-
青藏高原是世界上最高、最大、最厚、最新的高原,是发展固体地球科学理论的最佳实验室。青藏高原研究从喜马拉雅开始已经有 200多年的历史,重新审视和探究青藏高原的关键科学问题,可以为研究板块汇聚边界的大陆岩石圈演化及其能源资源、地质灾害和全球环境效应提供新的重要信息,为解决板块构造理论的“登陆”难题做出贡献。
-
印度-亚洲碰撞是新生代以来最壮观的地质事件,导致喜马拉雅山脉的崛起、青藏高原的隆升、巨厚地壳的形成、青藏高原物质向东、东南和向西南的大逃逸、2000 km范围亚洲大陆内部的弥散变形、环青藏高原的盆地系统和油气资源、南亚季风和亚洲内陆干旱化等。笔者提出青藏高原如下重大关键地学问题,作为研究青藏高原的新思考:① 印度大陆北漂模型; ② 印度-亚洲初始碰撞时限; ③ 青藏高原的古特提斯造山作用; ④ 古近纪喜马拉雅造山带的地壳缩短; ⑤ 高喜马拉雅的深熔机制; ⑥ 青藏高原隆升的时限和差异性; ⑦ 构造-剥蚀-气候相互作用与南亚季风; ⑧ 青藏高原关键矿产资源的分布与成因; ⑨ 青藏高原的活动断裂带与孕震机制; ⑩ 碰撞后的印度俯冲板块何去何从——深部动力学过程。以此作为对《地质学报》100周年华诞的纪念。
-
1 印度大陆北漂模型
-
穿越时空的隧道,在中生代期间,印度大陆与欧亚大陆之间还是一片汪洋,称之为新特提斯洋。研究表明,三叠纪印度板块开始从冈瓦纳超大陆解体(Zhu et al.,2011; Metcalfe,2013,2017,2021; Ma Xuxuan et al.,2018,2021c),随后在白垩纪开始了北漂的里程,至60 Ma左右与欧亚大陆碰撞(Hu et al.,2015)。由此,喜马拉雅山崛起,青藏高原隆升及大量物质向两侧逃逸,2000 km 范围亚洲大陆内部的弥散变形,在喜马拉雅造山带和藏南形成了地球上最厚的地壳(70~80 km)(Zhao Wenjin et al.,1993; Yin An,2000; Schulte-Pelkum et al.,2005; Zhang Zhongjie et al.,2011)。印度大陆自早白垩世以来的北漂过程中还发生90°的逆时针旋转运动,引起印度板块的古纬度变化(Besse et al.,2002; 张也等,2017)。
-
印度大陆的北漂存在两种不同的构造重建模型:大印度北漂(为大多数学者观点)和“大印度盆地”北漂(van Hinsbergen et al.,2012)(图1)。前者认为随着新特提斯洋盆的俯冲到闭合,北漂的大印度板块与欧亚大陆碰撞。后者提出白垩纪之前为大印度板块的北漂,晚白垩世喜马拉雅微陆块(包含特提斯喜马拉雅和高喜马拉雅)与印度主大陆分离,中间隔了大印度盆地,继后两陆块与大印度盆地同时北漂; 50 Ma期间喜马拉雅微陆块首先与欧亚大陆软碰撞,25~20 Ma期间大印度盆地闭合致使印度主大陆与欧亚大陆硬碰撞(van Hinsbergen et al.,2012)。
-
在“大印度盆地北漂”模型的基础上,近年来又发展出一些新的两阶段碰撞模型(Yang Tianshui et al.,2015,2019; Yuan Jie et al.2021; Jadoon et al.2021)。 Yuan Jie et al.(2021) 根据从江孜和萨嘎地区特提斯喜马拉雅北带的古地磁数据限定“大印度”的北界,认为不存在“大印度盆地”陆壳,强调晚白垩世存在一个1000 km左右的“北印度洋”,是晚白垩世(约75~61 Ma)喜马拉雅微陆块与印度主大陆分离的结果,约61 Ma喜马拉雅微陆块与拉萨地体碰撞,53~48 Ma印度大陆与特提斯喜马拉雅碰撞。Jadoon et al.(2021)根据巴基斯坦晚白垩世海相红层的古地磁数据,建立了一个类似的印度-亚洲多阶段碰撞模式。
-
对此,笔者认为印度大陆北漂过程的主要争论在大印度板块的大小。对于古地磁数据需要进一步的物源分析来限定其与印度或是拉萨地体的亲缘性,才能使其大地构造位置判断具有说服力。另外,关于印度大陆在早白垩世—晚白垩世期间的大约90°的旋转北漂过程如何引起特提斯喜马拉雅不同地区的纬度变化,以及是否引起印度大陆与特提斯喜马拉雅地体之间的“伸展”值得进一步研究。由于沿着喜马拉雅微陆块和印度主大陆北缘的低喜马拉雅之间存在主中央逆冲断裂带(MCT),一直没有发现代表洋壳残片的蛇绿岩或者伸展盆地的记录,两阶段碰撞模式至今仍为野外地质学家所质疑。此外,在讨论新特提斯洋盆消减的过程中,还应考虑新特提斯洋-陆格局的复杂性,包括:① 在新特提斯洋盆消减过程是否存在洋内俯冲到洋-陆碰撞的转换?转换的时限和方式?② 印度-亚洲汇聚速率随时间和空间的差异性变化?
-
图1 印度板块重建和向北漂移的模型对比
-
Fig.1 Comparison of models for the restoration and northwards drift of the Indian Plate
-
(a)—大印度北漂模型显示具有广阔大陆边缘的单个印度板块,包括低喜马拉雅、高喜马拉雅和特提斯喜马拉雅,约50 Ma发生印度-亚洲碰撞;(b)—大印度盆地北漂模型将西藏-喜马拉雅微板块(高喜马拉雅和特提斯喜马拉雅)与主要的印度板块分开,中间有一个海洋,称之为“大印度盆地”,该模型涉及50 Ma 的“软碰撞”和25~20 Ma 的“硬碰撞”(据van Hinsbergen et al.,2012)
-
(a) —The model shows the single Indian contiguous plate with a wide continental margin incorporating Lesser, Greater and Tethyan Himalaya as one plate, and the India-Asia collision at 50 Ma; (b) —the model after van Hinsbergen et al. (2012) , shows a separated Tibetan Himalaya microplate (Tethys Himalayan Sequence+Greater Himalayan Sequence) with an intervening ocean, the so-called ‘Greater Himalayan Basin’ separating this from the main Indian Plate. This model involves ‘soft collision’ at 50 Ma and a ‘hard collision’ at 25~20 Ma
-
2 印度-亚洲初始碰撞时限
-
印度-亚洲大陆初始碰撞的时限问题一直存在争论。关键取决于人们如何定义“初始碰撞”,不同学者利用不同方法获得的初始碰撞时间差异很大(从70 Ma 到34 Ma)(Powell et al.,1973; Patriat et al.,1984; Le Fort,1987; 王成善等,2003; Ding Lin et al.,2005; Aitchison et al.,2007; 莫宣学等,2007; Garzanti,2008; 黄宝春等,2010; Najman et al.,2010; van Hinsbergen et al.,2012; DeCelles et al.,2014; Wu Fuyuan et al.,2014; Hu Xiumian et al.,2015,2016a,2016b; Zhuang Guangsheng et al.,2015; 丁林等,2017a; 朱弟成等,2017)。制约初始碰撞精细时间的方法包括印度板块向北漂移减速时间的古地磁证据(Molnar et al.,1975; Treloar et al.,1991; Klootwijk,1992; Ali et al.,2005; Najman et al.,2010; Copley et al.,2010; van Hinsbergen et al.,2012)、在印度-雅鲁藏布江缝合带和沿印度板块北缘的最后海相沉积时间的证据(Garzanti et al.,1987; Searle et al.,1987; Hu Xiumian et al.,2015,2016a)、沿缝合带最老的大陆沉积的时间(Searle et al.,1987; St-Onge et al.,2010; DeCelles et al.,2014)、与俯冲有关的亚洲南缘的岩浆弧中“I”型花岗岩岩基的岩浆作用的终结(Chung Sun-Lin et al.,1998a; St-Onge et al.,2010; 马绪宣等,2021a; Ma Xuxuan et al.,2021b,2021c)以及沿印度板块北端的超高压变质作用的时限(Leech et al.,2005)等。
-
最近,古地磁研究提供印度-亚洲初始碰撞新时限,通过特提斯喜马拉雅地体的岗巴宗浦组(约62~59 Ma)褶皱检验、磁性矿物提取得到碎屑磁铁矿+生物磁铁矿,证明古地磁结果为原生剩磁,指示古纬度为6.6°±3.5°N(Yi Zhiyu et al.,2011,2021; Zhao Qian et al.,2021); 同时根据拉萨地体林周盆地“典中组”砾石、Ar-Ar年代学、岩相学证明(64~60 Ma)古地磁结果为原生记录,指示古纬度 6.7°±4.4°N。根据特提斯喜马拉雅和拉萨地体最新古地磁(原生剩磁)数据对比,印度-亚洲初始碰撞时间不晚于62±2 Ma,初始碰撞位置位于赤道湿润带以内(6.7°±4.4°N)(Yi Zhiyu et al.,2021)(图2)。
-
另外,根据大陆初始碰撞时间的三种常用定义:① 以洋壳消失、俯冲板片的陆壳进入上覆活动大陆边缘海沟的“同碰撞盆地”作为初始碰撞时间; ② 以两个大陆之间海洋消失的时间作为初始碰撞的时间; ③ 以大陆之间发生强烈构造变形作用的时间作为初始碰撞的时间,只有①代表了实际的初始碰撞时间。最近对同碰撞盆地的研究提供了印度-亚洲初始碰撞的新证据:在西藏萨嘎地区桑单林剖面上部(桑单林组)发现来自印度和亚洲物源的交互沉积,为同碰撞时期的海沟盆地初始碰撞事件的产物,初始碰撞被精确限定在59±1 Ma(Hu Xiumian et al.,2015)(图3)。
-
需要指出的是:上述新的初始碰撞时间的证据主要取自冈底斯-喜马拉雅弧形带的中段。沿冈底斯-喜马拉雅弧形带的走向,印度-亚洲初始碰撞的时间是否一致还需要深入研究,特别是东-西构造结尚未找到典型同碰撞时期的海沟盆地,即初始碰撞事件的证据,仅用最后海盆的结束时间和超高压变质带的形成时间尚不能确定初始碰撞的时限。
-
3 青藏高原的古特提斯造山作用
-
特提斯是地球显生宙期间位于北方劳亚超大陆和南方冈瓦纳超大陆之间的巨型大洋,它经历了一系列的洋盆消减、地体碰撞以及增生-碰撞造山作用,并最终于新生代闭合而造就了现今近东西向展布的巨型特提斯造山带。追溯特提斯洋的演化历史,是重建青藏高原形成过程的重要基础。Sengör(1979)曾强调,劳亚超大陆和冈瓦纳超大陆之间在晚古生代发育古特提斯洋,由于该大洋于中生代早期的消减和萎缩,而在冈瓦纳大陆以北发生扩张形成新特提斯洋。Sengör(1979,1987,1989) 认为当时南、北大陆之间存在两个大洋(古特提斯洋和新特提斯洋)和一个夹持其间的基墨里(Cimmerian)大陆,基墨里大陆由包括巴尔干-马来西亚半岛之间的伊朗-土耳其-北帕米尔-松潘甘孜-印支地体所组成,为三叠纪从冈瓦纳超大陆分裂出来的大陆拼贴体,于晚三叠世—中侏罗世与北方的劳亚大陆碰撞,形成由超级造山杂岩组成的基墨里造山带(Sengör,1979,1987; Boulin,1981; Audley-Charles,1984; Golonka,2006; Li Haibin et al.,2009)(图4)。但是根据冷水和暖水动物群的分布,越来越多的研究者将位于青藏高原中部的龙木错-双湖-昌宁-孟连缝合带作为含冷水动物群的基墨里大陆与含暖水动物群的华夏陆块的分界线,将原来的基墨里大陆解体为南北两部分,南侧为由西基墨里、南羌塘和滇缅泰(Sibumasu)地体拼贴组成的基墨里大陆,北侧则由北羌塘、松潘甘孜、思茅-印支地体拼贴而成华夏陆块之南部(图5)(Metcalfe,2006,2013; 许志琴等,2012; Wang Qing et al.,2021)。
-
图2 印度和欧亚大陆碰撞时限图示(据Yi Zhiyu et al.,2021)(数据分别引自① Yi Zhiyu et al.,2021; ② Yi Zhiyu et al.,2011; ③ Martin et al.,2020; KLA—科西斯坦拉达克弧)
-
Fig.2 Timing of the India-Asia initial collision (modified from Yi Zhiyu et al., 2021) (data from ① Yi Zhiyu et al., 2021; ② Yi Zhiyu et al., 2011; ③ Martin et al., 2020; KLA— Kohistan-Ladakh arc)
-
图3 西藏萨嘎地区桑单林同碰撞时期的海沟盆地的平面图和剖面图(引自Hu Xiumian et al.,2015)
-
Fig.3 Geological map and cross section of syn-collisional oceanic trench basin of the Saga area, South Tibet (after Hu Xiumian et al., 2015)
-
在桑单林沉积上部发现来自印度和亚洲物源的交互沉积,为初始碰撞事件(59±1 Ma)产物
-
Initial collision at 59±1 Ma evidenced by provenance transition between Indian and Asian sources in the Sangdanlin sequences
-
图4 特提斯格架一级古地理/古构造要素及其现今地理位置(据Şengör et al.,1987修改)
-
Fig.4 First-order palaeogeographical/palaeotectonic elements taking part in the architecture of the Tethysides, and their place in the present structure of our planet (modified after Şengör et al., 1987)
-
1 —劳亚大陆; 2—冈瓦纳大陆; 3—基墨里大陆; 4—其他区域; 5—古特提斯缝合带; 6—新特提斯缝合带
-
1 —Laurasian continent; 2—Gandwana continent; 3—Cimmerian continent; 4—exotic area; 5—Paleo-Tethyan suture; 6—Neo-Tethyan suture
-
法国学者Fromaget(1927,1952)曾在研究越南地质时提出印支造山作用的概念,把晚二叠世—中晚三叠世的造山作用称为印支运动,之后许多学者强调越南-滇西的印支运动在中国大陆构造演化的重要性(孟宪民,1937; 黄汲清,1945; 任继舜,1984)。近20年来东南亚古特提斯研究取得新的进展,特别是东南亚陆块的东、西两条缝合带所反映的古特提斯洋盆开合及其碰撞造山过程取得了新的认识(Sone et al.,2008; Metcalfe,2013; Wang Yuejun et al.,2018; Tran et al.,2020)。东南亚陆块的东侧缝合带即金沙江-哀牢山-松马缝合带,为华夏陆块中的思茅-印支地体与华南陆块的边界,反映了古特提斯的分支洋盆(或弧后盆地)的关闭,两地体碰撞时间约为247 Ma,同碰撞和后碰撞造山事件分别限定在247~237 Ma和237~200 Ma(Wang Yuejun et al.,2018)。西侧缝合带为昌宁-孟连缝合带,作为基墨里大陆的滇缅泰地块和思茅-印支地体之间的古特提斯主洋盆闭合界线,两地体的碰撞发生在约237 Ma,同碰撞和后碰撞的造山事件分别发生在237~230 Ma和230~200 Ma(图6)(Wang Yuejun et al.,2018)。因此,基墨里造山运动不仅涉及基墨里陆块与印支地体,也叠置了印支地体和华南陆块之间的早期印支造山带。因此Tran et al.(2020) 提出,Fromaget(1952)依据越南地质现象所提出的印支运动并不适合发生在滇缅泰和思茅-印支地体之间的晚三叠世—侏罗纪的碰撞后造山事件,建议根据地域将晚二叠世—中晚三叠世的印支运动改名为“跨湄公河造山运动”(Trans-Meigonghe orogen)。
-
图5 东亚和东南亚的主要大陆地体和缝合带的分布图(据Metcalfe,2013)
-
Fig.5 Distribution of principal continental terranes and sutures of East and Southeast Asia (modified after Metcalfe, 2013)
-
WB—西缅甸地体; SWB—西南婆罗州地体; S—塞密塔地体; L—拉萨地体; NQT—北羌塘地体; SQT—南羌塘地体; QS—昌都-思茅地体; SI—思茅地体; SG—松潘-甘孜增生杂岩; QD—柴达木地体; AL—阿拉善地体; KT—Kurosegawa地体; LT—临沧岩浆弧地体; CT—尖竹汶岩浆弧地体; EM—东马来亚地体; QI—祁连地体
-
WB—West Burma terrane; SWB—Southwest Borneo terrane; S—Semitau terrane; L—Lhasa terrane; NQT—North Qiangtang terrane; SQT—Sourth Qiangtang terrane; QS—Qamdo-Simao terrane; SI—Simao terrane; SG—Songpan Ganzi accretionary complex; QD—Qaidam terrane; AL—Ala Shan terrane; KT— Kurosegawa terrane; LT—Lincang arc terrane; CT—Chanthaburi arc terrane; EM—East Malaya; QI—Qilian terrane
-
上述表明:东南亚地区基墨里大陆的滇缅泰地体与华夏陆块碰撞造山的时限与基墨里造山事件的时间重合,而东南亚印支地体与华夏陆块间的造山时间从印支运动开始,其结束时间与基墨里造山事件相当。因此,笔者认为在东南亚基墨里大陆与印支、华南陆块之间所反映的基墨里造山事件是广泛和强大的。但东南亚地区代表古特提斯造山运动的印支造山是否存在着地域性和时域性差异值得探讨,它和基墨里造山事件究竟什么关系,是否代表基墨里造山运动的前身也有待进一步查明。
-
作为华夏大陆组成部分的松潘-甘孜地体被北部的东昆仑-柴达木地体、东南部的华南陆块和南部的北羌塘地体所围限,是由北侧东昆仑-阿尼玛卿和南侧金沙江古特提斯缝合带所限定、由三叠纪巨厚(5~15 km)深海浊积岩组成的三角形增生杂岩地体(许志琴等,1992)。前人对松潘-甘孜深海盆地的构造属性提出了不同模式,如:弧后盆地(Klimetz,1983; Sengör,1987; Watson et al.,1987; Gu Xuexiang,1994),前陆深海/残余洋盆(Nie Shangyou et al.,1994; Zhou Da et al.,1996; Weislogel et al.,2006),陆间裂谷盆地(McElhinny et al.,1981; Chang Edmund,2000; Meng Qingren et al.,2000)等。
-
许多学者将松潘-甘孜地体划入印支造山带范围(Ren Jishun,1984; Xu Zhiqin et al.,1992,2012; Harrowfield et al.,2005)。研究表明,在中—晚三叠世古特提斯洋盆闭合的基础上,松潘-甘孜晚三叠世增生造山楔以强烈地壳缩短和加厚、228~180 Ma大量花岗岩侵位并伴随锂金属元素的超常富集为特征(Zhang Hongfei et al.,2006,2007; Yuan Chao et al.,2010; Xu Zhiqin et al.,2020)。与其他刚性地体(或陆块)之间的硬碰撞造山不同,由三叠纪地层组成的松潘-甘孜地体与周围刚性陆块的“软碰撞”造山(图7)发生的时限为晚三叠世—早中侏罗世,晚于印支运动,与基墨里造山作用的时限相当。
-
图6 东南亚的大地构造背景(a)及主要陆块示意图(b)(据Wang Yuejun et al.,2018修改)
-
Fig.6 Tectonic background (a) and major continental blocks units (b) of Southeast Asia (modified after Wang Yuejun et al., 2018)
-
①—龙木错-双湖缝合带; ②—昌宁-孟良缝合带; ③—Inthanon缝合带; ④—景洪-Nan-Sa Kaeo缝合带; ⑤—Bentong-Raub缝合带; ⑥—松马缝合带; ⑦—金沙江-哀牢山缝合带; ⑧—Luang Prabang-Loei缝合带; ⑨—班公湖-怒江缝合带; ⑩—Truong Son缝合带; NQT—北羌塘地体; SQT—南羌塘地体; LS—拉萨地体; SB—滇缅泰地体; SG—松潘-甘孜地体; SCB—华南陆块; ; IDC—印支陆块; SWB—西南婆罗州地体; 1—古特提斯主要缝合带; 2—古特提斯主要岛弧带; 3—古特提斯其他缝合带; 4—新生代断裂; 5—高纬度冷气候的冈瓦纳型动植物群; 6—低纬度暖气候的华夏型动植物群
-
①—Longmu Co-Shuanghu suture; ②—Changning-Mengliang suture; ③—Inthanon suture; ④—Jinghong-Nan-Sa Kaeo suture; ⑤—Bentong-Raub suture zone; ⑥—Song Ma suture; ⑦—Jinshajiang-Ailaoshan suture; ⑧—Luang Prabang-Loei suture; ⑨—Bangong-Nujiang suture; ⑩—Truong Son suture; NQT—North Qiangtang terrane; SQT—South Qiangtang terrane; LS—Lhasa terrane; SB—Sibumasu terrane; SG—Songpan-Ganzi terrane; SCB—South China block; IDC—Indochina block; SWB—Southwest Borneo terrane; 1—main Paleo-Tethyan suture; 2—main Paleo-Tethyan arc; 3—other Paleo-Tethyan suture; 4—Cenozoic active fault; 5—high-latitude cold-climate Gondwana-type faunas and floras; 6—low-latitude warm-climate Cathaysian-type faunas and floras
-
研究表明,东昆仑-阿尼玛卿缝合带向东与秦岭地体的勉略缝合带连接(Li Chunyu et al.,1978,1982; Zhang Guowei et al.,1995),并通过NE—SW 向“宁陕-湘河”左行走滑剪切带与东秦岭-大别-苏鲁地体的超高压变质带的俯冲前缘相连(许志琴等,2015a)。大别-苏鲁造山带超高压变质作用的时间为240~225 Ma,超高压变质岩从高压榴辉岩相到角闪岩相的折返时间为225~200 Ma(Edie et al.,1994; Ayers et al.,2002; Li Shuguang et al.,1993,2003; Liu Fulai et al.,2011; Xu Zhiqin et al.,2006; Liu Fulai and Liou,2011; 郑永飞,2008)。因此,华南与华北陆块的陆陆碰撞时间应早于240 Ma,其碰撞造山作用的初始时限与印支运动相当,结束时间与基墨里造山运动相当。因此,一些作者推测古特提斯北支洋盆(即东昆仑-阿尼玛卿-勉略-秦岭/大别/苏鲁缝合带)具有东早西晚的剪式洋盆闭合形式,致使整个中央造山带的碰撞造山作用呈现东早、西晚的穿时特征。
-
由于新生代造山作用是在古特提斯造山运动的废墟上建立,因此重塑古特提斯完整独立的造山体系十分困难。青藏高原集“始特提斯”、“古特提斯”和“新特提斯”为一体,重新审视古特提斯造山作用,特别考虑造山作用的地域性和时域性的差异对理解青藏高原的形成演化十分重要。正如欧洲的“加里东”和“华力西”造山作用并不适用于中国大陆的造山带一样,印支造山作用和基墨里造山作用对中国大陆的影响需要通过全球对比,进行检验。
-
4 古近纪喜马拉雅造山带地壳缩短的机制
-
喜马拉雅造山带自北向南由特提斯喜马拉雅(THS)、高喜马拉雅(GHS)、低喜马拉雅(LHS)和次喜马拉雅(SHS)等四个构造单元组成,各单元之间的边界依次为藏南拆离系(STD)、主中央逆冲断裂(MCT)、主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)(图8)。
-
图7 晚三叠世松潘-甘孜地体所在的古地理位置(据Metcalfe,2006)
-
Fig.7 The paleo-geographical location of the Songpan-Ganzi terrane in the Late Triassic (according to Metcalfe, 2006)
-
NC—华北陆块; SC—华南陆块; I—印支陆块; EM—东马来地体; WS—西苏门答腊地体; S—滇缅泰地体; SG—松潘-甘孜地体; WB—西缅甸地体; QI—羌塘地体; L—拉萨地体; WC—西基墨里大陆
-
NC—North China block; SC—South China block; I—Indosinian block; EM—East Malay terrane; WS—West Sumatra terrane; S—Dunyan Burma Thai terrane; SG—Songpan-Ganzi terrane; WB—West Burma terrane; QI—Qiangtang terrane; L—Lhasa terrane; WC—West Cimmerian continent
-
Vanney et al.(1996)对尼泊尔中部Kali Gandaki剖面的高喜马拉雅开展了系统的构造变形、岩石学、变质作用和年代学研究,把喜马拉雅造山带的演化分成三个阶段:在始新世早期—中期,特提斯喜马拉雅沉积岩系发育上盘向南的褶皱冲断带,经历了低级变质作用,这一薄皮构造可能受控于特提斯喜马拉雅古生代地层中主拆离断层的逆冲推覆; 始喜马拉雅期(Eohimalayan episode)高喜马拉雅埋俯冲到特提斯喜马拉雅之下,以始新世中期-渐新世的蓝晶石相进变质作用为特征,埋深超过35 km; 新喜马拉雅期(Neohimalayan episode)高喜马拉雅在主中央逆冲断裂和藏南拆离系的控制下快速折返,以渐新世—中新世的退变质作用为特征,新喜马拉雅期的峰期变质作用在23~21 Ma。
-
喜马拉雅古近纪的变形记录常被中新世以来的变质-变形强烈叠加或抹去,根据主中央逆冲断裂和藏南拆离系在24~16 Ma具有相反的运动学指向和同期构造活动,前人提出了不同的高喜马拉雅挤出模式,包括:楔状挤出(Burchfiel and Royden,1985)、地壳隧道流(Nelson et al.,1996; Chemenda et al.,2000; Beaumont et al.,2001)、构造楔(Yin An,2006; Webb et al.,2007)和双重构造(He Dian et al.,2016)等。
-
图8 喜马拉雅构造剖面(修改自 Carosi et al.,2010)
-
Fig.8 Himalayan structural section (from Carosi et al., 2010)
-
STDS—藏南拆离系; MCT—主中央逆冲断裂带; MBT—主边界逆冲断裂; MFT—主前锋逆冲断裂; TSZ—Toijem逆冲剪切带; MHT—主喜马拉雅逆冲断裂
-
STDS—South Tibet Detachment system; MCT—Main Central Thrust; MBT—Main Boundary Thrust; MFT—Main Frontal Thrust; TSZ—Toijem thrust shear zone; MHT—main Himayan thrust
-
沿特提斯喜马拉雅褶皱冲断带面理生长的伊利石或淡色花岗岩的40Ar/39Ar年龄测定表明,特提斯喜马拉雅褶皱冲断带的形成年龄在56~45 Ma(Ratschbacher et al.,1994; Wiesmayer et al.,2002)。因此,藏南拆离系作为中新世特提斯喜马拉雅和高喜马拉雅的边界,无论从时间、运动学和驱动力上都无法解释上盘特提斯喜马拉雅的始新世地壳缩短。上述基于中新世高喜马拉雅折返的构造模型不能适用始喜马拉雅期的地壳缩短和深熔作用。
-
近年来笔者在喜马拉雅造山带东部的研究表明:始喜马拉雅期的地壳缩短受到特提斯喜马拉雅底部的滑脱断层(特提斯喜马拉雅滑脱带,Tethyan Himalayan Décollement,THD)制约(图9)。特提斯喜马拉雅滑脱带约有4 km厚,发育在早古生代变质地层中,伴随高级变质作用和局部熔融,形成于50~17 Ma,具有上盘向南的剪切指向,并控制了特提斯喜马拉雅单元的地壳缩短和加厚。在特提斯喜马拉雅滑脱带的顶部叠置了上盘向北剪切的藏南拆离系,表明特提斯喜马拉雅滑脱带是藏南拆离断层的前身,也是特提斯喜马拉雅和高喜马拉雅在始新世—渐新世的构造边界。这是对喜马拉雅造山带早期构造格架的新解释,对认识印度-亚洲碰撞早期板块边界的构造变形具有重要意义。特提斯喜马拉雅滑脱带的向西延展是值得进一步研究的问题,将有助于我们理解喜马拉雅造山带沿走向的构造差异。
-
5 高喜马拉雅深熔作用的成因
-
作为地壳深熔作用产物的淡色花岗岩,广泛出露在高喜马拉雅上部(Dietrich and Gansser,1981; Le Fort et al.,1987; Burchfiel et al.,1992; Guillot et al.,1994; Hodges et al.,2000; 吴福元等,2015)和特提斯喜马拉雅底部(Xu Zhiqin et al.,submitted)。长期以来,喜马拉雅淡色花岗岩被认为主要形成于23~22 Ma 到13~12 Ma,最年轻(小于4 Ma)的出露在东、西构造结。但是,特提斯喜马拉雅岩系里近东西向展布的北喜马拉雅片麻岩穹隆中,发现了早于40 Ma淡色花岗岩,引起了广泛关注(Zeng Lingsen et al.,2011; 吴福元等,2015)。
-
图9 喜马拉雅造山带东部的南北向构造剖面
-
Fig.9 Structural profile in the eastern Himalayan orogen
-
GHS—高喜马拉雅结晶基底; THD—特提斯喜马拉雅滑脱带; STD—藏南拆离系; ITSZ—雅鲁藏布江缝合带; GCT—大反冲断裂; THS—特提斯喜马拉雅
-
GHS—Greater Himalaya Sequence; THD—Tethyan Himalayan decollemenent; STD—South Tibet Detachment; ITSZ—Indus-Yarlung suture zone; GCT—Great Counter Thrust; THS—Tethys Himalayan Sequence
-
高喜马拉雅淡色花岗岩究竟如何形成?Le Fort et al.(1987)曾提出“熨斗模式”,认为由于高喜马拉雅单元底部主中央逆冲断层的逆冲致使下部冷的低喜马拉雅单元产生变质作用,释放流体而导致高喜马拉雅局部熔融(图10)。但此模式无法解释为什么淡色花岗岩主要产在高喜马拉雅单元的上部,也无法解释早期淡色花岗岩的形成。
-
大多数研究认为,高喜马拉雅结晶岩系变泥质岩的深熔作用形成了喜马拉雅淡色花岗岩(Le Fort et al.,1987; Guillot et al.,1995; Harris et al.,1995; Patiño-Douce et al.,1998; Aoya et al.,2005; Guo Zhengfu et al.,2012; Zeng Lingsen et al.,2012; Weinberg,2016)。一系列淡色花岗岩成因模式被提出,如:高 Sr/Y 淡色花岗岩形成于喜马拉雅加厚下地壳的局部熔融(Zeng Lingsen et al.,2011); 沿藏南拆离系母岩浆的高分异形成(吴福元等,2015)、软流圈地幔上涌形成以及变基性岩石部分熔融的贡献(Hou Zengqian et al.,2012)。
-
前人提出了三种不同的地壳部分熔融机制:增压过程中的进变质加热熔融(Visonà et al.,2002; Groppo et al.,2013),折返过程中的降压熔融(Harris et al.,1994; Patiño-Douce et al.,1998; Guo Zhengfu et al.,2012),以及注水熔融(Knesel et al,2002; Weinberg,2016; Gao Li'e et al.,2017)。
-
除了熔融机制不同之外,原岩类型和部分熔融程度的不同以及熔体混合都会导致喜马拉雅淡色花岗岩的化学成分发生变化。研究表明,东喜马拉雅构造结的泥质、长英质和基性岩石均经历了不同程度的部分熔融。根据地球化学成分,具有不同87Sr/86Sr初始同位素比值的喜马拉雅淡色花岗岩起源于两种不同的原岩:二云母淡色花岗岩起源于变质杂砂岩(87Sr/86Sr)i<0.752和εNd<15),电气石淡色花岗岩起源于变泥质岩(87Sr/86Sr)i>0.752和εNd>15)(Guillot et al.,1995),而始新世的高Sr/Y花岗岩可能是喜马拉雅造山带加厚下地壳中角闪岩部分熔融的产物(Zeng Lingsen et al.,2011; Hou Zengqian et al.,2012)。此外,Gou Zhengbin et al.(2016) 认为电气石-白云母淡色花岗岩是白云母脱水熔融形成的,而白云母-黑云母淡色花岗岩是高喜马拉雅结晶岩系中泥质和长英质麻粒岩进变质过程中黑云母脱水熔融的产物。在晚渐新世到中新世,高喜马拉雅的变泥质岩、变杂砂岩和花岗片麻岩均发生了部分熔融,由于深熔源区占主导的岩性发生变化,导致高喜马拉雅淡色花岗岩的地球化学特征随时间变化(Ji Min et al.,2021)。
-
图10 高喜马拉雅(GHS)底部逆冲断层(MCT)产生的熨斗模式:由于高喜马拉雅单元底部主中央逆冲断层的逆冲致使下部冷的低喜马拉雅单元产生变质作用,释放流体而导致高喜马拉雅局部熔融(据Le Fort et al.,1987)
-
Fig.10 Classic view of anatexis triggered by the overthrust (Main Central Thrust, MCT) of the Greater Himalaya Sequence (GHS) and fluids released through metamorphism of the colder Lesser Himalaya Sequence (after Le Fort et al., 1987)
-
变质作用与部分熔融关系的研究表明,约45~23 Ma的进变质作用发生在中压和高压麻粒岩相条件下(Searle et al.,1992; Ding Lin et al.,1999; Hodges et al.,2006; Zhang Zeming et al.,2010),23~14 Ma的退变质作用发生在角闪岩相条件下(Searle et al.,1992; Walker et al.,1999; Hodges,2000)。Zhang Zeming et al.(2010)认为,在始喜马拉雅进变质和新喜马拉雅退变质早期,高喜马拉雅结晶岩系经历了长期持续的高温变质和脱水熔融(包括泥质麻粒岩的白云母和黑云母脱水熔融,基性麻粒岩的角闪石脱水熔融),熔体混合、岩浆混染和分离结晶作用形成了复杂的S+I型花岗岩。因此,高喜马拉雅深熔作用很可能是长期大陆俯冲、地壳加厚、持续高温变质和脱水熔融的结果(图11)。
-
图11 喜马拉雅高温变质、深熔和熔体结晶的P-T 轨迹(据Zhang Zeming et al.,2010)
-
Fig.11 P-T paths of high-temperature metamorphism, anataxis and melt crystallization of the Himalayan orogen (after Zhang Zeming et al., 2010)
-
6 青藏高原隆升的时限和差异性
-
由于印度-亚洲的新生代陆陆碰撞,形成了平均海拔近5000 m的青藏高原,并造就了“世界屋脊”之称的喜马拉雅山链。解析青藏高原的隆升剥露历史,对于揭示碰撞造山的运动学过程和动力学机制有着重要的意义。同时,高原的隆升剥露过程也深刻影响到了全球和区域气候、海洋化学的变化以及生物演化(Burbank et al.,1993; An Zhisheng et al.,2001; Tapponnier et al.,2001; Molnar et al.,2010; Spicer,2017; Deng Tao et al.,2019)。长期以来,前人对于青藏高原隆升过程和动力学机制开展了大量的研究,存在不少争议。早期研究阶段根据古生物化石(高山栎,三趾马等; 施雅风等,1964; 李吉均等,1979)、钾质火山岩活动时间(Turner et al.,1993)、断裂活动(Harrison et al.,1995)等判断青藏高原隆升形成时间为13~3 Ma。随后,Chung Sun-Lin et al.(1998b)提出青藏高原的东西隆升差异性,东早(约40 Ma)而西晚(约20 Ma)。Tapponnier et al.(2001)提出了在印度-亚洲初始碰撞之后,青藏高原逐渐由南向北生长; 之后的氧同位素古高程研究结果为该模型提供了佐证(Rowley et al.,2006)。Wang Chengshan et al.(2008)根据沉积记录和低温热年代学数据提出高原是由中部向外不断扩展而形成,得到不少学者认同(Rohrmann et al.,2012; Li Yalin et al.,2015; Li Guangwei et al.,2016)。但是,近年在青藏高原中部班公-怒江缝合带地区的尼玛、伦坡拉盆地发现的古鱼类等动植物化石(Wu Feixiang et al.,2017; Deng Tao et al.,2019)指示青藏高原中部在约26 Ma之前仍然处于相对较低海拔(至少<2500 m)。Ding Lin et al.(2014)以及Fang Xiaomin et al.(2020)提出青藏高原中部在始新世—渐新世期间呈现“两山夹一谷”的形态。最近丁林(2021)❶根据同位素和植物化石总结了青藏高原隆升演化历史,显示出高原各块区的隆升差异性(图12)。
-
综上所述,关于青藏高原隆升过程的争论,目前主要问题集中在:① 青藏高原是均匀整体还是差异性抬升,各块体的具体隆升过程如何?② 青藏高原是否是由中部向南北扩展而形成?中北部的松潘-甘孜、昆仑等地体是否存在早期(白垩纪)高原?③ 喜马拉雅是从中新世渐进式隆升还是在晚期(上新世)才隆升的?而造成上述诸多争论,则主要由于研究区域和古高程估算方法的不同。早期有不少学者利用构造或岩浆等替代性指标研究高原隆升,但随着研究深入,由于各自成因的多解性,其可靠性有待商榷。如Harrison et al.(1995)提出青藏高原(包含喜马拉雅地区)东西向伸展主要在9~7 Ma期间,认为当时高原已隆升到最大高度,由于重力失稳而开始垮塌。但是印度-亚洲的南北向挤压亦可在喜马拉雅地区形成东西向伸展,因此用伸展断裂的活动作为高原隆升指标有所欠缺。同样,钾质岩浆活动由于成因多解性,也不能作为高原古海拔的可靠指标(Turner et al.,1993; Chung Sunlin et al.,1998b; 王成善等,2009)。也有不少学者利用山前盆地(Najman et al.,2010)和海底冲积扇开展高原隆升研究(McNeill et al.,2017; Zhou Peng et al.,2020)。再如,探讨剥蚀速率的热年代学(Thiede et al.,2013)的方法直接反映的是岩石温度变化速率,应用于隆升时,还应注意转换对接条件和其他观测数据的限定。
-
值得注意的是,近年来很多直接限定古高程的方法不断发展,例如:古环境分析(特定动物化石或组合分析、古植物化石组合分析、稳定同位素法)、植物结构和形态分析(叶边分析法、CLAMP法)、定量同位素分析法(氢、氧同位素、“团簇同位素”温度计法)、火山熔岩的封闭气孔形态等,但由于各种方法的局限性以及采样的差异性,经常出现不同方法或不同地区(甚至同种方法对同一地区)估算的高原隆升高度存在不小差别(图12、13)(Huntington et al.,2015; Ding Lin et al.,2017b; Li Lin et al.,2019; Chen Chichao et al.,2020; Spicer et al.,2020)。因此,要精细刻画青藏高原隆升与剥蚀的过程,还需加强多地区详细调查以及新技术方法的开发和改进,并加强多种手段相结合、相互验证,区分局部效应和整体效应,进而综合探讨青藏高原的隆升历史,为探讨青藏高原隆升的动力学机制提供可靠依据。
-
图12 青藏高原不同地质单元的隆升曲线图(修改自丁林,2021❶)
-
Fig.12 Uplift history of different terranes in the Tibetan Plateau (from Ding Lin, 2021❶)
-
7 构造-剥蚀-气候相互作用与南亚季风
-
人们已经认识到固体地球的构造演化对于大气和海洋具有重要的影响。山脉的隆升、大洋和盆地的开合控制了全球范围的水和大气的循环,反过来又影响区域的气候和剥蚀速率(Molnar et al.,1993,2010)。因此,抬升的高原和山脉可以扰乱大气环流(Manabe et al.,1974),而由于剥蚀和沉积物的转移与气候变化密切相关,降雨模式的变化对造山带构造的时限和几何学有重要的影响,并会促进深部岩石的折返(Beaumont et al.,2001; Sinclair et al.,2005; Wobus et al.,2005)。同样,大洋的开合可以将暖流转移到高纬度地区,在超过百万年或更大的时间尺度内影响区域或全球的气候变化,亚洲季风系统被认为是最引人注目的例子。
-
南亚季风是指亚洲南部的季风(以印度半岛为典型),又称“印度季风”。一般认为其形成原因受地球风带的季节性移动、海-陆热力差异和地形因素的影响。青藏高原和喜马拉雅地形隆升、北半球或全球气候变化和印度季风的起因已成为重要的科学问题(An Zhisheng et al.,2001; Beaumont et al.,2001)。然而,气候与板块俯冲动力学如何相互影响?又是谁先谁后?“鸡和蛋”的挑战限制了我们对“气候-侵蚀-构造”相互作用的理解。
-
人们早已认识到在碰撞环境下的喜马拉雅造山过程中存在大量逆冲断裂体系,然而,理解喜马拉雅中应力调节的最大贡献应该是藏南拆离系(STD)的发现(Burchfield et al.,1992)。因此,高喜马拉雅角闪岩相岩石的折返被认为是在喜马拉雅造山带南麓降水导致的地表快速剥蚀影响下,藏南拆离系和主中央逆冲断层夹持的地壳隧道流在约23~17 Ma向南挤出的结果(图14)(Beaumont et al.,2001),这一模式受到广泛关注(Searle et al.,2005; Godin et al.,2006; Hodge,2006)。
-
图13 青藏高原古高程研究的相关盆地分布图以及相关分析方法(数据来自Li Lin et al.,2019; Chen Chichao et al.,2020及其参考文献)
-
Fig.13 Distributionof basins for estimating paleo-elevation in Tibetan Plateau and related methods (data from Li Lin et al., 2019; Chen Chichao et al., 2020 and references therein)
-
MFT—主前锋断裂; ANKSZ—阿尼玛卿-昆仑缝合带; JSZ—金沙江缝合带; BNSZ—班公怒江缝合带; IYSZ—印度-雅鲁藏布江缝合带; 数据引自Li Lin et al.(2019),Chen Chichao et al.(2020)等以及其文中参考文献; 1—缝合带; 2—活动断裂; 3—牙齿化石δ13C; 4—植物蜡正构烷烃δD; 5—孢粉组合; 6—碳酸结核团簇同位素; 7—哺乳动物化石; 8—植物叶相; 9—δ18O碳酸结核/牙齿化石; 10—δD热液蚀变含水矿物
-
MFT—Main Frontal thrust; ANKSZ—Anemaqen-Kunlun suture zone; JSZ—Jinsha suture zone; BNSZ— Bangong-Nujiang suture zone; IYSZ-Indus—Yarlung suture zone; Data from Li Lin etal. (2019) , Chen Chichao et al. (2020) and reference therein; 1—sutrue zone; 2—active fault; 3—δ13C of fossil teeth; 4—δD of plant wax n-alkanes; 5—pollen assemblages; 6—clumped isotope of carbonates; 7—mammatlian fossils; 8—foliar physiognomy of fossil leaves; 9—δ18O of carbonates/fossil teeth; 10—δD of hydrothermally altered hydrous minerals
-
20世纪90年代早期,人们试图将印度-亚洲碰撞构造演化和约8 Ma左右的季风强度联接起来(Kroon et al.,1991; Prell et al.,1992)。但是大量研究表明,强季风的发生时间要比原来的认识早的多,可能从始新世开始,在中新世早期—中期加剧,随后中新世中期到晚期(约12~8 Ma)气候干燥,并不是季风强降雨期(Clift et al.,2018)。Clift et al.(2018)认为南亚季风是喜马拉雅屏障效应的产物,为解释早—中中新世的夏季强降雨的原因提供了新机制。高喜马拉雅中地壳物质的快速折返基本上与中新世早期—中期的气候变化引发的强季风期是同期的,这意味着该阶段的地表剥蚀速率加快,促进了深部物质的折返。
-
但是最近人们认识到,沿高喜马拉雅的走向,高压变质岩的折返时限与相伴随的构造运动是穿时的。Webb et al.(2017)统计了前人对喜马拉雅造山带岩浆活动、变质作用和年代学的研究成果,发现整个高喜马拉雅在26~2 Ma都经历了从进变质作用到退变质作用的转变,沿造山带走向,藏南拆离系的活动停止时间是东、西构造结较早(约24~20 Ma),而中部偏晚(约13~11 Ma)。这种趋势可能受俯冲板片动力学控制,印度板块的俯冲角度在30~25 Ma变陡,导致板片断离从边部向中部扩展,构造抬升沿走向变化,造成喜马拉雅弧形山系以及南亚季风的加强(图15)。因此,青藏高原和喜马拉雅的抬升时间及其时空变化对理解构造-剥蚀-地貌的耦合过程至关重要。
-
图14 高喜马拉雅中地壳隧道流模式
-
Fig.14 Mid-crustal “channel flow” model of the Greater Himalaya
-
GHS—高喜马拉雅岩系; STD—藏南拆离系
-
GHS—Great Himalaya Sequence; STD—South Tibet Detachment
-
图15 印度板片断离从喜马拉雅造山带两端向中心的侧向扩展三维图(来自Webb et al.,2017)
-
Fig.15 Schematic three-dimensional diagram showing lateral propagation of slab detachment from both west and east across the Himalayan system (from Webb et al., 2017)
-
红色阴影代表俯冲的印度板块的上表面,通过释放俯冲板片导致的垂直牵引力,板片断离将影响地形演化,释放动力挠度,并增加板块连续区的垂向载荷(取决于俯冲板块与地幔的黏度比),从而可能产生动态沉降。这一过程可能导致地形在早期沉降之后,再从造山带边缘向中心发生波状抬升。板片断离的横向传播也使造山带弧形弯曲,东喜马拉雅的曲率更大反映了这里板块断离的传播较慢
-
Shaded red colors represent the upper surface of the descending Indian plate. Slab detachment affects topographic evolution by releasing the vertical traction excited by the subducting slab, thereby releasing the dynamic deflection, and increasing the vertical load in adjacent regions where the slab remains attached (depending on the slab to mantle viscosity ratio) , thereby possibly producing dynamic subsidence. This results in a wave of uplift from the edges toward the center of the chain, possibly following an early episode of subsidence. The lateral propagation of slab detachment also bends orogenic belts. The tighter curvature of the eastern Himalaya reflects the slower propagation of slab detachment here
-
Clift et al.(2018)回顾了南亚季风的历史,推测24 Ma时为强烈降雨期,15 Ma 为峰值湿润期,8 Ma为干燥期。这些年龄段恰与青藏高原-喜马拉雅的隆升和海水退出有关。特别是中新世的喜马拉雅快速隆升对北上的夏季季风和降雨提供了一个突然的地貌屏障,使自西向东的气流发生偏转,这种情况可能一直持续到今天(Molnar et al.,2010)。
-
8 青藏高原关键性矿产资源的分布与成因
-
锂-铍-钽稀有金属已经成为重要的战略性关键矿产资源,是发展新能源产业、保障和社会经济持续发展的关键矿种之一。近年来,随着锂电池、新能源汽车、可控核聚变等领域快速发展和不断突破,锂的战略地位不断提升,被誉为“21世纪的能源金属”。由特提斯域地体拼贴体组成的青藏高原是中国大陆关键性矿产资源的重要集结地,其中,稀有金属成矿潜力成为目前青藏高原资源响应中最薄弱部分。在实施“新能源矿产资源战略”的今天,松潘-甘孜造山带甲基卡、马尔康和白龙山等大型—超大型锂矿床的发现引起国内外同行高度重视,使松潘-甘孜造山带有可能成为一个伴生 Be、Nb、Ta、Sn、Rb和Cs元素的超常锂元素富集地带(图16; 许志琴等,2015b,2018; 付小方等,2017; Xu Zhiqin et al.,2020)。
-
位于青藏高原中北部的松潘甘孜造山带,东起龙门山,经松潘甘孜,向西通过巴颜喀拉,越过NE—SW向的阿尔金断裂,连接甜水海地体,往NW抵达北帕米尔,长达1800 km,呈现西部长条状和东部三角形的几何学特征。松潘甘孜造山带的主体为三叠纪巨厚深海-半深海沉积物组成的增生杂岩,在晚三叠世—早侏罗世的造山作用过程中,大量中生代花岗岩侵位以及含锂伟晶岩脉的富集,揭示了锂矿的形成与片麻岩穹隆具有相关性。
-
片麻岩穹隆指中下地壳热动力学过程产生的,与岩浆作用(或混合岩化作用)密切相关的穹状构造(Eskola,1949; 许志琴等,2015b)。片麻岩穹隆几乎出露在所有的折返造山带中,反映了所在地区地壳的大幅度抬升。片麻岩穹隆的核部为花岗岩和深熔混合岩,边部为花岗片麻岩,幔部为以高级变质沉积岩和变质火山岩为标志的高角闪岩相到麻粒岩相片麻岩(或高级片岩)。松潘-甘孜造山带与锂矿有关的片麻岩穹隆群分布在三叠纪巨厚的富锂深水黏土沉积的空间,由核部中生代花岗岩与幔部经受巴罗式-巴肯式变质作用的三叠纪巨厚深海浊积岩组成。例如:甲基卡和马尔康伟晶岩型锂矿所在的雅江和马尔康片麻岩穹隆群中,幔部的变质由内而外分别为矽线石带(蓝晶石带)、十字石带、红柱石带、石榴子石、黑云母带和绢云母-绿泥石带(Xu Zhiqin et al.,2020; Zheng Yilong et al.,2020)。类似地,北喜马拉雅也拉香波片麻岩穹隆的变质分带自上而下包括:含石榴子石千枚岩和片岩、矽线石-蓝晶石-二云母片岩、矽线石-蓝晶石片麻岩和矽线石-石榴子石-二云母角闪岩。中压巴罗式变质带是片麻岩穹隆幔部变质的主要特点,后期往往伴随等温减压和降温冷却两个效应。北喜马拉雅Mabja片麻岩穹隆的变质分带为:矽线石+石榴子石+十字石+黑云母的矽线石带、蓝晶石+石榴子石+十字石+黑云母的十字石带、石榴子石+黑云母+绿泥石的石榴子石带、绿泥石+黑云母的黑云母带(Lee et al.,2004)。这些片麻岩穹隆的变质分带说明中压巴罗式变质作用是片麻岩穹隆幔部变质的主要特点。
-
图16 松潘-甘孜和喜马拉雅锂铍矿带位置分布图
-
Fig.16 Distribution of the lithium-beryllium deposits in the Songpan-Ganze and Himalaya orogenic belts
-
片麻岩穹隆的构造成因与锂矿关系成为探讨锂矿成矿规律的关键问题之一。研究表明,松潘甘孜马尔康片麻岩穹隆的起因于造山折返伸展期间(约210~200 Ma)形成的自北向南的拆离剪切带,其造成的变质核杂岩构造致使核部花岗岩的底辟上升和片麻岩穹隆的形成。而甲基卡片麻岩穹隆至今尚未发现大型韧性拆离构造,“热隆”(许志琴等,1992)和“底辟”(付小方等,2017)的观点曾用以解释甲基卡片麻岩穹隆的成因。Whitney(2004)认为,底辟构造的形成经历从垂直上升的地壳流导致的岩浆上涌的挤压收缩机制到岩体侵位的顶部伸展机制的转化过程。在片麻岩穹隆的深部,流动面理通道以漏斗状为主,在地表则以穹隆状为主,因此片麻岩穹隆是受到从下部岩浆上涌的挤压收缩机制到岩体侵位的顶部伸展机制的转换。
-
此外,喜马拉雅含稀有金属元素的淡色花岗岩脉的大量发现为新能源矿产资源战略开辟了新的前景(王汝成等,2017)(图16)。长期以来含稀有元素的伟晶岩被认为是花岗质岩浆分异演化晚期固结的产物(Cěrný,1991; Cěrný et al.,2005,2012)。尽管松潘甘孜造山带中大量侵位的中生代花岗岩组成片麻岩穹隆的核部,但是有的花岗岩与伟晶岩锂矿有关,有的却无关,因此,区分两类花岗岩的属性与特征,以及查明花岗岩结晶分异与伟晶岩的成因关系,开展淡色花岗岩、伟晶岩的岩石成因学和成矿学特别是金属区域分带研究,不仅具有重要的科学意义,而且对指导稀有金属矿床的发现具有重要应用价值。
-
探索稀有金属的“源-运-储-剥”过程与锂超常富集的规律十分重要。研究稀有成矿元素如何从源区析出?通过何种方法运移?怎样在局部聚集沉淀?确定稀有元素的“源-运-聚”过程是建立成矿理论的核心。
-
9 青藏高原的活动断裂带与孕震机制
-
大地震由断层活动产生,然而,断层的变形行为与破裂过程长期制约着对大地震机制的认识和地震预报的进行。因此,“断层作用”的研究是目前地学界关注的“重大科学问题”(Huntington et al.,2018)。青藏高原是全球大陆内部地震最活跃的地区之一,其中包括青藏高原南缘的喜马拉雅前陆逆冲带和青藏高原北部的松潘甘孜-巴颜喀拉地体边界带(图17)。
-
9.1 喜马拉雅前陆地震带
-
自1505年有地震记录以来,在喜马拉雅前陆逆冲断裂带发生7.5级以上地震8次,其中最大的有1950年的察隅地震(阿萨姆地震)(Ms 8.7)、2005年的喜马拉雅克什米尔地震(Ms 7.6)和2015年4月25日尼泊尔地震(Ms 7.8)(图17)。1950年8月15日22时9分34秒察隅-墨脱发生8.6级地震,震中:N28.290°,E96.657°(Chen Wangping et al.,1977); 震源深度:35 km; 该次地震破坏范围长约330 km,宽约100 km(Coudurier-Curveur et al.,2020)。最远有感距离1200~1300 km。10度极震区大致沿南伽巴瓦峰东南坡、雅鲁藏布江拐弯下游河谷,以墨脱至里嘎间为中心呈北东向椭圆形,长轴90 km,短轴54 km(游泽李等,1991)。极震区内房屋全部倒塌,山崩地裂十分严重,雅鲁藏布江多处堵塞断流。地震造成西藏地区死亡3300多人; 印度阿萨姆地区死亡1500多人。它是有记录以来最大的大陆内部地震。
-
2005年10月8日03时50分38秒在喜马拉雅克什米尔发生7.6级地震,震中:N34.460°,E73.580°(伊斯兰堡东北方95 km穆扎法拉巴德附近),震源深度:19.1 km,死亡人数:巴基斯坦官方公布87350人,印控克什米尔地区造成1400人死亡。该次地震的发震断层既不是MFT,也不是MBT,而是位于次喜马拉雅的Balakot-Bagh断层(Parsons et al.,2005)。地震形成了约70~110 km的地表破裂带,地表最大垂直位移量约7 m(Avouac et al.,2006; Powali et al.,2020)。
-
图17 青藏高原地震分布图(青藏高原主要活动断裂据Tapponnier et al.,2001)
-
Fig.17 Earthquake distribution of Tibetan Plateau (active faults on the Tibetan plateau after Tapponnier et al., 2001)
-
2015年4月25日尼泊尔地震(Ms 8.1)由于这次地震断裂分布在低喜马拉雅和高喜马拉雅之下,发震断裂向北延伸至我国境内断层处于更深部位以及可能逐渐转变为韧性断裂(MHT从脆性断层转变为韧性剪切带)(图18),因此,对我国境内的影响相对较小。
-
9.2 松潘甘孜-巴颜喀拉地体边界带
-
值得关注的是近30年来青藏高原中部的近东西向的松潘甘孜-巴颜喀拉地体的边界上发生了9次7级以上大地震,其中包括1997年11月18日的玛尼地震(Ms 7.9)、2001年11月14日的昆仑地震(Ms 8.1)、2008年3月21日的于田地震(Ms 7.3)、2008年5月12日的汶川地震(Ms 8.0)、2013年4月20日的芦山地震(Ms 7.0)、2014年2月12日的于田地震(Ms 7.3)和2017年8月8日的九寨沟地震(Ms 7.0),以及2021年5月22日在青海玛多大地震(Ms 7.4)(图19)。上述地震记录表明,松潘甘孜-巴颜喀拉地体是近30年来青藏高原地震最活跃的地区。分析此地块的地震断裂带的属性既有逆冲断裂(汶川、芦山地震)(Lin Aimin et al.,2009)、正断层(于田地震)(Li Haibing et al.,2009; Xu Xiwei et al.,2013),也有走滑断层(昆仑、九寨沟、玛尼、玉树地震)(李海兵等,2021),均沿历史上的薄弱带继承性活动,并显示地震迁移具“跳跃性; 而且松潘甘孜地体中的大型走滑断裂(如东昆仑-阿尼玛卿左行走滑断裂和鲜水河左行走滑断裂)在诱发地震中起重要作用,反映印度大陆俯冲在亚洲大陆之下造成青藏高原物质的侧向挤出作用:松潘甘孜-巴颜喀拉地体向东的侧向挤出受扬子刚性陆块的阻挡以及青藏中部地体向南东的逃逸。
-
图18 2015年4月25日尼泊尔Ms8.1级地震发震构造
-
Fig.18 Seismogenic tectonics of Ms8.1 Nepal earthquake, 25 April, 2015
-
MFT—主前锋逆冲断裂; MBT—主边界逆冲断裂; STD—藏南拆离系; MHT—喜马拉雅主逆冲断裂
-
MFT—Main Frontal Thrust; MBT—Main Boundary Thrust; STD—South Tibet Detachment; MHT—Main Himalayan Thrust
-
图19 近三十年来沿巴颜喀拉-松潘地块边界发生的Ms7级以上大地震(据中国地质调查局成都地质矿产研究所,2004)
-
Fig.19 >Ms 7 large earthquake in Tibetan Plateau, mainly along boundary of the Bayanhar-Songpan terrane (modified after Chengdu Institute of Geology and Mineral Resources, CGS, 2004)
-
1998年,中国地震局的一批科学家(张国民、马瑾、邓起东、陈颙、张培震)联合提出中国大陆现今构造变形与强震的“活动地块”假说,用于解释中国大陆强震活动的空间分布规律和现今构造变形作用。活动地块是被形成于晚新生代、晚第四纪至现今强烈活动的构造带所分割和围限、具有相对统一运动方式的地质单元(张培震等,2003; 张国民等,2004)。活动地块内部相对稳定,具有相对统一的运动方式,主要构造变形和强震都发生在边界带上。据记录,中国大陆约100%的8级以上强震、约80%的7级以上强震都位于地块的边界带上(马宏生等,2003; 张培震等,2003; 张国民等,2004; 邵志刚等,2008),估计未来的强震将发生在活动地块边界带内的某些有利部位上,正是由于活动地块的相对运动,才形成了现今构造变形和强震活动的基本格局。
-
最近,李海兵等根据活动地块的理论,提出青藏高原大型断裂带控制着青藏高原活动地块的强地震分布和变形演化过程,自北而南划分如下活动地块: 青藏高原北部盆岭构造挤压块区、向东挤出的巴颜喀拉挤压地块、向南东逃逸的羌塘地块和藏南东西向伸展地块(图20)。分别受海源走滑断裂、阿尔金走滑断裂、东昆仑-阿尼玛卿走滑断裂、龙门山逆冲断裂、嘉黎走滑断裂和喜马拉雅逆冲断裂的制约(李海兵等,2021)。
-
印度大陆向欧亚大陆俯冲碰撞的动力学过程中如何驱动断裂孕震和发震?这是需要重视和研究的问题,并重新考虑地震的本质和驱动地震的动力。
-
10 碰撞之后印度俯冲板块何去何从:深部动力学探究
-
印度-亚洲碰撞后,印度板块仍以44~50 mm/a的速率往北推进,插入亚洲大陆之下,造成1500 km的南北向缩短量被吸收、2倍于正常地壳厚度的巨厚陆壳体(平均厚度70~80 km),以及印度与西伯利亚板块之间南北2000 km、东西3000 km巨大范围的新生代陆内变形域(Molnar et al.,1975; Yin An et al.,2000),促使青藏高原形成和喜马拉雅隆升,以及大量物质沿东西构造结向南东及南西的逃逸(Tapponnier et al.,2001)。人们为了解释青藏高原的地壳增厚机制,提出过一些具有代表性的地球动力学模型,但截至目前,对于青藏高原的隆升及其造山机制,仍然没有得到一个统一认识。关于印度板块插入亚洲大陆之下的物理状态已经有四种代表性的地球动力学模型进行诠释: ① 印度岩石圈整体向北以低角度长距离俯冲到亚洲大陆之下,形成所谓的双层地壳,而后又在重力均衡作用下进行地壳物质的调整(Argand,1924; Powell,1973,1986; Beghoul et al.,1993); ② 印度板块以高角度向北俯冲于青藏高原之下,然后超高压变质岩折返回浅部地壳(Coward,1985; Replumaz et al.,2004); ③ 印度大陆和亚洲大陆的地壳同时发生缩短和增厚(Dewey,1970; England,1986); ④ 印度岩石圈俯冲到西藏下方的软弱的下地壳,并与其同化或者青藏高原的下地壳先转变为榴辉岩,然后拆沉进入地幔(Zhao Wuling et al.,1987; Nelson et al.,1996)。
-
图20 大型断裂带控制着青藏高原地块的强地震分布和变形演化过程(据李海兵等,2021)
-
Fig.20 Large earthquake and deformation controlled by large fault system in Tibetan Plateau (after Li Haibing et al., 2021)
-
自20世纪70年代以来,中国地球物理学家们以及与法、英和美等国的国际合作,在青藏高原进行了多种类型的地球物理探测(滕吉文等,2019),取得了大量的刻画喜马拉雅和青藏高原的深部壳幔结构的地球物理资料。
-
10.1 喜马拉雅中段大地电磁探测
-
国内地球物理工作者(袁学诚等,1987; 吴建功等,1991; 孔祥儒等,1996)很早便开展了青藏高原的大地电磁法二维探测工作,并进行了INDEPTH-MT等项目的国际合作(Chen Leshou et al.,1996; Wei Wenbo et al.,2001; Spratt et al.,2005)。这些观察揭示了高阻的印度大陆地壳前缘在雅江缝合带附近遇到中地壳的高导层; 高导层南界在雅江缝合带南端,上顶面位于10~20 km处(图21); 顶部埋深似乎与地震反射界面相吻合(Brown et al.,1996)。研究表明青藏高原的中下地壳普遍存在高导体,高原南部的巨厚地壳是热的、软弱的、塑性的,甚至具有较强的流变性(赵文津等,2001),推测与局部熔融和热液流体有关(Francheteau et al.,1984)。探测结果也为利用地壳物质流(Clark et al.,2000; Beaumont et al.,2001; Bai Denghai et al.,2010; Lin Changsong et al.,2017)解释喜马拉雅造山带构造的地球动力学模型提供了支持。
-
从三维电性结构的空间展布看,新证据表明藏南中下地壳高导体可能更多地表现为南北向延伸特征,上地幔的大规模高导体在深处发生汇聚(Zhang Letian,2017),符合印度岩石圈板片在青藏高原下方发生撕裂的动力学模型。拉萨地体软弱下地壳的弱流变性可能导致该区域的东西向伸展,从而促进了青藏中部南北向“裂谷带”的形成(Dong Hao et al.,2020)。与上述观测结果相关的问题有:①藏南高导体的空间展布和成因; ② 青藏高原向东南运移的地壳流是否存在?③ 青藏高原南北走向的正断层系统和北西/南东向的走滑断层系统的成因; ④ 印度岩石圈板片俯冲前缘的位置和几何形态; ⑤ 拉萨地体软弱中下地壳的弱流变性如何协调印度-亚洲碰撞造山和地壳增厚?
-
图21 喜马拉雅造山带中段100、700和800测线大地电磁反演的电阻率模型(据Unsworth et al.,2005)
-
Fig.21 Resistivity models for Line100, 700 and 800 derived from inversions of the MT data in the middle of Himalayan orogenic belt (after Unsworth et al., 2005)
-
GHT—高喜马拉雅结晶基底; MBT—主边界逆冲断裂; MFT—主前锋逆冲断裂; MHT—喜马拉雅主逆冲断裂; ITS—雅鲁藏布江缝合带
-
GHT—Greater Himalayan Sequence; MBT—Main Boundary Thrust; MFT—Main Frontal Trust; MHT—Main Himalayan Thrust; ITS—Indus-Tsangpo suture
-
10.2 喜马拉雅天然地震探测
-
天然地震资料对刻画喜马拉雅造山带地壳和上地幔的深部结构十分有效。相比东西两端,喜马拉雅造山带中段的壳幔结构相对简单,在构造走向方向上具有一定的可对比性。
-
在喜马拉雅中段,印度岩石圈向青藏高原之下俯冲的角度、样式和距离在东西方向上发生了变化。从东经82°到92°范围内,印度岩石圈地幔的俯冲样式呈现“平板俯冲-低角度俯冲-深俯冲且前缘翻转或拆离断裂”的变化特征(图22),而俯冲距离从西向东则逐渐缩短(Li Chang et al.,2008; Zhao Junmeng et al.,2010; Shi Danian et al.,2015)。在ITPCAS剖面西线(图23a)下方,印度板块的LAB深度从南部大约120 km很快加深到位于拉萨地体的200 km,并一直延伸到金沙江缝合带,说明印度板片向北远程平板俯冲(Owens et al.,1997),直到与欧亚岩石圈相接。而对于ITPCAS剖面中线(图23b),印度板块的LAB界面从南向北逐渐加深,直到班公湖-怒江缝合带才达到200 km(Zhao Junmeng et al.,2010),表现为中远距离低角度俯冲。东线的接收函数偏移成像结果显示,410~660 km界面具有较好的连续性(图23c)。这表明至少在该区域,俯冲的印度岩石圈并没有整体穿透西藏下面的地幔过渡带(Kind et al.,2002)。Shi Danian et al.,(2015)认为在东线上印度岩石圈地幔以低角度俯冲至拉萨地体之下,其俯冲前缘可能越过北纬31°线。印度岩石圈地幔的前缘板片可能发生回转或者拆沉,并导致了拉萨地体下方软流圈的上涌。
-
印度地壳可能至少从喜马拉雅的前陆盆地(厚度约40 km)一直向北延伸到特提斯喜马拉雅之下(厚度约80 km)(Nabelek et al.,2009)。而在东经92°,印度下地壳在特提斯喜马拉雅下方约60 km处与岩石圈地幔发生分离,并以平板俯冲样式延伸至拉萨地体之下,其俯冲前缘可能位于北纬31°线附近,说明印度板块的岩石圈地幔与其上覆的印度下地壳是解耦的(Shi Danian et al.,2015)。而且,部分区域的印度下地壳发生了榴辉岩化,并因此形成了接收函数剖面上的“doublet”转换层(Kind et al.,2002; Nabelek et al.,2009)。上述差异可能是印度岩石圈板片沿着藏南发育的南北向裂谷带撕裂和断离的结果(Liang Xiaofeng et al.,2016)(图24)。
-
在喜马拉雅造山带西缘,印度-欧亚碰撞区域内存在两个汇聚的俯冲带,其中印度岩石圈向北俯冲至兴都库什山脉之下,而亚洲岩石圈则向南俯冲至帕米尔高原之下,俯冲达到400~500 km深度。Negredo et al.(2007)推测印度岩石圈板片极有可能在碰撞早期(约48~44 Ma)发生了撕裂。大地电磁结果表明在南迦帕尔巴特地块中央可能存在集中的低速带,认为该地区快速隆升的原因可能与其下方薄的、热的和软弱的地壳有关(Park et al.,2000; Zeitler et al.,2001)。而在喜马拉雅东构造结,远震P波层析成像结果揭示了印度板块由西向东从“平俯冲”向“陡俯冲”转换的差异俯冲样式和破碎结构(彭淼等,2017)。东构造结以西,印度板片是平俯冲的形态,并可能一直延伸到班公湖-怒江缝合带。相比之下,印度板片在东构造结东部却是向东俯冲的高角度俯冲样式(Li Chang et al.,2008; Lei Jianshe et al.,2014)。这种差异俯冲模式使得印度板片在东构造结下方发生板片撕裂,导致热的软流圈地幔可能通过东构造结下方的撕裂窗上涌,形成壳内部分熔融向上挤出。
-
图22 沿印度-亚洲碰撞边界上印度板片的俯冲方式的横向变化(据Li Chang et al.,2008)
-
Fig.22 Lateral variations in the Indian subduction along the collision boundary (after Li Chang et al., 2008)
-
上图的每个横剖面中,灰色的圆圈代表地震,洋红色的虚线代表莫霍面,在每个子图顶部的灰色阴影代表地形,黑色的虚线代表410 km和660 km的地震速度间断面; 下图横剖面B、E、J的位置如中间地形图所示,蓝色的粗线显示了印度俯冲的北部前缘; HB—喜马拉雅地体; LB—拉萨块体; QB—羌塘块体; QDB—柴达木盆地; KF—昆仑断裂; JRS—金沙江缝合带; BNS—班公怒江缝合带; ITS—印度雅江缝合带
-
In each cross-section above, gray circles represent earthquakes, magenta dotted lines represent Moho planes, gray shadows at the top of each subgraph represent terrain, and black dotted lines represent seismic velocity discontinuities of 410 and 660 km. The locations of cross-sections B, E and J below are shown in the middle topographic map. The thick blue line shows the northern front of the Indian subduction; HB—Himalayan block; LB—Lhasa block; QB—Qiangtang block; QDB—Qaidam basin; KF—Kunlun fault; JRS—Jinsha river suture; BNS—Bangong-Nujiang suture; ITS—Indus-Yarlong Tangpo suture
-
图23 由ITPCAS和INDEPTH剖面所揭示的印度和亚洲岩石圈碰撞模型
-
Fig.23 Lithospheric collision models of India and Asia revealed by ITPCAS and INDEPTH profiles
-
(a)和(b)的左侧剖面分别为ITPCAS西线和中线的S波接收函数结果(Zhao Junmeng et al.,2010);(c)左侧剖面为INDEPTH东线的接收函数偏移成像结果(Kind et al.,2002);(a)~(c)的右侧为对应的印度和亚洲岩石圈碰撞模式(Zhao Junmeng et al.,2010),蓝色表示印度地幔岩石圈、绿色表示亚洲地幔岩石圈、红色表示二者的碰撞区
-
The sections on the left of (a) and (b) are respectively the S-wave receiving function results of the western and central lines of ITPCAS (Zhao Junmeng et al., 2010) ; The section on the left of (c) is the receiving function migration imaging results of the eastern line of INDEPTH (Kind et al., 2002) ; lithosphere collision pattern of India and Asia is shown on the right of (a) ~ (c) (Zhao Junmeng et al., 2010) , with Indian mantle lithosphere in blue, Asian mantle lithosphere in green, and collision zone in red
-
10.3 喜马拉雅主动源地震探测
-
相比宽频地震探测,主动源地震观测可揭示更为精细的地壳结构、莫霍面变化以及深部构造格架。高锐院士团队实施的横跨喜马拉雅的深反射地震剖面揭示出印度板块和欧亚板块的俯冲碰撞变形的行为及其深部过程:①位于喜马拉雅中段西部的主动源地震探测剖面(例如81°E的HKT剖面)揭示了地壳尺度平俯冲和下地壳减薄的多重构造叠置模式(Gao Rui et al.,2016)(图25); ②在中部(88°E的XGZ剖面),呈现上地壳逆冲与下地壳高角度俯冲的“鳄鱼口”构造模式(Guo Xiaoyu et al.,2017)(图26); ③东部剖面(位于92°E的LZ剖面)则是构造叠置加上岩浆侵入的斜坡式俯冲构造模式(Dong Xinyu et al.,2020)。关于印度地壳的俯冲角度,由西向东表现为从平坦(81°E)到约45°(88°E)再到由25°增大到50°(92°E),即呈现“平坦—约45°—由25°增大到50°”的变化特征。对于俯冲距离而言,西部和中部剖面是否越过雅鲁藏布江缝合带还存在争议,而东部剖面可能到达了北纬30°附近。
-
图24 TIBET-31N剖面揭示印度岩石圈板片在西藏南部下方发生撕裂和断离(据Chen Yun et al.,2015)
-
Fig.24 The cross-sections of TIBET-31N reveals that the Indian lithosphere plate has been torn and broken off beneath southern Tibet (after Chen Yun et al., 2015)
-
反映碰撞带印度岩石圈板块撕裂的动力学卡通模型; MFT—主前缘断裂; MCT—主中央断裂; STDS—藏南拆离系统; IYS—雅鲁藏布江缝合带; MHT—喜马拉雅主逆冲断裂
-
Dynamic cartoon model of Indian lithospheric plate tearing in collision zone; MFT—Main Himalayan Frontal Thrust; MCT—Main Himalayan Central Thrust; STDS—South Tibetan Detachment System; IYS—Indus-Yarlung suture; MHT—Main Himalayan Thrust
-
图25 青藏高原西部HKT深反射地震叠前时间偏移剖面及其解释图(据Gao Rui et al.,2016)
-
Fig.25 Deep reflection pre-stack time migration of western profile HKT and interpretation (after Gao Rui et al., 2016)
-
(a)—为未解释的剖面;(b)—解释剖面; 实线是叠加在观测反射的解释,虚线是从地表地质或反射剖面推断的解释; 蓝色表示的是在STD(藏南拆离系)及以上的主要结构; 红色表示的是莫霍面、MCT(主中央逆冲断层)、MHT(喜马拉雅主逆冲断层)和弧形反射、JT(江孜逆冲断裂)、KF(喀喇昆仑断裂)、YZS(雅鲁藏布江缝合带)、 GMD(片麻岩穹隆)
-
(a) —Uninterpreted profile; (b) —interpreted profile; interpretation solid where superimposed on observed reflections; dotted where inferred from surface geology or reflection cutoffs; blue, major structures at and above the STD (Southern Tibet Detachement) ; red, Moho, MCT (Main Himalayan Central thrust) , MHT (Main Himalayan Thrust) , JT (Jiangzi thrust) , KF (Karakara fault) , YZS (Yarlung Zangbo suture) and arcuate reflections
-
综上所述,印度-亚洲碰撞沿喜马拉雅东西向表现出显著的东西向差异,不仅局限于地壳和上地幔顶部,而且可以扩展到整个岩石圈尺度。印度地壳的俯冲行为与下伏印度岩石圈地幔在一定程度上是解耦和拆离的,在研究印度板块俯冲前缘的性质时应将地壳和岩石圈地幔分开讨论。但关于俯冲前缘的位置和几何形态还存在不同观点,这可能与剖面的位置、观测技术、数据质量、反演方法等多种因素相关。印度板块前缘何去何从仍是一个尚未完全解决的问题,还有待考证的问题至少还包括:① 究竟是印度地壳与上地幔一起越过雅鲁藏布江缝合带,还是地壳没越过而上地幔越过,或是上地壳没越过而下地壳和上地幔越过此条界限?② 印度板块岩石圈地幔和地壳俯冲前缘的位置和几何形态还有待形成共识; ③ 印度-亚洲碰撞沿喜马拉雅东西向的地壳、上地幔顶部、整个岩石圈尺度表现显著的纵-横向差异仍是个主要未解之谜; ④ 青藏高原南部中地壳的低阻层是否形成“地壳流”而联通,以及三维空间展布和成因等。
-
图26 中部XGZ剖面的处理剖面及其解释剖面图(据Guo Xiaoyu et al.,2017)
-
Fig.26 Processing section and interpretation of middle XGZ profile (after Guo Xiaoyu et al., 2017)
-
(a)—反射面主要特征的绘制图;(b)—反射地震剖面解释图; GT—冈底斯逆冲断裂GCT—大型逆冲断层; IYZ—雅鲁藏布江缝合带; TH—特提斯喜马拉雅; TAC—特提斯增生杂岩体; MHT—喜马拉雅主断层
-
(a) —Composite line drawings showing major features of the reflector; (b) —interpretation of reflection seismic profile; GT—Gangdese Thrust; GCT—Great Counter Thrust; IYZ—Indus-Yarlung-Zangbo suture; TH—Tethyan Himalaya; MHT—Main Himalayan Thrust
-
11 后语
-
青藏高原具有特殊的几何形态和地貌景观,其周缘高耸陡峭的山链构成了一堵与外界隔绝的屏障,是一个正在快速隆起的大陆地块。青藏高原具有十分复杂的地体结构和独特的深部物理状态,它的形成经历了特提斯构造域长期演化、地体拼贴、碰撞及复合造山的动力学过程,特别是印度和亚洲大陆在60 Ma 以来的碰撞导致青藏高原隆升,改变了地球上的海陆分布格局,是地球上新生代最壮观、最重大的事件之一。历经二百年的青藏高原研究,青藏高原已成为公认的地学家们的永恒课堂,是大陆动力学研究的最佳实验室和窗口,是从全球的尺度探索青藏高原形成的动力学机制、解决一系列地球科学重大理论的理想地区,是诞生新理论的摇篮。从大陆动力学和活动论的角度出发,重塑青藏高原结构、块体边界及块体运动学模式,是青藏高原大陆动力学研究的基本内容; 再造青藏高原的块体拼合及碰撞动力学是青藏高原大陆动力学研究的焦点; 揭示青藏高原隆升与深部地壳、地幔结构和驱动力是青藏高原大陆动力学研究的关键; 结合资源、灾害和环境的影响探究青藏高原和喜马拉雅形成和隆升的历史十分必要。
-
致谢:在本文撰写过程中得到杨经绥院士、肖文交院士和王勤教授有益启迪,王勤教授做了进一步修正,深表谢意。感谢评审专家对本文提出宝贵的意见。
-
注释
-
❶ 丁林.2021. 世界屋脊是如何形成的?对东亚环境带来了何等剧变?中国科普博览演讲报告.
-
参考文献
-
Aitchison J C, Ali J R, Davis A M. 2007. When and where did India and Asia collide? Journal of Geophysical Research, 112: B05423.
-
Ali J R, Aitchison J C. 2005. Greater India. Earth-Science Reviews, 72: 169~88.
-
An Zhisheng, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 411(6833): 62~66.
-
Aoya M, Wallis S R, Terada K, Lee J, Kawakami T, Wang Y, Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33: 853~856.
-
Argand E. 1924. La Tectonique de l'Asie. Proceedings of the 13th International Geological Congress, 7: 171~372.
-
Audley-Charles M G. 1984. Cold Gondwana, warm Tethya and the Tibetan Lhasa block. Nature, 310: 165~66.
-
Avouac J-P, Ayoub F, Leprince S, Konca O, Helmberger D V. 2006. The 2005, Mw 7. 6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters, 249(3-4): 514~528.
-
Ayers J C, Dunkle S, Gao S, Miller C F. 2002. Constraints on timing of peak and retrograde metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186: 315~331.
-
Bai D, Unsworth M J, Meju M A, Ma X, Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358~362.
-
Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738~742.
-
Beghoul N, Barazangi M, Isacks B L. 1993. Lithospheric structure of Tibet and western North America: mechanisms of uplift and a comparative study. Journal of Geophysical Research Solid Earth, 98(B2): 1997~2016.
-
Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research, 107(B11): 2300.
-
Boulin J. 1981. Afghanistan structure, greater India concept and eastern Tethys evolution. Tectonophysics, 72: 261~87.
-
Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274(5293): 1688~1690.
-
Burbank D W, Derry L, France-Lanord C. 1993. Lower Himalayan detrital sediment delivery despite an intensified monsoon at 8 Ma. Nature, 364: 48~50.
-
Burchfiel B C, Chen Z, Hodges K V, Liu Y, Royden L H, Deng C, Xu J. 1992. The South Tibetan Detachment System, Himalayanh orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America, Special Papers, 269: 1~41.
-
Burchfiel B C, Royden L H. 1985. North-south extension within the convergent Himalayan region. Geology, 13(10): 679~682.
-
Carosi R, Montomoli C, Rubatto D, Visonà D. 2010. Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics, 29: TC4029.
-
ČernýP. 1991. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geoscience Canada, 18: 68~81.
-
ČernýP, Ercit T S. 2005. The classification of granitic pegmatites revisited Canadian Mineral. , 43: 2005~2026.
-
ČernýP, London D, Novák M. 2012. Granitic pegmatites as reflections of their sources Elements, 8: 289~294.
-
Chang Edmund Z. 2000. Geology and tectonics of the Songpan-Ganzi fold belt, southwestern China. International Geology Review, 42: 813~831.
-
Chemenda A I, Burg J P, Mattauer M. 2000. Evolutionary model of the Himalaya-Tibet system: geopoem: based on new modelling, geological and geophysical data. Earth and Planetary Science Letters, 174(3-4): 397~409.
-
Chen Chichao, Bai Yan, Fang Xiaomin, Xu Qiang, Zhang Tao, Deng Tao, He Jiankan, Chen Qinghu. 2020. Lower-altitude of the Himalayas before the mid-Pliocene as constrained by hydrological and thermal conditions. Earth and Planetary Science Letters, 545: 116422.
-
Chen Leshou, Booker J R, Jones A G, Wu Nong, Unsworth M J, Wei Wenbo, Tan Handong. 1996. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 274(5293): 1694~1696.
-
Chen Wangping, Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in central Asia. Journal of Geophysical Research, 82(20): 2945~2969.
-
Chen Yun, Li Wei, Yuan Xiaohui, Badal Jose, Teng Jiwen. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth and Planetary Science Letters, 413: 13~24.
-
Chengdu Institute of Geology and Mineral Resources, CGS. 2004. Geological Map of Qinghai-Tibet Plateau and Its Adjacent Areas. Chengdu: Chengdu Cartographic Publishing House.
-
Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwen, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 1998a. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Science Review, 68(3-4): 173~196.
-
Chung Sun-Lin, Lo Ching-Hua, Lee Tung-Yi, Zhang Yuequan, Xie Yingwen, Li Xianhua, Wang Kuo-Lung, Wang Pei-Ling. 1998b. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 394: 769~773.
-
Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703~706.
-
Clift P D, Webb A A G. 2018. A history of the Asian monsoon and its interactions with solid earth tectonics in Cenozoic South Asia. In: Treloar P J, Searle M P, eds. Himalayan tectonics: a modern synthesis. Geological Society, London, Special Publications, 483.
-
Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. Journal Geophys Researc, 115: B03410.
-
Coudurier-Curveur A, Tapponnier P, Okal E, Van Der Woerd J, Kali E, Choudhury S, Baruah S, Etchebes M, Karakaş Ç. 2020. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth and Planetary Science Letters, 531: 115928.
-
Coward M P, Butler R. 1985. Thrust tectonics and the deep structure of the Pakistan Himalaya. Geology, 13(6): 417~420.
-
DeCelles P G, Kapp P, Gehrels G E, Ding Lin. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics, 33(5): 824~849.
-
Deng Tao, Wang Xiaoming, Wu Feixiang, Wang Yang, Li Qiang, Wang Shiqia, Hou Sukuan. 2019. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Global and Planetary Change, 174: 58~69.
-
Dewey J F, Bird J M. 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14): 2625~2647.
-
Dietrich V J, Gansser A. 1981. The leucogranites of the Bhutan Himalaya (crustal anatexis versus mantle melting). Schweiz. mineral. petrogr. Mitt. 61(2-3): 177~201.
-
Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D: Earth Sciences, 42: 491~505.
-
Ding Lin, Kapp P, Wan Xiaoqiao. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001.
-
Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250~264.
-
Ding Lin, Maksatbek S, Cai Fulong, Wang Houqi, Song peiping, Ji Weiqiang, Xu Qiang, Zhang Liyun, Muhammad Q, Upendra B. 2017a. Processes of initial collision and suturing between India and Asia. Science China Earth Sciences, 60: 635~651 (in Chinese).
-
Ding Lin, Spicer R. A. , Yang Jian, Xu Qiang, Cai Fulong, Li Shun, Lai Qingzhou, Wang Houqi, Spicer T E V, Yue Yahui, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017b. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45(3): 215~218.
-
Dong Hao, Wei Wenbo, Jin Sheng, Ye Gaofeng, Jones A G, Zhang Letian, Jing Jianen, Xie Chengliang, Yin Yaotian. 2020. Shaping the surface deformation of central and south Tibetan Plateau: insights from magnetotelluric array data. Journal of Geophysical Research (Solid Earth), 125(9): e19206.
-
Dong Xinyu, Li Wenhui, Lu Zhanwu, Huang Xingfu, Gao Rui. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics, 780: 228395.
-
Eide E A, McWilliams M O, Liou J G. 1994. 40Ar-39Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east central China. Geology, 22: 601~604.
-
England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research (Solid Earth), 91(B3): 3664~3676.
-
Eskola P E. 1949. The problem of mantled gneiss domes. Geological Society of London, Quarterly Journal, 104: 461~476.
-
Fang Xiaomin, Dupont-Nivet G, Wang Chengshan, Song Chunhui, Meng Qingquan, Zhang Weilin, Nie Junsheng, Zhang Tao, Mao Ziqiang, Chen Yu. 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Science Advance, 6(50), eaba7298.
-
Francheteau J, Jaupart C, Jie S X, Wen Hua K, De Lu L, Jia Chi B, Hung Pin W, Hsia Yeu D. 1984. High heat flow in southern Tibet. Nature, 307(5946): 32~36.
-
Fromaget J. 1927. Etude géologique sur le nord de L'Indochine centrale. Bulletin du Service Géologique de l'Indochine, 16 (2): 141~164.
-
Fromaget J. 1952. Etude géologique sur le Nord-Ouest du Tonkin et le Nord du Haut-Laos. 2 eme et 3 eme soirées. Bulletin du Service Géologique de l'Indochine, 29 (6): 198.
-
Fu Xiaofang, Hou Liwei, Liang Bin. 2017. Jiajika-type Granite-pegmatite Lithium Deposit: Metallogenic Model and Three-dimensional Prospecting Model. Beijing: Science Press (in Chinese).
-
Gao Li'e, Zeng Lingsen, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites. Geology, 45: 39~42.
-
Gao Rui, Lu Zhanwu, Klemperer S L, Wang Haiyang, Dong Shuwen, Li Wenhui, Li Hhongqiang. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7): 555~560.
-
Garzanti E. 2008. Comment on “When and where did India and Asia collide?” by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis, Journal of Geophysical Research, 113, B04411.
-
Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin Acta, 1(4-5): 297~312.
-
Godin L, Grujic D, Law R D, Searle M P. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones; an introduction. In: Law R D, Searle M P, Godin L (eds) channel flow, ductile extrusion, and exhumation of lower-middle crust in continental collision zones. Geological Society, London, Special Publications, 268: 1~23.
-
Golonka J. 2006. Global plate tectonics and paleogeography of southeast Asia. Faculty of geology, geophysics and environmental protection. AGH University of Science and Technology, Kraków.
-
Gou Zhengbin, Zhang Zeming, Dong Xin, Xiang Hua, Ding Huaxia, Tian Zuolin, Lei Hengcong. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos, 256~257: 300~310.
-
Groppo C, Rolfo F, Mosca P. 2013. The cordierite-bearing anatectic rocks of the higher Himalayan crystallines (eastern Nepal): low-pressure anatexis, melt productivity, melt loss and the preservation of cordierite. Journal of Metamorphic Geology, 31: 187~204.
-
Gu Xuexiang. 1994. Geochemical characteristics of the Triassic Tethys turbidites in the northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58: 4615~4631.
-
Guillot S, Hodges K, Le Fort P, Pecher A. 1994. New constraints on the age of the Manaslu leucogranite: evidence for episodic tectonic denudation in the central Himalayas. Geology, 22: 559~562.
-
Guillot S, Le Fort P. 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35: 221~234.
-
Guo Xiaoyu, Li Wenhui, Gao Rui, Xu Xiao, Li Hongqiang, Huang Xingfu, Ye Zhuo, Lu Zhanwu, Klemperer S L. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 7: 12497.
-
Guo Zhengfu, Wilson M. 2012. The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22: 360~376.
-
Harris N B W, Massey J A. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537~1546.
-
Harris N B W, Ayres M W, Massey J A. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100: 15767~15777.
-
Harrison T, Copeland P, Kidd W. 1995. Activation of the Nyainquentanghla shear zone: implications for uplift of the southern Tibetan Plateau. Tectonics, 14: 658~676.
-
Harrowfield M J, Wilson C J L. 2005. Indosinian deformation of the Songpan-Garze fold belt, northeast Tibetan Plateau. Journal of structural geology, 27: 101~117.
-
He Dian, Webb A A G, Larson K P, Schmitt A K. 2016. Extrusion vs. duplexing models of Himalayan mountain building 2: The South Tibet Detachment at the Dadeldhura klippe. Tectonophysics, 667: 87~107.
-
Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112: 428~432.
-
Hodges K V. 2006. A synthesis of the channel flow extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. In: Law R D, Searle M P, Godin L, eds. channel flow, ductile extrusion, and exhumation of lower-middle crust in continental collision zones. Geological Society, London, Special Publications, 268: 71~90.
-
Hou Zengqian, Zheng Yuanchuan, Zeng Lingshn, Gao Li E, Huang Kexian, Li Wei, Li Qiuyun, Fu Qiang, Liang Wei, Sun Qingzhong. 2012. Eocene-Oligocene granitoids in southern Tibet: constraints on crustal anatexis and tectonic evolution of the Himalayan orogeny. Earth Planetary Science Letters, 349: 38~52.
-
Hu Xiumian, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43(10): 859~862.
-
Hu Xiumian, Wang Jiangang, BouDagher-Fadel M, Garzanti E, An Wei. 2016a. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi Formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32: 76~92.
-
Hu Xiumian, Garzanti E, Wang Jiangang, Huang Wentao, An Wei, Webb A. 2016b. The timing of India-Asia collision onset - facts, theories, controversies. Earth-Science Reviews, 160: 264~299.
-
Huang Baochun, Chen Junshan, Yi Zhiyu. 2010. Paleomagnetic discussion of when and where India and Asia initially collided. Chinese Journal of Geophysics, 53(9): 2045~2058 (in Chinese with English abstract).
-
Huang Jiqing. 1945. On major tectonic forms of China. China Geological survey Geological memoirs Series A20, 211 (in Chinese).
-
Huntingkon K W, Saylor J, Quade J, Hudson A M. 2015. High Late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Geological Society of America Bulletin, 127(1-2): 181~200.
-
Huntington K W, Klepeis K. 2018. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link earth systems, from geologic time to human time. A community vision document submitted to the US National Science Foundation.
-
Jadoon U F, Huang Baochun, Shah S A, Rahim Y, Khan A A, Bibi A. 2021. Multi-stage India-Asia collision: paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya. GSA Bulletin, https: //doi. org/10. 1130/B36116. 1.
-
Ji Min, Gao Xiaoying, Zheng Yongfei, Meng Ziyue, Gao Peng. 2021. Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen. Lithos, 394~395.
-
Kind R, Yuan X, Saul J, Nelson D, Sobolev V S. 2002. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science, 298: 1219~1221.
-
Klimetz M P. 1983. Speculation on the Mesozoic plate tectonic evolution of eastern China. Tectonics, 2(2): 139~166.
-
Klootwijk C T, Gee J S, Peirce J W, Smith G M, Mcfadden P L. 1992. An early India-Asia contact - paleomagnetic constraints from Ninetyeast Ridge, Odp Leg 121. Geology, 20: 395~398.
-
Knesel K M, Davidson J P. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296: 2206~2208.
-
Kong Xiangru, Wang Qianshen, Xiong Shaobo. 1996. Comprehensive geophysics and lithospheric structure in the western Xizang (Tibet) Plateau. Science in China Series D, 26(4): 308~315 (in Chinese).
-
Kroon, D, Steens T, Troelstra, S R. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In: Prell W, Niltsuma, N (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 117: 257~263.
-
Le Fort P, Cuney M, Deniel C. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134: 39~57.
-
Lee Jeffrey, Hacker B, Wang Yu. 2004. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja dome, southern Tibet. Journal of Structural Geology, 26(12): 2297~2316.
-
Leech M L, Singh S, Jain A K, Manickavasagam R M. 2005. The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planetary Science Letters, 234: 83~97.
-
Lei Jianshe, Li Yuan, Xie Furen, Teng Jiwen, Zhang Guangwei, Sun Changqin, Zha Xiaohui. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. Journal of Geophysical Research (Solid Earth), 119: 2174.
-
Li Chang, Robert D, van der Hilst, Anne S, Meltzer E, Engdahl R. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157~168.
-
Li Chunyu, Liu Yangwen, Zhu Baoqing, Feng Yimin, Wu Hanquan. 1978. Tectonic evolution history of Qinling and Qilian Mountains. In: International Exchange Geology Academic Papers (1) Regional Structure\\Geological Mechanics. Beijing: Geological Publishing House, 174~187 (in Chinese).
-
Li Chunyu, Wang Quan, Liu Xueya, Tang Yaoqing. 1982. Tectonic Map of Asia and Its Manual. Beijing: Cartographic Press (in Chinese).
-
Li Guangwei, Kohn B, Sandiford M, Xu Zhiqin, Tian Yuntao, Seiler C. 2016. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet: insights from low-temperature thermochronology. Geochemistry Geophysics Geosystems, 17(1): 101~112.
-
Li Haibing, Tapponnier P, Klinger Y, Lacassin R, Pei Junling, Qiu Zhili, Pan Jiawei, Si Jialiang. 2009. Field study of the 20/03/2008, Mw 7. 2 Ashikule earthquake rupture (Xinjiang, China). AGU Fall Meeting Abstracts GP21A-0770.
-
Li Haibing, Pan Jiawei, Sun Jialiang, Pei Junling, Liu Dongliang, Marie-Luce Chevalier, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~312 (in Chinese with English abstract).
-
Li Lin, Fan M, Davila N, Jesmok G, Mitsunaga B, Tripati A, Orme D. 2019. Carbonate stable and clumped isotopic evidence for Late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications. Geological Society of America Bulletin, 131 (5-6): 831~844.
-
Li Jijun, Wen Shixuan, Zhang Qingsong, Wang Fubao, Zheng Benxing, Li Bingyuan. 1979. A discussion on the age, amplitude and form of the uplift of the Qinghai-Tibet Plateau. Science in China Series A, 6: 608~616 (in Chinese).
-
Li Shuguang, Xiao Yilin, Liou Deliang, Chen Yizhi, Ge Ningjie, Zhang Zongqing, Sun Shen-su, Cong Bolin, Zhang Ruyuang, Hart S R, Wang Songshan. 1993. Collision of the North China and Yangtzeblocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology, 109(1-4): 89~111.
-
Li Shuguang, Huang Fang, Zhou Hongyin, Li Huimin. 2003. U-Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie mountains, central China: constraint on the exhumation mechanism of UHPM rocks. Scinece in China Series D, 46(3): 200~209.
-
Li Yalin, Wang Chengshan, Dai Jingen, Xu Gangqin, Hou Yunling, Li Xiaohan. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review. Earth-Science Reviews, 143(1): 36~61.
-
Liang Xiaofeng, Chen Yun, Tian Xiaobo, Chen Y J, Ni J, Gallegos A, Klemperer S L, Wang Minling, Xu Tao, Sun Changqing, Si Shaokun, Lan Haiqiang, Teng Jiwen. 2016. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth and Planetary Science Letters, 443: 162~175.
-
Lin Aimin, Ren Zhikun, Jia Dong, Wu Xiaojun. 2009. Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7. 9 Wenchuan earthquake, China. Tectonophysics, 471(3-4): 203~215.
-
Lin Changsong, Peng Miao, Tan Handong, Xu Zhiqin, Li Zhonghai, Kong Wenxin, Tong Tuo, Wang Mao, Zeng Weihua. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis: new insights from three-dimensional magnetotelluric imaging. Journal of Geophysical Research: Solid Earth, 122(7): 5082~5100.
-
Liu Fulai, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: a review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian of Earth Sciences, 40(1): 1~39.
-
Ma Hongsheng, Zhang Guomin, Liu Jie, Li Li, Chen Huaran. 2003. Correlation between strong earthquake activity and active crustal-block in China Mainland and its adjacent regions. Earth Science Frontiers, 10(s1): 591~599(in Chinese with English abstract).
-
Ma Xuxuan, Meert Joseph, Xu Zhiqin, Yi Zhiyu. 2018. Late Triassic intra-oceanic arc system within Neotethys: evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere, 10 (4): 545~565.
-
Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021a. Continental arc tempos and crustal thickening: a case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95 (1): 107~123 (in Chinese with English abstract).
-
Ma Xuxuan, Xu Zhiqin, Meert Joseph, Tian Zuolin, Li Haibing. 2021b. Early Eocene high-flux magmatism and concurrent high-temperature metamorphism in the Gangdese belt, southern Tibet. Geological Society of America Bulletin, 133: 1194~1216.
-
Ma Xuxuan, Gao Lie, Zhao Zhongbao, Chen Xijie, Li Haibing. 2021c. Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: tectonic implications for Indo-Asian collision. China Geology, 1: 56~66.
-
Martin C R, Jagoutz O, Upadhyay R, Royden L H, Eddy M P, Bailey E, Nichols C I O, Weiss B P. 2020. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proceedings of the National Academy of Sciences of the United States of America, 117(47): 29487~29494.
-
Manabe S, Terpstra T B. 1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. Journal of Atmospheric Science, 31: 3~42.
-
McElhinny M W, Embleton B J J, Ma X H, Zhang Z K. 1981. Fragmentation of Asia in the Permian. Nature, 293: 212~216.
-
McNeill L C, Dugan B, Backman J, Pickering K T, Pouderoux H F A, Henstock T, Petronotis K E, Carter A, Chemale F, Jr Milliken K L, Kutterolf S, Mukoyoshi H, Chen W, Kachovich S, Mitchison F L, Bourlange S, Colson T A, Frederik M C G, Guèrin G, Hamahashi M, House B M, Hüpers A, Jeppson T N, Kenigsberg A R, Kuranaga M, Nair N, Owari S, Yehua S, Song I, Torres M E, Vannucchi P, Vrolijk P J, Yang T, Zhao X. 2017. Understanding Himalayan erosion and significance of the Nicobar Fan. Earth Planetary Science Letters, 475: 134~142.
-
Meng Qingren, Zhang Guowei. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323 (3-4): 183~196.
-
Meng Xianmin. 1937. A brief introduction to minerals in Yunnan. Geological Review, 2(3): 247~253 (in Chinese).
-
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9: 24~46.
-
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeo-graphic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.
-
Metcalfe I. 2017. Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia, 63: 27~60.
-
Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.
-
Mo Xuanxue, Zhao Zhidan, Zhou Su, Dong Guocheng, Liao Zhongli. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240~1244 (in Chinese with English abstract).
-
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201): 419~426.
-
Molnar P, England P, Martinod J. 1993. Mantle dynamics, the uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31: 357~396.
-
Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and Caleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38: 77~102.
-
Nabelek J, Hetenyi G, Vergne J, Sapkot S, Kafle B, Jiang M, Su H P, Chen J, Huang B S. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325: 1371~1374.
-
Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115(B12): B12416.
-
Negredo A M, Replumaz A, Villaseñor A, Guillot S. 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth and Planetary Science Letters, 259(1-2): 212~225.
-
Nelson K, Zhao W J, Brown L, Kuo J, Che J K, Liu X W, Klemperer S, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones A, Booker J, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274: 1684~1688.
-
Nie Shangyou, Yin An, Rowley D B, Jin Yugan. 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China. Geology, 22: 999~1002.
-
Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628): 37~43.
-
Park S K, Mackie R L. 2000. Resistive (dry?) lower crust in an active orogen, Nanga Parbat, northern Pakistan. Tectonophysics, 316(3): 359~380.
-
Parsons T, Yeats R S, Yagi Y, Hussain A. 2006. Static stress change from the 8 October, 2005 M =7. 6 Kashmir earthquake. Geophysical Research Letters, 33(6): L06304.
-
Patiño-Douce A E, Harris N B W. 1998. Experimental constraints on Himalayan anataxis. Journal of Petrology, 39: 689~710.
-
Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615~621.
-
Peng Miao, Jiang Mei, Chen Youlin, Tan Handong, Li Qingqing, Zhang Lishu, Xu Lehong. 2017. Crustal structure under the eastern Himalayan Syntaxis seismic array and its geodynamic implications derived from receiver functions. Chinese Journal of Geophysics, 60(1): 70~85 (in Chinese with English abstract).
-
Powali D, Sharma S, Mandal R, Mitra S. 2020. A reappraisal of the 2005 Kashmir (Mw 7. 6) earthquake and its aftershocks: seismotectonics of NW Himalaya. Tectonophysics, 789: 228501.
-
Powell C M. 1986. Continental underplating model for the rise of the Tibetan Plateau. Earth and Planetary Science Letters, 81(1): 79~94.
-
Powell C M, Conaghan P J. 1973. Plate tectonics and the Himalayas. Earth Planetary Science Letters, 20(1): 1~12.
-
Prell W L, Murray D W, Clemens S C, Anderson D M. 1992. Evolution and variability of the Indian Ocean Summer Monsoon: evidence from the western Arabian Sea drilling program. In: Duncan R A, Rea D K, Kidd R B, Vonrad U, Weissel J K (eds) Synthesis of results from scientific drilling in the Indian Ocean. American Geophysical Union, Geophysical Monographs, 70: 447~469.
-
Ratschbacher L, Frisch W, Liu G, Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. Journal of Geophysical Research, 99: 19817~19945.
-
Ren Jishun. 1984. The Indosinian orogeny and its significance in the tectonic evolution of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 31~44 (in Chinese).
-
Replumaz A, Kárason H, Hilst R D V D, Besse J, Tapponnier P. 2004. 4-D evolution of SE Asia's mantle from geological reconstructions and seismic tomography. Earth and Planetary Science Letters, 221(1-4): 103~115.
-
Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.
-
Rowley D, Currie B. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439: 677~681.
-
Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Sapkota S, Bilham R, Wu F. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435: 1222~1225.
-
Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Li T, Xiao X C, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98: 678.
-
Searle M P, Crawford M B, Rex A J. 1992. Field relations, geochemistry, origin and emplacement of the Baltoro granite, central Karakoram. Transactions of the Royal Society of Edinburgh, 83: 519~538.
-
Searle M P, Szulc A G. 2005. Channel flow and ductile extrusion of the high Himalayan slab-the Kang chenjunga-Darjeeling profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25: 173~85.
-
Sengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279: 590~593.
-
Sengör A M C. 1987. Tectonics of the Tethysides: orogenic collage development in a collisional Setting. Annual Reviw of Earth and Planetary Science Letters, 15: 213~244.
-
Sengör A M C. 1989. The Tethyside orogenic system: an introduction. Tectonic Evolution of the Tethyan Region, 259: 1~22.
-
Shao Zhigang, Zhang Guomin, Li Zhixiong, Xia Hong. 2008. Research on the process and tendency of seismicity along the active tectonic boundaries in Chinese mainland. Earthquake, 28(3): 33~42 (in Chinese with English abstract).
-
Shi Danian, Wu Zhenhan, Klemperer S L, Zhao Wenjin, Xue Guangqi, Su Heping. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth and Planetary Science Letters, 414: 6~15.
-
Shi Yafeng, Liu Dongsheng. 1964. Preliminary report of scientific investigation in Xishapangmafeng area. Chiese Science Bulletin, 10: 928~938 (in Chinese).
-
Sinclair H D, Gibson M, Naylor M, Morris R G. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modelling of orogenic fluxes. American Journal of Science, 305: 369~406.
-
Sone M, Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340: 166~179.
-
Spicer R A. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Diversity, 39(5): 233~244.
-
Spicer R A, Tao S, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T V, Zhou Z. 2020. Why the ‘uplift of the Tibetan Plateau’ is a myth. National Science Review: nwaa091.
-
Spratt J E, Jones A G, Nelson K D, Unsworth M J. 2005. Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations. Physics of the Earth and Planetary Interiors, 150(1): 227~237.
-
St-Onge M R, Rayner N, Searle M. 2010. Zircon age determinations for the Ladakh batholith at Chumathang (Northwest India): implications for the age of the India-Asia collision in the Ladakh Himalaya. Tectonophysics, 495(3-4): 171~183.
-
Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671~1677.
-
Teng Jiwen, Song Penghan, Liu Youshan, Zhang Xuemei, Ma Xueying, Yan Yafen. 2019. Deep dynamics for the Yadong-Dongqiao-Huluhu rift in the Tibetan plateau. Chinese Journal of Geophysics, 62(9): 3321~3339 (in Chinese with English abstract).
-
Thiede R C, Ehlers T A. 2013. Large spatial and temporal variations in Himalayan denudation. Earth and Planetary Science Letters, 371-372: 278~293.
-
Tran V T, Faure M, Nguyen V V, Buid H H, Fyhn M B W, Nguyen Q T, Tonny L C, Thomsen B, Tani K, Charusiri P. 2020. Neoproterozoic to Early Triassic tectono-stratigraphic evolution of Indochina and adjacent areas: a review with new data. Journal of Asian Earth Sciences, 191: 104231.
-
Treloar P J, Coward M P. 1991. Indian Plate Motion and shape: constraints on the geometry of the Himalayan orogen. Tectonophysics, 191: 189~198.
-
Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S, van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364(6432): 50.
-
Unsworth M J, Jones A G, Wei W, Marquis G, Gokarn S G, Spratt J E, Bedrosian P, Booker J, Leshou C, Clarke G, Shenghui L, Chanhong L, Ming D, Sheng J, Solon K, Handong T, Ledo J, Roberts B, team I-M. 2005. Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data. Nature, 438(7064): 78~81.
-
Vanney J C, Hodges K V. 1996. Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology, 14: 635~656.
-
van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7659~7664.
-
Visonà D, Lombardo B. 2002. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos, 62: 125~150.
-
Walker J D, Martin M W, Bowring S A, Searle M P, Waters D J, Hodges K V. 1999. Metamorphism, melting and extension: age constraints from the High Himalayan slab of SE Zanskar and NW Lahoul. Journal of Geology, 107: 473~495.
-
Wang Chengshan, Li Xianghui, Hu Xiumian. 2003. Age of initial collision of India with Asia: review and constraints from sediments in southern Tibet. Acta Geologica Sinica, 1: 16~24 (in Chinese with English abstract).
-
Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987~4992.
-
Wang Chengshan, Dai Jingen, Liu Zhifei, Zhu Lidong, Li Yalin, Jia Guodong. 2009. The uplift history of Tibetan Plateau and Himalaya and its study approaches and techniques: a review. Earth Science Frontiers, 16(3): 1~30 (in Chinese with English abstract).
-
Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 47(8): 871~880 (in Chinese).
-
Wang Qing, Zhu Dicheng, Cawood P A, Chung Sun-Lin, Zhao Zhidan. 2021. Resolving thepaleogeographic puzzle of the Lhasa terrane in southern Tibet. Geophysical Research Letter, 48(1): e2021GL094236.
-
Wang Yuejun, Qian Xin, Cawood P A, Liu Huichuan, Feng Qinglai, Zhao Guochun, Zhang Yanhua, He Huiying, Zhang Peizhen. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the eastern Cimmerian and southeast Asia continental fragments. Earth-Science Reviews, 186: 195~230.
-
Watson M P, Hayward A B, Parkinson D N, Zhang Z M. 1987. Plate tectonic history, basin development and petroleum source rocks deposition onshore China. Marine and Petroleum. Geology, 4: 205~225.
-
Webb A A G, Yin A, Harrison T M, Celerier J, Burgess W P. 2007. The leading edge of the Great Himalayan Crystalline complex revealed in the NW Indian Himalaya: implications for the evolution of the Himalayan Orogen. Geology, 35: 955~958.
-
Webb A A G, Guo Hongcheng, Clift P D, Husson L, Müller T, Costantino D, Yin A, Xu Zhiqin, Cao Hui, Wang Qin. 2017. The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere, 9(4): 637~651.
-
Weinberg R F. 2016. Himalayan leucogranites and migmatites: nature, timing and duration of anataxis. Journal of Metamorphic Geology, 34: 821~843.
-
Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E, Yang H. 2006. Detrital zircon provenance of the late Triassic Songpan-Ganzi complex sedimentary record of collision of the North and South China blocks. Geology, 34: 97~100.
-
Wei Wenbo, Unsworth M J, Jones A G, Booker J, Tan Handong. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292(5517): 716~718.
-
Whitney D L, Hamilton M A. 2004. Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia. Journal of the Geological Society, London, 161: 823~828.
-
Wiesmayr G, Grasemann B. 2002. Eohimalayan fold and thrust belt: implications for the geodynamic evolution of the NW Himalaya (India). Tectonics, 2: 1058.
-
Wobus C, Heimsath A, Whipple K, Hodges K. 2005. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature, 434: 1008~1011.
-
Wu Feixiang, Miao Desui, Chang Mee-mann, Shi Gongle, Wang Ning. 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Scientific Reports, 7: 878.
-
Wu Fuyuan, Ji Weiqiang, Wang Jiangang, Liu Chuanzhou, Chung Sunlin, Clift P D. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. American Journal of Science, 314(2): 548~579.
-
Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31: 1~36 (in Chinese with English abstract).
-
Wu Gongjian, Gao Rui, Yu Qinfan, Cheng Qingyun, Meng Lingshun, Dong Xuebin, Cui Zuozhou, Yin Zhouxun, Shen Xianjie, Zhou Yaoxiu. 1991. Integerated investigations of the Qinghai-Tibet Plateau along the Yadong-Golmud geoscience transect. Chinese Journal of Geophysics, 34(5): 552~562 (in Chinese with English abstract).
-
Xu Xiwei, Tan Xibin, Yu Guihua, Wu Guodong, Fang Wei, Chen Jianbo, Song Heping, Shen Jun. 2013. Normal-and oblique-slip of the 2008 Yutian earthquake: evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics, 584: 152~165.
-
Xu Zhiqin, Hou Liwei, Wang Zongxiu. 1992. The Orogenic Process of the Songpan Ganzi Orogenic Belt in China. Beijing: Geological Publishing House (in Chinese).
-
Xu Zhiqin, Zeng Lingsen, Liu Fulai, Yang Jingsui, Zhang Zeming, McWilliams M, Liou J G. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geological Society of America Special Papers, 403: 93~113.
-
Xu Zhiqin, Yang J S, Li H Q, Wang R R, Cai Z H. 2012. Indosinian collision-orogenic system of Chinese continental and its orogenic mechanism. Acta Petrologica Sinica, 28(6): 1697~1709 (in Chinese with English abstract).
-
Xu Zhiqin, Li Yuan, Liang Fenghua, Pei Xianzhi. 2015a. A connection between of the Paleo-Tethys suture zones in the Qinling-Dabie-Sulu orogenic belt. Acta Geologica Sinica, 89(4): 671~680 (in Chinese with English abstract).
-
Xu Zhiqin, Ma Xuxuan. 2015b. The Chinese phanerozoic gneiss domes: subduction-related type, collision-related type and combination type of subduction-collision. Acta Petrologica Sinica, 31 (12): 3509~3523 (in Chinese with English abstract).
-
Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. Research on the tectonic background of the “Hard-Rock type” large-scale lithium ore belts in China. Acta Geologica Sinica, 92 (6): 1091~1106 (in China with English abstract).
-
Xu Zhiqin, Fu Xiaofan, Wang Rucheng, Li Guangwei, Zheng Yilong, Zhao Zhongbao, Lian Dongyan. 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281.
-
Yang Tianshui, Ma Yinming, Bian Weiwei, Jin Jingjie, Zhang Shihong, Wu Huaichun, Li Haiyan, Yang Zhenyu, Ding Jikai. 2015. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision. Earth and Planetary Science Letters, 428: 120~133.
-
Yang Tianshui, Jin Jingjie, Bian Weiwei, Ma Yiming, Gao Feng, Peng Wwenxiao, Ding Jikai, Wang Suo, Zhang Shihong, Wu Huaichuan, Li Haiyan, Yang Zhenyu. 2019. Precollisional latitude of the northern Tethyan Himalaya from the Paleocene redbeds and its implication for Greater India and the India-Asia collision. Journal of Geophysical Research: Solid Earth, 124: 10777~10798.
-
Yi Zhiyu, Huang B, Chen J, Chen L, Wang H. 2011. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: implications to onset of the India-Asia collision and size of Greater India. Earth and Planetary Science Letters, 309(1-2): 153~165.
-
Yi Zhiyu, Wang Tianyue, Meert J G, Zhao Qian, Liu Yushu. 2021. An initial collision of India and Asia in the equatorial humid belt. Geophysical Research Letters, 48: e2021GL093408.
-
Yin An. 2006. Cenozoic tectonic evolution of the Himalaya orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Review, 76: 1~131.
-
Yin A, Harrison M T. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.
-
You Zeli, Wu Zhixiong, Xie Lejin. 1991. Intensity distribution of Chayu earthquake with M =8. 6. Journal of Disaster Prevention and Mitigation, 1: 94~102 (in Chinese).
-
Yuan Chao, Zhou Meifu, Sun Min, Zhao Yongjiu, Wilde Simon, Long Xiaoping, Yan Danping. 2010. Triassic granitoids in the eastern Songpan-Ganze fold belt, SW China: magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4): 481~492.
-
Yuan Jie, Yang Zhenyu, Deng Chenglong, Krijgsman W, Hu Xiumian, Li Shihu, Shen Zhongshan, Qin Huafeng, An Wei, He Huaiyu, Ding Lin, Guo Zhengtang, Zhu Rixiang. 2021. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. National Science Review 8, nwaa173.
-
Yuan Xuecheng, Wang Shi, Li Li, Jin Guoyuan, Chen Dayou, Zhao Ziyan, Zhou Yunxiu, Chen Xianyao, Lu Lianzhong, Wang Maoji, Liu Xingyi. 1987. Geophysical research on the formation and evolution of the crust and upper mantle of the Qinghai-Tibet Plateau. Geophysical and Geochemical Exploration, 11(1): 3~13 (in Chinese).
-
Zeitler P K, Koons P O, Bishop M P, Chamberlain C P, Schneider D. 2001. Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics, 20(5): 712~728.
-
Zeng Lingsen, Gao Li-E, Xie Kejia, Liu Jing. 2011. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: melting thickened lower continental crust. Earth Planetary Science Letters, 303: 251~266.
-
Zeng Lingsen, Gao, Li-e, Dong, Chunyan, Tang Suohan. 2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa massif, southern Tibet. Gondwana Research, 21: 138~151.
-
Zhang Guomin, Ma Hongsheng, Wang Hui, Li Li. 2004. The relationship between active land masses and strong earthquakes in Mainland China. Science in China (Series D), 34(7): 591~599 (in Chinese).
-
Zhang Guowei, Meng Qingren, Lai Shaocong. 1995. The structure and structure of the Qinling orogenic belt. Science in China (Series B), 25(9): 994~1003 (in Chinese).
-
Zhang Hongfei, Zhang Li, Harris, Nigel, Jin Lanlan. , Yuan Honglin. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan Ganze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152: 75~88.
-
Zhang Hongfei, Parrish Randall, Zhang Li, Xu Wangchun, Yuan Honglin, Gao San, Crowley Quentin. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: implication for lithospheric delamination. Lithos, 97: 323~335.
-
Zhang Letian. 2017. A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surveys in Geophysics, 38(5): 1043~1096.
-
Zhang Peizhen, Deng Qidong, Zhang Guomin, Ma Jin, Gan Weijun, Min Wei, Mao Fengying, Wang Qi. 2003. Strong earthquake activity and active plots in Mainland China. Science in China (Series D), 33(B04): 12~20 (in Chinese).
-
Zhang Ye, Huang Baochun. 2017. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern. Science China Earth Sciences, 60: 1057~1066 (in Chinese).
-
Zhang Zeming, Zhao Guochun, Santosh M, Wang J L, Dong X, Liou J G. 2010. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, South Tibet: petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28: 719~733.
-
Zhao Wenjin, Nelson K D. Project INDEPTH Team. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557~559.
-
Zhao Qian, Baochun Huang, Zhiyu Yi, Pengfei Xue. 2021. High-resolution petrographic evidence confirming detrital and biogenic magnetites as remanence carriers in Zongpu carbonates in the Gamba area, South Tibet. Frontiers in Earth Science, 9: 713469.
-
Zhao Junmeng, Yuan X, Liu H, Kumar P, Pei S, Kind R, Zhang Z, Teng J, Ding L, Gao X, Xu Q, Wang W. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Science, 107(25): 11229~11233.
-
Zhao Wenjin, INDEPTH project team. 2001. Deep structure and structure study of the Himalayas and Yarlung Zangbo suture zone. Geological Publishing House (in Chinese).
-
Zhao Wuling, Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust: a two-dimensional finite element model study. Tectonics, 6(4): 489~504.
-
Zhang Zhongjie, Deng Yangfan, Teng Jiwen, Wang Chunyong, Gao Rui, Chen Yun, Fan Weiming. 2011. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40: 977~989.
-
Zheng Yilong, Xu Zhiqin, Li Guangwei, Lian Dongyang, Zhao Zhongbao, Ma Zeliang, Gao Wenqi. 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos, 362-363: 105475.
-
Zhou Da, Graham S A. 1996. The Songpan-Ganzi complex of the western Qingling Shan as a Triassic remnant ocean basin. In: Yin A. , Harrison T M (eds), The Tectonic Evolution of Asia. Cambridge: Cambridge University press, 281~299.
-
Zhou Peng, Carter A, Li Y, Clift P D. 2020. Slowing rates of regional exhumation in the western Himalaya: fission track evidence from the Indus Fan. Geological Magazine, 157: 848~863.
-
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zenqian, Wang Liquan and Wu Fuyuan. 2011. The Lhasaterrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.
-
Zhu Dicheng, Wang Qing, Zhao Zhidan. 2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: method and examples. Science China-Earth Science, 47(6): 657~673 (in Chinese).
-
Zhuang Guangsheng, Najman Y, Guillot S, Roddaz M, Antoine P O, Métais G, Carter A, Marivaux L, Solangi S H. 2015. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower indus basin, Pakistan. Earth Planetary Science Letters, 432: 363~373.
-
丁林, Satybaev Maksatbek, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云. 2017. 印度与欧亚大陆初始碰撞的时限、封闭方式和过程. 中国科学: 地球科学, 47(3): 293~309.
-
付小方, 侯立伟, 梁斌. 2017. 甲基卡式花岗伟晶岩型锂矿床: 成矿模式与三维勘察找矿模型. 北京: 科学出版社.
-
黄宝春, 陈军山, 易治宇. 2010. 再论印度与亚洲大陆何时何地发生初始碰撞. 地球物理学报, 53(9): 2045~2058.
-
黄汲清. 1945. 中国主要地质构造单元. 北京: 地质出版社(中英文版, 1945, 中央地质调查所地质专报钾种第20号).
-
孔祥儒, 王谦身, 熊绍柏. 1996. 西藏高原西部综合地球物理与岩石圈结构研究. 中国科学(D辑), 26(4): 308~315.
-
李春昱, 刘仰文, 朱宝清, 冯益民, 吴汉泉. 1978. 秦岭及祁连山构造发展史. 国际交流地质学术论文集(1)——区域构造\\地质力学. 北京: 地质出版社, 174~187.
-
李春昱, 王荃, 刘雪亚, 汤耀庆. 1982. 亚洲大地构造图及说明书. 北京: 地图出版社, 1~49.
-
李海兵, 潘家伟, 司家亮, 刘栋梁, Marie-Luce Chevalier, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~312.
-
李吉均, 文世宣, 张青松, 王富葆, 郑本兴, 李炳元. 1979. 青藏高原隆起的时代, 幅度和形式的探讨. 中国科学(A辑), 6: 608~616.
-
马宏生, 张国民, 刘杰, 李丽, 陈化然. 2003. 中国大陆及其邻区强震活动与活动地块关系研究. 地学前缘, 10(s1): 591~599.
-
马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵, 2021a. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.
-
孟宪民. 1937. 云南矿产种类述略. 地质论评, 2(3): 247~253.
-
莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240~1244.
-
彭淼, 姜枚, Youlin C, 谭捍东, 李庆庆, 张立树, 许乐红. 2017. 利用远震接收函数揭示的喜马拉雅东构造结台阵下方地壳结构及其动力学意义. 地球物理学报, 60(1): 70~85.
-
任纪舜. 1984. 印支运动及其在中国大地构造演化中的意义. 中国地质科学院院报(第九号), 31~44.
-
邵志刚, 张国民, 李志雄, 夏红. 2008. 中国大陆活动地块边界带地震活动过程及其趋势研究. 地震, 28(3): 33~42.
-
施雅风, 刘东生. 1964. 希夏邦马峰地区科学考察初步报告. 科学通报, 10: 928~938.
-
滕吉文, 宋鹏汉, 刘有山, 张雪梅, 马学英, 闫雅芬. 2019. 青藏高原“亚东—东巧—葫芦湖”大陆裂谷带形成的深层动力过程. 地球物理学报, 62(9): 3321~3339.
-
王成善, 李祥辉, 胡修棉. 2003. 再论印度—亚洲大陆碰撞的启动时间. 地质学报, 77(1): 16~24.
-
王成善, 戴紧根, 刘志飞. 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1~30.
-
王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学: 地球科学, 47(8): 871~880.
-
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报. 31(1): 1~36.
-
吴功建, 高锐, 余钦范, 程庆云, 孟令顺, 董学斌, 崔作舟, 尹周勋, 沈显杰, 周烑秀. 1991. 青藏高原“亚东—格尔木地学断面”综合地球物理调查与研究. 地球物理学报, 34(5): 552~562.
-
许志琴, 候立玮, 王宗秀. 1992. 中国松潘甘孜造山带的造山过程. 北京: 地质出版社, 1~190.
-
许志琴, 杨经绥, 李化启, 王瑞瑞, 蔡志慧. 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, (6): 1697~1709.
-
许志琴, 李源, 梁凤华, 裴先治. 2015a. “秦岭-大别-苏鲁” 造山带中“古特提斯缝合带”的连接. 地质学报, 89(4): 671~680.
-
许志琴, 马绪宣. 2015b. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群). 岩石学报, 31(12): 3509~3523.
-
许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091~1106.
-
游泽李, 吴芝雄, 谢乐今. 1991. 西藏察隅8. 6级地震的烈度分布. 防灾减灾学报, 1: 94~102.
-
袁学诚, 王式, 李立, 金国元, 陈大尤, 赵子言, 周烑秀, 陈显尧, 鲁连仲, 王懋基, 刘行义. 1987. 青藏高原地壳上地幔形成与演化的地球物理研究. 物探与化探, 11(1): 3~13.
-
张国民, 马宏生, 王辉, 李丽. 2004. 中国大陆活动地块与强震活动关系. 中国科学: D 辑, 34(7): 591~599.
-
张国伟, 孟庆任, 赖少聪. 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994~1003.
-
张培震, 邓起东, 张国民, 马瑾, 甘卫军, 闵伟, 毛凤英, 王琪. 2003. 中国大陆的强震活动与活动地块. 中国科学: D辑, 33(B04): 12~20.
-
张也, 黄宝春. 2017. 特提斯喜马拉雅地块白垩纪古纬度变化对印欧碰撞模式的制约. 中国科学: 地球科学, 47(6): 674~683.
-
赵文津, INDEPTH项目组. 2001. 喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究. 北京: 地质出版社.
-
郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129~5152.
-
中国地质调查局成都矿产研究所. 2004. 青藏高原及邻区地质图. 成都: 成都地图出版社.
-
朱弟成, 王青, 赵志丹. 2017. 岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例. 中国科学-地球科学, 47(6): 657~673.
-
摘要
本文重新审视了青藏高原的关键科学问题,为解决板块构造理论的“登陆”难题提供新的线索,为理解板块汇聚边界的大陆岩石圈演化及其能源资源、地质灾害和全球环境效应提供新的思路。本文探讨了青藏高原如下十大关键地学问题:① 印度大陆北漂模型;② 印度-亚洲初始碰撞时限;③ 青藏高原的古特提斯造山作用;④ 古近纪喜马拉雅造山带的地壳缩短;⑤ 高喜马拉雅的深熔机制;⑥ 青藏高原隆升的时限和差异性;⑦ 构造-剥蚀-气候相互作用与南亚季风;⑧ 青藏高原关键矿产资源的分布与成因;⑨ 青藏高原的活动断裂带与孕震机制;⑩ 碰撞后的印度板块何去何从——深部动力学过程。这些问题可以作为当前研究青藏高原大陆动力学演化的重点方向。
Abstract
In this paper, the authors re-examine the key scientific issues concerning the evolution of the Tibetan Plateau, in order to help the sea-born plate tectonic to “land”. We also aim to provide new information for the study of continental lithosphere evolution in convergent margins, as well as energy resources, geological hazards and global environmental effects of these regions. The authors summarize ten key geoscientific issues as follows: ① drifting process of the Indian Continent; ② timing of initial India-Asia continental collision; ③ Paleo-Tethys Orogeny in the Tibetan Plateau; ④ crustal shortening of the Eo-Himalaya; ⑤ anataxis mechanism of the High Himalaya; ⑥ timing of the uplift of the Tibetan Plateau; ⑦ relationship between the Asian monsoon and the geodynamic evolution of the Tibetan Plateau; ⑧ distribution and genesis of the new energy mineral resources in the Tibetan Plateau; ⑨ active fault zones of Tibetan plateau and their seismogenic mechanism; ⑩ deep geodynamics discussion: where goes the post-collisional Indian plate? The authors hope these discussions would inspire new ideas to study the continental geodynamics of the Tibetan Plateau.