en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

林旭,男,1984年生。博士,副教授,从事青藏高原隆升与黄河和长江起源研究。E-mail:hanwuji-life@163.com。

通讯作者:

刘静,女,1969年生。博士,教授,从事活动构造、地表侵蚀与构造地貌研究。E-mail:liu_zeng@tju.edu.cn。

参考文献
Ao Hong, Rohling E J, Zhang Ran, Roberts A P, Holbourn A E, Ladant J B, An Zhisheng. 2021. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary. Nature Communications, 12(1): 1~13.
参考文献
An Zhisheng, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62~66.
参考文献
Bao Guodong, Chen Hong, Zhao Xitao. 2020. Late Miocene Yellow River formation in Qingtongxia area, North China: Detrital zircon and heavy mineral analysis at Niushou Mountain, Ningxia. Geological Journal, 55(11): 7304~7321.
参考文献
Barham M, Kirkland C L, Hovikoski J, Alsen P, Hollis J, Tyrrell S. 2021. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting. Sedimentology, 68(2): 531~556.
参考文献
Blowick A, Haughton P, Tyrrell S, Holbrook J, Chew D, Shannon P. 2019. All mixed up: Pb isotopic constraints on the transit of sands through the Mississippi-Missouri River drainage basin, North America. Bulletin, 131(9-10): 1501~1518.
参考文献
Chen Chenghong, Lee Chiyu, Lin Jianwei, Chu Meifei. 2019. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190: 224~246.
参考文献
Chen Qu, Liu Xiuming, Zhao Guoyong, Jia Jia, Ye Wei, Lu Bin, Michael M, Guan Jueqi. 2022. 0. 2 Ma or 1. 2 Ma? Timing of the linking of the Middle and Lower Reaches of the Yellow River inferred from loess-palaeosol sequences. Geophysical Research Letters, 49(6): e2021GL097510.
参考文献
Chen Shuhui, Hou Yuanli, Shao Lei, Huang Qiyu, Qiao Peijun, Cui Yuchi, Meng Xianbo. 2020. Eocene-Miocene sediments source and environmental study of Taiwan. Acta Sedimentologica Sinica, 38(2): 319~330 (in Chinese with English abstract).
参考文献
Clift P D, Long H V, Hinton R, Ellam R M, Hannigan R, Tan M T, Duc N A. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. Geochemistry, Geophysics, Geosystems, 9(4): 1~29.
参考文献
Clinkscales C, Kapp P, Thomson S, Wang H, Laskowski A, Orme D A, Pullen A. 2021. Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics, 40(3): e2020TC006416.
参考文献
Deng Kai, Yang Shouye, Li Chao, Su Ni, Bi Lei, Chang Yuepin, Chang Suchin. 2017. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China's mainland. Earth-Science Reviews, 164: 31~47.
参考文献
Fang Xiaomin, Liu Dongliang, Song Chunhui, Dai Shuang, Meng Qingquan. 2013. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geological Society, London, Special Publications, 373(1): 149~171.
参考文献
Fu Xiaowei, Zhu Weilin, Geng Jianhua, Yang Shouye, Zhong Kai, Huang Xiangtong, Zhang Luyao, Xu Xi. 2021. The present-day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages. Journal of Asian Earth Sciences, 205: 104600.
参考文献
Gallagher S J, Wallace M W, Li C L, Kinna B, Bye J T, Akimoto K, Torii M. 2009. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography, 24(1): 1~27.
参考文献
Guo Zhengtang, Ruddiman W F, Hao Qingzhen, Wu Haibin, Qiao Yansong, Zhu Rixiang, Liu Tungsheng. 2002. Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. Nature, 416(6877): 159~163.
参考文献
He Mengying, Mei Xi, Zhang Xunhua, Liu Jian, Guo Xingwei, Zheng Hongbo. 2019. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-1 in the continental shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85~95 (in Chinese with English abstract).
参考文献
Hou Yuanli, Zhu Weilin, Qiao Peijun, Huang Chiyue, Cui Yuchi, Meng Xianbo. 2021. Sediment source and environment evolution in Taiwan Island during the Eocene-Miocene. Acta Oceanologica Sinica, 40(2): 114~122.
参考文献
Hu Zhenbo, Pan Baotian, Bridgland D, Vandenberghe J, Guo Lianyong, Fan Yunlong, Westaway R. 2017. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quaternary Science Reviews, 166: 324~338.
参考文献
Hu Zhenbo, Li Menghao, Dong Zhijun, Guo Lianyong, Bridgland D, Pan Baotian, Liu Xiaohua. 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change, 178: 129~138.
参考文献
Huang Chiyue, Yuan P B, Lin Chingweei, Wang T K, Chang Chungpai. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2): 1~21.
参考文献
Huang Chiyue, Yan Yi, Zhao Quanhong, Lin Chiouting. 2012. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130~3149.
参考文献
Huang Xiangtong, Song Jiaze, Yue Wei, Wang Zhongbo, Mei Xi, Li Yalong, Li Fangliang, Lian Ergang, Yang Shouye. 2020. Detrital zircon U-Pb ages in the east China seas: Implications for provenance analysis and sediment budgeting. Minerals, 10(5): 398: 1~20.
参考文献
Huang Xiangtong, Mei Xi, Yang Shouye, Zhang Xunhua, Li Fangliang, Hohl S V. 2021. Disentangling combined effects of sediment sorting, provenance, and chemical weathering from a Pliocene-Pleistocene sedimentary core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569.
参考文献
Kong Ping, Jia Jun, Zheng Yong. 2014. Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395~407.
参考文献
Lan Qing, Yan Yi, Huang Chiyue, Santosh M, Shan Yehua, Chen Wenhuang, Yu Mengming, Qian Kun. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36: 376~389.
参考文献
Li Sanzhong, Zhao Guochun, Dai Liming, Zhou Lihong, Liu Xin, Suo Yanhui, Santosh M. 2012. Cenozoic faulting of the Bohai Bay basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 47: 80~93.
参考文献
Li Weidong, Zhao Xitao, Yang Yan, Wu Zhenhan. 2020. Formation age and provenance analysis of the gravel layer in the Yellow River terraces of the Hetao basin. Acta Geologica Sinica, 41(4): 515~524 (in Chinese with English abstract).
参考文献
Li Zhongyun, Zhang Ke, Liang Hao, Chen Zhen, Ma Zhanwu, Xiong Jianguo, Huang Ping. 2022. Large river chronology along the Jinshaan Gorge on the Yellow River and its implications for initialization. Geomorphology, 108092.
参考文献
Liang Jintong, Wang Hongliang. 2019. Cenozoic tectonic evolution of the East China Sea Shelf basin and its coupling relationships with the Pacific Plate subduction. Journal of Asian Earth Sciences, 171: 376~387.
参考文献
Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).
参考文献
Lin Chiouting, Watts A B, Hesselbo S P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4): 453~478.
参考文献
Lin Xiubin, Chen Hanlin, Wyrwoll K H, Cheng Xiaogan. 2010. Commencing uplift of the Liupan Shan since 9. 5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37(4): 350~360.
参考文献
Lin Xu, Liu Jing, Wu Zhonghai, Wang Shimei, Zhao Xitao, Chen Yong, Li Zhaoning, Liu Haijin. 2020. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China. Acta Geologica Sinica, 94(10): 3024~3035 (in Chinese with English abstract).
参考文献
Lin Xu, Li Chang'an. 2022a. Are detrital materials from the Yellow River associated with desert/sandy land provenances in Northwest China? Earth Science, 47(10): 3633~3647 (in Chinese with English abstract).
参考文献
Lin Xu, Liu Haijin, Liu Jing, Wu Zhonghai, Li Zhaoning, Chen Jixin, Li Lingling, Hu Chengwei. 2022b. Provenance tracing of Pb isotopes of fluvial detrital K-feldspar from the Yellow River basin. Seismology and Geology, 44(4): 944~960 (in Chinese with English abstract).
参考文献
Lin Xu, Li Lingling, Liu Haijin, Chen Jixin. 2022c. Sediments of the upper reaches of Yellow River did not enter into Jinshan Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568~582 (in Chinese with English abstract).
参考文献
Lin Xu, Liu Haijin, Liu Jing, Chen Jixin, Li Lingling. 2022d. The Yellow River did not enter the Bohai Bay basin during the Miocene: Constraints from detrital zircon U-Pb ages. Acta Geologica Sinica, 96(7): 2506~2518(in Chinese with English abstract).
参考文献
Lin Xu, Wu Lin, Jolivet Marc, Li Chang'an, Liu Haijin. 2022e. Apatite (U-Th)/He thermochronology evidence for two Cenozoic denudation events in the eastern part of the Sulu orogenic belt. Earth Sciences, 47(4): 1162~1176 (in Chinese with English abstract).
参考文献
Liu Jianhui, Zhang Peizhen, Zheng Dewen, Wan Jinglin, Wang Weitao, Du Peng, Lei Qiyun. 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China. Science China Earth Sciences, 53(3): 345~355.
参考文献
Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.
参考文献
Liu Jin, Chen Xingqiang, Shi Wei, Chen Peng, Zhang Yu, Hu Jianmin, Dong Shuwen, Li Tingdong. 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry. Journal of Asian Earth Sciences, 179: 350~364.
参考文献
Liu Jin, Wang Ping, Chen Xingqiang, Shi Wei, Song Lijun, Hu Jianmin. 2022. The changes of drainage systems of Weihe basin and Sanmenxia basin since Late Pliocene give new insights to the Yellow River evolution. Frontiers-Earth Science, 9: 820674.
参考文献
Liu Yunming. 2020. Neogene fluvial sediments in the northern Jinshaan Gorge, China: Implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109675.
参考文献
Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. Journal of Geophysical Research: Earth Surface, 113(F4): 1~26.
参考文献
Lu Huayu, Wang Xiaoyong, An Zhisheng, Miao Xiaodong, Zhu Rixiang, Ma Haizhou, Wang Xianyan. 2004. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Science in China: Earth Sciences, 47: 822~833.
参考文献
Métivier F, Gaudemer Y, Tapponnier P, Klein M. 1999. Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280~318.
参考文献
Meng Kai, Wang Erqi, Chu J J, Su Zhe, Fan Chun. 2020. Late Cenozoic river system reorganization and its origin within the Qilian Shan, NE Tibet. Journal of Structural Geology, 138: 104128.
参考文献
Meng Xianbo, Shao Lei, Cui Yuchi, Zhu Weilin, Qiao Peijun, Sun Zhen, Hou Yuanli. 2021. Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the luzon subduction system. Marine and Petroleum Geology, 124: 104820.
参考文献
Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.
参考文献
Pan Baotian, Hu Zhenbo, Wang Junping, Vandenberghe J, Hu Xiaofei. 2011. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 125(1): 225~238.
参考文献
Peng Heng, Wang Jianqiang, Liu Chiyang, Huang Lei, Zattin M. 2021. Mesozoic exhumation and ca. 10 Ma reactivation of the southern Yin Shan, North China, revealed by low-temperature thermochronology. Tectonophysics, 229189.
参考文献
Qiu Yan, Wang Lifei, Huang Wenkai. 2016. The Mesozoic and Cenozoic Sedimentary Basins in the Sea Area of China. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Shi Wei, Dong Shuwen, Hu Jianmin. 2020. Neotectonics around the Ordos Block, North China: A review and new insights. Earth-Science Reviews, 200: 102969.
参考文献
Su Peng, He Honglin, Tan Xibin, Liu Yiduo, Shi Feng, Kirby E. 2021. Initiation and evolution of the Shanxi rift system in North China: Evidence from low-temperature thermochronology in a plate reconstruction framework. Tectonics, 40(3): e2020TC006298.
参考文献
Su Qi, Kirby E, Ren Zhikun, Zhang Peizhen, Zhang Huiping, Manopkawee P, Lei Qiyun. 2020. Chronology of the yellow river terraces at qingtong gorge (NE Tibet): Insights into evolution of the Yellow River since the middle Pleistocene. Geomorphology, 349: 106889.
参考文献
Su Tao, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Science Advances, 5(3): eaav2189.
参考文献
Sun Jimin, Talebian M, Jin Chunsheng, Liu Weiguo, Zhang Zhilang, Cao Mengmeng, Tian Shengchen. 2021. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Global and Planetary Change, 197: 103395.
参考文献
Sun Jimin, Ding Zhongli, Xiao Wenjiao, Windley B F. 2022. Coupling between uplift of the Central Asian Orogenic Belt-NE Tibetan Plateau and accumulation of aeolian red clay in the inner Asia began at ~7 Ma. Earth-Science Reviews, 103919.
参考文献
Sun Zhongheng, Zhu Hongtao, Xu Changgui, Yang Xianghua, Du Xiaofeng. 2020. Reconstructing provenance interaction of multiple sediment sources in continental down-warped lacustrine basins: An example from the Bodong area, Bohai Bay basin, China. Marine and Petroleum Geology, 113: 104142.
参考文献
Tsai C H, Shyu J B H, Chung S L, Lee H Y. 2020. Miocene sedimentary provenance and paleogeography of the Hengchun Peninsula, southern Taiwan: Implications for tectonic development of the Taiwan orogen. Journal of Asian Earth Sciences, 194: 104032.
参考文献
Tyrrell S, Haughton P D W, Daly J S, Kokfelt T F, Gagnevin D. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England. Journal of Sedimentary Research, 76(2): 324~345.
参考文献
Tyrrell S, Haughton P D, Daly J S, Shannon P M, Sylvester P. 2012. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada, Short Course Series, 42 203~217.
参考文献
Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance analysis. Sedimentary Geology, 336: 14~25.
参考文献
Wang Guiling, Lin Wenjing, Liu Feng, Gan Haonan, Wang Siqi, Yue Gaofan, Long Xiting, Liu Yanguang. 2023. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice. Acta Geologica Sinica, 97(3): 639~660 (in Chinese with English abstract).
参考文献
Wang Pinxian. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. Geophysical Monograph Series, 149: 1~22.
参考文献
Wang Xianyan, Lu Huayu, Vandenberghe J, Zheng Shaohua, van Balen R. 2012. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Global and Planetary Change, 88: 10~19.
参考文献
Wang Xiaoyan, Qiu Weili, Zhang Jiafu, Li Rongquan, Zhou Liping. 2013. Features of the alluvium on Tangxian surface near Baode-Fugu and its geomorphologic implications in the northern Jinshaan Gorge, Yellow River. Quaternary Sciences, 33(4): 715~722 (in Chinese with English abstract).
参考文献
Wang Zhixiang, Shen Yongjin, Licht A, Huang Chunjun. 2018. Cyclostratigraphy and magnetostratigraphy of the middle Miocene Ashigong Formation, Guide basin, China, and its implications for the paleoclimatic evolution of NE Tibet. Paleoceanography and Paleoclimatology, 33(10): 1066~1085.
参考文献
Wang Zhixiang, Mao Yongdong, Geng Jianzhen, Huang Chunjun, Ogg J, Kemp D B, Zhang Ze, Pang Zhibin, Zhang Rui. 2022. Pliocene-Pleistocene evolution of the lower Yellow River in eastern North China: Constraints on the age of the Sanmen Gorge connection. Global and Planetary Change, 103835.
参考文献
Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1-4): 1~11.
参考文献
Woodhead J D, Hergt J M. 2007. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostandards Newslett, 25: 261~266.
参考文献
Xiao Guoqiao, Sun Yuqi, Yang Jilong, Yin Qiuzhen, Dupont-Nivet G, Licht A, Wu Zhipeng. 2020. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109691.
参考文献
Xiong Zhongyu, Liu Xiaohui, Ding Lin, Farnsworth A, Spicer R A, Xu Qiang, Yue Yahui. 2022. The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944.
参考文献
Xu Qinmian, Yuan Guibang, Ding Jianxun, Zhang Wei, Xin Houtian, Deng Chenglong. 2019. Cenozoic tectonic and paleoenvironmental evolution of northwestern China: Evidence from two deep boreholes in the Jartai basin. Journal of Asian Earth Sciences, 173: 98~112.
参考文献
Yan Jiyuan, Hu Jianmin, Wang Dongming, Gong Wangbin, Liang Xiang. 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic. Geological Bulletin of China, 40(5): 623~648 (in Chinese with English abstract).
参考文献
Yang Jie, Gao Shan, Chen Chen, Tang Yongyong, Yuan Honglin, Gong Hujun, Wang Jianqi. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660~2673.
参考文献
Yang Jilong, Yuan Haifan, Hu Yunzhuang, Wang Fu. 2021. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River. Geomorphology, 108077.
参考文献
Yang Shouye, Bi Lei, Li Chao, Wang Zhongbo, Dou Yanguang. 2016. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary. Geological Society, London, Special Publications, 429(1): 137~152.
参考文献
Yao Xiang. 2019. Residual subsidence of the Cenozoic rift basin in the East Asian continental margin and its genesis analysis. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).
参考文献
Yao Zhengquan, Shi Xuefa, Qiao Shuqing, Liu Qingsong, Kandasamy S, Liu Jianxing, Dou Yanguang. 2017. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago. Scientific Reports, 7(1): 1~11.
参考文献
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686~693.
参考文献
Zhang Hanzhi, Lu Huayu, Zhou Yali, Cui Yingying, He Jing, Lv Hengzhi, Wang Kexin, Wang Xianyan. 2021. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072.
参考文献
Zhang Hongfei, Gao Shan. 2012. Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R S, Kirby E, Liu Shaofeng. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.
参考文献
Zhang Jin, Wan Shiming, Clift P D, Huang Jie, Yu Zhaojie, Zhang Kaidi, Zhang Xunhua. 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3. 5 Ma: Tectonic or climate forcing? Quaternary Science Reviews, 216: 74~88.
参考文献
Zhang Ligang. 1995. Block Geology of Eastern Asia Lithosphere-Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Beijing: Science Press(in Chinese with English abstract).
参考文献
Zhang Xinchang, Yan Yi, Huang Chiyue, Chen Duofu, Shan Yehua, Lan Qing, Yu Mengming. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85: 26~39.
参考文献
Zhang Xinchang, Huang Chiyue, Wang Yuejun, Clift P D, Yan Yi, Fu Xiaowei, Chen Duofu. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634~651.
参考文献
Zhang Zengjie, Daly J S, Tyrrell S, Sun Xilin, Badenszki E, Li Yawei, Yan Yi. 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma. Earth-Science Reviews, 216: 103601.
参考文献
Zhang Zengjie, Daly J S, Yan Yi, Badenszki E, Sun Xilin, Tian Yuntao. 2022. Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K-feldspar in Taiwan. Chemical Geology, 120740.
参考文献
Zheng Dewen, Clark M K, Zhang Peizhen, Zheng Wenjun, Farley K A. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere, 6(6): 937~941.
参考文献
Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.
参考文献
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870(in Chinese with English abstract).
参考文献
Zhu Weilin. 2010. Atlas of Petroliferous Basins in Chinese Waters. Beijing: Petroleum Industry Press (in Chinese with English abstract).
参考文献
Zhu Weilin, Zhong Kai, Fu Xiaowei, Chen Chunfeng, Zhang Minqiang, Gao Shunli. 2019. The formation and evolution of the East China Sea Shelf basin: A new view. Earth-Science Reviews, 190: 89~111.
参考文献
陈淑慧, 侯元立, 邵磊, 黄奇瑜, 乔培军, 崔宇驰, 孟宪博. 2020. 台湾始新统-中新统沉积物源与沉积环境. 沉积学报, 38(2): 319~330.
参考文献
何梦颖, 梅西, 张训华, 刘健, 郭兴伟, 郑洪波. 2019. 南黄海陆架区 CSDP-1 孔沉积物碎屑锆石 U-Pb 年龄物源判别. 吉林大学学报(地球科学版), 49(1): 85~95.
参考文献
李维东, 赵希涛, 杨艳, 吴珍汉. 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析. 地球学报, 41(4): 515~524.
参考文献
林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化, 源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.
参考文献
林旭, 刘静, 吴中海, 王世梅, 赵希涛, 陈勇, 李兆宁, 刘海金. 2020. 中国北部陆架海碎屑锆石 U-Pb 年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024~3035.
参考文献
林旭, 李长安. 2022a. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?地球科学, 47(10): 3633~3647.
参考文献
林旭, 刘海金, 刘静, 吴中海, 李兆宁, 陈济鑫, 李玲玲, 胡程伟. 2022b. 黄河流域碎屑钾长石Pb同位素物源示踪. 地震地质, 44(4): 944~960.
参考文献
林旭, 李玲玲, 刘海金, 陈济鑫. 2022c. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568~582.
参考文献
林旭, 刘海金, 刘静, 陈济鑫, 李玲玲. 2022d. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束. 地质学报, 96(7): 2506~2518.
参考文献
林旭, 吴林, Jolivet Marc, 李长安, 刘海金. 2022e. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162~1176.
参考文献
邱燕, 王立飞, 黄文凯. 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.
参考文献
王贵玲, 蔺文静, 刘峰, 甘浩男, 王思琪, 岳高凡, 龙西亭, 刘彦广. 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639~660.
参考文献
王小燕, 邱维理, 张家富, 李容全, 周力平. 2013. 晋陕峡谷北段保德-府谷地区唐县面上冲积物的特征及其地貌意义. 第四纪研究, 33(4): 715~722.
参考文献
姚翔. 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因. 中国地质大学(北京)博士学位论文.
参考文献
闫纪元, 胡健民, 王东明, 公王斌, 梁霞. 2021. 黄淮海平原晚新生代重大地质事件. 地质通报, 40(5): 623~648.
参考文献
张宏飞, 高山. 2012. 地球化学. 北京: 地质出版社.
参考文献
张理刚. 1995. 东亚岩石圈块体地质: 上地幔, 基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社.
参考文献
朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.
参考文献
朱伟林. 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社.
目录contents

    摘要

    自剥蚀地貌中形成的剥蚀产物搬运到沉积区或汇水盆地沉积下来的过程,称为“源-汇”系统。从这些“汇”中识别“源”的信息,结合地层的沉积时代,约束黄河的形成时代、水系格局演化、流域内构造运动以及环境变迁成为黄河水系演化研究的重要内容。然而,时至今日学者们对黄河何时出现的认识并不一致,存在“中新世内流黄河和中新世外流黄河”之争。为了解决这些争议,我们运用大河物源示踪研究中新兴的碎屑钾长石Pb同位素方法,对黄河中下游沉积物开展碎屑钾长石Pb同位素分析(n=378),将其与长江中下游和华夏板块已报道的碎屑和基岩钾长石Pb同位素结果进行对比,结果表明三者之间的钾长石Pb同位素组成明显不同。台湾岛是中国东部陆架海中新世地层出露最齐全的地区。因而,我们将黄河中下游与台湾岛中新统的钾长石Pb同位素比值进行对比,结果表明二者之间不存在物源联系。结合中国东部渤海湾盆地、南黄海盆地和东海盆地中新统的物源示踪研究结果,说明黄河物质在中新世未流入上述盆地。总体而言,中国北方中新世的构造活动控制了黄河的演化过程,导致其此时处于分段演化阶段。

    Abstract

    The process in which the denudation products formed in the denudation landform are transported to the sedimentary area or catchment basin are referred to as the “source-sink” system. Identifying the source information from the sink, combining with the sedimentary age of the strata, constraining the formation age of the Yellow River, the evolution of the drainage pattern, the tectonic movement in the basin and the environmental changes has become an important content of the study of the evolution of the Yellow River. However, scholars do not agree on when the Yellow River formed. There is a dispute between the Miocene internal flow of the Yellow River and Miocene external flow of the Yellow River. In order to resolve the dispute, we used the newly developed river provenance tracing method to analyze the detrital K-feldspar Pb isotopic compositions from the middle and lower reaches of the Yellow River (n=378), comparing the results with those from the middle and lower reaches of the Yangtze River and the Cathaysia plate. The results show that the Pb isotopic compositions of K-feldspar are obviously different among them. Taiwan island is the most complete area where Miocene strata are exposed in the eastern China shelf sea. Therefore, we compared the Pb isotopic ratios of K-feldspar from the middle and lower reaches of the Yellow River with those from the Miocene strata deposited in the Taiwan Island. The finding suggests that the Yellow River material did not enter the Taiwan Island during the Miocene. Combined with the reported provenance tracing results from the Bohai Bay, South Yellow Sea and East China Sea basins, it indicates that the Yellow River did not flow into these basins during the Miocene. In general, the Miocene tectonic activities in northern China controlled the evolution of the upper and middle reaches of the Yellow River, leading to the segmentalized evolution of the Yellow River at this time.

    关键词

    黄河钾长石Pb同位素中新世物源示踪

  • 地球表面的地貌宏观上可分为剥蚀区、搬运区和沉积区,剥蚀区形成的剥蚀产物被河流、风等搬运到沉积区或汇水盆地沉积下来的过程,称为“源-汇”系统(林畅松等,2015)。其核心内容是将物源区的构造、剥蚀作用,沉积物的搬运方式,以及沉积物最终堆积样式作为一个完整的系统,对控制该系统的内、外因之间的相互作用及其产生的结果进行综合分析(朱洪涛等,2017)。目前,“源-汇”过程已成为地球系统科学颇为重要的研究领域。

  • 新生代印度板块与欧亚大陆的碰撞使得青藏高原岩石圈增厚和地表升高;而亚洲东部的岩石圈受西太平洋板块俯冲的影响持续伸展减薄,西太平洋边缘海扩张,中国西高东低的宏观地形格局逐渐形成(Wang Pinxian,2004)。伴随着地形生长和东亚季风的发育与演化,串联青藏高原和中国东部陆架海的黄河、长江等大河逐渐形成,这些大河将源区剥蚀产生的巨量泥沙搬运到渤海、黄海和东海沉积,构成西太平洋陆架海规模宏大的“源-汇”系统(Métivier et al.,1999;图1)。从这些“汇”中识别“源”的信息,结合地层的沉积时代,约束黄河的形成时代、水系格局演化、流域内构造运动以及环境变迁成为黄河演化研究的重要内容。然而,时至今日学者们对黄河贯通时限、具体的演化过程等认识并不一致。比如,碎屑锆石U-Pb年龄和重矿物物源示踪,以及沉积学研究结果表明,黄河上游物质在中新世进入银川盆地(Bao Guodong et al.,2020)和河套盆地。黄河中游晋陕峡谷保德组的沉积学特征(王小燕等,2013)结合下伏河流相砾石层的形成时代(Liu Yunming,2020; Li Zhongyun et al.,2022)指示黄河晋陕段至少在8 Ma存在,并在中新世为台湾岛提供碎屑物质(Deng Kai et al.,2017; Zhang Xinchang et al.,2017)。古流向恢复和碎屑锆石U-Pb年龄物源示踪结果揭示,晋陕峡谷北部中新世和上新世(6.2~3.7 Ma)砾石层未出现黄河上游的物质信号,以近源物质为主(Pan Baotian et al.,2011; 林旭等,2022c),表明黄河中上游的连通应发生在上新世后(Zhang Huiping et al.,2014; Xu Qinmian et al.,2019; Su Qi et al.,2020)。渤海湾盆地(林旭等,2022d)和东海盆地(Fu Xiaowei et al.,2021)的锆石U-Pb年龄物源示踪结果表明,黄河在中新世也未流入其内。黄河水系是否在中新世流出汾渭盆地,向东拓展到西太平洋陆架海依然存有争议,即存在“中新世内流黄河和中新世外流黄河”之争。究其原因,或是因为以往的研究集中于黄河某一段,或是因为黄河流出三门峡后摆动的河道时而进入渤海湾盆地,时而进入南黄海盆地、东海盆地,增加了限定其出现时间的难度和复杂程度。鉴于此,需要继续开展相关工作对这些分歧进行厘定。

  • 图1 黄河和长江位置分布图

  • Fig.1 Location distribution map of Yellow River and Yangtze River

  • 钾长石样品来源:黄河中下游(本次研究),长江中下游(Zhang Zengjie et al.,2021),台湾岛中新统(Zhang Zengjie et al.,2022);锆石样品:a—黄河中下游(Yang Jie et al.,2009; Nie Junsheng et al.,2015);b~d—台湾岛中新世地层(Lan Qing et al.,2016);e—渤海湾盆地西(Xiao Guoqiao et al.,2020);f—渤海湾盆地东(Sun Zhongheng et al.,2020);g—南黄海盆地北(Fu Xiaowei et al.,2021);h、i—南黄海盆地南(Fu Xiaowei et al.,2021);j~r—东海盆地(Fu Xiaowei et al.,2021

  • K-feldspar samples from the middle and lower Yellow River (in this study) and Yangtze River (Zhang Zengjie et al., 2021) , Miocene strata of Taiwan Island (Zhang Zengjie et al., 2022) ; zircon samples: a—middle and lower of Yellow River (Yang Jie et al., 2009; Nie Junsheng et al., 2015) ; b~d—Miocene strata of Taiwan Island (Lan Qing et al., 2016) ; e—western Bohai Bay basin (Xiao Guoqiao et al., 2020) ; f—eastern Bohai Bay basin (Sun Zhongheng et al., 2020) ; g—northern South Yellow Sea basin (Fu Xiaowei et al., 2021) ; h, i—southern South Yellow Sea basin (Fu Xiaowei et al., 2021) ; j~r—East China Sea basin (Fu Xiaowei et al., 2021)

  • 台湾岛位于东海和南海交汇处,在晚中新世(6.5 Ma)出露于水面之上(Lin Chiouting et al.,2003),是中国东部陆架海中新统出露最齐全的地区(Huang Chiyue et al.,2012),成为黄河等大河起源研究的绝佳场所(Lan Qing et al.,2016; Deng Kai et al.,2017; Zhang Xinchang et al.,2017)。钾长石是河流沉积物和盆地地层中广泛分布的主要矿物,能最大程度代表某一源区的物源特征(Tyrrell et al.,2006)。尽管受侵蚀、搬运和埋藏等地质过程的影响,碎屑钾长石在长距离(>1000 km)搬运后依然能保留其源区的Pb同位素组成(Tyrrell et al.,2012; Barham et al.,2021; 林旭等,2022a)。因而在过去的十几年,钾长石Pb同位素组成广泛应用于大河物源示踪研究(Clift et al.,2008; Blowick et al.,2019; Zhang Zengjie et al.,2021; 林旭等,2022b)。因此,基于黄河何时贯通存在的上述争议问题,对黄河中下游主要干流和支流进行钾长石Pb同位素分析,与台湾岛中新世地层已报道的钾长石Pb同位素结果进行对比研究,结合区域内黄河的物源示踪研究结果,系统讨论中新世黄河的演化过程,从而深入理解中新世青藏高原隆升,亚洲季风发育与黄河演化的耦合关系。

  • 图2 台湾岛地质图(a)(修改自Huang Chiyue et al.,2012)和台湾岛中新世地层组成(b)(引自Huang Chiyue et al.,2012),

  • Fig.2 Geological map of Taiwan Island (a) (modified from Huang Chiyue et al., 2012) and Miocene stratigraphic composition of Taiwan Island (b) (after Huang Chiyue et al., 2012)

  • 图中方框数字和圆圈数字分别代表碎屑锆石(Lan Qing et al.,2016)和钾长石取样点(Zhang Zengjie et al.,2022),与图2a中的数字分布位置对应

  • The box and circle numbers in the figure represent detrital zircon (Lan Qing et al., 2016) and K-feldspar sampling locations (Zhang Zengjie et al., 2022) , respectively, which correspond to the distribution of the numbers in Fig.2a

  • 1 地质背景

  • 1.1 台湾岛

  • 台湾岛南北长370 km,东西最宽140 km,其主构造线呈北北东方向(图3a)。在晚中新世(6.5 Ma),北吕宋岛弧与欧亚大陆边缘发生斜向弧-陆碰撞造山,使沉积在被动大陆边缘的地层向西逆冲,褶皱隆升出露于海平面之上形成台湾岛(Huang Chiyue et al.,20002012; Lin Chiouting et al.,2003)。台湾岛中新统以西部山麓带发育最为齐全,出露良好(图3a)。在其北部自底部向上依次出现下中新统木山组、大寮组、石底组,中中新统南港组,上中新统南庄组和桂竹林组。在西部山麓带中部下中新统与北部一致,但中中新统划分为北寮组、打鹿组和观音山组,上中新统只出现桂竹林组(图3b)。

  • 1.2 渤海湾盆地

  • 渤海湾盆地是在华北板块基底上发育的中—新生代断陷盆地(Li Sanzhong et al.,2012)。燕山运动后华北板块东部受西太平洋板块俯冲的影响,导致其内岩石圈减薄,出现拉张-断陷,形成渤海湾盆地的雏形。古近纪断陷期,盆地内从老到新分别为孔店组、沙河街组和东营组(图4a)。在新近纪,盆地构造背景发生转变,断层作用基本停止,盆地由裂陷转为坳陷,沉积的地层包括馆陶组和明化镇组(邱燕等,2016)。中新统馆陶组在盆地内分布广泛,一般厚度在1000 m左右,其在渤海湾盆地中部的厚度达到2000 m,主要以辫状河、曲流河以及浅湖相沉积物为主,岩性主要为灰绿色和灰白色砂岩、砂砾岩,局部夹有棕红色和灰绿色泥岩(朱伟林,2010; 姚翔,2019)。

  • 1.3 南黄海盆地

  • 南黄海盆地位于苏鲁造山带南部(图1),总体北东向延伸大于260 km,西窄东宽,西缘宽110 km,东缘宽220 km,分为南北两部分。其北部完全位于黄海中,其南部向东伸入黄海,陆上部分属苏北盆地(邱燕等,2016; 姚翔,2019)。南黄海盆地是从晚白垩世开始发育的断陷盆地。晚白垩世—古新世是其断裂活动的高峰期,形成的半地堑内沉积了以湖相为主的阜宁组(邱燕等,2016;图4b)。始新世盆地进入萎缩阶段,该期内主要发育戴南组和三垛组湖泊、沼泽、河流相等碎屑沉积物。整个盆地受始新世末期构造运动的影响出现沉积间断,导致晚始新世—渐新世地层缺失。新近纪盆地进入裂后期,中新统为浅棕色、灰绿色粉砂质泥岩与灰白、灰黄色中粗砂岩、含砾砂岩、细砾岩互层,属于浅湖和河流相沉积(邱燕等,2016; 姚翔,2019)。

  • 图3 中国东部沉积盆地的地层柱状图(修改自朱伟林,2010

  • Fig.3 Stratigraphic columns of sedimentary basins in eastern China (modified from Zhu Weilin, 2010)

  • (a)—渤海湾盆地;(b)—南黄海盆地;(c)—东海盆地

  • (a) —Bohai Bay basin; (b) —South Yellow Sea basin; (c) —East China Sea basin

  • 1.4 东海盆地

  • 东海盆地大体呈北东向分布,长约1400 km,宽约90~300 km(图1)。新生代盆地由老到新沉积古新统月桂峰组(图4c),始新统灵峰组、明月峰组、瓯江组、温州组、平湖组,渐新统花港组,中新统龙井组、玉泉组、柳浪组,上新统三潭组和第四系东海群(朱伟林,2010; 邱燕等,2016; 姚翔,2019)。下中新统龙井组厚300~500 m,岩性为浅灰色泥岩、粉砂质泥岩与浅灰、灰白色粉砂岩、砂岩、含砾砂岩呈不等厚互层夹薄煤层,属河流和浅湖相。中中新统玉泉组厚300~500 m,地层为浅灰色、灰黄色泥岩、粉砂岩泥岩夹砂岩、粉砂岩及2~3层薄煤层,为河流相和湖相沉积。上中新统柳浪组岩性为灰绿色、浅灰色粉砂泥岩与浅灰色泥质粉砂岩、灰白色含砾细砂岩,夹少量薄煤层,主要为河流相。

  • 1.5 中国东部Pb同位素省

  • 自然界中Pb元素包含 3个放射性成因(206Pb、207Pb、208Pb,分别是 238U、235U、232Th 经过衰变后的稳定子体)和 1个非放射性成因(204Pb)同位素(张宏飞等,2012)。钾长石中各种Pb同位素的含量,取决于其最终来源物质的U-Th-Pb体系及其生成时代等诸多因素,在不同地区这些Pb同位素的含量比存在差异(张理刚,1995),据此可以用来区分不同岩石圈板块并揭示其地壳基底的岩石性质。华北板块具有低U/Pb和Th/Pb的特征,华南板块为高U/Pb和Th/Pb体系,东北板块介于二者之间,中国东部岩石圈可划分为东北板块、华北板块和华南板块(包含扬子板块和华夏板块)。在上述板块(省)内部Pb同位素也有较大变化,东北板块可以划分为大兴安岭省(图4a)和佳木斯省(图4b);华北板块主要划分为晋蒙-冀辽省(图4c)、冀北-辽北亚省(图4d)、晋中-冀南-鲁西-辽南省(图4e)、胶东亚省(图4f)和秦岭亚省(图4g);华南板块可以划分为胶南-大别亚省(图4h)、苏-沪省(图4i)、北扬子亚省(图4j)、西南扬子亚省(图4k)、南扬子亚省(图4l)、南岭亚省(图4m)、武夷亚省(图4n)和闽台亚省(图4o)。

  • 图4 中国东部钾长石Pb同位素省分布图(修改自张理刚,1995

  • Fig.4 Provincial distribution map of Pb isotopes of K-feldspar in eastern China (modified from Zhang Ligang, 1995)

  • 1.6 黄河发育演化模式

  • 现今黄河发源于巴颜喀拉山脉,全长约 5464 km,流域面积约 752443 km2,是中国北方最大河流,呈“几”字形,依次流经青藏高原、鄂尔多斯高原、华北平原,最后在山东垦利流入渤海。内蒙古自治区托克托县河口镇以上河段为黄河上游,河口镇至郑州花园口为黄河中游,花园口以下河段为黄河下游(图1)。现今有关黄河中新世演化可归纳为以下几种主要模式:①中新世黄河分段发育模式(图5a):青藏高原东北缘祁连山中新世发育北西—南东向平行分布的条带状山脉,受此影响此时的水系沿这些平行山脉汇入陇西盆地(Lu Huayu et al.,2004; Wang Xianyan et al.,2012; Wang Zhixiang et al.,2018; Meng Kai et al.,2020);通过物源示踪和地貌观察,黄河在中新世进入银川盆地(Bao Guodong et al.,2020)和河套盆地;晋陕峡谷在中新世出现大型河流(王小燕等,2013; Liu Yunming,2020; Li Zhongyun et al.,2022),但对于中新世黄河上游物质是否进入晋陕峡谷,以及黄河是否通过三门峡进入渤海湾盆地或南黄海盆地和东海盆地,上述研究未给出相关结论;② 中新世黄河内流模式(图5b):晋陕峡谷北部(林旭等,2022c)和南部(Liu Jin et al.,2022)中新统砾石层的古流向和锆石U-Pb年龄物源示踪结果表明中新世时存在各自向北和向南流入河套盆地和汾渭盆地的河流,此时上游黄河物质未进入晋陕峡谷,渤海湾盆地中新统馆陶组的碎屑锆石U-Pb年龄物源示踪研究结果显示,黄河在中新世未流入其内(林旭等,2022d)。该模式未对南黄海盆地和东海盆地的中新统开展物源示踪工作;③ 中新世黄河外流模式(图5c):通过开展碎屑锆石U-Pb年龄物源示踪工作,结合沉积地层的沉积相对比研究,部分研究者认为黄河下游物质在中新世已出现在东海盆地和台湾岛地区(Deng Kai et al.,2017; Zhang Xinchang et al.,2017)。这一模式未将黄河上游、中游的同期演化过程进行讨论。

  • 图5 黄河中新世演化模式图

  • Fig.5 Miocene evolution model of the Yellow River

  • (a)—青藏高原东北缘的河流在中新世处于调整阶段,河流汇入陇西盆地(Lu Huayu et al.,2004; Wang Xianyan et al.,2012; Meng Kai et al.,2020);黄河物质在中新世出现在银川盆地(Bao Guodong et al.,2020)和河套盆地;中新世黄河在晋陕峡谷开始发育(Wang Xiaoyan et al.,2013; Liu Yunming,2020; Li Zhongyun et al.,2022);(b)—中新世晋陕峡谷存在古分水岭,发育分别向北和向南流入河套盆地和汾渭盆地的河流(Pan Baotian et al.,2011; 林旭等,2022c; Liu Jin et al.,2022),此时黄河未流入渤海湾盆地(林旭等,2022d);(c)—黄河下游物质在中新世出现在东海盆地和台湾岛地区(Deng Kai et al.,2017; Zhang Xinchang et al.,2017

  • (a) —rivers in the northeastern margin of the Tibetan Plateau were in a phase of adjustment during Miocene and flowed into the Longxi basin (Lu Huayu et al., 2004; Wang Xianyan et al., 2012; Meng Kai et al., 2020) ; Yellow River material appeared in the Yinchuan basin (Bao Guodong et al., 2020) and Hetao basin in Miocene; Yellow River existed in the Shanxi-Shaanxi Gorge during the Miocene (Wang Xiaoyan et al., 2013; Liu Yunming, 2020; Li Zhongyun et al., 2022) ; (b) —there was a paleo-watershed in the Miocene from the Shanxi-Shaanxi Gorge, with rivers flowing northward and southward into Hetao basin and Fenwei basin, respectively (Pan Baotian et al., 2011; Lin Xu et al., 2022c; Liu Jin et al., 2022) , the Yellow River did not flow into the Bohai Bay basin at this time (Lin Xu et al., 2022d) ; (c) —material from the lower Yellow River appeared in the East China Sea basin and Taiwan Island area during the Miocene (Deng Kai et al., 2017; Zhang Xinchang et al., 2017)

  • 2 样品来源与研究方法

  • 2.1 样品来源

  • 对黄河流域中下游主要干流和支流的河漫滩进行样品采集(图3)。干流样品采自黄河韩城段、开封段和利津段,支流样品采样点位于其汇入干流前几公里处,包括河津的汾河、渭南的渭河、洛阳的伊洛河(图6)。由于河流碎屑钾长石的粒径、形状、变质程度对其所含的 Pb同位素的含量均不造成较大影响(Tyrrell et al.,2006),我们在野外采集样品时不进行人为筛选,主要采集河流天然样品,取样点尽量避开人类活动的影响。在每个采样点的不同位置采集砂样,确保样品更具有代表性。长江下游武汉和南京现代河流以及台湾岛中新统的碎屑钾长石引用自Zhang Zengjie et al.(2021,2022),华夏板块的钾长石Pb同位素省数据引用自张理刚(1995)。具体的样品信息见表1。

  • 表1 黄河、长江和台湾岛样品采集信息

  • Table1 Sample collection information in Yellow River, Yangtze River and Taiwan Island

  • 图6 野外样品采集点照片(五角星代表采样地点)

  • Fig.6 Photos of sampling sites in the field (five-pointed stars represent sampling locations)

  • 2.2 研究方法

  • 野外采集的河砂样品经磁选和重液分选后,挑选出钾长石颗粒,并在双目显微镜下进行人工提纯。每件样品随机挑选大于300颗钾长石,将其粘制到环氧树脂靶上,等其凝固后对靶面进行抛光打磨,露出钾长石新鲜的表面并进行背散射光照相,用于辅助选择分析点。在澳大利亚科廷大学地质系的激光剥蚀中心,利用Nu Plasma Ⅱ(英国)多接收质谱仪连接193 nm准分子激光剥蚀系统(Resonetics,Nashua,NH,美国),进行钾长石原位Pb同位素分析。激光斑束为50 μm,剥蚀频率10 Hz,能量密度 2 J/cm2。利用超高压高纯度的He(350 mL/min)、N2(1.0 mL/min)和氩气作为载气(Barham et al.,2021)。每分析10个样品后,测试标样Shap钾长石(Tyrrell et al.,2006)和NIST612(Woodhead and Hergt,2007),以此检验仪器分析的稳定性。利用Micosoft Excel软件处理数据结果,形成二维散点图。运用Kolmogorov-Smirnov(K-S)统计方法的多维判别图(MDS)辅助判别样品206Pb/204Pb比值的远近关系(Vermeesch et al.,2016)。

  • 3 数据结果

  • 从图7可以看到,此次分析的黄河中下游干流和支流现代河流碎屑钾长石颗粒主要呈棱角状和次棱角状,粒径范围大约在20~300 μm之间,基本在一个粒径范围。对6件样品进行378颗钾长石原位Pb同位素分析,并且每件样品的钾长石分析数量都大于60颗,这满足在大河物源示踪研究时通常采用的40颗钾长石的分析数量(Blowick et al.,2019; Zhang Zengjie et al.,2022)。韩城段黄河的钾长石206Pb/204Pb比值都大于14.1而小于18.2,207Pb/204Pb比值介于14.9~16之间(图8a)。汾河的钾长石206Pb/204Pb比值范围为14.4~18.4,207Pb/204Pb比值范围为14.9~15.7(图8b)。渭河的碎屑钾长石的206Pb/204Pb和207Pb/204Pb比值范围分别为14.9~18.8和15.1~15.8(图8c)。伊洛河的碎屑钾长石206Pb/204Pb比值范围在14.2~19.1之间,207Pb/204Pb 比值范围在14.9~15.9之间(图8d)。开封段黄河的钾长石206Pb/204Pb比值范围为14.6~18.9,207Pb/204Pb比值范围为15.1~15.9(图8e)。利津段黄河的碎屑钾长石206Pb/204Pb比值范围在14.0~19.7之间,207Pb/204Pb比值范围在14.8~16.7之间(图8f)。

  • 4 讨论

  • 4.1 黄河、长江和华夏板块的钾长石 Pb 同位素存在差异

  • 当运用某一物源示踪指标开展从“源”到“汇”的研究时,其前提条件是这一指标在诸多潜在物源区彼此间能有效区分。黄河和长江是现今中国东部陆架海碎屑物质的主要输送河流(Zheng Hongbo et al.,2013; Yang Shouye et al.,2016; Huang Xiangtong et al.,2020; 林旭等,2020),因而台湾岛中新统的物源区除了要考虑近源的华夏板块以外,也有可能包含黄河流域和长江流域的物源信息。黄河中下游干支流碎屑钾长石的206Pb/204Pb和207Pb/204Pb比值范围彼此间接近(图8),但与长江中下游干流(Zhang Zengjie et al.,2021)和华夏板块(张理刚,1995)相比,其钾长石206Pb/204Pb比值范围更大,存在14~17之间的特殊分布区域(图9a)。尽管长江中下游和华夏板块的钾长石206Pb/204Pb比值存在部分重叠,但依然能看到后者出现18.6~19之间的特定区域。黄河流域、长江流域和华夏板块位于不同的Pb同位素省(张理刚,1995;图4),这导致三者之间的钾长石Pb同位素组成存在明显差异。结合MDS判定图,明显看到黄河中下游、长江中下游和华夏板块之间的钾长石206Pb/204Pb比值彼此间的距离较远(图9b),这意味着长江中下游和华夏板块的钾长石Pb同位素组成不会对黄河的钾长石物质信号进行干扰。因而,将台湾岛中新统和黄河中下游的钾长石Pb同位素进行对比时,可以清楚判别二者之间是否存在物源关系。因而,钾长石Pb同位素不仅可以有效运用于黄河中新世的演化研究中,这对于今后开展中国东部陆架海的物质扩展研究也具有重要的指示意义。

  • 图7 黄河碎屑钾长石背散射图(图中圆圈代表分析点,数字代表分析时的序号)

  • Fig.7 Backscattering diagram of clastic K-feldspar from the Yellow River (the circle represents the analysis spot and the number represents the serial number during analysis)

  • 图8 黄河钾长石206Pb/204Pb和207Pb/204Pb比值散点图

  • Fig.8 206Pb/204Pb vs.207Pb/204Pb isotope discrimination diagram of single K-feldspar grains from the Yellow River

  • (a)—黄河(韩城),n=63;(b)—汾河(河津),n=65;(c)—渭河(渭南),n=65;(d)—伊洛河(洛阳),n=61;(e)—黄河(开封),n=62;(f)—黄河(利津),n=62

  • (a) —Yellow River (Hancheng City) , n=63; (b) —Fen River (Hejin City) , n=65; (c) —Wei River (Weinan City) , n=65; (d) —Yiluo River (Luoyang City) , n=61; (e) —Yellow River (Kaifeng City) , n=62; (f) —Yellow River (Lijin City) , n=62

  • 4.2 黄河中新世演化过程重建

  • 将大河现代沉积物物源示踪指标与盆地内地层剖面取样分析结果对比,是重建古地理格局、古源汇体系及其演化过程的有效方法(Weltje et al.,2004)。对盆地“源”与“汇”系统化、多元化的物源分析方法最终可重建相对详细的盆地物源演化史。多种方法综合运用排除了采用单一方法时难以忽略的化学风化、沉积再循环等因素的影响,不但能够再现研究区的主要物源变化,明确不同物源区物质组成性质及差异,更能实现物源区演化的精细描述(朱红涛等,2017)。因而,为了约束黄河中新世的演化过程,我们将黄河中下游的钾长石Pb同位素数据与台湾岛中新统的钾长石结果进行对比,同时对区域内已经发表的其他物源示踪结果进行梳理,提供黄河中新世详细的演化过程。

  • 台湾岛下中新统木山组、大寮组,中中新统石底组,上中新统观音山组和桂竹林组的钾长石206Pb/204Pb比值范围都在15~20之间(Zhang Zengjie et al.,2022),在图10中形成的分布区域相对一致,尽管黄河中下游钾长石的206Pb/204Pb 比值与这些地层存在部分重叠区域,但形成了介于16~14之间的特殊分布区域(图10a~e)。结合MDS判定图可以看到,台湾岛中新统的分布距离彼此间接近,形成相对集中的区域,但与黄河中下游各干支流的距离相对较远。因而,黄河中下游的钾长石Pb同位素组成与台湾岛北部和中部中新世地层不存在明显的物源关系。另外,黄河中下游的碎屑锆石U-Pb年龄组成和分布形态(图11a)与台湾岛北部下中新统大寮组、上中新统南庄组和桂竹林组明显不同(图11b~d),这说明黄河中下游物质在中新世未出现在台湾岛北部(Lan Qing et al.,2016; Chen Chenghong et al.,2019)。在台湾岛中部的中新世地层的稀土元素地球化学特征以及碎屑锆石U-Pb定年分析结果也表明此时未出现黄河中下游的碎屑物质信号(Lan Qing et al.,2016; 陈淑慧等,2020; Hou Yuanli et al.,2021)。在台湾岛南部中新世地层的物源主要来自近源的闽江、九龙江(Zhang Xinchang et al.,2014; Tsai et al.,2020)和珠江(Meng Xianbo et al.,2021)。因而,台湾岛在中新世未出现黄河中下游的物质。

  • 图9 黄河、长江(据Zhang Zengjie et al.,2021)和华夏板块(据张理刚,1995)钾长石 206Pb/204Pb 和207Pb/204Pb 比值散点图(a);黄河、长江和华夏板块钾长石206Pb/204Pb同位素比值多维标度图(b)(实线代表最近距离)

  • Fig.9 Scatter plots of 206Pb/204Pb and 207Pb/204Pb ratios of K-feldspar (a) in the Yellow River, Yangtze River (after Zhang Zengjie et al., 2021) and Cathaysia plate (after Zhang Ligang, 1995) ; multi-dimensional scale diagram based on 206Pb/204Pb isotope ratios for Pb isotopic data (b) from the Yellow River, Yangtze River and Cathaysia plate (solid dashed lines represent the closest neighbors)

  • 图10 黄河中下游与台湾岛中新统钾长石 Pb 同位素206Pb/204Pb和207Pb/204Pb比值对比图

  • Fig.10 Comparison map of 206Pb/204Pb and 207Pb/204Pb ratios of K-feldspar Pb isotopes of the middle and lower Yellow River and Miocene strata of Taiwan Island

  • (a)—木山组;(b)—大寮组;(c)—石底组;(d)—观音山组;(e)—桂竹林组(Zhang Zengjie et al.,2022);(f)—黄河中下游现代河流和台湾中新统的钾长石 206Pb/204Pb 同位素比值多维标度图,实线代表最近距离,虚线地表第二近距离

  • (a) —Mushan Formation; (b) —Daliao Formation; (c) —Shidi Formation; (d) —Guanyinshan Formation; (e) —Guizhulin Formation (Zhang Zengjie et al., 2022) ; (f) —multi-dimensional scale diagram of 206Pb/204Pb isotope ratios of K-feldspar in modern river sediments of Yellow River and Miocene strata of Taiwan Island, solid and dashed lines represent the closest and second closest neighbors, respectively

  • 现今黄河自三门峡流出后进入华北板块,受鲁中山区的阻挡,其流向时而向北进入渤海湾盆地,时而向南进入南黄海盆地,其河道在华北平原发生数次摆动(闫纪元等,2021)。因而,渤海湾盆地和南黄海盆地,甚至东海盆地都有可能是黄河中下游物质潜在的沉积“汇”区。渤海湾盆地中新统馆陶组在盆地内分布广泛,主要以辫状河、曲流河以及浅湖相沉积物为主(姚翔,2019;图3a)。黄河中下游(图11a)与渤海湾盆地西部(图11e)和东部(图11f)中新世钻孔的碎屑锆石 U-Pb 年龄对比结果表明黄河在此时未进入渤海湾盆地,其主要以近源造山带物质为主(林旭等,2022d)。渤海湾盆地第四系钻孔的物源示踪结果表明,黄河出现的时间推后至早更新世(1.6~0.9 Ma;Yao Zhengquan et al.,2017; Xiao Guoqiao et al.,2020; Yang Jilong et al.,2021)。南黄海盆地新近纪广泛沉积浅湖和河流相中新世地层(邱燕等,2016; 姚翔,2019;图3b)。黄河中下游(图11a)与南黄海盆地北(图11g)和南黄海盆地南(图11h、i)中新世地层在锆石U-Pb年龄组成和形态分布上都存在明显差异(Yang Jie et al.,2009; Nie Junsheng et al.,2015),因而此时黄河与上述盆地不存在物源联系(Fu Xiaowei et al.,2021)。黄河中下游物质直到早更新世(1.5~0.9 Ma)出现在南黄海盆地(何梦颖等,2019; Zhang Jin et al.,2019; Huang Xiangtong et al.,2021)。东海盆地中新世主要以河流和湖相沉积为主(Zhu Weilin et al.,2019;图3c)。东海盆地北部(图11j~l)和南部(图11m~r)中新统的碎屑锆石U-Pb年龄组成和形态分布特征(Fu Xiaowei et al.,2021)与黄河下游也存在明显差异(Yang Jie et al.,2009; Nie Junsheng et al.,2015),这意味着此时二者的物源联系还没有建立起来。因而,总体来看,黄河中下游物质在中新世未出现在华北板块东部的渤海湾盆地和扬子板块东部的南黄海盆地和东海盆地。

  • 中新世祁连山东段发育沿着平行山脉流动的河流流入陇西盆地(Lu Huayu et al.,2004; Wang Xianyan et al.,2012; Meng Kai et al.,2020;图12a)。此时,黄河在青藏高原处于水系调整阶段。碎屑锆石U-Pb年龄和重矿物组合物源示踪结果表明,黄河物质在12~7 Ma出现在银川盆地南部(Bao Guodong et al.,2020)。河套盆地在晚中新世发育河流砾石层,碎屑锆石U-Pb年龄物源示踪结果揭示这些砾石层中的砂层物质来自黄河(李维东等,2020),银川盆地和河套盆地在中新世成为区域汇水中心。黄河中游的晋陕峡谷是衔接其上游和下游的关键河段,这段黄河何时出现对理解整个黄河水系的形成过程至关重要。根据晋陕峡谷内广泛出现的中新世砾石层,有学者认为黄河此时已在晋陕峡谷内发育(王小燕等,2013; Liu Yunming,2020; Li Zhongyun et al.,2022)。晋陕峡谷北段中新统砾石层的古流向和碎屑锆石U-Pb年龄物源示踪结果表明,在晚中新世和上新世(6.2~3.7 Ma)峡谷发育分别向北和向南流入河套盆地和汾渭盆地的河流(Pan Baotian et al.,2011; 林旭等,2022c),这一河流流动样式直到1.2~1.0 Ma随着上游黄河贯通晋陕峡谷而结束(Hu Zhenbo et al.,2017; Liu Jin et al.,2022)。三门峡是黄河东流入海的最后一道障碍,重矿物组合和锆石U-Pb年龄物源示踪结果表明,黄河物质在上新世和早更新世(5~2.5 Ma)出现在三门峡(Zhang Hanzhi et al.,2021; Liu Jin et al.,2022; Wang Zhixiang et al.,2022),而黄河最终在1.5~1.2 Ma切穿三门峡东流(Kong Ping et al.,2014; Liu Jin et al.,2019; Hu Zhenbo et al.,2019; Chen Qu et al.,2022),这再次证明黄河物质在中新世未流出汾渭盆地进入渤海湾盆地或黄海盆地、东海盆地。因而,现代意义上的黄河是在早更新世黄河上游、中游和下游贯穿流经沉积盆地而形成的(图12b)。综上所述,黄河上游、中游和下游在中新世存在各自发育的汇水中心,此时黄河没有完成连通青藏高原东北缘、鄂尔多斯高原和华北平原的地质过程。

  • 图11 中国东部河流和盆地锆石 U-Pb 峰值年龄对比图

  • Fig.11 Comparison map of zircon U-Pb peak age of rivers and basins in eastern China

  • (a)—黄河中下游(Yang Jie et al.,2009; Nie Junsheng et al.,2015);中新统:(b~d)—台湾岛(Lan Qing et al.,2016);(e)—渤海湾盆地西(Xiao Guoqiao et al.,2020);(f)—渤海湾盆地东(Sun Zhongheng et al.,2020);(g)—南黄海盆地北(Fu Xiaowei et al.,2021);(h、i)—南黄海盆地南(Fu Xiaowei et al.,2021);(j~l)—东海盆地北(Fu Xiaowei et al.,2021);(m~r)—东海盆地南(Fu Xiaowei et al.,2021

  • (a) —middle and lower Yellow River (Yang Jie et al., 2009; Nie Junsheng et al., 2015) ; Miocene strata: (b~d) —Taiwan Island (Lan Qing et al., 2016) ; (e) —western Bohai Bay basin (Xiao Guoqiao et al., 2020) ; (f) —eastern Bohai Bay basin (Sun Zhongheng et al., 2020) ; (g) —northern South Yellow Sea basin (Fu Xiaowei et al., 2021) ; (h, i) —southern South Yellow Sea basin (Fu Xiaowei et al., 2021) ; (j~l) —northern East China Sea basin (Fu Xiaowei et al., 2021) ; (m~r) —southern East China Sea basin (Fu Xiaowei et al., 2021)

  • 4.3 构造活动控制黄河中新世的演化过程

  • 进入新近纪,随着印度板块持续向欧亚大陆俯冲,青藏高原东北缘向北东方向扩展(图13a),遇到华北板块的硬性阻挡,导致祁连山内部各条带状山脉快速隆升(10~8 Ma;Zheng Dewen et al.,2010; Fang Xiaomin et al.,2013),陇西盆地开始裂解为多个小盆地,成为区域汇水中心(Liu-Zeng Jing et al.,2008)。此时青藏高原东北缘进入主挤出构造阶段,受此影响六盘山在 10~8 Ma 出现强烈隆升(Lin Xiubin et al.,2010),鄂尔多斯地块出现逆时针旋转(Shi Wei et al.,2020)。沿着鄂尔多斯地块周缘的西部、北部、东部和南部的贺兰山(Liu Jianhui et al.,2010)、阴山(Peng Heng et al.,2021)、太行山(Clinkscales et al.,2021)、中条山(Su Peng et al.,2021)和秦岭(Liu Jianhui et al.,2013)在 10~8 Ma 整体隆升,与这些造山带紧邻的银川盆地(图13b)、河套盆地(图13c)和汾渭盆地(图13d)进入快速断陷阶段,盆地内沉积了约 2 km 的河湖相地层(Shi Wei et al.,2020),发展为区域汇水中心。进入中新世,太平洋板块向欧亚大陆俯冲的方向转变为北西西(Liang Jintong et al.,2019),中国东部伸展拉张环境逐渐减弱。苏鲁造山带、鲁中山区、太行山和燕山山脉内部基岩遭受新一期剥露(林旭等,2022e),上述造山带隆升-剥露产生的碎屑物质进入南黄海盆地和渤海湾盆地后,导致后者进入坳陷演化阶段,盆山耦合关系进一步加强,从而奠定了太行山以东的中国北方盆-山地貌分布格局的雏形(图12a)。因而,中国北方自西向东在中新世出现明显的构造活动,而黄河流域与这一构造活动的波及范围很大程度上重叠。

  • 图12 黄河中新世(a)和更新世演化重建图(b)

  • Fig.12 Miocene (a) and Pleistocene (b) evolution reconstruction map of the Yellow River

  • 青藏高原在新近纪早期的隆升高度明显能阻挡来自西太平洋和印度洋的湿润空气进入中国西北内陆(Su Tao et al.,2019; Xiong Zhongyu et al.,2022);随着中亚地区新特提斯洋海退,大面积陆地开始出露(Sun Jimin et al.,2021);北极和南极一样被冰盖覆盖(Zachos et al.,2001);西太平洋暖池的发育(Gallagher et al.,2009),这些地质过程共同导致亚洲大陆的海陆热力性出现显著差异,驱动东亚和南亚季风增强(An Zhisheng et al.,2001; Guo Zhengtang et al.,2002; Ao Hong et al.,2021; Sun Jimin et al.,2022)。但通过上文的讨论与分析,我们知道在中国北方此时未出现串联青藏高原、华北板块和中国东部陆架海的黄河水系,说明构造活动而不是气候作用主导了黄河水系在中新世的发育过程。尤其当六盘山在中新世的隆升确立了青藏高原和鄂尔多斯高原的地貌边界,贺兰山-银川盆地、阴山-河套盆地、吕梁山-晋陕峡谷、中条山-秦岭-汾渭盆地的盆山耦合关系在此时的建立,这都约束了黄河的流向,奠定了黄河后续演化的地貌框架。也正是因为黄河中游存在如此多的深大断陷盆地,阻碍了其上游、中游和下游的串联过程。因而,黄河全流域的贯通滞后于区域内构造地貌分异的时间。鉴于黄河中游存在的这一特殊的地貌特征,今后对黄河这样长度超过 5000 km的大陆尺度的大河的研究,应将上游、中游和下游的分段研究与全流域的整体研究进行协调,这样有利于得到更为详细的黄河演化信息。

  • 图13 中新世黄河流域构造和气候特征分布图(a)(修改自Wang Guiling et al.,2023); 银川盆地、河套盆地和汾渭盆地横剖面图(b~d)(修改自Shi Wei et al.,2020

  • Fig.13 Distribution map of Miocene tectonic and climatic characteristics in the Yellow River basin (a) (modified from Wang Guiling et al., 2023) ; cross-sectional maps of Yinchuan basin, Hetao basin and Fenwei basin (b~d) (modified from Shi Wei et al., 2020)

  • 5 结论

  • 通过对黄河中下游干支流进行的碎屑钾长石Pb同位素分析,将其与长江、台湾岛中新统和华夏板块的钾长石Pb同位素结果进行对比,结合已发表的研究结果,我们得到如下结论:

  • 黄河中下游、长江中下游和华夏板块的钾长石Pb同位素彼此间存在明显差异。在此基础上,通过对比发现,黄河中下游与台湾岛中新统的碎屑钾长石Pb同位素特征存在明显差异,二者不存在物源联系,黄河此时未流入台湾岛。

  • 致谢:衷心感谢两名审稿人提出的宝贵建议和问题。感谢中国地震局地质研究所博士研究生李兆宁在野外样品采集过程中的帮助。

  • 参考文献

    • Ao Hong, Rohling E J, Zhang Ran, Roberts A P, Holbourn A E, Ladant J B, An Zhisheng. 2021. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary. Nature Communications, 12(1): 1~13.

    • An Zhisheng, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62~66.

    • Bao Guodong, Chen Hong, Zhao Xitao. 2020. Late Miocene Yellow River formation in Qingtongxia area, North China: Detrital zircon and heavy mineral analysis at Niushou Mountain, Ningxia. Geological Journal, 55(11): 7304~7321.

    • Barham M, Kirkland C L, Hovikoski J, Alsen P, Hollis J, Tyrrell S. 2021. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting. Sedimentology, 68(2): 531~556.

    • Blowick A, Haughton P, Tyrrell S, Holbrook J, Chew D, Shannon P. 2019. All mixed up: Pb isotopic constraints on the transit of sands through the Mississippi-Missouri River drainage basin, North America. Bulletin, 131(9-10): 1501~1518.

    • Chen Chenghong, Lee Chiyu, Lin Jianwei, Chu Meifei. 2019. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190: 224~246.

    • Chen Qu, Liu Xiuming, Zhao Guoyong, Jia Jia, Ye Wei, Lu Bin, Michael M, Guan Jueqi. 2022. 0. 2 Ma or 1. 2 Ma? Timing of the linking of the Middle and Lower Reaches of the Yellow River inferred from loess-palaeosol sequences. Geophysical Research Letters, 49(6): e2021GL097510.

    • Chen Shuhui, Hou Yuanli, Shao Lei, Huang Qiyu, Qiao Peijun, Cui Yuchi, Meng Xianbo. 2020. Eocene-Miocene sediments source and environmental study of Taiwan. Acta Sedimentologica Sinica, 38(2): 319~330 (in Chinese with English abstract).

    • Clift P D, Long H V, Hinton R, Ellam R M, Hannigan R, Tan M T, Duc N A. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. Geochemistry, Geophysics, Geosystems, 9(4): 1~29.

    • Clinkscales C, Kapp P, Thomson S, Wang H, Laskowski A, Orme D A, Pullen A. 2021. Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics, 40(3): e2020TC006416.

    • Deng Kai, Yang Shouye, Li Chao, Su Ni, Bi Lei, Chang Yuepin, Chang Suchin. 2017. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China's mainland. Earth-Science Reviews, 164: 31~47.

    • Fang Xiaomin, Liu Dongliang, Song Chunhui, Dai Shuang, Meng Qingquan. 2013. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geological Society, London, Special Publications, 373(1): 149~171.

    • Fu Xiaowei, Zhu Weilin, Geng Jianhua, Yang Shouye, Zhong Kai, Huang Xiangtong, Zhang Luyao, Xu Xi. 2021. The present-day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages. Journal of Asian Earth Sciences, 205: 104600.

    • Gallagher S J, Wallace M W, Li C L, Kinna B, Bye J T, Akimoto K, Torii M. 2009. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography, 24(1): 1~27.

    • Guo Zhengtang, Ruddiman W F, Hao Qingzhen, Wu Haibin, Qiao Yansong, Zhu Rixiang, Liu Tungsheng. 2002. Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. Nature, 416(6877): 159~163.

    • He Mengying, Mei Xi, Zhang Xunhua, Liu Jian, Guo Xingwei, Zheng Hongbo. 2019. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-1 in the continental shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85~95 (in Chinese with English abstract).

    • Hou Yuanli, Zhu Weilin, Qiao Peijun, Huang Chiyue, Cui Yuchi, Meng Xianbo. 2021. Sediment source and environment evolution in Taiwan Island during the Eocene-Miocene. Acta Oceanologica Sinica, 40(2): 114~122.

    • Hu Zhenbo, Pan Baotian, Bridgland D, Vandenberghe J, Guo Lianyong, Fan Yunlong, Westaway R. 2017. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quaternary Science Reviews, 166: 324~338.

    • Hu Zhenbo, Li Menghao, Dong Zhijun, Guo Lianyong, Bridgland D, Pan Baotian, Liu Xiaohua. 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change, 178: 129~138.

    • Huang Chiyue, Yuan P B, Lin Chingweei, Wang T K, Chang Chungpai. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2): 1~21.

    • Huang Chiyue, Yan Yi, Zhao Quanhong, Lin Chiouting. 2012. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130~3149.

    • Huang Xiangtong, Song Jiaze, Yue Wei, Wang Zhongbo, Mei Xi, Li Yalong, Li Fangliang, Lian Ergang, Yang Shouye. 2020. Detrital zircon U-Pb ages in the east China seas: Implications for provenance analysis and sediment budgeting. Minerals, 10(5): 398: 1~20.

    • Huang Xiangtong, Mei Xi, Yang Shouye, Zhang Xunhua, Li Fangliang, Hohl S V. 2021. Disentangling combined effects of sediment sorting, provenance, and chemical weathering from a Pliocene-Pleistocene sedimentary core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569.

    • Kong Ping, Jia Jun, Zheng Yong. 2014. Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395~407.

    • Lan Qing, Yan Yi, Huang Chiyue, Santosh M, Shan Yehua, Chen Wenhuang, Yu Mengming, Qian Kun. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36: 376~389.

    • Li Sanzhong, Zhao Guochun, Dai Liming, Zhou Lihong, Liu Xin, Suo Yanhui, Santosh M. 2012. Cenozoic faulting of the Bohai Bay basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 47: 80~93.

    • Li Weidong, Zhao Xitao, Yang Yan, Wu Zhenhan. 2020. Formation age and provenance analysis of the gravel layer in the Yellow River terraces of the Hetao basin. Acta Geologica Sinica, 41(4): 515~524 (in Chinese with English abstract).

    • Li Zhongyun, Zhang Ke, Liang Hao, Chen Zhen, Ma Zhanwu, Xiong Jianguo, Huang Ping. 2022. Large river chronology along the Jinshaan Gorge on the Yellow River and its implications for initialization. Geomorphology, 108092.

    • Liang Jintong, Wang Hongliang. 2019. Cenozoic tectonic evolution of the East China Sea Shelf basin and its coupling relationships with the Pacific Plate subduction. Journal of Asian Earth Sciences, 171: 376~387.

    • Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).

    • Lin Chiouting, Watts A B, Hesselbo S P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4): 453~478.

    • Lin Xiubin, Chen Hanlin, Wyrwoll K H, Cheng Xiaogan. 2010. Commencing uplift of the Liupan Shan since 9. 5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37(4): 350~360.

    • Lin Xu, Liu Jing, Wu Zhonghai, Wang Shimei, Zhao Xitao, Chen Yong, Li Zhaoning, Liu Haijin. 2020. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China. Acta Geologica Sinica, 94(10): 3024~3035 (in Chinese with English abstract).

    • Lin Xu, Li Chang'an. 2022a. Are detrital materials from the Yellow River associated with desert/sandy land provenances in Northwest China? Earth Science, 47(10): 3633~3647 (in Chinese with English abstract).

    • Lin Xu, Liu Haijin, Liu Jing, Wu Zhonghai, Li Zhaoning, Chen Jixin, Li Lingling, Hu Chengwei. 2022b. Provenance tracing of Pb isotopes of fluvial detrital K-feldspar from the Yellow River basin. Seismology and Geology, 44(4): 944~960 (in Chinese with English abstract).

    • Lin Xu, Li Lingling, Liu Haijin, Chen Jixin. 2022c. Sediments of the upper reaches of Yellow River did not enter into Jinshan Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568~582 (in Chinese with English abstract).

    • Lin Xu, Liu Haijin, Liu Jing, Chen Jixin, Li Lingling. 2022d. The Yellow River did not enter the Bohai Bay basin during the Miocene: Constraints from detrital zircon U-Pb ages. Acta Geologica Sinica, 96(7): 2506~2518(in Chinese with English abstract).

    • Lin Xu, Wu Lin, Jolivet Marc, Li Chang'an, Liu Haijin. 2022e. Apatite (U-Th)/He thermochronology evidence for two Cenozoic denudation events in the eastern part of the Sulu orogenic belt. Earth Sciences, 47(4): 1162~1176 (in Chinese with English abstract).

    • Liu Jianhui, Zhang Peizhen, Zheng Dewen, Wan Jinglin, Wang Weitao, Du Peng, Lei Qiyun. 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China. Science China Earth Sciences, 53(3): 345~355.

    • Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.

    • Liu Jin, Chen Xingqiang, Shi Wei, Chen Peng, Zhang Yu, Hu Jianmin, Dong Shuwen, Li Tingdong. 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry. Journal of Asian Earth Sciences, 179: 350~364.

    • Liu Jin, Wang Ping, Chen Xingqiang, Shi Wei, Song Lijun, Hu Jianmin. 2022. The changes of drainage systems of Weihe basin and Sanmenxia basin since Late Pliocene give new insights to the Yellow River evolution. Frontiers-Earth Science, 9: 820674.

    • Liu Yunming. 2020. Neogene fluvial sediments in the northern Jinshaan Gorge, China: Implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109675.

    • Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. Journal of Geophysical Research: Earth Surface, 113(F4): 1~26.

    • Lu Huayu, Wang Xiaoyong, An Zhisheng, Miao Xiaodong, Zhu Rixiang, Ma Haizhou, Wang Xianyan. 2004. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Science in China: Earth Sciences, 47: 822~833.

    • Métivier F, Gaudemer Y, Tapponnier P, Klein M. 1999. Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280~318.

    • Meng Kai, Wang Erqi, Chu J J, Su Zhe, Fan Chun. 2020. Late Cenozoic river system reorganization and its origin within the Qilian Shan, NE Tibet. Journal of Structural Geology, 138: 104128.

    • Meng Xianbo, Shao Lei, Cui Yuchi, Zhu Weilin, Qiao Peijun, Sun Zhen, Hou Yuanli. 2021. Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the luzon subduction system. Marine and Petroleum Geology, 124: 104820.

    • Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.

    • Pan Baotian, Hu Zhenbo, Wang Junping, Vandenberghe J, Hu Xiaofei. 2011. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 125(1): 225~238.

    • Peng Heng, Wang Jianqiang, Liu Chiyang, Huang Lei, Zattin M. 2021. Mesozoic exhumation and ca. 10 Ma reactivation of the southern Yin Shan, North China, revealed by low-temperature thermochronology. Tectonophysics, 229189.

    • Qiu Yan, Wang Lifei, Huang Wenkai. 2016. The Mesozoic and Cenozoic Sedimentary Basins in the Sea Area of China. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Shi Wei, Dong Shuwen, Hu Jianmin. 2020. Neotectonics around the Ordos Block, North China: A review and new insights. Earth-Science Reviews, 200: 102969.

    • Su Peng, He Honglin, Tan Xibin, Liu Yiduo, Shi Feng, Kirby E. 2021. Initiation and evolution of the Shanxi rift system in North China: Evidence from low-temperature thermochronology in a plate reconstruction framework. Tectonics, 40(3): e2020TC006298.

    • Su Qi, Kirby E, Ren Zhikun, Zhang Peizhen, Zhang Huiping, Manopkawee P, Lei Qiyun. 2020. Chronology of the yellow river terraces at qingtong gorge (NE Tibet): Insights into evolution of the Yellow River since the middle Pleistocene. Geomorphology, 349: 106889.

    • Su Tao, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Science Advances, 5(3): eaav2189.

    • Sun Jimin, Talebian M, Jin Chunsheng, Liu Weiguo, Zhang Zhilang, Cao Mengmeng, Tian Shengchen. 2021. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Global and Planetary Change, 197: 103395.

    • Sun Jimin, Ding Zhongli, Xiao Wenjiao, Windley B F. 2022. Coupling between uplift of the Central Asian Orogenic Belt-NE Tibetan Plateau and accumulation of aeolian red clay in the inner Asia began at ~7 Ma. Earth-Science Reviews, 103919.

    • Sun Zhongheng, Zhu Hongtao, Xu Changgui, Yang Xianghua, Du Xiaofeng. 2020. Reconstructing provenance interaction of multiple sediment sources in continental down-warped lacustrine basins: An example from the Bodong area, Bohai Bay basin, China. Marine and Petroleum Geology, 113: 104142.

    • Tsai C H, Shyu J B H, Chung S L, Lee H Y. 2020. Miocene sedimentary provenance and paleogeography of the Hengchun Peninsula, southern Taiwan: Implications for tectonic development of the Taiwan orogen. Journal of Asian Earth Sciences, 194: 104032.

    • Tyrrell S, Haughton P D W, Daly J S, Kokfelt T F, Gagnevin D. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England. Journal of Sedimentary Research, 76(2): 324~345.

    • Tyrrell S, Haughton P D, Daly J S, Shannon P M, Sylvester P. 2012. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada, Short Course Series, 42 203~217.

    • Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance analysis. Sedimentary Geology, 336: 14~25.

    • Wang Guiling, Lin Wenjing, Liu Feng, Gan Haonan, Wang Siqi, Yue Gaofan, Long Xiting, Liu Yanguang. 2023. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice. Acta Geologica Sinica, 97(3): 639~660 (in Chinese with English abstract).

    • Wang Pinxian. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. Geophysical Monograph Series, 149: 1~22.

    • Wang Xianyan, Lu Huayu, Vandenberghe J, Zheng Shaohua, van Balen R. 2012. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Global and Planetary Change, 88: 10~19.

    • Wang Xiaoyan, Qiu Weili, Zhang Jiafu, Li Rongquan, Zhou Liping. 2013. Features of the alluvium on Tangxian surface near Baode-Fugu and its geomorphologic implications in the northern Jinshaan Gorge, Yellow River. Quaternary Sciences, 33(4): 715~722 (in Chinese with English abstract).

    • Wang Zhixiang, Shen Yongjin, Licht A, Huang Chunjun. 2018. Cyclostratigraphy and magnetostratigraphy of the middle Miocene Ashigong Formation, Guide basin, China, and its implications for the paleoclimatic evolution of NE Tibet. Paleoceanography and Paleoclimatology, 33(10): 1066~1085.

    • Wang Zhixiang, Mao Yongdong, Geng Jianzhen, Huang Chunjun, Ogg J, Kemp D B, Zhang Ze, Pang Zhibin, Zhang Rui. 2022. Pliocene-Pleistocene evolution of the lower Yellow River in eastern North China: Constraints on the age of the Sanmen Gorge connection. Global and Planetary Change, 103835.

    • Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1-4): 1~11.

    • Woodhead J D, Hergt J M. 2007. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostandards Newslett, 25: 261~266.

    • Xiao Guoqiao, Sun Yuqi, Yang Jilong, Yin Qiuzhen, Dupont-Nivet G, Licht A, Wu Zhipeng. 2020. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109691.

    • Xiong Zhongyu, Liu Xiaohui, Ding Lin, Farnsworth A, Spicer R A, Xu Qiang, Yue Yahui. 2022. The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944.

    • Xu Qinmian, Yuan Guibang, Ding Jianxun, Zhang Wei, Xin Houtian, Deng Chenglong. 2019. Cenozoic tectonic and paleoenvironmental evolution of northwestern China: Evidence from two deep boreholes in the Jartai basin. Journal of Asian Earth Sciences, 173: 98~112.

    • Yan Jiyuan, Hu Jianmin, Wang Dongming, Gong Wangbin, Liang Xiang. 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic. Geological Bulletin of China, 40(5): 623~648 (in Chinese with English abstract).

    • Yang Jie, Gao Shan, Chen Chen, Tang Yongyong, Yuan Honglin, Gong Hujun, Wang Jianqi. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660~2673.

    • Yang Jilong, Yuan Haifan, Hu Yunzhuang, Wang Fu. 2021. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River. Geomorphology, 108077.

    • Yang Shouye, Bi Lei, Li Chao, Wang Zhongbo, Dou Yanguang. 2016. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary. Geological Society, London, Special Publications, 429(1): 137~152.

    • Yao Xiang. 2019. Residual subsidence of the Cenozoic rift basin in the East Asian continental margin and its genesis analysis. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Yao Zhengquan, Shi Xuefa, Qiao Shuqing, Liu Qingsong, Kandasamy S, Liu Jianxing, Dou Yanguang. 2017. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago. Scientific Reports, 7(1): 1~11.

    • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686~693.

    • Zhang Hanzhi, Lu Huayu, Zhou Yali, Cui Yingying, He Jing, Lv Hengzhi, Wang Kexin, Wang Xianyan. 2021. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072.

    • Zhang Hongfei, Gao Shan. 2012. Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R S, Kirby E, Liu Shaofeng. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.

    • Zhang Jin, Wan Shiming, Clift P D, Huang Jie, Yu Zhaojie, Zhang Kaidi, Zhang Xunhua. 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3. 5 Ma: Tectonic or climate forcing? Quaternary Science Reviews, 216: 74~88.

    • Zhang Ligang. 1995. Block Geology of Eastern Asia Lithosphere-Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Beijing: Science Press(in Chinese with English abstract).

    • Zhang Xinchang, Yan Yi, Huang Chiyue, Chen Duofu, Shan Yehua, Lan Qing, Yu Mengming. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85: 26~39.

    • Zhang Xinchang, Huang Chiyue, Wang Yuejun, Clift P D, Yan Yi, Fu Xiaowei, Chen Duofu. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634~651.

    • Zhang Zengjie, Daly J S, Tyrrell S, Sun Xilin, Badenszki E, Li Yawei, Yan Yi. 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma. Earth-Science Reviews, 216: 103601.

    • Zhang Zengjie, Daly J S, Yan Yi, Badenszki E, Sun Xilin, Tian Yuntao. 2022. Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K-feldspar in Taiwan. Chemical Geology, 120740.

    • Zheng Dewen, Clark M K, Zhang Peizhen, Zheng Wenjun, Farley K A. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere, 6(6): 937~941.

    • Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.

    • Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870(in Chinese with English abstract).

    • Zhu Weilin. 2010. Atlas of Petroliferous Basins in Chinese Waters. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Zhu Weilin, Zhong Kai, Fu Xiaowei, Chen Chunfeng, Zhang Minqiang, Gao Shunli. 2019. The formation and evolution of the East China Sea Shelf basin: A new view. Earth-Science Reviews, 190: 89~111.

    • 陈淑慧, 侯元立, 邵磊, 黄奇瑜, 乔培军, 崔宇驰, 孟宪博. 2020. 台湾始新统-中新统沉积物源与沉积环境. 沉积学报, 38(2): 319~330.

    • 何梦颖, 梅西, 张训华, 刘健, 郭兴伟, 郑洪波. 2019. 南黄海陆架区 CSDP-1 孔沉积物碎屑锆石 U-Pb 年龄物源判别. 吉林大学学报(地球科学版), 49(1): 85~95.

    • 李维东, 赵希涛, 杨艳, 吴珍汉. 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析. 地球学报, 41(4): 515~524.

    • 林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化, 源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.

    • 林旭, 刘静, 吴中海, 王世梅, 赵希涛, 陈勇, 李兆宁, 刘海金. 2020. 中国北部陆架海碎屑锆石 U-Pb 年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024~3035.

    • 林旭, 李长安. 2022a. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?地球科学, 47(10): 3633~3647.

    • 林旭, 刘海金, 刘静, 吴中海, 李兆宁, 陈济鑫, 李玲玲, 胡程伟. 2022b. 黄河流域碎屑钾长石Pb同位素物源示踪. 地震地质, 44(4): 944~960.

    • 林旭, 李玲玲, 刘海金, 陈济鑫. 2022c. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568~582.

    • 林旭, 刘海金, 刘静, 陈济鑫, 李玲玲. 2022d. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束. 地质学报, 96(7): 2506~2518.

    • 林旭, 吴林, Jolivet Marc, 李长安, 刘海金. 2022e. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162~1176.

    • 邱燕, 王立飞, 黄文凯. 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.

    • 王贵玲, 蔺文静, 刘峰, 甘浩男, 王思琪, 岳高凡, 龙西亭, 刘彦广. 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639~660.

    • 王小燕, 邱维理, 张家富, 李容全, 周力平. 2013. 晋陕峡谷北段保德-府谷地区唐县面上冲积物的特征及其地貌意义. 第四纪研究, 33(4): 715~722.

    • 姚翔. 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因. 中国地质大学(北京)博士学位论文.

    • 闫纪元, 胡健民, 王东明, 公王斌, 梁霞. 2021. 黄淮海平原晚新生代重大地质事件. 地质通报, 40(5): 623~648.

    • 张宏飞, 高山. 2012. 地球化学. 北京: 地质出版社.

    • 张理刚. 1995. 东亚岩石圈块体地质: 上地幔, 基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.

    • 朱伟林. 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社.

  • 参考文献

    • Ao Hong, Rohling E J, Zhang Ran, Roberts A P, Holbourn A E, Ladant J B, An Zhisheng. 2021. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary. Nature Communications, 12(1): 1~13.

    • An Zhisheng, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62~66.

    • Bao Guodong, Chen Hong, Zhao Xitao. 2020. Late Miocene Yellow River formation in Qingtongxia area, North China: Detrital zircon and heavy mineral analysis at Niushou Mountain, Ningxia. Geological Journal, 55(11): 7304~7321.

    • Barham M, Kirkland C L, Hovikoski J, Alsen P, Hollis J, Tyrrell S. 2021. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting. Sedimentology, 68(2): 531~556.

    • Blowick A, Haughton P, Tyrrell S, Holbrook J, Chew D, Shannon P. 2019. All mixed up: Pb isotopic constraints on the transit of sands through the Mississippi-Missouri River drainage basin, North America. Bulletin, 131(9-10): 1501~1518.

    • Chen Chenghong, Lee Chiyu, Lin Jianwei, Chu Meifei. 2019. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190: 224~246.

    • Chen Qu, Liu Xiuming, Zhao Guoyong, Jia Jia, Ye Wei, Lu Bin, Michael M, Guan Jueqi. 2022. 0. 2 Ma or 1. 2 Ma? Timing of the linking of the Middle and Lower Reaches of the Yellow River inferred from loess-palaeosol sequences. Geophysical Research Letters, 49(6): e2021GL097510.

    • Chen Shuhui, Hou Yuanli, Shao Lei, Huang Qiyu, Qiao Peijun, Cui Yuchi, Meng Xianbo. 2020. Eocene-Miocene sediments source and environmental study of Taiwan. Acta Sedimentologica Sinica, 38(2): 319~330 (in Chinese with English abstract).

    • Clift P D, Long H V, Hinton R, Ellam R M, Hannigan R, Tan M T, Duc N A. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. Geochemistry, Geophysics, Geosystems, 9(4): 1~29.

    • Clinkscales C, Kapp P, Thomson S, Wang H, Laskowski A, Orme D A, Pullen A. 2021. Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics, 40(3): e2020TC006416.

    • Deng Kai, Yang Shouye, Li Chao, Su Ni, Bi Lei, Chang Yuepin, Chang Suchin. 2017. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China's mainland. Earth-Science Reviews, 164: 31~47.

    • Fang Xiaomin, Liu Dongliang, Song Chunhui, Dai Shuang, Meng Qingquan. 2013. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geological Society, London, Special Publications, 373(1): 149~171.

    • Fu Xiaowei, Zhu Weilin, Geng Jianhua, Yang Shouye, Zhong Kai, Huang Xiangtong, Zhang Luyao, Xu Xi. 2021. The present-day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages. Journal of Asian Earth Sciences, 205: 104600.

    • Gallagher S J, Wallace M W, Li C L, Kinna B, Bye J T, Akimoto K, Torii M. 2009. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography, 24(1): 1~27.

    • Guo Zhengtang, Ruddiman W F, Hao Qingzhen, Wu Haibin, Qiao Yansong, Zhu Rixiang, Liu Tungsheng. 2002. Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. Nature, 416(6877): 159~163.

    • He Mengying, Mei Xi, Zhang Xunhua, Liu Jian, Guo Xingwei, Zheng Hongbo. 2019. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-1 in the continental shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85~95 (in Chinese with English abstract).

    • Hou Yuanli, Zhu Weilin, Qiao Peijun, Huang Chiyue, Cui Yuchi, Meng Xianbo. 2021. Sediment source and environment evolution in Taiwan Island during the Eocene-Miocene. Acta Oceanologica Sinica, 40(2): 114~122.

    • Hu Zhenbo, Pan Baotian, Bridgland D, Vandenberghe J, Guo Lianyong, Fan Yunlong, Westaway R. 2017. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quaternary Science Reviews, 166: 324~338.

    • Hu Zhenbo, Li Menghao, Dong Zhijun, Guo Lianyong, Bridgland D, Pan Baotian, Liu Xiaohua. 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change, 178: 129~138.

    • Huang Chiyue, Yuan P B, Lin Chingweei, Wang T K, Chang Chungpai. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2): 1~21.

    • Huang Chiyue, Yan Yi, Zhao Quanhong, Lin Chiouting. 2012. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130~3149.

    • Huang Xiangtong, Song Jiaze, Yue Wei, Wang Zhongbo, Mei Xi, Li Yalong, Li Fangliang, Lian Ergang, Yang Shouye. 2020. Detrital zircon U-Pb ages in the east China seas: Implications for provenance analysis and sediment budgeting. Minerals, 10(5): 398: 1~20.

    • Huang Xiangtong, Mei Xi, Yang Shouye, Zhang Xunhua, Li Fangliang, Hohl S V. 2021. Disentangling combined effects of sediment sorting, provenance, and chemical weathering from a Pliocene-Pleistocene sedimentary core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569.

    • Kong Ping, Jia Jun, Zheng Yong. 2014. Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395~407.

    • Lan Qing, Yan Yi, Huang Chiyue, Santosh M, Shan Yehua, Chen Wenhuang, Yu Mengming, Qian Kun. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36: 376~389.

    • Li Sanzhong, Zhao Guochun, Dai Liming, Zhou Lihong, Liu Xin, Suo Yanhui, Santosh M. 2012. Cenozoic faulting of the Bohai Bay basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 47: 80~93.

    • Li Weidong, Zhao Xitao, Yang Yan, Wu Zhenhan. 2020. Formation age and provenance analysis of the gravel layer in the Yellow River terraces of the Hetao basin. Acta Geologica Sinica, 41(4): 515~524 (in Chinese with English abstract).

    • Li Zhongyun, Zhang Ke, Liang Hao, Chen Zhen, Ma Zhanwu, Xiong Jianguo, Huang Ping. 2022. Large river chronology along the Jinshaan Gorge on the Yellow River and its implications for initialization. Geomorphology, 108092.

    • Liang Jintong, Wang Hongliang. 2019. Cenozoic tectonic evolution of the East China Sea Shelf basin and its coupling relationships with the Pacific Plate subduction. Journal of Asian Earth Sciences, 171: 376~387.

    • Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9~20 (in Chinese with English abstract).

    • Lin Chiouting, Watts A B, Hesselbo S P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4): 453~478.

    • Lin Xiubin, Chen Hanlin, Wyrwoll K H, Cheng Xiaogan. 2010. Commencing uplift of the Liupan Shan since 9. 5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37(4): 350~360.

    • Lin Xu, Liu Jing, Wu Zhonghai, Wang Shimei, Zhao Xitao, Chen Yong, Li Zhaoning, Liu Haijin. 2020. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China. Acta Geologica Sinica, 94(10): 3024~3035 (in Chinese with English abstract).

    • Lin Xu, Li Chang'an. 2022a. Are detrital materials from the Yellow River associated with desert/sandy land provenances in Northwest China? Earth Science, 47(10): 3633~3647 (in Chinese with English abstract).

    • Lin Xu, Liu Haijin, Liu Jing, Wu Zhonghai, Li Zhaoning, Chen Jixin, Li Lingling, Hu Chengwei. 2022b. Provenance tracing of Pb isotopes of fluvial detrital K-feldspar from the Yellow River basin. Seismology and Geology, 44(4): 944~960 (in Chinese with English abstract).

    • Lin Xu, Li Lingling, Liu Haijin, Chen Jixin. 2022c. Sediments of the upper reaches of Yellow River did not enter into Jinshan Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568~582 (in Chinese with English abstract).

    • Lin Xu, Liu Haijin, Liu Jing, Chen Jixin, Li Lingling. 2022d. The Yellow River did not enter the Bohai Bay basin during the Miocene: Constraints from detrital zircon U-Pb ages. Acta Geologica Sinica, 96(7): 2506~2518(in Chinese with English abstract).

    • Lin Xu, Wu Lin, Jolivet Marc, Li Chang'an, Liu Haijin. 2022e. Apatite (U-Th)/He thermochronology evidence for two Cenozoic denudation events in the eastern part of the Sulu orogenic belt. Earth Sciences, 47(4): 1162~1176 (in Chinese with English abstract).

    • Liu Jianhui, Zhang Peizhen, Zheng Dewen, Wan Jinglin, Wang Weitao, Du Peng, Lei Qiyun. 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China. Science China Earth Sciences, 53(3): 345~355.

    • Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.

    • Liu Jin, Chen Xingqiang, Shi Wei, Chen Peng, Zhang Yu, Hu Jianmin, Dong Shuwen, Li Tingdong. 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry. Journal of Asian Earth Sciences, 179: 350~364.

    • Liu Jin, Wang Ping, Chen Xingqiang, Shi Wei, Song Lijun, Hu Jianmin. 2022. The changes of drainage systems of Weihe basin and Sanmenxia basin since Late Pliocene give new insights to the Yellow River evolution. Frontiers-Earth Science, 9: 820674.

    • Liu Yunming. 2020. Neogene fluvial sediments in the northern Jinshaan Gorge, China: Implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109675.

    • Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. Journal of Geophysical Research: Earth Surface, 113(F4): 1~26.

    • Lu Huayu, Wang Xiaoyong, An Zhisheng, Miao Xiaodong, Zhu Rixiang, Ma Haizhou, Wang Xianyan. 2004. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Science in China: Earth Sciences, 47: 822~833.

    • Métivier F, Gaudemer Y, Tapponnier P, Klein M. 1999. Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280~318.

    • Meng Kai, Wang Erqi, Chu J J, Su Zhe, Fan Chun. 2020. Late Cenozoic river system reorganization and its origin within the Qilian Shan, NE Tibet. Journal of Structural Geology, 138: 104128.

    • Meng Xianbo, Shao Lei, Cui Yuchi, Zhu Weilin, Qiao Peijun, Sun Zhen, Hou Yuanli. 2021. Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the luzon subduction system. Marine and Petroleum Geology, 124: 104820.

    • Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.

    • Pan Baotian, Hu Zhenbo, Wang Junping, Vandenberghe J, Hu Xiaofei. 2011. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 125(1): 225~238.

    • Peng Heng, Wang Jianqiang, Liu Chiyang, Huang Lei, Zattin M. 2021. Mesozoic exhumation and ca. 10 Ma reactivation of the southern Yin Shan, North China, revealed by low-temperature thermochronology. Tectonophysics, 229189.

    • Qiu Yan, Wang Lifei, Huang Wenkai. 2016. The Mesozoic and Cenozoic Sedimentary Basins in the Sea Area of China. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Shi Wei, Dong Shuwen, Hu Jianmin. 2020. Neotectonics around the Ordos Block, North China: A review and new insights. Earth-Science Reviews, 200: 102969.

    • Su Peng, He Honglin, Tan Xibin, Liu Yiduo, Shi Feng, Kirby E. 2021. Initiation and evolution of the Shanxi rift system in North China: Evidence from low-temperature thermochronology in a plate reconstruction framework. Tectonics, 40(3): e2020TC006298.

    • Su Qi, Kirby E, Ren Zhikun, Zhang Peizhen, Zhang Huiping, Manopkawee P, Lei Qiyun. 2020. Chronology of the yellow river terraces at qingtong gorge (NE Tibet): Insights into evolution of the Yellow River since the middle Pleistocene. Geomorphology, 349: 106889.

    • Su Tao, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Science Advances, 5(3): eaav2189.

    • Sun Jimin, Talebian M, Jin Chunsheng, Liu Weiguo, Zhang Zhilang, Cao Mengmeng, Tian Shengchen. 2021. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Global and Planetary Change, 197: 103395.

    • Sun Jimin, Ding Zhongli, Xiao Wenjiao, Windley B F. 2022. Coupling between uplift of the Central Asian Orogenic Belt-NE Tibetan Plateau and accumulation of aeolian red clay in the inner Asia began at ~7 Ma. Earth-Science Reviews, 103919.

    • Sun Zhongheng, Zhu Hongtao, Xu Changgui, Yang Xianghua, Du Xiaofeng. 2020. Reconstructing provenance interaction of multiple sediment sources in continental down-warped lacustrine basins: An example from the Bodong area, Bohai Bay basin, China. Marine and Petroleum Geology, 113: 104142.

    • Tsai C H, Shyu J B H, Chung S L, Lee H Y. 2020. Miocene sedimentary provenance and paleogeography of the Hengchun Peninsula, southern Taiwan: Implications for tectonic development of the Taiwan orogen. Journal of Asian Earth Sciences, 194: 104032.

    • Tyrrell S, Haughton P D W, Daly J S, Kokfelt T F, Gagnevin D. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England. Journal of Sedimentary Research, 76(2): 324~345.

    • Tyrrell S, Haughton P D, Daly J S, Shannon P M, Sylvester P. 2012. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada, Short Course Series, 42 203~217.

    • Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance analysis. Sedimentary Geology, 336: 14~25.

    • Wang Guiling, Lin Wenjing, Liu Feng, Gan Haonan, Wang Siqi, Yue Gaofan, Long Xiting, Liu Yanguang. 2023. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice. Acta Geologica Sinica, 97(3): 639~660 (in Chinese with English abstract).

    • Wang Pinxian. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. Geophysical Monograph Series, 149: 1~22.

    • Wang Xianyan, Lu Huayu, Vandenberghe J, Zheng Shaohua, van Balen R. 2012. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Global and Planetary Change, 88: 10~19.

    • Wang Xiaoyan, Qiu Weili, Zhang Jiafu, Li Rongquan, Zhou Liping. 2013. Features of the alluvium on Tangxian surface near Baode-Fugu and its geomorphologic implications in the northern Jinshaan Gorge, Yellow River. Quaternary Sciences, 33(4): 715~722 (in Chinese with English abstract).

    • Wang Zhixiang, Shen Yongjin, Licht A, Huang Chunjun. 2018. Cyclostratigraphy and magnetostratigraphy of the middle Miocene Ashigong Formation, Guide basin, China, and its implications for the paleoclimatic evolution of NE Tibet. Paleoceanography and Paleoclimatology, 33(10): 1066~1085.

    • Wang Zhixiang, Mao Yongdong, Geng Jianzhen, Huang Chunjun, Ogg J, Kemp D B, Zhang Ze, Pang Zhibin, Zhang Rui. 2022. Pliocene-Pleistocene evolution of the lower Yellow River in eastern North China: Constraints on the age of the Sanmen Gorge connection. Global and Planetary Change, 103835.

    • Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1-4): 1~11.

    • Woodhead J D, Hergt J M. 2007. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostandards Newslett, 25: 261~266.

    • Xiao Guoqiao, Sun Yuqi, Yang Jilong, Yin Qiuzhen, Dupont-Nivet G, Licht A, Wu Zhipeng. 2020. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109691.

    • Xiong Zhongyu, Liu Xiaohui, Ding Lin, Farnsworth A, Spicer R A, Xu Qiang, Yue Yahui. 2022. The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944.

    • Xu Qinmian, Yuan Guibang, Ding Jianxun, Zhang Wei, Xin Houtian, Deng Chenglong. 2019. Cenozoic tectonic and paleoenvironmental evolution of northwestern China: Evidence from two deep boreholes in the Jartai basin. Journal of Asian Earth Sciences, 173: 98~112.

    • Yan Jiyuan, Hu Jianmin, Wang Dongming, Gong Wangbin, Liang Xiang. 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic. Geological Bulletin of China, 40(5): 623~648 (in Chinese with English abstract).

    • Yang Jie, Gao Shan, Chen Chen, Tang Yongyong, Yuan Honglin, Gong Hujun, Wang Jianqi. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660~2673.

    • Yang Jilong, Yuan Haifan, Hu Yunzhuang, Wang Fu. 2021. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River. Geomorphology, 108077.

    • Yang Shouye, Bi Lei, Li Chao, Wang Zhongbo, Dou Yanguang. 2016. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary. Geological Society, London, Special Publications, 429(1): 137~152.

    • Yao Xiang. 2019. Residual subsidence of the Cenozoic rift basin in the East Asian continental margin and its genesis analysis. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Yao Zhengquan, Shi Xuefa, Qiao Shuqing, Liu Qingsong, Kandasamy S, Liu Jianxing, Dou Yanguang. 2017. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago. Scientific Reports, 7(1): 1~11.

    • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686~693.

    • Zhang Hanzhi, Lu Huayu, Zhou Yali, Cui Yingying, He Jing, Lv Hengzhi, Wang Kexin, Wang Xianyan. 2021. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072.

    • Zhang Hongfei, Gao Shan. 2012. Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R S, Kirby E, Liu Shaofeng. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.

    • Zhang Jin, Wan Shiming, Clift P D, Huang Jie, Yu Zhaojie, Zhang Kaidi, Zhang Xunhua. 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3. 5 Ma: Tectonic or climate forcing? Quaternary Science Reviews, 216: 74~88.

    • Zhang Ligang. 1995. Block Geology of Eastern Asia Lithosphere-Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Beijing: Science Press(in Chinese with English abstract).

    • Zhang Xinchang, Yan Yi, Huang Chiyue, Chen Duofu, Shan Yehua, Lan Qing, Yu Mengming. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85: 26~39.

    • Zhang Xinchang, Huang Chiyue, Wang Yuejun, Clift P D, Yan Yi, Fu Xiaowei, Chen Duofu. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634~651.

    • Zhang Zengjie, Daly J S, Tyrrell S, Sun Xilin, Badenszki E, Li Yawei, Yan Yi. 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma. Earth-Science Reviews, 216: 103601.

    • Zhang Zengjie, Daly J S, Yan Yi, Badenszki E, Sun Xilin, Tian Yuntao. 2022. Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K-feldspar in Taiwan. Chemical Geology, 120740.

    • Zheng Dewen, Clark M K, Zhang Peizhen, Zheng Wenjun, Farley K A. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere, 6(6): 937~941.

    • Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.

    • Zhu Hongtao, Xu Changgui, Zhu Xiaomin, Zeng Hongliu, Jiang Zaixing, Liu Keyu. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851~1870(in Chinese with English abstract).

    • Zhu Weilin. 2010. Atlas of Petroliferous Basins in Chinese Waters. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Zhu Weilin, Zhong Kai, Fu Xiaowei, Chen Chunfeng, Zhang Minqiang, Gao Shunli. 2019. The formation and evolution of the East China Sea Shelf basin: A new view. Earth-Science Reviews, 190: 89~111.

    • 陈淑慧, 侯元立, 邵磊, 黄奇瑜, 乔培军, 崔宇驰, 孟宪博. 2020. 台湾始新统-中新统沉积物源与沉积环境. 沉积学报, 38(2): 319~330.

    • 何梦颖, 梅西, 张训华, 刘健, 郭兴伟, 郑洪波. 2019. 南黄海陆架区 CSDP-1 孔沉积物碎屑锆石 U-Pb 年龄物源判别. 吉林大学学报(地球科学版), 49(1): 85~95.

    • 李维东, 赵希涛, 杨艳, 吴珍汉. 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析. 地球学报, 41(4): 515~524.

    • 林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化, 源-汇过程与盆地分析. 地学前缘, 22(1): 9~20.

    • 林旭, 刘静, 吴中海, 王世梅, 赵希涛, 陈勇, 李兆宁, 刘海金. 2020. 中国北部陆架海碎屑锆石 U-Pb 年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024~3035.

    • 林旭, 李长安. 2022a. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?地球科学, 47(10): 3633~3647.

    • 林旭, 刘海金, 刘静, 吴中海, 李兆宁, 陈济鑫, 李玲玲, 胡程伟. 2022b. 黄河流域碎屑钾长石Pb同位素物源示踪. 地震地质, 44(4): 944~960.

    • 林旭, 李玲玲, 刘海金, 陈济鑫. 2022c. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568~582.

    • 林旭, 刘海金, 刘静, 陈济鑫, 李玲玲. 2022d. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束. 地质学报, 96(7): 2506~2518.

    • 林旭, 吴林, Jolivet Marc, 李长安, 刘海金. 2022e. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162~1176.

    • 邱燕, 王立飞, 黄文凯. 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.

    • 王贵玲, 蔺文静, 刘峰, 甘浩男, 王思琪, 岳高凡, 龙西亭, 刘彦广. 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639~660.

    • 王小燕, 邱维理, 张家富, 李容全, 周力平. 2013. 晋陕峡谷北段保德-府谷地区唐县面上冲积物的特征及其地貌意义. 第四纪研究, 33(4): 715~722.

    • 姚翔. 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因. 中国地质大学(北京)博士学位论文.

    • 闫纪元, 胡健民, 王东明, 公王斌, 梁霞. 2021. 黄淮海平原晚新生代重大地质事件. 地质通报, 40(5): 623~648.

    • 张宏飞, 高山. 2012. 地球化学. 北京: 地质出版社.

    • 张理刚. 1995. 东亚岩石圈块体地质: 上地幔, 基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社.

    • 朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851~1870.

    • 朱伟林. 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社.