en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

钟福军,男,1988年生。博士,助理研究员,从事铀矿地质教学与科研工作。E-mail:zhongfujun602@126.com。

通讯作者:

夏菲,男,1968年生。教授,博导,从事铀矿地质教学与科研工作。E-mail:fxia@ecut.edu.cn。

参考文献
Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.
参考文献
Berger G W. 1995. 40Ar/39Ar step heating of thermally overprinted biotite, hornblende and potassium feldspar from Eldora, Colorado. Earth and Planetary Science Letters, 26(3): 387~408.
参考文献
Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characterisitics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).
参考文献
Cen Tao, Li Wuxian, Wang Xuance, Pang Chongjin, Li Zhengxiang, Xing Guangfu, Zhao Xilin, Tao Jihua. 2016. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 256: 311~330.
参考文献
Chen Peirong, Hua Renmin, Zhang Bangdong, Lu Jianjun, Fan Chunfang. 2002. Early Yanshanian post orogenic granitoids in the Nanling region: Petrological constraints and geodynamic settings. Science in China (Series D), 45(8): 755~768 (in Chinese with English abstract).
参考文献
Chen Youwei, Bi Xianwu, Hu Ruizhong, Dong Shaohua. 2012. Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province, China: Implications for U mineralization. Lithos, 150: 119~134.
参考文献
Cuney M. 1978. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Economic Geology, 73(8): 1567~1610.
参考文献
Dang Feipeng, Fang Qichun, Xu Xusheng, Li Zhipeng. 2019. Lithological characteristics of dolerite and its implication for U mineralization in Xishan distract, Lujing ore field: Proceedings of the 2019 Annual Conference of the Chinese Nuclear Society, Chinese Nuclear Society, 75~80 (in Chinese with English abstract).
参考文献
Deng Ping, Shu Liangshu, Tan Zhengzhong. 2003. The geological setting for the formation of rich uranium ores in Zhuang-Guidong large-scale uranium metallogenetic area. Geological Review, 49(5): 486~494 (in Chinese with English abstract).
参考文献
Du Letian. 1982. On the Granite-Type Uranium Deposits. Beijing: Atomic Energy Press (in Chinese).
参考文献
Du Letian, Wang Yuming. 1984. The unity of metallogenic mechanism of granite-type, volcanic-type, carbon-silicone-mudstone and sandstone-type uranium deposits in South China. Uranium Geology (3): 1~10 (in Chinese).
参考文献
Feng Zhijun, Lai Zhongxin, Mo Jihai, Hu Fei, Yang Wei. 2016. A study of metallogenic mechanism of “intersection” type uranium deposit and exploration thinking of Xiazhuang orefield. Mineral Deposits, 35(5): 1047~1061 (in Chinese with English abstract).
参考文献
Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, 27(2): 211~218.
参考文献
Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zidan, Hu Yiken. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.
参考文献
Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotope. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).
参考文献
Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.
参考文献
He Zhenyu, Xu Xisheng, Chen Rong, Xing Guangfu. 2007. Genesis of Middle Jurassic syenite-gabbro in southern Jiangxi Province and their geological significance. Acta Petrologica Sinica, 23(6): 1457~1469 (in Chinese with English abstract).
参考文献
He Zhenyue, Xu Xisheng, Niu Yaoling. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119(3-4): 621~641.
参考文献
Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
参考文献
Hu Ruizhong, Li Chaoyang, Ni Shijun, Liu Li, Yu Jinsheng. 1993. Research on ΣCO2 source in ore-forming hydrothermal solution of granite-type uranium deposit, South China. Science in China (Series B), 23(2): 189~196 (in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China. Earth Science Frontiers, 11(1): 153~160 (in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits, 26(2): 139~152 (in Chinese with English abstract).
参考文献
Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.
参考文献
Hu Zhaochu, Zhang Web, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Haihong, Hu Shenghong, 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87: 1152~1157.
参考文献
Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M. , Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.
参考文献
Huang He, Zhang Zhaochong, Santosh M. , Zhang Dongyang, 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157~174.
参考文献
Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).
参考文献
Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).
参考文献
La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.
参考文献
Leroy J. 1978. The Margnac and Fanay uranium deposits of the La Crouzille District (western Massif Central, France); geologic and fluid inclusion studies. Economic Geology, 73(8): 1611~1634.
参考文献
Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Jiang Hongan, Zou Mingliang. 2021. 40Ar-39Ar geochronological characteristics of diabase in Lujing area of middle Zhuguangshan. Journal of Jilin University (Earth Science Edition), 51(2): 442~454 (in Chinese with English abstract).
参考文献
Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 380: 105820.
参考文献
Li Xianhua, McCulloch M T. 1998. Geochemical characteristics of Cretaceous mafic dikes from Northern Guangdong, SE China: Age, origin and tectonic significance. Geodynamics Series, 27: 405~419.
参考文献
Li Zhengxiang, Li Xianhua, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179~182.
参考文献
Liu Xiang, Bao Yunhe, Yang Shanghai, Zhang Jinye, Lv Guyu, Li Dugeng, Fan Liting, Chen Xiaodong. 2005. Geology of Uranium Deposits in Central South China. Beijing: China Geological Bureau of Nuclear Industry (in Chinese).
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
参考文献
Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel, Berkeley. Berkeley: Geochronology Center, California.
参考文献
Luo Jincheng, Hu Rruizhong, Fayek M, Li Chusi, Bi Xianwu, Abdu Y, Chen Youwei. 2015. In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geology Reviews, 65: 968~978.
参考文献
Luo Jincheng, Qi Youqiang, Wang Lianxun, Chen Youwei, Tian Jianji, Shi Shaohua. 2019. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China: A reevaluation of the role of mafic dyke in uranium mineralization. Acta Petrologica Sinica, 35(9): 2660~2678 (in Chinese with English abstract).
参考文献
Luo Yi, Wang Mingtai, Li Jianhong, Ma Hanfeng. 2002. Geologieal charaeteristics and metallogenetic model of Zhuguang uranium ore concentrated area. China Nuclear Science and Technology Report: 220~235 (in Chinese).
参考文献
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical geology, 56(3-4): 207~218.
参考文献
Min M Z, Luo X Z, Du G S, He B A, Campbell A R. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huangao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.
参考文献
Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1): 33~47.
参考文献
Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D. 2016. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armerican massif (France). American Mineralogist, 101(11): 2430~2442.
参考文献
Raffensperger J P, Garven G. 1995. The formation of unconformity-type uranium ore deposits 2. coupled hydrochemical modeling. American Journal of Science, 295(6): 639~696.
参考文献
Rudnick R L, Gao S, Holland H D. 2003. Composition of the continental crust. The Crust, 3: 1~64.
参考文献
Shao Fei, Xu Jianjun, Mao Yufeng, He Xiaomei, Gao Mengqi. 2013. Study onmineral discharge mechanism of granite type uranium deposits in South China uranium metallogenic province. Uranium Geology, 29(3): 146~151+171 (in Chinese with English abstract).
参考文献
Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207~221.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Tappa M J, Ayuso R A, Bodnar R J, Aylor J G, Beard J, Henika W S, Vazquez J A, Wooden J L. 2014. Age of host rocks at the Coles Hill uranium deposit, Pittsylvania County, Virginia, based on zircon U-Pb geochronology. Economic Geology, 109(2): 513~530.
参考文献
Thomson S N, Gehrels G E, Ruiz J. 2012. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1~23.
参考文献
Wang Jinrong, Lv Xinbiao, Zhang Jianping, Lin Xiaohui, Wang Jilin, Lin Xiang. 2021. Geochronology, geochemistry and geological significance of gabbros from Yongding Daping area, Southwest Fujian. Earth Science, 46(1): 73~86 (in Chinese with English abstract).
参考文献
Wang Lianxun, Ma Changqian, Lai Zhongxin, Marks M A W, Zhang Chao, Zhong Yufang. 2015. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis. Lithos, 239: 71~85.
参考文献
Wang Mingtai, Luo Yi, Sun Zhifu, Zhu Jiechen, Li Jianhong. 1999. Discussion on genesis of uranium deposits in Zhuguang uranium metallogenic region. Uranium Geology, 15(5): 24~30 (in Chinese with English abstract).
参考文献
Weaver B, Kar A, Davidson J, Colucci M. 1996. Geochemical characteristics of volcanic rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449~470.
参考文献
Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. Boston: Unwin Hyman, 78~81.
参考文献
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.
参考文献
Xiang Yuanxin, Wu Jianhua. 2012. SHRIMP zircon U-Pb age of Yutian Group basalts in Longnan area of southern Jiangxi Province and its geological significance. Geological Bulletin of China, 31(5): 716~725 (in Chinese with English abstract).
参考文献
Yang Jinhui, Zhang Jiheng, Chen Jingyuan, Sun Jinfeng. 2021. Mesozoic continental crustal rejuvenation of South China: Insights from zircon Hf-O isotopes of early Jurassic gabbros, syenites and A-type granites. Lithos, 402: 105678.
参考文献
Yu X Q, Wu G G, Zhao X, Gao J F, Di Y J, Zheng Y, Dai Y P, Li C L, Qiu J T. 2010. The Early Jurassic tectono-magmatic events in southern Jiangxi and northern Guangdong provinces, SE China: Constraints from the SHRIMP zircon U-Pb dating. Journal of Asian Earth Sciences, 39(5): 408~422.
参考文献
Zhang Di, Zhao Kuidong, Chen Wei, Jiang Shaoyong. 2018. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos, 308: 118~133.
参考文献
Zhang Fengfeng, Wang Xiaolei, Sun Ziming, Chen Xin, Zhou Xiaohua, Yang Tao. 2018. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area: Constraints on the initiation of Neoproterozoic rifting in South China. Precambrian Research, 309: 138~151.
参考文献
Zhang Long, Wang Fangyue, Zhou Taofa, Chen Zhenyu, Du Xiuling, Zhang Shu. 2022. The origin of uranium deposits related to the Huangmeijian A-type granite from the Lu-Zong volcanic basin, South China: Constraints from zircon U-Pb geochronology and mineral chemistry. Ore Geology Reviews, 141: 104665.
参考文献
Zhang Wanliang, Li Ziying. 2020. Ar-Ar age, geochemical characteristics and tectonic setting of dolerite in Lujing distract of middle part of Zhuguang complex. Jiangxi Geological Society 2020 Annual Conference Proceedings. Geological Society of Jiangxi Province, 67~77 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Mahoney J J, Mao Jingwen and Wang Fusheng, 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.
参考文献
Zhao Junhong, Zhou Meifu. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27~47.
参考文献
Zhao Kuidong, Jiang Shaoyong, Ling Hongfei, Sun Tao, Chen Weifeng, Chen Peirong, Pu Wei. 2016. Late Triassic U-bearing and barren granites in the Miao'ershan batholith, South China: Petrogenetic discrimination and exploration significance. Ore Geology Reviews, 77: 260~278.
参考文献
Zhou X M, Li W X, 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269~287.
参考文献
蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.
参考文献
陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学(D辑: 地球科学), 32(4): 279~289.
参考文献
党飞鹏, 方启春, 徐勋胜, 李志鹏. 2019. 鹿井矿田小山区段煌斑岩特征及其与铀矿化关系. 中国核学会2019年学术年会论文集. 中国核学会, 75~80.
参考文献
邓平, 舒良树, 谭正中. 2003. 诸广—贵东大型铀矿聚集区富铀矿成矿地质条件. 地质论评, 49(5): 486~494.
参考文献
杜乐天. 1982. 花岗岩型铀矿文集. 北京: 原子能出版社.
参考文献
杜乐天, 王玉明. 1984. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性. 铀矿地质(3): 1~10.
参考文献
冯志军, 赖中信, 莫济海, 胡飞, 阳卫. 2016. 下庄矿田“交点”型铀矿床成矿机理研究及勘查思路探讨. 矿床地质, 35(5): 1047~1061.
参考文献
韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.
参考文献
贺振宇, 徐夕生, 陈荣, 邢光福. 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457~1469.
参考文献
胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中ΣCO2来源研究. 中国科学(B辑化学生命科学地学), 23(2): 189~196.
参考文献
胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩—第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153~160.
参考文献
胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.
参考文献
黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.
参考文献
蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.
参考文献
李杰, 黄宏业, 刘子杰, 张涛, 王前林, 蒋红安, 邹明亮. 2021. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征. 吉林大学学报(地球科学版), 51(2): 442~454.
参考文献
刘翔, 包云河, 杨尚海, 张进业, 全国珍, 吕古与, 李社根, 范立亭, 陈小东. 2005. 中南铀矿地质志. 中国核工业地质局, 1~975.
参考文献
罗毅, 王明太, 李建红, 马汉峰. 2002. 诸广铀矿集区成矿地质特征及成矿模式. 中国核科技报告: 220~235.
参考文献
骆金诚, 齐有强, 王连训, 陈佑纬, 田建吉, 石少华. 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660~2678.
参考文献
邵飞, 许健俊, 毛玉峰, 何晓梅, 高梦奇. 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146~151+171.
参考文献
王锦荣, 吕新彪, 张建平, 林晓晖, 王继林, 林香. 2021. 闽西南永定大坪辉长岩脉的年代学、地球化学特征及地质意义. 地球科学, 46(1): 73~86.
参考文献
王明太, 罗毅, 孙志富, 朱杰辰, 李建红. 1999. 诸广铀成矿区矿床成因探讨. 铀矿地质, 15(5): 24~30.
参考文献
项媛馨, 巫建华. 2012. 赣南龙南地区余田群玄武岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(5): 716~725.
参考文献
张万良, 李子颖. 2020. 诸广岩体中部鹿井地区辉绿岩Ar-Ar年龄、地球化学特征及其构造环境. 江西省地质学会2020年学术年会论文集. 江西省地质学会, 67~77.
目录contents

    摘要

    辉绿岩脉与热液型铀矿化关系十分密切。本文以鹿井矿田辉绿岩为研究对象,通过野外地质调查、磷灰石U-Pb年代学和地球化学研究,旨在探究其形成时代、岩石成因、构造背景及其与铀成矿关系,为探讨区域铀成矿机制提供依据。辉绿岩中磷灰石的U-Pb定年指示,辉绿岩形成年龄为~200 Ma, 是诸广—贵东地区200~190 Ma基性岩浆活动的重要组成。辉绿岩地球化学组成类似于洋岛玄武岩(OIB)特征,形成于早侏罗世—晚三叠世之交的岩石圈伸展构造背景下,岩浆起源于亏损地幔源区且被流体交代,岩浆形成过程经历了一定程度的分离结晶和地壳混染作用。鹿井矿田主要铀矿床的成矿年龄为128~51 Ma, 明显晚于区内辉绿岩的形成时代(~200 Ma),因此,由~200 Ma的基性岩浆活动直接提供成矿所需的矿化剂ΣCO2的可能性较小。辉绿岩在鹿井矿田“交点”型矿化的形成过程中,不仅提供了有利的氧化—还原界面,而且基性岩浆侵位时所形成的次级构造裂隙还为成矿提供了有利的空间。

    Abstract

    There is close relationship between dolerite and hydrothermal U mineralization. In this paper, dolerite in the Lujing U ore field of the Zhuguangshan complex was investigated by petrography, LA-ICP-MS apatite U-Pb dating and whole rock geochemical analysis. The aims were focused on the geochronology, petrogenesis and its implication for U mineralization. The analysis result indicated that the dolerite formed at ca.200 Ma, suggesting an Early Jurassic-Late Triassic age and a vital role of basic magma (200~190 Ma) in the Zhuguang-Guidong region. This age corresponds to an Early Jurassic-Late Triassic geodynamic setting which is characterized by lithospheric extension in South China. The geochemical composition of the dolerite in the Lujing U ore field is similar to the oceanic island basalt (OIB). Dolerite was the product of 5%~10% partial melting of the pyroperidotite, and the parental magma derived from mantle changed by metasomatism fluids. The diagenetic process of dolerite has undergone a variational degree crustal contamination and fractional crystallization. The previous studies suggested that the U mineraliztion in the Lujing ore field formed during the period 128~51 Ma and is much younger than the emplacement age of dolerite (ca.200 Ma). Therefore, we speculate that the necessary mineralizer ΣCO2 for U mineralization did not directly come from the ca.200 Ma basic magma, but, for intersection of U mineralization, the the dolerite provided the favorable reductive environment for UO2 precipitation from U-rich oxidized fluid. Additionally, the secondary tectonic fissure caused by the invasion of basic magma offered a suitable space for fluid migration and U mineralization.

  • 基性岩脉是探究地幔性质和地球深部动力学演变的重要“窗口”,它能够更直接地反演地幔的化学组成和物理化学条件,一直以来是国内外研究的热点(Hofmann,1988; Huang He et al.,20122014; Wang Lianxun et al.,2015; Zhang Fengfeng et al.,2018; 骆金诚等,2019)。精确厘定基性岩脉的侵位年龄是探讨地球深部动力学机制的重要前提。长期以来,全岩或单矿物的40Ar-39Ar定年是确定基性岩脉形成年龄的主要手段,但是受基性岩脉中含钾矿物(如角闪石)易遭受热液蚀变的影响,所给出的年龄可能并非是基性岩脉的侵位年龄(Berger,1995)。磷灰石是基性岩脉中常见的副矿物,其U-Pb定年已成为限定基性岩脉侵位年龄的重要手段,被广泛用于约束基性岩脉的形成时代和动力学机制(Pochon et al.,2016; Zhang Fengfeng et al.,2018; Li Linlin et al.,2021)。

  • 基性岩脉与热液型铀矿化关系十分密切,基性岩浆活动对铀的萃取、运移和沉淀过程有着重要影响(胡瑞忠等,19932007; Hu Ruizhong et al.,2008; Luo Jincheng et al.,2015; Wang Lianxun et al.,2015; 冯志军等,2016; 骆金诚等,2019)。华南白垩纪—第三纪以来发生过6次大规模的岩石圈伸展事件: 145~140 Ma、125~115 Ma、~105 Ma、95~85 Ma、75~70 Ma和55~45 Ma,它们与华南热液铀矿床的主成矿期:~135 Ma、120~115 Ma、105~100 Ma、90~85 Ma、75~70 Ma、和50~45 Ma有着较好的对应关系(胡瑞忠等,20042007; Hu Ruizhong et al.,2008; Luo Jincheng et al.,2015; 骆金诚等,2019)。但是,近些年学者通过锆石或磷灰石的U-Pb定年在粤北下庄矿田及周边厘定出一期早侏罗世—晚三叠世之交的基性岩浆活动(203~190 Ma),它们与矿田或矿床内的热液铀矿化空间关系也十分密切(Wang Lianxun et al.,2015; Zhang Di et al.,2018; 骆金诚等,2019)。那么,精确厘定铀矿区基性岩脉的形成时代,对辉绿岩与铀矿化的关系研究就显得十分必要。

  • 鹿井铀矿田位于诸广山岩体与万洋山岩体交接部位,是我国重要的热液型铀矿产区(图1)。近年来,区内铀矿勘查工作取得了重要突破,新提交1处中型矿床——小山铀矿床。在矿区内多个钻孔揭露到近东西向延伸的辉绿岩脉,部分富大矿体(品位0.16%,厚度2.60 m)受辉绿岩与QFII断裂带叠合部位控制(图2b)。此外,在庙背龙矿床也揭露了类似的矿化现象(图2a)。鉴于此,本文以鹿井矿田辉绿岩为研究对象,通过磷灰石U-Pb年代学和地球化学分析,探讨辉绿岩成因及其与铀矿化关系,以期为铀矿化机制研究提供依据。

  • 1 区域地质背景

  • 华南铀成矿省是我国重要的铀矿产区。区内铀资源颇为丰富,矿化类型多样,按赋矿围岩的岩性划分为火山岩型、花岗岩型、碳硅泥岩型和砂岩型四大类,前三者是华南铀成矿省的主体,砂岩型铀矿化仅分布于少数中—新生代红盆内(杜乐天与王玉明,1984; Hu Ruizhong et al.,2008; 蔡煜琦等,2015)。花岗岩型铀矿主要分布于后加里东期隆起区内,产于高铀的印支期、燕山期复式花岗岩体内外接触带附近的构造破碎带中(杜乐天,1982)。具工业意义的铀矿化在空间上和成因上多与富铀印支期、燕山期过铝质花岗岩存在密切联系,如诸广山岩体、贵东岩体、桃山岩体等,少数铀矿化与A型花岗岩有关,如黄梅尖岩体(Chen Youwei et al.,2012; Zhao Kuidong et al.,2016; Zhang Long et al.,2022)。

  • 图1 大地构造位置图(a)、诸广-贵东矿集区地质简图(b,据邓平等,2003)和鹿井铀矿田地质简图(c,据黄宏业等,2008

  • Fig.1 Tectonic location (a) and geological sketch of the Zhuguang-Guidong region (b, after Deng Ping et al., 2003) and the Lujing uranium ore field (c, after Huang Hongye et al., 2008)

  • CB—华夏板块; YB—扬子板块; NCB—华北板块

  • CB—Cathaysia Plate; YB—Yangtze Plate; NCB—North China Plate

  • 诸广-贵东矿集区是我国花岗岩型铀矿的重要产区,曾经是我国最大的铀资源基地(邓平等,2003)。区内诸广山岩体与贵东岩体是最主要的产铀岩体,产出铀矿床20余处。矿集区先后经历了加里东期、印支期、燕山期和喜马拉雅期四个构造旋回,新元古界—第四系均有出露,其中震旦系、寒武系、奥陶系、泥盆系分布较为广泛。区域性断裂主要为北东向断裂,如遂川-热水断裂、南雄断裂、黄陂断裂和马屎山断裂,铀矿床多产于两条北东向断裂带所夹持的断陷区内。除花岗岩外,铀矿化还与基性岩脉有密切联系,如下庄矿田“交点”型铀矿化(冯志军等,2016)。在下庄矿田,该类矿化受北东向硅化带与北西向辉绿岩脉交汇部位控制,矿体集中,矿石品位高,选冶性好。因此,在铀矿区内,基性岩脉通常被视为寻找“交点”型铀矿的重要线索(党飞鹏等,2019)。

  • 2 矿田地质特征

  • 鹿井矿田位于诸广山岩体中部狭窄部位,大地构造位置处于南华活动带华夏褶皱带武功-诸广断隆区,遂川断裂和热水断裂组成的地堑式断陷部位(图1a、b)。区内岩浆岩主要由印支期中粗粒斑状黑云母花岗岩(235±1 Ma; 韩娟等,2011)、燕山期中细粒黑云母花岗岩和二云母花岗岩(156±6 Ma; Min et al.,1999)组成,局部出露细粒花岗岩、辉绿岩等中基性脉岩。地层出露有寒武系、震旦系、白垩系和第四系。区内断裂构造发育,主要由北东向遂川-热水断裂带及其次级断裂带组成。遂川-热水断裂带是区域性左行走滑断裂,控制了该区沉积特征、构造格局和铀成矿作用(黄宏业等,2008),在地表上该断裂带由北往南依次表现为QFI、QFII、QFIII、QFIV、QFV五条石英硅化断裂带(图1c)。矿田中心为一走滑拉分盆地,出露面积约13 km2,盆内为一套陆相砾岩、含砾砂岩(红层)建造,厚度>360 m。

  • 鹿井矿田现探明铀矿床11处和铀矿点15处,矿体受断裂带、裂隙带、岩体接触带和层间破碎带控制(邵飞等,2013)。部分矿体产于断裂带旁侧的辉绿岩接触面上,品位往往较富(>0.3%),如庙背垄矿床17号和小山矿床19号勘探线(图2)。沥青铀矿是主要的矿石矿物,脉石矿物有方解石、石英和萤石,金属矿物有黄铁矿、方铅矿和闪锌矿。围岩蚀变主要有硅化、赤铁矿化、钠长石化、水云母化、绿泥石化、萤石化、碳酸盐化等。

  • 3 样品采集与分析方法

  • 本次研究样品采自小山矿床地表露头(编号21LJ01、21LJ04)和下古选—官庄地表辉绿岩脉(编号21LJ02、21LJ03),地表露头均为灰绿色,质地坚硬,脉体走向北东,脉宽3~10 m,东西向延伸200~5000 m。

  • 磷灰石U-Pb定年在东华理工大学核资源与环境国家重点实验室LA-ICP-MS仪器上完成,所采用的激光剥蚀系统为相干公司生产的GeoLasHD 193 nm准分子激光器,电感耦合等离子体质谱仪为安捷伦公司生产的7900 ICP-MS。测试过程中采用氦气为载气,氩气为补偿气,两者通过一个T型玻璃接口混合进入质谱仪,T型玻璃接口与激光剥蚀系统之间配置有信号平滑装置(Hu Zhaochun et al.,2015),以达到平滑的分析信号。激光剥蚀频率和束斑分别为5 Hz和44 μm,激光能量密度为3.5 J/cm2,以国际磷灰石标样MAD1(Thomson et al.,2012)为外标校正206Pb/238U比值,玻璃标准物质NIST612校正207Pb/206Pb比值,以玻璃标准物质NIST610作外标校正微量元素。每个分析数据点包括大约20 s背景信号和45 s样品剥蚀信号,对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal11.0(Liu Yongsheng et al.,2008)软件完成。207Pb校正206Pb/238U年龄过程参考Stacey and Kramer(1975)两阶段演化模型,详细处理过程见Thomson et al.(2012),采用Isoplot/Ex_ver3(Ludwig,2003)软件绘制样品的U-Pb年龄Tera-Wasserburg图。

  • 岩石主微量元素分析在澳实分析检测(广州)有限公司完成,主量元素采用X-射线荧光光谱法(XRF)分析:先称取0.6 g待测样品,然后加入适量硼酸高温融成玻璃片,最后在X荧光谱仪(3080E)上用外标校正氧化物含量,FeO通过溶液容量滴定法测定,主量元素的检测下限为0.05%,精度优于1%。微量元素采用ICP-MS法测定,先称取40 mg待测样品与国家标准物质(GRS1、GRS2、GRS3)用酸溶液法制成溶液,然后在安捷伦7900 ICP-MS上进行分析,其中稀土元素的检测下限为0.05×10-6,部分元素检测下限为0.5×10-6,含量大于10×10-6的元素误差小于5%,含量小于10×10-6的元素误差小于10%。

  • 图2 庙背垄矿床14号勘探线(a)和小山矿床19号勘探线剖面图(b)(据核工业二七○研究所未发表资料)

  • Fig.2 Geological sections of No.14 in Miaobeilong deposit (a) and No.19 in the Xiaoshan deposit (b) (unpublished data from No.270 Research Institute of Nuclear Industry)

  • 4 分析结果

  • 4.1 岩相学

  • 辉绿岩呈灰绿色,辉绿结构,块状构造。主要矿物为斜长石(45%)、单斜辉石(35%)和角闪石(10%)和石英(<5%),副矿物为磁铁矿(<5%)和磷灰石(<5%)(图3)。长石均为基性斜长石,呈自形板条状,长500~1000 μm,宽50~100 μm,常发育聚片双晶。辉石呈自形—半自形短柱状,长宽相近,约为500 μm。角闪石为半自形—自形长柱状,多充填在基性斜长石和辉石的空隙间,长宽相近,约为500 μm。石英和磁铁矿均呈他形粒状充填在矿物颗粒间隙,粒径约300 μm。磷灰石呈自形短柱状,一级灰干涉色,粒径50~150 μm。个别样品发育绿泥石化和碳酸盐化蚀变(图3e、f)。

  • 4.2 磷灰石U-Pb年龄

  • 磷灰石在CL图像上呈现为黄绿色、灰绿色的短柱状,粒径50~150 μm。磷灰石U-Pb同位素定年分析数据见附表1。样品21LJ01磷灰石的U含量为3.68×10-6~9.44×10-6,Th含量为12.89×10-6~43.54×10-6,Pb含量为0.88×10-6~5.01×10-6,在Tera-Wasserburg图上的下交点年龄为203±6 Ma(MSWD=1.4,n=30),207Pb校正后的206Pb/238U加权平均年龄为201±3 Ma(图4a)。样品21LJ02磷灰石的U含量为3.16×10-6~8.35×10-6,Th含量为10.17×10-6~35.48×10-6,Pb含量为0.62×10-6~1.30×10-6,在Tera-Wasserburg图上的下交点年龄为207±4 Ma(MSWD=1.9,n=48),207Pb校正后的206Pb/238U加权平均年龄为206±4 Ma(图4b)。两件样品的磷灰石U-Pb年龄在误差范围内一致,表明它们形成于同一地质时代(~200 Ma),即早侏罗世—晚三叠世之交。

  • 图3 鹿井铀矿田辉绿岩手标本(a、c)及显微照片(b、d、e、f)

  • Fig.3 Photographs (a, c) and photomicrographs (b, d, e, f) of dolerite from the Lujing uranium ore field

  • (a)—样品21LJ01手标本;(b)—样品21LJ01辉绿结构,正交偏光图像;(c)—样品21LJ02手标本;(d)—样品21LJ02辉绿结构,正交偏光图像;(e)—角闪石发生绿泥石化,单偏光图像;(f)—斜长石发生碳酸盐化,正交偏光图像; Ap—磷灰石; Aug—辉石; Cal—方解石; Chl—绿泥石; Hb—角闪石; Mag—磁铁矿; Qtz—石英

  • (a) —photograph of sample21LJ01; (b) —diabasic texture of sample21LJ01 (orthogonal polarized light image) ; (c) —photograph of sample21LJ02; (d) —diabasic texture of sample21LJ02 (orthogonal polarized light image) ; (e) —chloritization occurs in amphibole (plane polarized light image) ; (f) —carbonatation occurs in plagioclase (orthogonal polarized light image) ; Ap—apatite; Aug—augite; Cal—calcite; Chl—chlorite; Hb—hornblende; Mag—magnetite; Qtz—quartz

  • 4.3 主微量元素

  • 辉绿岩的主微量元素分析结果见表1。辉绿岩SiO2含量为45.94%~51.77%(平均值50.13%),FeO含量为6.33%~11.71%(平均值8.55%),Fe2O3含量为3.61%~7.03%(平均值5.32%),MgO含量为3.73%~4.92%(平均值4.26%),CaO含量为5.54%~8.17%(平均值7.28%),TiO2含量为2.57 %~3.27%(平均值2.82%),K2O含量为0.66%~1.08%(平均值0.85%),Na2O含量为2.62%~3.88%(平均值3.19%),P2O5含量为0.23%~0.40%(平均值0.29%),Mg#值变化范围较大,为37.50~56.14。在岩石成因类型判别图解(图5)中,样品分别投于亚碱性玄武岩和高钾钙碱性系列区域内。

  • 图4 鹿井铀矿田辉绿岩磷灰石U-Pb年龄Tera-Wasserburg图

  • Fig.4 Tera-Wasserburg diagram of apatite U-Pb age of dolerite from the Lujing uranium ore field

  • 图5 鹿井铀矿田辉绿岩Nb/Y-Zr/TiO2(a,据Winchester et al.,1977)和Co-Th图(b,据Hastine et al.,2007)(下庄辉绿岩数据引自Wang Lianxun et al.,2015

  • Fig.5 Nb/Y-Zr/TiO2 diagram (a, after Winchester et al., 1977) and Co-Th diagram (b, after Hastine et al., 2007) of dolerite from the Lujing U ore field (the data of Xiazhuang dolerite after Wang Lianxun et al., 2015)

  • 在微量元素原始地幔标准化蛛网图(图6a)中,辉绿岩样品的曲线呈右倾型,相对富集大离子亲石元素Rb、Ba、U和Pb,相对亏损高场强元素Nb、Ta和Ti。在稀土元素球粒陨石标准化配分图(图6b)中,辉绿岩样品的配分曲线呈现右倾型,相对富集LREE,相对亏损HREE,无明显Ce和Eu异常,ΣREE为134×10-6~175×10-6,平均值为146×10-6,LREE/HREE为2.87~3.54,(La/Yb)N为3.07~5.12,δEu为0.87~1.03,δCe为0.96~1.02。

  • 5 讨论

  • 5.1 辉绿岩形成时代

  • 基性脉岩在鹿井矿田出露较少,主要岩性为辉绿岩和煌斑岩。近年来,部分学者对矿田内出露的基性脉岩开展了年代学研究。蒋红安等(2020)对下洞子矿点附近出露的北西向煌斑岩脉开展了钾长石40Ar-39Ar定年,年龄为128.27±0.86 Ma。张万良与李子颖(2020)对下古选—官庄地区近东西向辉绿岩脉进行了全岩40Ar-39Ar定年,年龄为121.27±1.92 Ma。但是,李杰等(2021)对下古选—官庄地区同一条辉绿岩脉开展全岩40Ar-39Ar定年分析的结果却为171.7±1.6 Ma和169.1±3.8 Ma。两个年龄相差甚大,因而难以约束该辉绿岩脉的形成时代。注意到,鹿井矿田辉绿岩普遍遭受了不同程度的热液蚀变,如绿泥石化、纤闪石化、碳酸盐化等(图3e、f;李杰等,2021),当热液蚀变或热事件的温度(最达500℃)高于辉绿岩中含钾矿物放射性成因Ar的封闭温度时,会造成含钾矿物中Ar丢失或Ar获取,使得40Ar-39Ar法所记录的年龄可能为热液蚀变或热事件的年龄,并非一定是辉绿岩的侵位年龄(Berger,1995; 骆金诚等,2019)。由此,推测上述40Ar-39Ar年龄可能代表着后期热液改造或热事件的活动时限,而非辉绿岩的实际侵位年龄。

  • 表1 鹿井铀矿田辉绿岩主元素(%)、微量及稀土元素(×10-6)分析结果

  • Table1 The analysical results of major elements (%) , trace elements and REEs (×10-6) of dolerite from the Lujing uranium ore feld

  • 注:“-”代表未分析数据。

  • 图6 鹿井铀矿田辉绿岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分图(b)(标准化数值、OIB、N-MORB和E-MORB数据引自Sun et al.,1989

  • Fig.6 Normalized patterns of trace elements (a) and REE (b) of dolerite from the Lujing uranium ore field (the data of OIB, N-MORB and E-MORB after Sun et al., 1989)

  • 磷灰石是基性岩脉中常见的副矿物,含有一定含量的铀,其U-Pb年龄常被用于限定基性岩脉的侵位时代(Pochon et al.,2016; Zhang Di et al.,2018; Li Linlin et al.,2021)。本次研究的2件辉绿岩中磷灰石呈自形短柱状,与基性斜长石和辉石共生(图3b、d),LA-ICP-MS U-Pb年龄分别为201±3 Ma(MSWD=1.03,n=30)和206±4 Ma(MSWD=1.80,n=48)(图4),两个年龄在误差范围内一致,表明磷灰石形成于~200 Ma,即早侏罗世—晚三叠世之交。在野外露头上,辉绿岩脉侵位于印支期中粗粒斑状黑云母花岗岩(锆石U-Pb年龄235 Ma; 韩娟等,2011),也暗示着辉绿岩脉的侵位时代晚于中粗粒斑状黑云母花岗岩。因此,我们认为本次获得的磷灰石U-Pb年龄~200 Ma代表了鹿井矿田辉绿岩的形成年龄,即它们形成于早侏罗世—晚三叠世之交的基性岩浆活动。

  • 5.2 源区性质与岩石成因

  • 鹿井矿田辉绿岩烧失量(2.17%~7.12%)较高,暗示其形成之后遭受到一定程度的后期热液蚀变改造,因此,采用岩石组分中的相对惰性元素(如高场强元素)来示踪岩浆源区性质和岩石成因。高场强元素是地壳混染的敏感性元素,地壳混染往往会导致Nb/Ta和Zr/Nb比值的显著变化(Weaver et al.,1996)。鹿井矿田辉绿岩的Nb/Ta比值(11.29~21.72)和Zr/Nb比值(10.82~15.66)变化范围较大,Nb/U比值为1.88~15.76,低于大洋玄武岩的Nb/U比值(52±15; Hofmann et al.,1988),不同于上地壳的Nb/U比值(8.93; Rudnick et al.,2003),说明鹿井矿田辉绿岩岩浆形成过程中遭受了不同程度的地壳物质混染。

  • Ta/La和Hf/Sm比值可作为判别岩浆源区的指示性元素(La Flèche et al.,1998),鹿井矿田辉绿岩具有较低的(Ta/La)N和(Hf/Sm)N比值(0.61~1.24,1.01~1.27),在图7a中,样品投影于亏损地幔附近,且遭受了流体交代作用。辉绿岩Nb/U比值(1.88~15.76)不同于中国东部大陆地壳平均值(9.6; Gao Shan et al.,1998),具有较稳定的Nb/Zr比值(0.06~0.09),变化较大的Th/ Zr比值(0.02~0.05),在图7b中,表现出流体交代富集而非熔体交代富集的演化趋势,暗示流体对岩浆具有一定的贡献。此外,Li Xianhua et al.(1998)也指出诸广—贵东地区的基性岩脉岩浆普遍遭受了富Th流体的交代改造作用。

  • 分离结晶是主要的岩浆作用,可通过亲岩浆元素(HREE、Zr、Hf等)和超岩浆元素(La、Ce等)的图解对其进行判别(Allegre et al.,1978)。鹿井矿田辉绿岩较为一致的La/Sm比值(2.73~3.11)和变化较大的La含量(19.00~25.90),表明辉绿岩岩浆形成过程中发生了不同程度的分离结晶作用(图7c)。辉绿岩δEu为0.87~1.03,暗示其在岩浆演化过程中经历了一定程度的斜长石分离结晶。此外,研究表明SiO2含量和Dy/Yb比值可以进一步反映矿物的分离结晶(Davidson et al.,2007)。鹿井矿田辉绿岩SiO2含量较低(45.94%~51.77%),相对集中的Dy/Yb比值(1.83~2.38),在图7d中表现出负相关性,暗示岩浆形成过程有斜长石和角闪石的分离结晶。综上所述,鹿井矿田辉绿岩源于亏损地幔源区被流体交代,岩浆演化过程中经历了不同程度的分离结晶作用和地壳混染作用。

  • 图7 鹿井铀矿田辉绿岩(Ta/La)N-(Hf/Sm)N(a,据La Flèche et al.,1998)、Th/Zr-Nb/Zr(b,据Zhao Junhong et al.,2007)、 La-La/Sm(c)与SiO2-Dy/Yb(d,据Davidson et al.,2007)图

  • Fig.7 (Ta/La) N- (Hf/Sm) N diagram (a, after La Flèche et al., 1998) , Th/Zr-Nb/Zr diagram (b, after Zhao Junhong et al., 2007) and La-La/Sm diagram (c) and SiO2-Dy/Yb (d, after Davidson et al., 2007) of dolerite from the Lujing uranium ore field

  • Gar—石榴子石相地幔端元; HIMU—高U/Pb地幔端元; DM—亏损地幔端元; Amph—角闪石; Cpx—单斜辉石; Gr—石榴子石; Pl—斜长石; Ol—橄榄石

  • Gar—garnet-facies mantle; HIMU—high U/Pb mantle; DM—depleted mantle; Amph—amphibole; Cpx—clinopyroxene; Gr—garnet; Pl—plagioclase; Ol—olivine

  • 5.3 辉绿岩形成构造环境

  • 早侏罗世—晚三叠世之交(200~175 Ma)岩浆岩在南岭地区出露较普遍,岩石组合以A型花岗岩、双峰式火山岩和板内玄武岩为主(陈培荣等,2002)。近些年,学者在赣南、粤北和闽西南地区报道了一批早侏罗世基性岩,例如菖蒲-白面石盆地玄武岩(190~188 Ma; Cen Tao et al.,2016)、东坑盆地玄武岩(194~191 Ma; 项媛馨与巫建华,2012)、兴宁盆地夏岚辉长岩(182 Ma; Yu et al.,2010)、大坪辉长岩(184 Ma; 王锦荣,2021)、车步辉长岩(178 Ma; 贺振宇等,2007)、程龙辉长岩(182 Ma; He Zhengyue et al.,2010)、隘高矿床辉绿岩(189±4 Ma; Zhang Di et al.,2018)、下庄矿田辉绿岩(203±3 Ma、193±4 Ma)和苦坑辉长岩(198±1 Ma; Wang Lianxun et al.,2015; 骆金诚等,2019),这些年龄的报道进一步证实了南岭地区存在一期200~175 Ma左右的基性岩浆活动。此外,学者还厘定了一批同期的A型花岗岩和正长岩,如陂头岩体、寨背岩体等(He Zhengyue et al.,2010; Yang Jinhui et al.,2021)。这套特殊的岩石组合被认为是指示南岭地区早侏罗世—晚三叠世之交处于岩石圈伸展的地球动力学背景下的重要标志(He Zhengyue et al.,2010; Zhang Di et al.,2018; Yang Jinhui et al.,2021)。

  • 前人对南岭地区200~175 Ma双峰式火山岩、正长岩、A型花岗岩和基性脉岩这套岩石组合的动力学机制主要有3种观点:陈培荣等(2002)认为是继印支期造山运动之后的一种后造山的大陆裂解的动力学机制;He Zhenyu et al.(2010)认为是古太平洋板块早期向西俯冲时在板块边缘引起的远程构造效应,指示板内裂解的构造背景;Li Zhengxiang et al.(2007)认为它们是源于自~190 Ma以来平板俯冲的板片回撤和下沉的动力学机制。尽管不同学者对这套岩石组合形成的动力学机制认识有所不同,但南岭地区在早侏罗世—晚三叠世之交处于岩石圈伸展的构造背景之下已逐渐成为共识(Zhou et al.,2000; Li Zhengxiang et al.,2007; He Zhengyue et al.,2010; Yang Jinhui et al.,2021)。鹿井矿田辉绿岩与下庄矿田北西向辉绿岩类似,在地球化学成分上具有OIB的特征(图6,Wang Lianxun et al.,2015)。在构造判别图解(图8)中,样品投影于板内玄武岩的区域内;在图8b中,下庄矿田北西向辉绿岩更靠近板内玄武岩区域,而鹿井矿田辉绿岩则落于活动大陆边缘区域内,这可能与鹿井矿田辉绿岩遭受了更为明显的富Th流体交代改造有关(Li Xianhua et al.,1998),导致鹿井矿田辉绿岩具有更高的Th含量。前人研究表明,南岭地区形成于早侏罗世—晚三叠世之交的基性岩脉在地球化学组成上具有板内拉斑玄武岩或板内碱性玄武岩的特征,形成于板内伸展背景下软流圈地幔上涌所引起的玄武质岩浆活动(He Zhengyue et al.,2010; Wang Lianxun et al.,2015; Zhang Di et al.,2018)。由此,认为鹿井矿田早侏罗世—晚三叠世之交正处于岩石圈伸展的地球动力学背景之下。

  • 图8 鹿井矿田辉绿岩Zr-Zr/Y图(a,据Pearce et al.,1979)、Ta/Yb-Th/Yb图(b,据Wilson,1989)、Y/Nb-TiO2图(c,据Floyd et al.,1975)和Y-2Nb-Zr/4图(d,据Meschede,1986

  • Fig.8 Zr-Zr/Y diagram (a, after Pearce et al., 1979) , Ta/Yb-Th/Yb diagram (b, after Wilson, 1986) , Y/Nb-TiO2 diagram (c, after Floyd et al., 1975) and Y-2Nb-Zr/4 diagram (d, after Meschede, 1986) of dolerite from the Lujing uranium ore field

  • MORB—洋中脊玄武岩; E-MORB—富集型洋中脊玄武岩;N-MORB—正常型洋中脊玄武岩; OIB—洋岛玄武岩; WPB—板内玄武岩; WPAB—板内碱性玄武岩; IAB—岛弧玄武岩; VAB—火山弧玄武岩; WPT—板内拉斑玄武岩

  • MORB—mid-ocean ridge basalt; E-MORB—enriched mid-ocean ridge basalt; N-MORB—normal mid-ocean ridge basalt; OIB—oceanic island basalt; WPB—intraplate basalt; WPAB—intraplate alkaline basalt; IAB—island arc basalt; VAB—volcanic arc basalt; WPT—intraplate tholeiite

  • 5.4 辉绿岩与区域铀成矿关系

  • 辉绿岩与热液铀矿化在空间上和成因上关系十分密切,很早就被国内外学者所关注(Cuney,1978; Leroy,1978; 胡瑞忠等,1993; Hu Ruizhong et al.,2008; Wang Lianxun et al.,2015; Zhang Di et al,2018; 骆金诚等,2019)。在华南下庄铀矿田“交点”型铀矿床中,辉绿岩脉不仅控制了此类铀矿床的空间定位,而且还控制了矿床中绝大部分铀矿体的空间展布,铀矿化严格受辉绿岩脉和硅化断裂带的交汇部位控制(杜乐天,1982; Wang Lianxun et al.,2015; 冯志军等,2016)。骆金诚等(2019)认为当铀矿区内辉绿岩脉与铀矿化存在空间联系时(图9),如果辉绿岩脉的侵位时代与铀矿化年龄相近,那么基性岩浆活动将为铀矿化提供必要的矿化剂ΣCO2或幔源流体(胡瑞忠等,1993; Hu Ruizhong et al.,2008; Luo Jincheng et al.,2015);如果辉绿岩脉的侵位时代早于铀矿化年龄时,与基性岩浆活动相关的深大断裂可能提供了成矿流体或矿化剂ΣCO2的运移通道,而辉绿岩则为铀矿化的沉淀富集提供了场所,进而促使铀矿化的形成(Wang Lianxun et al.,2015; Zhang Di et al,2018)。因此,探讨辉绿岩脉与铀矿化关系这一关键问题的重要前提是精确厘定辉绿岩的形成时代。

  • 尽管辉绿岩在鹿井矿田的发育程度远低于下庄矿田,但其与区内铀矿化之间仍存在密切的联系。最新的勘查资料显示,在庙背垄矿床14号勘探线和17号勘探线揭露到隐伏的近东西向辉绿岩脉,辉绿岩脉被晚期硅化破碎带切穿,铀矿化发育在两者的交汇部位(图2a),矿化品位0.18%~1.20%,矿体视厚度2.0~5.5 m,矿石矿物为沥青铀矿,硅化、赤铁矿化和绿泥石化是主要的近矿蚀变(图11)。此外,小山矿床多个钻孔在QFII断裂带下盘辉绿岩脉内也揭露到工业铀矿化,矿体视厚度0.7~3.4 m,品位0.11%~0.27%,矿体受辉绿岩脉与QFII断裂带的交汇部位控制(图2b),远离交汇部位矿化逐渐减弱,近矿蚀变主要有绿泥石化、赤铁矿化、萤石化、硅化、碳酸盐化等(党飞鹏等,2019)。从矿化地质特征上来看,上述铀矿化类似于下庄矿田的“交点”型铀矿化,在成因上也应该具有相似性。

  • 图9 下庄铀矿田“交点”型铀矿化示意图(据邵飞等,2013

  • Fig.9 Schematic diagram of “intersection” type mineralization in the Xiazhuang uranium ore field (after Shao Fei et al., 2013)

  • 本文通过磷灰石U-Pb定年获得鹿井矿田辉绿岩的侵位年龄为~200 Ma,与Wang Lianxun et al.(2015)骆金诚等(2019)获得的下庄矿田近东西向辉绿岩年龄(203±3 Ma、193±4 Ma)在误差范围内一致,暗示诸广-贵东矿集区存在一期200~190 Ma的基性岩浆活动。笔者统计了已有的鹿井矿田成矿年龄发现,矿田内主要矿床的铀成矿年龄介于128~51 Ma之间(表2),且存在三个成矿高峰期(110~100 Ma、90~80 Ma、60~50 Ma,图10)。对比鹿井矿田辉绿岩侵位年龄和铀成矿时代,我们会发现区内辉绿岩的侵位年龄明显早于矿田内所有的成矿年龄。稳定同位素研究表明鹿井矿田成矿流体以大气降水为主,矿化剂ΣCO2具有幔源特征(δ13CPDB=-8.75‰~-1.40‰)(Min et al.,1999)。考虑到辉绿岩侵位年龄与铀矿化时代之间存在巨大时差,我们推测由鹿井矿田早侏罗世基性岩浆直接提供矿化剂ΣCO2的可能性较小。至于成矿所需的幔源矿化剂ΣCO2是源于深大断裂带(Wang Lianxun et al.,2015; Zhang Di et al.,2018)还是与矿化同期尚未被揭露的辉绿岩仍有待研究。

  • 表2 鹿井矿田铀成矿年龄统计表

  • Table2 Summary of metallogenic ages of the Lujing uranium ore field

  • 注: 年龄数据引自Min et al.(1999)王明太等(1999)罗毅等(2002)刘翔等(2005)黄宏业等(2008)

  • 辉绿岩含有丰富的辉石、角闪石、黑云母和少量黄铁矿等含铁矿物,使得辉绿岩的氧化电位(-40 mV)大大低于花岗岩(-20 mV),从而在辉绿岩和花岗岩的接触界面附近形成氧化-还原界面(杜乐天,1982; 胡瑞忠等,1993; 冯志军等,2016)。此外,在辉绿岩脉侵位时,由于两种岩性抗压性的差异,在接触带周边会形成一系列次级裂隙,可以为后续成矿提供空间。当含铀氧化性流体流经辉绿岩与花岗岩接触界面时,辉绿岩中含铁矿物(如角闪石、单斜辉石等)中的Fe2+会与流体中U6+发生氧化还原反应,U6+被还原成U4+,与流体中游离的O2-结合,形成UO2,沉淀聚集形成铀矿化(Raffensperger et al.,1995; Tappa et al.,2014; 骆金诚等,2019),该过程主要的反应化学式为UO2(CO32-2+2Fe3O4+2Ca2++2H+→UO2+3Fe2O3+2CaCO3+H2O和/或UO2F2-4+2Fe3O4+2Ca2++2H+→UO2+3Fe2O3+2CaF2+H2O。在鹿井矿田辉绿岩旁侧已发现的铀矿化往往也发育有赤铁矿化、萤石化和碳酸盐化围岩蚀变(图11),这也证实了上述反应的存在。同时,辉绿岩侵位时所引起的次级构造裂隙和微孔隙也为矿质沉淀提供了良好的空间,增大成矿流体与还原性介质的接触面积,有效地促进了上述反应的进行。因此,我们认为鹿井矿田早侏罗世辉绿岩为铀矿化提供有利的氧化-还原界面,同时,辉绿岩侵位形成的次级构造裂隙也为成矿提供了有利的空间。

  • 图10 鹿井铀矿田成矿年龄直方图

  • Fig.10 Histogram of metallogenic ages of the Lujing U ore field

  • 图11 庙背垄矿床钻孔ZK7101辉绿岩与铀矿化

  • Fig.11 Dolerite and uranium mineralization in borehole ZK7101 of the Miaobeilong deposit

  • Cal—方解石; Chl—绿泥石; Hem—赤铁矿; Pit—沥青铀矿; Py—黄铁矿; Tor—铜铀云母

  • Cal—calcite; Chl—chlorite; Hem—hematite; Pit—pitchblende; Py—pyrite; Tor—torbernite

  • 6 结论

  • (1)鹿井矿田辉绿岩磷灰石U-Pb年龄为~200 Ma,形成于早侏罗世—晚三叠世之交,是诸广-贵东矿集区200~190 Ma的基性岩浆活动的重要组成。

  • (2)鹿井矿田辉绿岩起源于亏损地幔源区且被流体交代,岩浆形成过程经历了一定程度的分离结晶作用和地壳混染作用。

  • (3)鹿井矿田在早侏罗世—晚三叠世之交正处于强烈的岩石圈伸展的地球动力学背景之下,形成了近东西向延伸的辉绿岩脉。

  • (4)鹿井矿田早侏罗世辉绿岩为后期铀成矿提供了有利的氧化-还原界面,基性岩浆侵位所形成的次级构造裂隙为成矿提供了有利的空间。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202308096?st=article_issue

  • 参考文献

    • Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.

    • Berger G W. 1995. 40Ar/39Ar step heating of thermally overprinted biotite, hornblende and potassium feldspar from Eldora, Colorado. Earth and Planetary Science Letters, 26(3): 387~408.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characterisitics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Cen Tao, Li Wuxian, Wang Xuance, Pang Chongjin, Li Zhengxiang, Xing Guangfu, Zhao Xilin, Tao Jihua. 2016. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 256: 311~330.

    • Chen Peirong, Hua Renmin, Zhang Bangdong, Lu Jianjun, Fan Chunfang. 2002. Early Yanshanian post orogenic granitoids in the Nanling region: Petrological constraints and geodynamic settings. Science in China (Series D), 45(8): 755~768 (in Chinese with English abstract).

    • Chen Youwei, Bi Xianwu, Hu Ruizhong, Dong Shaohua. 2012. Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province, China: Implications for U mineralization. Lithos, 150: 119~134.

    • Cuney M. 1978. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Economic Geology, 73(8): 1567~1610.

    • Dang Feipeng, Fang Qichun, Xu Xusheng, Li Zhipeng. 2019. Lithological characteristics of dolerite and its implication for U mineralization in Xishan distract, Lujing ore field: Proceedings of the 2019 Annual Conference of the Chinese Nuclear Society, Chinese Nuclear Society, 75~80 (in Chinese with English abstract).

    • Deng Ping, Shu Liangshu, Tan Zhengzhong. 2003. The geological setting for the formation of rich uranium ores in Zhuang-Guidong large-scale uranium metallogenetic area. Geological Review, 49(5): 486~494 (in Chinese with English abstract).

    • Du Letian. 1982. On the Granite-Type Uranium Deposits. Beijing: Atomic Energy Press (in Chinese).

    • Du Letian, Wang Yuming. 1984. The unity of metallogenic mechanism of granite-type, volcanic-type, carbon-silicone-mudstone and sandstone-type uranium deposits in South China. Uranium Geology (3): 1~10 (in Chinese).

    • Feng Zhijun, Lai Zhongxin, Mo Jihai, Hu Fei, Yang Wei. 2016. A study of metallogenic mechanism of “intersection” type uranium deposit and exploration thinking of Xiazhuang orefield. Mineral Deposits, 35(5): 1047~1061 (in Chinese with English abstract).

    • Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, 27(2): 211~218.

    • Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zidan, Hu Yiken. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotope. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.

    • He Zhenyu, Xu Xisheng, Chen Rong, Xing Guangfu. 2007. Genesis of Middle Jurassic syenite-gabbro in southern Jiangxi Province and their geological significance. Acta Petrologica Sinica, 23(6): 1457~1469 (in Chinese with English abstract).

    • He Zhenyue, Xu Xisheng, Niu Yaoling. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119(3-4): 621~641.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hu Ruizhong, Li Chaoyang, Ni Shijun, Liu Li, Yu Jinsheng. 1993. Research on ΣCO2 source in ore-forming hydrothermal solution of granite-type uranium deposit, South China. Science in China (Series B), 23(2): 189~196 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China. Earth Science Frontiers, 11(1): 153~160 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits, 26(2): 139~152 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.

    • Hu Zhaochu, Zhang Web, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Haihong, Hu Shenghong, 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87: 1152~1157.

    • Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M. , Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Huang He, Zhang Zhaochong, Santosh M. , Zhang Dongyang, 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157~174.

    • Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.

    • Leroy J. 1978. The Margnac and Fanay uranium deposits of the La Crouzille District (western Massif Central, France); geologic and fluid inclusion studies. Economic Geology, 73(8): 1611~1634.

    • Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Jiang Hongan, Zou Mingliang. 2021. 40Ar-39Ar geochronological characteristics of diabase in Lujing area of middle Zhuguangshan. Journal of Jilin University (Earth Science Edition), 51(2): 442~454 (in Chinese with English abstract).

    • Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 380: 105820.

    • Li Xianhua, McCulloch M T. 1998. Geochemical characteristics of Cretaceous mafic dikes from Northern Guangdong, SE China: Age, origin and tectonic significance. Geodynamics Series, 27: 405~419.

    • Li Zhengxiang, Li Xianhua, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179~182.

    • Liu Xiang, Bao Yunhe, Yang Shanghai, Zhang Jinye, Lv Guyu, Li Dugeng, Fan Liting, Chen Xiaodong. 2005. Geology of Uranium Deposits in Central South China. Beijing: China Geological Bureau of Nuclear Industry (in Chinese).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel, Berkeley. Berkeley: Geochronology Center, California.

    • Luo Jincheng, Hu Rruizhong, Fayek M, Li Chusi, Bi Xianwu, Abdu Y, Chen Youwei. 2015. In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geology Reviews, 65: 968~978.

    • Luo Jincheng, Qi Youqiang, Wang Lianxun, Chen Youwei, Tian Jianji, Shi Shaohua. 2019. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China: A reevaluation of the role of mafic dyke in uranium mineralization. Acta Petrologica Sinica, 35(9): 2660~2678 (in Chinese with English abstract).

    • Luo Yi, Wang Mingtai, Li Jianhong, Ma Hanfeng. 2002. Geologieal charaeteristics and metallogenetic model of Zhuguang uranium ore concentrated area. China Nuclear Science and Technology Report: 220~235 (in Chinese).

    • Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical geology, 56(3-4): 207~218.

    • Min M Z, Luo X Z, Du G S, He B A, Campbell A R. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huangao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.

    • Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1): 33~47.

    • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D. 2016. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armerican massif (France). American Mineralogist, 101(11): 2430~2442.

    • Raffensperger J P, Garven G. 1995. The formation of unconformity-type uranium ore deposits 2. coupled hydrochemical modeling. American Journal of Science, 295(6): 639~696.

    • Rudnick R L, Gao S, Holland H D. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Shao Fei, Xu Jianjun, Mao Yufeng, He Xiaomei, Gao Mengqi. 2013. Study onmineral discharge mechanism of granite type uranium deposits in South China uranium metallogenic province. Uranium Geology, 29(3): 146~151+171 (in Chinese with English abstract).

    • Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207~221.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tappa M J, Ayuso R A, Bodnar R J, Aylor J G, Beard J, Henika W S, Vazquez J A, Wooden J L. 2014. Age of host rocks at the Coles Hill uranium deposit, Pittsylvania County, Virginia, based on zircon U-Pb geochronology. Economic Geology, 109(2): 513~530.

    • Thomson S N, Gehrels G E, Ruiz J. 2012. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1~23.

    • Wang Jinrong, Lv Xinbiao, Zhang Jianping, Lin Xiaohui, Wang Jilin, Lin Xiang. 2021. Geochronology, geochemistry and geological significance of gabbros from Yongding Daping area, Southwest Fujian. Earth Science, 46(1): 73~86 (in Chinese with English abstract).

    • Wang Lianxun, Ma Changqian, Lai Zhongxin, Marks M A W, Zhang Chao, Zhong Yufang. 2015. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis. Lithos, 239: 71~85.

    • Wang Mingtai, Luo Yi, Sun Zhifu, Zhu Jiechen, Li Jianhong. 1999. Discussion on genesis of uranium deposits in Zhuguang uranium metallogenic region. Uranium Geology, 15(5): 24~30 (in Chinese with English abstract).

    • Weaver B, Kar A, Davidson J, Colucci M. 1996. Geochemical characteristics of volcanic rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449~470.

    • Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. Boston: Unwin Hyman, 78~81.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.

    • Xiang Yuanxin, Wu Jianhua. 2012. SHRIMP zircon U-Pb age of Yutian Group basalts in Longnan area of southern Jiangxi Province and its geological significance. Geological Bulletin of China, 31(5): 716~725 (in Chinese with English abstract).

    • Yang Jinhui, Zhang Jiheng, Chen Jingyuan, Sun Jinfeng. 2021. Mesozoic continental crustal rejuvenation of South China: Insights from zircon Hf-O isotopes of early Jurassic gabbros, syenites and A-type granites. Lithos, 402: 105678.

    • Yu X Q, Wu G G, Zhao X, Gao J F, Di Y J, Zheng Y, Dai Y P, Li C L, Qiu J T. 2010. The Early Jurassic tectono-magmatic events in southern Jiangxi and northern Guangdong provinces, SE China: Constraints from the SHRIMP zircon U-Pb dating. Journal of Asian Earth Sciences, 39(5): 408~422.

    • Zhang Di, Zhao Kuidong, Chen Wei, Jiang Shaoyong. 2018. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos, 308: 118~133.

    • Zhang Fengfeng, Wang Xiaolei, Sun Ziming, Chen Xin, Zhou Xiaohua, Yang Tao. 2018. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area: Constraints on the initiation of Neoproterozoic rifting in South China. Precambrian Research, 309: 138~151.

    • Zhang Long, Wang Fangyue, Zhou Taofa, Chen Zhenyu, Du Xiuling, Zhang Shu. 2022. The origin of uranium deposits related to the Huangmeijian A-type granite from the Lu-Zong volcanic basin, South China: Constraints from zircon U-Pb geochronology and mineral chemistry. Ore Geology Reviews, 141: 104665.

    • Zhang Wanliang, Li Ziying. 2020. Ar-Ar age, geochemical characteristics and tectonic setting of dolerite in Lujing distract of middle part of Zhuguang complex. Jiangxi Geological Society 2020 Annual Conference Proceedings. Geological Society of Jiangxi Province, 67~77 (in Chinese with English abstract).

    • Zhang Zhaochong, Mahoney J J, Mao Jingwen and Wang Fusheng, 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhao Junhong, Zhou Meifu. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27~47.

    • Zhao Kuidong, Jiang Shaoyong, Ling Hongfei, Sun Tao, Chen Weifeng, Chen Peirong, Pu Wei. 2016. Late Triassic U-bearing and barren granites in the Miao'ershan batholith, South China: Petrogenetic discrimination and exploration significance. Ore Geology Reviews, 77: 260~278.

    • Zhou X M, Li W X, 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269~287.

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学(D辑: 地球科学), 32(4): 279~289.

    • 党飞鹏, 方启春, 徐勋胜, 李志鹏. 2019. 鹿井矿田小山区段煌斑岩特征及其与铀矿化关系. 中国核学会2019年学术年会论文集. 中国核学会, 75~80.

    • 邓平, 舒良树, 谭正中. 2003. 诸广—贵东大型铀矿聚集区富铀矿成矿地质条件. 地质论评, 49(5): 486~494.

    • 杜乐天. 1982. 花岗岩型铀矿文集. 北京: 原子能出版社.

    • 杜乐天, 王玉明. 1984. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性. 铀矿地质(3): 1~10.

    • 冯志军, 赖中信, 莫济海, 胡飞, 阳卫. 2016. 下庄矿田“交点”型铀矿床成矿机理研究及勘查思路探讨. 矿床地质, 35(5): 1047~1061.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 贺振宇, 徐夕生, 陈荣, 邢光福. 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457~1469.

    • 胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中ΣCO2来源研究. 中国科学(B辑化学生命科学地学), 23(2): 189~196.

    • 胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩—第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153~160.

    • 胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.

    • 黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李杰, 黄宏业, 刘子杰, 张涛, 王前林, 蒋红安, 邹明亮. 2021. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征. 吉林大学学报(地球科学版), 51(2): 442~454.

    • 刘翔, 包云河, 杨尚海, 张进业, 全国珍, 吕古与, 李社根, 范立亭, 陈小东. 2005. 中南铀矿地质志. 中国核工业地质局, 1~975.

    • 罗毅, 王明太, 李建红, 马汉峰. 2002. 诸广铀矿集区成矿地质特征及成矿模式. 中国核科技报告: 220~235.

    • 骆金诚, 齐有强, 王连训, 陈佑纬, 田建吉, 石少华. 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660~2678.

    • 邵飞, 许健俊, 毛玉峰, 何晓梅, 高梦奇. 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146~151+171.

    • 王锦荣, 吕新彪, 张建平, 林晓晖, 王继林, 林香. 2021. 闽西南永定大坪辉长岩脉的年代学、地球化学特征及地质意义. 地球科学, 46(1): 73~86.

    • 王明太, 罗毅, 孙志富, 朱杰辰, 李建红. 1999. 诸广铀成矿区矿床成因探讨. 铀矿地质, 15(5): 24~30.

    • 项媛馨, 巫建华. 2012. 赣南龙南地区余田群玄武岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(5): 716~725.

    • 张万良, 李子颖. 2020. 诸广岩体中部鹿井地区辉绿岩Ar-Ar年龄、地球化学特征及其构造环境. 江西省地质学会2020年学术年会论文集. 江西省地质学会, 67~77.

  • 参考文献

    • Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1~25.

    • Berger G W. 1995. 40Ar/39Ar step heating of thermally overprinted biotite, hornblende and potassium feldspar from Eldora, Colorado. Earth and Planetary Science Letters, 26(3): 387~408.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characterisitics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Cen Tao, Li Wuxian, Wang Xuance, Pang Chongjin, Li Zhengxiang, Xing Guangfu, Zhao Xilin, Tao Jihua. 2016. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 256: 311~330.

    • Chen Peirong, Hua Renmin, Zhang Bangdong, Lu Jianjun, Fan Chunfang. 2002. Early Yanshanian post orogenic granitoids in the Nanling region: Petrological constraints and geodynamic settings. Science in China (Series D), 45(8): 755~768 (in Chinese with English abstract).

    • Chen Youwei, Bi Xianwu, Hu Ruizhong, Dong Shaohua. 2012. Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province, China: Implications for U mineralization. Lithos, 150: 119~134.

    • Cuney M. 1978. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Economic Geology, 73(8): 1567~1610.

    • Dang Feipeng, Fang Qichun, Xu Xusheng, Li Zhipeng. 2019. Lithological characteristics of dolerite and its implication for U mineralization in Xishan distract, Lujing ore field: Proceedings of the 2019 Annual Conference of the Chinese Nuclear Society, Chinese Nuclear Society, 75~80 (in Chinese with English abstract).

    • Deng Ping, Shu Liangshu, Tan Zhengzhong. 2003. The geological setting for the formation of rich uranium ores in Zhuang-Guidong large-scale uranium metallogenetic area. Geological Review, 49(5): 486~494 (in Chinese with English abstract).

    • Du Letian. 1982. On the Granite-Type Uranium Deposits. Beijing: Atomic Energy Press (in Chinese).

    • Du Letian, Wang Yuming. 1984. The unity of metallogenic mechanism of granite-type, volcanic-type, carbon-silicone-mudstone and sandstone-type uranium deposits in South China. Uranium Geology (3): 1~10 (in Chinese).

    • Feng Zhijun, Lai Zhongxin, Mo Jihai, Hu Fei, Yang Wei. 2016. A study of metallogenic mechanism of “intersection” type uranium deposit and exploration thinking of Xiazhuang orefield. Mineral Deposits, 35(5): 1047~1061 (in Chinese with English abstract).

    • Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, 27(2): 211~218.

    • Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zidan, Hu Yiken. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evidence from zircon U-Pb dating and Hf isotope. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.

    • He Zhenyu, Xu Xisheng, Chen Rong, Xing Guangfu. 2007. Genesis of Middle Jurassic syenite-gabbro in southern Jiangxi Province and their geological significance. Acta Petrologica Sinica, 23(6): 1457~1469 (in Chinese with English abstract).

    • He Zhenyue, Xu Xisheng, Niu Yaoling. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119(3-4): 621~641.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hu Ruizhong, Li Chaoyang, Ni Shijun, Liu Li, Yu Jinsheng. 1993. Research on ΣCO2 source in ore-forming hydrothermal solution of granite-type uranium deposit, South China. Science in China (Series B), 23(2): 189~196 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China. Earth Science Frontiers, 11(1): 153~160 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Peng Jiantang, Liu Shen, Zhong Hong, Zhao Junhong, Jiang Guohao. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits, 26(2): 139~152 (in Chinese with English abstract).

    • Hu Ruizhong, Bi Xianwu, Zhou Meifu, Peng Jiantang, Su Wenchao, Liu Shen, Qi Huawen. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583~598.

    • Hu Zhaochu, Zhang Web, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Haihong, Hu Shenghong, 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87: 1152~1157.

    • Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M. , Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Huang He, Zhang Zhaochong, Santosh M. , Zhang Dongyang, 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157~174.

    • Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • La Flèche M R, Camire G, Jenner G A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115~136.

    • Leroy J. 1978. The Margnac and Fanay uranium deposits of the La Crouzille District (western Massif Central, France); geologic and fluid inclusion studies. Economic Geology, 73(8): 1611~1634.

    • Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Jiang Hongan, Zou Mingliang. 2021. 40Ar-39Ar geochronological characteristics of diabase in Lujing area of middle Zhuguangshan. Journal of Jilin University (Earth Science Edition), 51(2): 442~454 (in Chinese with English abstract).

    • Li Linlin, Shi Yuruo, Anderson J L, Ubide T, Nemchin A A, Caulfield J, Wang Xuance, Zhao Jianxin. 2021. Dating mafic magmatism by integrating baddeleyite, zircon and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 380: 105820.

    • Li Xianhua, McCulloch M T. 1998. Geochemical characteristics of Cretaceous mafic dikes from Northern Guangdong, SE China: Age, origin and tectonic significance. Geodynamics Series, 27: 405~419.

    • Li Zhengxiang, Li Xianhua, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179~182.

    • Liu Xiang, Bao Yunhe, Yang Shanghai, Zhang Jinye, Lv Guyu, Li Dugeng, Fan Liting, Chen Xiaodong. 2005. Geology of Uranium Deposits in Central South China. Beijing: China Geological Bureau of Nuclear Industry (in Chinese).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel, Berkeley. Berkeley: Geochronology Center, California.

    • Luo Jincheng, Hu Rruizhong, Fayek M, Li Chusi, Bi Xianwu, Abdu Y, Chen Youwei. 2015. In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geology Reviews, 65: 968~978.

    • Luo Jincheng, Qi Youqiang, Wang Lianxun, Chen Youwei, Tian Jianji, Shi Shaohua. 2019. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China: A reevaluation of the role of mafic dyke in uranium mineralization. Acta Petrologica Sinica, 35(9): 2660~2678 (in Chinese with English abstract).

    • Luo Yi, Wang Mingtai, Li Jianhong, Ma Hanfeng. 2002. Geologieal charaeteristics and metallogenetic model of Zhuguang uranium ore concentrated area. China Nuclear Science and Technology Report: 220~235 (in Chinese).

    • Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical geology, 56(3-4): 207~218.

    • Min M Z, Luo X Z, Du G S, He B A, Campbell A R. 1999. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huangao uranium deposit, SE China. Ore Geology Reviews, 14(2): 105~127.

    • Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1): 33~47.

    • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D. 2016. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armerican massif (France). American Mineralogist, 101(11): 2430~2442.

    • Raffensperger J P, Garven G. 1995. The formation of unconformity-type uranium ore deposits 2. coupled hydrochemical modeling. American Journal of Science, 295(6): 639~696.

    • Rudnick R L, Gao S, Holland H D. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Shao Fei, Xu Jianjun, Mao Yufeng, He Xiaomei, Gao Mengqi. 2013. Study onmineral discharge mechanism of granite type uranium deposits in South China uranium metallogenic province. Uranium Geology, 29(3): 146~151+171 (in Chinese with English abstract).

    • Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207~221.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tappa M J, Ayuso R A, Bodnar R J, Aylor J G, Beard J, Henika W S, Vazquez J A, Wooden J L. 2014. Age of host rocks at the Coles Hill uranium deposit, Pittsylvania County, Virginia, based on zircon U-Pb geochronology. Economic Geology, 109(2): 513~530.

    • Thomson S N, Gehrels G E, Ruiz J. 2012. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1~23.

    • Wang Jinrong, Lv Xinbiao, Zhang Jianping, Lin Xiaohui, Wang Jilin, Lin Xiang. 2021. Geochronology, geochemistry and geological significance of gabbros from Yongding Daping area, Southwest Fujian. Earth Science, 46(1): 73~86 (in Chinese with English abstract).

    • Wang Lianxun, Ma Changqian, Lai Zhongxin, Marks M A W, Zhang Chao, Zhong Yufang. 2015. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis. Lithos, 239: 71~85.

    • Wang Mingtai, Luo Yi, Sun Zhifu, Zhu Jiechen, Li Jianhong. 1999. Discussion on genesis of uranium deposits in Zhuguang uranium metallogenic region. Uranium Geology, 15(5): 24~30 (in Chinese with English abstract).

    • Weaver B, Kar A, Davidson J, Colucci M. 1996. Geochemical characteristics of volcanic rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449~470.

    • Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. Boston: Unwin Hyman, 78~81.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.

    • Xiang Yuanxin, Wu Jianhua. 2012. SHRIMP zircon U-Pb age of Yutian Group basalts in Longnan area of southern Jiangxi Province and its geological significance. Geological Bulletin of China, 31(5): 716~725 (in Chinese with English abstract).

    • Yang Jinhui, Zhang Jiheng, Chen Jingyuan, Sun Jinfeng. 2021. Mesozoic continental crustal rejuvenation of South China: Insights from zircon Hf-O isotopes of early Jurassic gabbros, syenites and A-type granites. Lithos, 402: 105678.

    • Yu X Q, Wu G G, Zhao X, Gao J F, Di Y J, Zheng Y, Dai Y P, Li C L, Qiu J T. 2010. The Early Jurassic tectono-magmatic events in southern Jiangxi and northern Guangdong provinces, SE China: Constraints from the SHRIMP zircon U-Pb dating. Journal of Asian Earth Sciences, 39(5): 408~422.

    • Zhang Di, Zhao Kuidong, Chen Wei, Jiang Shaoyong. 2018. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos, 308: 118~133.

    • Zhang Fengfeng, Wang Xiaolei, Sun Ziming, Chen Xin, Zhou Xiaohua, Yang Tao. 2018. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area: Constraints on the initiation of Neoproterozoic rifting in South China. Precambrian Research, 309: 138~151.

    • Zhang Long, Wang Fangyue, Zhou Taofa, Chen Zhenyu, Du Xiuling, Zhang Shu. 2022. The origin of uranium deposits related to the Huangmeijian A-type granite from the Lu-Zong volcanic basin, South China: Constraints from zircon U-Pb geochronology and mineral chemistry. Ore Geology Reviews, 141: 104665.

    • Zhang Wanliang, Li Ziying. 2020. Ar-Ar age, geochemical characteristics and tectonic setting of dolerite in Lujing distract of middle part of Zhuguang complex. Jiangxi Geological Society 2020 Annual Conference Proceedings. Geological Society of Jiangxi Province, 67~77 (in Chinese with English abstract).

    • Zhang Zhaochong, Mahoney J J, Mao Jingwen and Wang Fusheng, 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhao Junhong, Zhou Meifu. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27~47.

    • Zhao Kuidong, Jiang Shaoyong, Ling Hongfei, Sun Tao, Chen Weifeng, Chen Peirong, Pu Wei. 2016. Late Triassic U-bearing and barren granites in the Miao'ershan batholith, South China: Petrogenetic discrimination and exploration significance. Ore Geology Reviews, 77: 260~278.

    • Zhou X M, Li W X, 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269~287.

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学(D辑: 地球科学), 32(4): 279~289.

    • 党飞鹏, 方启春, 徐勋胜, 李志鹏. 2019. 鹿井矿田小山区段煌斑岩特征及其与铀矿化关系. 中国核学会2019年学术年会论文集. 中国核学会, 75~80.

    • 邓平, 舒良树, 谭正中. 2003. 诸广—贵东大型铀矿聚集区富铀矿成矿地质条件. 地质论评, 49(5): 486~494.

    • 杜乐天. 1982. 花岗岩型铀矿文集. 北京: 原子能出版社.

    • 杜乐天, 王玉明. 1984. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性. 铀矿地质(3): 1~10.

    • 冯志军, 赖中信, 莫济海, 胡飞, 阳卫. 2016. 下庄矿田“交点”型铀矿床成矿机理研究及勘查思路探讨. 矿床地质, 35(5): 1047~1061.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 贺振宇, 徐夕生, 陈荣, 邢光福. 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457~1469.

    • 胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中ΣCO2来源研究. 中国科学(B辑化学生命科学地学), 23(2): 189~196.

    • 胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩—第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153~160.

    • 胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139~152.

    • 黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李杰, 黄宏业, 刘子杰, 张涛, 王前林, 蒋红安, 邹明亮. 2021. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征. 吉林大学学报(地球科学版), 51(2): 442~454.

    • 刘翔, 包云河, 杨尚海, 张进业, 全国珍, 吕古与, 李社根, 范立亭, 陈小东. 2005. 中南铀矿地质志. 中国核工业地质局, 1~975.

    • 罗毅, 王明太, 李建红, 马汉峰. 2002. 诸广铀矿集区成矿地质特征及成矿模式. 中国核科技报告: 220~235.

    • 骆金诚, 齐有强, 王连训, 陈佑纬, 田建吉, 石少华. 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660~2678.

    • 邵飞, 许健俊, 毛玉峰, 何晓梅, 高梦奇. 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146~151+171.

    • 王锦荣, 吕新彪, 张建平, 林晓晖, 王继林, 林香. 2021. 闽西南永定大坪辉长岩脉的年代学、地球化学特征及地质意义. 地球科学, 46(1): 73~86.

    • 王明太, 罗毅, 孙志富, 朱杰辰, 李建红. 1999. 诸广铀成矿区矿床成因探讨. 铀矿地质, 15(5): 24~30.

    • 项媛馨, 巫建华. 2012. 赣南龙南地区余田群玄武岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(5): 716~725.

    • 张万良, 李子颖. 2020. 诸广岩体中部鹿井地区辉绿岩Ar-Ar年龄、地球化学特征及其构造环境. 江西省地质学会2020年学术年会论文集. 江西省地质学会, 67~77.