-
地热能是不受天气、季节变化影响的清洁低碳的地球本土的可再生能源,具有充足的资源储量,开发利用地热能对节能减排和能源结构转型有重要意义(汪集暘等,2012)。据国际地热协会(IGA)统计,截至2019年底,全球地热发电的装机容量已经超过15 GW(Huttrer,2020),地源热泵、地热供暖、洗浴等直接利用地热能达到107 GMWt(Lund et al.,2020)。面临应对全球气候变化的能源结构调整,为尽快实现碳中和目标,作为清洁能源的地热能的开发利用必将继续蓬勃发展。
-
冒热气、喷热水是地热资源在自然界中最直观的呈现形式,这些地热流体也是地热能开发利用的主体。事实上,无论是自然界中的喷汽孔、间歇泉、温泉,还是地热开发过程中的地热流体,其化学成分与同位素组成都携带了地球内部物质和能量的信息,指示着地热系统的地热地质条件,同时也与地热能开采过程中的工程问题和环保问题紧密相关,例如结垢、腐蚀及温室气体排放等。因此,地热流体地球化学研究是研究区域地球动力学、地热地质学、热储工程、地热开发与环境保护的关键学科。
-
地热水的研究从样品采集、测试到分析方法与普通地下水相似,基本与水文地球化学研究同步发展,同时也在地热温度计(Pang Zhonghe et al.,1998; 李义曼等,2021)、地热水定年(Li Jie et al.,2017)、地球化学组分的来源演化(Guo Qinghai,2012; 郭清海等,2017; 李义曼等,2018; Guo Qinghai et al.,2019)、地热资源量评价(庞菊梅,2018; Wang Yingchun et al.,2019)和环境效应评价(Guo Qinghai et al.,2008,2009)等方面有所发展。地热气体研究是水文地质学向高温高压环境的发展,是水文地球化学研究的延伸,是从水到气的拓展。与地热水化学相比,地热气体的研究是相对薄弱的。事实上,地热气体来源于地球深部,不易受到近地表的水文过程影响,可以携带更直接的深部地质环境信息(Lowenstern et al.,2015)。
-
本文基于作者近年来的研究工作,结合文献资料,梳理地热气体中的化学组分与同位素特征,归纳地热气体采样方法,总结目前地热气体研究方向与前沿进展,提出国内地热气体研究存在的不足和优势发展方向。旨在推进以地热气体地球化学研究为重要环节的地热流体地球化学与年代学研究,为地热资源科学研究与开发利用提供支撑。
-
1 地热气体研究简史
-
广义上讲,地热气体包括岩浆挥发分(Magmatic volatiles)、火山蒸汽(Volcanic steam)、地热水溶解气(Hyrothermal gas)以及从地热区气泡泉(Bubbling spring)、喷气孔(Fumarole)、地裂缝(Ground fissure)和冒气地面(Steam ground)中释放的气体。其物质组成主要有冷凝气体(水蒸汽)和非冷凝气体。前者为高温条件下或温压迅速降低时发生汽化的水分子,通常以冷凝水的形式采集并分析,在火山型地热系统研究中有重要意义(Giggenbach,1996; Marini et al.,2011); 后者则指降温过程中无法随着水蒸汽凝结为液态的气体,包括CO2、SO2、O2、N2、H2S、H2、CH4、HCl等和稀有气体He、Ne、Ar、Kr、Xe等组分(国家能源局,2018),讨论时常忽略非冷凝气体随温度、压力不同而发生的相态变化。本文仅针对非冷凝地热气体(也即狭义的“地热气体”)加以讨论。
-
Day et al.(1913)用自制的“软鼻管”(Soft-nosed tube)收集了夏威夷基拉韦厄火山释放的气体样品,认识到地热气体以CO2为主要组分,此外还有CO、H2、N2、SO2、HCl等。随着对火山区气体组分的持续研究,至20世纪30年代末科学家们已经认识到岩浆挥发分及火山区地热气体中包含H2O、CO2、CO、CH4、H2、N2、NH3、S2、SO2、SO3、COS、H2S、Cl2、F2、HF、H2SiF6和SiF4等(Shephard,1925; Fenner,1936; Sborgi,1939)。Ellis(1957)在20世纪50年代末最先提出利用地热气体组分估算热源温度的设想,这推动了地热气体研究伴随面向地热能源开发需求的多个重点研究方向协同发展。尤其在20世纪70~90年代,以新西兰科学家Werner F. Giggenbach、意大利科学家Franco D'Amore和冰岛科学家Stefán Arnórsson为代表的地球化学家在地热气体样品采集、地热气体温度计、还原热储流体组分及刻画热储内水-气-岩化学反应过程等方面取得了重要成果(Giggenbach,1975,1987,1996; D'Amore et al.,1980; Arnórsson et al.,1985)。与此同时,随着室内同位素测试技术的发展,以日本科学家Sano Yuji和美国科学家David R. Hilton为代表的地球化学家利用地热气体组分的碳同位素、氢同位素及稀有气体同位素等从构造背景及板块运动的角度揭示火山区地热气体释放的地球动力学机制,建立量化大气源、地幔源和地壳源气体组分的分析方法(Sano et al.,1982,1985,1995; Hilton et al.,1992,2002)。同样在20世纪80~90年代,以戴金星等(1994)、上官志冠(1989)、王先彬等(1992,1993)、赵平(1994)、赵平等(1998)为代表的中国科学家逐步开展了温泉气体地球化学的研究。21世纪以来,得益于痕量气体同位素分析技术和野外精细化、实时化气体通量测试和监测技术的进步,地热气体地球化学在揭示造山运动的地球动力学机制,刻画地热流体循环、评价地热资源潜力、评估温室气体排放、预报地震及火山活动灾害等方面都得到广泛应用(Yokochi et al.,2013; Li Jie et al.,2017; Guo Zhengfu et al.,2021; Tian Jiao et al.,2021a; Zhang Maoliang et al.,2021; Zhou Xiaocheng et al.,2021)。
-
2 地热气体样品采集
-
地热气体主要的采样对象包括喷汽孔、温泉、地热井等,在隐伏地热区的地球化学勘查阶段,也采集土壤气体以寻找地热地球化学信息。针对不同采样对象、测试目标和流体温度等,地热气体样品采集方法和贮存容器各不相同。收集喷汽孔、冒气温泉的气体样品时,需要漏斗、蠕动泵、钛管等; 收集地热井中气体组分需要冷却旋管和冷却水箱,高温条件下需要用到水汽分离器(图1; Arnórsson,2000; Arnórsson et al.,2006); 收集土壤气体时则需要手动泵、钢钎等(Sun et al.,2018)。对无冒泡现象的中低温温泉,则需要采集地热水样品通过负压析出气体的方法在野外或者实验室提取地热气体样品。常用的气体样品储集方法包括盐水瓶排水集气法、Giggenbach瓶(也可称作“真空三通瓶”)法和铜管法,其中盐水瓶集气法是在地热地球化学勘查初期或工作条件简单时最广泛应用的,可以用于测试气体组分相对体积百分含量和常量气体同位素(如等)(周晓成,2011; Tian Jiao et al.,2021a); 真空三通瓶法用于定量测定喷汽孔、地热井流体的气-汽比值,也可用于现场去除酸性气体组分以测试非酸性气体组分的同位素(Giggenbach,1975); 铜管法主要用于稀有气体同位素,尤其是氦、氖同位素,样品的采集(Aeschbach et al.,2013)。在对气体样品需求量大且测试目标组分不易发生逃逸的情况下,油气领域常用的气袋、钢瓶等也是较为常见的样品储存方法(Yokochi et al.,2013)。
-
图1 地热井地热流体样品收集装置示意图
-
Fig.1 Outline of on-site geothermal fluid sampling system for geothermal wells
-
3 地热气体化学与同位素特征
-
地热气体的来源分为地球深部物质(幔源物质)、壳源物质及大气等三种。不同来源的气体组分呈现不同的地球化学与同位素特征。这既是开展地热气体地球化学研究的前提条件,也是地热气体地球化学的研究要点。
-
3.1 稀有气体化学及其同位素
-
稀有气体即He、Ne、Ar、Kr、Xe及Rn等零族元素,又称惰性气体,常温下都以单原子分子形式存在。
-
氦(He)有两种天然同位素——3He和4He,地幔脱气释放的绝大部分是地球原生性的3He,其沿构造通道上升运移的过程中伴随地幔热向浅层流体传递; 而地壳中238U、235U和232Th天然放射系的α衰变生成4He是壳内氦气的主要来源(Arnórsson,2000)。O'Nions et al.(1983)指出,地下流体中的3He通量与地幔热流成正比,而4He通量与地壳热流之间近似成正比。基于氦同位素组成与热传递的相互关系,不同热源的(3He/热焓)比值也有显著差异,如Elderfield et al.(1996)估算地幔热源中(3He/热焓)比值为0.5×10-12 cm3 STP/J; Kennedy et al.(2000)算得地壳热源的(3He/热焓)比值为1×10-15 cm3 STP/J。此外,由于不同来源气体中氦同位素比值R(3He/4He)各不相同,为方便对比,通常以大气氦的同位素组成为参照(Ra=1.43×10-6)(Sano et al.,1985),如代表上地幔的大洋中脊玄武岩(MORB)中氦同位素比值R约为(8±1)Ra; 而地壳中氦同位素比值R通常为0.005~0.02 Ra左右(Karakus,2015)。据此,地热气体氦同位素比值的分布特征,对讨论区域地热背景、断裂展布格架、断裂活动性及流体循环条件有重要意义。
-
地热学中常用的氖(Ne)同位素主要为20Ne。原始20Ne是地球形成时17O(α,n)20Ne反应的产物,基本上没有地壳中的放射性成因来源,因此20Ne的含量通常被用来判断气体样品中的其他组分是否有大气源混入(Duchkov et al.,2010)。已有研究表明,大气中的20Ne/22Ne、21Ne/22Ne比值分别为9.80和0.0290(Pinti et al.,2013),而4He/20Ne比值约为0.318,即若某样品的4He/20Ne接近0.318,说明其中的氦主要为大气来源(Duchkov et al.,2010)。Duchkov et al.(2010)提出用4He/20Ne 比值校正地热气体样品的R值,以去除采样时大气混入的影响,公式如下:
-
式中,下标cor、meas、a分别代表校正值、测试值及大气源特征值。Sano et al.(1982)假定天然气体中的氦有大气源、幔源和壳源三种来源,提出了利用3He/4He 和4He/20Ne比值计算气体样品中不同来源混合比例的公式(如式2~4)并绘制3He/4He-4He/20Ne关系图,使氦的来源判定方法更加简便直观,目前该方法在地热气体研究中得到了广泛应用。
-
式中,下标a、m、c分别代表大气源、幔源、壳源,A、M、C分别代表气体样品中三种来源所占的比例,其中(3He/4He)a=1.4×10-6,(3He/4He)m=1.1×10-5,(3He/4He)c=1.5×10-8,(4He/20Ne)a=0.318,(4He/20Ne)m=1000,(4He/20Ne)c=1000。
-
氩(Ar)是在空气中含量最多的稀有气体,40Ar是在地质时期由固体地球中的40K衰变产生的。气体地球化学研究中,假定36Ar只有大气来源,并以40Ar*/40Ar 比值定性判断气体来源,式中分子40Ar*表示非大气来源的40Ar,分母40Ar则表示40Ar的总量(40Ar*=40Ar-40Ar/36Aratmosphere×36Arsample,40Ar/36Aratmosphere=295.5; Marty,1995),进而将深源未受大气混合的氩气的40Ar*/40Ar值视为1。Marty et al.(2003)计算得到上地幔和地幔柱的40Ar*/40Ar值分别为0.99和0.94(40Ar/36Ar上地幔=30000±10000; 40Ar/36Ar地幔柱=5000±1000)。在地热气体研究中,也将此比值结合其他组分综合分析,绘制40Ar*/40Ar-40Ar*/N2、40Ar*/40Ar-He/Ar、40Ar*/40Ar-N2/4He等多种关系图(Chiodini et al.,2012; Caliro et al.,2015)用以判断区域地热地质构造条件。得益于同位素测试技术的发展,氩的放射性同位素39Ar与氪(Kr)的放射性同位素85Kr、81Kr一起是目前最前沿的地下水定年方法,也在逐步尝试应用于地热水定年的研究中。此内容将在下节详细介绍。
-
氡(Rn)常以氡气形态存在,从193Rn到228Rn,共有36种同位素。其中222Rn的半衰期最长,为3.82 d。氡气来源于深部地质体,一方面,氡气可溶于水,随着地下水的流动,不断从深部环境迁移到地表; 另一方面,构造的破碎带,发育的裂隙及孔隙均为氡气的运移提供了通道。鉴于地下热水勘探的关键是确定地热流体的控热构造及升流通道,土壤氡气测量方法在地热地球化学勘查中有很多成功的案(刘菁华等,2009; Aydar et al.,2021)。
-
3.2 常量气体化学及其同位素
-
地热气体的主要组分包括CO2、N2、CH4、H2、H2S、O2,有时还有少量的CO、NH3和大分子碳氢化合物。O2、N2被假定为只有大气源,因而样品中含有O2的都被认为在采样或测试过程中受到空气污染,需要对O2、Ne、Ar、N2等空气来源为主的组分含量加以校正。事实上,地质环境中的某些水岩反应或微生物参与的化学反应,确实生成O2或N2,只是生成量十分有限(Giggenbach,1992)。
-
二氧化碳(CO2)是高温地热系统的主要气体组分。我国的西藏现代水热活动区的地热气体中CO2含量为76.4%~98.3%,其中羊八井地热田气体中CO2含量占77.2%~95.2%(赵平等,2002); 腾冲火山区温泉气中CO2含量为10.3%~99.0%; 四川甘孜县拖坝镇温泉气中CO2含量为93.0%~98.6%(戴金星等,1994); 四川巴塘措普沟温泉气中CO2含量为78.2%~98.4%(天娇,2018)。美国黄石公园地热气体中CO2含量达74.3%~99.5%(Lowenstern et al.,2015); 同样地,世界上其他与安山质或玄武质岩浆作用有关的地热和火山系统中气体的CO2含量也远远高于其余组分(Giggenbach,1992)。CO2气体释放与诸多因素有关,如岩浆脱气、物质分异、围岩蚀变、热液作用、大地构造作用等(杨立铮等,1999)。应用碳同位素可定性辨别CO2的不同来源。大洋中脊玄武岩中气泡的CO2为幔源物质,其δ13C值约为-6.5‰±2.5‰; 海相沉积碳酸盐岩变质成因CO2与岩石本身的δ13C值0‰相近; 有机沉积物变质成因CO2的δ13C值则一般小于-20‰(Sano et al.,1995)。Sano et al.(1995)在研究岛弧地区火山气体中的碳来源时,认为将CO2/3He与3He /4He比值结合可以区分火山和地热系统中碳的来源:前者高后者低的可能源自地壳的脱碳酸作用,反之则可能是幔源物质。本文对比了青藏高原主要热显示区二氧化碳气体的δ13C特征(图2),云南腾冲显示强烈幔源挥发分混入的特征,这是其下伏幔源岩浆囊脱气与上覆碳酸盐岩变质的共同结果(Zhang Maoliang et al.,2016); 西藏南部地热气体的与CO2/3He比值偏低,指示了幔源挥发分混入的“假象”,这实际是地热流体在地表脱气发生碳酸盐沉淀时伴随的碳同位素分馏所致,CO2来源主要为壳内变质成因(Zhang Maoliang et al.,2017); 相比之下,四川西部的CO2来源呈现典型的壳内变质成因特征(Tian Jiao et al.,2017,2018,2019)。通观喜马拉雅地热带温泉气体的地球化学特征,该地区大量脱气的CO2可能是喜马拉雅造山运动过程卷入的特提斯洋盆内碳酸盐岩在后期发生构造运动和热变质的产物(Tian Jiao et al.,2020)。
-
图2 喜马拉雅地热带CO2/3He-分布图
-
Fig.2 Variation of CO2/3He and in Himalayan geothermal belt
-
硫化氢(H2S)是岩浆热源型地热系统的特征气体组分。Giggenbach(1977)认为,地热系统中的H2S可能起源于地壳中含硫矿物被岩浆熔蚀,硫在岩浆气体中演化成为硫化氢并随地热流体运移至近地表,因温压降低沸腾并释放H2S气体。经计算仅有约5%的S可以随CO2一起运移到热储层,绝大多数都再次氧化为硫化物赋存在深部。据Ellis et al.(1971)和Ohmoto et al.(1986)的研究,深部岩浆挥发的SO2在岩石空隙中遇到还原性地热水发生歧化作用,反应过程如式(5); 地热流体中的H2S脱气后,上升至近地表遇到浅层地下水将被氧化,生成硫酸根离子,pH值降低,氧化过程如式(6)所示。
-
因此,尽管大多数地热气体中都能检测到H2S气体的存在,但其含量远远低于CO2(Guo Qinghai,2012)。Guo Qinghai et al.(2014)对比了美国黄石公园和中国西藏的地热水的pH值、SO42-浓度和地热气体中H2S含量,指出美国黄石公园出现多处强酸性地热水,而中国西藏的地热水多呈中性偏碱性,其原因在于前者的地壳浅部有岩浆,源源不断的提供了H2S气体。类似地,中国云南腾冲热海热田出现的个别强酸性温泉,也是H2S气体溶解于地热水中所致(郭清海,2020)。不同来源的硫同位素也差异显著(图3)。大气中的δ34S值接近0‰(佟伟等,1982); 大陆岩石圈地幔的δ34S最高值达+7‰(Marini et al.,2011)。因此,H2S气体中的δ34S值可能意味着不同来源或不同迁移途径。例如,佟伟等(1982)在研究中国西藏羊八井地热田和云南腾冲热海热田时,将地热气体中δ34S值与深源硫同位素的值接近作为判断下部存在熔融岩浆的证据之一。
-
图3 不同地质源δ34S分布范围的比较(据Marni et al.,2011)
-
Fig.3 Range of sulfur isotope values for sulfides from different geologic sources (after Marni et al., 2011)
-
氢气(H2)和甲烷(CH4)是近年来得到更多关注的地热气体组分。H2是一种强还原性气体,通常认为H2属于高温气体(王禹萌等,2009)。在地幔的高温、高压条件下,铁氧化物和水反应可以生成H2; 在洋中脊地区,火山地热区等基性岩、超基性岩广泛分布的地区,橄榄石和辉石矿物发生蛇纹石化反应释放H2(Zgonnik,2020)。特别地,断裂发生构造活动时可以产生H2(Wakita et al.,1980; Sugisaki,1980; Sugisaki et al.,1983),其反应机理为:活动断层带附近的岩石被碾磨期间,硅酸盐矿物表面生成Si和 Si-O基团,前者与水反应,产生 H·,进而生成H2(Kita et al.,1982)。这种生成机理已被日本、美国、意大利等国家进行的断层活动性或地震预报的气体组分监测结果证实(Mcgee et al.,1982; Tedesco et al.,1999; Hirose et al.,2011)。中国地震研究的学者也已观测到,尤其是地震频发的青藏高原东缘深大断裂附近,温泉气体中包括H2、He、CO2、CH4等组分及其同位素因地震发生显著变化(周晓成,2011; Zhou Xiaocheng et al.,2017)。最新研究显示,青藏高原东缘的则木河断裂上,温泉气体中H2含量的急剧变化可能有助于5~60 h内的短临地震预测(Zhou Xiaocheng et al.,2021)。此外,氢同位素可以帮助识别不同成因的氢气。例如,火山挥发分的δ2H-H2值达到-158‰~-144‰(Arnason et al.,1968); 超基性岩蛇纹石化产生H2的同位素值则可低至-700‰(Etiope et al.,2011)。
-
王先彬等(1993)在研究腾冲火山区温泉气体组分时发现,甲烷与氢的含量具有正相关趋势,说明二者具有一定的成因关系。另据D'Amore et al.(1980),二者在地层中的生成关系为式(7)所示过程。Shangguan et al.(2000,2002)认为,云南腾冲热海地区温泉的氢气氢同位素较为富集,达到-583‰,这种现象应归因于北西向断裂的构造活动,即断层摩擦产生的氢气富集重同位素。Etiope et al.(2014)则将甲烷的无机成因划分为岩浆作用和气-水-岩反应两大类:前者包括储存于地幔中的原生甲烷,地幔或熔融地壳中含碳化合物还原生成甲烷和岩浆冷却过程中C-O-H流体及CO2转化为甲烷; 后者脱离了岩浆或熔融物质的高温环境(500~1000℃),由地层中含碳矿物在较低温条件(400~500℃)或催化条件下发生还原反应生成甲烷,其中Fischer-Tropsch型反应(如式8)为主要途径。
-
西藏羊八井的CH4含量小于0.2%(Zhao Ping et al.,1998); 云南腾冲热海热田的CH4含量最高不足0.4%,多数小于0.05%(Zhang Maoliang et al.,2016),而H2因含量较低(<0.01%)被忽略。相比之下,川西地热气体中H2和无机成因CH4含量显著偏高——康定温泉气体中无机成因甲烷含量达到2.7%; 地热井中无机成因CH4含量为1.2%,H2含量达0.3%~0.8%(郭琦,2017)。巴塘高温地热系统中无机成因CH4含量的平均值为1.7%,H2含量高于0.5%(Tian Jiao et al.,2018,2019)。对比构造背景,川西地热系统所处的压扭性应力环境与西藏地区沿南北向地堑系出露的高温地热系统(如羊八井、羊易等)所处的拉张应力环境不同,不存在如云南腾冲的新生代火山活动,且鲜有超基性岩或有机沉积物分布(廖志杰等,1999; Wang Chunyong et al.,2010)。因此,川西高浓度的H2与CH4成因可能有别于蛇纹石化成因、有机物变质成因、生物成因及火山挥发分成因,而与其特有的强烈构造变形背景密切相关。与之不同地,胶东半岛的即墨温泉群并非高温地热系统,但地热气体中氢气含量高达12.5%。通过气体化学与同位素研究发现,其较为贫化的氢同位素(-821.7‰)显示这里富集的氢气是基性岩石发生蛇纹石化的产物(郝银磊,2020)。
-
氮气(N2)是中低温地热系统中的常量气体组分。氮气的地球化学活性较弱,具有类似稀有气体的化学稳定性。地热气体中的N2与Ar一起被认为来源于大气降水补给地热水前溶解的空气,之后在经历还原环境下的长径流后,氧化性气体组分(如氧气)被消耗,导致氮气、氩气等稀有气体组分积累成为主量组分。在中国大陆,除喜马拉雅地热带、长白山温泉群的气体组分多以CO2为主外,其他地区的温泉气体绝大多数以氮气为主要组分,相对体积百分含量达到90%以上,例如广东丰顺N2含量达到98%; 福建漳州N2含量为96%; 河北牛驼镇地热田N2含量为97%; 山东即墨温泉群N2含量为89%(Pang Jumei et al.,2018; Hao Yinlei et al.,2020; Tian Jiao et al.,2021b)。这种气体组分特征可以直观地指示,该地热系统是经历了深循环被加热的地下水,不存在熔融岩浆(释放大量CO2、H2S等气体)作为热源。
-
4 地热气体应用
-
一般来说,地热气体中的保守组分用来鉴别地热系统的物质和能量来源,而活性组分则用以描述储层性质。
-
4.1 控热构造识别
-
Zhang Maoliang et al.(2021)通过分析青藏高原温泉气体化学组成与同位素特征,建立了深源气体释放与青藏高原生长动力学过程之间的内在联系,证实了深源气体同位素组成(特别是3He/4He值)是约束青藏高原生长动力学过程及其发生深度的有效地球化学定量指标,为构建高原生长动力学模型提供了新的研究视角。Tian Jiao et al.(2021a)研究发现(图4),青藏高原东南缘的鲜水河断裂带上地热气体组分以壳内变质成因CO2为主,稀有气体氦同位素比值指示幔源氦气混入比例接近30%,热储温度最高达到260℃,热水循环深度接近8 km。在龙门山断裂带上,气体组分以大气源N2为主,稀有气体氦同位素比值指示壳内放射性成因,地热系统热储温度均低于150℃,热水循环深度不足4 km。这表明,走滑型鲜水河断裂带的局部存在延伸深度大的张性断裂体系,这些张性断裂一方面成为幔源挥发分和壳内变质成因气体的升流通道,另一方面为大气降水深循环换热提供对流通道,进而形成了断裂控制的深循环型高温地热系统; 而逆冲推覆型龙门山断裂带很难发育延伸深度大的张性断裂体系,现有断裂体系相对闭合,不存在深部挥发分的优势升流通道,下渗的大气降水循环深度较浅,因而无法形成高温地热系统。
-
图4 鲜水河断裂、龙门山断裂地热系统流体循环示意图(修改自Tian Jiao et al.,2021a)
-
Fig.4 Circulation model of geothermal fluid in the Xianshuihe and Longmenshan faults (modified after Tian Jiao et al., 2021a)
-
另外,在地热地球化学勘查阶段,网格化土壤气体Rn、CO2等浓度测量可以帮助识别区域控热构造格架,厘定地热流体上升通道。意大利Sabatini火山区的土壤气体组分勘探为识别活动断裂提供了依据(Bertrami et al.,1990)。采样密度为2个/km2,共在197个样品点采集土壤气体样品测试CO2、H2、CH4和222Rn含量。测试结果显示,CO2-He和CO2-H2的异常值分布区域均在测区东北部发生重叠,说明这里是渗透性较高的断裂通道,可能沟通了深部热储。冰岛的Reykjanes地热田勘察阶段也进行了土壤气体CO2、He含量勘探,CO2通量勘探和定深地温测量(Fridriksson et al.,2016)。上述四种勘探结果圈定的地热异常区形状相似,识别出地热升流通道在热田东南部。更先进地,可以根据面上土壤CO2通量测量结果评价地热资源潜力。例如在智利北部,通过测试土壤CO2通量、CO2/H2O和土壤温度,Marco et al.(2021)估算了一个隐伏型热田的发电潜力为1.08 MWe/km2。
-
4.2 地热背景与热源性质
-
汪洋(1999,2000)提出地下流体的3He/ 4He比值与壳/幔热流比(q c/q m,q c、q m分别代表地壳热流和地幔热流)之间呈反相关,并根据全球大陆上同时具有3He/ 4He比值实测值和q c/q m研究结果的典型地区的资料回归分析得到壳幔热流比的计算公式(如式9),而在稍早之前,Polyak(1979)也提出过用氦同位素比值估算大地热流的方法(如式10)。
-
式中,R为测试样品的氦同位素比值,q代表大地热流值(mW/m2)。另外,科学家们分析了多种热储温度计算模型,通过改变地层厚度、放射性生热率、岩石热导率和热流等参数后,经统计得出结论:在特定深度的地层中,热流值与估算温度的线性相关系数达0.9,其中地面以下40 km、50 km深度处二者的相关关系可以分别表达为:
-
式中,T 40、T 50分别代表地下40 km、50 km处的地层温度(℃; Duchkov et al.,2010)。据此,在已知气体中氦同位素浓度的情况下,不仅可以计算当地热流值而且能推断一定深度处的地层温度。虽然,这种计算方法的准确性、精确性值得进一步论证和探讨,但在大地热流测量条件受限时,对同一地热系统的不同采样点的对比也有统计学上的指示意义,可以作为初步分析区域地热地质条件的参考。此外,郭清海(2022)指出,地热流体是否受到岩浆流体的直接影响是识别岩浆热源型地热系统的重要依据。地热气体的化学与同位素研究可以为此提供充足证据,例如判别地热流体是否受到岩浆挥发分CO2、H2S、HCl等的影响。利用这种方法,川西高原的巴塘、甘孜等地热系统均被识别为非岩浆热源的高温地热系统(Fan Yifan et al.,2019; Tian Jiao et al.,2019)。
-
4.3 热储温度计算
-
在地热资源的勘查和开发利用中,热储温度值是研究地热活动的重要参数,也是进行地热资源成因类型划分、资源潜力评价及地热开发利用条件等研究不可或缺的重要参数(赵平,1994)。在某些地热田,地表热显示仅由喷气孔组成,没有温泉出露,此时由上述常量气体组分及同位素参与的气体化学温度计扮演着重要角色。据赵平(1994)和庞忠和等(2013)的总结,气体地温计包括三种:① 气体化学地温计,即根据地热系统中CO2、H2S、H2等浓度或CO2/H2、H2S/H2的浓度比值标定的经验型气体地温计,如Giggenbach(1991)提出了CO-CO2-CH4气体化学温度计,或利用化学热力学方法计算的化学平衡热力学地温计; ② 溶质同位素地温计,此方法假定储层中某元素在气-液两相的不同组分中达到同位素分馏平衡,进而估算热储温度,常用同位素包括H2O-H2中的2H和H2O-CO2中的18O等; ③ 气体同位素地温计,由于同位素的分馏平衡仅为温度的函数,理论上任何一对气体组分中的同位素差异都能用以计算平衡温度,例如,CO2-CH4中的13C,H2-CH4中的2H等。应用上述气体温度计的基本假设是,用于计算的组分之间已经达到化学反应平衡,或者用于计算的同位素在一对组分之间已经达到同位素分馏平衡,且在气体上升至地表过程中,这种平衡未受其他过程影响。需要强调的是,尽管气体地热温度计种类较多,但均是学者们针对不同地热系统基于不同假设条件凝练的经验公式、统计公式或估算公式,目前并不存在放之四海而皆准的气体温度计,因此具体应用时,还需要根据实际水文地质、地热地质条件,甄选相对适用的计算方法,或者对算法加以修正后应用。
-
4.4 地热气体同位素与定年
-
地下水定年方法多直接用于中低温地热系统。但是,高温地热水定年是地热研究的难题之一。中国大陆的高温地热系统集中在喜马拉雅地热带,迄今青藏高原地热水年龄仍少有报道。高温地热流体在地表的温度接近或超过当地沸点,流体中可能包含岩浆挥发分,放射性元素衰变产物及岩石热变质作用产生的流体组分,导致常用地下水定年方法的应用存在以下问题:① 3H或3H-3He适用于现代地下水定年,但3H和3He的初始浓度难以确定,且高温地热流体中的3He多源自幔源挥发分,而非3H的衰变产物,二者浓度关系无法体现地热水年龄(Ojiambo et al.,2001); ② 14C定年方法易受其他碳源影响,地热流体中常含有大量岩浆来源或碳酸盐变质成因CO2(赵平等,2002),导致测得的14C年龄在接近或超过上限时(约40 ka)无法区分非自然“老化”现象与古老地热水(Sveinbjornsdottir et al.,1992,2000),也因此存在盲目基于无机碳同位素校正的14C年龄小于实际地热水年龄的可能; ③ 36Cl定年方法的缺陷是36Cl在地表分布极不均匀,降水中溶解的初始值不易确定,定年结果需要依靠复杂的修正模型,而且高温地热流体中常出现来源于岩浆挥发分(HCl),原生卤水或围岩溶蚀的高浓度氯离子(Zhao Ping et al.,2000; Guo Qinghai et al.,2017),对定年结果影响较大; ④ 4He方法同样存在地热流体中混入大量壳内放射性元素衰变成因的He而导致定年结果失准的问题(Lehmann et al.,2013; Torgersen et al.,2013)。其他定年方法不宜应用的原因还包括复杂的采样及分析技术难以实现,或者高温地热水年龄已经超出定年上限(Browne,1979; Li Jie et al.,2017)等。近年来,“原子阱痕量分析”技术(Atom trap trace analysis,ATTA)(Chen et al.,1999; Lu Zhengtian,2015)的发展,使得利用稀有气体氪、氩同位素进行地热水定年成为可能。目前,ATTA技术测试的放射性氪、氩浓度用于地热水定年的可靠性已被验证并得到成功应用。Yokochi et al.(2013)利用39Ar、85Kr、81Kr同位素对美国黄石公园的热泉水定年,结果显示其年龄上限约为100 ka。Li Jie et al.(2017)采集关中盆地中低温地热井的气体样品测得其81Kr年龄在1.3~0.3 Ma之间。这些应用实例为实现高温地热水定年奠定了基础,这也是目前的地热气体前沿课题。
-
4.5 地热伴生氦资源
-
氦气广泛用于国防军工、航天工业、核工业、石化、制冷、医疗、半导体、管道检漏、超导实验、金属制造、深海潜水、高精度焊接、光电子产品生产等领域,是国家安全和高技术产业发展的战略稀缺资源(王晓峰等,2019)。地热气体中He含量大于0.1%时,具备工业开发的利用价值。从目前统计来看,渭河盆地地热区氦气资源量巨大,具有很好的综合开发和利用前景(张福利等,2012; 张文等,2018),关中盆地地热气体中氦气比例高达2.5%(Li Jie et al.,2017),另据初步预测氦气资源量有望达300多亿立方米。辽宁和山东郯庐断裂带附近地热井/温泉中氦气含量多为0.1%~0.5%之间(Xu Sheng et al.,2014)。此外,北京、河北、内蒙古、浙江、湖南、福建、四川、云南、广东等地部分地热井/温泉水溶解气中发现工业氦气(戴金星等,1994)。尤其值得注意的是河北雄安新区附近的霸州、容城、雄县等地热井中氦气含量普遍较高,最高含量达0.52%(Pang Jumei et al.,2018)。这里已经实现地热资源的规模化开采,仅雄县县城的地热开采井已近70口,地热流体在地表发生减压时释放的氦气可加以利用。青藏高原高温地热系统众多,西藏羊八井ZK4002井的溢出气中氦气含量约为0.12%,其氦气资源可作合理收集利用(赵平,1994; 赵平等,1998,2001)。2001年,在西藏阿里地区4340 m海拔高度的某热泉气体中,检测出含有浓度为1.27%的氦气,其浓度之高为未来的开发利用提供了可能。西藏自治区日喀则市定日县轮珠林村的某热泉气体中的氦气也接近1.4%(Newell et al.,2013)。因此加强地热伴生氦气富集成藏机理、主控因素研究与实际工作量投入,氦气储量必将大幅度增长。此外,H2、CH4等气体组分也是值得关注的地热伴生资源。
-
4.6 地热开发与减碳评估
-
虽然从碳排放量来讲,地热资源开发利用过程中释放的二氧化碳气体要远远低于非可再生能源(图5; Silva et al.,1984; Amponsah et al.,2014)。但为实现碳达峰、碳中和的“双碳目标”,科学家们提出CarbFix技术以最大程度降低地热开发过程中温室气体排放。这种技术将二氧化碳气体加以收集,溶于水后注入到玄武岩中生成新的矿物,使CO2转化为环境友好的碳酸盐矿物并永久封存在玄武岩中,其在热储层中以方解石(CaCO3)、白云石(CaMg(CO3)2)、菱镁矿(MgCO3)等碳酸盐矿物的形式被封存(Matter et al.,2016),涉及的化学反应如表1所示。冰岛西南部的Hellisheidi地热电站是首个CarbFix试验场。研究发现,CO2在玄武岩层中的矿化速度非常惊人,在不到2年的时间内,该项目近95%的CO2被矿化(Khalilabad et al.,2008; Matter et al.,2016)。作为地热系统碳封存技术的延伸,目前“直接空气捕捉”(Direct air capture,DAC)技术已经得以运行。该技术是通过安装大型吸气扇,从大气中吸入的二氧化碳被特殊过滤材料吸附,通过加热到100℃将其回收并混合于水中,再注入地下进行矿化。由于整个过程需要大量热源,该技术被认定为应与地热发电站共用地热能源(Gutknecht et al.,2018)。另一方面,以实现含硫地热气体地质封存为目标的SulFix技术正在萌芽,该技术是以地热电站排放的含硫气体为目标组分,将其以硫化物矿物(如FeS2)的形式加以封存(Marieni et al.,2021; Kristjansdottir et al.,2021)。
-
图5 不同能源发电过程温室气体排放量(改自NREL,2022)
-
Fig.5 Comparison of greenhouse gas emission for selected electricity generation technologies (modified after NREL, 2022)
-
4.7 结垢腐蚀预测与防治
-
地热开发过程中,结垢问题是最重要的问题之一。无论是现在运行的羊八井地热电站、羊易地热电站,还是曾经运行的那曲地热电站,或者是康定的高温地热井放喷试验(王延欣等,2015),都无法逃避地热井内结垢问题。其中,1994年建成的那曲地热发电机组,因结垢腐蚀问题严重,于20世纪90年代末停运(王大宏等,2002)。地热流体脱气(CO2)过程导致的碳酸钙垢(CaCO3)是主要原因之一(Li Yiman et al.,2020)。因此,充分研究CO2气体随地热流体上升并发生降温减压时的地球化学过程,是防治结垢问题的关键。此外,H2S、CO2等组分的溶解,降低了地热水的酸碱度(pH值),会诱发地热开发系统中钢、镍、铜及其合金材料的流体管道的腐蚀、生锈问题。这也是尤为需要关注的工程问题。
-
5 结论与展望
-
本文总结了近年来地热气体化学与同位素特征在地热资源勘探和开发中的应用研究进展。由于气体受储层围岩的影响较小,地热气体化学及同位素的研究可在众多领域发挥作用,例如,揭示区域地球动力学背景和控热构造格架,分析热源性质,估算热储温度和评估循环条件,研究地热伴生资源成因。在地热开发过程中,地热气体也有效地应用于解决腐蚀结垢、温室气体排放等工程技术问题。地热气体的研究与应用,使水文地球化学走入了流体地球化学的新阶段。然而,地热气体样品常采集于高海拔、高温条件,储存气体的样品瓶在实验室温度下多呈负压,测试方法应注意避免空气污染。现有的科研团队根据各自的研究需求和工作经验,采用不尽相同的样品采集、贮存、测试方法。为实现国际间地热气体数据的可比性,建成归一化标准的气体大数据,需要尽快将上述方法统一,建立相应的技术标准。未来地热气体研究前沿方向众多,地热气体研究需要在地热流体定年、伴生资源成因、控热构造识别等方面继续强化,同时探索温室气体排放、腐蚀结垢等工程问题的创新性解决方法。
-
致谢:本文得到国家重点研发计划课题(批准号:2019YFC0604901)、国家自然科学基金项目(批准号:42042038、41902252、41430319)的资助,特此致谢!
-
参考文献
-
Aeschbach H W, Solomon D K. 2013. Noble gas thermometry in groundwater hydrology. The Noble Gases As Geochemical Tracers, 81~122.
-
Amponsah N Y, Troldborg M, Kington B, Aalders I, Hough R L. 2014. Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations. Renewable and Sustainable Energy Reviews, 39: 461~475.
-
Arnason B, Sigurgeirsson T. 1968. Deuterium content of water vapour and hydrogen in volcanic gas at Surtsey, Iceland. Geochimica et Cosmochimica Acta, 32(8): 807~813.
-
Arnórsson S. 2000. Isotopic and chemical techniques in geothermal exploration, development and use. International Atomic Energy Agency.
-
Arnórsson S, Gunnlaugsson E. 1985. New gas geothermometers for geothermal exploration—calibration and application. Geochimica et Cosmochimica Acta, 49(6): 1307~1325.
-
Arnórsson S, Bjarnason J Ö, Giroud N, Gunnarsson I, Stefánsson A. 2006. Sampling and analysis of geothermal fluids. Geofluids, 6(3): 203~216.
-
Aydar E, Diker C. 2021. Carcinogen soil radon enrichment in a geothermal area: case of Güzelçaml1-Davutlar district of Ayd1n City, western Turkey. Ecotoxicology and Environmental Safety, 208: 111466.
-
Bertrami R, Buonasorte G, Ceccarelli A, Lombardi S, Pieri S, Scandiffio G. 1990. Soil gases in geothermal prospecting: two case histories (Sabatini Volcanoes and Alban Hills, Latium, Central Italy). Journal of Geophysical Research: Solid Earth, 95(B13): 21475~21481.
-
Browne P R L. 1979. Minimum age of the Kawerau geothermal field, north island, New Zealand. Journal of Volcanology and Geothermal Research, 6(3-4): 213~215.
-
Caliro S, Viveiros F, Chiodini G, Ferreira T. 2015. Gas geochemistry of hydrothermal fluids of the S. Miguel and Terceira Islands, Azores. Geochimica et Cosmochimica Acta, 168: 43~57.
-
Chen C Y, Li Y M, Bailey K, O'connor T P, Young L, Lu Zhengtian. 1999. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science, 286(5442): 1139~1141.
-
Chiodini G, Caliro S, Lowenstern J B, Evan W C, Bergfeld D, TASSI F, Tedesco D. 2012. Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica et Cosmochimica Acta, 89: 265~278.
-
Dai Jinxing, Dai Chunsen, Song Yan, Liao Yongsheng. 1994. Geochemical characteristics, carbon isotopes and helium isotopes of natural gas from hot springs in some areas of China. Science in China (Series B), 4: 426~433 (in Chinese with English abstract).
-
Day A L, Shepherd E S. 1913. Water and volcanic activity. Bulletin of the Geological Society of America, 24(1): 573~606.
-
D'Amore F, Panichi C. 1980. Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochimica et Cosmochimica Acta, 44(3): 549~556.
-
Duchkov A D, Rychkova K M, Lebedev V I, Kamenskii I L, Sokolova L S. 2010. Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs. Russian Geology and Geophysics, 51(2): 209~219.
-
Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences, 24: 191~224.
-
Ellis A J. 1957. Chemical equilibrium in magmatic gases. American Journal of Science, 255(6): 416~431.
-
Ellis A J, Giggenbach W. 1971. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution. Geochimica et Cosmochimica Acta, 35(3): 247~260.
-
Etiope G, Schoell M, Hosgormez H. 2011. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth and Planetary Science Letters, 310(1): 96~104.
-
Etiope G, Schoell M. 2014. Abiotic gas: a typical, but not rare. Elements, 10(4): 291~296.
-
Fan Yifan, Pang Zhonghe, Liao Dawei, Tian Jiao, Hao Yinlei, Huang Tianming, Li Yiman. 2019. Hydrogeochemical characteristics and genesis of geothermal water from the Ganzi geothermal field, eastern Tibetan Plateau. Water, 11(8): 1631.
-
Fenner C N. 1936. Bore-hole investigations in Yellowstone Park. Journal of Geology, 44: 225~314.
-
Fridriksson T, Padron E, Oskarsson F, Perez N M. 2016. Application of diffuse gas flux measurements and soil gas analysis to geothermal exploration and environmental monitoring: example from the Reykjanes geothermal field, SW Iceland. Renewable Energy, 86: 1295~1307.
-
Giggenbach W F. 1975. A simple method for the collection and analysis of volcanic gas samples. Bulletin Volcanologique, 39(1): 132~145.
-
Giggenbach W F. 1977. The isotopic composition of sulphur in sedimentary rocks bordering the Taupo Volcanic Zone. Geochemistry, 218: 51~64.
-
Giggenbach W F. 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2): 143~161.
-
Giggenbach W F. 1991. Chemical techniques in geothermal exploration. Application of Geochemistry in Geothermal Reservoir Development. New York: UNITAR, 119~144.
-
Giggenbach W F. 1992. The composition of gases in geothermal and volcanic systems as a function of tectonic setting. International Symposium on Water-rock Interaction, 873~878.
-
Giggenbach W F. 1996. Chemical composition of volcanic gases. Monitoring and Mitigation of Volcano Hazards. Berlin, Heidelberg: Springer, 221~256.
-
Guo Q, Nordstrom D K, Mccleskey R B. 2014. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems. Journal of Volcanology and Geothermal Research, 288: 94~104.
-
Guo Qi. 2017. Fluid geochemical genesis of the Kangding high-temperature geothermal system in western Sichuan Plateau. Doctoral dissertation of Chinese University of Sciences (in Chinese with English abstract).
-
Guo Qi, Pang Zhonghe, Wang Yingchun, Tian Jiao. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Applied Geochemistry, 81: 63~75.
-
Guo Qinghai. 2012. Hydrogeochemistry of high-temperature geothermal systems in China: a review. Applied Geochemistry, 27(10): 1887~1898.
-
Guo Qinghai. 2020. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence. Acta Geologica Sinica, 94(12): 25~35 (in Chinese with English abstract).
-
Guo Qinghai. 2022. Definition of magma-impacted geothermal system. Acta Geologica Sinica, 96(1): 208~214 (in Chinese with English abstract).
-
Guo Qinghai, Wang Yanxin, Liu Wei. 2008. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China. Environmental Geology, 56(1): 197~205.
-
Guo Qinghai, Wang Yanxin, Liu Wei. 2009. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9~20.
-
Guo Qinghai, Liu Mingliang, Li Jiexiang, Zhang Xiaobo, Wang Yanxin. 2014. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating? Bulletin of Volcanology, 76(10): 1~12.
-
Guo Qinghai, Liu Mingliang, Li Jiexiang. 2017. Thioarsenice species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses. Earth Science, 42(2): 286~297 (in Chinese with English abstract).
-
Guo Qinghai, Li Yumei, Luo Li. 2019. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport. Science of the Total Environment, 657: 1523~1534.
-
Guo Zhengfu, Wilson M, Dingwell D B, Liu Jiaqi. 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nature Communications, 12(1): 1~15.
-
Gutknecht V, Snæbjörnsdóttir S Ó, Sigfússon B, Aradóttir E S, Charles L. 2018. Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture. Energy Procedia, 146: 129~134.
-
Hao Yinlei. 2020. Fluid genesis of Jimo saline hot spring. Doctoral dissertation of Chinese University of Sciences (in Chinese with English abstract).
-
Hao Yinlei, Pang Zhonghe, Tian Jiao, Wang Yingchun, Li Zhongping, Li Liwu, Xing Lantian. 2020. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China. Chemical Geology, 538: 119477.
-
Hilton D R, Hoogewerff J A, Van Bergen M J, Hammerschmidt K. 1992. Mapping magma sources in the east Sunda-Banda arcs, Indonesia: constraints from helium isotopes. Geochimica et Cosmochimica Acta, 56(2): 851~859.
-
Hilton D R, Fischer T P, Marry B. 2002. Noble gases and volatile recycling at subduction zones. Reviews in Mineralogy and Geochemistry, 47(1): 319~370.
-
Hirose T, Kawagucci S, Suzuki K. 2011. Mechanoradical H2 generation during simulated faulting: implications for an earthquake-driven subsurface biosphere. Geophysical Research Letters, 38(17): 245~255.
-
Hiroshi O. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491~559.
-
Huttrer G W. 2020. Geothermal power generation in the world 2015—2020 update report. World Geothermal Congress 2020+1, Reykjavik, Iceland.
-
Karakus H. 2015. Helium and carbon isotope composition of gas discharges in the Simav Geothermal Field, Turkey: implications for the heat source. Geothermics, 57: 213~223.
-
Kennedy B M, Fischer T, Shuster D. 2000. Heat and helium in geothermal systems. Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering, 167~173.
-
Khalilabad M R, Axelsson G, Gislason S R. 2008. Aquifer characterization with tracer test technique; permanent CO2 sequestration into basalt, SW Iceland. Mineralogical Magazine, 72(1): 121~125.
-
Kita I, Matsuo I, Wakita H. 1982. H2 generation by reaction between H2O and crushed rock: an experimental study on H2 degassing from the active fault zone. Journal of Geophysical Research Solid Earth, 87(B13): 10789~10795.
-
Kristjansdottir H, Kristjansdottir S. 2021. CarbFix and SulFix in geothermal production, and the Blue Lagoon in Iceland: Grindavik urban settlement, and volcanic activity. Baltic Journal of Economic Studies, 7(1): 1~9.
-
Lehmann B E, Love A, Purtschert R, Collon P, Loosli H H, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape S K, Herczeg A, Moran J, Tolstikhin I N, Groning M. 2013. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth and Planetary Science Letters, 211(3-4): 237~250.
-
Li Jie, Pang Zhonghe, Yang Guomin, Tian Jiao, Tong A L, Zhang Xiangyang, Hu Shuiming. 2017. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong basin, China. Science Bulletin, 62(17): 1181~1184.
-
Li Yiman, Pang Zhonghe. 2018. Carbonate calcium scale formation and quantitative assessment in geothermal system. Advances in New and Renewable Energy, 6(4): 274~281 (in Chinese with English abstract).
-
Li Yiman, Pang Zhonghe, Galeczka I W. 2020. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of eastern Himalayan Syntax. Geothermics, 87: 101844.
-
Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas. Geological Review, 67(4): 1050~1056 (in Chinese with English abstract).
-
Liao Zhijie, Zhao Ping. 1999. Yunnan-Tibet Geothermal Belt: Geothermal Resources and Case Histories. Beijing: Science Press (in Chinese with English abstract).
-
Liu Jinghua, Wang Zhuwen, Wang Xiaoli, Yi Bing, Zhao Yuyan. 2009. Application of Radon measurement in the geothermal water survey in Jiamusi City. Journal of Earth Sciences and Environment, 31(1): 75~78 (in Chinese with English abstract).
-
Lowenstern J B, Bergfeld D, Evans W C, Hunt A G. 2015. Origins of geothermal gases at Yellowstone. Journal of Volcanology and Geothermal Research, 302: 87~101.
-
Lu Zhengtian. 2015. Radiokrypton dating coming of age. National Science Review, 3(2): 172~173.
-
Lund J W, Toth A N. 2020. Direct utilization of geothermal energy 2020 worldwide review. World Geothermal Congress 2020+1, Reykjavik, Iceland.
-
Marieni C, Voigi M, Clark D E, Gislason S R, Oelkers E H. 2021. Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: freshwater versus seawater. International Journal of Greenhouse Gas Control, 109: 103357.
-
Marco T, Barbara N, Orlando V, Santiago M, Diego M, Alberto R. 2021. Soil CO2 flux and temperature from a new geothermal area in the Cordón de Inacaliri Volcanic Complex (northern Chile). Geothermics, 89: 101961.
-
Marini L, Moretti R, Accornero M. 2011. Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Reviews in Mineralogy and Geochemistry, 73(1): 423~492.
-
Marty B. 1995. Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature, 377(6547): 326~329.
-
Marty B, Dauphas N. 2003. The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth and Planetary Science Letters, 206(3): 397~410.
-
Matter J M, Stute M, Snabjornsdottir S, Oelkers E H, Gislason S R, Aradottir E S, Sigfusson B, Gunnarsson I, Sigurdardottir H, Wolff-Boenisch D, Mesfin K, Taya D F D L R, Hall J, Dideriksen K, Broechker W S. 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291): 1312~1314.
-
Mcgee K A, Casadevall T J, Sato M, Sutton A J, Clark M D. 1982. Hydrogen Gas Monitoring at Long Valley Caldera, California. Geological Survey, Menlo Park, CA (USA).
-
National Energy Administration. 2018. Terminology of Geothermal Nnergy: NB/T 10097—2018. Beijing: China Petrochemical Press (in Chinese).
-
National Renewable Energy Laboratory (NREL), US. 2022. Life cycle assessment harmonization. https: //www. nrel. gov/analysis/life-cycle-assessment. html.
-
Newell D L, Jessup M J, Cottle J M, Hilton D R, Sharp Z D, Fischer T P. 2013. Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan Plateau: implications for fluid sources and regional degassing of CO2. Geochemistry, Geophysics, Geosystems, 9(8): 1~20.
-
Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16: 491~559.
-
Ojiambo B S, Poreda R J, Lyons W B. 2001. Ground water/surface water interactions in Lake Naivasha, Kenya, using δ18O, δD, and 3H/4He age-dating. Groundwater, 39(4): 526~533.
-
O'Nions R K, Oxburgh E R. 1983. Heat and helium in the earth. Nature, 306(5942): 429~431.
-
Pang Jumei. 2018. A study on the responsing mechanism of karstic geothermal reservoir to large scale production and reinjection in Niutuozhen geothermal field. Doctoral dissertation of Chinese University of Sciences (in Chinese with English abstract).
-
Pang Jumei, Pang Zhonghe, Lv Min, Tian Jiao, Kong Yanlong. 2018. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China. Environmental Earth Sciences, 77(1): 12.
-
Pang Zhonghe, Reed M. 1998. Theoretical chemical thermometry on geothermal waters: problems and methods. Geochimica et Cosmochimica Acta, 62(6): 1083~1091.
-
Pang Zhonghe, Yang Fengtian, Luo Lu. 2013. The determination method of reservoir temperature in geothermal field. Solid Earth Science Research Methods. Beijing: Science Press.
-
Pinti D L, Castro M C, Shouakar-Stash O, Tremblay A, Garduno V H, Hall C M, Helie J F, Ghaleb B. 2013. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr. Journal of Volcanology and Geothermal Research, 249: 1~11.
-
Polyak B, Tolstikhin I, Yakustseni V. 1979. The isotopic composition of helium and heat-flow-geochemical and geophysical aspects of tectogenesis. Geotectonics, 13(5): 339~351.
-
Sano Y, Tominaga T, Nakamura Y, Wakita H. 1982. 3He/4He ratios of methane-rich natural gases in Japan. Geochemical Journal, 16(5): 237~245.
-
Sano Y, Wakita H. 1985. Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. Journal of Geophysical Research: Solid Earth (1978—2012), 90(B10): 8729~8741.
-
Sano Y, Marty B. 1995. Origin of carbon from fumarolic gas in island arc. Chemical Geology, 119(1): 265~274.
-
Sborgi U. 1939. Chemical and physical-chemical considerations of volcanic and magmatic gases. Bulletin Volcanologique, 5: 109~131.
-
Shangguan Zhiguan. 1989. Genesis of gases along faults in western Yunnan. Earthquake Research in China, 5(2): 6 (in Chinese with English abstract).
-
Shangguan Zhiguan, Bai Chunhua, Sun Mingliang. 2000. Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong County, Yunnan Province, China. Science in China Series D: Earth Sciences, 43(2): 132~140.
-
Shangguan Zhiguan, Huo Weiguo. 2002. δD values of excaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin. Chinese Science Bulletin, 47(2): 148~150.
-
Shephard E S. 1925. The analysis of gases obtained from volcanoes and from rocks. Journal of Geology, 33: 289~370.
-
Silva M, Raadal H L. 1984. Life cycle GHG emissions of renewable and non-renewable electricity generation technologies. Krakeroy: Ostfoldforskning.
-
Sugisaki R, Ido M, Takeda H, Isobe Y, Hayashi Y, Nakamura N, Satake H, Mizutani Y. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. The Journal of Geology, 91(3): 239~258.
-
Sugisaki T. 1980. Geochemical features of gases and rocks along active faults. Geochemical Journal, 14(3): 101~112.
-
Sun Yutao, Guo Zhengfu, Liu Jiaqi, Du Jianguo. 2018. CO2 diffuse emission from maar lake: an example in Changbai volcanic field, NE China. Journal of Volcanology and Geothermal Research, 349: 146~162.
-
Sveinbjornsdottir A E, Heinemeier J, Rud N, Johnsen S J. 1992. Radiocarbon anomalies observed for plants growing in Icelandic geothermal waters. Radiocarbon, 34(3): 696~703.
-
Sveinbjornsdottir A E, Arnorsson S, Heinemeier J, Boaretto E. 2000. 14C ages of groundwater in Iceland. World Geothermal Congress 2000, Kyushu-Tohoku, Japan.
-
Taussi M, Barbara N, Orlando V, Santiago M, Diego M, Alberto R. 2021. Soil CO2 flux and temperature from a new geothermal area in the Cordon de Inacaliri Volcanic Complex (northern Chile). Geothermics, 89: 101961.
-
Tedesco D, Scarsi P. 1999. Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the solfatara crater (southern Italy): mixing of different sources in relation to seismic activity. Earth & Planetary Science Letters, 171(3): 465~480.
-
Tian Jiao. 2018. Fluid geochemical evidences of the high-temperature geothermal systems without magmatic heat source in Batang, western Sichuan. Doctoral dissertation of Chinese University of Sciences (in Chinese with English abstract).
-
Tian Jiao, Pang Zhonghe. 2017. Geochemical characteristics of gases from typical high-temperature geothermal systems in China. Procedia Earth and Planetary Science, 17: 500~503.
-
Tian Jiao, Pang Zhonghe, Guo Qi, Wang Yingchun, Li Jie, Huang Tianming, Kong Yanlong. 2018. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics, 74: 92~105.
-
Tian Jiao, Pang Zhonghe, Wang Yingchun, Guo Qi. 2019. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis. Applied Geochemistry, 110: 104422.
-
Tian Jiao, Pang Zhonghe, Bao Yifan. 2020. Isotope geochemistry with implications on the genesis of alkaline bicarbonate water along the Himalayan high-temperature geothermal belt. World Geothermal Congress 2020+1, Reykjavik, Iceland.
-
Tian Jiao, Pang Zhonghe, Liao Dawei, Zhou Xiaocheng. 2021a. Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036.
-
Tian Jiao, Li Yiman, Zhou Xiaocheng, Pang Zhonghe, Li Liwu, Xing Lantian, Li Zhongping. 2021b. Geochemical characteristics of hydrothermal volatiles from southeast China and their implications on the tectonic structure controlling heat convection. Frontiers in Earth Science, 9: 1109.
-
Tong Wei, Zhu Meixiang, Chen Minyang. 1982. Sulfur-isotopic analysis and studies upon the Abyssal heat recharge of the Tibet's hydrothermal activities. Acta Scientiarum Naturalium, Universitatis Pekinensis, 18(2): 79~85 (in Chinese with English abstract).
-
Torgersen T, Stute M. 2013. Helium (and other noble gases) as a tool for understanding long timescale groundwater transport. Isotope Methods for Dating Old Groundwater, IAEA, Vienna, 179~216.
-
Wakita H, Nakamura Y, Kita I, Fujii N, Notsu K. 1980. Hydrogen release: new indicator of fault activity. Science, 210(4466): 188~190.
-
Wang Chunyong, Zhu Lupei, Lou Hai, Huang Borshouh, Yao Zhixiang, Luo Xinghua. 2010. Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications. Journal of Geophysical Research: Solid Earth, 115(B11).
-
Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimation of geothermal resources potential for hot dry rock in the continental area of China. Science and Technology Review, 30(32): 25~31 (in Chinese with English abstract).
-
Wang Yang. 1999. A study on mantle heat flow of continental area of China by helium isotope ratio of the underground fluid. Acta Geoscientia Sinica, 20: 48~50 (in Chinese with English abstract).
-
Wang Yang. 2000. Estimations of the ratio of crust/mantle heat flow using helium isotope ratio of underground fluid. Chinese Journal of Geophysics, 43(6): 762~770 (in Chinese with English abstract).
-
Wang Yingchun, Pang Zhonghe, Hao Yinlei, Fan Yifan, Tian Jiao, Li Jie. 2019. A revised method for heat flux measurement with applications to the fracture-controlled Kangding geothermal system in the Eastern Himalayan Syntaxis. Geothermics, 77: 188~203.
-
Wang Dahong, Zeng Yi. 2002. Present situation and measures of geothermal resources exploitation and utilization in Tibet. Science and Technology in Tibet, 10: 29~32 (in Chinese with English abstract).
-
Wang Xianbin, Chen Jianfa, Xu Sheng, Yang Hui. 1992. Geochemical characteristics of gases from hot springs in earthquake areas. Science China, (8): 849~854 (in Chinese with English abstract).
-
Wang Xianbin, Xu Sheng, Chen Jianfa, Sun Mingliang, Xue Xiaofeng, Wang Wenyi. 1993. Composition and helium isotopic characteristics of hot spring gases in Tengchong volcanic area. Chinese Science Bulletin, 38(9): 814~817 (in Chinese with English abstract).
-
Wang Xiaofeng, Liu Wenhui, Li Xiaobin, Liu Quanyou, Tao Cheng, Xu Yongchang. 2019. Formation and accumulation of helium resources and prospects of Helium resources in China. Proceedings of the 17th Annual Conference of the Chinese Society for Mineralogy Petrology and Geochemistry, Zhejiang Hangzhou, China, April 19, 2019, 1154~1155 (in Chinese).
-
Wang Yanxin, Liu Shiliang, Bian Qingyu, Yan Bin, Liu Xuefeng, Liu Jinxia, Wang Haiyan, Bu Xianbiao. 2015. Scaling analysis of geothermal well from Ganzi and counter measures for anti-scale. Advances in New and Renewable Energy, 3(3): 202~206 (in Chinese with English abstract).
-
Wang Yumeng, Zhou Wenbin, Yu Hongchi, Tan Yuwen, Wu Chengzhi, Sun Jicai. 2009. Application of hot spring gas monitoring in researching active volcano. Seismological Research of Northeast China, 25(2): 63 (in Chinese with English abstract).
-
Xu Sheng, Zheng Guodong, Wang Xianbin, Wang Hualin, Naki S, Wakita H. 2014. Helium and carbon isotope variations in Liaodong Peninsula, NE China. Journal of Asian Earth Sciences, 90(90): 149~156.
-
Yang Lizheng, Wei Jia, Sun Jinyu. 1999. A study of the deep-source CO2 release of the hot springs system in Kangding, Sichuan Province. Acta Geologica Sinica, 73(3): 278~285 (in Chinese with English abstract).
-
Yokochi R, Sturchio N C, Purtschert R, Jiang W, Lu Zhengtian, Mueller P, Yang Guomin, Kennedy B M, Kharaka Y. 2013. Noble gas radionuclides in Yellowstone geothermal gas emissions: a reconnaissance. Chemical Geology, 339: 43~51.
-
Zgonnik V. 2020. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth Science Reviews, 203: 103140.
-
Zhang Fuli, Sun Qibang, Wang Xingyun, Zou Yanrong. 2012. Evaluation of water soluble helium resources in Weihe basin. Journal of Geomechanics, 18(2): 102~109 (in Chinese with English abstract).
-
Zhang Maoliang, Guo Zhengfu, Sano Y, Zhang Lihong, Sun Yutao, Cheng Zhihui, Yang T F. 2016. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: implications for deep carbon cycle at intra-continent subduction zone. Journal of Asian Earth Sciences, 127: 76~90.
-
Zhang Maoliang, Guo Zhengfu, Zhang Lihong, Sun Yutao, Cheng Zhihui. 2017. Geochemical constraints on origin of hydrothermal volatiles from southern Tibet and the Himalayas: understanding the degassing systems in the India-Asia continental subduction zone. Chemical Geology, 469: 19~33.
-
Zhang Maoliang, Guo Zhengfu, Xu Sheng, Barry P H, Sano Y, Zhang Lihong, Halldorsson S A, Chen A T, Cheng Zhihui, Liu Congqiang, Li Siliang, Lang Yunchao, Zheng Guodong, Li Zhongping, Li Liwu, Li Ying. 2021. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nature Communications, 12(1): 1~10.
-
Zhang Wen, Li Yuhong, Wang Li, Zhao Fenghua, Han Wei, Song Changgui. 2018. The analysis of helium accumulation conditions and prediction of helium resource in Weihe basin. Natural Gas Geoscience, 29(2): 236~244 (in Chinese with English abstract).
-
Zhao Ping. 1994. Research advances in gas geochemistry of geothermal systems. Advance in Earth Sciences, 9(1): 8~13 (in Chinese with English abstract).
-
Zhao Ping, Dor Ji, Liang Tingli, Jin Jian, Zhang Haizheng. 1998. Characteristics of gas geochemistry in Yangbajing geothermal field, Tibet. Chinese Science Bulletin, 43(21): 1770~1777.
-
Zhao Ping, Duo Ji, Jin Jian. 2000. A new geochemical model of the Yangbajing geothermal field, Tibet. World Geothermal Congress 2000, Kyushu-Tohoku, Japan.
-
Zhao Ping, Kennedy M, Duo Ji, Xie Ejun, Du Shaoping, Shuster D, Jin Jian. 2001. Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3): 497~503 (in Chinese with English abstract).
-
Zhao Ping, Xie Ejun, Duo Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539~550 (in Chinese with English abstract).
-
Zhou Xiaocheng. 2011. Gas geochemistry in Western Sichuan related to 12 May 2008 Wenchuan M s 8. 0 earthquake. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).
-
Zhou Xiaocheng, Liu Lei, Chen Zhi, Cui Yueju, Du Jianguo. 2017. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau. Applied Geochemistry, 79: 17~26.
-
Zhou Xiaocheng, Yan Yucong, Fang Wenya, Wang Wanli, Shi Hongyu, Li Pengfei. 2021. Short-term seismic precursor anomalies of hydrogen concentration in Luojishan hot spring bubbling gas, Eastern Tibetan Plateau. Frontiers in Earth Science, 8: 734.
-
戴金星, 戴春森, 宋岩, 廖永胜. 1994. 中国一些地区温泉中天然气的地球化学特征及碳, 氦同位素组成. 中国科学: B辑, (4): 426~433.
-
郭琦. 2017. 川西高原康定高温地热系统流体地球化学成因. 中国科学院大学博士学位论文.
-
郭清海. 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 25~35.
-
郭清海. 2022. 岩浆热源型地热系统释义. 地质学报, 96(1): 208~214.
-
郭清海, 刘明亮, 李洁祥. 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286~297.
-
国家能源局. 2018. 地热能术语: NB/T 10097—2018. 北京: 中国石化出版社.
-
郝银磊. 2020. 即墨咸水温泉流体成因研究. 中国科学院大学博士学位论文.
-
李义曼, 庞忠和. 2018. 地热系统碳酸钙垢形成原因及定量化评价. 新能源进展, 6(4): 274~281.
-
李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析. 地质论评, 67(4): 1050~1056.
-
廖志杰, 赵平. 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
-
刘菁华, 王祝文, 王晓丽, 易兵, 赵玉岩. 2009. 氡气测量在佳木斯城市地下热水普查的应用. 地球科学与环境学报, 31(1): 75~78.
-
上官志冠. 1989. 滇西地区断层气体成因研究. 中国地震, 5(2): 6.
-
庞菊梅. 2018. 牛驼镇地热田岩溶热储对规模化采灌的响应机理研究. 中国科学院大学博士学位论文.
-
庞忠和, 杨丰田, 罗璐. 2013. 地热田储层温度的确定方法. 见: 固体地球科学研究方法. 北京: 科学出版社.
-
天娇. 2018. 川西巴塘地区非岩浆热源高温地热系统的流体地球化学证据. 中国科学院大学博士学位论文.
-
佟伟, 朱梅湘, 陈民扬. 1982. 西藏水热区硫同位素组成和深源热补给的研究. 北京大学学报(自然科学版), 18(2): 79~85.
-
汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗路, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25~31.
-
汪洋. 1999. 利用地下流体He同位素比值资料研究中国大陆地幔热流. 地质学报, 20: 48~50.
-
汪洋. 2000. 利用地下流体氦同位素比值估算大陆壳幔热流比例. 地球物理学报, 43(6): 762~770.
-
王大宏, 曾毅. 2002. 西藏地热资源开发利用现状和应采取的措施. 西藏科技, 10: 29~32.
-
王先彬, 陈践发, 徐胜, 杨辉. 1992. 地震区温泉气体的地球化学特征. 中国科学, (8): 849~854.
-
王先彬, 徐胜, 陈践发, 孙明良, 薛啸峰, 王文懿. 1993. 腾冲火山区温泉气体组分和氦同位素组成特征. 科学通报, 38(9): 814~817.
-
王晓锋, 刘文汇, 李晓斌, 刘全有, 陶成, 徐永昌. 2019. 氦气资源的形成聚集与中国氦资源前景. 中国矿物岩石地球化学学会第17届学术年会论文摘要集, 中国浙江杭州, 2019年4月19日, 1154~1155.
-
王延欣, 刘世良, 边庆玉, 鄢斌, 刘学峰, 刘金侠, 王海燕, 卜宪标. 2015. 甘孜地热井结垢分析及防垢对策. 新能源进展, 3(3): 202~206.
-
王禹萌, 周文斌, 于洪池, 谭宇文, 武成智, 孙继才. 2009. 温泉逸出气体观测在长白山火山活动研究中的应用. 东北地震研究, 25(2): 63~63.
-
杨立铮, 卫迦, 孙晋玉. 1999. 四川康定温泉系统深源CO2释放研究. 地质学报, 73(3): 278~285.
-
张福礼, 孙启邦, 王行运, 邹彦荣. 2012. 渭河盆地水溶氦气资源评价. 地质力学学报, 18(2): 102~109.
-
张文, 李玉宏, 王利, 赵峰华, 韩伟, 宋昌贵. 2018. 渭河盆地氦气成藏条件分析及资源量预测. 天然气地球科学, 29(2): 236~244.
-
赵平. 1994. 地热系统气体地球化学研究进展. 地球科学进展, 9(1): 8~13.
-
赵平, 多吉, 梁廷立, 金建, 张海政. 1998. 西藏羊八井地热田气体地球化学特征. 科学通报, 43(7): 691~696.
-
赵平, Kennedy M, 多吉, 谢鄂军, 杜少平, Shuster D, 金建. 2001. 西藏羊八井热田地热流体成因及演化的惰性气体制约. 岩石学报, 17(3): 497~503.
-
赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义. 岩石学报, 18(4): 539~550.
-
周晓成. 2011. 汶川 M s8. 0 地震后川西地区的气体地球化学. 中国科技大学博士学位论文.
-
摘要
地热气体是地球内部物质和能量的信息载体,是地热研究的重要对象。地热气体主要包括CO2、H2S、H2、CH4、N2、O2等常量气体和He、Ne、Ar、Kr等稀有气体。这些组分的来源有幔源、壳源和大气源。经过100多年的研究,人类对地热气体的化学成分与同位素组成特征,如2H、13C、34S、3He、 4He、20Ne、39Ar、40Ar、85Kr、81Kr等,获得了基本认识并应用于不同来源气体混合关系,控热构造,热储温度,流体循环,热源构成等问题的研究。此外,气体研究也在地热开发过程中的腐蚀结垢防治和减碳贡献评估等方面有重要意义。近年来,我国在地热气体研究方面取得了显著进展。未来需要统一样品采集、贮存和测试方法,建立相应的技术标准,进而建成归一化标准的地热气体大数据。在碳达峰、碳中和的“双碳”目标的重大需求牵引下,进一步探索地热气体定年、伴生资源成因、控热构造识别等方面的发展,进而为应对气候变化和实现地热能科学可持续开采奠定基础。
Abstract
Geothermal gas plays a significant role in geothermal study because it carries direct information on the material and energy deep within the earth. The research objects of geothermal gas geochemistry include gaseous components, such as CO2, H2S, H2, CH4, N2, O2, etc., noble gases such as He, Ne, Ar, Kr, etc., and corresponding isotopes, such as 2H, 13C, 34S, 3He, 4He, 20Ne, 39Ar, 40Ar, 85Kr, 81Kr, etc. These components mainly originate from mantle, crust and atmosphere. After more than 100 years of research, we can analyze the geological settings controlling the distribution of geothermal fluids and the reservoir temperature. Furthermore, they provide the basis for discussing the circulation mechanism of geothermal fluids, itsheat source and the associated gaseous resources in the geothermal systems. In geothermal engineering, research on gas geochemistry can make a big difference in solving problems of greenhouse gas emission, scaling, and corrosion. Due to the urgent demands for reducing carbon peaks and achieving carbon neutrality goals, we should not only establish technical standards and unify the methods used for sampling, storing, and measuring, but also construct specialized platform for geothermal gas measurement. Combining the existing advantages with the major demands of our country, it is suggested that great importance should be attached to geothermal fluid dating, associated gaseous resource, and identifying of geothermal controlled structure.
Keywords
geothermal gas ; gas geochemistry ; noble gas ; gaseous isotopes ; gaseous geothermometry