-
近十多年来,富有机质页岩因作为石油储层而重新得到勘探家和研究者的关注(Bernard et al.,2012; Zhang Tongwei et al.,2017)。页岩油作为当前非常规油气勘探的重要领域,具有巨大的资源潜力(Zhao Xianzheng et al.,2019; 马永生等,2022)。目前在北美多个盆地已经实现了页岩油的工业生产,如墨西哥湾盆地Eagle Ford页岩(Bodziak et al.,2014; Pommer et al.,2015; Gottardi et al.,2018)、二叠盆地Wolfcamp页岩(Heij et al.,2019)、威利斯顿盆地Bakken页岩(Pollastro et al.,2012; Donohue et al.,2021)、沃思堡盆地Barnett页岩(Han Yuanjia et al.,2015)等。北美页岩油的成功开发带来了油气产量的大幅提升,实现了美国的能源独立。随着中国能源需求的不断增加以及对页岩油地质认识的深化,中国近年来不断加大了页岩油的研究和勘探力度(Zou Caineng et al.,2019; Chen Yanyan et al.,2020),相继在准噶尔盆地吉木萨尔、鄂尔多斯盆地庆城、松辽盆地古龙凹陷、渤海湾盆地沧东凹陷等发现了规模储量的页岩油,部分地区页岩油的勘探开发也取得了重要进展,比如近期在鄂尔多斯盆地发现探明地质储量为10.52亿t的页岩油大油田——庆城油田(付金华等,2021); 在松辽盆地古龙凹陷白垩系青山口组发现了轻质页岩油,评价地质储量可达12.68亿t(张博为等,2021)。
-
页岩油主要以游离态和吸附态的形式存在(邹才能等,2013; Han et al.,2015; 王民等,2019),少量以溶解态赋存于页岩孔隙-裂缝系统中(Hu Tao et al.,2021)。游离态油以小分子为主,主要赋存于微裂缝、层间隙以及孔喉直径相对较大的孔隙中(钱门辉等,2017); 吸附油以中—大分子组分为主,主要以吸附状态赋存于岩石矿物表面或者干酪根刚性大分子骨架内外表面(钱门辉等,2017; 王民等,2019); 溶解油是指溶解在水和天然气中的油,由于页岩中的水和气体含量较低,且油的溶解度极低,溶解油含量有限,可以忽略(Hu Tao et al.,2021)。在目前技术条件下以吸附态赋存的页岩油很难被开发利用,游离态赋存的页岩油才是开发的主要对象(李水福等,2019),在评估可动页岩油资源时有必要区分不同赋存状态页岩油的贡献,因而如何确定页岩油的赋存状态成了页岩油勘探开发的焦点问题之一。前人的研究表明,页岩油赋存状态和可动油含量的评价方法在不断积累和丰富,如经典的表征方法是Rock-Eval6分析在300℃的条件下恒温3 min得到的烃为游离油。在此基础上,人们通过缓慢加热的多温阶热解程序进行细分和表征石油赋存状态,使用低温下生成的油量指示可流动油量和可流动性(Romero-Sarmiento et al.,2014; Abrams et al.,2017)。但上述使用到的热解方法一般是把样品粉碎至100目左右,常是通过石油分子沸点来表征页岩油的赋存状态和可动性,当岩石是块状时有些孔隙处于封闭状态,赋存在其中的石油很难动用。基于此,前人通过使用不同粒径的岩样与分步抽提的办法进行页岩油赋存状态表征。如Sajgó et al.(1983)将索氏抽提的1~2 cm页岩碎片中的沥青定义为“开放孔隙”的提取物,而最初提取后研磨成粉末抽提的沥青定义为“封闭孔隙”中的提取物。钱门辉等(2017)通过对10 mm、1~5 mm和粉末(150目)三种粒径岩芯、恒定溶剂(二氯甲烷∶甲醇=93∶7体积比)与分步抽提的方法来分别表征游离油、游离油(压裂)、互溶-吸附油。Zhang Hong et al.(2019)通过对8~10 mm、2~5 mm和粉末(60~80目)三种粒径岩芯、恒定溶剂(二氯甲烷∶甲醇=9∶1体积比)与分步抽提的方法来分别表征游离油、吸附油与残余油。许多学者对页岩油的赋存状态和可动性评价进行了深入的探讨,然而关于页岩储层内页岩油赋存状态和可动性的表征依然在探索之中,尚未形成统一规范标准。
-
前人虽通过热解或分步抽提的方式进行了页岩油不同赋存状态表征,但采用分步热解、分步抽提与分步核磁测试相结合的方式以更精细描述页岩油不同赋存状态与分布空间尚未见报道。本文以松辽盆地北部H井青山口组一段和二段中下部为研究对象,参考前人的实验方法(钱门辉等,2017; Zhang Hong et al.,2019; Gorynski et al.,2019),采用热解、分步热解、分步抽提与分步核磁测试等相结合的方式,从不同粒度的颗粒中依次萃取有机质,以建立研究区页岩油赋存状态、化学组成、分布特征与其可生产性之间的联系。基于这些结果:① 我们比较了不同量化滞留烃的方式; ② 通过分析不同赋存状态页岩油占比,以及页岩油微运移过程中组分分馏特征,提出制约页岩油生产的因素和建议。
-
1 地质背景
-
松辽盆地是中国东北地区最大的中新生代湖泊沉积盆地,为典型的陆相坳陷-断陷湖盆,面积为26×104 km2(Feng Zhiqiang et al.,2010; Cao Huairen et al.,2017; Liu Chao et al.,2020)。盆地可分为西部斜坡、北部斜坡、中部坳陷、东北隆起、东南隆起和西南隆起六个一级构造单元(图1a)(Liu Bo et al.,2019)。基底为变质岩系,基底上主要发育下白垩统(包括火石岭组、沙河子组、营城组、登娄库组和泉头组)、上白垩统(青山口组、姚家组、嫩江组、四方台组和明水组)和新生界的沉积盖层,最大厚度为7000 m(Feng Zhiqiang et al.,2010; Bechtel et al.,2012; Wang Pujun et al.,2016; Liu Bo et al.,2019)。构造演化经历了断陷构造层(K1h—K1yc)、坳陷构造层(K1d—K2n)和反转构造层(K2m—Q)3个阶段(付晓飞等,2020)。青山口组和嫩江组为两套大规模的湖相沉积,是盆地的主要烃源岩和页岩油的主要发育层位(Bechtel et al.,2012),青山口组同时也是中—高成熟页岩油发育的有利层位,根据岩性将其细分为三段(K2qn1、K2qn2和K2qn3)(Bechtel et al.,2012; 邵红梅等,2021)。
-
近期,在松辽盆地北部青山口组发现了规模储量的轻质页岩油,主要赋存在青一段和青二段中下部(图1b)。青一段和青二段中下部沉积时期发生了大规模湖侵,以温暖潮湿的湖泊沉积为主,发育广泛的半深湖—深湖沉积环境,沉积了巨厚黑色页岩,平均厚度为30~100 m(郑建东等,2021; 何文渊等,2022)。岩性以纹层状页岩和页理页岩为主,占比超过95%,大套页岩中夹有薄层的粉砂岩、介壳灰岩、白云岩等,夹层厚度一般小于0.15 m。有机质类型好、丰度高(王民等,2014; 张博为等,2021; 郑建东等,2021),有机质类型以倾油型I/II1型干酪根为主,TOC集中分布于1.0%~4.0%(平均为1.9%),S1分布于2~10 mg/g(平均为6.3 mg/g),为页岩油形成提供了有利的物质基础。有机质成熟度相对较高,镜质组反射率Ro普遍大于1.0%,部分区域如古龙凹陷的成熟度达到1.2%~1.67%(Sun Longde et al.,2021)。油质较轻、气油比大,当Ro大于1.2%时,原油密度小于0.83 g/cm3,气油比超过50 m3/m3(张博为等,2021); 当Ro大于1.4%时,平均生产气油比稳定在500 m3/m3(何文渊等,2022)。地层压力系数高,青二段下部压力系数达到1.1~1.2,青一段压力系数较高,普遍大于1.2(何文渊等,2021)。
-
图1 松辽盆地北部研究样品对应钻井的位置图(a)及白垩纪地层和主要油气层分布(b)(据 Liu et al.,2019; 王广昀等,2020修改)
-
Fig.1 Location map of well corresponding to the study sample (a) , and Cretaceous strata and distribution of main oil reservoirs (b) in northern Songliao basin (modified from Liu et al., 2019; Wang Guangyun et al., 2020)
-
2 样品和方法
-
本文研究的15个黑色页岩样品取自松辽盆地中央坳陷齐家-古龙凹陷H钻井(图1a),层位为上白垩统青山口组一段和二段中下部(后文统称青山口组),取样深度介于2403.6~2530.1 m,样品的有机碳丰度(TOC)值介于1.70%~3.36%之间,平均值为2.41 %。对应的成熟度Ro约为1.5 %。
-
(1)X-射线分析:矿物组成的X射线衍射(XRD)分析通过X射线衍射仪(型号为SmartLab)完成。考虑到矿物定性分析要求将含油样品洗油至荧光四级以下,因此,XRD分析采用的是二氯甲烷与甲醇(DCM∶MeOH=9∶1 v/v)溶剂抽提后的样品。分析前,将样品研磨至粒径小于40 μm。测试时工作电压为40 kV,工作电流为150 mA,扫描速度为2°(2θ)/min,采样步宽为0.02°(2θ)。全岩测试扫描范围为2.6°~45°。黏土测试时扫描范围为2.6°~15°(N片)、2.6°~30°(E片)与2.6°~15°(T片)。之后利用衍射谱图,得到岩石矿物组成。
-
(2)核磁共振(NMR)实验:使用中国Niumag公司生产的低场MacroMR12-110H-G仪器测定了不同粒径页岩中的油分布。分析仪的磁场强度为0.28 T,探头线圈直径为25 mm,共振频率为11.854 MHz,操作温度为32℃。通过T2光谱反映孔隙大小,得到了不同孔隙中页岩油的分布。核磁共振实验对样品要求较低,可对样品进行无损分析并且具有测量尺度大、测试精度高等优点。本文页岩原始样品和每步抽提后的样品均进行NMR测试。
-
(3)总有机碳含量(TOC)使用CS-i分析仪测定。具体流程为:在60~80℃的条件下,使用过量的盐酸溶液(HCl∶H2O=1∶7 v/v)对样品进行1 h的清洗,以去除碳酸盐矿物; 之后使用蒸馏水清洗样品,以去除所有残留的HCl和水溶性氯化物; 最后在高温氧气流中燃烧,使总有机碳转化为二氧化碳,经红外线检测器检测总有机碳含量。
-
(4)岩石热解通过Rock-Eval6热解仪进行分析,岩石在300℃下恒温3 min,分析得到游离烃含量(S1),在300~650℃温度范围以25℃/min升温分析得到裂解烃含量(S2),并获得最大生烃温度(Tmax)。S2与TOC比值得到氢指数(HI),含油饱和度指数(OSI)=S1/TOC×100。样品抽提之后进行了岩石热解,其游离烃、裂解烃、氢指数、最大生烃温度分别用S1Ext、S2Ext、HIExt、TmaxExt表示。为进一步细分S1,本文参考前人研究成果采用了新的热解程序(Gorynski et al.,2019; Abrams et al.,2017),将120~350℃温度范围分解为3个峰值(根据前人研究350℃之前几乎没有干酪根和沥青裂解产物)(Gorynski et al.,2019)。具体包括:120℃恒温5 min得到O1,120~180℃温度范围以25℃/min升温之后恒温5 min得到O2,180~350℃温度范围以25℃/min升温之后恒温5 min得到O3。O1、O2代表较轻质油(主要为小于C20的烃),O3代表C17~C36的中—重质油(Gorynski et al.,2019)。同时,在350~650℃温度范围以25℃/min升温分析得到的烃类定义为S2Step,S2Step包括干酪根与部分重烃裂解成分。
-
(5)抽提物分析:本研究参考前人实验方法(钱门辉等,2017; Zhang Hong et al.,2019),通过分步抽提实验,分别评价不同孔隙空间的游离油和吸附油。具体步骤如下:① 将岩芯样品破碎至8~10 mm,在室温下用二氯甲烷与甲醇(DCM∶MeOH=9∶1 v/v)溶剂抽提岩样,抽提过程中不连续搅拌溶液,48 h完成步骤一抽提; 第一步抽提物(EOM-1)被视为开放—半开放孔隙中的游离油。② 将步骤一抽提后的样品晾干,进一步粉碎至2~5 mm的粒径,在室温下用DCM∶MeOH(9∶1 v/v)溶剂再次萃取,抽提过程中不连续搅拌溶液,48 h完成步骤二抽提; 第二步抽提物(EOM-2)被视为封闭孔隙的游离油,还有部分吸附油。③ 将步骤二抽提后的样品研磨成粉末(80目以下),并用DCM∶MeOH(9∶1 v/v)溶剂进行索氏抽提,直至从样品室滴下的抽提液荧光减弱至荧光3级以下时完成步骤三抽提; 第三步抽提物(EOM-3)被视为吸附油。需要说明的是此次分步抽提并不能实现对不同赋存状态石油完全分离,但其已尽可能地反映地质规律(钱门辉等,2017; Zhang Hong et al.,2019)。为对比分析,对每步抽提后的页岩样品分别开展了分步热解。上述三步抽提完成后,浓缩含抽提物的溶剂,使用安捷伦7890GC仪器进行全油色谱测试。色谱柱为HP-1弹性二氧化硅毛细管柱(30 m× 0.25 mm内径×0.25 μm薄膜厚度)。氮气作为载气,使用氢火焰离子化检测器记录信号。汽化室升温程序为首先在80℃恒温5 min,之后以6℃/min继续到310℃,最后保持恒温35 min。使用棒式色谱分析仪(MK-6S)、棒薄层火焰离子化分析法对抽提物进行族组分定量计算。使用正己烷展开饱和烃、二氯甲烷∶正己烷(2∶1/v/v)的溶剂展开芳香烃、正己烷∶异戊醇(9∶1/v/v)的溶剂展开非烃。
-
3 结果
-
3.1 矿物组成特征
-
XRD分析结果表明,15个样品的矿物组成差异不大(图2)。其中,黏土矿物含量普遍较高,其主体含量为42.7%~58.9%,平均为51.24%。石英含量为23.5%~34.1%,平均为29.73%。长石含量为4.6%~15.2%,平均为10.71%。碳酸盐岩类平均含量为6.51%,黄铁矿平均含量为3.29%。与国内外其他页岩区块相比,青山口组页岩总体表现为黏土含量较高与碳酸盐含量较低的特征,属于陆相高黏土页岩储层。依据全岩组分含量分类,样品主要为黏土质页岩(图2a)。
-
尽管青山口组页岩脆性矿物含量不如国内外其他区块的高,但研究发现,青山口组页岩在埋深超过1650 m时,成岩演化程度高,主要处于中成岩晚期,蒙脱石基本消失,转化为伊利石,可明显降低页岩的水敏性(孙龙德,2020; 王广昀等,2020)。同时,在蒙脱石转化为伊利石过程中可析出硅质,形成次生石英,使得页岩刚性成分增加,脆性增大。并且伊利石经成岩压实作用定向排列,沿层面易于剥裂,压裂时易于与主应力方向上开启的裂缝相互连通形成“丰”字网状裂缝,显著改善了储集层的可压裂性(Sun Longde et al.,2021)。松辽盆地古龙凹陷古页油平1井压裂液总体积超过8×104 m3,也证实了储层可以压得开(Sun Longde et al.,2021)。本文基于X射线衍射的黏土矿物组成结果揭示研究层段早期蒙脱石消失,黏土矿物以伊利石为主,含量为64%~74%,平均为68%; 其次是伊蒙混层,含量为24%~32%,平均为27.13%。另外含有少部分的绿泥石,介于2%~12%之间,平均为4.87%(图2b)。
-
图2 松辽盆地H井青山口组页岩全岩矿物组成三角图和黏土矿物组成
-
Fig.2 Whole rock mineral composition triangle and clay minerals composition of shale of Qingshankou Formation in well H of Songliao basin
-
(a)—全岩矿物组成三角图;(b)—黏土矿物的组成; Ⅰ—灰岩相; Ⅱ—黏土质泥灰岩相; Ⅲ—长英质泥灰岩相; Ⅳ—黏土质泥岩相; Ⅴ—长英质泥岩相
-
(a) —whole rock mineral composition triangle; (b) —composition of clay minerals; Ⅰ—calcareous marlstone; Ⅱ—argillaceous marlstone; Ⅲ—siliceous marlstone; Ⅳ—argillaceous mudstone; Ⅴ—siliceous mudstone
-
3.2 有机地化特征
-
3.2.1 基础有机地球化学特征
-
图3显示了15个样品的TOC、岩石热解结果。可以发现,TOC值介于1.70%~3.36%之间,平均值为2.41%。岩石热解S1值介于2.12~4.30 mg/g,平均为3.32 mg/g。S2值介于2.57~7.21 mg/g,平均为4.77 mg/g。Tmax介于397~431℃,平均为410.7℃。计算得到的OSI为105.69~159.15 mg HC/g TOC,平均为138.91 mg HC/g TOC。HI值介于141.57~268.47 mg HC/g TOC,平均为198.76 mg HC/g TOC。
-
为了对比研究,本文开展了步骤三抽提后样品的岩石热解。结果发现,抽提后的样品岩石热解S1Ext均小于0.03 mg/g; S2Ext相比抽提前明显降低,介于0.48~1.52 mg/g,平均为0.8 mg/g,表明抽提前样品的岩石热解分析存在重质石油化合物进入S2图谱范围(Han Yuanjia et al.,2015; Gorynski et al.,2019)。HIExt介于17.8~51.97 mg HC/g TOC,平均为33.41 HC/g TOC,表明该区烃转化率较高,因为青山口组为I~II1型有机质,低成熟页岩样品的HI可达700 mg HC/g TOC以上(Liu Bo et al.,2019)。TmaxExt介于452~467℃,平均为460.3℃,表明有机质处于高成熟阶段。
-
3.2.2 分步热解
-
分步热解结果显示(图4),原始样品的O1、O2、O3和S2Step分别为0.08~0.34 mg/g(平均为0.21 mg/g)、0.9~1.57 mg/g(平均为1.21 mg/g)、2.11~5.21 mg/g(平均为3.792 mg/g)和1.57~4.92 mg/g(平均为2.95 mg/g)。经过步骤一抽提后O1、O2、O3和S2Step分别为0.02~0.08 mg/g(平均为0.06 mg/g)、0.17~0.53 mg/g(平均为0.41 mg/g)、0.53~2.57 mg/g(平均为1.72 mg/g)和0.75~2.82 mg/g(平均为1.89 mg/g)。可以发现,第一步抽提后页岩样品的O1几乎消失,指示较轻的石油组分多以游离油的形式赋存,易于产出; 同时,O2、O3、S2Step有不同程度降低,表明游离油(EOM-1)除了含有轻烃组分外,也包含一些重烃成分。经步骤二抽提后,页岩样品分步热解的O1、O2均小于0.07 mg/g,O3和S2Step分别为0.09~0.62 mg/g(平均为0.31 mg/g)和0.73~1.77 mg/g(平均为1.17mg/g),预示EOM-2中含有一定量的重质组分和极性组分。经过步骤三抽提后O3也几乎消失,均小于0.06 mg/g,S2Step为0.41~1.11 mg/g(平均为0.68 mg/g)。
-
图3 松辽盆地H井青山口组页岩TOC和热解参数(空心点为样品抽提后的数据)
-
Fig.3 TOC and pyrolysis parameters of Qingshankou Formation shale in well H of Songliao basin (the hollow points are the data after sample extraction)
-
3.2.3 分步抽提
-
分步抽提的结果显示(图5),抽提物总量(EOM)变化范围为4.03~10.16 mg/g(平均为7.25 mg/g)。EOM-1的含量介于0.83~5.70 mg/g,平均为3.16 mg/g,占EOM的42.5%; EOM-2的含量范围为1.17~3.87 mg/g,平均为3.02 mg/g,占EOM的42.2%; EOM-3的含量范围为0.58~1.63 mg/g,平均为1.07 mg/g,占EOM的15.26%。
-
表1显示了分步抽提所得到的抽提物的族组成特征。可发现,饱和烃是所有样品中的主要组分,EOM-1、EOM-2和EOM-3中饱和烃含量分别为83.63%~96.44%(平均为92.68%)、93.61%~98.54%(平均为96.76%)和75.86%~94.38%(平均为88.59%)。较高的饱和烃含量主要归因于样品的有机质成熟度较高,对应的Ro约为1.5%,处于轻质油形成阶段(张博为等,2021)。芳烃含量在EOM-1中为0.63%~14.89%(平均为3.67%),在EOM-2中为0.49%~4.55%(平均为2.05%),在EOM-3中为1.12%~9.89%(平均为2.86%)。极性组分(非烃和沥青质)在EOM-1中的变化范围为0.63%~9.32%(平均为3.65%),在EOM-2中的变化范围为0.65%~1.97%(平均为1.19%),在EOM-3中的变化范围为4.28%~14.45%(平均为8.55%)。
-
图4 分步热解特征随抽提次数变化图
-
Fig.4 Variation diagram of stepwise pyrolysis characteristics with extraction times
-
(a)—原始样品;(b)—第一步抽提后;(c)—第二步抽提后;(d)—第三步抽提后
-
(a) —original sample; (b) —after the first step extraction; (c) —after the second step extraction; (d) —after the third step extraction
-
全油色谱分析表明(表1),页岩样品EOM-1主峰碳主要分布在C12~C17之间,低碳数分子占比较多,同时也包含一些重碳数分子,上述分步热解也显示相同结果(图4)。EOM-2主峰碳分布在C12~C17之间,但平均值大于EOM-1。EOM-3主峰碳分布在C15~C32之间。随着抽提的进行主峰碳总体向大值方向偏移(表1、图6)。用 Σn-C20-/Σn-C21+ 描述短链/长链正构烷烃的比例或正构烷烃的轻重比(Luo Qingyong et al.,2016),可以发现,EOM-1的正构烷烃轻重比分布在1.23~5.83之间,平均为4.01; EOM-2分布在1.81~3.43之间,平均为2.72; EOM-3分布在0.55~1.69之间,平均为1.27。随着抽提的进行,轻烃组分越来越少,重质组分越来越多。
-
图5 抽提物量(a)和抽提物占比(b)随抽提次数变化图
-
Fig.5 Variation of extract yield (a) and extract proportion (b) with extraction times
-
图6 抽提物全油色谱随抽提次数变化
-
Fig.6 The change of whole oil chromatography of extract with extraction times
-
(a)—2416.1 m样品;(b)—2458.1 m样品
-
(a) —2416.1 m sample; (b) —2458.1 m sample
-
页岩原始样品和每步抽提后的样品均进行了核磁测试,核磁分析如图7所示。T2弛豫时间对应不同的孔径大小,T2为 0.1 ms与1 ms分别对应约10 nm与100 nm(柳波等,2018; Tian Hua et al.,2020)。页岩样品EOM-1在较大孔隙(T2>1 ms)和较小孔隙(T2<1 ms)均有分布,而且较大孔隙(T2>1 ms)以EOM-1为主。EOM-2与EOM-3分布在较小孔隙之中。需要说明的是,原始页岩样品内含有水,但在一维核磁中很难区分含水部分或者含油部分。从现场测量的全直径二维核磁来看(闫伟林等,2021),该区流体T2谱信号包括有机孔吸附油、黏土束缚水、毛管束缚油和可动油,黏土束缚水与吸附油的峰叠加,因此一维核磁可以大致反映不同赋存状态的页岩油在孔隙空间分布特征。
-
图7 页岩样品核磁共振T2谱
-
Fig.7 NMR T2 spectra of shale samples
-
(a)—2416.1 m样品;(b)—2470.1 m样品
-
(a) —2416.1 m sample; (b) —2470.1 m sample
-
图8 源岩沉积环境图
-
Fig.8 Source rock sedimentary environment
-
(a)—Ph/n-C18与Pr/n-C17的关系图(据Shanmugam,1985修改);(b)—Pr/Ph与Pr/n-C17的关系图(据Hakimi et al.,2016修改)
-
(a) —relationship between Ph/n-C18 and Pr/n-C17 (revised according to Shanmugam, 1985) ; (b) —relationship between Pr/Ph and Pr/n-C17 (revised according to Hakimi et al., 2016)
-
EOM-1的Pr/n-C17和Ph/n-C18比值分别为0.08~0.28(平均为0.129)和0.05~0.18(平均为0.104),EOM-2分别为0.09~0.22(平均为0.139)和0.06~0.19(平均为0.116),EOM-3分别为0.11~0.28(平均为0.178)和0.09~0.21(平均为0.137)。随着抽提的进行,Pr/n-C17和Ph/n-C18的比值具有增大的趋势。通常Pr/n-C17和Ph/n-C18比值图版可用来判断水体环境和有机质类型(Arfaoui et al.,2007; Zou Caineng et al.,2019)。Pr/n-C17和Ph/n-C18的相关关系图(图8a)显示页岩油源岩沉积环境主要为混合缺氧-缺氧,有利于烃源岩的保存。Pr/n-C17和Pr/Ph的相关关系图(图8b)反映源岩为湖相烃源岩的特征,这与油源为湖相烃源岩的事实相符。同时可以发现,样品的Pr/n-C17和Ph/n-C18比值普遍较低,均小于0.3,这很可能归因于样品成熟度较高(张鸿,2020)。随着成熟度的增加,有机质生烃或沥青质裂解会导致正构烷烃的相对含量不断增加,进而导致异构/正构的比值降低。此外,在原油运移过程中正构烷烃也比类异戊二烯烷烃更易运移(Leythaeuser et al.,1986; Zou et al.,2019; 丁晓楠等,2019),三步抽提物中Pr/n-C17和Ph/n-C18比值的差异,也可能反映异构体和正构烃在页岩中的吸附性或可动性存在差异,可作为指示页岩油排出和运移存在分馏的潜在指示参数。
-
图9 S1与不同方法获得的滞留烃含量关系图
-
Fig.9 Relationship between S1 and retained hydrocarbon content obtained by different methods
-
(a)—S1与分步热解(O1+O2+O3)的关系图;(b)—S1与抽提物总量的关系图;(c)—S1与(S1+S2-S1Ext-S2Ext)关系图
-
(a) —relationship between S1 and stepwise pyrolysis (O1+O2+O3) ; (b) —relationship between S1 and the total amount of extracts; (c) —relationship between S1 and (S1+S2-S1Ext-S2Ext)
-
4 讨论
-
4.1 滞留烃含量评价
-
使用S1评估滞留烃量已得到广泛应用,然而由于重质石油组分的影响,仅仅使用S1值来表示总含油量,将导致总含油量的低估。S1通常代表C1~C32之间的石油化合物(Han Yuanjia et al.,2015; Gorynski et al.,2019),由溶剂萃取的滞留油含有非常重的分子物质(C32+),但不是S1的一部分(Gorynski et al.,2019; Chen Yanyan et al.,2020)。有研究证实C17+重烃化合物和沥青可能通过吸附在岩石基质上而进入S2图谱范围(Dembicki et al.,1983; Han Yuanjia et al.,2015; Zink et al.,2016)。为准确评价页岩总含油量,前人进行了一些尝试,如Jarvie(2012)使用抽提前的热解S1、S2与抽提后的S1Ext、S2Ext定量计算总含油量公式:总油量=S1+S2-S1Ext-S2Ext; Han Yuanjia et al.(2015)改进了定量计算总含油量公式:总油量=S1+S2-S2Ext; Gorynski et al.(2019)通过多温阶缓慢加热的热萃取程序来更精确地评价总含油量。
-
本文结合热解、分步热解、抽提物总量(第一步抽提物量+第二步抽提物量+第三步抽提物量)与Jarvie(2012)定量计算总含油量的公式等方法,对比不同方法评估总含油量的差异。S1和分步热解(O1+O2+O3)量、抽提物总量、S1+S2-S1Ext-S2Ext之间存在良好的相关性(图9)。根据分析可知S1+S2-S1Ext-S2Ext可以更为准确地反映岩石的含油量,抽提物总量比较接近S1+S2-S1Ext-S2Ext计算的岩石总含油量,抽提物总量与S1+S2-S1Ext-S2Ext的差距应是含抽提物的溶剂挥发至干的过程中轻烃散失造成的,因为抽提物溶剂全油色谱可以显示出C8~C9(图6),而晾干的抽提物C14之前常常散失殆尽。分步热解升温程序可以让滞留的重烃充分热解,但依然有部分残留,显示其值小于抽提物总量和S1+S2-S1Ext-S2Ext值。
-
从分步热解、溶剂萃取和S1+S2-S1Ext-S2Ext的方法得到的或计算的总含油量可以看出,S1常常低估了总含油量,分步热解O1+O2+O3是S1的1.35倍,溶剂萃取获得的总含油量是S1的2.12倍,S1+S2-S1Ext-S 2Ext获得的总含油量是S1的2.58倍。但S1仍然可以作为一种方便和快速的方法用作评估页岩的含油性,因为总含油量在演化程度相似的同一剖面中被相似地低估(图9)。然而,重质石油化合物会进入S2图谱的范围,在靠近干酪根转化为碳氢化合物的区域热解(Han Yuanjia et al.,2015; Zou Caineng et al.,2019),会造成S2最大峰值向Tmax小值方向漂移。从本研究的结果可以发现(图3),抽提前样品的Tmax值明显偏低,平均为410.7℃,抽提之后Tmax值明显升高,平均值达到460.3℃,这说明重质石油化合物对热解S2图谱产生较大的影响。因此,通过原始页岩样品的Tmax判别有机质成熟度会有较大误差,需要先开展溶剂抽提以消除重质石油化合物的影响。
-
4.2 页岩油可动性及其制约因素
-
此次研究的层段演化程度高(高成熟阶段),油质总体较好,饱和烃含量高、小分子石油化合物占比大,步骤一抽提得到的游离油组分较轻,主峰碳以C12~C17为主,有机质分子较小,对该区页岩油开采较为有利。游离油含量介于0.83~5.70 mg/g,平均为3.16 mg/g,含量高。Jarvie(2012)提出了OSI>100 mg HC/g TOC可作为页岩油可生产性的定量评价,在本研究中所有样品的OSI均超过100 mg HC/g TOC,平均为138.91 mg HC/g TOC。含油量和油质为该区的页岩油生产提供了有利条件,如松辽盆地古龙凹陷古页油平1井青一段(孙龙德,2020; 张博为等,2021),Ro为1.3%~1.6%,原油密度为0.784 g/cm3,饱和烃含量为91%,GOR>850 m3/m3,泥级页岩轻质原油试采获原油30.52 t/d、天然气13032 m3/d,生产249 d套压基本稳定,表现出较好的生产特征。但研究层段黏土矿物含量较高,虽然以伊利石和伊蒙混层为主,水敏矿物蒙脱石消亡,易于压裂形成网状缝,显著改善储集层的可压裂性,但相对较高的黏土矿物含量导致的孔缝系统发育的问题,依然可能是研究层段生产需要关注的制约因素。该区步骤一抽提获得的游离油占比为42.5%(Ro约为1.5%),与东营凹陷沙河街组页岩(Ro为0.47%~0.86%)的66%相比较低(Zhang Hong et al.,2019),其游离油占比较低,分析认为这应与青山口组较高含量的黏土矿物有关,沙河街组页岩的黏土矿物含量平均为33.5%,该区为51.24%,黏土矿物较高降低了储层的孔隙度和渗透率(Pepper,1991; Zhang Hong et al.,2019)。青山口组部分样品第二步抽提物的全油色谱与第一步抽提的游离油相近(图6b),表明在封闭孔隙中依然存在一定的游离油(钱门辉等,2017),只是岩石破碎程度不高时,无法与外部有效连通进行生产。因此,鉴于该区的地质特征,需要后期良好的压裂技术,以打开更多的孔隙,使得油气有更大的生产效率。
-
图10 游离油与吸附油的饱和烃+芳香烃、主峰碳、Σn-C20-/Σn-C21+、Pr/n-C17、Ph/i-C18对比图
-
Fig.10 Comparison chart of saturated hydrocarbon+aromatic hydrocarbon, main peak carbon, Σn-C20-/Σn-C21+, Pr/n-C17, Ph/n-C18 between free oil and adsorbed oil
-
4.3 对未来研究的建议
-
前人使用不同粒度页岩探讨了粒度对滞留油化学分子组成的影响和初次分馏效应,如Sajgó et al.(1983)通过对粗粒(1~2 cm)与细粒(<60 μm)页岩样品的分步溶剂抽提揭示了初次运移的分馏机制,Zhang Hong et al.(2019)通过对8~10 mm、2~5 mm和粉末(60~80目)三种粒径岩芯分步抽提发现页岩储层中原油初次运移过程中存在显著的成分分馏效应。本文步骤一所得到抽提物与步骤三所得到的抽提物所展现的组分分馏可能并不能完全实现反映石油初次运移的组成变化,但可以在一定程度上反映石油从干酪根表面到开放—半开放孔隙的排出分馏的规律。本研究步骤一所得到游离油的饱和烃和芳香烃总含量明显高于步骤三所得到的吸附油的饱和烃和芳香烃总含量(图10),游离油与吸附油族组成的差异指示石油排出过程中组分分馏效应。石油从页岩有机质中排出过程中饱和烃和芳香烃优先排出(Leythaeuser et al.,1988a,1988b; Sandvik et al.,1992; Jarvie,2014; Han Yuanjia et al.,2015,2018; Murillo et al.,2016; 丁晓楠等,2019; Zou Caineng et al.,2019),而其他两组分相对较低。游离油的全油色谱主峰碳与正构烷烃的Σn-C20-/Σn-C21+值明显大于吸附油的主峰碳与正构烷烃Σn-C20-/Σn-C21+值(平均值分别为4.01与1.27),也反映排出过程中的组分差异(图10),小分子量化合物更容易排出运移,因此吸附油的重分子化合物更多。另外,Pr/n-C17和Ph/n-C18也在不同赋存状态石油中表现出明显的分馏特征(图10)。由于类异戊二烯烷烃的排出效率低于相邻的正构烷烃(Leythaeuser et al.,1986; Han Yuanjia et al.,2015; Zou Caineng et al.,2019; 丁晓楠等,2019),因此,饱和烃n-C17、n-C18比Pr、Ph更容易发生排出运移,在排出方向上显示出更低的Pr/n-C17和Ph/n-C18,表现出吸附油比游离油的Pr/n-C17和Ph/n-C18值更大。
-
目前国内外很多开发的页岩油藏或者学者提出的有利页岩油藏岩性并非真正意义上的富含黏土的细粒页岩,其储层主要为细粒的碳酸盐岩或者粉砂岩构成(蒋恕等,2017),这些页岩油藏通常具有较低的有机质含量(有机质吸附性弱)和有利的可压裂性,同时石油也多具有经历运移之后赋存的特征,石油的可动性较强。如墨西哥湾盆地Eagle Ford为富含碳酸盐矿物的页岩(Gottardi et al.,2018); 威利斯顿盆地Bakken页岩有利层段为中Bakken细粒的白云岩或粉砂岩,而非上下Bakken组富含有机质的烃源岩岩层,尽管烃源岩中含油量较高(Sonnenberg,2020; Donohue et al.,2021); 丹佛盆地Niobrara页岩系统由交替的泥灰岩和白垩组成,有机质相对贫瘠的高孔高渗的白垩为储层(Han Yuanjia et al.,2019); 二叠盆地Wolfcamp硅质泥岩和钙质页岩主要作为烃源岩,而砾岩和泥灰岩主要作为储层(Zhang Tongwei et al.,2021); 鄂尔多斯盆地长7段页岩有利层段之一为富有机质页岩层段中发育的砂岩层段(Chen Yanyan et al.,2020)。由前文可知,与国内外其他成功开发的典型盆地中富有机质地层与贫有机质地层(碳酸盐岩或者粉砂岩等)相互叠置不同,青山口组属于泥级“纯”页岩,人们所熟知的消极因素如低渗透性、高黏土、低碳酸盐含量以及高有机质吸附作用在保留石油发挥的作用,在一定程度上制约着页岩层段获得高油流量。面对高黏土泥级“纯”页岩的制约因素,在富含有机质的致密页岩中寻找最佳层段是目前的紧要任务。近年来,随着对页岩油研究的深入,一些学者发现“纯”泥页岩层段中也存在一些有利的页岩油藏,如前人在长7段和Barnett页岩做的大量工作显示,页岩油也可从高有机质页岩层段向低有机质页岩层段发生运移(Han Yuanjia et al.,2015; Pan Songqi et al.,2019; Zou Caineng et al.,2019),经过运移的油气在相对较低的有机质吸附性的页岩层段中富集,这些层段富集的石油具有更大S1、OSI以及饱和烃含量,构成了油气潜在的勘探目标。本文研究显示的是石油厘米级的排出微运移,具有一定的分馏效应,排出运移后的石油具有更高的饱和烃+芳烃含量、更小的分子量,指示更大的流动可能。在页岩储层中,石油的运移一般是几米至几十米,油气的分馏更加明显(Han Yuanjia et al.,2015; Zou Caineng et al.,2019; Pan Songqi et al.,2019; Hu Shouzhi et al.,2020),石油的可动性更强,常被学者优选为甜点段。因此在该区尝试寻找油气运移集聚区将具有重要的意义。
-
5 结论
-
本文主要通过对松辽盆地青山口组15个岩芯样品进行热解、分步热解与分步抽提等,结合XRD与NMR实验,分析和讨论了青一段和青二段中下部层段页岩滞留烃含量评价与页岩油赋存状态、组成和分布特征,以及页岩油可动性与勘探制约因素等。结论如下:
-
(1)通过分步抽提揭示了游离油含量介于0.83~5.70 mg/g,平均为3.16 mg/g,占抽提物总量的42.5%。较大孔隙以游离油为主,吸附油分布在较小孔隙中。分步抽提的游离油与吸附油的化学组成的变化,也揭示了石油从有机质排出运移过程中的组分分馏效应。分步抽提得到的游离油具有更高的饱和烃含量、更轻的石油化合物组成和更低的Pr/n-C17、Ph/n-C18比值,后者可作为页岩油运聚方向或可动油有利聚集层段优选的重要指示参数。
-
(2)页岩油的可动性受到多种因素的影响,由于该层段有机质和成岩演化程度较高,页岩含油量和含油饱和度指数较高、石油组成较轻等特征为该层段的优势条件,然而该层段较高的黏土矿物含量所导致的赋存空间连通性问题使得游离油占比偏低可能是该层段可生产性主要的制约因素。石油经历微运移会有更为优越的含油性,未来一段时间可以在该区尝试寻找油气运移集聚区。
-
(3)由于重质石油化合物的影响,热解S1常常低估页岩的总含油量,因总含油量在同一个序列中被相似地低估,S1仍然可以作为一种方便和快速的方法用作评估总含油量。但重质石油化合物进入S2图谱的范围,使得抽提前的Tmax值明显偏低,需要开展溶剂抽提来消除重质石油化合物的影响。
-
参考文献
-
Abrams M A, Gong C, Garnier C, Garnier C, Sephton M A. 2017. A new thermal extraction protocol to evaluate liquid rich unconventional oil in place and in-situ fluid chemistry. Marine and Petroleum Geology, 88: 659~675.
-
Arfaoui A, Montacer M. 2007. New potential hydrocarbon source-rocks in the Lower Eocene Metlaoui Formation (central-northern Tunisia, northern Africa). Geologica Acta, 5(3): 245~254.
-
Bechtel A, Jia Jianliang, Strobl S A I, Sachsenhofer R F, Liu Zhaojun, Gratzer R, Püttmann W. 2012. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao basin (NE China): Implications from geochemical analysis. Organic Geochemistry, 46: 76~95.
-
Bernard S, Wirth R, Schreiber A, Schulz H M, Horsfield B. 2012. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth basin). International Journal of Coal Geology, 103(23): 3~11.
-
Bodziak R, Clemons K, Stephens A, Meek R. 2014. The role of seismic attributes in understanding the hydraulically fracturable limits and reservoir performance in shale reservoirs: An example from the Eagle Ford Shale, South Texas. AAPG Bulletin, 98(11): 2217~2235.
-
Cao Huairen, Zou Yanrong, Lei Yan, Xi Dangpeng, Wan Xiaoqiao, Peng Ping'an. 2017. Shale oil assessment for the Songliao basin, northeastern China, using oil generation-sorption method. Energy & Fuels, 31(5): 4826~4842.
-
Chen Yanyan, Lin Senhu, Bai Bin, Zhang Tianshu, Pang Zhenglian, Tao Shizhen, Hu Suyun. 2020. Effects of petroleum retention and migration within the Triassic Chang 7 member of the Ordos basin, China. International Journal of Coal Geology, 225: 103502.
-
Dembicki H, Horsfield B, Ho T T Y. 1983. Source rock evaluation by pyrolysis-gas chromatography. AAPG Bulletin, 67(7): 1094~1103.
-
Ding Xiaonan, Niu Xiaobing, Guan Ping, Liang Xiaowei, Wang Xiaowen, Feng Shengbin, You Yuan. 2019. Response of organic geochemical parameters of Chang 7 member to the effect of tight oil utilization in Ordos basin. Natural Gas Geoscience, 30(10): 1487~1495 (in Chinese with English abstract).
-
Donohue C M, Barrie C D. 2021. A review of the Bakken petroleum systems in the United States and Canada: recognizing the importance of the Middle Member play. AAPG Bulletin, 105(9): 1847~1866.
-
Feng Zhiqiang, Jia Chengzao, Xie Xinong, Zhang Shun, Feng Zihui, Cross T A. 2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Research, 22: 79~95.
-
Fu Jinhua, Liu Xianyang, Li Shixiang, Guo Qiheng, Zhou Xinping, Yang Weiwei. 2021. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos basin. China Petroleum Exploration, 26(5): 1~11 (in Chinese with English abstract).
-
Fu Xiaofei, Shi Haidong, Meng Qi'an, Liu Bo, Liang Jiangping, He Junling, Ran Qingchang, Gong Lei, Jia Ru. 2020. Controlling effects of the structure and deposition on the shale oil enrichment: Taking Formation qn1 in the Central depression of Songliao basin as an instance. Petroleum Geology & Oilfield Development in Daqing, 39(3): 56~71 (in Chinese with English abstract).
-
Gorynski K E, Tobey M H, Enriquez D A, Smagala T M, Dreger J L, Newhart D E. 2019. Quantification and characterization of hydrocarbon-filled porosity in oil-rich shales using integrated thermal extraction, pyrolysis, and solvent extraction. AAPG Bulletin, 103(3): 723~744.
-
Gottardi R, Mason S L. 2018. Characterization of the natural fracture system of the Eagle Ford Formation (Val Verde County, Texas). AAPG Bulletin, 102(10): 1963~1984.
-
Hakimi M H, Ahmed A F. 2016, Organic-geochemistry characterization of the Paleogene to Neogene source rocks in the Sayhut subbasin, Gulf of Aden basin, with emphasis on organic matter input and petroleum-generation potential. AAPG Bulletin, 100(11): 1749~1774.
-
Han Yuanjia, Mahlstedt N, Horsfield B. 2015. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion. AAPG Bulletin, 99: 2173~2202.
-
Han Yuanjia, Horsfield B, Mahlstedt N, LaReau H, Curry D J. 2018. Compositional fractionation of petroleum from reservoir to wellhead in the Niobrara shale oil play. International Journal of Coal Geology, 198: 156~166.
-
Han Yuanjia, Horsfield B, Mahlstedt N, Wirth R, Curry D J, LaReau H. 2019. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver basin. AAPG Bulletin, 103(9): 2045~2072.
-
He Wenyuan, Meng Qi'an, Zhang Jinyou. 2021. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 1~12 (in Chinese with English abstract).
-
He Wenyuan, Meng Qi'an, Feng Zihui, Zhang Jinyou, Wang Duan. 2022. In-situ accumulation and exploration & development practice of Gulong shale oil in Songliao basin. Acta Petrolei Sinica, 43(1): 1~14 (in Chinese with English abstract).
-
Heij G W, Elmore R D. 2019. The magnetic fabric of the Wolfcamp shale, Midlandbasin, west Texas: understanding petrofabric variability, hydrocarbon associations, and iron enrichment. AAPG Bulletin, 103(11): 2785~2806.
-
Hu Shouzhi, Li Shuifu, Xia Liuwen, Lü Qian, Cao Jian. 2020. On the internal oil migration in shale systems and implications for shale oil accumulation: A combined petrological and geochemical investigation in the Eocene Nanxiang basin, China. Journal of Petroleum Science and Engineering, 184: 106493.
-
Hu Tao, Pang Xiongqi, Jiang Fujie, Wang Qifeng, Liu Xiaohan, Wang Ze, Jiang Shu, Wu Guanyun, Li Caijun, Xu Tianwu, Li Maowen, Yu Jiwang, Zhang Chenxi. 2021. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model. Earth-Science Reviews, 214(1): 103545.
-
Jarvie D M. 2012. Shale resource rystems for oil and gas: Part 2—shale-oil resource systems. AAPG Memoir, 97: 89~119.
-
Jarvie D M. 2014. Components and processes affecting producibility and commerciality of shale resource systems. Geologica Acta, 12(4): 307~325.
-
Jiang Shu, Tang Xianglu, Steve O, Thomas A. 2017. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U. S. , Argentina and China. Earth Science, 42(7): 1083~1091 (in Chinese with English abstract).
-
Leythaeuser D, Radke M, Schaefer R G. 1986. Efficiency of petroleum expulsion from shale source rocks. Nature, 311(5988): 745~748.
-
Leythaeuser D, Radke M, Willsch H. 1988a. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. II: Molecular composition of alkylated naphthalenes, phenanthrenes, benzo- and dibenzothiophenes. Geochimica et Cosmochimica Acta, 52(12): 2879~2891.
-
Leythaeuser D, Schaefer R G, Radke M. 1988b. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. I: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons. Geochimica et Cosmochimica Acta, 52(3): 701~713.
-
Li Shuifu, Hu Shouzhi, Zhang Dongmei, Li Xiangquan, Jie Xinong. 2019. Idea, method and application of evaluating shale oil potential by hydrocarbon difference. Earth Science, 44(3): 929~938 (in Chinese with English abstract).
-
Liu Bo, Shi Jiaxin, Fu Xiaofei, Lyu Yanfang, Sun Xianda, Gong Lei, Bai Yunfeng. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first Member of Cretaceous Qingshankou Formation in Gulong sag, Songliao basin, NE China. Petroleum Exploration and Development, 45(5): 828~838 (in Chinese with English abstract).
-
Liu Bo, Wang Haoli, Fu Xiaofei, Bai Yunfeng, Bai Longhui, Jia Mengcheng, He Bo. 2019. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao basin, northeast China. AAPG Bulletin, 103(2): 405~432.
-
Liu Chao, Zhao Wanchun, Sun Lidong, Wang Xiaolian, Sun Youhai, Zhang Ying, Zhang Jingjing, Zhang Lei, Li Jijun. 2020. Geochemical assessment of the newly discovered oil-type shale in the Shuangcheng area of the northern Songliao basin, China. Journal of Petroleum Science and Engineering, 196(1): 107755.
-
Luo Qingyong, George S C, Xu Yaihui, Zhong Ningning. 2016. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources. Organic Geochemistry, 99: 23~37.
-
Ma Yongsheng, Cai Xunyu, Zhao Peirong, Hu Zongquan, Liu Huimin, Gao Bo, Wang Weiqing, Li Zhiming, Zhang Zilin. 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155~171 (in Chinese with English abstract).
-
Murillo W A, Vieth-Hillebrand A, Horsfield B, Wilkes H. 2016. Petroleum source, maturity, alteration and mixing in the southwestern Barents Sea: New insights from geochemical and isotope data. Marine and Petroleum Geology, 70: 119~143.
-
Pan Songqi, Zou Caineng, Li Jian, Yang Zhi, Liu Entao, Han Yuanjia. 2019. Unconventional shale systems; A comparative study of the “in-source sweet spot” developed in the lacustrine Chang 7 shale and the marine Barnett shale. Marine and Petroleum Geology, 100: 540~550.
-
Pepper A S. 1991. Estimating the petroleum expulsion behaviour of source rocks: A novel quantitative approach. Geological Society London Special Publications, 59(1): 9~31.
-
Pollastro R M, Roberts L N R, Cook T A. 2012. Geologic model for the assessment of technically recoverable oil in the Devonian—Mississippian Bakken Formation, Williston basin. AAPG Memoir, 97: 205~257.
-
Pommer M, Milliken K. 2015. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bulletin, 99(9): 1713~1744.
-
Qian Menhui, Jiang Qigui, Li Maowen, Li Zhiming, Liu Peng, Ma Yuanyan, Cao Tingting. 2017. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences. Petroleum Geology & Experiment, 39(2): 278~286 (in Chinese with English abstract).
-
Romero-Sarmiento M F, Pillot D, Letort G, Lamoureux-Var V, Beaumont V, Huc A Y, Garcia B. 2014. New Rock-Eval method for characterization of unconventional shale resource systems. Oil & Gas Science and Technology, 71: 37.
-
Sajgó C, Maxwell J R, Mackenzie A S. 1983. Evaluation of fractionation effects during the early stages of primary migration. Organic Geochemistry, 5: 65~73.
-
Sandvik E I, Young W A, Curry D J. 1992. Expulsion from hydrocarbon sources: The role of organic absorption. Organic Geochemistry, 19(1-3): 77~87.
-
Shanmugam G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia. AAPG Bulletin, 69(8): 1241~1254.
-
Shao Hongmei, Gao Bo, Pan Huifang, Chen Guolong, Li Lingling. 2021. Diagenesis-pore evolution for Gulong shale in Songliao basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 56~67 (in Chinese with English abstract).
-
Sonnenberg S A. 2020. The Bakken-Three Forks super giant play, Williston basin. AAPG Bulletin, 104(12): 2557~2601.
-
Sun Longde. 2020. Gulong shale oil. Petroleum Geology & Oilfield Development in Daqing, 39(3): 1~7 (in Chinese with English abstract).
-
Sun Longde, Liu He, He Wenyuan, Li Guoxin, Zhang Shuichang, Zhu Rukai, Jin Xu, Meng Siwei, Jiang Hang. 2021. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing oilfield, NE China. Petroleum Exploration and Development, 48(3): 453~463 (in Chinese with English abstract).
-
Tian Hua, Wang Maozhen, Liu Shaobo, Zhang Shuichang, Zou Caineng. 2020. Influence of pore water on the gas storage of organic-rich shale. Energy & Fuels, 34(5): 5293~5306.
-
Wang Guangyun, Wang Fenglan, Meng Qi'an, Gu Shefeng. 2020. Strategic significance and research direction for Gulong shale oil. Petroleum Geology & Oilfield Development in Daqing, 39(3): 8~19 (in Chinese with English abstract).
-
Wang Min, Shi Lei, Wang Wenguang, Huang Aihua, Chen Guohui, Tian Shansi. 2014. Comparative study on geochemical characteristics of shale oil between China and U. S. A. Lithologic Reservoirs, 26(3): 67~73 (in Chinese with English abstract).
-
Wang Min, Ma Rui, Li Jinbu, Lu Shuangfang, Li Chuanming, Guo Zhiqiang, Li Zheng. 2019. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang depression, Bohai Bay basin, China. Petroleum Exploration and Development, 46(4): 789~802 (in Chinese with English abstract).
-
Wang Pujun, Mattern F, Didenko N A, Zhu Defeng, Singer B, Sun Xiaomeng. 2016. Tectonics and cycle system of the Cretaceous Songliao basin: An inverted active continental margin basin. Earth-Science Reviews, 159: 82~102.
-
Yan Weilin, Zhang Zhaoqian, Chen Longchuan, Zhao Zhiwei, Wang Wenjuan. 2021. New evaluating method of oil saturation in Gulong shale based on NMR technique. Petroleum Geology & Oilfield Development in Daqing, 40(5): 78~86 (in Chinese with English abstract).
-
Zhang Bowei, Zhang Juhe, Feng Zihui, Zeng Huasen, Huo Qiuli, Zhang Kun. 2021. Geological conditions and resource potential for the formation of light crude oil from Gulong shale in Qingshankou Formation, Songliao basin. Acta Petrolei Sinica, 42(12): 1625~1639 (in Chinese with English abstract).
-
Zhang Hong. 2020. Geochemical characterization on the occurrence of shale oil. PhD thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Zhang Hong, Huang Haiping, Li Zheng, Liu Mei. 2019. Oil physical status in lacustrine shale reservoirs—A case study on Eocene Shahejie Formation shales, Dongying depression, East China. Fuel, 257(12): 116027. 1~116027. 13.
-
Zhang Tongwei, Sun Xun, Milliken K L, Ruppel S C, Enriquez D. 2017. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, South Texas. AAPG Bulletin, 101(8): 1277~1307.
-
Zhang Tongwei, Fu Qilong, Sun Xun, Hackley P C, Ko L T, Shao Deyong. 2021. Meter-scale lithofacies cycle and controls on variations in oil saturation, Wolfcamp A, Delaware and Midland basins. AAPG Bulletin, 105(9): 1821~1846.
-
Zhao Xianzheng, Pu Xiugang, Zhou Lihong, Jin Fengmin, Han Wenzhong, Jiang Wenya, Zhang Wei. 2019. Typical geological characteristics and exploration practices of lacustrine shale oil: A case study of the Kong-2 member strata of the Cangdong sag in the Bohai Bay basin. Marine and Petroleum Geology, 113: 103999.
-
Zheng Jiandong, Wang Chunyan, Zhang Huabing, Wang Xiaolian, Zhu Jianhua. 2021. Logging evaluating methods of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 87~97 (in Chinese with English abstract).
-
Zink K G, Scheeder G, Stueck H L, Biermann S, Blumenberg M. 2016. Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany. International Journal of Coal Geology, 163: 186~194.
-
Zou Caineng, Yang Zhi, Cui Jingwei, Zhu Rukai, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Wu Songtao, Lin Senhu, Wang Lan, Bai Bin, Yao Jingli. 2013. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petroleum Exploration and Development, 40(1): 14~26 (in Chinese with English abstract).
-
Zou Caineng, Pan Songqi, Horsfield B, Yang Zhi, Hao Siying, Liu Entao, Zhang Leifu. 2019. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos basin, central China. AAPG Bulletin, 103(11): 2627~2663.
-
丁晓楠, 牛小兵, 关平, 梁晓伟, 王晓雯, 冯胜斌, 尤源. 2019. 鄂尔多斯盆地长7段有机地球化学参数对致密油动用效果的响应. 天然气地球科学, 30(10): 1487~1495.
-
付金华, 刘显阳, 李士祥, 郭芪恒, 周新平, 杨伟伟. 2021. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力. 中国石油勘探, 26(5): 1~11.
-
付晓飞, 石海东, 蒙启安, 柳波, 梁江平, 贺君玲, 冉清昌, 巩磊, 贾茹. 2020. 构造和沉积对页岩油富集的控制作用——以松辽盆地中央坳陷区青一段为例. 大庆石油地质与开发, 39(3): 56~71.
-
何文渊, 蒙启安, 张金友. 2021. 松辽盆地古龙页岩油富集主控因素及分类评价. 大庆石油地质与开发, 40(5): 1~12.
-
何文渊, 蒙启安, 冯子辉, 张金友, 王瑞. 2022. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践. 石油学报, 43(1): 1~14.
-
蒋恕, 唐相路, Steve O, Thomas A. 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例. 地球科学, 42(7): 1083~1091.
-
李水福, 胡守志, 张冬梅, 李祥权, 解习农. 2019. 自由烃差值法评价页岩含油性的思想、方法及应用. 地球科学, 44(3): 929~938.
-
柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828~838.
-
马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155~171.
-
钱门辉, 蒋启贵, 黎茂稳, 李志明, 刘鹏, 马媛媛, 曹婷婷. 2017. 湖相页岩不同赋存状态的可溶有机质定量表征. 石油实验地质, 39(2): 278~286.
-
邵红梅, 高波, 潘会芳, 陈国龙, 李玲玲. 2021. 松辽盆地古龙页岩成岩—孔隙演化. 大庆石油地质与开发, 40(5): 56~67.
-
孙龙德. 2020. 古龙页岩油(代序). 大庆石油地质与开发, 39(3): 1~7.
-
孙龙德, 刘合, 何文渊, 李国欣, 张水昌, 朱如凯, 金旭, 孟思炜, 江航. 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453~463.
-
王广昀, 王凤兰, 蒙启安, 谷社峰. 2020. 古龙页岩油战略意义及攻关方向. 大庆石油地质与开发, 39(3): 8~19.
-
王民, 石蕾, 王文广, 黄爱华, 陈国辉, 田善思. 2014. 中美页岩油、致密油发育的地球化学特征对比. 岩性油气藏, 26(3): 67~73.
-
王民, 马睿, 李进步, 卢双舫, 李传明, 郭志强, 李政. 2019. 济阳坳陷古近系沙河街组湖相页岩油赋存机理. 石油勘探与开发, 46(4): 789~802.
-
闫伟林, 张兆谦, 陈龙川, 赵志伟, 王文娟. 2021. 基于核磁共振技术的古龙页岩含油饱和度评价新方法. 大庆石油地质与开发, 40(5): 78~86.
-
张博为, 张居和, 冯子辉, 曾花森, 霍秋立, 张琨. 2021. 松辽盆地青山口组古龙页岩轻质原油形成地质条件与资源潜力. 石油学报, 42(12): 1625~1639.
-
张鸿. 2020. 页岩油赋存状态的地球化学表征. 中国地质大学(北京)博士学位论文.
-
郑建东, 王春燕, 章华兵, 王晓莲, 朱建华. 2021. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法. 大庆石油地质与开发, 40(5): 87~97.
-
邹才能, 杨智, 崔景伟, 朱如凯, 侯连华, 陶士振, 袁选俊, 吴松涛, 林森虎, 王岚, 白斌, 姚泾利. 2013. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14~26.
-
摘要
通过对松辽盆地北部青山口组15个湖相页岩样品进行岩石矿物学、有机地球化学和储集空间特征分析,综合运用XRD、热解、分步热解、分步抽提和分步核磁测试等实验方法,以表征青山口组不同赋存状态页岩油含量、组成和分布特征,进一步探讨了滞留烃含量评价、生产潜力以及勘探制约因素与建议。此次研究得到以下认识:① 青山口组矿物组成较为均一,岩性主要为黏土质页岩,但以伊利石为主的黏土矿物特征有利于储层的压裂。有机质分布较为均一,TOC平均值为2.41%。含油性好,油质轻、饱和烃含量和含油饱和度指数(OSI)高。② 页岩油的赋存状态被定义为在冷抽提和索氏抽提条件下从不同粒度中提取的游离油、游离-吸附油和吸附油。游离油主要以轻质组分为主,吸附油的重质组分增多,较大孔隙以游离油为主,吸附油绝大部分分布在较小孔隙中。游离油与吸附油化学组成的变化,也揭示了石油排出微运移过程中的组分分馏效应,运移后的石油具有更高的饱和烃+芳烃含量、更小的分子量和更低的Pr/n-C17、Ph/n-C18值,指示更大的流动可能。③ 青山口组油质相对优越,但相对较高的黏土矿物含量是研究层段生产需要关注的制约因素。页岩油微运移后指示更大的生产可能,在该区未来一段时间勘探过程中可以尝试寻找油气运移汇聚区。
Abstract
The petromineralogy, organic geochemical, and reservoir pore space characteristics of 15 lacustrine shale samples from the Qingshankou Formation in the Songliao basin were studied. The experimental methods of XRD, pyrolysis, stepwise pyrolysis, stepwise extraction and stepwise NMR testing were comprehensively applied to characterize the content, composition and distribution characteristics of shale oil in different occurrence states of the Qingshankou Formation. The evaluation of retained hydrocarbon content, production potential, exploration constraints factors and suggestions are further discussed. The following conclusions can be obtained from this study: ① The mineral composition of the Qingshankou Formation is relatively homogeneous, mainly shale with high clay content, and the clay mineral characteristics dominated by illite are favorable for reservoir fracturing. The rich distribution of organic matter is relatively uniform, and the average TOC is 2.41%. It has good petroleum bearing property with light oil quality, high saturated hydrocarbon content and oil saturation index. ② The occurrence state of shale oil is defined as free oil, free-adsorbed oil and adsorbed oil extracted from different particle sizes under the conditions of cold extraction and Soxhlet extraction. The free oil is mainly composed of light components, while the heavy components are higher in the adsorbed oil. The larger pores are mainly composed of free oil, and most of the adsorbed oil is distributed in the smaller pores. The change in chemical composition of free oil and adsorbed oil also reveals the component fractionation effect in the process of oil micro-migration. The oil after oil discharge and migration has higher saturated hydrocarbon+aromatic hydrocarbon content, smaller molecular weight and lower Pr/n-C17 and Ph/n-C18 values, indicating greater flow possibility. ③ The oil quality of the Qingshankou Formation is relatively superior, but the relatively high clay mineral content is the restrictive factor that needs to be paid attention to in production. The micro-migration of shale oil indicates a greater possibility of production. In the exploration process of this area in future, we can try to find oil migration and accumulation areas.
Keywords
shale oil ; occurrence state ; mobility ; stepwise extraction ; stepwise pyrolysis ; Qingshankou Formation