en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王冬梅,女,1996年生。在读硕士,研究方向为古生物学与地层学。E-mail:1575167416@qq.com。

通讯作者:

杨宇宁,男,1985年生。博士,副教授,古生物学与地层学专业。E-mail:ynyang333@163.com。

参考文献
Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4(3): 147~166.
参考文献
Arp G, Reimer A, Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans. Science, 292(5522): 1701~1704.
参考文献
Arp G, Reimer A, Reitner J, Pratt B R. 2002. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud: Comment and reply-comment. Geology, 30: 579~580.
参考文献
Arp G, Reimer A, Reitner J. 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105~127.
参考文献
Badger M, Price D. 2003. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany, 54: 609~622.
参考文献
Benzerara K, Skouri-Panet F, Li J H, Férarda C, Guggerb M, Laurentb T, Couradeaua E, Ragona E, Cosmidisa J, Menguya N, Margaret-Olivera I, Taverad R, López-Garcíac P, Moreirac P. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 111(30): 10933~10938.
参考文献
Borzì A. 1914. Studi sulle Mixoficee. Nuovo Giornale Botanico Italiano (Nuova Serie). 21: 307~360.
参考文献
Braissant O, Cailleau G, Dupraz C, Verrecchia E P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73(3): 485~490.
参考文献
Berrendero E, Perona E, Mateo P. 2008. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. International Journal of Systematic and Evolutionary Microbiology, 58: 447~460.
参考文献
Cam N, Georgelin T, Jaber M, Lambert J F, Benzerara K. 2015. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba- carbonates: What do we learn about intracellular calcification by cyanobacteria?. Geochimica et Cosmochimica Acta, 161: 36~49.
参考文献
Cao J, Liu J B, Ezaki Y, Adachi N. 2008. Lower Ordovician reefs in the Honghuayuan Formation at Dongzhi, Anhui: Microbial reefs just prior to the Ordovician biodiversification. Acta Scientiarum Naturalium Universitatis Pekinensis On Line First, 45(2): 279~288 (in Chinese with English abstract).
参考文献
Caudwell C, Lang J, Pascal A. 2001. Lamination of swampy-rivulets Rivularia haematites stromatolites in a temperate climate. Sedimentary Geology, 143(1-2): 125~147.
参考文献
Chen Xu, Rong Jiayu. 1992. Ordovician plate tectonics of China and its neighboring regions. In: Webby B D, Laurie L, eds. Global Perspectives on Ordovician Geology. Balkema: Rotterdam, 177~291.
参考文献
Chen Xu, Rong Jiayu, Wang Xiaofeng, Wang Zhihao, Zhang Yuandong, Zhan Renbin. 1995. Correlation of the Ordovician rocks of China: Charts and explanatory notes. International Union of Geological Sciences, Trondheim, 104.
参考文献
Chen Pengfei, Zhan Renbin. 2006. The lower to middle Ordovician Dawan formation and its coeval rocks in the Yangtze region. Journal of Stratigraphy, 30(1): 11~20 (in Chinese with English abstract).
参考文献
Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown G E, López-García P. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science, 336(6080): 459~462.
参考文献
Défarge C, Trichet J, Coupe A. 1994. On the appearance of cyanobacterial calcification in modern stromatolites. Sedimentary Geology, 94(1-2): 11~19.
参考文献
Dupraz C, Visscher P T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13(9): 429~438.
参考文献
Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.
参考文献
Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Jiang Panliang, Bao Zhidong, Luo Zhang, Ju Tianyin, Tian Haiqin, Wang Hong. 2001. Lithofacies palaeogeography of the early Ordovician in South China. Journal of Palaeogeography, 3(2): 11~22 (in Chinese with English abstract).
参考文献
Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Bao Zhidong. 2003. Lithofacies palaeogeography of the early Ordovician in China. Journal of Palaeogeography, 5(1): 1~16 (in Chinese with English abstract).
参考文献
Flores E, Herrero A. 2014. The cyanobacteria: Morphological diversity in a photoautotrophic lifestyle. Perspectives in Phycology, 1(2): 63~72.
参考文献
Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1~20.
参考文献
Komárek J, Johansen J R. 2015. Filamentous cyanobacteria. Freshwater Algae of North America, 135~235.
参考文献
Gnoli M, Serpagli E. 1980. The problematical microorganism Nuia in the lower Ordovician of precordilleran argentina and its paleogeographic significance. Paleontology, 54(6): 1245~1251.
参考文献
Golubic S, Campbell S E. 1981. Biogenically formed aragonite concretions in marine Rivularia. ln: Monty C L V, ed. Phanemzoic Stromatolites. Berlin: Springer-Verlag, 209~229.
参考文献
Gong Yunyun. 2017. Cyanobacterial calcification. Geological Science and Technology Information, 36(2): 112~118 (in Chinese with English abstract).
参考文献
Herrero A, Flores E. 2008. The Cyanobacteria: Molecular Biology, Genomics and Evolution. Norwich: Caister Academic Press, 484.
参考文献
Hillis-Colinvaux L. 1980. Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology, 17: 1~327.
参考文献
Huang Zhicheng, Bian Lizhen. 1983. Discovery of the Ordovician alga Nuia siberica in China. Acta Paleontologica Sinica, 22 (1): 61~64 (in Chinese with English abstract).
参考文献
Harland T L, Torrens H S. 1982. A redescription of the bathonian red alga Solenopora Jurassica from Gloucestershire, with remarks on its preservation. Palaeontology, 25(4): 905~912.
参考文献
Jansson C, Northen T. 2010. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Current Opinion in Biotechnology, 21(3): 365~371.
参考文献
Kaplan A, Badger M R, Berry J A. 1980. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. Planta, 149(3): 219~226.
参考文献
Kaplan A, Reinhold L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 539~570.
参考文献
Konhauser K. 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing, 160~166.
参考文献
Kirkby S M. 1975. Biological studies on the rivulariaceae. Doctoral thesis of Durham University, 51~55.
参考文献
Li Yue, Kershaw S, Mu Xinan. 2004. Ordovician reef systems and settings in South China before the Late Ordovician mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 205(34): 235~254.
参考文献
Liu Jianbo. 2006. Environmental background for the Ordovician radiation bio-event in South China: Sea-level fluctuations of Arenigian. Originations and Radiations—Evidences from the Chinese Fossil Record. Beijing: Science Press, 335~360 (in Chinese).
参考文献
Liu Jianbo, Zhan Renbin, Adachi N. 2010. Evidence for decoupling of relative abundance and biodiversity of marine organisms in initial stage of GOBE: A preliminary study on Lower Ordovician Shellbeds of South China. Journal of Earth Science, 21: 44~48.
参考文献
Liu Zhili. 1990. Introduction to Fossil Algae. Beijing: Xinhua Bookstore Press, 1~18 (in Chinese).
参考文献
Liu Lijing, Wu Yasheng, Jiang Hongxia, Riding R. 2016. Calcified rivulariaceans from the Ordovician of the Tarim basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 371~381.
参考文献
Lucas S G. 2001. Taphotaxon. Lethaia, 34: 30.
参考文献
Mamet B, Roux A. 1982. Algues dévono-carbonifères de l'Australie. Revue de Micropaléontologie, 26(2): 63~131.
参考文献
Maslov V P. 1954. On the early Silurian of eastern Siberia. In: Shatskiy N S, ed. Voprosy Geologii Azii. Moscow: Akad nauk SSSR, 495~529 (in Russian).
参考文献
McConnaughey T A, Whelan J F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews, 42(1): 95~117.
参考文献
Mei Mingxiang. 2012. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937~951.
参考文献
Mei Mingxiang. 2021. Radial ooids induced by photosynthetic biofilms: An example from the Cambrian Miaolingian Zhangxia Formation at Jiawang Section in Xuzhou City of Jiangsu Province, North-China Platform. Journal of Palaeogeography, 23(3): 461~487 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Gao Jinhan. 2015. Origin of photosynthesis: An enchanting and important scientific theme. Journal of Palaeogeogeraphy, 17(5): 577~592 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Meng Qingfen. 2016. Timing of the rise of atmospheric oxygen content level: A geobiological process that is closely and genetically related to the geodynamics. Journal of Palaeogeogeraphy, 18(1): 1~20 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Muhammad R, Liu Li, Meng Qingfen. 2019. Leiolite bioherm dominated by cyanobacterial mats of the Furongian: An example from the Qijiayu section in Laiyuan County, Hebei Province. Geological Review, 65(5): 1103~1122 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Khalid L, Meng Xiaoqing, Hu Yuan. 2020. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrain Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999~1016 (in Chinese with English abstract).
参考文献
Meng Tian, Chen Zuo, Zhu Jun, Zou Xiaoxiao, Fu Qingyan, Bao Shixiang. 2020. Morphological and molecular study on marine green alga, Halimeda velasquezii first recorded in Hainan Island. Journal of Tropical Oceanography, 39(6): 114~121 (in Chinese with English abstract).
参考文献
Merz-Preiβ M, Riding R. 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126: 103~124.
参考文献
Merz-Preiβ M. 2000. Calcification in cyanobacteria. In: Riding R, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag, 50~56.
参考文献
Miyachi S, Iwasaki I, Shiraiwa Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynthesis Research, 77: 139~153.
参考文献
Muñoz-Martín M A, Gómez E B, Perona E, Mateo P. 2020. Analysis of molecular diversity within single cyanobacterial colonies from environmental samples. Scientifc Reports, 10: 18453. https: //doi. org/10. 1038/s41598-020-75303-2.
参考文献
Obst M, Wehrli B, Dittrich M. 2009a. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology, 7: 324~347.
参考文献
Obst M, Dynes J J, Lawrence J R, Swerhone G D W, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock A P. 2009b. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14): 4180~4198.
参考文献
Ogawa T, Kaplan A. 2003. Inorganic carbon acquisition systems in cyanobacteria. Photosynthesis Research, 77: 105~115.
参考文献
Pentecost A. 1987. Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B, 232: 125~136.
参考文献
Pentecost A. 1991. Calcification processes in Algae and cyanobacteria. In: Riding R ed. Calcareous Algae and Stromatolites. Berlin: Springer, 3~20.
参考文献
Pentecost A, Riding R. 1986. Calcification in cyanobacteria. In: Leadbeater B S C, Riding R, eds. Biomineralization in Lower Plants and Animals. Oxford: Clarendon Press, 73~90.
参考文献
Perret M F, Vachard D. 1977. Algues et pseudo-algues des calcaires serpoukhoviens d'Ardengost (Hautes-Pyrénées). Ann Paléontol (Invertébrés), 63(2): 85~156.
参考文献
Plee K, Ariztegui D, Martini And R, Davaud E. 2008. Unravelling the microbial role in ooid formation—results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology, 6(4): 341~350.
参考文献
Pratt B R. 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology, 29(9): 763~766.
参考文献
Price G D, Maeda S, Omata T, Badger M R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Functional Plant Biology, 29(3): 131~149.
参考文献
Price G D, Howitt S M. 2011. The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters. Biochemistry and Cell Biology, 89(2): 178~188.
参考文献
Portman C, Andrews J E, Rowe P J, Leeder M R, Hoogewerff J. 2005. Submarine-spring controlled calcification and growth of large Rivularia bioherms, Late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology, 52(3): 441~465.
参考文献
Ragini G, Pankaj B. 2012. Cynobacteria: A comprehensive review. International Research Journal of Pharmacy, 3(2): 53~57.
参考文献
Ragon M, Benzerara K, Moreira D, Tavera R, Lopez-Garcia P. 2014. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Frontiers in Microbiology, 5: 331.
参考文献
Raven J A, Giordano M, Beardall J, Maberly S C. 2012. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 493~507.
参考文献
Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1): 18~30.
参考文献
Riding R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299(5886): 814~815.
参考文献
Riding R. 1991. Calcified cyanobacteria. In: Riding R, ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 55~87.
参考文献
Riding R. 1992. Temporal variation in calcification in marine cyanobacteria. Journal of the Geological Society of London, 149(6): 979~989.
参考文献
Riding R. 1993. Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften, 80: 513~516.
参考文献
Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-alga mats and biofilms. Sedimetology, 47(1): 179~214.
参考文献
Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299~316.
参考文献
Riding R. 2009. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million. Palaios, 24: 685~696.
参考文献
Riding R, Liang L Y. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101~115.
参考文献
Rowland S M, Shapiro R S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. Phanerozoic Reef Patterns, 72: 95~128.
参考文献
Schopf J W, Kudryavtsev A B, Agresti D G, Czaja A D, Wdowiak T J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5(3): 334~371.
参考文献
Schultze-Lam S, Harauz G, Beveridge T J. 1992. Participation of a cyanobacterial S layer in fine-grain mineral formation. Journal of Bacteriology, 1992, 174(24): 7971~7981.
参考文献
Schultze-Lam S, Beveridge T J. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Applied and Environmental Microbiology, 60(2): 447~453.
参考文献
Schultze-Lam S, Beveridge T J, Des-Marais D J. 1997. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1): 133~141.
参考文献
Spincer B R. 1998. Olitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the upper Cambrian rocks of central Texas. Paleontology, 72(3): 577~584.
参考文献
Swett K. 1964. Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range, Colorado. Journal of Sedimentary Research, 34: 615~624.
参考文献
Toomey D F, Klement K W. 1966. A problematical microorganism from the El Paso Group (Lower Ordovician) of west Texas. Paleontology, 40(6): 1304~1311.
参考文献
Vachard D, Téllez-Girón C. 1986. El alga Nuia en el Ordovícico de México: Hipotesis diversas. Revista Instituto Mexicano Petroleo, 18(2): 12~25.
参考文献
Vachard D, Clausen S, Palafox J J, Buitrón B E, Devaere L, Hayart V, Régnier S. 2017a. Lower Ordovician microfacies and microfossils from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined Nuia Province. Facies, 63: 18.
参考文献
Vachard D, Krainer K, Lucas S G. 2017b. The genus Nuia from lowermost Ordovician strata of the Bliss Formation and lower El Paso Group, New Mexico (USA). Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen, 285(1): 75~90.
参考文献
Wang Jianpo, Deng Xiaojie, Wang Guan, Li Yue. 2012. Types and biotic successions of Ordovician reefs in China. Chinese Science Bulletin, 57: 1160~1168 (in Chinese with English abstract).
参考文献
Wu Yasheng, Sun Xiaofang, Zhang Guocheng, Qi yongan, Bao Hongping, Ren Junfeng, Huang Zhengliang. 2020. Calcified cyanobacteria from the coral biostrome of the upper Ordovician Xiazhen Formation of Zhuzhai, Yusheng, Jiangxi Province, and their paleoenvironmental. Acta Micropalaeontologica Sinica, 37(1): 35~47 (in Chinese with English abstract).
参考文献
Wright V P. 1985. Seasonal banding in the alga Solenopora jurassica from the Middle Jurassic of Gloucestershire, England. Journal of Paleontology, 59(3): 721~732. Whitton B A, Mateo P. 2012. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Dordrecht: Springer, 561~591.
参考文献
Xia Bangmei. 2017. Flora Algarum Marinarum Sinicarum—Tomusi Cyanophyta. Beijing: Science Press, 108~151 (in Chinese).
参考文献
Yang Wei, Zhu Zhongde, Liu Bingli. 1998. Nuia siberica in lower Ordovician reefs and strata in Northwest Hunan and Southwest Hubei. Journal of Jianghan Petroleum Institute, 20(4): 17~21 (in Chinese with English abstract).
参考文献
Yates K K, Robbins L L. 2001. Microbial lime-mud production and its relation to climate change. In: Gerhard L C, Harrison W E, Hanson B M, eds. Geological perspectives of global climate change. Tulsa, Okla: American Association of Petroleum Geologists, 266~283.
参考文献
Zavarzin G A. 2002. Microbial geochemical calcium cycle. Microbiology, 71(1): 1~17.
参考文献
Zhan Renbin, Jin Jisuo. 2007. Ordovician-Early Silurian (Llandovery) Stratigraphy and Palaeontology of the Upper Yangtze Platform, South China. Beijing: Science Press, 39~18.
参考文献
Zhang Nie, Tian Zuoji, Leng Yingying, Wang Huitong, Song Fuqing, Meng Jianhua. 2007. Raman characteristics of hydrocarbon and hydrocarbon inclusions. Science in China(Series D): Earth Sciences, 37(7): 900~907 (in Chinese).
参考文献
Zhang Mingshao, Sheng Xinfu. 1958. Ordovician starta of the Sichuan and Shaanxi border area. Acta Geological Sinica, 38(3): 326~335 (in Chinese with English abstract).
参考文献
Zhang Pengyuan. 1990. On the discovery of Nuia in China. Geological Review, 36(2): 183~189 (in Chinese with English abstract).
参考文献
Zhang Wentang, Xu Hankui, Chen Xu, Chen Junyuan, Yuan Kexing, Lin Yaokun, Wang Jungen. 1964. Ordovician of the northern Guizhou. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica (ed). Palaeozoic Rocks of North Guizhou. Nanjing: Nanjing Institute of Geology and Palaeontology (in Chinese).
参考文献
Zhang Yunbai, Zhou Zhiyi, Zhang Junming. 2002. Sedimentary differentiation during the latest Early Ordovician—earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302~314 (in Chinese with English abstract).
参考文献
Zhen Yongyi, Perival I G, Liu Jianbo. 2006. Rhipidognathid conodonts from the Early Ordovician Honghuayuan Formation of Guizhou, South China. Palaeoworld, 15(2): 194~210.
参考文献
Zhen Yongyi, Perival I G, Liu Jianbo, Zhang Yuandong. 2009. Conodont fauna and biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South China. Alcheringa: An Australasian Journal of Palaeontology, 33(3): 257~295.
参考文献
Zhong Yijiang, Wen Huaguo, Chen Hongde, Liu Lei, Chen Anqing, Wang Xinglong, Wang Zhiwei, Bai Xuan. 2020. The role of extracellular polymeric substances in cyanobacterial calcification and its geological significance. Acta Sedimentologica Sinica, 40(1): 88~105 (in Chinese with English abstract).
参考文献
Zhu Zhongde, Hu Mingyi, Liu Bingli, Xiao Chuantao, Yang Wei, Li Xiangmin. 2006. The Study of Early-Middle Ordovician Organic Reefs in China. Beijing: Geological Publishing House, 1~178 (in Chinese with English abstract).
参考文献
曹隽, 刘建波, 江崎洋一, 足立奈津子. 2008. 安徽东至早奥陶世红花园组生物礁: 奥陶纪生物大辐射前的微生物礁. 北京大学学报(自然科学版), 45(2): 279~288.
参考文献
陈朋飞, 詹仁斌. 2006. 扬子区下、中奥陶统大湾组及其同期地层. 地层学杂志, 30(1): 11~20.
参考文献
冯增昭, 彭勇民, 金振奎, 蒋盘良, 鲍志东, 罗璋, 鞠天吟, 田海芹, 汪红. 2001. 中国南方早奥陶世岩相古地理. 古地理学报, 3(2): 11~22.
参考文献
冯增昭, 彭勇民, 金振奎, 鲍志东. 2003. 中国早奥陶世岩相古地理. 古地理学报, 5(1): 1~16. 贡云云. 2017. 蓝细菌钙化作用. 地质科技情报, 36(2): 112~118.
参考文献
黄志诚, 边立曾. 1983. 藻类化石Nuia siberica在我国的发现. 古生物学报, 22(1): 61~65.
参考文献
刘建波. 2006. 华南早—中奥陶世生物大幅射期间的海平面变化. 生物的起源、辐射与多样性演变. 北京: 科学出版社, 335~360.
参考文献
刘志礼, 1990. 化石藻类学导论.北京: 高等教育出版社, 1~18.
参考文献
梅冥相, 高金汉. 2015. 光合作用的起源: 一个引人入胜的重大科学命题. 古地理学报, 17(5): 577~592.
参考文献
梅冥相, 孟庆芬. 2016. 大气圈氧气含量水平上升的时间进程: 一个与地球动力学过程紧密相关的地球生物学过程. 古地理学报, 18(1): 1~20.
参考文献
梅冥相, Muhammad R, 刘丽, 孟庆芬. 2019. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103~1122.
参考文献
梅冥相, Khalid Latif, 孟晓庆, 胡媛. 2020. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999~1016.
参考文献
梅冥相. 2021. 光合作用生物膜诱发的放射鲕粒: 以江苏徐州贾旺剖面寒武系苗岭统张夏组为例. 古地理学报, 23(3): 462~487.
参考文献
孟天, 陈佐, 朱军, 邹潇潇, 符青艳, 鲍时翔. 2020. 海南岛海洋绿藻新记录种——未氏仙掌藻(Halimeda velasquezii)的形态学与分子系统学分析. 热带海洋学报, 39(6): 114~121.
参考文献
王建坡, 邓小杰, 王冠, 李越. 2012. 中国奥陶纪生物礁的类型和造礁生物群的演替. 科学通报, 57(11): 924~932.
参考文献
吴亚生, 孙晓芳, 张国成, 齐永安, 包洪平, 任军峰, 黄正良. 2020. 江西玉山祝宅上奥陶统下镇组蓝细菌化石及其古环境意义. 微体古生物学报, 37(1): 35~47.
参考文献
夏邦美. 2017. 中国海藻志(第一卷)——蓝藻门. 北京: 科学出版社, 108~151.
参考文献
杨威, 朱忠德, 刘秉理. 1998. 湘西北鄂西南下奥陶统产礁地层中的藻类化石Nuia siberica. 江汉石油学院学报, 20(4): 17~21.
参考文献
张鼐, 田作基, 冷莹莹, 王汇彤, 宋孚庆, 孟建华. 2007. 烃和烃类包裹体的拉曼特征. 中国科学(D辑: 地球科学), 37(7): 900~907.
参考文献
张鸣邵, 盛莘夫. 1958. 川黔边境的奥陶纪地层. 地质学报, 38(3): 326~335.
参考文献
张鹏远. 1990. Nuia属微化石在我国的发现. 地质论评, 36(2): 183~188.
参考文献
张文堂, 许汉奎, 陈旭, 陈均远, 袁克兴, 林耀坤, 王俊庚. 1964. 黔北地层现场会议: 贵州北部的古生代地层. 见: 南京地质古生物研究所编, 贵州北部的志留系.
参考文献
张允白, 周志毅, 张俊明. 2002. 扬子陆块早奥陶世末期—中奥陶世Darriwilian初期沉积分异. 地层学杂志, 26(4): 302~314.
参考文献
钟怡江, 文华国, 陈洪德, 刘磊, 陈安清, 王兴龙, 王志伟, 白璇. 2020. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义. 沉积学报, 40(1): 88~105.
参考文献
朱忠德, 胡明毅, 刘秉理, 肖传桃, 杨威, 李相明. 2006. 中国早中奥陶世生物礁研究. 北京: 地质出版社, 1~178.
目录contents

    摘要

    Nuia是早奥陶世备受争议的一种疑难钙化微体化石,其分类位置长期以来因内部构造常被成岩作用破坏而未得到解决。本文在薄片镜下观察的基础上,结合拉曼光谱和扫描电镜分析技术,对黔北桐梓地区下奥陶统红花园组生物礁中的Nuia化石进行形态解剖分析并探讨其钙化机制。研究结果显示,Nuia由发射状丝状体(filaments)聚集而成的胶群体(colony)以及外围的钙化外鞘(calcified encrustation)组成,丝状体基部往往有异形胞和(或)厚壁孢子聚集成暗色的中央区。据此,Nuia可能是蓝藻门念珠藻目胶须藻科(Rivulariaceae, Nostocales, Cyanophyta)的早期代表。通过类比现代蓝藻的钙化机制模型,Nuia可能具有比较复杂的钙化过程:原植体通过二氧化碳聚集机制 (carbon dioxide concentrating mechanisms, CCMs)进行光合作用的过程中,碳酸盐颗粒首先在原始丝状体的基部胶鞘内沉淀形成黑色的中央区;随着藻丝的生长和假分枝的出现,丝状体的相应位置可形成反映季节变化的钙化带,显示为特殊的分层现象,藻丝生长停止后,藻体表面形成一层公共胶鞘,并经浸染作用和(或)结壳作用形成钙化外鞘;丝状体在早期成岩阶段受到重结晶作用而被交代为方解石纤维。此外,Nuia的中央区和公共胶鞘可能有细胞降解残留的有机大分子,限制了矿物晶体的快速生长,钙化过程中只形成细小的方解石矿物,因而在薄片中呈现出比围岩和钙化丝状体更深的颜色。

    Abstract

    Calcified Nuia is a problematic microfossil with a distribution range limited to the Early Ordovician. Its affinity has long been controversial due to the absence of morphological details as for an eodiagenetic taphotaxon. Here, we investigate a collection of Nuia is identified in the patch reefs at the top of the Honghuayuan Formation (Floian Stage, Early Ordovician) in northern Guizhou. Thin section investigations along with Raman spectroscopy (RAM) and scanning electron microscopy (SEM) reveal an unexplored pathway for its morphological deconstruction and calcification mechanism. Nuia is featured here as an irregular thallus colony surrounded by an external calcified encrustation and with densely filaments radially arranged from the dark central area that corresponds to the emplacements of heterocysts and/or aktinetes on the base of the filaments. We, therefore, temporarily assign Nuia to an early taxon of Rivulariaceae (Nostocales, Cyanophyta). Integrating the model of vivo cyanobacterial calcification by carbon dioxide concentrating mechanisms (CCMs)-enhanced photosynthesis, we propose a calcification process of Nuia to be as follows: at the beginning, calcium carbonates induced by CCMs deposit in the base sheaths of initial filaments, forming a black central area of Nuia; as the trichomes grow and produce false branching, seasonal pattern of growth and calcification is formed in zones where the filaments develop false branching, appearing as unique multilayers. When the trichomes stop growing, an outer common sheath formation and CCMs-induced precipitate of calcites is formed on the surface of colony by impregnation and/or encrustation, and the filaments are rapidly metasomatized by calcite fibers during early diagenesis. In addition, residual organic macromolecules probably gathered in the central area and the common sheath, limit the rapid growth of crystals and eventually form tiny calcite minerals during the calcification process and, furthermore, make them darker than the calcified filaments and the surrounding rocks.

  • 学术界长期以来对Nuia的形态特征及其分类位置争议极大,比如认为是绿藻(Mamet et al.,1982; 杨威等,1998)、红藻(Perret et al.,1977)或蓝藻(Vachard et al.,19862017a2017b),甚至有学者认为Nuia并非生物化石而是有机质颗粒(Swett,1964)或者鲕粒(Spincer,1998; 梅冥相等,2020; 梅冥相,2021)。Vachard et al.(2017b)Nuia进行了系统厘定,认为确切的Nuia只有N. siberica Maslov,1954一个种,而且仅局限分布于早奥陶世赤道附近的低纬度海域,并形成独特的“Nuia Province”地理区系,而该时期以外的其他报道都不是真正的Nuia。这些争议的起因主要有两方面:① 此前所有关于Nuia的研究无一例外都是基于岩石薄片中生物体的特征观察,很难获取化石的形态细节;② Nuia本身形态比较简单,其钙化过程与其他钙质微生物相同,不仅受生物体本身控制,而且容易受到外部环境的影响(Riding,20062009)。这种对环境的敏感性增加了因钙化作用所形成的生物化石的复杂性,特征鉴定容易出现多解性(Vachard et al.,2017b),造成系统描述和鉴定上的困难。

  • 蓝藻也被称为蓝细菌(cyanobacteria)或蓝绿藻(blue-green algae),是一类能够进行自养光合作用和固氮作用的微生物,但缺少真核藻类所具有的叶绿体和细胞核(Herrero et al.,2008; Ragini et al.,2012; Flores et al.,2014),因而被认为是一种大型单细胞原核生物。钙化作用是微生物最广泛的矿化作用方式(Merz-Preiβ,2000; 钟怡江等,2020),但蓝藻的钙化作用少数是生物控制的矿化作用,多数是生物诱导产生的有机矿化(Riding,20002006; Riding et al.,2005; Mei Mingxiang,2012),即通过光合作用吸收周围环境中的CO2或HCO-3并释放OH-,导致pH值和碳酸盐离子浓度的上升,从而诱导碳酸盐矿物发生沉淀(McConnaughey et al.,1997; Merz-Preiβ,2000; Arp et al.,2003; Dupraz et al.,2005; Reitner et al.,2005; Plee et al.,2008)。地层中常见的葛万藻(Girvanella)、奥顿藻(Ortonella)等都是蓝藻的生物诱导钙化的产物(Arp et al.,2001; Pratt,2001; Riding,2009),但目前这种生物沉积作用的步骤机制和细节并不清楚(Obst et al.,2009a)。此外,学术界长期以来认为蓝藻只能在细胞外发生钙化作用,表现为CaCO3在胶鞘(sheath)的表面或内部的成核作用(Défarge et al.,1994; Plee et al.,2008)。近期有研究显示,一些现生的蓝藻细胞内也可以形成碳酸盐沉淀(Couradeau et al.,2012; Benzerara et al.,2014; Ragon et al.,2014; Cam et al.,2015),这一重大发现需要我们重塑关于蓝藻钙化作用的认识。在地质历史中,蓝藻在地球早期的钙化作用(Merz-Preiβ,2000; Jansson et al.,2010; 梅冥相等,20152016)和碳酸盐岩沉积(Altermann et al.,2006)中发挥极为关键的作用,提供了利用其解释古环境的依据(Merz-Preiβ et al.,1999; Arp et al.,2002Riding,20062009; Obst et al.,2009a; 贡云云,2017; 吴亚生等,2020)。

  • 黔北下奥陶统红花园组生物礁中产有数量较多、保存极好的钙化Nuia化石材料。本文在观察岩石薄片的基础上,结合拉曼光谱(Raman spectroscopy)和扫描电镜(scanning electron microscope,SEM)分析技术,系统分析了Nuia化石在不同切面的结构特征及其物质组分,为解决其长期的系统分类争议提供了新证据,并对其钙化机制进行了探讨。

  • 1 区域地质背景和剖面概况

  • 早奥陶世时期华南板块是冈瓦纳大陆东北缘中低纬度地区的一个独立构造板块,自西北到东南由扬子地台、江南斜坡、珠江盆地和间夹的若干古陆块组成(图1a~c; Chen Xu et al.,19921995; 张允白等,2002; Zhan Renbin et al.,2007)。早奥陶世特马豆克期早期,扬子地块大部分地区发育广泛的碳酸盐沉积,在西缘靠近康滇古陆的区域有近岸的陆源碎屑岩沉积(冯增昭等,20012003)。到特马豆克期晚期至弗洛期早期,扬子台地内的碳酸盐沉积盆地略有缩小,沉积记录的代表岩组是以亮晶砂屑或生物碎屑灰岩为特征的红花园组(张允白等,2002),这也是本文研究的目标地层单元。弗洛期中期以后伴随一次海平面上升事件(刘建波,2006),整个扬子碳酸盐台地逐渐被淹没,形成了西部地区以硅质碎屑岩为主(比如湄潭组和巧家组)、中西部以碳酸盐岩-碎屑岩混合发育(如大湾组和紫台组)的沉积分异格局(冯增昭等,2003; 陈朋飞等,2006; 刘建波,2006)。红花园组沉积时期,黔北桐梓地区位于扬子台地内陆架泥质夹碳酸盐岩沉积带(图1c),沉积物以泥质碎屑岩为主,夹少量碳酸盐岩。

  • 红花园剖面(北纬28°4′31″,东经106°51′45″)位于桐梓县城东南约7 km处的红花园村附近(图1b),该剖面是华南奥陶系的经典剖面之一,也是红花园组的命名地。剖面地层发育极好,出露了从寒武系芙蓉统娄山关组到下志留统龙马溪组的连续沉积序列,尤以奥陶系最为完整,自下而上为桐梓组、红花园组、湄潭组、十字铺组、宝塔组和五峰组。其中,红花园组由张鸣韶等(1958)在红花园村命名的“红花园灰岩”沿革而来,张文堂等(1964)正式改称红花园组,现已成为扬子台地奥陶纪分布最广泛的标志性碳酸盐岩地层单元之一(Chen Xu et al.,1995; Liu Jiaobo et al.,2010; 王建坡等,2012)。红花园组位于红花园剖面下部,与下伏桐梓组和上覆湄潭组之间均为整合接触,厚约33 m,岩性为深灰色中厚层夹薄层微晶—粗晶生物碎屑灰岩,富含头足类、腕足类、海绵、三叶虫以及苔藓虫等生物化石(Zhen Yongyi et al.,20062009)。

  • 扬子地区的红花园组普遍发育有石海绵-瓶筐石(Lithistid sponge-Calathium)后生动物礁(Li Yue et al.,2004; 朱忠德等,2006),一些层位甚至可识别出微生物礁或藻粘结礁(朱忠德等,2006; 曹隽等,2008)。桐梓地区红花园组的顶部发育有两期规模不大的点礁(图1d),造礁生物有海绵、瓶筐石和苔藓虫,其他附礁生物可见海百合、腹足、腕足、头足类以及介形虫等。牙形石生物地层研究显示,桐梓红花园剖面的红花园组自下而上可分为3个牙形石生物带:Triangulodusbifidus带、Serratognathusdiversus带及Prioniodushonghuayuanensis带(Zhen Yongyi et al.,2009),本文研究的Nuia化石产自上述两期点礁层位中,位于P. honghuayuanensis带内,其地质年代可确定为早奥陶世弗洛期早期。

  • 图1 黔北桐梓地区红花园剖面位置及岩性柱状图

  • Fig.1 Location and lithological column of the Honghuayuan section in Guizhou Province, South China

  • (a)—华南板块位置;(b)—红花园剖面地理位置图;(c)—华南板块早—中奥陶世古地理重建(据张允白等,2002; Zhan Renbin et al.,2007修改);(d)—红花园剖面红花园组岩性柱状图

  • (a) —location of the South China Block (shadowed) ; (b) —map of the Honghuayuan section; (c) —paleogeographic reconstruction of the South China Block during the Early to Middle Ordovician (after Zhang Yunbai et al., 2002; Zhan Renbin et al., 2007) ; (d) —lithologic column of the Honghuayuan Formation

  • 2 材料和方法

  • 本研究在黔北桐梓红花园剖面红花园组顶部发育的两处生物礁共采集11件岩样,并进一步制备了84块厚度约为30 μm的岩石薄片,其中36块含Nuia化石约1500个。为获取Nuia在不同切面方向的形态特征,制备岩石薄片时从平行岩层层面方向、垂直以及斜交方向进行多方位切割抛光。光学显微镜分析在贵州大学古生物研究中心进行,采用尼康LV100POL和蔡司Axio Scope对薄片进行观察和拍照。Nuia在镜下呈单个或群体散乱分布,个体之间多为泥晶或亮晶胶结物。薄片可见Nuia个体的横截面(近圆形)、纵切面(圆柱形)或斜切面(椭圆形)3种状态(图2,图3)。在度量个体尺寸时,选取近圆形的个体以其半径作为宽度参数,以圆柱状个体较短的边长作为长度参数。

  • 图2 Nuia横切面和纵切面镜下特征

  • Fig.2 Microscopic features of Nuia under cross sections and longitudinal sections

  • (a、b)—丝状体具分层现象且一侧具不规则的突起;(c、d)—无分层现象的个体;(e)—部分区域出现分层现象;(f)—图(e)分层部位的放大图;(g、k)—分层显示为同心层;(h)—图(g)中的黑色中央区放大图,与丝状体分界清晰;(i)—具分层现象的个体,最外层的边缘呈不规则起伏;(j)—图(i)的局部放大图,中央区的颜色略深于丝状体;比例尺:(a、b、d、g、k)=200 μm;(c、e、i)=100 μm;(f、h、j)=50 μm

  • (a, b) —individual with multilayers and lateral proliferation; (c, d) —individual with one layer; (e) —multilayers occur at particular area; (f) —enlarged view of the boxed area in (e) ; (g, k) —multilayers of Nuia occur as concentric circles; (h) —enlarged view of the boxed area in (g) showing boundary between the central area and the filaments is clear; (i) —multilayers of Nuia with irregular undulation; (j) —enlargement of the boxed area in (i) showing the darker central area; scale bars: (a, b, d, g, k) =200 μm; (c, e, i) =100 μm; (f, h, j) =50 μm

  • 为了揭示Nuia个体矿物组成及其空间分布变化,本研究从外到内对Nuia的外鞘、丝状体层和中央区进行拉曼光谱单点和夹峰面成像分析。拉曼光谱仪为Horiba LabRAM Odyssey,选用激光器波长为532 nm,激光强度不超过10%(约3 mW)以确保实验过程中残余有机质和碳酸盐矿物不发生变质。为了进一步揭示Nuia的显微结构特征,制备长宽约30 mm×20 mm,厚度约5 mm的岩石切片,取其未经抛光的粗糙面直接在扫描电镜下进行二次电子成像观察和拍照。所用电镜为赛默飞聚焦离子双束系统Helios G4 UC,实验电压为10 kV,束流大小为0.10 nA。以上拉曼光谱和扫描电镜分析在西北大学大陆动力学国家重点实验室进行。应用制图软件Adobe Photoshop CS6和Coreldraw 2019进行图像处理和图版制作。

  • 3 Nuia的形态解构

  • 3.1 化石描述

  • 蓝藻门Cyanophyta

  • 念珠藻目NostocalesBorzì,1914

  • 胶须藻科RivulariaceaeBornet et Flahault,1886

  • 亚属 Nuia Maslov,1954

  • 模式种 Nuia sibirica Maslov,1954

  • 特征 Nuia化石体微小(直径在0.1~0.8 mm之间),呈不规则球形、椭球形、圆柱形等形状,边缘多不规则且略微弯曲。化石具钙化外鞘,内部由自内向外放射状排列的方解石纤维构成,可见分层构造;中央常分布一黑色区域。

  • 描述 Nuia个体大小变化较大(图3a~d),且偶有分支现象(图3g)。Nuia的横切面多为近圆形,直径在0.1~0.8 mm之间(图2a~f),多数纵切面呈椭圆形(图2g~k)、长条形(长度在0.4~2 mm之间;图3)。Nuia由三部分组成:分布在中央的黑色区域、由内而外放射状方解石纤维充填形成的圈层以及包裹整个化石体的钙化外鞘。黑色中央区在横切面表现为黑色的近圆形中心(直径为20~60 μm;图2a、b、d、e),在纵切面中则显示为居中的黑色条带(图3a~d,f~h),颜色自内向外逐渐变浅(图3b、f、h),其形态会因薄片切割角度不同而产生变化(图3c、f~g)。部分Nuia个体保存有形态规则的钙化外鞘(图2a~i,图3a~e),外鞘的宽度约为6 μm(图4b),内部被细小的方解石颗粒(粒径为1~1.3 μm)充填(图2f,图4b);部分个体则缺失钙化外鞘(图2a,图3b)。放射状排列的方解石纤维分布在中央区和钙化外鞘之间(图2,图3),由方解石纤维构成的圈层与黑色中央区之间的分界线并不十分明确(图2h、j)。值得注意的是,这些纤维有分层生长的现象,常显示为同心层(图2g、k,图3h)。方解石纤维有长有短,直或略弯,时常在边缘产生不规则的突起(图2a、b,图3a),造成化石体边缘的不规则起伏(图2i,图3a、d)。

  • 图3 Nuia纵切面镜下特征

  • Fig.3 Microscopic features of Nuia under longitudinal section

  • (a)—一侧具不规则突起的个体;(b)—化石体的边缘和中央区呈黑色;(c、f)—因切割角度的原因,黑色中央区出现不连续现象;(d、e)—外形呈结肠状的个体;(g)—显示分枝现象的个体;(h)—具分层现象的个体;比例尺:(a)=100 μm;(b)=200 μm;(c)=300 μm;(d~h)=200 μm

  • (a) —individual with irregular protrusions; (b) —the margin and the central area of Nuia are black; (c, f) —individual with discontinuous central area; (d, e) —individual has a sigmoidal outline; (g) —individual showing bifurcation; (h) —individual with multilayers; scale bars: (a) =100 μm; (b) =200 μm; (c) =300 μm; (d~h) =200 μm

  • 讨论 对形态特征进行分析和解析是解决Nuia的生物属性和分类位置争议的关键。Nuia化石中部有一条被细小的方解石晶体颗粒充填的管道(Toomey et al.,1966),本文描述为黑色中央区。黑色中央区曾被解释为藻类的髓部、“交织的丝状体”(黄志诚等,1983; 张鹏远,1990; 杨威等,1998),有时因成岩作用破坏而缺失。该区域的方解石粒径较小,多为0.5~3.5 μm,显示出比较深的颜色,有时因薄片的切割角度而被丝状体掩盖(图4e)。有学者认为黑色中央区可能是Nuia着生于丝状体基部的异形胞(heterocysts)或者厚壁孢子(akinetes)所聚集的区域(Vachard et al.,2017b)。

  • 占据Nuia内部绝大部分空间的团簇状方解石纤维常被解释为藻体的丝状体(Toomey et al.,1966; Gnoli et al.,1980; 黄志诚等,1983; 张鹏远,1990; Spincer,1998; 杨威等,1998)。许多藻类的丝状体由单列细胞组成的藻丝(trichome)及其外围的胶鞘共同组成(夏邦美,2017)。由于重结晶作用的改造,Nuia化石已无法辨识出藻丝及其胶鞘的形态结构,但钙化纤维在形态上与丝状体非常相似,因此本文认为这些钙化纤维是丝状体发生重结晶作用后的产物。Nuia的钙质纤维在横截面上呈现为长条状或里窄外宽的楔状(图4),且无法观察到更细致的藻丝结构,这可能与丝状体的假分枝、胶鞘末端的扩展方式或丝状体复杂的钙化机制有关(见下文)。丝状体的另一个重要特征是具有分层结构(Toomey et al.,1966; 黄志诚等,1983; 张鹏远,1990; 杨威等,1998; Vachard et al.,2017a2017b),但这种分层现象此前很少被单独描述,更不清楚其成因。现生一些蓝藻(如Rivularia)的丝状体在生长过程中,胶鞘中的碳酸盐沉淀在生物和非生物作用的共同影响下,形成特殊的同心钙化分带(Pentecost,19871991; Whitton et al.,2012)。本文认为Nuia特殊的分层现象可能具有相似于上述现代蓝藻分层构造的生成方式(见下文)。

  • Nuia化石体常有一黑色外边缘,有学者称之为“壁”(黄志诚等,1983),但学术界对该结构的认识非常有限。电镜扫描分析结果(图4)显示,这个黑色外缘其实是Nuia作为一种胶群体(colony)的蓝藻类型,原植体在生长过程中在胶群体的表面形成一层包裹整个藻体的钙化外鞘(calcified encrustation),是Nuia发生细胞外钙化作用的结果(见下文),并且经常残留一些有机质成分(图5)。

  • 3.2 Nuia的分类位置

  • 3.2.1 Nuia的形态分类争议

  • Nuia曾被认为是放射状的鲕粒而非一种生物化石(Spincer,1998; Vachard et al.,2017b; 梅冥相等,20192020; 梅冥相,2021)。但Nuia具有很难用鲕粒去解释的生物形态特征:① 外形为不规则球形、椭球形、圆柱形等形状;② 偶尔出现的分枝现象;③ 有稳定的黑色中央区;④ 丝状体有时具分层现象;⑤ 出现于多种沉积环境中(Toomey et al.,1966; 黄志诚等,1983; 张鹏远,1990; Vachard et al.,2017a)。

  • 拉曼光谱分析结果(图5)显示,Nuia具有方解石的拉曼特征峰(1086 cm-1),并且在281 cm-1处有较强震动,因而与含镁方解石更为接近(Frezzotti et al.,2012),反映在钙化或成岩过程中可能有少量Mg2+离子的混入。此外,Nuia的钙化外鞘具有明显的有机质双峰震动特征(D峰1332 cm-1和G峰1609 cm-1),代表了残余有机质干酪根的信号(图5),并且D峰和G峰较为宽缓,D峰强度也明显低于G峰,说明有机质没有经历较高的变质温度,仍残留大量原始无序的碳质成份(Schopf et al.,2005; 张鼐等,2007)。拉曼面扫夹峰成像结果表明,残余有机质只在Nuia的钙化外鞘富集(图5c、f),化石内部并无明显的有机质信号,只被方解石矿物交代填充(图5d、g)。

  • 图4 扫描电镜显示Nuia的微观结构

  • Fig.4 Microstructure of Nuia by scanning electron microscope

  • (a)—横截面,丝状体被方解石纤维交代,并自中央区向外侧呈放射状排列;(b)—横截面,放射状纤维有长条形和楔形两种形态,与中央区的界线不明显;下部边缘可见钙化鞘;(c)—个体的横截面形态,放射状丝状体很明显;(d)—钙化丝状体(方解石纤维)与中央区(微细方解石颗粒)的分界点,界线不明显;(e)—纵切面,丝状体占据藻体的绝大部分空间,并被方解石纤维所交代;比例尺:(a~c)=25 μm;(d)=20 μm;(e)=100 μm

  • (a) —cross section, filaments were replaced by radial foliate calcite fibers; (b) —cross section, calcified fibers appear as rectangular and/or cuneiform, the boundary between the filaments and the central area is blurred; calcified encrustation observed at the lower edge; (c) —cross section, individual with obvious filaments (d) —boundary between the filament (foliate fibers) and the central area (fine calcite grains) is not clear; (e) —longitudinal section, individual is filled with filaments which are replaced by foliate calcite fibers; scale bars: (a~c) =25 μm; (d) =20 μm; (e) =100 μm

  • 研究手段的局限和对Nuia内外形态结构的不同认识造成Nuia的分类位置争议很大(Toomey et al.,1966; 黄志诚等,1983; 张鹏远,1990; Spincer,1998)。比如,有学者基于Nuia的放射状结构与松藻科之间的相似性,将其划为绿藻门(Toomey et al.,1966; 黄志诚等,1983; 张鹏远,1990; 杨威等,1998)。但是Nuia并不具有松藻科所特有的由管状丝状体缠绕交织形成的中央髓部,因而被质疑(Toomey et al.,1966)。同时,松藻科的钙化作用优先发生在藻丝体周围及藻丝体之间的接触面上,而后再逐渐向内发展,周围的钙化骨骼凸显出藻丝体的形态(Hillis-Colinvaux,1980),这样的钙化方式与Nuia相差甚远,且在松藻科中也未发现有类似Nuia的分层现象(刘志礼,1990; 孟天等,2020)。黄志诚等(1983)认为Nuia具有髓部和皮层的结构分化,并将具复杂组织分化的Nuia归入红藻门。然而,其关于Nuia放射状纤维中细胞分割方式的重建曾被质疑(Vachard et al.,2017b),Nuia的分层现象和红藻门中某些类型的生长层构造也有明显差别。比如,红藻门管孔藻科(Solenoporaceae)和珊瑚藻科(Corallinacea)丝体中的细胞之间有时会具分隔,相邻丝体间的分隔偶尔会在同一水平线上出现,结构保存较好的分层与结构不明确的层形成对比,从而产生网格状甚至同心圆状的外观(Harland et al.,1982; Wright,1985; 刘志礼,1990)。Nuia不同分层间起伏程度存在差异(图2i),甚至在某一方向额外凸起(图2b,图3a),这与红藻门中的同心分层现象不同。Vachard et al.(2017b)认为Nuia的内部分为两部分,一是厚壁孢子(位于丝状体基部)聚集的黑色中央区,另一部分是由钙化丝状体形成的放射状圈层,进而认为Nuia可能是一种蓝细菌,同时将Nuia的分层现象解释为初始原植体被其他Nuia个体包覆导致不规则生长而形成的起泡现象(blistered)。但是,这种观点是基于化石形态的一种主观猜测,目前没有任何现生或化石蓝藻具有类似的生长方式。

  • 图5 Nuia的拉曼光谱和面扫分析

  • Fig.5 Raman spectra analysis of Nuia

  • (a)—拉曼光谱1、2和3分别对应图(b)中Nuia的外鞘、丝状体和黑色中央区的分析结果,揭示生物体成分为方解石,外鞘部位有明显的有机质(干酪根)残留;(b)—化石的纵切面光学图像,数字1,2和3分别标示外鞘、丝状体和黑色中央区的一个点位;(c)—图(b)方框区域干酪根(1240~1680 cm-1)的夹峰成像,公共胶鞘有明显的有机质富集;矿物相应的颜色强度反映拉曼光谱强度(下同);(d)—图(b)方框区域方解石(1075~1096 cm-1)的夹峰成像,显示丝状体被矿物交代充填;(e)—化石的横切面光学图像;(f)—图(e)的干酪根(1240~1680 cm-1)夹峰成像,显示有机质富集在环形的外鞘上;(g)—图(a)的方解石(1075~1096 cm-1)夹峰成像,显示化石的方解石光谱信号不同于围岩;比例尺:(b)=40 μm;(e~g)=10 μm

  • (a) —Raman spectral signal1, 2 and 3 correspond to the point 1, 2 and 3 in Fig.5b respectively, showing the calcified Nuia with organic residue in sheath; (b) —longitudinal section of Nuia (optical microphotograph) ; (c) —spectral image of kerogen (1240~1680 cm-1) in the boxed area of (b) , color intensity of the mineral phases reflects the intensity of the Raman band (so as d, f and g) ; (d) —dpectral image of calcite (1075~1096 cm-1) in the boxed area of (b) ; (e) —cross section of Nuia (optical microphotograph) ; (f) —spectral image of kerogen (1240~1680 cm-1) for (e) ; (g) —spectral image of calcite (1075~1096 cm-1) for (e) ; scale bars: (b) =40 μm; (e~g) =10 μm

  • 3.2.2 Nuia与现代胶须藻科的形态比较

  • 胶须藻科的藻体为单一丝状体或许多丝状体聚生,这些丝状体平行或辐射状排列,并被包含在一个公共胶鞘或近球形的胶群体(colony)内,藻体的中央部位实心或空心(Berrendero et al.,2008; 夏邦美,2017; Muñoz-Martín et al.,2020)。胶须藻科包括了具异形胞的蓝藻中所有藻丝(trichome)为锥形的类型,它们的丝状体(filament)由胶鞘和藻丝组成,胶鞘厚或薄、有层次或无层次、末端有时呈漏斗状扩展;藻丝的宽度从基部到顶端有明显区别,藻丝顶端部有时渐尖形成毛丝体(hair)(图6e; Whitton et al.,2012; Komárek et al.,2015)。异形胞发育在藻丝较宽的基部(部分类型异形胞分布在藻丝中部),胶鞘包裹住除异形胞外的全部结构(图6e; Whitton et al.,2012; Muñoz-Martín et al.,2020)。胶须藻科中的部分类型还发育厚壁孢子(akinete),多数厚壁孢子生长在基部的异形胞旁,少数生长在藻丝中部(Whitton et al.,2012)。此外,胶须藻科中许多类型(如Calothrix、Dihothrix)有假分枝,新产生的藻丝持续存在于母藻丝的胶鞘中,形成新的个体胶鞘且其发散方向与原始丝状体平行(图6e; Caudwell et al.,2001; Whitton et al.,2012; Muñoz-Martín et al.,2020)。形态分析显示,Nuia外形(不规则球形、椭球形、圆柱形等)与胶须藻科中可形成胶群体的现生类型(如Rivularia)相似,Nuia放射状的钙化丝状体的排列方式也与Rivularia比较接近(图6)。

  • Nuia的另一个鉴定特征是具有分层结构和黑色中央区(图2,图3)。胶须藻科的一些现生类型(如Calothrix、RivulariaHomoeothrix)有钙化现象,一些胶群体的钙化蓝藻类型(如Rivularia)可形成厚度和形态都不十分规则的同心状钙化带(Pentecost,19871991; Muñoz-Martín et al.,2020)。这些钙化带的成因是碳酸钙颗粒在藻丝基部外面的胶鞘中沉淀并平行于藻丝生长,颗粒沉淀的速度和数量与藻丝的生长速度表现为此消彼长的关系(图6;Pentecost,1991; Muñoz-Martín et al.,2020),从而形成随季节交替变化的钙化分带。异形胞和胶鞘色素沉着的位置与钙化带的位置相对应,而且在藻体的表面有时会形成一层钙质外鞘(Pentecost,19871991; Caudwell et al.,2001; Whitton et al.,2012; Muñoz-Martín et al.,2020)。类似的同心环带结构也出现在奥陶纪的胶须藻科化石Ortonella中(Portman et al.,2005; Liu Lijing et al.,2016)。这些钙化环带在形态上与Nuia的分层结构非常相似(图6),碳酸钙颗粒最早沉淀的位置则对应于Nuia的黑色中央区,而且Nuia的外部有时可观察到被细小的矿物颗粒充填的钙化外鞘(图4b,图6b)。综上,本文认为Nuia可能是蓝藻门念珠藻目胶须藻科的早期化石代表。

  • 图6 Nuia与现生胶须藻属Rivularia的形态对比

  • Fig.6 Morphological comparison between Nuia and modern Rivularia

  • (a)—具分层结构的Nuia;(b)—电镜照片显示Nuia的钙化外鞘(ce)、钙质纤维(f)和中央区(ca);(c)—Rivularia的分层构造(引自Muñoz-Martín et al.,2020);(d)—Rivularia的分层构造示意图(据Pentecost,1991修改);(e)—Rivularia的母藻丝及假分枝形态示意(据Caudwell et al.,2001修改);ce—碳酸钙外鞘;nc—碳酸钙颗粒;ms—胶鞘表面;t—母藻丝;nt—新的藻丝;s—个体胶鞘;cs—公共胶鞘;h—异形胞;nh—新的异形胞;ha—毛丝体;fb—假分枝;比例尺:(a)=200 μm;(b)=15 μm;(c)=200 μm;(e)=15 μm

  • (a) —Nuia with multilayers; (b) —SEM images showing the calcified encrustation (ce) , calcite fibers (f) and central area (ca) ; (c) —modern Rivularia showing high calcifcation and concentric zonation (after Muñoz-Martín et al., 2020) ; (d) —seasonal pattern of calcification of Rivularia (modified after Pentecost, 1991) ; (e) —false branching and formation of filament (modified after Caudwell et al., 2001) ; ce—CaCO3 encrustation; nc—nucleation of calcium carbonate; ms—surface of mucilaginous sheath; t—trichome; nt—new trichome; s—individual sheath; cs—common sheath; h—heterocyst; nh—new heterocyst; ha—hair; fb—false branching; scale bars: (a) =200 μm; (b) =15 μm; (c) =200 μm; (e) =15 μm

  • 4 Nuia的钙化机制

  • 4.1 光合作用主导的蓝藻钙化机制

  • 蓝藻最常见的钙化机制是光合作用导致胞外聚合物(extracellular polymeric substances,EPS)的pH值和碳酸盐离子浓度的升高,从而诱导碳酸钙发生沉淀(Merz-Preiβ,2000; Arp,2003; Dupraz et al.,2005; Reitner et al.,2005)。蓝藻发生光合作用有两个先决条件,一是可获取的溶解无机碳(dissolved inorganic carbon,DIC),二是DIC在酶的作用下通过二氧化碳浓缩机制(carbon dioxide concentrating mechanisms,CCMs)被转换固定(Riding,199219932009)。大多数蓝藻都具有CCMs的能力(Raven et al.,2012),利用CCMs促进胶鞘内部或其表面产生碳酸钙沉淀则是蓝藻的突出特征(Riding,1982200020062009; Merz-Preiβ,2000; Konhauser,2007)。影响蓝藻钙化作用的环境因素包括水体中溶解无机碳(DIC)的浓度、pH值、Ca2+和Mg2+的浓度、温度以及可用的成核点等(Arp et al.,2001; Rowland et al.,2002; Riding,2009),最直接的影响因素是水体中的碳酸盐饱和度和蓝藻通过CCMs吸收DIC的机制(Riding,2006)。可见,胶鞘的钙化作用是原植体对水环境敏感性的一种反应。

  • 多数情况下,CCMs是蓝藻在面临CO2低浓度(<10 PAL)或高O2水平的环境时,通过吸收水体中的HCO-3,同时CO2主动向细胞内扩散和转化(图7; Kaplan et al.,1999),将细胞内CO2浓缩至细胞外1000倍以上,从而提高光合作用对DIC的亲和力(Kaplan et al.,1980; Badger et al.,2003; Price et al.,2011)。这个过程中(图7b),细胞溶质内H+被消耗,促进反应(1)向右进行,导致溶质内OH-的增加并扩散至细胞外。此外,CO2的摄取和OH-的释放导致细胞外聚合物(EPS)中pH值的升高,促使HCO-3的平衡反应(2)和(3)向右进行,并在碳酸钙饱和度足够高的水体中诱导CaCO3在其胶鞘内部或表面沉淀(反应式(4)),从而形成钙化的胶鞘化石(Riding,20062009)。离子浓度的提高也是碳酸钙发生沉淀的必要条件(Schultze-Lam et al.,199219941997; Merz-Preiβ,2000; Obst et al.,2009b)。EPS中CO32-浓度的提高主要是周围环境进入的CO2和(或)细胞质溢出的CO2在碳酸酐酶(carbonic anhydrase,CA)的作用下转变为 HCO-3和CO32-Price et al.,2002),而阳离子Ca2+和Mg2+浓度的提高途径主要是周围水体中Ca2+和Mg2+的输入以及细胞内Ca2+的输出(Yates et al.,2001)。需要提及的是,蓝藻细胞内原始固定无机碳的核酮糖二磷酸羧化酶(Rubisco)在对CO2的亲和力较低情况下,仍能有效地固定DIC,最终导致碳酸钙在胶鞘内沉淀(Miyachi et al.,2003; Ogawa et al,2003; Riding,2006)。

  • 图7 蓝细菌两种不同的钙化作用机制

  • Fig.7 Two calcificated mechanisms of cyanobacteria

  • (a)—胶鞘外部捕获沉积物颗粒(结壳作用);(b)—碳酸盐颗粒在胶鞘内部成核(浸染作用)(据Riding,19912006修改)

  • (a) —sediment particles trapped outside the sheath (encrustation) ; (b) —calcium carbonate crystals nucleate inside the sheath impregnation (modified after Riding, 1991, 2006)

  • HCO3-+H+CO2+H2O
    (1)
  • H2CO3H++HCO3-
    (2)
  • HCO3-CO32-+H+
    (3)
  • CO32-+Ca2+CaCO3
    (4)
  • 4.2 Nuia的黑色中央区

  • 化石体中央有一条贯穿整个原植体的暗色区域是Nuia特有的鉴定特征,此前很多学者认为该区域呈黑色是有机质聚集所致(Vachard et al.,2017a)。但拉曼光谱分析(图5)表明,残余的有机质仅分布在Nuia的钙化外鞘中,黑色中央并没有任何有机成分的信号。另外,Nuia的黑色中央区被细密的方解石颗粒所充填(图4a~c),颗粒多为不规则状,粒径多在0.5~3.5 μm之间(图4a、b,图8a)。

  • 黑色中央区的钙化机制非常令人费解。有学者认为Nuia作为胶须藻目的早期类型,具有类似于现生念珠藻类的细胞结构,中央区可能相当于厚壁孢子(akinetes)或者异形胞(heterocysts)所占据的空间(Vachard et al.,2017a2017b)。在现代胶须藻科的胶群体类型(如Rivularia)中,藻丝的胶鞘在CCMs机制的调控下发生钙化作用,而且碳酸钙颗粒沉淀的速度和数量受藻丝的生长速度影响,二者表现为此消彼长的负相关关系(Pentecost,19871991)。这个过程中,碳酸钙颗粒在母藻丝生长缓慢时期,最早在胶鞘内部靠近有异形胞分布的基部沉淀大量的碳酸钙颗粒,从而形成暗色的中央钙化带,之后当藻丝的生长速度加快时,鞘内碳酸钙颗粒沉淀减少(Pentecost,19871991; Caudwell et al.,2001; Whitton et al.,2012)。这种钙化机制可以用于解释Nuia的黑色中央区,即中央区作为母藻丝基部的异形胞和厚壁孢子的聚集区,该区域内藻丝之间的胶鞘是细小方解石矿物颗粒最早发生沉淀的场所,因而常常形成暗色的通道(图9a、b)。这也可能是任何形态和大小的Nuia化石都有黑色中央区的原因。

  • 需要提及的是,现代蓝藻死亡后分解的有机大分子吸附在矿物晶体表面,影响其表面活性以及钙离子的扩散、吸收和络合(Dupraz et al.,2009),从而限制了晶体的生长(Zavarzin,2002)并容易形成细小的小晶体聚集体(Braissant et al.,2003)。不过,Nuia死亡后中央区的异形胞和厚壁孢子降解形成的有机大分子是否影响钙化作用,目前不得而知。

  • 图8 Nuia的横截面SEM图

  • Fig.8 SEM images within cross section of Nuia

  • (a)—钙化外鞘、丝状体和中央区的方解石矿物形态差异明显;(b)—图a的素描解释图;(c)—钙化外鞘和钙化纤维(丝状体)的方解石矿物形态明显不同,二者界线明显;ce—钙化外鞘;f—放射状钙化纤维(丝状体);ca—黑色中央区;比例尺:(a)=20 μm;(c)=10 μm

  • (a) —calcite grains vary in size and shape within the calcified outer sheath, filament and central area; (b) —interpretive drawing of (a) ; (c) —small calcite grains in the calcified encrustation different from the calcified fibers (filaments) ; ce—calcified encrustation; f—radial calcified fibers (filament) ; ca—central area; scale bars: (a) =20 μm; (c) =10 μm

  • 图9 Nuia的钙化过程

  • Fig.9 Calcification of Nuia

  • (a)—Nuia胶群体的表面具松散的凝胶(mucilaginous sheath);(b)—碳酸钙颗粒在丝状体的基部沉淀,形成黑色中央区;(c)—Nuia表面在浸染作用和结壳作用下形成钙化外鞘;(d)—丝状体形成假分枝,碳酸钙晶体在分枝的位置聚集成核,形成钙化带;(e)—个体生长停止后,表面形成钙化外鞘,显示特殊的分层构造;(f)—丝状体在早期成岩阶段被方解石矿物交代充填形成放射状钙质纤维,藻丝的结构被破坏

  • (a) —Nuia colony with outer mucilaginous sheath; (b) —carbonate precipitates occur within the bases of the filaments, forming the black central area; (c) —a calcified encrustation formed on the surface of Nuia by impregnation and encrustation; (d) —calcified layer formed along with the false branchings; (e) —a calcified encrustation formed after the individual stopping to grow, showing multilayers; (f) —the filaments occur as calcareous fibers due to rapid metasomatism during early diagenesis, with trichomes demolished

  • 4.3 钙化的丝状体

  • 由单列细胞组成的藻丝(trichome)及其外围的胶鞘统称为丝状体(filament)(夏邦美,2017)。Nuia的钙化外鞘和黑色中央区之间分布放射状的方解石纤维,它们排列紧密,彼此之间的分界线并不特别清晰,有时因相互挤压而产生变形(图4,图8)。拉曼光谱分析显示,其成分为方解石而且几乎没有其他组分(图5)。SEM分析(图4,图8)显示,这些纤维从里向外总体呈楔形或长条形,楔形的纤维近黑色中央区一侧较窄而且多呈碎裂状,因而与中央区的分界多不明显;靠近外鞘的一端逐渐变宽,最大可达20 μm。长条形纤维的宽度比较均一,但不同纤维之间的宽度变化较大,一般在2~13 μm之间。

  • 胶须藻科现生类型(如Calothrix、RivulariaHomoeothrix)的钙化机制研究表明,碳酸钙矿物在丝状体的胶鞘内部或表面成核,该过程受到非生物和生物作用的共同影响(Pentecost,19871991),不同属种的藻体形态及胶鞘结构、组分等的差异可能造成钙化特征的不同(Golubic et al.,1981; Caudwell et al.,2001),甚至同一属种的藻体其钙化作用也会受到个体发育和环境因素的影响(Kirkby,1975)。胶群体的胶须藻Rivularia的丝状体在CCMs的调控下,可形成厚度和形态都不十分规则的同心状钙化带(Pentecost,19871991; Muñoz-Martín et al.,2020)。这些钙化带的形成是藻丝生长的季节性变化有关,丝状体基部的异形胞和胶鞘色素沉着的位置与钙化带的位置相对应(Pentecost,19871991; Caudwell et al.,2001; Whitton et al.,2012; Muñoz-Martín et al.,2020)。此外,Rivularia在母藻丝的中下部有假分枝现象,新形成的藻丝与母藻丝结构相似,长成后也呈辐射状排列,并可侧生出另一个假分枝,使群体增大(Pentecost,1991; 夏邦美,2017)。假分枝与丝状体一样,可在基部形成类似于丝状体的钙化分带(Pentecost,1991)。

  • Lucas(2001)Vachard et al.(2017b)认为Nuia并非真实的生物形态属,而是经早期成岩作用改造之后的一种埋藏类群(eodiagenetic taphotaxon)。尽管Nuia的丝状体已全部钙化为放射状纤维,无法辨识藻丝及其个体胶鞘的结构分化。但NuiaRivularia的结构比较相似,二者可能具有相似的钙化机制:在CCMs的调控下,Nuia的丝状体和假分枝形成随季节交替变化的钙化带,钙化带的数量、大小以及宽窄可能与钙化作用的强度、沉淀的时长以及假分枝的多少等因素密切相关(图9)。此外,具假分枝的钙化丝状体容易保存为内窄外宽的楔形。因此,Nuia的不同个体中,有无钙化分层、分层的数量以及钙化带的宽窄等都各不相同(图2,图3)。但是,由于经受成岩早期的重结晶作用,丝状体被方解石矿物交代充填,无从分辨出藻丝和胶鞘的结构分化,在SEM图中也识别不出钙化带。

  • 4.4 Nuia的钙化外鞘

  • Nuia常有一黑色外边缘(图2a~e,图3b、c、e、h),在描述Nuia的分层现象时常被视为分割线(Toomey et al.,1966; 黄志诚等,1983; 杨威等,1998; Vachard et al.,2017b),甚至被直接描述为Nuia的“壁”(黄志诚等,1983)。这个结构常被早期成岩作用破坏而没有保存,因而极少被单独描述,更不清楚其组分和成因。SEM分析(图8)显示,红花园组的一些Nuia个体有一层包裹生物体、宽度约为6 μm的外鞘圈层,外鞘的形态和厚度都比较稳定,与围岩和钙化丝状体的界线明显。这一圈层由均匀分布的隐晶方解石颗粒充填,矿物颗粒的粒径极小,多在1~1.3 μm之间(图7c)。本文认为这一圈层是Nuia作为一种由众多放射状排列的藻丝及其胶鞘黏合构成的胶群体,其表面因钙化作用形成的钙质外鞘。钙化外鞘的位置可能相当于现生胶须藻属Rivularia中包裹整个胶群体的公共胶鞘(common sheath; 夏邦美,2017)。

  • Rivularia的公共胶鞘是细胞外钙化作用的场所(Pentecost,19871991; Whitton et al.,2012; Muñoz-Martín et al.,2020)。Rivularia作为胶须藻中具分层构造的类型,当藻丝及胶鞘的生长停止时,胶群体的表面会发生强烈钙化而产生一明显的钙化圈层(Pentecost,1987),有时胶群体也会被钙质颗粒包覆(Caudwell et al.,2001; Muñoz-Martín et al.,2020)。总体来看,Nuia钙化外鞘的位置、厚度和所充填矿物的形态等与Rivularia表面的钙化层或碳酸钙外鞘(Pentecost,1987; Muñoz-Martín et al.,2020)相似。据此,Nuia钙化外鞘的形成机制可能是:当CCMS启动以及环境饱和状态升高时,碳酸钙以活体Nuia的EPS(胞外粘液多糖聚合物)作为有机成核位点并优先定位(比如Pentecost et al.,1986; Riding,2009; 钟怡江等,2020),通过浸染作用(impregnation)、结壳作用(encrustation)或者是这两种作用的组合(Riding,1992; 钟怡江等,2020)来实现碳酸钙的沉淀(图7,图9)。

  • 需要提及的是,EPS作为蓝藻新陈代谢以及与外界沟通的通道,当其表面被钙化包埋后,藻体有可能会因为加重下沉而死亡(Obst et al.,2009b)。目前还不清楚Nuia公共胶鞘的钙化作用是否与藻体的死亡有关。

  • 4.5 Nuia的钙化过程

  • Nuia作为胶须藻科早期的胶群体类型,可能具有类似于现代Rivularia的由CCMs调控的复杂钙化机制,其钙化过程大致分为几个阶段(图9):① 当环境条件适宜时,碳酸钙矿物首先在丝状体基部的胶鞘中发生成核作用,形成黑色的中央区;② 藻丝继续生长而且可能产生假分枝,并形成随季节性变化的钙化带;③ 当藻丝停止生长后,胶群体的表面形成一层公共胶鞘,并通过浸染作用和(或)结壳作用形成钙化外鞘;④ 钙化的丝状体在早期成岩阶段受到重结晶作用的影响,被方解石矿物重新交代充填。

  • 需要提及的是,Nuia的钙质外鞘和中央区都显示为黑色,但这并非前人所认为的那样是因为富含有机质成分的缘故(Vachard et al.,2017a)。SEM分析结果表明,Nuia的钙质外鞘和中央区都被非常微小的方解石颗粒所充填,因而在薄片中显示出比围岩和钙化丝状体更深的颜色。

  • 5 结论

  • (1)黔北桐梓地区下奥陶统红花园组中的Nuia化石以散乱分布和组成内碎屑的方式存在于生物礁中,并以特殊的钙化机制形成其生存需要的生物骨架。作为早奥陶世特有的微体蓝藻化石类型,Nuia具有广泛的生物地理区系(Vachard et al.,2017b),说明这种生物可能参与了该时期低纬度海域微生物碳酸盐的形成。

  • (2)形态分类分析显示,Nuia是一种由放射状丝状体聚集黏合而成的胶群体,其外围包裹一层钙化外鞘,丝状体具分层现象,中央的黑色区域可能是厚壁孢子和(或)异形胞所占据的聚集区。本文认为Nuia应为念珠藻目胶须藻科(Rivulariaceae,Nostocales)的早期化石代表。

  • (3)Nuia可能有比较复杂的钙化机制,其钙化过程受CCMs机制调控并伴随着丝状体的生长。丝状体生长初期,碳酸盐颗粒在靠近藻丝基部的胶鞘内沉淀形成黑色中央区;丝状体和假分枝的相应位置可形成随季节变化的钙化带,显示为特殊的分层现象;在藻丝生长停止后,藻体表面的公共胶鞘经浸染作用和结壳作用形成钙化外鞘;Nuia在早期成岩阶段受重结晶作用的影响,丝状体的形态基本得以保存,但无法辨识藻丝和个体胶鞘。

  • 参考文献

    • Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4(3): 147~166.

    • Arp G, Reimer A, Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans. Science, 292(5522): 1701~1704.

    • Arp G, Reimer A, Reitner J, Pratt B R. 2002. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud: Comment and reply-comment. Geology, 30: 579~580.

    • Arp G, Reimer A, Reitner J. 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105~127.

    • Badger M, Price D. 2003. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany, 54: 609~622.

    • Benzerara K, Skouri-Panet F, Li J H, Férarda C, Guggerb M, Laurentb T, Couradeaua E, Ragona E, Cosmidisa J, Menguya N, Margaret-Olivera I, Taverad R, López-Garcíac P, Moreirac P. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 111(30): 10933~10938.

    • Borzì A. 1914. Studi sulle Mixoficee. Nuovo Giornale Botanico Italiano (Nuova Serie). 21: 307~360.

    • Braissant O, Cailleau G, Dupraz C, Verrecchia E P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73(3): 485~490.

    • Berrendero E, Perona E, Mateo P. 2008. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. International Journal of Systematic and Evolutionary Microbiology, 58: 447~460.

    • Cam N, Georgelin T, Jaber M, Lambert J F, Benzerara K. 2015. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba- carbonates: What do we learn about intracellular calcification by cyanobacteria?. Geochimica et Cosmochimica Acta, 161: 36~49.

    • Cao J, Liu J B, Ezaki Y, Adachi N. 2008. Lower Ordovician reefs in the Honghuayuan Formation at Dongzhi, Anhui: Microbial reefs just prior to the Ordovician biodiversification. Acta Scientiarum Naturalium Universitatis Pekinensis On Line First, 45(2): 279~288 (in Chinese with English abstract).

    • Caudwell C, Lang J, Pascal A. 2001. Lamination of swampy-rivulets Rivularia haematites stromatolites in a temperate climate. Sedimentary Geology, 143(1-2): 125~147.

    • Chen Xu, Rong Jiayu. 1992. Ordovician plate tectonics of China and its neighboring regions. In: Webby B D, Laurie L, eds. Global Perspectives on Ordovician Geology. Balkema: Rotterdam, 177~291.

    • Chen Xu, Rong Jiayu, Wang Xiaofeng, Wang Zhihao, Zhang Yuandong, Zhan Renbin. 1995. Correlation of the Ordovician rocks of China: Charts and explanatory notes. International Union of Geological Sciences, Trondheim, 104.

    • Chen Pengfei, Zhan Renbin. 2006. The lower to middle Ordovician Dawan formation and its coeval rocks in the Yangtze region. Journal of Stratigraphy, 30(1): 11~20 (in Chinese with English abstract).

    • Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown G E, López-García P. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science, 336(6080): 459~462.

    • Défarge C, Trichet J, Coupe A. 1994. On the appearance of cyanobacterial calcification in modern stromatolites. Sedimentary Geology, 94(1-2): 11~19.

    • Dupraz C, Visscher P T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13(9): 429~438.

    • Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.

    • Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Jiang Panliang, Bao Zhidong, Luo Zhang, Ju Tianyin, Tian Haiqin, Wang Hong. 2001. Lithofacies palaeogeography of the early Ordovician in South China. Journal of Palaeogeography, 3(2): 11~22 (in Chinese with English abstract).

    • Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Bao Zhidong. 2003. Lithofacies palaeogeography of the early Ordovician in China. Journal of Palaeogeography, 5(1): 1~16 (in Chinese with English abstract).

    • Flores E, Herrero A. 2014. The cyanobacteria: Morphological diversity in a photoautotrophic lifestyle. Perspectives in Phycology, 1(2): 63~72.

    • Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1~20.

    • Komárek J, Johansen J R. 2015. Filamentous cyanobacteria. Freshwater Algae of North America, 135~235.

    • Gnoli M, Serpagli E. 1980. The problematical microorganism Nuia in the lower Ordovician of precordilleran argentina and its paleogeographic significance. Paleontology, 54(6): 1245~1251.

    • Golubic S, Campbell S E. 1981. Biogenically formed aragonite concretions in marine Rivularia. ln: Monty C L V, ed. Phanemzoic Stromatolites. Berlin: Springer-Verlag, 209~229.

    • Gong Yunyun. 2017. Cyanobacterial calcification. Geological Science and Technology Information, 36(2): 112~118 (in Chinese with English abstract).

    • Herrero A, Flores E. 2008. The Cyanobacteria: Molecular Biology, Genomics and Evolution. Norwich: Caister Academic Press, 484.

    • Hillis-Colinvaux L. 1980. Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology, 17: 1~327.

    • Huang Zhicheng, Bian Lizhen. 1983. Discovery of the Ordovician alga Nuia siberica in China. Acta Paleontologica Sinica, 22 (1): 61~64 (in Chinese with English abstract).

    • Harland T L, Torrens H S. 1982. A redescription of the bathonian red alga Solenopora Jurassica from Gloucestershire, with remarks on its preservation. Palaeontology, 25(4): 905~912.

    • Jansson C, Northen T. 2010. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Current Opinion in Biotechnology, 21(3): 365~371.

    • Kaplan A, Badger M R, Berry J A. 1980. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. Planta, 149(3): 219~226.

    • Kaplan A, Reinhold L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 539~570.

    • Konhauser K. 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing, 160~166.

    • Kirkby S M. 1975. Biological studies on the rivulariaceae. Doctoral thesis of Durham University, 51~55.

    • Li Yue, Kershaw S, Mu Xinan. 2004. Ordovician reef systems and settings in South China before the Late Ordovician mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 205(34): 235~254.

    • Liu Jianbo. 2006. Environmental background for the Ordovician radiation bio-event in South China: Sea-level fluctuations of Arenigian. Originations and Radiations—Evidences from the Chinese Fossil Record. Beijing: Science Press, 335~360 (in Chinese).

    • Liu Jianbo, Zhan Renbin, Adachi N. 2010. Evidence for decoupling of relative abundance and biodiversity of marine organisms in initial stage of GOBE: A preliminary study on Lower Ordovician Shellbeds of South China. Journal of Earth Science, 21: 44~48.

    • Liu Zhili. 1990. Introduction to Fossil Algae. Beijing: Xinhua Bookstore Press, 1~18 (in Chinese).

    • Liu Lijing, Wu Yasheng, Jiang Hongxia, Riding R. 2016. Calcified rivulariaceans from the Ordovician of the Tarim basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 371~381.

    • Lucas S G. 2001. Taphotaxon. Lethaia, 34: 30.

    • Mamet B, Roux A. 1982. Algues dévono-carbonifères de l'Australie. Revue de Micropaléontologie, 26(2): 63~131.

    • Maslov V P. 1954. On the early Silurian of eastern Siberia. In: Shatskiy N S, ed. Voprosy Geologii Azii. Moscow: Akad nauk SSSR, 495~529 (in Russian).

    • McConnaughey T A, Whelan J F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews, 42(1): 95~117.

    • Mei Mingxiang. 2012. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937~951.

    • Mei Mingxiang. 2021. Radial ooids induced by photosynthetic biofilms: An example from the Cambrian Miaolingian Zhangxia Formation at Jiawang Section in Xuzhou City of Jiangsu Province, North-China Platform. Journal of Palaeogeography, 23(3): 461~487 (in Chinese with English abstract).

    • Mei Mingxiang, Gao Jinhan. 2015. Origin of photosynthesis: An enchanting and important scientific theme. Journal of Palaeogeogeraphy, 17(5): 577~592 (in Chinese with English abstract).

    • Mei Mingxiang, Meng Qingfen. 2016. Timing of the rise of atmospheric oxygen content level: A geobiological process that is closely and genetically related to the geodynamics. Journal of Palaeogeogeraphy, 18(1): 1~20 (in Chinese with English abstract).

    • Mei Mingxiang, Muhammad R, Liu Li, Meng Qingfen. 2019. Leiolite bioherm dominated by cyanobacterial mats of the Furongian: An example from the Qijiayu section in Laiyuan County, Hebei Province. Geological Review, 65(5): 1103~1122 (in Chinese with English abstract).

    • Mei Mingxiang, Khalid L, Meng Xiaoqing, Hu Yuan. 2020. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrain Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999~1016 (in Chinese with English abstract).

    • Meng Tian, Chen Zuo, Zhu Jun, Zou Xiaoxiao, Fu Qingyan, Bao Shixiang. 2020. Morphological and molecular study on marine green alga, Halimeda velasquezii first recorded in Hainan Island. Journal of Tropical Oceanography, 39(6): 114~121 (in Chinese with English abstract).

    • Merz-Preiβ M, Riding R. 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126: 103~124.

    • Merz-Preiβ M. 2000. Calcification in cyanobacteria. In: Riding R, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag, 50~56.

    • Miyachi S, Iwasaki I, Shiraiwa Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynthesis Research, 77: 139~153.

    • Muñoz-Martín M A, Gómez E B, Perona E, Mateo P. 2020. Analysis of molecular diversity within single cyanobacterial colonies from environmental samples. Scientifc Reports, 10: 18453. https: //doi. org/10. 1038/s41598-020-75303-2.

    • Obst M, Wehrli B, Dittrich M. 2009a. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology, 7: 324~347.

    • Obst M, Dynes J J, Lawrence J R, Swerhone G D W, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock A P. 2009b. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14): 4180~4198.

    • Ogawa T, Kaplan A. 2003. Inorganic carbon acquisition systems in cyanobacteria. Photosynthesis Research, 77: 105~115.

    • Pentecost A. 1987. Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B, 232: 125~136.

    • Pentecost A. 1991. Calcification processes in Algae and cyanobacteria. In: Riding R ed. Calcareous Algae and Stromatolites. Berlin: Springer, 3~20.

    • Pentecost A, Riding R. 1986. Calcification in cyanobacteria. In: Leadbeater B S C, Riding R, eds. Biomineralization in Lower Plants and Animals. Oxford: Clarendon Press, 73~90.

    • Perret M F, Vachard D. 1977. Algues et pseudo-algues des calcaires serpoukhoviens d'Ardengost (Hautes-Pyrénées). Ann Paléontol (Invertébrés), 63(2): 85~156.

    • Plee K, Ariztegui D, Martini And R, Davaud E. 2008. Unravelling the microbial role in ooid formation—results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology, 6(4): 341~350.

    • Pratt B R. 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology, 29(9): 763~766.

    • Price G D, Maeda S, Omata T, Badger M R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Functional Plant Biology, 29(3): 131~149.

    • Price G D, Howitt S M. 2011. The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters. Biochemistry and Cell Biology, 89(2): 178~188.

    • Portman C, Andrews J E, Rowe P J, Leeder M R, Hoogewerff J. 2005. Submarine-spring controlled calcification and growth of large Rivularia bioherms, Late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology, 52(3): 441~465.

    • Ragini G, Pankaj B. 2012. Cynobacteria: A comprehensive review. International Research Journal of Pharmacy, 3(2): 53~57.

    • Ragon M, Benzerara K, Moreira D, Tavera R, Lopez-Garcia P. 2014. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Frontiers in Microbiology, 5: 331.

    • Raven J A, Giordano M, Beardall J, Maberly S C. 2012. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 493~507.

    • Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1): 18~30.

    • Riding R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299(5886): 814~815.

    • Riding R. 1991. Calcified cyanobacteria. In: Riding R, ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 55~87.

    • Riding R. 1992. Temporal variation in calcification in marine cyanobacteria. Journal of the Geological Society of London, 149(6): 979~989.

    • Riding R. 1993. Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften, 80: 513~516.

    • Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-alga mats and biofilms. Sedimetology, 47(1): 179~214.

    • Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299~316.

    • Riding R. 2009. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million. Palaios, 24: 685~696.

    • Riding R, Liang L Y. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101~115.

    • Rowland S M, Shapiro R S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. Phanerozoic Reef Patterns, 72: 95~128.

    • Schopf J W, Kudryavtsev A B, Agresti D G, Czaja A D, Wdowiak T J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5(3): 334~371.

    • Schultze-Lam S, Harauz G, Beveridge T J. 1992. Participation of a cyanobacterial S layer in fine-grain mineral formation. Journal of Bacteriology, 1992, 174(24): 7971~7981.

    • Schultze-Lam S, Beveridge T J. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Applied and Environmental Microbiology, 60(2): 447~453.

    • Schultze-Lam S, Beveridge T J, Des-Marais D J. 1997. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1): 133~141.

    • Spincer B R. 1998. Olitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the upper Cambrian rocks of central Texas. Paleontology, 72(3): 577~584.

    • Swett K. 1964. Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range, Colorado. Journal of Sedimentary Research, 34: 615~624.

    • Toomey D F, Klement K W. 1966. A problematical microorganism from the El Paso Group (Lower Ordovician) of west Texas. Paleontology, 40(6): 1304~1311.

    • Vachard D, Téllez-Girón C. 1986. El alga Nuia en el Ordovícico de México: Hipotesis diversas. Revista Instituto Mexicano Petroleo, 18(2): 12~25.

    • Vachard D, Clausen S, Palafox J J, Buitrón B E, Devaere L, Hayart V, Régnier S. 2017a. Lower Ordovician microfacies and microfossils from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined Nuia Province. Facies, 63: 18.

    • Vachard D, Krainer K, Lucas S G. 2017b. The genus Nuia from lowermost Ordovician strata of the Bliss Formation and lower El Paso Group, New Mexico (USA). Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen, 285(1): 75~90.

    • Wang Jianpo, Deng Xiaojie, Wang Guan, Li Yue. 2012. Types and biotic successions of Ordovician reefs in China. Chinese Science Bulletin, 57: 1160~1168 (in Chinese with English abstract).

    • Wu Yasheng, Sun Xiaofang, Zhang Guocheng, Qi yongan, Bao Hongping, Ren Junfeng, Huang Zhengliang. 2020. Calcified cyanobacteria from the coral biostrome of the upper Ordovician Xiazhen Formation of Zhuzhai, Yusheng, Jiangxi Province, and their paleoenvironmental. Acta Micropalaeontologica Sinica, 37(1): 35~47 (in Chinese with English abstract).

    • Wright V P. 1985. Seasonal banding in the alga Solenopora jurassica from the Middle Jurassic of Gloucestershire, England. Journal of Paleontology, 59(3): 721~732. Whitton B A, Mateo P. 2012. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Dordrecht: Springer, 561~591.

    • Xia Bangmei. 2017. Flora Algarum Marinarum Sinicarum—Tomusi Cyanophyta. Beijing: Science Press, 108~151 (in Chinese).

    • Yang Wei, Zhu Zhongde, Liu Bingli. 1998. Nuia siberica in lower Ordovician reefs and strata in Northwest Hunan and Southwest Hubei. Journal of Jianghan Petroleum Institute, 20(4): 17~21 (in Chinese with English abstract).

    • Yates K K, Robbins L L. 2001. Microbial lime-mud production and its relation to climate change. In: Gerhard L C, Harrison W E, Hanson B M, eds. Geological perspectives of global climate change. Tulsa, Okla: American Association of Petroleum Geologists, 266~283.

    • Zavarzin G A. 2002. Microbial geochemical calcium cycle. Microbiology, 71(1): 1~17.

    • Zhan Renbin, Jin Jisuo. 2007. Ordovician-Early Silurian (Llandovery) Stratigraphy and Palaeontology of the Upper Yangtze Platform, South China. Beijing: Science Press, 39~18.

    • Zhang Nie, Tian Zuoji, Leng Yingying, Wang Huitong, Song Fuqing, Meng Jianhua. 2007. Raman characteristics of hydrocarbon and hydrocarbon inclusions. Science in China(Series D): Earth Sciences, 37(7): 900~907 (in Chinese).

    • Zhang Mingshao, Sheng Xinfu. 1958. Ordovician starta of the Sichuan and Shaanxi border area. Acta Geological Sinica, 38(3): 326~335 (in Chinese with English abstract).

    • Zhang Pengyuan. 1990. On the discovery of Nuia in China. Geological Review, 36(2): 183~189 (in Chinese with English abstract).

    • Zhang Wentang, Xu Hankui, Chen Xu, Chen Junyuan, Yuan Kexing, Lin Yaokun, Wang Jungen. 1964. Ordovician of the northern Guizhou. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica (ed). Palaeozoic Rocks of North Guizhou. Nanjing: Nanjing Institute of Geology and Palaeontology (in Chinese).

    • Zhang Yunbai, Zhou Zhiyi, Zhang Junming. 2002. Sedimentary differentiation during the latest Early Ordovician—earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302~314 (in Chinese with English abstract).

    • Zhen Yongyi, Perival I G, Liu Jianbo. 2006. Rhipidognathid conodonts from the Early Ordovician Honghuayuan Formation of Guizhou, South China. Palaeoworld, 15(2): 194~210.

    • Zhen Yongyi, Perival I G, Liu Jianbo, Zhang Yuandong. 2009. Conodont fauna and biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South China. Alcheringa: An Australasian Journal of Palaeontology, 33(3): 257~295.

    • Zhong Yijiang, Wen Huaguo, Chen Hongde, Liu Lei, Chen Anqing, Wang Xinglong, Wang Zhiwei, Bai Xuan. 2020. The role of extracellular polymeric substances in cyanobacterial calcification and its geological significance. Acta Sedimentologica Sinica, 40(1): 88~105 (in Chinese with English abstract).

    • Zhu Zhongde, Hu Mingyi, Liu Bingli, Xiao Chuantao, Yang Wei, Li Xiangmin. 2006. The Study of Early-Middle Ordovician Organic Reefs in China. Beijing: Geological Publishing House, 1~178 (in Chinese with English abstract).

    • 曹隽, 刘建波, 江崎洋一, 足立奈津子. 2008. 安徽东至早奥陶世红花园组生物礁: 奥陶纪生物大辐射前的微生物礁. 北京大学学报(自然科学版), 45(2): 279~288.

    • 陈朋飞, 詹仁斌. 2006. 扬子区下、中奥陶统大湾组及其同期地层. 地层学杂志, 30(1): 11~20.

    • 冯增昭, 彭勇民, 金振奎, 蒋盘良, 鲍志东, 罗璋, 鞠天吟, 田海芹, 汪红. 2001. 中国南方早奥陶世岩相古地理. 古地理学报, 3(2): 11~22.

    • 冯增昭, 彭勇民, 金振奎, 鲍志东. 2003. 中国早奥陶世岩相古地理. 古地理学报, 5(1): 1~16. 贡云云. 2017. 蓝细菌钙化作用. 地质科技情报, 36(2): 112~118.

    • 黄志诚, 边立曾. 1983. 藻类化石Nuia siberica在我国的发现. 古生物学报, 22(1): 61~65.

    • 刘建波. 2006. 华南早—中奥陶世生物大幅射期间的海平面变化. 生物的起源、辐射与多样性演变. 北京: 科学出版社, 335~360.

    • 刘志礼, 1990. 化石藻类学导论.北京: 高等教育出版社, 1~18.

    • 梅冥相, 高金汉. 2015. 光合作用的起源: 一个引人入胜的重大科学命题. 古地理学报, 17(5): 577~592.

    • 梅冥相, 孟庆芬. 2016. 大气圈氧气含量水平上升的时间进程: 一个与地球动力学过程紧密相关的地球生物学过程. 古地理学报, 18(1): 1~20.

    • 梅冥相, Muhammad R, 刘丽, 孟庆芬. 2019. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103~1122.

    • 梅冥相, Khalid Latif, 孟晓庆, 胡媛. 2020. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999~1016.

    • 梅冥相. 2021. 光合作用生物膜诱发的放射鲕粒: 以江苏徐州贾旺剖面寒武系苗岭统张夏组为例. 古地理学报, 23(3): 462~487.

    • 孟天, 陈佐, 朱军, 邹潇潇, 符青艳, 鲍时翔. 2020. 海南岛海洋绿藻新记录种——未氏仙掌藻(Halimeda velasquezii)的形态学与分子系统学分析. 热带海洋学报, 39(6): 114~121.

    • 王建坡, 邓小杰, 王冠, 李越. 2012. 中国奥陶纪生物礁的类型和造礁生物群的演替. 科学通报, 57(11): 924~932.

    • 吴亚生, 孙晓芳, 张国成, 齐永安, 包洪平, 任军峰, 黄正良. 2020. 江西玉山祝宅上奥陶统下镇组蓝细菌化石及其古环境意义. 微体古生物学报, 37(1): 35~47.

    • 夏邦美. 2017. 中国海藻志(第一卷)——蓝藻门. 北京: 科学出版社, 108~151.

    • 杨威, 朱忠德, 刘秉理. 1998. 湘西北鄂西南下奥陶统产礁地层中的藻类化石Nuia siberica. 江汉石油学院学报, 20(4): 17~21.

    • 张鼐, 田作基, 冷莹莹, 王汇彤, 宋孚庆, 孟建华. 2007. 烃和烃类包裹体的拉曼特征. 中国科学(D辑: 地球科学), 37(7): 900~907.

    • 张鸣邵, 盛莘夫. 1958. 川黔边境的奥陶纪地层. 地质学报, 38(3): 326~335.

    • 张鹏远. 1990. Nuia属微化石在我国的发现. 地质论评, 36(2): 183~188.

    • 张文堂, 许汉奎, 陈旭, 陈均远, 袁克兴, 林耀坤, 王俊庚. 1964. 黔北地层现场会议: 贵州北部的古生代地层. 见: 南京地质古生物研究所编, 贵州北部的志留系.

    • 张允白, 周志毅, 张俊明. 2002. 扬子陆块早奥陶世末期—中奥陶世Darriwilian初期沉积分异. 地层学杂志, 26(4): 302~314.

    • 钟怡江, 文华国, 陈洪德, 刘磊, 陈安清, 王兴龙, 王志伟, 白璇. 2020. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义. 沉积学报, 40(1): 88~105.

    • 朱忠德, 胡明毅, 刘秉理, 肖传桃, 杨威, 李相明. 2006. 中国早中奥陶世生物礁研究. 北京: 地质出版社, 1~178.

  • 参考文献

    • Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4(3): 147~166.

    • Arp G, Reimer A, Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans. Science, 292(5522): 1701~1704.

    • Arp G, Reimer A, Reitner J, Pratt B R. 2002. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud: Comment and reply-comment. Geology, 30: 579~580.

    • Arp G, Reimer A, Reitner J. 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105~127.

    • Badger M, Price D. 2003. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany, 54: 609~622.

    • Benzerara K, Skouri-Panet F, Li J H, Férarda C, Guggerb M, Laurentb T, Couradeaua E, Ragona E, Cosmidisa J, Menguya N, Margaret-Olivera I, Taverad R, López-Garcíac P, Moreirac P. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 111(30): 10933~10938.

    • Borzì A. 1914. Studi sulle Mixoficee. Nuovo Giornale Botanico Italiano (Nuova Serie). 21: 307~360.

    • Braissant O, Cailleau G, Dupraz C, Verrecchia E P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73(3): 485~490.

    • Berrendero E, Perona E, Mateo P. 2008. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. International Journal of Systematic and Evolutionary Microbiology, 58: 447~460.

    • Cam N, Georgelin T, Jaber M, Lambert J F, Benzerara K. 2015. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba- carbonates: What do we learn about intracellular calcification by cyanobacteria?. Geochimica et Cosmochimica Acta, 161: 36~49.

    • Cao J, Liu J B, Ezaki Y, Adachi N. 2008. Lower Ordovician reefs in the Honghuayuan Formation at Dongzhi, Anhui: Microbial reefs just prior to the Ordovician biodiversification. Acta Scientiarum Naturalium Universitatis Pekinensis On Line First, 45(2): 279~288 (in Chinese with English abstract).

    • Caudwell C, Lang J, Pascal A. 2001. Lamination of swampy-rivulets Rivularia haematites stromatolites in a temperate climate. Sedimentary Geology, 143(1-2): 125~147.

    • Chen Xu, Rong Jiayu. 1992. Ordovician plate tectonics of China and its neighboring regions. In: Webby B D, Laurie L, eds. Global Perspectives on Ordovician Geology. Balkema: Rotterdam, 177~291.

    • Chen Xu, Rong Jiayu, Wang Xiaofeng, Wang Zhihao, Zhang Yuandong, Zhan Renbin. 1995. Correlation of the Ordovician rocks of China: Charts and explanatory notes. International Union of Geological Sciences, Trondheim, 104.

    • Chen Pengfei, Zhan Renbin. 2006. The lower to middle Ordovician Dawan formation and its coeval rocks in the Yangtze region. Journal of Stratigraphy, 30(1): 11~20 (in Chinese with English abstract).

    • Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown G E, López-García P. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science, 336(6080): 459~462.

    • Défarge C, Trichet J, Coupe A. 1994. On the appearance of cyanobacterial calcification in modern stromatolites. Sedimentary Geology, 94(1-2): 11~19.

    • Dupraz C, Visscher P T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13(9): 429~438.

    • Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.

    • Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Jiang Panliang, Bao Zhidong, Luo Zhang, Ju Tianyin, Tian Haiqin, Wang Hong. 2001. Lithofacies palaeogeography of the early Ordovician in South China. Journal of Palaeogeography, 3(2): 11~22 (in Chinese with English abstract).

    • Feng Zengzhao, Peng Yongmin, Jin Zhenkui, Bao Zhidong. 2003. Lithofacies palaeogeography of the early Ordovician in China. Journal of Palaeogeography, 5(1): 1~16 (in Chinese with English abstract).

    • Flores E, Herrero A. 2014. The cyanobacteria: Morphological diversity in a photoautotrophic lifestyle. Perspectives in Phycology, 1(2): 63~72.

    • Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1~20.

    • Komárek J, Johansen J R. 2015. Filamentous cyanobacteria. Freshwater Algae of North America, 135~235.

    • Gnoli M, Serpagli E. 1980. The problematical microorganism Nuia in the lower Ordovician of precordilleran argentina and its paleogeographic significance. Paleontology, 54(6): 1245~1251.

    • Golubic S, Campbell S E. 1981. Biogenically formed aragonite concretions in marine Rivularia. ln: Monty C L V, ed. Phanemzoic Stromatolites. Berlin: Springer-Verlag, 209~229.

    • Gong Yunyun. 2017. Cyanobacterial calcification. Geological Science and Technology Information, 36(2): 112~118 (in Chinese with English abstract).

    • Herrero A, Flores E. 2008. The Cyanobacteria: Molecular Biology, Genomics and Evolution. Norwich: Caister Academic Press, 484.

    • Hillis-Colinvaux L. 1980. Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology, 17: 1~327.

    • Huang Zhicheng, Bian Lizhen. 1983. Discovery of the Ordovician alga Nuia siberica in China. Acta Paleontologica Sinica, 22 (1): 61~64 (in Chinese with English abstract).

    • Harland T L, Torrens H S. 1982. A redescription of the bathonian red alga Solenopora Jurassica from Gloucestershire, with remarks on its preservation. Palaeontology, 25(4): 905~912.

    • Jansson C, Northen T. 2010. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Current Opinion in Biotechnology, 21(3): 365~371.

    • Kaplan A, Badger M R, Berry J A. 1980. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. Planta, 149(3): 219~226.

    • Kaplan A, Reinhold L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 539~570.

    • Konhauser K. 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing, 160~166.

    • Kirkby S M. 1975. Biological studies on the rivulariaceae. Doctoral thesis of Durham University, 51~55.

    • Li Yue, Kershaw S, Mu Xinan. 2004. Ordovician reef systems and settings in South China before the Late Ordovician mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 205(34): 235~254.

    • Liu Jianbo. 2006. Environmental background for the Ordovician radiation bio-event in South China: Sea-level fluctuations of Arenigian. Originations and Radiations—Evidences from the Chinese Fossil Record. Beijing: Science Press, 335~360 (in Chinese).

    • Liu Jianbo, Zhan Renbin, Adachi N. 2010. Evidence for decoupling of relative abundance and biodiversity of marine organisms in initial stage of GOBE: A preliminary study on Lower Ordovician Shellbeds of South China. Journal of Earth Science, 21: 44~48.

    • Liu Zhili. 1990. Introduction to Fossil Algae. Beijing: Xinhua Bookstore Press, 1~18 (in Chinese).

    • Liu Lijing, Wu Yasheng, Jiang Hongxia, Riding R. 2016. Calcified rivulariaceans from the Ordovician of the Tarim basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 371~381.

    • Lucas S G. 2001. Taphotaxon. Lethaia, 34: 30.

    • Mamet B, Roux A. 1982. Algues dévono-carbonifères de l'Australie. Revue de Micropaléontologie, 26(2): 63~131.

    • Maslov V P. 1954. On the early Silurian of eastern Siberia. In: Shatskiy N S, ed. Voprosy Geologii Azii. Moscow: Akad nauk SSSR, 495~529 (in Russian).

    • McConnaughey T A, Whelan J F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews, 42(1): 95~117.

    • Mei Mingxiang. 2012. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937~951.

    • Mei Mingxiang. 2021. Radial ooids induced by photosynthetic biofilms: An example from the Cambrian Miaolingian Zhangxia Formation at Jiawang Section in Xuzhou City of Jiangsu Province, North-China Platform. Journal of Palaeogeography, 23(3): 461~487 (in Chinese with English abstract).

    • Mei Mingxiang, Gao Jinhan. 2015. Origin of photosynthesis: An enchanting and important scientific theme. Journal of Palaeogeogeraphy, 17(5): 577~592 (in Chinese with English abstract).

    • Mei Mingxiang, Meng Qingfen. 2016. Timing of the rise of atmospheric oxygen content level: A geobiological process that is closely and genetically related to the geodynamics. Journal of Palaeogeogeraphy, 18(1): 1~20 (in Chinese with English abstract).

    • Mei Mingxiang, Muhammad R, Liu Li, Meng Qingfen. 2019. Leiolite bioherm dominated by cyanobacterial mats of the Furongian: An example from the Qijiayu section in Laiyuan County, Hebei Province. Geological Review, 65(5): 1103~1122 (in Chinese with English abstract).

    • Mei Mingxiang, Khalid L, Meng Xiaoqing, Hu Yuan. 2020. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrain Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999~1016 (in Chinese with English abstract).

    • Meng Tian, Chen Zuo, Zhu Jun, Zou Xiaoxiao, Fu Qingyan, Bao Shixiang. 2020. Morphological and molecular study on marine green alga, Halimeda velasquezii first recorded in Hainan Island. Journal of Tropical Oceanography, 39(6): 114~121 (in Chinese with English abstract).

    • Merz-Preiβ M, Riding R. 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126: 103~124.

    • Merz-Preiβ M. 2000. Calcification in cyanobacteria. In: Riding R, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag, 50~56.

    • Miyachi S, Iwasaki I, Shiraiwa Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynthesis Research, 77: 139~153.

    • Muñoz-Martín M A, Gómez E B, Perona E, Mateo P. 2020. Analysis of molecular diversity within single cyanobacterial colonies from environmental samples. Scientifc Reports, 10: 18453. https: //doi. org/10. 1038/s41598-020-75303-2.

    • Obst M, Wehrli B, Dittrich M. 2009a. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology, 7: 324~347.

    • Obst M, Dynes J J, Lawrence J R, Swerhone G D W, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock A P. 2009b. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14): 4180~4198.

    • Ogawa T, Kaplan A. 2003. Inorganic carbon acquisition systems in cyanobacteria. Photosynthesis Research, 77: 105~115.

    • Pentecost A. 1987. Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B, 232: 125~136.

    • Pentecost A. 1991. Calcification processes in Algae and cyanobacteria. In: Riding R ed. Calcareous Algae and Stromatolites. Berlin: Springer, 3~20.

    • Pentecost A, Riding R. 1986. Calcification in cyanobacteria. In: Leadbeater B S C, Riding R, eds. Biomineralization in Lower Plants and Animals. Oxford: Clarendon Press, 73~90.

    • Perret M F, Vachard D. 1977. Algues et pseudo-algues des calcaires serpoukhoviens d'Ardengost (Hautes-Pyrénées). Ann Paléontol (Invertébrés), 63(2): 85~156.

    • Plee K, Ariztegui D, Martini And R, Davaud E. 2008. Unravelling the microbial role in ooid formation—results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology, 6(4): 341~350.

    • Pratt B R. 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology, 29(9): 763~766.

    • Price G D, Maeda S, Omata T, Badger M R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Functional Plant Biology, 29(3): 131~149.

    • Price G D, Howitt S M. 2011. The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters. Biochemistry and Cell Biology, 89(2): 178~188.

    • Portman C, Andrews J E, Rowe P J, Leeder M R, Hoogewerff J. 2005. Submarine-spring controlled calcification and growth of large Rivularia bioherms, Late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology, 52(3): 441~465.

    • Ragini G, Pankaj B. 2012. Cynobacteria: A comprehensive review. International Research Journal of Pharmacy, 3(2): 53~57.

    • Ragon M, Benzerara K, Moreira D, Tavera R, Lopez-Garcia P. 2014. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Frontiers in Microbiology, 5: 331.

    • Raven J A, Giordano M, Beardall J, Maberly S C. 2012. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 493~507.

    • Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1): 18~30.

    • Riding R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299(5886): 814~815.

    • Riding R. 1991. Calcified cyanobacteria. In: Riding R, ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 55~87.

    • Riding R. 1992. Temporal variation in calcification in marine cyanobacteria. Journal of the Geological Society of London, 149(6): 979~989.

    • Riding R. 1993. Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften, 80: 513~516.

    • Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-alga mats and biofilms. Sedimetology, 47(1): 179~214.

    • Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299~316.

    • Riding R. 2009. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million. Palaios, 24: 685~696.

    • Riding R, Liang L Y. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101~115.

    • Rowland S M, Shapiro R S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. Phanerozoic Reef Patterns, 72: 95~128.

    • Schopf J W, Kudryavtsev A B, Agresti D G, Czaja A D, Wdowiak T J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5(3): 334~371.

    • Schultze-Lam S, Harauz G, Beveridge T J. 1992. Participation of a cyanobacterial S layer in fine-grain mineral formation. Journal of Bacteriology, 1992, 174(24): 7971~7981.

    • Schultze-Lam S, Beveridge T J. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Applied and Environmental Microbiology, 60(2): 447~453.

    • Schultze-Lam S, Beveridge T J, Des-Marais D J. 1997. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1): 133~141.

    • Spincer B R. 1998. Olitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the upper Cambrian rocks of central Texas. Paleontology, 72(3): 577~584.

    • Swett K. 1964. Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range, Colorado. Journal of Sedimentary Research, 34: 615~624.

    • Toomey D F, Klement K W. 1966. A problematical microorganism from the El Paso Group (Lower Ordovician) of west Texas. Paleontology, 40(6): 1304~1311.

    • Vachard D, Téllez-Girón C. 1986. El alga Nuia en el Ordovícico de México: Hipotesis diversas. Revista Instituto Mexicano Petroleo, 18(2): 12~25.

    • Vachard D, Clausen S, Palafox J J, Buitrón B E, Devaere L, Hayart V, Régnier S. 2017a. Lower Ordovician microfacies and microfossils from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined Nuia Province. Facies, 63: 18.

    • Vachard D, Krainer K, Lucas S G. 2017b. The genus Nuia from lowermost Ordovician strata of the Bliss Formation and lower El Paso Group, New Mexico (USA). Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen, 285(1): 75~90.

    • Wang Jianpo, Deng Xiaojie, Wang Guan, Li Yue. 2012. Types and biotic successions of Ordovician reefs in China. Chinese Science Bulletin, 57: 1160~1168 (in Chinese with English abstract).

    • Wu Yasheng, Sun Xiaofang, Zhang Guocheng, Qi yongan, Bao Hongping, Ren Junfeng, Huang Zhengliang. 2020. Calcified cyanobacteria from the coral biostrome of the upper Ordovician Xiazhen Formation of Zhuzhai, Yusheng, Jiangxi Province, and their paleoenvironmental. Acta Micropalaeontologica Sinica, 37(1): 35~47 (in Chinese with English abstract).

    • Wright V P. 1985. Seasonal banding in the alga Solenopora jurassica from the Middle Jurassic of Gloucestershire, England. Journal of Paleontology, 59(3): 721~732. Whitton B A, Mateo P. 2012. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Dordrecht: Springer, 561~591.

    • Xia Bangmei. 2017. Flora Algarum Marinarum Sinicarum—Tomusi Cyanophyta. Beijing: Science Press, 108~151 (in Chinese).

    • Yang Wei, Zhu Zhongde, Liu Bingli. 1998. Nuia siberica in lower Ordovician reefs and strata in Northwest Hunan and Southwest Hubei. Journal of Jianghan Petroleum Institute, 20(4): 17~21 (in Chinese with English abstract).

    • Yates K K, Robbins L L. 2001. Microbial lime-mud production and its relation to climate change. In: Gerhard L C, Harrison W E, Hanson B M, eds. Geological perspectives of global climate change. Tulsa, Okla: American Association of Petroleum Geologists, 266~283.

    • Zavarzin G A. 2002. Microbial geochemical calcium cycle. Microbiology, 71(1): 1~17.

    • Zhan Renbin, Jin Jisuo. 2007. Ordovician-Early Silurian (Llandovery) Stratigraphy and Palaeontology of the Upper Yangtze Platform, South China. Beijing: Science Press, 39~18.

    • Zhang Nie, Tian Zuoji, Leng Yingying, Wang Huitong, Song Fuqing, Meng Jianhua. 2007. Raman characteristics of hydrocarbon and hydrocarbon inclusions. Science in China(Series D): Earth Sciences, 37(7): 900~907 (in Chinese).

    • Zhang Mingshao, Sheng Xinfu. 1958. Ordovician starta of the Sichuan and Shaanxi border area. Acta Geological Sinica, 38(3): 326~335 (in Chinese with English abstract).

    • Zhang Pengyuan. 1990. On the discovery of Nuia in China. Geological Review, 36(2): 183~189 (in Chinese with English abstract).

    • Zhang Wentang, Xu Hankui, Chen Xu, Chen Junyuan, Yuan Kexing, Lin Yaokun, Wang Jungen. 1964. Ordovician of the northern Guizhou. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica (ed). Palaeozoic Rocks of North Guizhou. Nanjing: Nanjing Institute of Geology and Palaeontology (in Chinese).

    • Zhang Yunbai, Zhou Zhiyi, Zhang Junming. 2002. Sedimentary differentiation during the latest Early Ordovician—earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302~314 (in Chinese with English abstract).

    • Zhen Yongyi, Perival I G, Liu Jianbo. 2006. Rhipidognathid conodonts from the Early Ordovician Honghuayuan Formation of Guizhou, South China. Palaeoworld, 15(2): 194~210.

    • Zhen Yongyi, Perival I G, Liu Jianbo, Zhang Yuandong. 2009. Conodont fauna and biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South China. Alcheringa: An Australasian Journal of Palaeontology, 33(3): 257~295.

    • Zhong Yijiang, Wen Huaguo, Chen Hongde, Liu Lei, Chen Anqing, Wang Xinglong, Wang Zhiwei, Bai Xuan. 2020. The role of extracellular polymeric substances in cyanobacterial calcification and its geological significance. Acta Sedimentologica Sinica, 40(1): 88~105 (in Chinese with English abstract).

    • Zhu Zhongde, Hu Mingyi, Liu Bingli, Xiao Chuantao, Yang Wei, Li Xiangmin. 2006. The Study of Early-Middle Ordovician Organic Reefs in China. Beijing: Geological Publishing House, 1~178 (in Chinese with English abstract).

    • 曹隽, 刘建波, 江崎洋一, 足立奈津子. 2008. 安徽东至早奥陶世红花园组生物礁: 奥陶纪生物大辐射前的微生物礁. 北京大学学报(自然科学版), 45(2): 279~288.

    • 陈朋飞, 詹仁斌. 2006. 扬子区下、中奥陶统大湾组及其同期地层. 地层学杂志, 30(1): 11~20.

    • 冯增昭, 彭勇民, 金振奎, 蒋盘良, 鲍志东, 罗璋, 鞠天吟, 田海芹, 汪红. 2001. 中国南方早奥陶世岩相古地理. 古地理学报, 3(2): 11~22.

    • 冯增昭, 彭勇民, 金振奎, 鲍志东. 2003. 中国早奥陶世岩相古地理. 古地理学报, 5(1): 1~16. 贡云云. 2017. 蓝细菌钙化作用. 地质科技情报, 36(2): 112~118.

    • 黄志诚, 边立曾. 1983. 藻类化石Nuia siberica在我国的发现. 古生物学报, 22(1): 61~65.

    • 刘建波. 2006. 华南早—中奥陶世生物大幅射期间的海平面变化. 生物的起源、辐射与多样性演变. 北京: 科学出版社, 335~360.

    • 刘志礼, 1990. 化石藻类学导论.北京: 高等教育出版社, 1~18.

    • 梅冥相, 高金汉. 2015. 光合作用的起源: 一个引人入胜的重大科学命题. 古地理学报, 17(5): 577~592.

    • 梅冥相, 孟庆芬. 2016. 大气圈氧气含量水平上升的时间进程: 一个与地球动力学过程紧密相关的地球生物学过程. 古地理学报, 18(1): 1~20.

    • 梅冥相, Muhammad R, 刘丽, 孟庆芬. 2019. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103~1122.

    • 梅冥相, Khalid Latif, 孟晓庆, 胡媛. 2020. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999~1016.

    • 梅冥相. 2021. 光合作用生物膜诱发的放射鲕粒: 以江苏徐州贾旺剖面寒武系苗岭统张夏组为例. 古地理学报, 23(3): 462~487.

    • 孟天, 陈佐, 朱军, 邹潇潇, 符青艳, 鲍时翔. 2020. 海南岛海洋绿藻新记录种——未氏仙掌藻(Halimeda velasquezii)的形态学与分子系统学分析. 热带海洋学报, 39(6): 114~121.

    • 王建坡, 邓小杰, 王冠, 李越. 2012. 中国奥陶纪生物礁的类型和造礁生物群的演替. 科学通报, 57(11): 924~932.

    • 吴亚生, 孙晓芳, 张国成, 齐永安, 包洪平, 任军峰, 黄正良. 2020. 江西玉山祝宅上奥陶统下镇组蓝细菌化石及其古环境意义. 微体古生物学报, 37(1): 35~47.

    • 夏邦美. 2017. 中国海藻志(第一卷)——蓝藻门. 北京: 科学出版社, 108~151.

    • 杨威, 朱忠德, 刘秉理. 1998. 湘西北鄂西南下奥陶统产礁地层中的藻类化石Nuia siberica. 江汉石油学院学报, 20(4): 17~21.

    • 张鼐, 田作基, 冷莹莹, 王汇彤, 宋孚庆, 孟建华. 2007. 烃和烃类包裹体的拉曼特征. 中国科学(D辑: 地球科学), 37(7): 900~907.

    • 张鸣邵, 盛莘夫. 1958. 川黔边境的奥陶纪地层. 地质学报, 38(3): 326~335.

    • 张鹏远. 1990. Nuia属微化石在我国的发现. 地质论评, 36(2): 183~188.

    • 张文堂, 许汉奎, 陈旭, 陈均远, 袁克兴, 林耀坤, 王俊庚. 1964. 黔北地层现场会议: 贵州北部的古生代地层. 见: 南京地质古生物研究所编, 贵州北部的志留系.

    • 张允白, 周志毅, 张俊明. 2002. 扬子陆块早奥陶世末期—中奥陶世Darriwilian初期沉积分异. 地层学杂志, 26(4): 302~314.

    • 钟怡江, 文华国, 陈洪德, 刘磊, 陈安清, 王兴龙, 王志伟, 白璇. 2020. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义. 沉积学报, 40(1): 88~105.

    • 朱忠德, 胡明毅, 刘秉理, 肖传桃, 杨威, 李相明. 2006. 中国早中奥陶世生物礁研究. 北京: 地质出版社, 1~178.