en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孔令耀,男,1989年生。工程师,主要从事区域地质调查和造山带地层方面工作。E-mail:951121661@qq.com。

通讯作者:

韩庆森,男,1990年生。博士,主要从事前寒武纪造山带蛇绿混杂岩、变质岩石学研究。E-mail:hanqingsen2008cug@hotmail.com。

参考文献
Albarède F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70: 1261~1270.
参考文献
Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.
参考文献
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243~258.
参考文献
Bradley D C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108(1-2): 16~33.
参考文献
Brown G C, Thorpe R S, Webb P C. 1984. The geochemical characteristics of granitoids contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413~426.
参考文献
Chen Chao, Yuan Jinling, Guo Pan, Li Fangyun, Kong Lingyao, Yang Jinxiang, Mao Xinwu. 2020. ~2. 0 Ga regional metamorphic event in Yangtze black and its heuristic significance to the differences in geological evolutionary between north and south Huangling, Hubei Province. Geology in China, 47(4): 899~913 (in Chinese with English abstract).
参考文献
Chen Kang, Gao Shan, Wu Yuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6-2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.
参考文献
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).
参考文献
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.
参考文献
Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311(2): 153~182.
参考文献
Gao Xiaoying, Zheng Yongfei. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417~432 (in Chinese with English abstract).
参考文献
Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.
参考文献
Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.
参考文献
Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.
参考文献
Guo Pan, Chen Chao, Wu Bo, Chen Xiaolong, Kong Lingyao, Liu Chengxin. 2021. The discovery and Hf isotopic characteristics of ~2. 0 Ga metamorphic granite in the western Dabie Mountains. Geology in China, 48(4): 1267~1279 (in Chinese with English abstract).
参考文献
Han Qingsen. 2017. Genesis and tectonic significance of the Paleoproterozoic ophiolitic mélange in the Huangling dome, Yangtze craton. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).
参考文献
Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfen, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.
参考文献
Han Qingsen, Peng Songbai, Polat A, Kusky T M, Deng Hao, Wu Tuoyu. 2018. A ca. 2. 1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Research, 309: 309~324.
参考文献
Han Qingsen, Peng Songbai, Polat A, Kusky T. 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton. Lithos, 342-343: 513~529.
参考文献
Han Qingsen, Peng Songbai, Jiao Shujuan. 2020. Discovery and tectonic implications of Paleoproterozoic cold subduction low-temperature/high-pressure eclogitic metapelites, Yangtze craton. Earth Science, 45(6): 1986~1998 (in Chinese with English abstract).
参考文献
Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A ~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Chinese Science Bulletin, 58(28-29): 3564~3579.
参考文献
Hu Zhengxiang, Liu Zaoxue, Zhang Yanlin, Mao Xinwu, Ran Ruisheng, Liao Zongming, Liu Chengxin. 2012. Determination of the bottom boundary of Shennongjia Gr in Pre-Nanhuan Period about the northern margin of Yantze massif and its geological significance. Resources Environment & Engineering, 26(3): 201~208 (in Chinese with English abstract).
参考文献
Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, Ren Guangming, He Huzhuang, Chen Fengling, Zhang Hengli, Zhang Jianqiang, Ren Fei. 2019. Late Paleoproterozoic A-type granitic rocks in the northern Yangtze block: Evidence for breakup of the Colunbia supercontinent. Acta Geologica Sinica, 93(3): 565~584 (in Chinese with English abstract).
参考文献
Jian Ping, Kroner A, Zhou Gaozhi. 2012. SHRIMP zircon U-Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: Insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chemical Geology, 328 (2012): 49~69.
参考文献
Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D: Earth Sciences, 52(9): 1393~1399.
参考文献
Kong Lingyao, Mao Xinwu, Chen Chao, Deng Qianzhong, Zhang Hanjin, Yang Qingxiong, Li Linjing, Li Qiwen. 2017. Chronological study on detrital zircons and its geological significance from Mesoproterozoic Dagushi Group in the Dahongshan area, north margin of the Yangtze block. Earth Science, 42(4): 485~501 (in Chinese with English abstract).
参考文献
Kong Lingyao, Guo Pan, Wan Jun, Liu Chengxin, Wang Jing, Chen Chao. 2021. Detrital zircon U-Pb geochronology and Hf isotopes of Mesoproterozoic metasedimentary rocks in Dabie orogen and its geological significance. Earth Science, 47(4): 1333~1348 (in Chinese with English abstract).
参考文献
Liu Bo, Zhai Mingguo, Zhao Lei, Cui Xiahong. 2019. Metamorphism, P-T path and zircon U-Pb dating of Paleoproterozoic mafic and felsic granulites from the Kongling terrane, South China. Precambrian Research, 333: 105403.
参考文献
Liu Xiaochun, Li Sanzhong, Jiang Boming. 2015. Tectonic evolution of the Tongbai-Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision. Science China: Earth Sciences, 58: 1477~1496.
参考文献
Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Lu Songnian, Yang Chunliang, Li Huaikun, Chen Zhihong. 2002. North Chinacontinent and Colunbia supercontinent. Earth Science Frontiers, 9(9): 226~233 (in Chinese with English abstract).
参考文献
Ludwig K R. 2003. ISOPLOT 3. 0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California.
参考文献
Ma Daquan, Li Zhichang, Xiao Zhifa. 1997. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei. Bulletin of the Chinese Academy of Geological Sciences, 18(3): 233~241 (in Chinese with English abstract).
参考文献
Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1~24.
参考文献
Polat A, Hofmann A W, Rosing M T, Rosing M T. 2002. Boninite-like volcanic rocks in the 3. 7-3. 8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3-4): 231~254.
参考文献
Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: Constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33(2): 1~8 (in Chinese with English abstract).
参考文献
Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40(3): 549~558 (in Chinese with English abstract).
参考文献
Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36(5): 706~714 (in Chinese with English abstract).
参考文献
Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogeny: Evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94(3): 729~738 (in Chinese with English abstract).
参考文献
Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.
参考文献
Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11~14.
参考文献
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.
参考文献
Ross P S, Bédard J H. 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, 46(11): 823~839.
参考文献
Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern superior province. Canadian Journal of Earth Sciences, 26: 1688~1712.
参考文献
Stern R, Hanson G. 1991. Archean high-Mg granodiorites: A derivative of light rare earth element enriched monzodiorite of mantle origin. Journal of Petrology, 32: 201~238.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantal composition and processes. Geological Society of London Special Publications, 42(1): 313~345.
参考文献
Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63: 533~556.
参考文献
Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.
参考文献
Wang Zhengjiang, Wang Jian, Deng Qi, Du Qiuding, Zhou Xiaolin, Yang Fei, Liu Hao. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui complex, South China. Precambrian Research, 263: 157~173.
参考文献
Wei Junqi, Wang Jianxiong. 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling complex. Geological Journal of China Universities, 18(4): 589~600 (in Chinese with English abstract).
参考文献
Wei Junqi, Jing Mingming. 2013. Chronology and geochemistry of amphibolites from the Kongling complex. Chinese Journal of Geology, 48(4): 970~983 (in Chinese with English abstract).
参考文献
Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Ga metamorphic event was found in the Mesoarchean granite complex in Huangling area, the nucleus of the Yangtze craton. Earth Science, 43(7): 2309~2321 (in Chinese with English abstract).
参考文献
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.
参考文献
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their application in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. The study on zircon genetic mineralogy and its restriction on explaining of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).
参考文献
Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie orogen. Lithos, 101: 308~322.
参考文献
Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23: 1402~1428.
参考文献
Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.
参考文献
Xiong Qing, Zheng Jianping, Yu Chunmei, Su Yuping, Tang Huayun, Zhang Zhihai. 2008. Zircon U-Pb age and Hf isotope of A-type granite from Qiyitang, Yichang and the cratonization of Yangtze continent in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782~2792 (in Chinese).
参考文献
Xu Yang, Ali Polat, Deng Xin, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong'an terrane, central China: Syncollisional alkaline magmatism at the northern margin of the Yangtze block. Precambrian Research, 342: 105713.
参考文献
Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese unified continent. Science China: Earth Sciences, 56: 1829~1852.
参考文献
Zhang Lijuan, Ma Changqian, Wang Lianxun, She Zhenbing, Wang Shiming. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin, 56(1): 44~57 (in Chinese).
参考文献
Zhang Qi, Zhai Mingguo, Jian Ping, Jin Weijun, Wang Yuanlong, Wang Yan. 2004. The characteristics and significance of sanukite and its comparison with TTG and Adakite. Abstracts of the 2004 National Symposium on Petrology and Geodynamics, 381~383 (in Chinese).
参考文献
Zhang Qi, Qian Qing. Zhai Mingguo, Jin Weijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications of sanukite. Acta Petrologica et Mineralogical, 24(2): 117~125 (in Chinese with English abstract).
参考文献
Zhang Qiangqiang, Gao Xiaoying, Zhang Shaobin, Zheng Yongfei. 2020. Paleoproterozoic tectonic evolution of the northern Yangtze craton from oceanic subduction through continental collision to continental rifting: Geochronological and geochemical records of metabasites from the Tongbai orogen in central China. Precambrian Research, 350: 105920.
参考文献
Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1): 16~34.
参考文献
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222: 13~54.
参考文献
Zheng Jianping, Griffin W L, O'Reilly S Y, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.
参考文献
Zhou Guangyan. 2018. The nature of Late Archean to Paleoproterozoic basement in the northern Yangtze and its geological implication. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese).
参考文献
Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.
参考文献
Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Zhang Wenxiang, Zheng Jianping, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze block. Precambrian Research, 292: 57~74.
参考文献
陈超, 苑金玲, 郭盼, 黎方云, 孔令耀, 杨金香, 毛新武. 2020. 扬子陆块~2. 0 Ga 的区域变质事件对南北黄陵古元古代差异演化的启示. 中国地质, 47(4): 899~913.
参考文献
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.
参考文献
高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417~432.
参考文献
郭盼, 陈超, 吴波, 陈小龙, 孔令耀, 刘成新. 2021. 西大别~2. 0 Ga 变质花岗岩的发现及其Hf同位素特征. 中国地质, 48(4): 1267~1279.
参考文献
韩庆森. 2017. 扬子克拉通黄陵穹窿古元古代蛇绿混杂岩成因及大地构造意义. 中国地质大学(武汉)博士论文.
参考文献
韩庆森, 彭松柏, 焦淑娟. 2020. 扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义. 地球科学, 45(6): 1986~1998.
参考文献
胡正祥, 刘早学, 张焱林, 毛新武, 冉瑞生, 廖宗明, 刘成新. 2012. 扬子地块北缘前南华纪神农架群底界的厘定及其地质意义. 资源环境与工程, 26(3): 201~208.
参考文献
黄明达, 崔晓庄, 程爱国, 任光明, 何虎庄, 陈风霖, 张恒利, 张建强, 任飞. 2019. 扬子北缘晚古元古代A型花岗质岩: Columbia超大陆裂解的证据. 地质学报, 93(3): 565~584.
参考文献
孔令耀, 毛新武, 陈超, 邓乾忠, 张汉金, 杨青雄, 李琳静, 李启文. 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485~501.
参考文献
孔令耀, 郭盼, 万俊, 刘成新, 王晶, 陈超. 2021. 大别造山带中元古代变沉积岩碎屑锆石U-Pb年代学与Hf同位素特征及其地质意义. 地球科学, 47(4): 1333~1348.
参考文献
刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞. 中国科学: 地球科学, 45: 1088~1108.
参考文献
陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(9) : 226~233.
参考文献
马大铨, 李志昌, 肖志发. 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 233~241.
参考文献
邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1~8.
参考文献
邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40(3): 549~558.
参考文献
邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36(5): 706~714.
参考文献
邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学Hf同位素证据. 地质学报, 94(3): 729~738.
参考文献
魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成. 高校地质学报, 18(4): 589~600.
参考文献
魏君奇, 景明明. 2013. 崆岭杂岩中角闪岩类的年代学和地球化学. 地质科学, 48(4): 970~983.
参考文献
魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43(7): 2309~2321.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
熊庆, 郑建平, 余淳梅, 苏玉平, 汤华云, 张志海. 2008. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782~2792.
参考文献
翟明国, 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学: 地球科学, 43(10): 1583~1606.
参考文献
张丽娟, 马昌前, 王连训, 佘振兵, 王世明. 2011. 扬子地块北缘古元古代环斑花岗岩的发现及其意义. 科学通报, 56(1): 44~57.
参考文献
张旗, 翟明国, 简平, 金惟浚, 王元龙, 王焰. 2004. Sanukite(赞岐岩)的特征和意义及其与TTG及埃达克岩的对比. 2004年全国岩石学与地球动力学研讨会论文摘要集, 381~383.
参考文献
张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.
参考文献
周光颜. 2018. 扬子北缘晚太古代至古元古代基底性质及其地质意义. 中国地质大学(武汉)博士毕业论文.
目录contents

    摘要

    为探讨大别造山带早期结晶基底物质组成及其演化特征,对大别造山带蕙兰山地区出露的黑云紫苏斜长片麻岩的岩石学、地球化学、锆石U-Pb年代学及Lu-Hf同位素组成进行研究,显示其原岩应为石英闪长岩,成岩时代为古元古代早期(2463±22 Ma),且经历了古元古代麻粒岩相变质作用,锆石Ti地质温度计显示其变质温度为767~827℃(平均799℃),变质时间为2002±11 Ma(MSWD=0.46)。岩石地球化学成分显示其SiO2含量为55.16%~57.10%,MgO为4.74%~5.89%,Mg#值为47.5~50.4,钙碱性系列,富Mg贫Si,稀土配分曲线呈现轻稀土相对富集的右倾分布特征((La/Yb)N=19.3~34.1),无明显Eu异常((Eu/Eu*)= 0.9~1.2),且具较高的Sr、Ni、Cr含量,以及较低的YbN值及Y含量,与镁质闪长岩具相似特征;明显富集Rb、Ba、K等大离子亲石元素,相对亏损Nb、Ta、Zr、Hf等高场强元素;锆石Lu-Hf同位素显示具有较为均一的εHf(t)值(+2.69~+3.79),和二阶模式年龄(tDM2=2797~2739 Ma)。该套黑云紫苏斜长片麻岩可能是俯冲板片脱水熔融产生的岩浆与地幔相互作用的产物;岩石记录的2.0 Ga麻粒岩相变质作用可能与Columbia超大陆聚合事件有关,结合前人在北黄陵及大别地区的研究成果,认为扬子陆块北缘在古元古代可能已经存在一个大地构造位置相近的“微陆块群”,这些“微陆块群”在大约2.0 Ga的Columbia超大陆汇聚事件中逐渐拼合形成扬子陆块北缘的早期统一基底。

    Abstract

    To investigate the composition and evolution characteristics of early crystallization basement in the Dabie orogen, we analyzed the petrology, geochemistry, zircon U-Pb chronology and Lu-Hf isotopic composition of biotite-hypersthene-plagioclase gneiss exposed in the Huilanshan area of this orogen. The result shows that its protolith is quartz diorite with a formation age of Paleoproterozoic (2463±22 Ma), and experienced Paleoproterozoic granulite facies metamorphism with an age of 2002±11 Ma (MSWD=0.46). Zircon Ti geothermometer shows that the metamorphic temperature is about 767~827℃ (average 799℃). The quartz diorite gneiss shows low SiO2 contents (55.16%~57.10%), high MgO (4.74%~5.89%) and high Mg# values of 47.5~50.4 indicating that it belongs to calc-alkaline series, is enriched in LREE and relatively depleted in HREE ((La/Yb)N=19.3~34.1), with no obvious Eu anomaly ((Eu/Eu*)= 0.9~1.2). It also has high Sr, Ni, Cr content, and lower YbN value and Y content, and is enriched in LILEs (Rb, Ba, K), depleted in HFSEs (Nb, Ta, Zr, and Hf), which is similar to the magnesian diorite. Zircon cores from the gneiss sample have a similar Lu-Hf isotopes value of εHf(t) (+2.69~+3.79) and second-stage model ages (tDM2=2797~2739 Ma). We propose that the quartz diorite gneiss may be the product of interaction between the magma produced by dehydration melting of subduction slab and mantle magma. The granulite facies metamorphism at 2.0 Ga may be related to Columbia supercontinent assembly event. In combination with previous research in the North Huangling and the Dabie area, there may have been a “micro-continent group” with similar geotectonic position since the Paleoproterozoic, and they gradually assembled into a unified basement of the North Yangtze block during the global Columbia supercontinent convergence event.

  • 太古宙末—古元古代是地球演化的重要时期(Bradley,2011; 翟明国,2013)。扬子陆块北缘及西南缘均见有较多太古宙—古元古代岩石出露(图1a),目前扬子陆块出露的最古老的地质记录为黄陵穹隆核部出露的太古宙(3.45~3.20 Ga)花岗质片麻岩、3.0~2.9 Ga的TTG片麻岩(Qiu Yumin et al.,2000; Zhang Shaobing et al.,2006; Zheng Jianping et al.,2006; Jiao Wenfang et al.,2009; Gao Shan et al.,2011; Guo Jingliang et al.,20142015),及少量呈透镜状产出于TTG片麻状之中的~3.0 Ga斜长角闪岩(魏君奇等,2012; 2013),以及新太古代(2.7~2.6 Ga)A型花岗片麻岩(Chen Kang et al.,2013)和古元古代变沉积岩系(孔兹岩系),这些岩石构成了黄陵最古老的结晶基底。另外在扬子北缘的钟祥—京山地区发现2.65 Ga钾质花岗岩(Zhou Guangyan et al.,2015)、在陡岭杂岩中发现2.5 Ga的闪长质—花岗质片麻岩(Hu Juan et al.,2013; Wu Yuanbao et al.,2014),显示扬子北缘可能普遍存在太古宙基底。近年来,北黄陵地区陆续发现2.15~1.95 Ga蛇绿岩(韩庆森,2017),2.12 Ga高镁玄武岩及高镁安山岩(Han Qingsen et al.,2018),~2.0 Ga同造山花岗岩以及1.95~2.02 Ga麻粒岩相至低温-高压榴辉岩相变泥质岩(Han Qingsen et al.,2019; Liu Bo et al.,2019; 韩庆森等,2020); 另在钟祥—京山地区亦发现1.96~1.93 Ga造山相关的花岗岩(Wang Zhengjiang et al.,2015)、在黄陵以及扬子北缘其他地区发现1.89~1.79 Ga的A型花岗岩-流纹岩及基性岩脉(熊庆等,2008; 张丽娟等,2011; Zhou Guangyan et al.,2017; 周光颜,2018; 黄明达等; 2019),显示扬子北缘存在古元古代俯冲碰撞造山(2.15~1.95 Ga)及造山后伸展(~1.85 Ga)构造演化的一系列重要地质记录,可能是对Columbia超大陆聚合-裂解事件的响应,为早期扬子陆块基底组成和构造演化提供了大量证据。

  • 图1 扬子陆块前南华纪基底岩石分布简图(a,据Zhao Guochun et al.,2012 修改)与大别造山带区域地质简图及采样点(b,据Wu Yuanbao et al.,2008; 邱啸飞等,2020修改)

  • Fig.1 A simplified geological map hightlighting the Pre-Nanhua geological units of Yangtze Block (a) (after Zhao Guochun et al., 2012) and sketch geological map for the Dabie orogen and sampling location (b) (after Wu Yuanbao et al., 2008; Qiu Xiaofei et al., 2020)

  • [1]引自Qiu Xiaofei et al.,2021; [2]引自Wu Yuanbao et al.,2008; [3]引自邱啸飞等,2020; [4]引自郭盼等,2021; [5]引自Xu Yang et al.,2020; [6]引自Jian Ping et al.,2012; [7]引自Wang Xiang et al.,2021; 红色为成岩年龄,蓝色为变质年龄

  • [1] after Qiu Xiaofei et al., 2021; [2] after Wu Yuanbao et al., 2008; [3] after Qiu Xiaofei et al., 2020; [4] after Guo Pan et al., 2021; [5] after Xu Yang et al., 2020; [6] after Jian Ping et al., 2012; [7] after Wang Xiang et al., 2021; the ages with red color represent the formation age and those with blue color represent the metamorphic age

  • 近年来,在大别造山带也陆续报道了新太古代—古元古代岩石与变质事件,如黄土岭2.77 Ga的花岗质片麻岩以及1.98 Ga的变质年龄(Wu Yuanbao et al.,2008; Jian Ping et al.,2012); 团风地区发现2.8 Ga的混合岩以及2.0 Ga的变质记录(邱啸飞等,2020),这些岩石可能组成了大别地区最古老的结晶基底; 在木子店地区发现古元古代(2.49 Ga)花岗质片麻岩,并记录有2.0 Ga的变质年龄(Qiu Xiaofei et al.,2021),在红安铁铺(Xu Yang et al.,2020)、大悟芳畈(郭盼等,2021)、枣阳双河地区(Zhang Qiangqiang et al.,2020)发现2.0 Ga的闪长岩、二长花岗岩和变基性岩(图1b),以及在大别地区出露较为广泛的古元古界大别岩群,这些资料显示大别地区也存在太古宙古老基底(2.8~2.5 Ga)以及古元古代岩浆、沉积、变质事件(~2.0 Ga)。以上研究资料为大别地区早期基底的物质组成和构造演化提供了重要证据,但是针对大别地区的研究程度明显较黄陵等地区低,目前古元古代早期岩石的详细报道较少,该时期岩石性质、构造背景及演化规律等研究较为薄弱,笔者在大别地区开展1∶5万区域地质调查研究中,在蕙兰山地区发现了一套古元古代早期黑云紫苏斜长片麻岩,通过对其进行岩石学、地球化学以及锆石U-Pb年代学和Lu-Hf同位素特征等研究,分析成岩、变质时代和岩石成因,为探讨大别造山带以及扬子陆块早期陆核的物质组成、演化提供新的证据。

  • 1 区域地质背景

  • 大别造山带位于扬子陆块北缘,是中国中部中央造山带最重要的组成部分,经历了多期次、多阶段的碰撞—扩展—聚合的演化过程(Wu Yuanbao et al.,2013; 刘晓春等,2015),早期岩石被多期次构造、变质和岩浆作用强烈改造,原始层序等几乎全部破坏,使得对该地区的研究相对困难。前人根据大别造山带中的岩石组成和变质特征,将之从北至南大致分为5个构造单元:① 北淮阳低级变质岩带; ② 北大别高温超高压麻粒岩相带; ③ 中大别中温超高压榴辉岩带; ④ 南大别低温超高压榴辉岩带; ⑤ 木兰山低温高压蓝片岩带。各构造单元均被断层或韧性剪切带分隔,并被郯庐断裂和商麻断裂等走滑剪切,白垩纪花岗岩广泛分布(Wu Yuanbao et al.,2008; 邱啸飞等,2020)(图1b)。

  • 大别地区出露面积最广的是新元古代花岗质片麻岩和中生代花岗岩,早期岩石多呈“透镜状”、“孤岛状”包体产出在这些花岗质岩石中,且由于受中生代强烈的变质、变形改造,使得中生代之前的物质建造野外特征趋于一致而难以区分,对大别地区早期基底物质组成、规模、以及构造演化过程等关键地质问题的研究带来较大困难。

  • 2 野外及镜下特征

  • 本次研究对象岩性为黑云紫苏斜长片麻岩(图2a),位于北大别高温超高压麻粒岩相带之中,整体呈透镜状产出在新元古代二长花岗质片麻岩之中,二者接触界线截然,可见接触边界斜切片麻理,在接触边界处二长花岗质片麻岩中可见发育黑云紫苏斜长片麻岩和斜长角闪岩包体(图2b)。在黑云紫苏斜长片麻岩内部亦可见有斜长角闪岩包体(图2c、f)发育。本次岩石样品采集位置位于蕙兰山顶东侧公路旁(E115°15′24″,N30°55′0″),露头上紫苏黑云斜长片麻岩较为新鲜,呈灰白色,多可见发育条带状构造,整体特征较为稳定一致,野外特征显示其原岩可能为侵入岩。样品采自条带不发育、均一的部位,岩石镜下显示具片柱状、粒状变晶结构、弱片麻状构造(图2d),主要由以下矿物组成:斜长石,可见轻微绢云母化,含量65%左右; 石英,可见波状消光,含量15%左右; 辉石,主要为紫苏辉石,含量15%左右,可见少量普通辉石; 黑云母,含量较低,定向排列,呈片麻状构造,含量5%左右。矿物粒径主要在0.5~2 mm,少量可达2~5 mm; 镜下还可见少量磁铁矿、磷灰石、锆石、榍石等副矿物(图2e)。整体特征显示原岩应为石英闪长岩,并经历了麻粒岩相变质作用。

  • 3 分析方法

  • 岩石全岩元素分析样品加工及测试在自然资源部中南矿产资源监督检测中心完成,将新鲜的、均质的岩石样品无污染粉碎至200目干燥备用,主量元素在X射线荧光光谱仪(Panalysis Axios max)上测试,FeO含量采用滴定法单独测量; 微量元素采用Thermo Fisher X Series-2 ICP-MS分析,国际标准物质AGV-1、GSR-3和BCR-2用于检测测试精度,大多数元素的准确度和精密度<3%(RSD),部分过渡元素的准确度优于5%。

  • 图2 大别造山带蕙兰山地区黑云紫苏斜长片麻岩野外与镜下特征

  • Fig.2 Field outcrops and photomicrographs of the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen

  • (a)—黑云紫苏斜长片麻岩中发育的条带状构造;(b)—黑云紫苏斜长片麻岩与二长花岗质片麻岩接触界线及特征;(c)—黑云紫苏斜长片麻岩中斜长角闪岩包体;(d)—黑云紫苏斜长片麻岩镜下矿物定向特征(单偏光);(e)—黑云紫苏斜长片麻岩镜下特征(正交偏光);(f)—黑云紫苏斜长片麻岩中斜长角闪岩包体镜下特征(正交偏光); Hy—紫苏辉石; Qtz—石英; Pl—斜长石; Bi—黑云母; Hb—角闪石; Px—辉石

  • (a) —field photos of banded structure developed in the biotite-hypersthene-plagioclase gneiss; (b) —field photos of the biotite-hypersthene-plagioclase gneiss and monzonitic granitic gneiss contact boundary; (c) —field photos of the amphibolite blocks in the biotite-hypersthene-plagioclase gneiss; (d) —photomicrographs of mineral orientation characteristics in the biotite-hypersthene-plagioclase gneiss (polarized light) ; (e) —photomicrographs of biotite-hypersthene-plagioclase gneiss (cross-polarized light) ; (f) —photomicrographs of amphibolite blocks in the biotite-hypersthene-plagioclase gneiss (cross-polarized light) ; Hy—hypersthene; Qtz—quartz; Pl—plagioclase; Bi—biotite; Hb—hornblende; Px—pyroxene

  • 采集的样品送至河北省廊坊宇能岩石矿物分选技术服务有限公司进行锆石分选、制靶和CL图像拍照工作。先将样品清洗、破碎、淘洗、电磁分选后分离出锆石,在双目镜下选出透明且具代表性锆石颗粒,然后将其粘在环氧树脂上进行制靶。之后利用发射扫描电镜MIRA3进行CL成像,扫描时间为2 min,电压为7 kV,得到影像清晰的阴极发光图片,以确定锆石颗粒内部结构,在此基础上选择合适的区域用于锆石U-Pb定年和Lu-Hf同位素测定。

  • 锆石U-Pb年龄和Lu-Hf同位素测定均在中国地质调查局武汉地质调查中心同位素地球化学研究室完成。测试仪器为装配RESOlution 193 nm ArF准分子激光剥蚀系统与icapQ型ICP-MS联机。实验中激光束斑直径为32 μm,激光剥蚀时间45 s,激光频率为6~8 Hz,激光能量密度为5 J/cm2。测定时采用国际锆石标准91500作为外部标准来分析U-Pb同位素,NIST SRM 610作为外部标准来测定元素含量。单个数据点误差为1σ。锆石U-Pb同位素组成原始数据采用ICPMSDataCal软件(ver.10.9)进行处理(Liu Yongsheng et al.,2008)。锆石年龄计算以及谐和图的绘制均采用ISOPLOT软件完成(Ludwig,2003)。

  • 锆石Hf同位素测定仪器为配备RESOlution 193 nm ArF准分子激光剥蚀系统与Neptune plus型多接收电感耦合等离子体质谱仪(MC-ICP-MS)联机。锆石Lu-Hf同位素分析点选择在LA-ICPMS年龄分析点附近(图3)。激光束斑直径为43 μm,激光剥蚀时间60 s,激光频率为6~8 Hz,激光能量密度为5 J/cm2。测定时采用Penglai、PLE作为标样。Lu-Hf 同位素体系计算时所用参数分别为(176Lu/177Hf)CHUR=0.0332、(176Hf/177Hf)CHUR=0.282772(Blichert-Toft et al.,1997);(176Lu/ 177Hf)DM=0.0384、(176Hf/177Hf)DM=0.28325(Vervoort et al.,1999);(176Lu/177Hf)CC=0.015(Griffin et al.,2002); λ=1.867×10-11/a(Albarède et al.,2006)。并采用ICPMSDataCal(ver.8.3)对锆石Lu-Hf同位素测试数据进行处理(Liu Yongsheng et al.,2010a2010b)。

  • 4 测试结果

  • 4.1 锆石U-Pb年代学特征

  • 样品中所分选的锆石主要呈无色至淡黄色,自形为主,少量具磨圆特征,部分受到机械破碎而晶形不完整,粒径多在100~150 μm之间,少量达200 μm。在锆石CL图像中,一部分锆石具明显核-边结构,核部呈深色,部分可见岩浆振荡环带,少量无环带,边部呈浅色,宽度10~40 μm不等,无环带(图3,分析点6、8、15、19、22、33); 另一部分锆石在CL图像上呈暗色,不见明显变质边,锆石内部环带不发育或发育面状环带,显示变质锆石特征(图3,分析点20、24、27、29、35)。通过这些可以看出,该样品锆石均遭受不同程度的变质影响(吴元保等,2004)。测试分析结果见表1。

  • 对35颗锆石进行了U-Pb同位素年龄分析,其中3号测试点谐和度为63%,在206Pb/238U-207Pb/235U谐和图远离不一致线,剩余的34个谐和分析点中,第一类18个分析点位于锆石边部,Th/U值分布于0.37~1.36之间,平均0.65,第二类16个分析点主要位于核部,Th/U值分布于0.07~1.20之间,平均值0.42; 两类分析点在206Pb/238U-207Pb/235U谐和图上均分布于不一致线上(图4a),在稀土元素配分模式图上,第一类锆石重稀土含量明显高于第二类锆石,显示两类分析点锆石在成因上存在差别(图4b),或指示两类锆石在后期变质作用过程中遭受不同程度的变质作用影响。其中第一类锆石不一致线上交点年龄2002±11 Ma(MSWD=0.16,n=18),属古元古代,可能代表了岩石的麻粒岩相变质作用的年龄,第二类锆石不一致线上交点年龄为2463±22 Ma(MSWD=2.8,n=16),应代表了该套片麻岩的成岩年龄,属于古元古代早期。

  • 由于锆石在地质事件中具有较高的化学和物理稳定性及抗干扰能力,锆石中的Ti含量可以用于锆石形成温度计算(Ferry et al.,2007; 高晓英等,2011),根据Ferry et al.(2007)提出的锆石Ti地质温度计公式,计算得出18颗2.0 Ga变质锆石的形成温度为767~827℃,平均温度为799℃,达到了麻粒岩相变质温度,也指示该套岩石可能经历了麻粒岩相变质作用。

  • 图3 大别造山带蕙兰山地区黑云紫苏斜长片麻岩代表性锆石颗粒阴极发光图像

  • Fig.3 Typical zircon CL images from the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen

  • 白色实线圈为U-Pb分析点,黄色虚线圈为Lu-Hf分析点

  • The white circles are the U-Pb analysis points, and the yellow circles are the Lu-Hf analysis points

  • 4.2 锆石Lu-Hf同位素特征

  • 对样品5颗锆石进行了Lu-Hf同位素组成分析,其结果见表2。锆石176Lu/177Hf比值分布在0.000611~0.001013之间,平均值0.000814,176Hf/177Hf比值分布在0.281296~0.281358,平均值0.281323,具有正的εHft)值特征,较为均一,分布范围在+2.06~+3.59之间,加权平均值+2.86±0.64(MSWD=0.71)(图5a),其一阶模式年龄(tDM1)为2699~2644 Ma,其加权平均年龄2671±27 Ma(MSWD=1.5)(图5b),二阶模式年龄(tDM2)为2797~2715 Ma,较为均一,加权平均年龄2754±26 Ma(MSWD=1.2)(图5c)。

  • 4.3 岩石地球化学特征

  • 本文样品经历过麻粒岩相变质作用,需要评估变质作用对原岩地球化学系统的影响,样品的Ce/Ce*=0.60~0.62,平均0.61,显示LREE存在一定活动性(Polat et al.,2002),在分析中应尽量采用Al、Ti、Fe、P、高场强元素(HFSE)、稀土元素(REE,除去Eu、Ce)、过渡元素(Cr、Sc、V、和Y),以及Zr等不活动元素进行分析,避免Na、K、Rb、Sr等活动元素进行分析。

  • 4.3.1 主量元素

  • 黑云紫苏斜长片麻岩主量元素含量见表3。 SiO2含量为55.16%~57.10%; TiO2含量为0.78%~1.14%,MgO含量为4.74%~5.89%,Mg#值为47.5~50.4,Al2O3含量为15.11%~15.69%。在Zr/TiO2-SiO2图解上四个样品均落于安山岩范围(图6a),在Y-Zr图解中,样品落于钙碱性系列(图6b),显示岩石属钙碱性安山质岩石,镁质含量较高。

  • 表1 大别造山带古元古代早期黑云紫苏斜长片麻岩样品LA-ICP-MS锆石U-Pb同位素定年结果

  • Table1 The zircon LA-ICP-MS U-Pb dating results of the early Proterozoic biotite-hypersthene-plagioclase gneiss from the Dabie orogen

  • 表2 大别造山带古元古代早期黑云紫苏斜长片麻岩锆石Hf同位素组成

  • Table2 Zircon Hf isotopic compositions of the early Proterozoic biotite-hypersthene-plagioclase gneiss from the Dabie orogen

  • 图4 大别造山带蕙兰山地区黑云紫苏斜长片麻岩锆石U-Pb年龄谐和图及锆石稀土元素球粒陨石标准化配分模式图(球粒陨石数据引自Sun et al.,1989

  • Fig.4 U-Pb concordia diagram for zircons and chondrite-normalized REE patterns of zircons from the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen (chondrite normalizing values after Sun et al., 1989)

  • 图5 大别造山带蕙兰山地区黑云紫苏斜长片麻岩锆石Lu-Hf同位素εHft)、tDM1tDM2值频谱图

  • Fig.5 The Lu-Hf histograms of εHf (t) , tDM1 and tDM2 for the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen

  • 表3 大别造山带古元古代早期黑云紫苏斜长片麻岩主量元素(%)和微量元素(×10-6)组成

  • Table3 Major (%) and trace element compositions (×10-6) of the early Proterozoic biotite-hypersthene-plagioclase gneiss from the Dabie orogen

  • 4.3.2 稀土与微量元素

  • 稀土与微量元素结果见表3。稀土元素总量为127.49×10-6~176.11×10-6,平均值为145.98×10-6,轻稀土元素含量为106.93×10-6~156.36×10-6,重稀土元素含量为19.75×10-6~21.28×10-6,LREE/HREE=5.19~7.92,(La/Yb)N=19.2~34.1,平均24.4,(Eu/Eu*)= 0.9~1.2,平均1.08,显示Eu弱正异常或基本无Eu异常特征,轻微Ce负异常; 在稀土元素球粒陨石标准化配分模式图上(图7a),可以看出轻重稀土分异明显,各个样品特征较为一致,表现出轻稀土元素富集,重稀土元素亏损的特征,呈右倾轻稀土元素富集模式。在原始地幔标准化微量元素蛛网图上(图7b),表现出明显富集Rb、Ba、K等大离子亲石元素,相对亏损Nb、Ta、Zr、Hf等高场强元素。

  • 5 讨论

  • 5.1 岩石成因

  • 5.1.1 岩浆岩岩石类型

  • 黑云紫苏斜长片麻岩MgO(4.74%~5.89%)含量较高,在SiO2-MgO图解中全部位于镁质闪长岩(MA)系列,与阿留申镁质安山岩区域较为相近(图8a),与镁质闪长岩特征较为相似,但在FeO*/MgO-SiO2图解中位于CA与LF-CA界线附近,由于FeO*/MgO较高而与典型镁质闪长岩有所区别(图8b)(邓晋福等,2010)。

  • 5.1.2 岩浆岩源区特征

  • 该套黑云紫苏斜长片麻岩属钙碱系列岩石,该岩石样品富集大离子亲石元素(Rb、Ba、K),相对亏损高场强元素(Nb、Ta、Zr、Hf),显示出活动大陆边缘弧岩浆岩的地球化学特征(Brown et al.,1984); 在Zr-Zr/Sm与La-La/Sm图解中显示该套岩石成岩过程中部分熔融作用占主导,分离结晶作用不明显(图9a、b)(Allegre et al.,1978),在SiO2-MgO图解中,显示为俯冲洋壳熔融成因(图9c)(Martine et al.,2005)。Rapp et al.(1995)认为下地壳岩石部分熔融形成的熔体其Mg#小于45,而该岩石样品Mg#值为 47.5~50.4,高于下地壳岩石熔体Mg#值,说明该套黑云紫苏斜长片麻岩原岩岩浆有地幔物质的加入。

  • 5.1.3 锆石Lu-Hf同位素组成特征

  • 由于锆石稳定性较强,同时具有较高的Hf质量分数和极低的176Lu/177Hf值,并且其形成后基本没有放射性成因Hf的积累,使得锆石Hf同位素组成成为示踪岩浆岩源区的重要手段之一(吴福元等,2007)。该套黑云紫苏斜长片麻岩锆石Lu-Hf同位素特征显示,εHft)值分布范围在+2.06~+3.59之间,加权平均值为+2.86±0.64(MSWD=0.71),在锆石年龄-εHft)图解中位于球粒陨石与亏损地幔之间(图10),一阶模式年龄(tDM1)与二阶模式年龄(tDM2)均较为集中且较为接近,加权平均年龄分别为2671±27 Ma和2754±26 Ma,表明锆石的原岩可能为新太古代早期陆壳物质与亏损地幔岩浆混合的产物。

  • 图6 大别造山带蕙兰山地区黑云紫苏斜长片麻岩Zr/TiO2-SiO2(a,底图据Winchester et al.,1977)和Y-Zr(b,底图据Ross et al.,2009)图解

  • Fig.6 Zr/TiO2-SiO2 (a, after Winchester et al., 1977) and Y-Zr (b, after Ross et al., 2009) plots for the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen

  • 图7 大别造山带蕙兰山地区黑云紫苏斜长片麻岩稀土元素球粒陨石标准化配分模式图(a)和微量元素原始地幔标准化蛛网图(b)(球粒陨石与原始地幔数据引自Sun et al.,1989

  • Fig.7 Chondrite-normalized REE pattern (a) and primitive mantle-normalized element spider diagram (b) of the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen (chondrite and primitive mantle normalizing values from Sun et al., 1989)

  • 图8 大别造山带蕙兰山地区黑云紫苏斜长片麻岩MgO-SiO2(a)和SiO2-FeO*/MgO(b)图解(底图据邓晋福等,2010

  • Fig.8 MgO-SiO2 (a) and SiO2-FeO*/MgO (b) plots for the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen (after Deng Jinfu et al., 2010)

  • HMA—高镁安山岩/闪长岩; MA—镁安山岩/闪长岩; CA—钙碱性系列; TH—拉斑玄武系列; LF-CA—低铁钙碱性系列

  • HMA—high magnesian andesitic/dioritic rocks; MA—magnesian andesitic/dioritic rocks; CA—calcium alkaline series; TH—tholeiitic series; LF-CA—low Fe calcium alkaline series

  • 前人研究认为,富镁安山岩/闪长岩端元(Mg#>60)来自地幔,镁质安山岩/闪长岩(Mg#<60)成因比较复杂,可能与随后的岩浆结晶分离作用,或板片熔融与地幔楔的交换作用,或初始岩浆与陆壳的混染作用有关系(Stern et al.,19891991; 张旗等,20042005),邓晋福等(2010)认为镁质闪长岩是俯冲洋壳脱水熔融产生的岩浆与上覆楔形地幔发生相互作用后形成的岩浆。本文研究的该套岩石富Mg贫Si,且具有较高的Sr/Y(59.6~75.8)、La/Yb(28.8~47.6),较高的Sr(580×10-6~707×10-6)、Ni(109×10-6~134×10-6)、Cr(254×10-6~428×10-6)含量,以及较低的YbN(5.7~7.1)值及Y(9.32×10-6~10.8×10-6)含量,Nb、Ta相对亏损,Eu弱的正异常或无异常,具有与镁质闪长岩十分相似的特征(张旗等,2005; 邓晋福等,2010),其成因与镁质闪长岩应具相似性; 地球化学元素组成特征显示在该套岩石成岩过程中部分熔融作用占主导,分离结晶作用不明显,具有俯冲构造背景特征,Hf同位素组成显示其为新太古代早期物质与幔源岩浆混合的特征。综合上述分析我们认为,该套岩石可能是新太古代晚期—古元古代早期俯冲板片脱水熔融产生的岩浆与地幔相互作用的产物。

  • 图9 大别造山带蕙兰山地区黑云紫苏斜长片麻岩MgO-SiO2(a)、Zr/Sm-Zr(b)、La/Sm-La(c)图解(a、b 底图据Allegre et al.,1978; c据Martine et al.,2005)

  • Fig.9 MgO-SiO2 (a) , Zr/Sm-Zr (b) and La/Sm-La (c) diagrams of the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen (a, b after Allegre et al., 1978; c after Martine et al., 2005)

  • 图10 大别造山带蕙兰山地区黑云紫苏斜长片麻岩锆石年龄-εHft)图解(黄陵陆核范围据Qiu Xiaofei et al.,2021

  • Fig.10 Age-εHf (t) value diagram of the zircons from the biotite-hypersthene-plagioclase gneiss in the Huilanshan area of Dabie orogen (the Hf isotopic field for the Huangling continental nucleus from Qiu Xiaofei et al., 2021)

  • 5.2 地质意义

  • 近年来,在北黄陵水月寺地区发现2.15~1.95 Ga时期俯冲-碰撞形成的构造缝合带(韩庆森,2017; Han Qingsen et al.,2018),并发育2.0~1.95 Ga的高温、高压变质事件,以及黄陵及扬子北缘较为发育的~1.85 Ga的A型花岗岩和基性岩脉(熊庆等,2008; 张丽娟等,2011; 周光颜,2018; 黄明达等,2019),显示扬子陆块是属于Columbia超大陆的重要组成部分(Han Qingsen et al.,2017; 韩庆森等,2020; 陈超等,2020)。近年来,在大别地区逐渐发现较多~2.0 Ga的岩浆、变质事件(Wu Yuanbao et al.,2008; Jian Ping et al.,2012; Xu Yang et al.,2020; Zhang Qiangqiang et al.,2020; 邱啸飞等,2020; Qiu Xiaofei et al.,2021; 郭盼等,2021)(图1、11),在大别地区的中元古代变沉积岩和黄陵北侧中元古界神农架群碎屑岩中均发育大量~2.0 Ga的碎屑锆石记录且二者物源一致(孔令耀等,2023),以及本文发现大别地区2.0 Ga麻粒岩相变质作用,显示北黄陵和大别地区可能均参与并记录了古元古代Columbia超大陆演化过程。通过对比前人对北黄陵地区和大别地区取得的认识可以看出,二者在太古宙及之前物质组成和演化规律存在明显差异,Qiu Xiaofei et al.(2021)也通过对比大别与黄陵地区锆石Lu-Hf同位素组成发现二者存在不同的演化特征(图10、11),显示黄陵与大别地区太古宙及之前时期可能存在不同的演化过程; 但自古元古代早期开始,黄陵和大别地区的地质演化过程开始趋于一致(图11),暗示黄陵和大别为代表的地块在该时期可能已经处于相似的构造环境或大地构造位置。综上我们认为,扬子陆块北缘基底可能自古元古代时期已经存在一个大地构造位置相近的“微陆块群”,这些“微陆块群”可能在~2.0 Ga的Columbia超大陆汇聚事件中逐渐拼合形成了扬子陆块北缘的早期的统一基底(陆松年等,2002; 邱啸飞等,2014; 孔令耀等,2017; 陈超等,2020)。

  • 图11 大别地区与黄陵地区太古宙—古元古代物质组成与演化特征对比图

  • Fig.11 Comparison of Archean-Paleoproterozoic material composition and evolution characteristics between Dabie and Huangling area

  • 文献来源:[1]孔令耀等,2023; [2]魏君奇等,2012; [3]马大铨等,1997; [4]邱啸飞等,2016; [5] 邱啸飞等,2017; [6]胡正祥等,2012; [7]韩庆森,2017; [8] Xu Yang et al.,2020; [9]郭盼等,2021; [10] Zhang Qiangqiang et al.,2020; [11] Qiu Yumin et al.,2000; [12] Zhang Shaobing et al.,2006; [13] Gao Shan et al.,2011; [14] Guo Jingliang et al.,2014; [15] Guo Jingliang et al.,2015; [16] Jiao Wenfang et al.,2009; [17] Zheng Jianping et al.,2006; [18] Chen Kang et al.,2013; [19]熊庆等,2008; [20]周光颜,2018; [21]黄明达等,2019; [22] Qiu Xiaofei et al.,2021; [23]邱啸飞等,2020; [24]魏运许等,2018; [25]陈超等,2020; [26]韩庆森等,2020; *为本次研究未发表资料

  • The datas are from: [1] Kong Lingyao et al., 2023; [2] Wei Junqi et al., 2012; [3] Ma Daquan et al., 1997; [4] Qiu Xiaofei et al., 2016; [5] Qiu Xiaofei et al., 2017; [6] Hu Zhengxiang et al., 2012; [7] Han Qingsen, 2017; [8] Xu Yang et al., 2020; [9] Guo Pan et al., 2021; [10] Zhang Qiangqiang et al., 2020; [11] Qiu Yumin et al., 2000; [12] Zhang Shaobing et al., 2006; [13] Gao Shan et al., 2011; [14] Guo Jingliang et al., 2014; [15] Guo Jingliang et al., 2015; [16] Jiao Wenfang et al., 2009; [17] Zheng Jianping et al., 2006; [18] Chen Kang et al., 2013; [19] Xiong Qing et al., 2008; [20] Zhou Guangyan, 2018; [21] Huang Mingda et al., 2019; [22] Qiu Xiaofei et al., 2021; [23] Qiu Xiaofei et al., 2020; [24] Wei Yunxu et al., 2018; [25] Chen Chao et al., 2020; [26] Han Qingsen et al., 2020; * unpublished data of this study

  • 6 结论

  • (1)大别造山带蕙兰山地区出露的黑云紫苏斜长片麻岩原岩为石英闪长岩,发育麻粒岩相变质作用,其成岩时间为2463±22 Ma,属古元古代早期; 麻粒岩相变质时间为2002±11 Ma,属古元古代,该变质事件可能与Columbia超大陆的聚合事件有关。

  • (2)该套黑云紫苏斜长片麻岩地球化学特征显示其与镁质闪长岩具有相似的特征,结合锆石Lu-Hf同位素组成特征,认为该套岩石可能是新太古代晚期—古元古代早期俯冲板片熔融产生的岩浆岩与地幔相互作用的产物。

  • (3)扬子陆块北黄陵和大别地区太古宙及之前物质组成和地质演化差异明显,古元古代开始趋于相似,且均发育的~2.0 Ga岩浆、变质事件显示二者可能参与并记录了Columbia超大陆演化过程,暗示扬子陆块可能自古元古代已经存在一个大地构造位置相近的“微陆块群”,这些“微陆块群”可能在~2.0 Ga的Columbia超大陆汇聚事件中拼合形成扬子陆块北缘的早期统一基底。

  • 致谢:武汉地质调查中心同位素地球化学研究室童喜润博士在锆石U-Pb定年和Lu-Hf同位素测试中提供了帮助,两位匿名审稿专家对文章提出了建设性的修改意见,显著提升了文章质量,特此一并表示感谢!

  • 注释

  • ❶ 湖北省地质调查院.2003. 湖北省1∶25万麻城市幅(H50C001001)区域地质调查报告. 湖北省地质调查院.

  • ❷ 湖北省地质调查院.2014. 湖北省1∶5万宋埠幅(H50E006004)、新洲幅(H50E007004)、淋山河幅(H50E008004)、团风县幅(H50E009004)区域地质矿产调查报告. 湖北省地质调查院.

  • ❸ 湖北省地质调查院.2017. 湖北1∶5万大悟县幅(H50E003001)、丰店幅(H50E003002)、小河镇幅(H50E004001)、四姑墩幅(H50E004002)区域地质矿产调查成果报告.湖北省地质调查院.

  • ❹ 武汉地质调查中心.2018. 湖北省1∶5万水月寺幅(H49E005013)、茅坪河幅(H49E006013)区域地质调查报告. 武汉地质调查中心.

  • 参考文献

    • Albarède F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70: 1261~1270.

    • Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.

    • Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243~258.

    • Bradley D C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108(1-2): 16~33.

    • Brown G C, Thorpe R S, Webb P C. 1984. The geochemical characteristics of granitoids contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413~426.

    • Chen Chao, Yuan Jinling, Guo Pan, Li Fangyun, Kong Lingyao, Yang Jinxiang, Mao Xinwu. 2020. ~2. 0 Ga regional metamorphic event in Yangtze black and its heuristic significance to the differences in geological evolutionary between north and south Huangling, Hubei Province. Geology in China, 47(4): 899~913 (in Chinese with English abstract).

    • Chen Kang, Gao Shan, Wu Yuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6-2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.

    • Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311(2): 153~182.

    • Gao Xiaoying, Zheng Yongfei. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417~432 (in Chinese with English abstract).

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Guo Pan, Chen Chao, Wu Bo, Chen Xiaolong, Kong Lingyao, Liu Chengxin. 2021. The discovery and Hf isotopic characteristics of ~2. 0 Ga metamorphic granite in the western Dabie Mountains. Geology in China, 48(4): 1267~1279 (in Chinese with English abstract).

    • Han Qingsen. 2017. Genesis and tectonic significance of the Paleoproterozoic ophiolitic mélange in the Huangling dome, Yangtze craton. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    • Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfen, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Han Qingsen, Peng Songbai, Polat A, Kusky T M, Deng Hao, Wu Tuoyu. 2018. A ca. 2. 1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Research, 309: 309~324.

    • Han Qingsen, Peng Songbai, Polat A, Kusky T. 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton. Lithos, 342-343: 513~529.

    • Han Qingsen, Peng Songbai, Jiao Shujuan. 2020. Discovery and tectonic implications of Paleoproterozoic cold subduction low-temperature/high-pressure eclogitic metapelites, Yangtze craton. Earth Science, 45(6): 1986~1998 (in Chinese with English abstract).

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A ~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Chinese Science Bulletin, 58(28-29): 3564~3579.

    • Hu Zhengxiang, Liu Zaoxue, Zhang Yanlin, Mao Xinwu, Ran Ruisheng, Liao Zongming, Liu Chengxin. 2012. Determination of the bottom boundary of Shennongjia Gr in Pre-Nanhuan Period about the northern margin of Yantze massif and its geological significance. Resources Environment & Engineering, 26(3): 201~208 (in Chinese with English abstract).

    • Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, Ren Guangming, He Huzhuang, Chen Fengling, Zhang Hengli, Zhang Jianqiang, Ren Fei. 2019. Late Paleoproterozoic A-type granitic rocks in the northern Yangtze block: Evidence for breakup of the Colunbia supercontinent. Acta Geologica Sinica, 93(3): 565~584 (in Chinese with English abstract).

    • Jian Ping, Kroner A, Zhou Gaozhi. 2012. SHRIMP zircon U-Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: Insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chemical Geology, 328 (2012): 49~69.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D: Earth Sciences, 52(9): 1393~1399.

    • Kong Lingyao, Mao Xinwu, Chen Chao, Deng Qianzhong, Zhang Hanjin, Yang Qingxiong, Li Linjing, Li Qiwen. 2017. Chronological study on detrital zircons and its geological significance from Mesoproterozoic Dagushi Group in the Dahongshan area, north margin of the Yangtze block. Earth Science, 42(4): 485~501 (in Chinese with English abstract).

    • Kong Lingyao, Guo Pan, Wan Jun, Liu Chengxin, Wang Jing, Chen Chao. 2021. Detrital zircon U-Pb geochronology and Hf isotopes of Mesoproterozoic metasedimentary rocks in Dabie orogen and its geological significance. Earth Science, 47(4): 1333~1348 (in Chinese with English abstract).

    • Liu Bo, Zhai Mingguo, Zhao Lei, Cui Xiahong. 2019. Metamorphism, P-T path and zircon U-Pb dating of Paleoproterozoic mafic and felsic granulites from the Kongling terrane, South China. Precambrian Research, 333: 105403.

    • Liu Xiaochun, Li Sanzhong, Jiang Boming. 2015. Tectonic evolution of the Tongbai-Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision. Science China: Earth Sciences, 58: 1477~1496.

    • Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Lu Songnian, Yang Chunliang, Li Huaikun, Chen Zhihong. 2002. North Chinacontinent and Colunbia supercontinent. Earth Science Frontiers, 9(9): 226~233 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California.

    • Ma Daquan, Li Zhichang, Xiao Zhifa. 1997. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei. Bulletin of the Chinese Academy of Geological Sciences, 18(3): 233~241 (in Chinese with English abstract).

    • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1~24.

    • Polat A, Hofmann A W, Rosing M T, Rosing M T. 2002. Boninite-like volcanic rocks in the 3. 7-3. 8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3-4): 231~254.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: Constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33(2): 1~8 (in Chinese with English abstract).

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40(3): 549~558 (in Chinese with English abstract).

    • Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36(5): 706~714 (in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogeny: Evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94(3): 729~738 (in Chinese with English abstract).

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.

    • Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11~14.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Ross P S, Bédard J H. 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, 46(11): 823~839.

    • Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern superior province. Canadian Journal of Earth Sciences, 26: 1688~1712.

    • Stern R, Hanson G. 1991. Archean high-Mg granodiorites: A derivative of light rare earth element enriched monzodiorite of mantle origin. Journal of Petrology, 32: 201~238.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantal composition and processes. Geological Society of London Special Publications, 42(1): 313~345.

    • Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63: 533~556.

    • Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.

    • Wang Zhengjiang, Wang Jian, Deng Qi, Du Qiuding, Zhou Xiaolin, Yang Fei, Liu Hao. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui complex, South China. Precambrian Research, 263: 157~173.

    • Wei Junqi, Wang Jianxiong. 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling complex. Geological Journal of China Universities, 18(4): 589~600 (in Chinese with English abstract).

    • Wei Junqi, Jing Mingming. 2013. Chronology and geochemistry of amphibolites from the Kongling complex. Chinese Journal of Geology, 48(4): 970~983 (in Chinese with English abstract).

    • Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Ga metamorphic event was found in the Mesoarchean granite complex in Huangling area, the nucleus of the Yangtze craton. Earth Science, 43(7): 2309~2321 (in Chinese with English abstract).

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their application in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. The study on zircon genetic mineralogy and its restriction on explaining of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23: 1402~1428.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xiong Qing, Zheng Jianping, Yu Chunmei, Su Yuping, Tang Huayun, Zhang Zhihai. 2008. Zircon U-Pb age and Hf isotope of A-type granite from Qiyitang, Yichang and the cratonization of Yangtze continent in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782~2792 (in Chinese).

    • Xu Yang, Ali Polat, Deng Xin, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong'an terrane, central China: Syncollisional alkaline magmatism at the northern margin of the Yangtze block. Precambrian Research, 342: 105713.

    • Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese unified continent. Science China: Earth Sciences, 56: 1829~1852.

    • Zhang Lijuan, Ma Changqian, Wang Lianxun, She Zhenbing, Wang Shiming. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin, 56(1): 44~57 (in Chinese).

    • Zhang Qi, Zhai Mingguo, Jian Ping, Jin Weijun, Wang Yuanlong, Wang Yan. 2004. The characteristics and significance of sanukite and its comparison with TTG and Adakite. Abstracts of the 2004 National Symposium on Petrology and Geodynamics, 381~383 (in Chinese).

    • Zhang Qi, Qian Qing. Zhai Mingguo, Jin Weijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications of sanukite. Acta Petrologica et Mineralogical, 24(2): 117~125 (in Chinese with English abstract).

    • Zhang Qiangqiang, Gao Xiaoying, Zhang Shaobin, Zheng Yongfei. 2020. Paleoproterozoic tectonic evolution of the northern Yangtze craton from oceanic subduction through continental collision to continental rifting: Geochronological and geochemical records of metabasites from the Tongbai orogen in central China. Precambrian Research, 350: 105920.

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1): 16~34.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222: 13~54.

    • Zheng Jianping, Griffin W L, O'Reilly S Y, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.

    • Zhou Guangyan. 2018. The nature of Late Archean to Paleoproterozoic basement in the northern Yangtze and its geological implication. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese).

    • Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.

    • Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Zhang Wenxiang, Zheng Jianping, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze block. Precambrian Research, 292: 57~74.

    • 陈超, 苑金玲, 郭盼, 黎方云, 孔令耀, 杨金香, 毛新武. 2020. 扬子陆块~2. 0 Ga 的区域变质事件对南北黄陵古元古代差异演化的启示. 中国地质, 47(4): 899~913.

    • 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.

    • 高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417~432.

    • 郭盼, 陈超, 吴波, 陈小龙, 孔令耀, 刘成新. 2021. 西大别~2. 0 Ga 变质花岗岩的发现及其Hf同位素特征. 中国地质, 48(4): 1267~1279.

    • 韩庆森. 2017. 扬子克拉通黄陵穹窿古元古代蛇绿混杂岩成因及大地构造意义. 中国地质大学(武汉)博士论文.

    • 韩庆森, 彭松柏, 焦淑娟. 2020. 扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义. 地球科学, 45(6): 1986~1998.

    • 胡正祥, 刘早学, 张焱林, 毛新武, 冉瑞生, 廖宗明, 刘成新. 2012. 扬子地块北缘前南华纪神农架群底界的厘定及其地质意义. 资源环境与工程, 26(3): 201~208.

    • 黄明达, 崔晓庄, 程爱国, 任光明, 何虎庄, 陈风霖, 张恒利, 张建强, 任飞. 2019. 扬子北缘晚古元古代A型花岗质岩: Columbia超大陆裂解的证据. 地质学报, 93(3): 565~584.

    • 孔令耀, 毛新武, 陈超, 邓乾忠, 张汉金, 杨青雄, 李琳静, 李启文. 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485~501.

    • 孔令耀, 郭盼, 万俊, 刘成新, 王晶, 陈超. 2021. 大别造山带中元古代变沉积岩碎屑锆石U-Pb年代学与Hf同位素特征及其地质意义. 地球科学, 47(4): 1333~1348.

    • 刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞. 中国科学: 地球科学, 45: 1088~1108.

    • 陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(9) : 226~233.

    • 马大铨, 李志昌, 肖志发. 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 233~241.

    • 邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1~8.

    • 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40(3): 549~558.

    • 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36(5): 706~714.

    • 邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学Hf同位素证据. 地质学报, 94(3): 729~738.

    • 魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成. 高校地质学报, 18(4): 589~600.

    • 魏君奇, 景明明. 2013. 崆岭杂岩中角闪岩类的年代学和地球化学. 地质科学, 48(4): 970~983.

    • 魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43(7): 2309~2321.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 熊庆, 郑建平, 余淳梅, 苏玉平, 汤华云, 张志海. 2008. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782~2792.

    • 翟明国, 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学: 地球科学, 43(10): 1583~1606.

    • 张丽娟, 马昌前, 王连训, 佘振兵, 王世明. 2011. 扬子地块北缘古元古代环斑花岗岩的发现及其意义. 科学通报, 56(1): 44~57.

    • 张旗, 翟明国, 简平, 金惟浚, 王元龙, 王焰. 2004. Sanukite(赞岐岩)的特征和意义及其与TTG及埃达克岩的对比. 2004年全国岩石学与地球动力学研讨会论文摘要集, 381~383.

    • 张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.

    • 周光颜. 2018. 扬子北缘晚太古代至古元古代基底性质及其地质意义. 中国地质大学(武汉)博士毕业论文.

  • 参考文献

    • Albarède F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70: 1261~1270.

    • Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.

    • Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243~258.

    • Bradley D C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108(1-2): 16~33.

    • Brown G C, Thorpe R S, Webb P C. 1984. The geochemical characteristics of granitoids contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413~426.

    • Chen Chao, Yuan Jinling, Guo Pan, Li Fangyun, Kong Lingyao, Yang Jinxiang, Mao Xinwu. 2020. ~2. 0 Ga regional metamorphic event in Yangtze black and its heuristic significance to the differences in geological evolutionary between north and south Huangling, Hubei Province. Geology in China, 47(4): 899~913 (in Chinese with English abstract).

    • Chen Kang, Gao Shan, Wu Yuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6-2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.

    • Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311(2): 153~182.

    • Gao Xiaoying, Zheng Yongfei. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417~432 (in Chinese with English abstract).

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Guo Pan, Chen Chao, Wu Bo, Chen Xiaolong, Kong Lingyao, Liu Chengxin. 2021. The discovery and Hf isotopic characteristics of ~2. 0 Ga metamorphic granite in the western Dabie Mountains. Geology in China, 48(4): 1267~1279 (in Chinese with English abstract).

    • Han Qingsen. 2017. Genesis and tectonic significance of the Paleoproterozoic ophiolitic mélange in the Huangling dome, Yangtze craton. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    • Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfen, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Han Qingsen, Peng Songbai, Polat A, Kusky T M, Deng Hao, Wu Tuoyu. 2018. A ca. 2. 1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Research, 309: 309~324.

    • Han Qingsen, Peng Songbai, Polat A, Kusky T. 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton. Lithos, 342-343: 513~529.

    • Han Qingsen, Peng Songbai, Jiao Shujuan. 2020. Discovery and tectonic implications of Paleoproterozoic cold subduction low-temperature/high-pressure eclogitic metapelites, Yangtze craton. Earth Science, 45(6): 1986~1998 (in Chinese with English abstract).

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A ~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Chinese Science Bulletin, 58(28-29): 3564~3579.

    • Hu Zhengxiang, Liu Zaoxue, Zhang Yanlin, Mao Xinwu, Ran Ruisheng, Liao Zongming, Liu Chengxin. 2012. Determination of the bottom boundary of Shennongjia Gr in Pre-Nanhuan Period about the northern margin of Yantze massif and its geological significance. Resources Environment & Engineering, 26(3): 201~208 (in Chinese with English abstract).

    • Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, Ren Guangming, He Huzhuang, Chen Fengling, Zhang Hengli, Zhang Jianqiang, Ren Fei. 2019. Late Paleoproterozoic A-type granitic rocks in the northern Yangtze block: Evidence for breakup of the Colunbia supercontinent. Acta Geologica Sinica, 93(3): 565~584 (in Chinese with English abstract).

    • Jian Ping, Kroner A, Zhou Gaozhi. 2012. SHRIMP zircon U-Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: Insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chemical Geology, 328 (2012): 49~69.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D: Earth Sciences, 52(9): 1393~1399.

    • Kong Lingyao, Mao Xinwu, Chen Chao, Deng Qianzhong, Zhang Hanjin, Yang Qingxiong, Li Linjing, Li Qiwen. 2017. Chronological study on detrital zircons and its geological significance from Mesoproterozoic Dagushi Group in the Dahongshan area, north margin of the Yangtze block. Earth Science, 42(4): 485~501 (in Chinese with English abstract).

    • Kong Lingyao, Guo Pan, Wan Jun, Liu Chengxin, Wang Jing, Chen Chao. 2021. Detrital zircon U-Pb geochronology and Hf isotopes of Mesoproterozoic metasedimentary rocks in Dabie orogen and its geological significance. Earth Science, 47(4): 1333~1348 (in Chinese with English abstract).

    • Liu Bo, Zhai Mingguo, Zhao Lei, Cui Xiahong. 2019. Metamorphism, P-T path and zircon U-Pb dating of Paleoproterozoic mafic and felsic granulites from the Kongling terrane, South China. Precambrian Research, 333: 105403.

    • Liu Xiaochun, Li Sanzhong, Jiang Boming. 2015. Tectonic evolution of the Tongbai-Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision. Science China: Earth Sciences, 58: 1477~1496.

    • Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Lu Songnian, Yang Chunliang, Li Huaikun, Chen Zhihong. 2002. North Chinacontinent and Colunbia supercontinent. Earth Science Frontiers, 9(9): 226~233 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California.

    • Ma Daquan, Li Zhichang, Xiao Zhifa. 1997. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei. Bulletin of the Chinese Academy of Geological Sciences, 18(3): 233~241 (in Chinese with English abstract).

    • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1~24.

    • Polat A, Hofmann A W, Rosing M T, Rosing M T. 2002. Boninite-like volcanic rocks in the 3. 7-3. 8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3-4): 231~254.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: Constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33(2): 1~8 (in Chinese with English abstract).

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40(3): 549~558 (in Chinese with English abstract).

    • Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36(5): 706~714 (in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogeny: Evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94(3): 729~738 (in Chinese with English abstract).

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.

    • Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11~14.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Ross P S, Bédard J H. 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, 46(11): 823~839.

    • Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern superior province. Canadian Journal of Earth Sciences, 26: 1688~1712.

    • Stern R, Hanson G. 1991. Archean high-Mg granodiorites: A derivative of light rare earth element enriched monzodiorite of mantle origin. Journal of Petrology, 32: 201~238.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantal composition and processes. Geological Society of London Special Publications, 42(1): 313~345.

    • Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63: 533~556.

    • Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.

    • Wang Zhengjiang, Wang Jian, Deng Qi, Du Qiuding, Zhou Xiaolin, Yang Fei, Liu Hao. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui complex, South China. Precambrian Research, 263: 157~173.

    • Wei Junqi, Wang Jianxiong. 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling complex. Geological Journal of China Universities, 18(4): 589~600 (in Chinese with English abstract).

    • Wei Junqi, Jing Mingming. 2013. Chronology and geochemistry of amphibolites from the Kongling complex. Chinese Journal of Geology, 48(4): 970~983 (in Chinese with English abstract).

    • Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Ga metamorphic event was found in the Mesoarchean granite complex in Huangling area, the nucleus of the Yangtze craton. Earth Science, 43(7): 2309~2321 (in Chinese with English abstract).

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their application in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. The study on zircon genetic mineralogy and its restriction on explaining of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23: 1402~1428.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xiong Qing, Zheng Jianping, Yu Chunmei, Su Yuping, Tang Huayun, Zhang Zhihai. 2008. Zircon U-Pb age and Hf isotope of A-type granite from Qiyitang, Yichang and the cratonization of Yangtze continent in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782~2792 (in Chinese).

    • Xu Yang, Ali Polat, Deng Xin, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong'an terrane, central China: Syncollisional alkaline magmatism at the northern margin of the Yangtze block. Precambrian Research, 342: 105713.

    • Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese unified continent. Science China: Earth Sciences, 56: 1829~1852.

    • Zhang Lijuan, Ma Changqian, Wang Lianxun, She Zhenbing, Wang Shiming. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin, 56(1): 44~57 (in Chinese).

    • Zhang Qi, Zhai Mingguo, Jian Ping, Jin Weijun, Wang Yuanlong, Wang Yan. 2004. The characteristics and significance of sanukite and its comparison with TTG and Adakite. Abstracts of the 2004 National Symposium on Petrology and Geodynamics, 381~383 (in Chinese).

    • Zhang Qi, Qian Qing. Zhai Mingguo, Jin Weijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications of sanukite. Acta Petrologica et Mineralogical, 24(2): 117~125 (in Chinese with English abstract).

    • Zhang Qiangqiang, Gao Xiaoying, Zhang Shaobin, Zheng Yongfei. 2020. Paleoproterozoic tectonic evolution of the northern Yangtze craton from oceanic subduction through continental collision to continental rifting: Geochronological and geochemical records of metabasites from the Tongbai orogen in central China. Precambrian Research, 350: 105920.

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1): 16~34.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222: 13~54.

    • Zheng Jianping, Griffin W L, O'Reilly S Y, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.

    • Zhou Guangyan. 2018. The nature of Late Archean to Paleoproterozoic basement in the northern Yangtze and its geological implication. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese).

    • Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.

    • Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Zhang Wenxiang, Zheng Jianping, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze block. Precambrian Research, 292: 57~74.

    • 陈超, 苑金玲, 郭盼, 黎方云, 孔令耀, 杨金香, 毛新武. 2020. 扬子陆块~2. 0 Ga 的区域变质事件对南北黄陵古元古代差异演化的启示. 中国地质, 47(4): 899~913.

    • 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.

    • 高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417~432.

    • 郭盼, 陈超, 吴波, 陈小龙, 孔令耀, 刘成新. 2021. 西大别~2. 0 Ga 变质花岗岩的发现及其Hf同位素特征. 中国地质, 48(4): 1267~1279.

    • 韩庆森. 2017. 扬子克拉通黄陵穹窿古元古代蛇绿混杂岩成因及大地构造意义. 中国地质大学(武汉)博士论文.

    • 韩庆森, 彭松柏, 焦淑娟. 2020. 扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义. 地球科学, 45(6): 1986~1998.

    • 胡正祥, 刘早学, 张焱林, 毛新武, 冉瑞生, 廖宗明, 刘成新. 2012. 扬子地块北缘前南华纪神农架群底界的厘定及其地质意义. 资源环境与工程, 26(3): 201~208.

    • 黄明达, 崔晓庄, 程爱国, 任光明, 何虎庄, 陈风霖, 张恒利, 张建强, 任飞. 2019. 扬子北缘晚古元古代A型花岗质岩: Columbia超大陆裂解的证据. 地质学报, 93(3): 565~584.

    • 孔令耀, 毛新武, 陈超, 邓乾忠, 张汉金, 杨青雄, 李琳静, 李启文. 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485~501.

    • 孔令耀, 郭盼, 万俊, 刘成新, 王晶, 陈超. 2021. 大别造山带中元古代变沉积岩碎屑锆石U-Pb年代学与Hf同位素特征及其地质意义. 地球科学, 47(4): 1333~1348.

    • 刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞. 中国科学: 地球科学, 45: 1088~1108.

    • 陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(9) : 226~233.

    • 马大铨, 李志昌, 肖志发. 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 233~241.

    • 邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1~8.

    • 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40(3): 549~558.

    • 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36(5): 706~714.

    • 邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学Hf同位素证据. 地质学报, 94(3): 729~738.

    • 魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成. 高校地质学报, 18(4): 589~600.

    • 魏君奇, 景明明. 2013. 崆岭杂岩中角闪岩类的年代学和地球化学. 地质科学, 48(4): 970~983.

    • 魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43(7): 2309~2321.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 熊庆, 郑建平, 余淳梅, 苏玉平, 汤华云, 张志海. 2008. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782~2792.

    • 翟明国, 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学: 地球科学, 43(10): 1583~1606.

    • 张丽娟, 马昌前, 王连训, 佘振兵, 王世明. 2011. 扬子地块北缘古元古代环斑花岗岩的发现及其意义. 科学通报, 56(1): 44~57.

    • 张旗, 翟明国, 简平, 金惟浚, 王元龙, 王焰. 2004. Sanukite(赞岐岩)的特征和意义及其与TTG及埃达克岩的对比. 2004年全国岩石学与地球动力学研讨会论文摘要集, 381~383.

    • 张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.

    • 周光颜. 2018. 扬子北缘晚太古代至古元古代基底性质及其地质意义. 中国地质大学(武汉)博士毕业论文.