40Ar-39Ar年龄的约束. 岩石学报, 37(3): 865~885.

    • 陈少青. 2017. 广东省揭西县金坑铜锡铅锌多金属矿床成因探讨. 华东地质, 38(4): 271~278.

    • 陈原林, 李欢, 郑朝阳, 李大兜. 2021. 胶莱盆地郭城-崖子断裂带金矿集区剥蚀程度及深部找矿潜力: 磷灰石裂变径迹热年代学证据. 中国有色金属学报, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17.

    • 郭闯, 卢玉杰. 2021. 湖南大义山地区芝麻山铜锡矿床地质特征及控矿因素分析. 南方金属, 238: 14~22.

    • 黄旭栋, 陆建军, Stanislas Sizaret, 王汝成, 马东升, 章荣清, 赵旭, 吴劲薇. 2017. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异: 以湘南铜山岭和魏家矿床为例. 中国科学: 地球科学, 47(7): 766~782.

    • 江丞曜, 刘鹏, 钱龙兵, 毛景文. 2021. 粤东金坑Sn-Cu矿成岩成矿年代学格架与Sn-Cu共生成矿作用. 岩石学报, 37(3): 747~768.

    • 江思宏, 梁清玲, 刘翼飞, 刘妍. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束. 岩石学报, 28(2): 495~513.

    • 李欢, 吴经华, 蒋维诚, 任涛, 刘飚. 2021a. 锡同位素研究进展及其在矿床学中的应用展望. 地质学报, 95(12): 3926~3936.

    • 李欢, 王冲, 朱大鹏, 蒋维诚. 2021b. 黄沙坪矽卡岩型和脉状铅锌矿成矿环境及其对深部找矿的指示. 中国有色金属学报, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html.

    • 李翔. 2019. 锡铜共生矿床微区地球化学分析及成矿机制研究. 中国地质大学博士学位论文.

    • 李雪凯, 原垭斌, 刘晓菲. 2013. 湖南东坡矿田野鸡尾斑岩型铜锡矿床含矿石英斑岩锆石LA-(MC)-ICP-MS U-Pb测年. 地质论评, 59(z1): 181~182.

    • 梁锦, 周永章, 李红中, 尹缀缀, 周留煜, 曾长育, 虞鹏鹏. 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361~3372.

    • 廖静, 郭丽荣, 钱龙兵. 2018. 广东金坑铜锡铅锌矿床成岩成矿时代及成因探讨. 资源环境与工程, 32(2): 212~214.

    • 卢友月, 付建明, 程顺波, 刘树生, 黎传标, 张利国, 马丽艳. 2015. 湘南铜山岭铜多金属矿田成岩成矿作用年代学研究. 大地构造与成矿学, 39(6): 1061~1071.

    • 牛树银, 孙爱群, 刘建明, 郭利军, 王宝德, 胡华斌. 2006. 林西大井铜锡多金属成矿作用研究. 矿床地质, 25(S1): 185~188.

    • 秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2021. 南岭成矿带中—晚侏罗世含钨、锡、铅锌(铜)花岗岩的差异性研究. 中国地质, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html.

    • 丘增旺, 王核, 李莎莎, 李沛, 魏小鹏, 慕生禄. 2014. 广东揭西县金坑铜锡铅锌矿床勘查和研究新进展. 矿床地质, 33(S1): 955~956.

    • 全铁军, 王高, 钟江临, 费利东, 孔华, 刘仕杰, 赵志强, 郭碧莹. 2013. 湖南铜山岭矿区花岗闪长岩岩石成因: 岩石地球化学、U-Pb年代学及Hf同位素制约. 矿物岩石, 33(1): 43~52.

    • 唐然坤, 吕新彪, 曹晓峰, 梅微, 艾智龙, 王祥东. 2013. 内蒙古大井铜锡多金属矿床金属硫化物共生体成因分析. 矿物岩石地球化学通报, 32(2): 252~261.

    • 陶琴, 韩润生, 赵冻, 吴鹏, 田旭峰, 赵太成, 杨航, 宗志宏, 邓安平. 2021. 湘南黄沙坪铜锡多金属矿床与隐伏花岗斑岩有关的矿化-蚀变分带模式. 中国地质, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html.

    • 王莉娟, 王京彬, 王玉往, 朱和平. 2003. 蔡家营、大井多金属矿床成矿流体和成矿作用. 中国科学(D 辑), 33(10): 941~950.

    • 王莉娟, 王京彬, 王玉往, 龙灵利. 2015. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测. 岩石学报, 31(4): 991~1001.

    • 王永磊, 王登红, 张长青, 屈文俊, 胡艳春. 2010. 广西德保铜锡矿床辉钼矿Re-Os同位素定年及对加里东期成矿的探讨. 矿床地质, 29(5): 881~889.

    • 王跃, 苏尚国, 张旗, 周奇明, 张雅南. 2022. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测. 地学前缘, 29(3): 319~328.

    • 王云峰, 杨红梅, 张利国, 卢山松, 杨泽飞, 邱啸飞, 刘重芃. 2017. 湘东南铜山岭铅锌多金属矿床成矿时代与成矿物质来源—Sm-Nd等时线年龄和Pb同位素证据. 地质通报, 36(5): 875~884.

    • 魏道芳, 鲍征宇, 付建明. 2007. 湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年. 大地构造与成矿学, 4: 482~489.

    • 魏宁, 方维萱, 陈家玮, 张海, 甘凤伟. 2010. 云南个旧大白岩铜锡矿床铜锡与共伴生组分赋存状态研究. 矿物学报, 30(1): 115~122.

    • 徐佳佳, 赖勇, 崔栋, 常勇, 蒋林, 舒启海, 李文博. 2009. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化. 岩石学报, 25(11): 2957~2972.

    • 徐卫娟, 赖健清, 陈燕辉, 曹春祥. 2019. 湖南耒阳铅门冲铜锡多金属矿床地质特征及找矿前景. 南方金属, 1: 20~27.

    • 原垭斌, 袁顺达, 赵盼捞, 张东亮. 2018. 湘南黄沙坪多金属矿床花岗质岩浆性质及演化对成矿差异的约束. 岩石学报, 34(9): 2565~2580.

    • 张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar-39Ar年龄的证据. 新疆大学学报(自然科学版), 38(1): 83~90.

    • 张钊, 黄晟, 朱元超, 余海彬. 2017. 广西德保钦甲铜锡矿矿床地质特征及矿化富集规律. 世界有色金属, 18: 178~180.

    • 朱沛云, 颜伦明, 卜安, 许典葵, 钱龙兵, 郭丽荣. 2018. 广东金坑铜锡铅锌矿床成矿地质体研究. 矿产勘查, 9(1): 33~44.

  • 参考文献

    • AndersenJ C Ø, Stickland R J, Rollinson G K, Shail R K. 2016. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geology Reviews, 78: 213~238.

    • Baumgartner R J, Kunzmann M, Spinks S, Bian X, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104545.

    • Benites D, Torró L, Vallance J, Laurent O, Quispe P, Rosas S, Uzieda M F, Holm-Denoma C S, Pianowski L S, Camprubí A, Colás V, Fernández-Baca Á, Giraldo L, Chelle-Michou C, Sáez J, Kouzmanov K, Fontboté L. 2021. Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn-Pb-Ag-In-Sn-Cu deposit, Pasco, Peru. Mineralium Deposita, 57(3): 481~507.

    • Brzozowski M J, Good D J, Wu Changzhi, Li Weiqiang. 2021. Cu isotope systematics of conduit-type Cu-PGE mineralization in the eastern Gabbro, Coldwell Complex, Canada. Mineralium Deposita, 56(4): 707~724.

    • Cai Yingxiong, Tan Juanjuan, Yang Hongmei, Lu Shansong, Duan Ruichun, Qiu Xiaofei, Cheng Shunbo, Yang Xiaoli. 2015. The origin of ore-forming material in the Tongshanling Cu-polymetallic ore field in Hunan Province: Constrains from S-Pb-C isotopes. Acta Geologica Sinica, 89(10): 1792~1803(in Chinese with English abstract).

    • Cao Jingya, Li Huan, Algeo T J, Yang Lizhi, Tamehe L S. 2021. Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit. American Mineralogist, 106(9): 1488~1502.

    • Cao Jingya, Li Huan, Yang Xiaoyong, Tamehe L S, Esmaeili R. 2022. Multi-stage magma evolution recorded by apatite and zircon of adakite-like rocks: A case study from the Shatanjiao intrusion, Tongling region, eastern China. American Mineralogist, 107(2): 178~189.

    • Carocci E, Marignac C, Cathelineau M, Truche L, Poujol M, Boiron M C, Pinto F. 2020. Incipient wolframite deposition at Panasqueira (Portugal): W-rich rutile and tourmaline compositions as proxies for the early fluid composition. Economic Geology, 116(1): 123~146.

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Zhang Tong, Chen Yuchuan. 2018a. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance. Mineral Deposits, 37(2): 225~245(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Wu Wenheng, Zhang Tong, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Jiang Biao, Wang Zhili. 2018b. Fluid inclusion study and isotope characteristics of the Daolundaba copper-polymetallic deposit in the southern Great Xing'an Range. Earth Science Frontiers, 25(5): 202~221(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-W-Sn deposit in the southern Great Xing'an Range: Constraints from zircon and monazite U-Pb and sericite 40Ar-39Ar ages. Acta Petrologica Sinica, 37(3): 865~885(in Chinese with English abstract).

    • Chen Gongzheng, Wu Guang, Li Tiegang, Liu Ruilin, Li Ruihua, Li Yinglei, Yang Fei. 2021. Mineralization of the Daolundaba Cu-Sn-W-Ag deposit in the southern Great Xing'an Range, China: Constraints from geochronology, geochemistry, and Hf isotope. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104117.

    • Chen Jiahao, Wang Qingfei, Shu Qihai, Weng Weijun, Xu Xiaojjie, Wang Tingyi, Zhang Qizuan. 2021. Geology and genesis of the Debao Cu polymetallic skarn deposit, southwestern China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104046.

    • Chen Shaoqing. 2017. Genesis of the Jinkeng Cu-Sn-Pb-Zn polymetallic deposit in Jiexi, Guangdong Province. East China Geology, 38(4): 271~278(in Chinese with English abstract).

    • Chen Yuanlin, Li Huan, Zheng Chaoyang, Li Dadou. 2021. Denudation degree and deep prospecting potential of gold deposits in the Guocheng-Yazi fault zone, Jiaolai basin: Evidence from apatite fission track thermochronology. The Chinese Journal of Nonferrous Metals, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17(in Chinese with English abstract).

    • Cheng Gongzheng. 2018. Metallogenesis of the Daolundaba Cu-polymetallic deposit in the southern Great Xing'an Range. Master thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Cheng Yanbo, Mao Jingwen, Rusk B, Yang Zongxi. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180~196.

    • Cheng Yanbo, Spandler C, Chang Zhangshan, Clarke G. 2018. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo mineral field, Queensland, Australia. Earth and Planetary Science Letters, 486: 84~93.

    • Chiaradia M. 2013. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, DOI: 10. 1038/ngeo2028.

    • Codeço M S, Weis P, Trumbull R B, Pinto F, Lecumberri-Sanchez P, Wilke F D H. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chemical Geology, 468: 1~16.

    • Codeço M S, Weis P, Trumbull R B, Van Hinsberg V, Pinto F, Lecumberri-Sanchez P, Schleicher A M. 2020. The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Mineralium Deposita, 56(3): 481~508.

    • Cooke D, Hollings P, Walshe J. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.

    • Deng Xiaodong, Li Jianwei, Shuster D L. 2017. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon. Earth and Planetary Science Letters, 472: 289~298.

    • Feng Jiarui, Zhou Zhenhua, Che Hewei. 2017. Permian copper-polymetallic mineralization in the southern Great Xing'an Range, Northeast China: The Daolundaba copper-polymetallic deposit example. International Geology Review, 59(13): 1709~1722.

    • Gonevchuk V G, Gonevchuk G A, Korostelev P G, Semenyak B I, Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Science, 57: 777~802.

    • Guo Chuang, Lu Yujie. 2021. The geological characteristics and ore-controlling factors of the Zhimashan Cu-Sn deposit in Dayishan, Hunan Province. Southern Metals, 238: 14~22(in Chinese with English abstract).

    • Guo Jia, Zhang Rongqing, Li Congying, Sun Weidong, Hu Yongbin, Kang Deming, Wu Junde. 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627~642.

    • Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L. 2020. Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin (-copper) deposit, Peru. Economic Geology, 115(8): 1665~1697.

    • Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A S, Baumgartner L P, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L. 2021. Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth and Planetary Science Letters, DOI: 10. 1016/j. epsl. 2021. 116889.

    • Huang Wenting, Liang Huaying, Zhang Jian, Wu Jing, Chen Xilian, Ren Long. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103030.

    • Huang Xudong, Lu Jianjun. 2014. Geological characteristics and Re-Os geochronology of Tongshanling polymetallic ore field, south Hunan, China. Acta Geologica Sinica (English Edition), 88(s2): 1626~1629.

    • Huang Xudong, Lu Jianjun, Stanislas Sizaret, Wang Rucheng, Ma Dongsheng, Zhang Rongqing, Zhao Xu, Wu Jinwei. 2017. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province. Science China: Earth Sciences, 47(7): 766~782(in Chinese with English abstract).

    • Huang Xudong, Lu Jianjun, Sizaret S, Wang Rucheng, Wu Jinwei, Ma Dongsheng. 2018. Reworked restite enclave: Petrographic and mineralogical constraints from the Tongshanling intrusion, Nanling Range, South China. Journal of Asian Earth Sciences, 166: 1~18.

    • Ishihara S, Hoshino K, Murakami H, Endo Y. 2006. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits. Resource Geology, 56: 347~364.

    • Ishihara S, Chappell B W. 2012. Petrochemistry of the Late Cretaceous-Paleogene igneous rocks in the Ikuno-Akenobe mines area, Southwest Japan. Bulletin of the Geological Survey of Japan, 63: 181~202.

    • Jacques D, Vieira R, Muchez P, Sintubin M. 2015. Late- to post-orogenic, granite-related fracture reactivation and veining at the Minas da Panasqueira W-Sn-Cu ore deposit (Portugal). Geotectonic Research, 97(1): 53~55.

    • Jaranowski M, Budzyń B, Rzepa G, Sláma J, Sawłowicz Z. 2021. Geochemical constraints on the distribution of trace elements and volatiles in fluorapatite from the Panasqueira tin-tungsten deposit (Portugal). Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125765.

    • Jiang Chengyao, Liu Peng, Qian Longbing, Mao Jingwen. 2021. Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China. Acta Petrologica Sinica, 37(3): 747~768(in Chinese with English abstract).

    • Jiang Sihong, Liang Qingling, Liu Yifei, Liu Yan. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Dajing Cu-Ag-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age. Acta Petrologica Sinica, 28(2): 495~513(in Chinese with English abstract).

    • Jiang Weicheng, Li Huan, Turner S, Zhu Dapeng, Wang Chong. 2020. Timing and origin of multi-stage magmatism and related W-Mo-Pb-Zn-Fe-Cu mineralization in the Huangshaping deposit, South China: An integrated zircon study. Chemical Geology, DOI: 10. 1016/j. chemgeo. 2020. 119782.

    • Kontak D J, Clark A H. 2002. Genesis of the giant Bonanza San Rafael lode tin deposit, Peru: Origin and significance of Pervasive Alteration. Economic Geology, 97(8): 1741~1777.

    • Kurzweil F, Münker C, Tusch J, Schoenberg R. 2018. Accurate stable tungsten isotope measurements of natural samples using a 180W-183W double-spike. Chemical Geology, 476: 407~417.

    • Kurzweil F, Münker C, Hoffmann J E, Tusch J, Schoenberg R. 2020. Stable W isotope evidence for redistribution of homogeneous 182W anomalies in SW Greenland. Geochemical Perspectives Letters, 14: 53~57.

    • Launay G, Sizaret S, Guillou-Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic-hydrothermal transition: A case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal). Earth and Planetary Science Letters, 499: 1~12.

    • Laznicka P. 2014. Giant metallic deposits—a century of progress. Ore Geology Reviews, 62: 259~314.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, DOI: 10. 1016/j. lithos. 2020. 105756.

    • Leng Chengbiao, Cooke D R, Hou Zengqian, Evans N J, Zhang Xingchun, Chen Wei T, Danišík M, McInnes B I A, Yang Jiehua. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077~1092.

    • Li Huan, Wu Jinghua, Jiang Weicheng, Ren Tao, Liu Biao. 2021a. Research progress on tin isotope and its application prospect in ore geology. Acta Geologica Sinica, 95(12): 3926~3936 (in Chinese with English abstract).

    • Li Huan, Wang Chong, Zhu Dapeng, Jiang Weicheng. 2021b. Metallogenic environment of skarn-type and vein-type Pb-Zn ore body in the Huangshaping deposit and its implications of deep deposit exploration. The Chinese Journal of Nonferrous Metals, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html(in Chinese with English abstract).

    • Li Xiang. 2019. Micro-geochemical analysis and metallogenic mechanism of tin-copper associated deposits: Case studies of the Neves Corvo deposit in Portugal and the Gejiu deposit in Yunnan, China. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).

    • Li Xiang, Zhao Kuidong, Jiang Shaoyong, Palmer M R. 2019. In situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews, 105: 223~235.

    • Li Xuekai, Yuan Yabin, Liu Xiaofei. 2013. Zircon LA-(MC)-ICP-MS U-Pb dating of ore-bearing quartz porphyry in the Yejiwei porphyry Cu-Sn deposit, Dongpo orefield, Hunan. Geological Review, 59(z1): 181~182(in Chinese with English abstract).

    • Liang Jin, Zhou Yongzhang, Li Hongzhong, Yin Zhuizhui, Zhou Liuyu, Ceng Changyu, Yu Pengpeng. 2012. Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone, South China. Petrologica Sinica, 28(10): 3361~3372(in Chinese with English abstract).

    • Liao Jing, Guo Lirong, Qian Longbing. 2018. Diagenesis and metallogenic epoch and genesis of the Jinkeng copper, tin, lead and zinc deposit, Guangdong. Resources Environment and Engineering, 32(2): 212~214(in Chinese with English abstract).

    • Liao Shili, Tao Chunhui, Zhu Chuanwei, Li Huaiming, Li Xiaohu, Liang Jin, Yang Weifang, Wang Yejian. 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the southwest Indian Ridge: Insight from Zn isotopes. Chemical Geology, 507: 54~63.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60(24): 4965~4976.

    • Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinghua. 2019a. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.

    • Liu Biao, Wu Qianhong, Li Huan, Evans N J, Wu Jinghua, Cao Jingya, Jiang Jiangbo. 2019b. Fault-fluid evolution in the Xitian W-Sn ore field (South China): Constraints from scheelite texture and composition. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2019. 103140.

    • Liu Jianping, Rong Yanan, Gu Xiangping, Shao Yongjun, Lai Jianqing, Chen Weikang. 2017. Indium mineralization in the Yejiwei Sn-polymetallic deposit of the Shizhuyuan orefield, southern Hunan, China. Resource Geology, 68(1): 22~36.

    • Liu Jingao, Pearson D G, Chacko T, Luo Yan. 2018. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica et Cosmochimica Acta, 223: 300~318.

    • Liu Peng, Mao Jingwen, Lehmann B, Weyer S, Horn I, Mathur R, Wang Fangyue, Zhou Zhenhua. 2021. Tin isotopes via fs-LA-MC-ICP-MS analysis record complex fluid evolution in single cassiterite crystals. American Mineralogist, 106(12): 1980~1986.

    • Liu Wei, Li Xinjun, Tan Jun. 2001. Petrogenetic and metallogenetic background of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia, and characteristics of the mineralizing fluid. Resource Geology, 51(4): 321~331.

    • Liu Wei, Li Xinjun, Tan Jun. 2003. Fluid mixing as the mechanism of formation of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia. Science in China (Series D): Earth Sciences, DOI: 10. 1360/03yd9057.

    • Lu Youyue, Fu Jianming, Cheng Shunbo, Liu Shusheng, Li Chuanbiao, Zhang Liguo, Ma Liyan. 2015. Rock-forming and ore-forming ages of Tongshanling copper polymetallic ore-field in southern Hunan Province. Geotectonica et Metallogenia, 39(6): 1061~1071(in Chinese with English abstract).

    • Niu Shuyin, Sun Aiqun, Liu Jianming, Guo Lijun, Wang Baode, Hu Huabin. 2006. Metallogenic process of the Dajing Cu-Sn polymetallic deposit in Linxi, Inner Mongolia. Mineral Deposits, 25(S1): 185~188(in Chinese with English abstract).

    • Marignac C, Cuney M, Cathelineau M, Lecomte A, Carocci E, Pinto F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W-Sn-Cu vein deposit: A petrographic, mineralogical, and geochemical study. Minerals, DOI: 10. 3390/min10060562.

    • Mathur R, Mason A, Godfrey L, Yao Junming, Baker M. 2017. Preparation and measurement of cassiterite for Sn isotope analysis. Geostandards and Geoanalytical Research, 41(4): 701~707.

    • Menuge J F, Barker G J, Gagnevin D, Boyce A J. 2013. Fe and Zn isotopes in the Navan Zn-Pb deposit, Ireland: Implications for mineral exploration. Mineral Deposit Research for a High-tech World, 1-4: 422~425.

    • Mlynarczyk M S J, Williams-Jones A E. 2006. Zoned tourmaline associated with cassiterite: Implications for fluid evolution and tin mineralization in the San Rafael Sn Cu deposit, southeastern Peru. The Canadian Mineralogist, 44(2): 347~365.

    • Moura A. 2005. Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal. Chemical Geology, 223(1-3): 153~169.

    • Moura A. 2008. Metamorphosed and metamorphogenic ores of the Neves Corvo volcanogenic massive sulfide deposit, Iberian Pyrite Belt, Portugal. International Geology Review, 50(1): 89~96.

    • Polya D A, Foxford K A, Stuart F, Boyce A, Fallick A E. 2000. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: New evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochimica et Cosmochimica Acta, 64(19): 3357~3371.

    • Qin Gongjiong, Kawachi Y, Zhao Liqing, Wang Yongzheng, Ou Qiang. 2001. The Upper Permian sedimentary facies and its role in the Dajing Cu-Sn deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293~305.

    • Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2021. Petrogenetic differences among the Middle-Late Jurassic Pb-Zn-Cu-bearing granites in the Nanling Range, South China. Geology in China, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html(in Chinese with English abstract).

    • Qiu Zengwang, Wang He, Li Shasha, Li Pei, Wei Xiaopeng, Mu Shenglu. 2014. Research progress and mineral exploration of the Jinkeng Cu-Sn-Pb-Zn deposit, Jiexi, Guangdong. Mineral Deposits, 33(S1): 955~956(in Chinese with English abstract).

    • Quan Tiejun, Wang Gao, Zhong Jianglin, Fei Lidong, Kong Hua, Liu Shijie, Zhao Zhiqiang, Guo Biying. 2013. Petrogenesis of granodiorites in Tongshanling deposit of Hunan Province: Constraints from petrogeochemistry, zircon U-Pb chronology and Hf isotope. Journal of Mineralogy and Petrology, 33(1): 43~52(in Chinese with English abstract).

    • Relvas J M R S, Tassinari C C, Munhá J, Barriga F J. 2001. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): Strontium, neodymium and lead isotope evidence. Mineralium Deposita, 36(5): 416~427.

    • Relvas J M R S, Barriga F J A S, Ferreira A, Noiva P C, Pacheco N, Barriga G. 2006a. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, Mineralogy, and Geochemistry. Economic Geology, 101(4): 753~790.

    • Relvas J M R S, Barriga F J A S, Longstaffe F J. 2006b. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II. Oxygen, Hydrogen, and Carbon Isotopes. Economic Geology, 101(4): 791~804.

    • Schmidt C. 2017. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Cosmochimica Acta, 220: 499~511.

    • Sillitoe R. 2010. Porphyry copper systems. Economic Geology, 105: 3~41.

    • Sillitoe R H, Lehmann B. 2022. Copper-rich tin deposits. Mineralium Deposita, 57(1): 1~11.

    • Sinclair W D, Kooiman G J A, Martin D A, Kjarsgaard I M. 2006. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28: 123~145.

    • Smith J M, Ripley E M, Li Chusi, Wasylenki L E. 2022. Cu and Ni isotope variations of country rock-hosted massive sulfides located near midcontinent rift intrusions. Economic Geology, 117(1): 195~211.

    • Sun Huashan, Li Huan, Liu Liu, Chen Qiaomei, Yang Hui, Wu Pan. 2016. Exhumation history of the Jiaodong and its adjacent areas since the Late Cretaceous: Constraints from low temperature thermochronology. Science China Earth Sciences, 60(3): 531~545.

    • Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Tang Rankun, Lü Xinbiao, Cao Xiaofeng, Mei Wei, Ai Zhilong, Wang Xiangdong. 2013. Genetic analysis of sulfides intergrowths in the Dajing tin and copper polymetallic deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 252~261(in Chinese with English abstract).

    • Tao Qin, Han Runsheng, Zhao Dong, Wu Peng, Tian Xufeng, Zhao Taicheng, Yang Hang, Zong Zhihong, Deng Anping. 2021. The mineralization and alteration zoning related to the buried granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, southern Hunan. Geology in China, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html(in Chinese with English abstract).

    • Vincent V I, Li Huan, Girei M B, Förster M W, Ahmed H A, Ntekim E E. 2021. In situ trace elements and sulfur isotope analysis of sulfides from the Akiri Cu±(Ag) deposit, Benue Trough, North-central Nigeria: Implications for ore genesis. Geochemistry, DOI: 10. 1016/j. chemer. 2021. 125801.

    • Wagner T, Mlynarczyk M S J, Williams-Jones A E, Boyce A J. 2009. Stable isotope constraints on ore formation at the San Rafael Tin-copper deposit, southeast Peru. Economic Geology, 104(2): 223~248.

    • Wang Jingbin, Wang Lijuan, Wang Yuwang, Li Tiejun, Shimazaki H. 2004. Oxygen isotopic characteristics of granitic intrusions related to Haobugao Zn-Pb-Cu-Sn skarn deposit, East Inner Mongolia, China. Resource Geology, 54(2): 205~208.

    • Wang Lijuan, Wang Jingbin, Wang Yuwang, Zhu Heping. 2003. Ore-forming fluid and metallogeny of the Caijiaying and Dajin polymetallic deposits. Science in China (Series D), 33(10): 941~950(in Chinese with English abstract).

    • Wang Lijuan, Wang Jingbin, Wang Yuwang, Long Lingli. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia. Acta Petrologica Sinica, 31(4): 991~1001(in Chinese with English abstract).

    • Wang Yonglei, Wang Denghong, Zhang Changqing, Qu Wenjun, Hu Yanchun. 2010. Molybdenite Re-Os dating of Debao Cu-Sn deposit in Guangxi and its implications for Caledonian metallogeny. Mineral Deposits, 29(5): 881~889(in Chinese with English abstract).

    • Wang Yue, Su Shangguo, Zhang Qi, Zhou Qiming, Zhang Yanan. 2022. Cu-S isotopic characteristics and metallogenic prediction in the ore of Dajing tin and copper polymetallic deposit, Inner Mongolia. Earth Science Frontiers, 29(3): 319~328(in Chinese with English abstract).

    • Wang Yuejun, Fan Weiming, Guo Feng, Li Huiming, Liang Xinquan. 2002. U-Pb dating of early Mesozoic granodioritic intrusions in southeastern Hunan Province, South China and its petrogenetic implications. Science in China (Series D): Earth Sciences, 45(3): 280~288.

    • Wang Yunfeng, Yang Hongmei, Zhang Liguo, Lu Shansong, Yang Zefei, Qiu Xiaofei, Liu Zhongpeng. 2017. Metallogenic epoch and ore-forming material source of the Tongshanling Pb-Zn polymetallic deposit in southeastern Hunan Province: Evidence from Sm-Nd isochron age and Pb isotope. Geological Bulletin of China, 36(5): 875~884(in Chinese with English abstract).

    • Wang Yuwang, Wang Jingbin, Wang Lijuan, Chen Yun. 2006. Tin mineralization in the Dajing tin-polymetallic deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 28(4-6): 320~331.

    • Wei Daofang, Bao Zhengyu, Fu Jianming. 2007. Geochemical characteristics and zircon SHRIMP U-Pb dating of the Tongshanling granite in Hunan Province, South China. Geotectonica et Metallogenia, 4: 482~489(in Chinese with English abstract).

    • Wei Ning, Fang Weixuan, Chen Jiawei, Zhang Hai, Gan Fengwei. 2010. Study of copper, tin and coexisting ingredient occurrence of Dabaiyan copper-tin polymetallic ore deposit in Gejiu, Yunnan Province, P. R. China. Acta Mineralogica Sinica, 30(1): 115~122(in Chinese with English abstract).

    • Willis-Richards J, Jackson N J. 1989. Evolution of the Cornubian ore field, southwest England; part I. batholith modeling and ore distribution. Economic Geology, 84: 1078~1100.

    • Wolff R, Dunkl I, Kempe U, von Eynatten H. 2015. The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Economic Geology, 110(8): 2025~2040.

    • Wu Jinghua, Kong Hua, Li Huan, Algeo T J, Yonezu K, Liu Biao, Wu Qianhong, Zhu Dapeng, Jiang Hua. 2021. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104521.

    • Xiong Yiqu, Shao Yongjun, Zhou Haodi, Wu Qianhong, Liu Jianping, Wei Haotao, Zhao Ruicheng, Cao Jingya. 2017. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore Geology Reviews, 83: 152~173.

    • Xu Jiajia, Lai Yong, Cui Dong, Chang Yong, Jiang Lin, Shu Qihai, Li Wenbo. 2009. Characteristics and evolution of ore-forming fluids of the Daolundaba copper-poly-metal deposit, Inner Mongolia. Acta Petrologica Sinica, 25(11): 2957~2972(in Chinese with English abstract).

    • Xu Rong, Romer R L, Glodny J. 2021. External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn Cu deposit, Gejiu district, China. Lithos, DOI: 10. 1016/j. lithos. 2020. 105937.

    • Xu Weijuan, Lai Jianqing, Chen Yanhui, Cao Chunxiang. 2019. Analysis of the geological characteristics and prospecting potential of the copper-tin polymetallic deposit in Qianmenchong. Southern Metals, 1: 20~27(in Chinese with English abstract).

    • Yao Junming, Hua Renmin, Qu Wenjun, Qi Huawen, Lin Jinfu, Du Andao. 2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China (Series D): Earth Sciences, 50: 519~526.

    • Yao Junming, Mathur R, Lehmann B, Tornos F, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.

    • Yuan Yabin, Yuan Shunda, Zhao Panlao, Zhang Dongliang. 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan: Their constraints to mineralization differences. Acta Petrologica Sinica, 34(9): 2565~2580(in Chinese with English abstract).

    • Zhang Chanchan, Sun Weidong, Wang Jintuan, Zhang Lipeng, Sun Saijun, Wu Kai. 2017. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343~363.

    • Zhang Rongqing, Lehmann B, Seltmann R, Sun W D, Li C Y. 2017. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45(12): 1095~1098.

    • Zhang Xuebing, Bao Changjia, Wu Shishan. 2021. Chronology of the Daolundaba Cu-W polymetallic deposit, southern Great Xing'an Range: Evidence from quartz fluid inclusion 40Ar-39Ar age. Journal of Xinjiang University (Natural Science Edition), 38(1): 83~90(in Chinese with English abstract).

    • Zhang Zhao, Huang Sheng, Zhu Yuanchao, Yu Haibin. 2017. Guangxi Debao Qinjia copper tin ore deposit geological characteristics and mineralization regularity. World Nonferrous Metals, 18: 178~180(in Chinese with English abstract).

    • Zhao Lianjie, Zhang Yu, Shao Yongjun, Li Hongbin, Ahmad Shah S, Zhou Weijian. 2021. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W-Mo-Sn-Cu polymetallic deposit, South China. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104412.

    • Zhao Panlao, Yuan Shunda, Mao Jingwen, Santosh M, Li Chao, Hou Kejun. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province: Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 78: 120~137.

    • Zhao Wen, Zhou Meifu. 2018. Mineralogical and metasomatic evolution of the Jurassic Baoshan scheelite skarn deposit, Nanling, South China. Ore Geology Reviews, 95: 182~194.

    • Zhao Yuehua, Chen Shouyu, Tian Huan, Zhao Jiangnan, Tong Xiang, Chen Xingshou. 2021. Trace element and S isotope characterization of sulfides from skarn Cu ore in the Laochang Sn-Cu deposit, Gejiu district, Yunnan, China: Implications for the ore-forming process. Ore Geology Reviews, DOI: 10. 1016/j. oregeorev. 2021. 104155.

    • Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist, 107(4): 673~683.

    • Zheng Yuanchuan, Liu Sheng'ao, Wu Changda, Griffin W L, Li Zhenqing, Xu Bo, Yang Zhiming, Hou Zengqian, O'Reilly S Y. 2018. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 47(2): 135~138.

    • Zhu Dapeng, Li Huan, Algeo T J, Jiang Weicheng, Wang Chong. 2021. The prograde-to-retrograde evolution of the Huangshaping skarn deposit (Nanling Range, South China). Mineralium Deposita, 56(6): 1087~1110.

    • Zhu Peiyun, Yan Lunming, Bu An, Xu Diankui, Qian Longbing, Guo Lirong. 2018. Research on the mineralization geological body in Jinkeng copper-tin-lead-zinc deposit, Guangdong. Mineral Exploration, 9(1): 33~44(in Chinese with English abstract).

    • 蔡应雄, 谭娟娟, 杨红梅, 卢山松, 段瑞春, 邱啸飞, 程顺波, 杨小莉. 2015. 湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束. 地质学报, 89(10): 1792~1803.

    • 陈公正. 2018. 大兴安岭南段道伦达坝铜多金属矿床成矿作用研究. 中国地质大学(北京)硕士学位论文.

    • 陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018a. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 37(2): 225~245.

    • 陈公正, 武广, 武文恒, 张彤, 李铁刚, 刘瑞麟, 武利文, 章培春, 江彪, 王志利. 2018b. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征. 地学前缘, 25(5): 202~221.

    • 陈公正, 武广, 李铁刚, 刘瑞麟, 李睿华, 李英雷, 杨飞. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U-Pb和绢云母40Ar-39Ar年龄的约束. 岩石学报, 37(3): 865~885.

    • 陈少青. 2017. 广东省揭西县金坑铜锡铅锌多金属矿床成因探讨. 华东地质, 38(4): 271~278.

    • 陈原林, 李欢, 郑朝阳, 李大兜. 2021. 胶莱盆地郭城-崖子断裂带金矿集区剥蚀程度及深部找矿潜力: 磷灰石裂变径迹热年代学证据. 中国有色金属学报, DOI: 10. 11817/j. ysxb. 1004. 0609. 2021-42082. 1-17.

    • 郭闯, 卢玉杰. 2021. 湖南大义山地区芝麻山铜锡矿床地质特征及控矿因素分析. 南方金属, 238: 14~22.

    • 黄旭栋, 陆建军, Stanislas Sizaret, 王汝成, 马东升, 章荣清, 赵旭, 吴劲薇. 2017. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异: 以湘南铜山岭和魏家矿床为例. 中国科学: 地球科学, 47(7): 766~782.

    • 江丞曜, 刘鹏, 钱龙兵, 毛景文. 2021. 粤东金坑Sn-Cu矿成岩成矿年代学格架与Sn-Cu共生成矿作用. 岩石学报, 37(3): 747~768.

    • 江思宏, 梁清玲, 刘翼飞, 刘妍. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束. 岩石学报, 28(2): 495~513.

    • 李欢, 吴经华, 蒋维诚, 任涛, 刘飚. 2021a. 锡同位素研究进展及其在矿床学中的应用展望. 地质学报, 95(12): 3926~3936.

    • 李欢, 王冲, 朱大鹏, 蒋维诚. 2021b. 黄沙坪矽卡岩型和脉状铅锌矿成矿环境及其对深部找矿的指示. 中国有色金属学报, DOI: https: //kns. cnki. net/kcms/detail/43. 1238. tg. 20211115. 1144. 001. html.

    • 李翔. 2019. 锡铜共生矿床微区地球化学分析及成矿机制研究. 中国地质大学博士学位论文.

    • 李雪凯, 原垭斌, 刘晓菲. 2013. 湖南东坡矿田野鸡尾斑岩型铜锡矿床含矿石英斑岩锆石LA-(MC)-ICP-MS U-Pb测年. 地质论评, 59(z1): 181~182.

    • 梁锦, 周永章, 李红中, 尹缀缀, 周留煜, 曾长育, 虞鹏鹏. 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361~3372.

    • 廖静, 郭丽荣, 钱龙兵. 2018. 广东金坑铜锡铅锌矿床成岩成矿时代及成因探讨. 资源环境与工程, 32(2): 212~214.

    • 卢友月, 付建明, 程顺波, 刘树生, 黎传标, 张利国, 马丽艳. 2015. 湘南铜山岭铜多金属矿田成岩成矿作用年代学研究. 大地构造与成矿学, 39(6): 1061~1071.

    • 牛树银, 孙爱群, 刘建明, 郭利军, 王宝德, 胡华斌. 2006. 林西大井铜锡多金属成矿作用研究. 矿床地质, 25(S1): 185~188.

    • 秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2021. 南岭成矿带中—晚侏罗世含钨、锡、铅锌(铜)花岗岩的差异性研究. 中国地质, DOI: https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210506. 1453. 002. html.

    • 丘增旺, 王核, 李莎莎, 李沛, 魏小鹏, 慕生禄. 2014. 广东揭西县金坑铜锡铅锌矿床勘查和研究新进展. 矿床地质, 33(S1): 955~956.

    • 全铁军, 王高, 钟江临, 费利东, 孔华, 刘仕杰, 赵志强, 郭碧莹. 2013. 湖南铜山岭矿区花岗闪长岩岩石成因: 岩石地球化学、U-Pb年代学及Hf同位素制约. 矿物岩石, 33(1): 43~52.

    • 唐然坤, 吕新彪, 曹晓峰, 梅微, 艾智龙, 王祥东. 2013. 内蒙古大井铜锡多金属矿床金属硫化物共生体成因分析. 矿物岩石地球化学通报, 32(2): 252~261.

    • 陶琴, 韩润生, 赵冻, 吴鹏, 田旭峰, 赵太成, 杨航, 宗志宏, 邓安平. 2021. 湘南黄沙坪铜锡多金属矿床与隐伏花岗斑岩有关的矿化-蚀变分带模式. 中国地质, DOI: http: //kns. cnki. net/kcms/detail/11. 1167. P. 20200415. 1611. 004. html.

    • 王莉娟, 王京彬, 王玉往, 朱和平. 2003. 蔡家营、大井多金属矿床成矿流体和成矿作用. 中国科学(D 辑), 33(10): 941~950.

    • 王莉娟, 王京彬, 王玉往, 龙灵利. 2015. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测. 岩石学报, 31(4): 991~1001.

    • 王永磊, 王登红, 张长青, 屈文俊, 胡艳春. 2010. 广西德保铜锡矿床辉钼矿Re-Os同位素定年及对加里东期成矿的探讨. 矿床地质, 29(5): 881~889.

    • 王跃, 苏尚国, 张旗, 周奇明, 张雅南. 2022. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测. 地学前缘, 29(3): 319~328.

    • 王云峰, 杨红梅, 张利国, 卢山松, 杨泽飞, 邱啸飞, 刘重芃. 2017. 湘东南铜山岭铅锌多金属矿床成矿时代与成矿物质来源—Sm-Nd等时线年龄和Pb同位素证据. 地质通报, 36(5): 875~884.

    • 魏道芳, 鲍征宇, 付建明. 2007. 湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年. 大地构造与成矿学, 4: 482~489.

    • 魏宁, 方维萱, 陈家玮, 张海, 甘凤伟. 2010. 云南个旧大白岩铜锡矿床铜锡与共伴生组分赋存状态研究. 矿物学报, 30(1): 115~122.

    • 徐佳佳, 赖勇, 崔栋, 常勇, 蒋林, 舒启海, 李文博. 2009. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化. 岩石学报, 25(11): 2957~2972.

    • 徐卫娟, 赖健清, 陈燕辉, 曹春祥. 2019. 湖南耒阳铅门冲铜锡多金属矿床地质特征及找矿前景. 南方金属, 1: 20~27.

    • 原垭斌, 袁顺达, 赵盼捞, 张东亮. 2018. 湘南黄沙坪多金属矿床花岗质岩浆性质及演化对成矿差异的约束. 岩石学报, 34(9): 2565~2580.

    • 张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar-39Ar年龄的证据. 新疆大学学报(自然科学版), 38(1): 83~90.

    • 张钊, 黄晟, 朱元超, 余海彬. 2017. 广西德保钦甲铜锡矿矿床地质特征及矿化富集规律. 世界有色金属, 18: 178~180.

    • 朱沛云, 颜伦明, 卜安, 许典葵, 钱龙兵, 郭丽荣. 2018. 广东金坑铜锡铅锌矿床成矿地质体研究. 矿产勘查, 9(1): 33~44.