en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭旭升,男,1965年生。博士,教授级高级工程师,中国工程院院士,从事石油地质综合研究和勘探工作。E-mail:guoxs@sinopec.com。

参考文献
Angel D L. 1991. Carbon flow within the colonial radiolarian microcosm. Symbiosis, 10: 195~217.
参考文献
Caron D A, Michaels A F, Swanberg N R, Howse F A. 1995. Primary productivity by symbiont-bearing planktonic sarcodines (acantharia, radiolaria, foraminifera) in surface waters near Bermuda. Journal of Plankton Research, (1): 1.
参考文献
Chen Xu, Fan Juanxuan, Zhang Yuandong, et al. 2015. Subdivision and delineation of the Wufeng and Longmaxi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4): 351~358 (in Chinese with English abstract).
参考文献
Chen Zhangming, Zhang Shulin, Wan Guilong. 1988. The formation of structural fissures in the mudstone in Qingshankou Group in the northern part of Gulong sag and a forecast of the distribution of oil and gas pools. Acta Petrolei Sinica, 9(4): 10~18 (in Chinese with English abstract).
参考文献
Curtis M E, Cardott B J, Sondergeld C H. 2012. Development of organic porosity in the Woodford shale with increasing thermal maturity. International Journal of Coal Geology, 103: 26~31.
参考文献
Day Rachel, Jones Brian. 2008. Variations inwater content in opal-A and opal-CT from geyser discharge aprons. Journal of Sedimentary Research, 78(4): 301~315.
参考文献
Dennett M R, Caron D A, Michaels A F, Gallager S M, Davis C S. 2002. Video plankton recorder reveals high abundances of colonial radiolaria in surface waters of the central North Pacific. Journal of Plankton Research, (8): 797~805.
参考文献
Feng Jianhui, Mou Zehui. 2017. Main factors controlling the enrichment of shale gas in Wufeng Formation-Longmaxi Formation in Jiaoshiba area, Fuling shale gas field. China Petroleum Exploration, 3(22): 32~39 (in Chinese with English abstract).
参考文献
Gong Yi, Li Tianyu, Wu Kaikai, Bai Hanyong, Wang Jin, Jin Aimin, Lou Zhanghua, Li Mengyao. 2020. Evaluation of shale gas preservation condition of Wufeng Formation-Longmaxi Formation in Fuling shale gas field. Marine Origin Petroleum Geology, 25(3): 253~262 (in Chinese with English abstract).
参考文献
Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 28~36 (in Chinese with English abstract).
参考文献
Guo Tonglou, He Xipeng, Zeng Ping, Gao Yuqiao, Zhang Peixian, He Guisong. 2020a. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: a case study of Wufeng-Longmaxi Formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(12): 1490~1500 (in Chinese with English abstract).
参考文献
Guo Tonglou, Jiang Shu, Zhang Peixian, Zeng Ping. 2020b. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan basin. Petroleum Exploration and Development, 42(5): 837~845 (in Chinese with English abstract).
参考文献
Guo Wei, Feng Qinglai, Maliha Zareen Khan. 2021. Organic matter enrichment mechanism of black shale in Wufeng-Longmaxi Formations: a case study from Jiaoye 143-5 well at Chongqing. Earth Science, 46(2): 572~582 (in Chinese with English abstract).
参考文献
Guo Xusheng. 2014. Rules of two-factor enrichiment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).
参考文献
Guo Xusheng, Li Yuping, Liu Ruobing, Wang Qingbo. 2014. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan basin. Natural Gas Industry, 34(6): 9~16 (in Chinese with English abstract).
参考文献
Guo Xusheng, Hu Dongfeng, Li Yuping, Wei Zhihong, Liu Zhujiang. 2017. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petroleum Exploration and Development, 44(4): 193~201 (in Chinese with English abstract).
参考文献
Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).
参考文献
He Zhiliang, Nie Haikuan, Zhang Yuying. 2016. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan basin and its adjacent areas. Earth Science Frontiers, 23(2): 8~17 (in Chinese with English abstract).
参考文献
He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction transformation evolution sequence. Natural Gas Geoscience, 5(28): 724~733 (in Chinese with English abstract).
参考文献
Hu Dongfeng, Zhang Hanrong, Ni Kai, Yu Guangchun. 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan basin. Natural Gas Industry, 34(6): 17~23 (in Chinese with English abstract).
参考文献
Hurd D C. 1983. Physical and chemical properties of siliceous skeletons. In: Aston S R, ed. Silicon Geochemistry and Biogeochemistry. London: Academic Press, 187~244.
参考文献
Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.
参考文献
Jiang Yuqiang, Dong Dazhong, Qi Lin, Shen Yanfei, Jiang Chan, He Fuwei. 2010. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, (10): 7~12 (in Chinese with English abstract).
参考文献
Jin Zhijun, Hu Zongquan, Gao Bo, Zhao Jianhua. 2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan basin. Earth Science Frontiers, 23(1): 1~10 (in Chinese with English abstract).
参考文献
Kroger N, Sumper M. 2000. The biogeochemistry of silica formation in di atoms. In: Baeuerlein E, ed. Biomineralization. Weinheim, Germany: Wiley, 151~170.
参考文献
Li Chuanliang, Zhang Jinglian, Du Zhimin. 2007. New viewpoints of the primary migration of oil and gas. Earth Science Frontiers, 14(4): 132~142 (in Chinese with English abstract).
参考文献
Li Wenhou, Liu Yiqun, Yin Fengjuan, Lin Jinyan. 1993. Lower Paleozoic radiolarian siliconites from Liangshan, Nanzheng County, Shanxi Province. Journal of Northwest University, 23(1): 75~77 (in Chinese with English abstract).
参考文献
Liu Wei, Xu Xiaosong, Feng Xintao, Sun Yuanyuan. 2010. Radiolarian siliceous rocks and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the middle-upper Yangtze area. Sedimentary Geology and Tethyan Geology, 30(3): 65~70 (in Chinese with English abstract).
参考文献
Lohr S C, Baruch E T, Hall P A, Kennedy M J. 2015. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Organic Geochemistry, 87(3): 119~132.
参考文献
Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of Nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(11-12): 848~861.
参考文献
Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96 (6): 1071~1098.
参考文献
Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2016. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi Formations in Fuling area, southeastern Sichuan basin. Petroleum Geology & Experiment, 38(4): 460~465+472 (in Chinese with English abstract).
参考文献
Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226~236 (in Chinese with English abstract).
参考文献
Lu Longfei, Liu Weixin, Yu Lingjie, Zhang Wentao, Shen Baojian, Tenger. 2020. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale. Petroleum Geology & Experiment, 42(3): 363~370 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Li Maowen, Cai Xunyu, et al. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~683 (in Chinese with English abstract).
参考文献
Ma Zhongliang, Shen Baojian, Pan Anyang, Borjing Tenger, Ning Chuanxiang, Zheng Lunju. 2020. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi Formations, Sichuan basin: implication from pyrolysis experiments. Petroleum Geology & Experiment, 42(3): 428~433 (in Chinese with English abstract).
参考文献
Milliken K L, Mark R, David N A. 2013. Organic matter-hosted pore system, Marcellus Formation (Devonian) Pennsylyania. AAPG Bulletin, 97(2): 177~200.
参考文献
Mou Chuanlong, Ge Xiangying, Xu Xiaosong, Zhou Kenken, Liang Wei, Wang Xiuping. 2014. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region. Journal of Palaeogeography, 16(4): 427~440 (in Chinese with English abstract).
参考文献
Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012. A study of gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).
参考文献
Qin Jianzhong, Tao Guoliang, Tenger, Bian Lizeng, Xie Xiaomin, Fu Xiaodong. 2010a. Hydrocarbon-forming organisms in excellent marine source rocks in South China. Petroleum Geology & Experiment, 32(3): 262~269 (in Chinese with English abstract).
参考文献
Qin Jianzhong, Shen Baojian, Tao Guoliang, Tenger, Yang Yunfeng, Zheng Lunju, Fu Xiaodong. 2014. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petroleum Geology & Experiment, 36(4): 465~472 (in Chinese with English abstract).
参考文献
Qin Jianzhong, Pan Anyang, Shen Baojian. 2020. Insoluble organic matter in source rocks derived from organic macromolecules in the skeleton, cell wall and shell of organisms. Petroleum Geology & Experiment, 42(6): 946~956 (in Chinese with English abstract).
参考文献
Ran Qi, Chen Yong, Qi Qing, Dong Qingyuan, Fu Zhe. 2017. Preservation conditions of shale gas in Longmaxi Formation of Dingshan area. Petroleum Geology and Engineering, 31(4): 22~25 (in Chinese with English abstract).
参考文献
Rodgers K A, Browne P R L, Buddle T F. 2004. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth-Science Reviews, 66(1-2): 1~61.
参考文献
Shen B, Qin J, Tenger B, Pan A, Yang Y, Bian L. 2018. Identification of bacterial fossils in marine source rocks in South China. Acta Geochimica, 37(1): 68~79.
参考文献
Shen Baojian, Yang Yunfeng, Tenger, Qin Jianzhong, Pan Anyang. 2016. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan basin: a case study of the Wufeng-Longmaxi Formations in well Jiaoye l. Petroleum Geology & Experiment, 38(4): 480~488+495 (in Chinese with English abstract).
参考文献
Tada R. 1991. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Berlin, Germany: Springer, 480~491.
参考文献
Tenger, Shen Baojian, Yu Lingjie, Yang Yunfeng, Zhang Wentao, Tao Cheng, Xi Binbin, Zhang Qingzhen, Bao Fang, Qin Jianzhong. 2017. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan basin, SW China. Petroleum Exploration and Development, 44(1): 69~78 (in Chinese with English abstract).
参考文献
Tenger, Lu Longfei, Yu Lingjie, Zhang Wentao, Pan Anyang, Shen Baojian, Wang Ye, Yang Yunfeng, Gao Zhiwei. 2021. Formation, preservation and connectivity control of organic pores in shale. Petroleum Exploration and Development, 48(4): 787~699 (in Chinese with English abstract).
参考文献
Wang Rui, Zhang Ningsheng, Liu Xiaojuan, Wu Xinmin, Yan Jian. 2013. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas. Journal of Northwest University (Natural Science Edition), 43(1): 75~80 (in Chinese with English abstract).
参考文献
Wei Xiangfeng, Li Yuping, Wei Zhihong, Liu Ruobing, Yu Guangchun, Wang Qingbo. 2017a. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan basin and its periphery. Petroleum Exploration and Development, 39(2): 147~153 (in Chinese with English abstract).
参考文献
Wei Xiangfeng, Zhao Zhengbao, Wang Qingbo, Liu Zhujiang, Zhou Min, Zhang Hui. 2017b. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, southeastern Sichuan. Geological Review, 63 (1): 153~164 (in Chinese with English abstract).
参考文献
Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).
参考文献
Wever D, Picchioni F, Broekhuis A A. 2011. Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Progress in Polymer Science, 36(11): 1558~1628.
参考文献
Yang Zhenheng, Zhai Changbo, Deng Mo, Bao Yunjie, Zhang Peixian, Zhang Qingzhen, Xie Xiaomin. 2019. Characteristics and significance of hydrocarbon-forming organisms of Wufeng-Longmaxi Formation in Pengshui and its adjacent areas. Reservoir Evaluation and Development, 9(5): 40~44+62 (in Chinese with English abstract).
参考文献
Ye Xiwen, Liu Sumei, Zhang Jing. 2003. The determination of biogenic silica and its biogeochemistry significance. Advances in Earth Science, 18(3): 420~426 (in Chinese with English abstract).
参考文献
Zhang Chunming, Zhang Weisheng, Guo Yinghai. 2012. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou. Earth Science Frontiers, 19(1): 136~145 (in Chinese with English abstract).
参考文献
Zhang Fengqi, Wang Zhenliang, Zhong Hongli, Yang Chao, Wang Jiangtao. 2013. Recognitionmodel and contribution evaluation of main overpressure formation mechanisms in sedimentary basin. Natural Gas Geoscience, 24(6): 1151~1158 (in Chinese with English abstract).
参考文献
Zhang Lanlan, Chen Muhong, Xiang Rong, Zhang Lili. 2006. Progress and prospect in research on living radiolarian ecology: a basic study of paleoenviron mental and paleoceanographic reconstructions. Advances in Earth Science, 21: 474~481 (in Chinese with English abstract).
参考文献
Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Wen Xin, Geng Yikai, Yan Caina. 2016. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan basin. Natural Gas Geoscience, 27(2): 376~386 (in Chinese with English abstract).
参考文献
Zhao Wentao, Jing Tieya, Wu Bin, Zhou You, Xiong Xin. 2018. Controlling mechanism of faults on the preservation conditions of shale gas: a case study of Wufeng-Longmaxi Formations in Southeast Chongqing. Natural Gas Geoscience, 29(9): 121~132 (in Chinese with English abstract).
参考文献
Zheng Shucan, Feng Qinglai, Tribovillard N, Servais T, Zhang Yan, Gao Bo. 2020. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: a study from the Qiongzhusi Formation in South China. Journal of Earth Science, 31(1): 181~194.
参考文献
陈旭, 樊隽轩, 张元动, 等. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351~358.
参考文献
陈章明, 张树林, 万龙贵. 1988. 古龙凹陷北部青山口组泥岩构造裂缝的形成及其油藏分布的预测. 石油学报, 9(4): 10~18.
参考文献
冯建辉, 牟泽辉. 2017. 涪陵焦石坝五峰组—龙马溪组页岩气富集主控因素分析. 中国石油勘探, 3(22): 32~39.
参考文献
弓义, 李天宇, 吴凯凯, 包汉勇, 王进, 金爱民, 楼章华, 李梦瑶. 2020. 涪陵页岩气田五峰组—龙马溪组页岩气保存条件评价. 海相油气地质, 25(3): 253~262.
参考文献
郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28~36.
参考文献
郭彤楼, 何希鹏, 曾萍, 高玉巧, 张培先, 何贵松. 2020a. 复杂构造区页岩气藏地质特征与效益开发建议——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(12): 1490~1500.
参考文献
郭彤楼, 蒋恕, 张培先, 曾萍. 2020b. 四川盆地外围常压页岩气勘探开发进展与攻关方向. 石油实验地质, 42(5): 837~845.
参考文献
郭伟, 冯庆来, Maliha Zareen Khan. 2021. 重庆焦页143-5井五峰组—龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572~582.
参考文献
郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.
参考文献
郭旭升, 李宇平, 刘若冰, 王庆波. 2014. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素. 天然气工业, 34(6): 9~16.
参考文献
郭旭升, 胡东风, 李宇平, 魏志红, 魏祥峰, 刘珠江. 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 193~201.
参考文献
郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.
参考文献
何治亮, 聂海宽, 张钰莹. 2016. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析. 地学前缘, 23(2): 8~17.
参考文献
何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 5(28): 724~733.
参考文献
胡东风, 张汉荣, 倪楷, 余光春. 2014. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 34(6): 17~23.
参考文献
蒋裕强, 董大忠, 漆麟, 沈妍斐, 蒋婵, 何溥为. 2010. 页岩气储层的基本特征及其评价. 天然气工业, (10): 7~12.
参考文献
金之钧, 胡宗全, 高波, 赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1~10.
参考文献
李传亮, 张景廉, 杜志敏. 2007. 油气初次运移理论新探. 地学前缘, 14(4): 132~142.
参考文献
李文厚, 柳益群, 尹凤娟, 林晋炎. 1993. 南郑梁山地区下古生界放射虫硅质岩的发现. 西北大学学报, 23(1): 75~77.
参考文献
刘伟, 许效松, 冯心涛, 孙媛媛. 2010. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 30(3): 65~70.
参考文献
卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2016. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义. 石油实验地质, 38(4): 460~465+472.
参考文献
卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226~236.
参考文献
卢龙飞, 刘伟新, 俞凌杰, 张文涛, 申宝剑, 腾格尔. 2020. 生物蛋白石早期成岩演化特征及对硅质页岩孔隙发育与孔径分布的影响. 石油实验地质, 42(3): 363~370.
参考文献
马永生, 黎茂稳, 蔡勋育等. 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~683.
参考文献
马中良, 申宝剑, 潘安阳, 腾格尔, 宁传祥, 郑伦举. 2020. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识. 石油实验地质, 42(3): 428~433.
参考文献
牟传龙, 葛祥英, 徐效松, 周恳恳, 梁薇, 王秀平. 2014. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义. 古地理学报, 16(4): 427~440.
参考文献
聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.
参考文献
秦建中, 陶国亮, 腾格尔, 边立曾, 谢小敏, 付小东. 2010a. 南方海相优质页岩的成烃生物研究. 石油实验地质, 32(3): 262~269.
参考文献
秦建中, 申宝剑, 付小东, 陶国亮, 腾格尔. 2010b. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力. 石油与天然气地质, 31(6): 827~837.
参考文献
秦建中, 申宝剑, 陶国亮, 腾格尔, 仰云峰, 郑伦举, 付小东. 2014. 优质烃源岩成烃生物与生烃能力动态评价. 石油实验地质, 36(4): 465~472.
参考文献
秦建中, 潘安阳, 申宝剑. 2020. 烃源岩中不溶有机质: 源于生物体的骨壁壳有机大分子. 石油实验地质, 42(6): 946~956.
参考文献
冉琦, 陈勇, 齐晴, 董清源, 付柘. 2017. 丁山地区龙马溪组页岩气保存条件分析. 石油地质与工程, 31(4): 22~25.
参考文献
申宝剑, 仰云峰, 腾格尔, 秦建中, 潘安阳. 2016. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨——以焦页1井五峰—龙马溪组为例. 石油实验地质, 38(4): 480~488+495.
参考文献
腾格尔, 申宝剑, 俞凌杰, 仰云峰, 张文涛, 陶成, 席斌斌, 张庆珍, 鲍芳, 秦建中. 2017. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理. 石油勘探与开发, 44(1): 69~78.
参考文献
腾格尔, 卢龙飞, 俞凌杰, 张文涛, 潘安阳, 申宝剑, 王晔, 仰云峰, 高志伟. 2021. 页岩有机质孔隙形成、保持及其连通性的控制作用. 石油勘探与开发, 48(4): 787~699.
参考文献
王德新, 江裕彬. 1996. 在泥页岩中寻找裂缝油, 气藏的一些看法. 西部探矿工程, 8(2): 3.
参考文献
王瑞, 张宁生, 刘晓娟, 吴新民, 闫健. 2013. 页岩气扩散系数和视渗透率的计算与分析. 西北大学学报(自然科学版), 43(1): 75~80.
参考文献
魏祥峰, 李宇平, 魏志红, 刘若冰, 余光春, 王庆波. 2017a. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制. 石油实验地质, 39(2): 147~153.
参考文献
魏祥峰, 赵正宝, 王庆波, 刘珠江, 周敏, 张晖. 2017b. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价. 地质论评, 63 (1): 153~164.
参考文献
魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.
参考文献
杨振恒, 翟常博, 邓模, 鲍云杰, 张培先, 张庆珍, 谢小敏. 2019. 彭水及邻区五峰—龙马溪组成烃生物特征及意义. 油气藏评价与开发, 9(5): 40~44+62.
参考文献
叶曦雯, 刘素美, 张经. 2003. 生物硅的测定及其生物地球化学意义. 地球科学进展, 18(3): 420~426.
参考文献
张春明, 张维生, 郭英海. 2012. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136~145.
参考文献
张凤奇, 王震亮, 钟红利, 杨超, 王江涛. 2013. 沉积盆地主要超压成因机制识别模式及贡献. 天然气地球科学, 24(6): 1151~1158.
参考文献
张兰兰, 陈木宏, 向荣, 张丽丽. 2006. 放射虫现在生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究. 地球科学进展, 21: 474~481.
参考文献
张义纲. 1982. 多种天然气资源的勘探. 石油实验地质, (2): 15~18+10.
参考文献
赵建华, 金之钧, 金振奎, 温馨, 耿一凯, 颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 376~386.
参考文献
赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 2018. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例. 天然气地球科学, 29(9): 121~132.
目录contents

    摘要

    自重庆涪陵焦石坝焦页1井实现我国南方海相页岩气勘探突破后,通过解剖和探索提出了复杂构造区海相页岩气“二元富集”规律的认识。通过“十三五”科技攻关的持续深化研究,进一步阐明了深水陆棚相优质页岩是页岩气“成烃控储”的基础和保存条件是页岩气富集高产的关键的深刻内涵。该套页岩浮游藻类与浮游硅质生物共生、繁盛,硅质生物骨屑的成岩多孔性有利于藻类所生成烃类的原位滞留和后期裂解形成有机孔隙的大量发育与保存,而顶底板封堵条件与后期构造运动强弱是页岩气富集保存的关键要素,揭示了海相页岩气“源储一体,早期滞留,原位富集,晚期改造”的富集保存机理,明确了复杂构造区海相页岩气勘探的目标与方向。深层、常压和陆相页岩气将是四川盆地及周缘页岩气勘探开发的重要接替领域,“十四五”期间四川盆地页岩气勘探将有望得到更大的快速发展。

    Abstract

    After JY1 well achieved a breakthrough in marine shale gas exploration in South China, the understanding of the law of “binary enrichment” of marine shale gas in complex structural areas is proposed through anatomy and exploration. Through continuous and in-depth research on the key scientific and technological problems in the “13th five year plan” period, it is further clarified that the high-quality shale of deep-water continental shelf facies is the basis of “hydrocarbon generation and storage control” of shale gas, and the preservation condition is the key profound connotation of shale gas enrichment and high yield. The set of shale planktonic algae and planktonic siliceous organisms coexisted and flourished. The diagenetic porosity of siliceous biological bone debris is conducive to the in-situ retention of hydrocarbons generated by algae and the development and preservation of a large number of organic pores formed by late pyrolysis. The sealing conditions of roof and floor and the strength of later tectonic movement are the key factors for shale gas enrichment and preservation. It reveals the enrichment and preservation mechanism of marine shale gas “integration of source and reservoir, early retention, in-situ enrichment and late transformation”, and defines the target and direction of marine shale gas exploration in complex structural areas. Deep, atmospheric and continental shale gas will be an important replacement field for shale gas exploration and development in and around Sichuan Basin. During the “14th five year plan” period, shale gas exploration in Sichuan Basin is expected to develop more rapidly.

  • 中国南方海相页岩气资源潜力巨大。随着涪陵、威荣、威远、长宁、昭通等页岩气区(田)的不断扩大,志留系、寒武系、震旦系、二叠系和石炭系等勘探层系的不断增多,勘探深度不断加深(从3000 m中浅层向4000~5000 m发展),我国南方海相地层展现出良好的油气勘探开发前景(郭旭升等,2020)。通过多年油气勘探开发的探索与实践,针对我国南方海相页岩已经形成了一系列的基础理论和技术方法,从海相页岩的沉积环境、储集层特征、富集成藏主控因素等多个方面,有效地指导页岩气区(田)实现规模化商业开采。中国南方多套产层往往经历了多期强烈构造改造,使页岩气的形成和成藏复杂化(郭彤楼等,2020a),随着勘探程度越来越高,页岩气勘探理论有待进一步深化,使未来的发展具有紧迫性和挑战性。本文基于海相页岩近十年在中国南方重点层系的研究成果,总结了海相页岩气勘探历程和勘探开发技术理论的发展,并展望“十四五”期间的发展趋势和方向,以期继续指导中国海相页岩气勘探和开发稳产,推进国家绿色清洁能源勘探。

  • 1 勘探历程

  • 中国南方海相页岩气的勘探历程主要经历了两个阶段。

  • 第一阶段:学习和探索。2000年以来,随着美国页岩勘探开发突破助推美国能源独立。我国在20世纪油气勘探过程中,曾在许多盆地发现过泥页岩油气藏,部分学者对此还进行过研究,一般按泥页岩裂缝性油气藏进行评价(陈章明等,1988; 王德新等,1996)。1982年,张义纲教授在“多种天然气资源的勘探”文中首次阐述了页岩气气藏特征及工程工艺技术(张义刚,1982)。不同机构评价认为中国页岩气资源丰富,估算可采资源量10.0~36.1万m3,位居世界前列。随后,2011年页岩气成为独立矿种,国内外各界纷纷涌入21个区块招标,16家非油企业中标,9个区块开展对外合作。借鉴北美的勘探经验,重点对我国海相页岩进行选区评价研究,主要对页岩层段生气、储气和易开采性3个方面进行评价,先后实施钻探页岩气井120余口,勘探效果不理想,页岩气勘探开发进入低谷。北美以生烃能力和可压裂性为核心的页岩气勘探理论,是基于页岩处于生烃高峰期和相对稳定的地质条件背景。而我国对南方海相页岩气成藏的基本条件与关键要素缺乏了解,没有现成的勘探指导理论,也没有形成适用的地质评价方法与关键技术手段,仅通过照搬北美的成功经验开展页岩气勘探,未能获得规模商业发现。“准备不实”是早期钻探失利的主要原因。

  • 第二阶段:突破与发展。“十二五”期间,中国石化勘探分公司针对我国南方海相页岩的热演化程度高、后期经历多期构造改造、地表条件复杂等特点,系统开展南方海相页岩气的理论与技术攻关,发现了五峰组—龙马溪组深水陆棚相优质页岩气关键参数耦合规律,形成中国南方海相页岩气“二元富集”理论认识。2012年11月中国石化勘探分公司在重庆焦石坝地区部署的首口海相页岩气探井焦页1井测试获产页岩气20.3万m3/d,继而发现涪陵页岩气田,该气田探明地质储量6008亿m3,成为除了美国之外首个获商业开发的页岩气田,实现我国页岩气战略突破。

  • 至2020年底,国内石油公司相继在四川盆地及周缘地区发现威远、长宁、昭通、威荣和永川等多个具商业规模的页岩气田,合计探明地质储量1.81万亿m3,建成约200亿m3年产能。近期又陆续在盆缘复杂构造区和盆外常压区等南方外围地区试获页岩气工业气流,展示出我国页岩气的快速发展状态和良好勘探前景。

  • 2 页岩气“二元富集”理论的内涵及发展

  • 2.1 页岩气“二元富集”理论的内涵

  • “二元富集”理论紧紧抓住页岩气具有源储一体与自生自储的特征,明确了深水陆棚相优质页岩发育是页岩气成烃控储的基础,良好的保存条件是页岩气成藏控产的关键(郭旭升,2014),从物质基础到保存条件,为我国南方海相页岩气勘探提供基本理论支撑。其中,深水陆棚相页岩具有厚度大、TOC高、孔隙度高、含气量高、硅质含量高和易压裂等特点,是页岩气富集高产的基础(郭旭升,2014),通过明确有利的岩相类型解决了页岩储层选层难题; 由于页岩岩性致密并且多为连续沉积,属于具有良好自封闭能力的低渗储层,结合良好的顶底板条件和较弱的后期构造改造作用,利于烃类滞留成藏与高压保存。通过对页岩内油、气、压力演化史的剖析,揭示了页岩气“早期滞留、晚期改造”的动态保存机理。

  • 2.2 深水陆棚相优质页岩发育是页岩气成烃控储的基础

  • 晚奥陶世五峰期—早志留世龙马溪早期,四川盆地及周缘发育了大套的暗色碳质泥页岩、碳质笔石泥页岩夹薄层泥质粉砂岩,属浅海滨外陆棚相沉积(张春明等,2012),可进一步划分出浅水陆棚和深水陆棚2种亚相(郭彤楼等,2014)。其中,深水陆棚富有机质页岩主要发育于五峰组—龙马溪组一段一亚段,总有机碳含量平均达到3.6%,硅质矿物平均含量达到49.0%(郭旭升等,2020),均大于龙马溪组一段一亚段—二亚段浅水陆棚泥岩,具有高总有机碳与高硅质含量对应的关系(郭旭升等,20172020)。

  • 成烃生物作为油气原始物质来源的烃源岩中的成烃母质,其数量可以预测有机质丰度,其类型决定了生烃潜力的差异,因此成烃生物类型的准确鉴定以及丰度的定量分析对泥页岩生烃能力评价非常重要(申宝剑等,2016)。前期通过超显微有机岩石学分析技术对四川盆地及周缘五峰组—龙马溪组高演化烃源岩的分析,识别出成烃生物主要是浮游藻类、底栖藻类、疑源类、细菌、笔石、放射虫等(申宝剑等,2016; 腾格尔等,2017; Shen et al.,2018; 杨振恒等,2019),但大多以定性识别为主。

  • 近年来,通过将孢粉相分析与微体古生物学分类鉴定、超显微成烃生物识别技术相结合,不仅可以全面鉴定各种有机质类型和生物种类,而且可以定量查明有机质的时空非均质性(Zheng Shucan et al.,2020)。以川南地区X井为例(图1),五峰组—龙马溪组页岩成烃生物以无定形组成为主,其主要由藻类等低等水生生物降解形成,其含量普遍在70%以上,动物型有机体(笔石与几丁虫)、藻类碎片和疑源类含量相对较低。总有机碳含量和化石丰度从下至上皆呈逐步下降趋势,大致可分成4个阶段,其中第I阶段为①小层至③小层的下段,第II阶段为③小层上段和④小层,第III阶段为⑤和⑥小层,第IV阶段为⑦至⑨小层。在4个阶段中,总有机碳含量与微体植物化石总丰度呈正相关,总有机碳含量与单个植物微体化石的丰度变化曲线吻合度不高表明有机质非某一微体植物提供,在总有机碳含量高的第I、II阶段,其变化曲线与布丁球藻 Buedingiisphaeridium、光面球藻Leiosphaeridia、波口藻Cymatiogalea化石含量变化曲线吻合,可能为最主要的成烃母质。而究其为何经历过复杂地质演化过程后,仍能高丰度保存下来,则与古生产力和沉积环境密切相关。前人研究表明,五峰组—龙马溪组富有机质页岩主要形成于克拉通内坳陷深水陆棚滞留闭塞环境,火山活动频繁发育,气候温暖湿润,具有较高的古生产力; 同时,沉积水体为缺氧硫化、富硅,沉积速率中—较低,持续性保持强还原环境,为有机质提供了优良保存条件(何治亮等,2016; 郭旭升等,2017; 郭伟等,2021)。

  • 图1 川南地区X井五峰组—龙马溪组页岩成烃生物分布柱状图

  • Fig.1 Histogram of hydrocarbon-forming organisms distribution of shale from Wufeng Formation-Longmaxi Formation in well X in southern Sichuan

  • 从成烃生物有机质类型来看,现代藻类热压模拟实验表明,浮游藻类和底栖藻类的生烃潜力分别相当于I型和II1型干酪根(秦建中等,2010,2014); 烃源岩中生物体残余有机骨壁壳及其碎屑(包括笔石)在高—过成熟早期可具有约与III型干酪根或镜质组相当的生烃能力(马中良等,2020; 秦建中等,2020)。由于发育有良好的成烃生物组合类型,因此五峰组—龙马溪组深水陆棚相优质页岩具有良好的生烃潜力(郭旭升,2014; 郭旭升等,2017)。

  • 四川盆地深水陆棚相优质页岩具有非常明显的高硅质特征,诸多研究发现其中的硅质矿物(石英)主要为生物成因(李文厚,1993; 秦建中等,2010; 卢龙飞等,2018),电镜下可识别出大量具有较明显生物结构的放射虫和海绵骨针等硅质生物碎屑与骨骸(卢龙飞等,2016),同时Si/Al和Si/Ti等元素比值与显微阴极发光特征均指示为生物成因(赵建华等,2016)。在纵向上硅质生物,尤其是放射虫在深水陆棚相优质页岩底部最为丰富,向上数量逐渐减少,与其相对应页岩中的硅质矿物含量也随之逐渐降低(卢龙飞等,2018)。放射虫可以利用伪足吸纳很多浮游藻类在自己囊体的空腔内(Angel,1991; Caron et al.,1995; Dennett et al.,2002; 张兰兰等,2006),彼此相互依赖共生,并通过单体的大量聚集形成数米长的集合体,从而形成良好的共生系统(Wever et al.,2011)。正是由于共生集合的繁盛,深水陆棚相优质页岩不仅TOC含量高,而且硅质含量也较高,涪陵、丁山与威远地区优质液压TOC普遍大于2%,硅质含量普遍高于40%,具有高碳高硅特征,显示出有机碳与硅质的良好对应关系(郭旭升等,2014; 魏祥峰等,2020)。

  • 硅质生物通过吸收溶解态硅和分泌硅质氧化物形成硅质骨骼,主要由含水的非晶态SiO2(蛋白石)组成(Hurd et al.,1983; Kroger et al.,2000)。成岩研究表明其稳定性较低,成岩转化迅速,进入沉积地层后在低温压条件下即快速脱水(Tada,1991; 叶曦雯等,2003),逐步向稳定的矿物相晶态石英转化(Rodgers et al.,2004; Day et al.,2008)。这种重结晶作用与机械压实作用基本同步进行,对页岩物性改造作用强,在原生孔隙部分减小的同时又使页岩硬度增大,生物成因硅质在向晶体石英转化过程中形成的大量石英颗粒在压实和自身胶结作用下相互接触构成整体刚性的格架,从而形成了一个有效应力支撑系统(卢龙飞等,2018),硅质页岩的抗压实能力大大增强,能够有效抵御压实作用的继续破坏,使较多孔隙得以良好保存,为后期液态烃类的原位滞留提供了充足的空间(卢龙飞等,2020)。

  • 自在北美海相页岩中发现大量有机孔隙后,大量研究不断证实有机孔隙是海相页岩中最重要的孔隙类型(Loucks et al.,2009; Curtis et al.,2012; Loucks et al.,2012; Milliken et al.,2013),它们主要由有机质热成熟生烃作用和滞留烃类热裂解作用形成(Loucks et al.,20092012; Milliken et al.,2013; Löhr et al.,2015)。对五峰组—龙马溪组深水陆棚相优质页岩的研究发现除少部分原生有机孔隙外,大部分有机孔隙主要发育于充填于矿物颗粒粒间孔隙和微裂缝的裂解沥青中,多呈气泡状或海绵状(郭旭升,2014; 腾格尔等,2021)。当有机质成熟液态烃开始生成时,由于生物成因硅质快速成岩作用控制下的石英粒间孔隙的存在,大量烃类得以原位滞留(卢龙飞等,2020)。随着热演化程度的不断增高,滞留于孔隙中的液态烃开始裂解生气并转化为热解沥青,一方面烃类转化为热解沥青后充填了孔隙,另一方面气体在热解沥青内膨胀占位而形成孔隙,实现了热解沥青的内部扩容。

  • 古地理研究表明该时期盆地受周边挤压作用,黔中古隆起及川中古隆起继续隆升,围限了中上扬子海域,使其成为一个局限海湾或海盆(刘伟等,2010; 牟传龙等,2014; 陈旭等,2015),由古隆起围限的深水沉积环境和盆缘火山活动的影响极有利于硅质生物与浮游藻类的繁盛。浮游藻类是优质的生烃母质,而硅质生物结构疏松多孔,在成岩过程中快速由蛋白石向石英晶体转化,保持了较多原生孔隙,极有利于浮游藻所生成烃类的原位滞留和后期裂解所形成有机孔隙的大量发育与保存,具有良好的源储协同演化过程与页岩气源储一体式原位富集特征。

  • 2.3 保存条件是页岩气富集高产的关键

  • 对于我国复杂的地质条件来说,尤其是四川盆地及其周缘地区在经历加里东、海西、印支和喜马拉雅等多期的复杂构造运动后,强烈的晚期改造作用对页岩顶底板、自封闭性造成破坏,成为影响页岩气井高产、稳产的关键因素之一(魏祥峰等,2017a)。在不同构造、成岩演化阶段,顶底板的岩石力学行为,包括物性变化、脆-延转换和裂缝系统形成演化过程中导致基质孔隙、微裂缝封闭能力的变化,是造成复杂构造区不同地区、不同层位或深度页岩气保存条件差异性的主要原因(聂海宽等,2012; 胡东风等,2014; 金之钧等,2016; 郭旭升等,2017; 赵文韬等,2018)。有关页岩气保存条件的评价主要是基于对宏观地质因素的分析,魏祥峰等(2017a)认为顶底板封闭性和页岩的自封闭性是四川盆地及周缘页岩气滞留于页岩层系的关键因素,研究区后期构造改造强度及所持续的时间对页岩含气量具有明显的调整和改造作用。冉琦等(2017)对丁山地区广泛开展页岩气保存条件的评价研究,认为断裂发育程度、构造样式、顶底板条件、地层接触关系及剥蚀程度等对页岩气保存具有重要影响。

  • “十三五”期间,进一步加强了顶底板封堵条件及后期构造运动对页岩气保存条件的研究,明确了保存条件是页岩气富集高产的关键因素。

  • 2.3.1 页岩顶底板封堵条件是页岩气早期滞留的关键

  • 页岩顶底板通常具有岩石结构致密、突破压力高等特征(聂海宽等,2012; 弓义等,2020),在生烃过程中能够有效抑制烃类的纵横向散失,从而促进页岩气滞留成藏、相态转化及高压保持,是页岩气富集的关键要素。

  • (1)水平层理和微裂缝是页岩气散失的主要通道:渗流与扩散作用伴随页岩生烃演化的整个历史时期,是油气运移的两种基本形式(李传亮等,2007)。与常规油气储层不同,页岩油气自生自储,孔隙以纳米级为主,具有低孔特低渗、非均质性强和页理发育等特征(Jarvie et al.,2007; 蒋裕强等,2010)。页岩中的黏土矿物塑性较强,在地层强烈的机械压实作用下,通过叠加与形变逐渐趋向于沿平行层理面的方向定向排列,从而发育页理,这导致页岩层理方向更容易收到地应力作用而增大水平渗透率。如图2所示,焦页4井龙马溪组页岩的水平渗透率远大于垂直渗透率,这反映出平行层理面方向的孔隙连通性和微裂隙的发育程度要好于垂直层理面方向(胡东风等,2014)。因此,页岩水平渗透率高是造成页岩气横向渗流速率大的直接原因。页岩气在遭受强烈的构造作用或靠近地层剥蚀带位置时,通常导致页岩孔隙度和渗透率增大,地层压力降低,甲烷扩散系数增大,其横向扩散及渗流作用对页岩气的保存将产生不利的影响。

  • (2)连续厚度大、岩性致密的顶底板条件有利于页岩气封隔与保存:顶底板为直接与含气页岩层段接触的上覆及下伏地层,其与页岩气层间的接触关系和岩石结构的致密性对含气页岩的保存条件非常关键,优越的顶底板条件是页岩气层具有良好保存条件的基础。五峰组—龙马溪组页岩气层与其顶底板连续沉积。顶底板厚度大、展布稳定、岩性致密、突破压力高、封隔性好(冯建辉等,2017)。顶板主要为龙马溪组二段的粉砂岩、泥质粉砂岩,地层厚度约为50 m,孔隙度平均值为2.4%,渗透率平均值为0.0016×10-3 μm2,在80℃条件下,地层突破压力为69.8~71.2 MPa(胡东风等,2014); 底板主要为临湘组和宝塔组连续沉积的瘤状灰岩,区域上分布稳定,空间展布范围较广,岩性同样致密并且物性较差,孔隙度平均值为1.58%,渗透率平均值为0.0017×10-3 μm2,在80℃条件下,地层突破压力为64.5~70.4 MPa(胡东风等,2014); 以上特征表明五峰组—龙马溪组一段页岩气层优越的顶底板条件有利于页岩气封隔与保存。

  • 图2 焦页4井水平渗透率与垂直渗透率统计直方图(据胡东风等,2014

  • Fig.2 Statistical histogram of horizontal permeability and vertical permeability of Jiaoye4 well (after Hu Dongfeng et al., 2014)

  • 2.3.2 后期构造运动强弱是页岩气富集的关键要素

  • 一般来说,构造活动越强,地层抬升幅度越大,页岩气散失作用也就越强烈,此外,构造活动时间越早,对页岩气的散失影响也越大。构造活动通过改造地层构造样式,进而控制页岩气散失,导致页岩含气性差异较大(魏祥峰等,2017a; 何治亮等,2017)。因此,后期构造运动改造强度是影响页岩气藏破坏与散失的重要因素。

  • 地层的抬升和剥蚀作用通常会造成上部岩层厚度变小,甚至出露地表。由于上覆压力降低而打破压力的平衡状态,在孔隙流体压力与构造应力的共同作用下,原有裂缝的张开和新裂缝的形成均会导致烃类物质渗流散失。在页岩气层抬升和剥蚀过程中,随着埋深减小导致上覆压力降低、渗透率增大,造成页岩气因渗流和扩散作用增强而大量散失。相关研究表明,页岩有效扩散系数与其渗透率存在明显的指数关系(王瑞等,2013),原因在于这两者均反映的是岩石孔隙的连通状况。页岩气扩散系数与页岩孔隙度之间并没有明显的相关性,这是由于页岩具有强烈的非均质性特征。随着页岩气层抬升,纵向上页岩孔隙连通性变好,基质渗透率升高,页岩气扩散速率增大。同时抬升剥蚀造成页岩气层埋藏变浅,当围压下降到一定压力(16.6 MPa),岩石发生剪切破裂,产生微裂缝(胡东风等,2014)。推测页岩气层在持续的抬升剥蚀过程中,微裂缝大量产生,页岩气通过渗流方式快速散失,导致页岩气层的封闭性被破坏。涪陵、丁山、南天湖等地区页岩气勘探实践显示(郭旭升等,2017; 魏祥峰等,2017b2020),断裂及其伴生裂缝发育是影响页岩气保存的关键因素。

  • 邻近露头区和断裂带的页岩气侧向逸散强,封闭断裂、断向斜对页岩气封存起积极作用。四川盆地东南缘地区在多旋回构造改造过程中,整体海相构造层形变作用较强,剥蚀量基本大于4500 m,这导致多个区域的海相页岩气勘探目的层出露地表(胡东风等,2014)。

  • 2.3.3 不同构造演化时期页岩气保存条件动态演化特征

  • 对川东南地区龙马溪组地层压力及其含气性数值模拟分析的基础上,结合前述地质解剖,总结了川东南地区地层压力、保存条件与含气性的演化模式(图3)。

  • 从早三叠世到中侏罗世,成熟度迅速增大到0.7%~1.3%,五峰组—龙马溪组进入液态烃生成的高峰期。烃类的大量生成伴随着三叠纪期间地层的快速埋藏导致孔隙流体排出不畅,形成超压。中侏罗世—早白垩世,五峰组—龙马溪组处于快速埋藏的状态,生成大量的湿气及原油裂解气。在机械压实作用和天然气形成导致孔隙流体体积增大的基础上,超压进一步增大。侏罗纪末期烃源岩成熟度达到2.0%,此时液态烃基本已经裂解为干气。早白垩世龙马溪组继续处于快速埋深阶段,成熟度最大可达到2.6%左右,残余干酪根进一步裂解为天然气。在早白垩世末期,龙马溪组达到最大埋深时期,埋藏深度最大可超过7000 m,地层压力和含气饱和度也达到最大值。对于超压成因而言,该阶段主要为页岩机械压实不均衡和有机质生气作用,并且两者的贡献程度基本接近。晚白垩世以来,五峰组—龙马溪组处于构造抬升阶段,页岩气层由埋深约7000~6000 m抬升剥蚀至目前的2000~3500 m左右。在晚燕山期—喜马拉雅期,由于侧向构造应力使得地层发生褶皱变形,根据前述研究分析可知,在抬升剥蚀过程中构造应力应该是有效的增压机制之一(张凤奇等,2013),其增压效率一般不超过构造应力大小的50%。在后期大规模抬升剥蚀过程中,页岩不再发生进一步的垂向压实,并且此时烃源岩生烃作用基本停止,在抬升剥蚀过程中发生超压的调整演化。由于页岩压实作用的不可逆性,在抬升剥蚀过程中页岩孔隙会发生微弱变化,同时抬升剥蚀导致地层温度降低,这些都会在一定程度上降低地层压力。天然气的扩散作用会导致地层压力的降低以及含气饱和度的减小。当页岩含气量相对较高时,由于天然气特殊的性质,在抬升剥蚀卸载过程中会发生明显的体积膨胀,导致超压的形成。尽管在一定程度上含气饱和度会降低,但是整体页岩中仍然具有相对较高的含气饱和度。

  • 图3 川东南地区龙马溪组页岩超压与含气性演化模式

  • Fig.3 Overpressure and gas bearing evolution model of Longmaxi formation shale in Southeast Sichuan

  • 总体上,自燕山期构造运动以来五峰组—龙马溪组页岩随地层埋深的快速增加,其地层温度、压力随之升高,于晚燕山期达到生气高峰并且热演化定型,页岩含气饱和度达到最大(75%左右); 晚燕山期—喜马拉雅期,随着地层抬升剥蚀其温度、压力随之降低,页岩气随着裂缝的形成发生扩散散失,页岩含气饱和度降低至60%左右。前期研究显示,四川盆地及其周缘是我国南方海相页岩气保存条件较为有利的地区(郭旭升,2014; 郭旭升等,2017)。在实际勘探过程中,无论在盆内还是盆缘都需要结合区域构造背景和沉积演化过程进行具体分析。这是由于不同构造部位的保存条件存在差异性,会导致页岩气藏压力系统的不同,最终影响页岩气富集程度和开发效果(郭旭升,2014)。保存条件机理的揭示丰富了页岩气富集理论内涵:顶底板封闭性好是基础,保证了生烃增压和大量烃类滞留,晚期构造改造弱是烃类膨胀增压保持及页岩气富集的关键。

  • 3 中国南方页岩气勘探展望

  • 随着中浅层页岩气勘探开发的顺利推进,今后深层、常压及陆相页岩气是重要的战略接替领域,也需要进一步加强页岩气勘探理论的研究。

  • 3.1 深化深层页岩气“超压富气”理论

  • 我国南方深层页岩气地质条件好、勘探面积和资源潜力大,随着勘探开发的进一步加快,走向深层是四川盆地及周缘页岩气可持续发展的必然之路(马永生等,2020)。对于现今埋深大于4 km的深层页岩气,高温、高压条件下深层页岩气有效储层的形成与保存机理及持续埋深过程中的源储协同演化过程与保存过程(生、排、滞、保)尚不明确,深层页岩气赋存相态和多相态流动机理也还缺乏系统性认识,极大地制约了深层页岩气高效勘探和效益开发(马永生等,2020)。

  • 我国南方五峰组—龙马溪组页岩最大古埋深高达7 km以上,经历了漫长、复杂的有机质热成熟作用、无机矿物成岩演化过程和多期构造运动叠加改造,深层页岩孔隙形成与有效保存和超压条件的形成与保持是深层页岩气富集的关键控制因素。“十四五”期间应立足于中浅层页岩气研究成果之上,开展深层页岩有效储层形成与保存机理、源储协同演化过程和深层页岩气富集主控因素及分布规律综合攻关,剖析深层页岩高温高压条件下脆延特性转换特征与有机孔隙保存特征,探讨深层页岩源-储动态演化过程,研究异常高压形成机制与保持条件,揭示深层页岩气富集与保存机理。

  • 3.2 聚焦复杂构造区常压页岩气勘探

  • 我国常压页岩气在勘探开发方面还处于初级阶段,华东油气分公司在桑柘坪、武隆等残留向斜获得工业气流外,其他地区尚未取得实质性突破(郭彤楼等,2020a)。从页岩形成的物质基础来看,跟盆内焦石坝地区相差不是太大(郭彤楼等,2020b),后期构造保存条件是制约常压页岩气勘探开发最重要的因素,页岩气保存的关键在于页岩层系微孔隙的自身封闭油气的有效性,应加强两方面研究:一是构造演化过程中关键时间的有效匹配与页岩气保存条件半定量—定量研究,包括埋藏-抬升过程中封闭天然气能力形成时期、生排烃高峰期和后期构造强烈改造时间等关键时期的动态匹配,以及后期构造改造强度,包括抬升剥蚀、断层、构造样式、岩浆活动和水动力作用等对页岩气保存影响机制。二是宏观构造演化过程与微观保存机理的研究:在不同构造、成岩演化阶段,富有机质页岩层系尤其富含气层段及顶底板的岩石力学行为包括物性变化、脆-延转换和裂缝系统形成演化等明显不同,并在此过程中导致基质孔隙、微裂缝封闭能力的演化所产生的保存程度或散失机制不同,这是复杂构造区不同层位、不同地区或深度页岩气保存条件差异性的主要原因之一。

  • 3.3 探索侏罗系陆相页岩油气接替领域

  • 四川盆地陆相页岩油气主要发育在中下侏罗统,包括凉高山组(千佛崖组)和自流井组的东岳庙段、大安寨段。深湖-半深湖相泥页岩层系为主要的优质层段,分布广泛,具有较好的物质基础和储集条件,尽管从有机碳含量、有机质类型等地化指标上来看与海相比还有些差距,但陆相地层埋深普遍不深,经历的构造运动相对简单,保存条件好,微裂缝相对更为发育,因此可以成为继海相五峰组—龙马溪组之后重要的接替勘探目标。目前的勘探进展也预示了四川盆地陆相页岩油气具有较大的发展前景。同时,四川盆地陆相页岩油气勘探仍面临着较大的挑战,如相变快、岩性组合复杂,黏土含量高、可压性较差,油气同产、原位相态复杂等。下一步需要从沉积微相、非均质性特征、含油气性评价、压裂技术改进和增产提效等诸多方面继续开展深入研究。

  • 4 结论

  • (1)四川盆地中浅层页岩气的勘探开发取得突破性进展,在深层、常压也取得积极的进展,今后页岩气勘探开发需要进一步深化“二元富集理论”的研究,充分运用静态与动态分析、宏观与微观分析相结合的方法,揭示构造活动与页岩孔-缝结构和页岩气保存的内在联系。

  • (2)针对深层和常压需要加强页岩孔隙保持与页岩气宏观保存条件各种要素的定性—半定量—定量化的研究工作,从而优选出页岩气勘探开发有利区; 针对四川盆地陆相侏罗纪地层具有非均质性强、加强油气并举的特征,需要加强甜点层段优选参数攻关研究,从而为选区评价提供可靠的依据。

  • 参考文献

    • Angel D L. 1991. Carbon flow within the colonial radiolarian microcosm. Symbiosis, 10: 195~217.

    • Caron D A, Michaels A F, Swanberg N R, Howse F A. 1995. Primary productivity by symbiont-bearing planktonic sarcodines (acantharia, radiolaria, foraminifera) in surface waters near Bermuda. Journal of Plankton Research, (1): 1.

    • Chen Xu, Fan Juanxuan, Zhang Yuandong, et al. 2015. Subdivision and delineation of the Wufeng and Longmaxi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4): 351~358 (in Chinese with English abstract).

    • Chen Zhangming, Zhang Shulin, Wan Guilong. 1988. The formation of structural fissures in the mudstone in Qingshankou Group in the northern part of Gulong sag and a forecast of the distribution of oil and gas pools. Acta Petrolei Sinica, 9(4): 10~18 (in Chinese with English abstract).

    • Curtis M E, Cardott B J, Sondergeld C H. 2012. Development of organic porosity in the Woodford shale with increasing thermal maturity. International Journal of Coal Geology, 103: 26~31.

    • Day Rachel, Jones Brian. 2008. Variations inwater content in opal-A and opal-CT from geyser discharge aprons. Journal of Sedimentary Research, 78(4): 301~315.

    • Dennett M R, Caron D A, Michaels A F, Gallager S M, Davis C S. 2002. Video plankton recorder reveals high abundances of colonial radiolaria in surface waters of the central North Pacific. Journal of Plankton Research, (8): 797~805.

    • Feng Jianhui, Mou Zehui. 2017. Main factors controlling the enrichment of shale gas in Wufeng Formation-Longmaxi Formation in Jiaoshiba area, Fuling shale gas field. China Petroleum Exploration, 3(22): 32~39 (in Chinese with English abstract).

    • Gong Yi, Li Tianyu, Wu Kaikai, Bai Hanyong, Wang Jin, Jin Aimin, Lou Zhanghua, Li Mengyao. 2020. Evaluation of shale gas preservation condition of Wufeng Formation-Longmaxi Formation in Fuling shale gas field. Marine Origin Petroleum Geology, 25(3): 253~262 (in Chinese with English abstract).

    • Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 28~36 (in Chinese with English abstract).

    • Guo Tonglou, He Xipeng, Zeng Ping, Gao Yuqiao, Zhang Peixian, He Guisong. 2020a. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: a case study of Wufeng-Longmaxi Formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(12): 1490~1500 (in Chinese with English abstract).

    • Guo Tonglou, Jiang Shu, Zhang Peixian, Zeng Ping. 2020b. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan basin. Petroleum Exploration and Development, 42(5): 837~845 (in Chinese with English abstract).

    • Guo Wei, Feng Qinglai, Maliha Zareen Khan. 2021. Organic matter enrichment mechanism of black shale in Wufeng-Longmaxi Formations: a case study from Jiaoye 143-5 well at Chongqing. Earth Science, 46(2): 572~582 (in Chinese with English abstract).

    • Guo Xusheng. 2014. Rules of two-factor enrichiment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Liu Ruobing, Wang Qingbo. 2014. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan basin. Natural Gas Industry, 34(6): 9~16 (in Chinese with English abstract).

    • Guo Xusheng, Hu Dongfeng, Li Yuping, Wei Zhihong, Liu Zhujiang. 2017. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petroleum Exploration and Development, 44(4): 193~201 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Zhang Yuying. 2016. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan basin and its adjacent areas. Earth Science Frontiers, 23(2): 8~17 (in Chinese with English abstract).

    • He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction transformation evolution sequence. Natural Gas Geoscience, 5(28): 724~733 (in Chinese with English abstract).

    • Hu Dongfeng, Zhang Hanrong, Ni Kai, Yu Guangchun. 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan basin. Natural Gas Industry, 34(6): 17~23 (in Chinese with English abstract).

    • Hurd D C. 1983. Physical and chemical properties of siliceous skeletons. In: Aston S R, ed. Silicon Geochemistry and Biogeochemistry. London: Academic Press, 187~244.

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Jiang Yuqiang, Dong Dazhong, Qi Lin, Shen Yanfei, Jiang Chan, He Fuwei. 2010. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, (10): 7~12 (in Chinese with English abstract).

    • Jin Zhijun, Hu Zongquan, Gao Bo, Zhao Jianhua. 2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan basin. Earth Science Frontiers, 23(1): 1~10 (in Chinese with English abstract).

    • Kroger N, Sumper M. 2000. The biogeochemistry of silica formation in di atoms. In: Baeuerlein E, ed. Biomineralization. Weinheim, Germany: Wiley, 151~170.

    • Li Chuanliang, Zhang Jinglian, Du Zhimin. 2007. New viewpoints of the primary migration of oil and gas. Earth Science Frontiers, 14(4): 132~142 (in Chinese with English abstract).

    • Li Wenhou, Liu Yiqun, Yin Fengjuan, Lin Jinyan. 1993. Lower Paleozoic radiolarian siliconites from Liangshan, Nanzheng County, Shanxi Province. Journal of Northwest University, 23(1): 75~77 (in Chinese with English abstract).

    • Liu Wei, Xu Xiaosong, Feng Xintao, Sun Yuanyuan. 2010. Radiolarian siliceous rocks and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the middle-upper Yangtze area. Sedimentary Geology and Tethyan Geology, 30(3): 65~70 (in Chinese with English abstract).

    • Lohr S C, Baruch E T, Hall P A, Kennedy M J. 2015. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Organic Geochemistry, 87(3): 119~132.

    • Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of Nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(11-12): 848~861.

    • Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96 (6): 1071~1098.

    • Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2016. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi Formations in Fuling area, southeastern Sichuan basin. Petroleum Geology & Experiment, 38(4): 460~465+472 (in Chinese with English abstract).

    • Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226~236 (in Chinese with English abstract).

    • Lu Longfei, Liu Weixin, Yu Lingjie, Zhang Wentao, Shen Baojian, Tenger. 2020. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale. Petroleum Geology & Experiment, 42(3): 363~370 (in Chinese with English abstract).

    • Ma Yongsheng, Li Maowen, Cai Xunyu, et al. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~683 (in Chinese with English abstract).

    • Ma Zhongliang, Shen Baojian, Pan Anyang, Borjing Tenger, Ning Chuanxiang, Zheng Lunju. 2020. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi Formations, Sichuan basin: implication from pyrolysis experiments. Petroleum Geology & Experiment, 42(3): 428~433 (in Chinese with English abstract).

    • Milliken K L, Mark R, David N A. 2013. Organic matter-hosted pore system, Marcellus Formation (Devonian) Pennsylyania. AAPG Bulletin, 97(2): 177~200.

    • Mou Chuanlong, Ge Xiangying, Xu Xiaosong, Zhou Kenken, Liang Wei, Wang Xiuping. 2014. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region. Journal of Palaeogeography, 16(4): 427~440 (in Chinese with English abstract).

    • Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012. A study of gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).

    • Qin Jianzhong, Tao Guoliang, Tenger, Bian Lizeng, Xie Xiaomin, Fu Xiaodong. 2010a. Hydrocarbon-forming organisms in excellent marine source rocks in South China. Petroleum Geology & Experiment, 32(3): 262~269 (in Chinese with English abstract).

    • Qin Jianzhong, Shen Baojian, Tao Guoliang, Tenger, Yang Yunfeng, Zheng Lunju, Fu Xiaodong. 2014. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petroleum Geology & Experiment, 36(4): 465~472 (in Chinese with English abstract).

    • Qin Jianzhong, Pan Anyang, Shen Baojian. 2020. Insoluble organic matter in source rocks derived from organic macromolecules in the skeleton, cell wall and shell of organisms. Petroleum Geology & Experiment, 42(6): 946~956 (in Chinese with English abstract).

    • Ran Qi, Chen Yong, Qi Qing, Dong Qingyuan, Fu Zhe. 2017. Preservation conditions of shale gas in Longmaxi Formation of Dingshan area. Petroleum Geology and Engineering, 31(4): 22~25 (in Chinese with English abstract).

    • Rodgers K A, Browne P R L, Buddle T F. 2004. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth-Science Reviews, 66(1-2): 1~61.

    • Shen B, Qin J, Tenger B, Pan A, Yang Y, Bian L. 2018. Identification of bacterial fossils in marine source rocks in South China. Acta Geochimica, 37(1): 68~79.

    • Shen Baojian, Yang Yunfeng, Tenger, Qin Jianzhong, Pan Anyang. 2016. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan basin: a case study of the Wufeng-Longmaxi Formations in well Jiaoye l. Petroleum Geology & Experiment, 38(4): 480~488+495 (in Chinese with English abstract).

    • Tada R. 1991. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Berlin, Germany: Springer, 480~491.

    • Tenger, Shen Baojian, Yu Lingjie, Yang Yunfeng, Zhang Wentao, Tao Cheng, Xi Binbin, Zhang Qingzhen, Bao Fang, Qin Jianzhong. 2017. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan basin, SW China. Petroleum Exploration and Development, 44(1): 69~78 (in Chinese with English abstract).

    • Tenger, Lu Longfei, Yu Lingjie, Zhang Wentao, Pan Anyang, Shen Baojian, Wang Ye, Yang Yunfeng, Gao Zhiwei. 2021. Formation, preservation and connectivity control of organic pores in shale. Petroleum Exploration and Development, 48(4): 787~699 (in Chinese with English abstract).

    • Wang Rui, Zhang Ningsheng, Liu Xiaojuan, Wu Xinmin, Yan Jian. 2013. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas. Journal of Northwest University (Natural Science Edition), 43(1): 75~80 (in Chinese with English abstract).

    • Wei Xiangfeng, Li Yuping, Wei Zhihong, Liu Ruobing, Yu Guangchun, Wang Qingbo. 2017a. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan basin and its periphery. Petroleum Exploration and Development, 39(2): 147~153 (in Chinese with English abstract).

    • Wei Xiangfeng, Zhao Zhengbao, Wang Qingbo, Liu Zhujiang, Zhou Min, Zhang Hui. 2017b. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, southeastern Sichuan. Geological Review, 63 (1): 153~164 (in Chinese with English abstract).

    • Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).

    • Wever D, Picchioni F, Broekhuis A A. 2011. Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Progress in Polymer Science, 36(11): 1558~1628.

    • Yang Zhenheng, Zhai Changbo, Deng Mo, Bao Yunjie, Zhang Peixian, Zhang Qingzhen, Xie Xiaomin. 2019. Characteristics and significance of hydrocarbon-forming organisms of Wufeng-Longmaxi Formation in Pengshui and its adjacent areas. Reservoir Evaluation and Development, 9(5): 40~44+62 (in Chinese with English abstract).

    • Ye Xiwen, Liu Sumei, Zhang Jing. 2003. The determination of biogenic silica and its biogeochemistry significance. Advances in Earth Science, 18(3): 420~426 (in Chinese with English abstract).

    • Zhang Chunming, Zhang Weisheng, Guo Yinghai. 2012. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou. Earth Science Frontiers, 19(1): 136~145 (in Chinese with English abstract).

    • Zhang Fengqi, Wang Zhenliang, Zhong Hongli, Yang Chao, Wang Jiangtao. 2013. Recognitionmodel and contribution evaluation of main overpressure formation mechanisms in sedimentary basin. Natural Gas Geoscience, 24(6): 1151~1158 (in Chinese with English abstract).

    • Zhang Lanlan, Chen Muhong, Xiang Rong, Zhang Lili. 2006. Progress and prospect in research on living radiolarian ecology: a basic study of paleoenviron mental and paleoceanographic reconstructions. Advances in Earth Science, 21: 474~481 (in Chinese with English abstract).

    • Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Wen Xin, Geng Yikai, Yan Caina. 2016. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan basin. Natural Gas Geoscience, 27(2): 376~386 (in Chinese with English abstract).

    • Zhao Wentao, Jing Tieya, Wu Bin, Zhou You, Xiong Xin. 2018. Controlling mechanism of faults on the preservation conditions of shale gas: a case study of Wufeng-Longmaxi Formations in Southeast Chongqing. Natural Gas Geoscience, 29(9): 121~132 (in Chinese with English abstract).

    • Zheng Shucan, Feng Qinglai, Tribovillard N, Servais T, Zhang Yan, Gao Bo. 2020. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: a study from the Qiongzhusi Formation in South China. Journal of Earth Science, 31(1): 181~194.

    • 陈旭, 樊隽轩, 张元动, 等. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351~358.

    • 陈章明, 张树林, 万龙贵. 1988. 古龙凹陷北部青山口组泥岩构造裂缝的形成及其油藏分布的预测. 石油学报, 9(4): 10~18.

    • 冯建辉, 牟泽辉. 2017. 涪陵焦石坝五峰组—龙马溪组页岩气富集主控因素分析. 中国石油勘探, 3(22): 32~39.

    • 弓义, 李天宇, 吴凯凯, 包汉勇, 王进, 金爱民, 楼章华, 李梦瑶. 2020. 涪陵页岩气田五峰组—龙马溪组页岩气保存条件评价. 海相油气地质, 25(3): 253~262.

    • 郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28~36.

    • 郭彤楼, 何希鹏, 曾萍, 高玉巧, 张培先, 何贵松. 2020a. 复杂构造区页岩气藏地质特征与效益开发建议——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(12): 1490~1500.

    • 郭彤楼, 蒋恕, 张培先, 曾萍. 2020b. 四川盆地外围常压页岩气勘探开发进展与攻关方向. 石油实验地质, 42(5): 837~845.

    • 郭伟, 冯庆来, Maliha Zareen Khan. 2021. 重庆焦页143-5井五峰组—龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572~582.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.

    • 郭旭升, 李宇平, 刘若冰, 王庆波. 2014. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素. 天然气工业, 34(6): 9~16.

    • 郭旭升, 胡东风, 李宇平, 魏志红, 魏祥峰, 刘珠江. 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 193~201.

    • 郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.

    • 何治亮, 聂海宽, 张钰莹. 2016. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析. 地学前缘, 23(2): 8~17.

    • 何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 5(28): 724~733.

    • 胡东风, 张汉荣, 倪楷, 余光春. 2014. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 34(6): 17~23.

    • 蒋裕强, 董大忠, 漆麟, 沈妍斐, 蒋婵, 何溥为. 2010. 页岩气储层的基本特征及其评价. 天然气工业, (10): 7~12.

    • 金之钧, 胡宗全, 高波, 赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1~10.

    • 李传亮, 张景廉, 杜志敏. 2007. 油气初次运移理论新探. 地学前缘, 14(4): 132~142.

    • 李文厚, 柳益群, 尹凤娟, 林晋炎. 1993. 南郑梁山地区下古生界放射虫硅质岩的发现. 西北大学学报, 23(1): 75~77.

    • 刘伟, 许效松, 冯心涛, 孙媛媛. 2010. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 30(3): 65~70.

    • 卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2016. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义. 石油实验地质, 38(4): 460~465+472.

    • 卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226~236.

    • 卢龙飞, 刘伟新, 俞凌杰, 张文涛, 申宝剑, 腾格尔. 2020. 生物蛋白石早期成岩演化特征及对硅质页岩孔隙发育与孔径分布的影响. 石油实验地质, 42(3): 363~370.

    • 马永生, 黎茂稳, 蔡勋育等. 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~683.

    • 马中良, 申宝剑, 潘安阳, 腾格尔, 宁传祥, 郑伦举. 2020. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识. 石油实验地质, 42(3): 428~433.

    • 牟传龙, 葛祥英, 徐效松, 周恳恳, 梁薇, 王秀平. 2014. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义. 古地理学报, 16(4): 427~440.

    • 聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.

    • 秦建中, 陶国亮, 腾格尔, 边立曾, 谢小敏, 付小东. 2010a. 南方海相优质页岩的成烃生物研究. 石油实验地质, 32(3): 262~269.

    • 秦建中, 申宝剑, 付小东, 陶国亮, 腾格尔. 2010b. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力. 石油与天然气地质, 31(6): 827~837.

    • 秦建中, 申宝剑, 陶国亮, 腾格尔, 仰云峰, 郑伦举, 付小东. 2014. 优质烃源岩成烃生物与生烃能力动态评价. 石油实验地质, 36(4): 465~472.

    • 秦建中, 潘安阳, 申宝剑. 2020. 烃源岩中不溶有机质: 源于生物体的骨壁壳有机大分子. 石油实验地质, 42(6): 946~956.

    • 冉琦, 陈勇, 齐晴, 董清源, 付柘. 2017. 丁山地区龙马溪组页岩气保存条件分析. 石油地质与工程, 31(4): 22~25.

    • 申宝剑, 仰云峰, 腾格尔, 秦建中, 潘安阳. 2016. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨——以焦页1井五峰—龙马溪组为例. 石油实验地质, 38(4): 480~488+495.

    • 腾格尔, 申宝剑, 俞凌杰, 仰云峰, 张文涛, 陶成, 席斌斌, 张庆珍, 鲍芳, 秦建中. 2017. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理. 石油勘探与开发, 44(1): 69~78.

    • 腾格尔, 卢龙飞, 俞凌杰, 张文涛, 潘安阳, 申宝剑, 王晔, 仰云峰, 高志伟. 2021. 页岩有机质孔隙形成、保持及其连通性的控制作用. 石油勘探与开发, 48(4): 787~699.

    • 王德新, 江裕彬. 1996. 在泥页岩中寻找裂缝油, 气藏的一些看法. 西部探矿工程, 8(2): 3.

    • 王瑞, 张宁生, 刘晓娟, 吴新民, 闫健. 2013. 页岩气扩散系数和视渗透率的计算与分析. 西北大学学报(自然科学版), 43(1): 75~80.

    • 魏祥峰, 李宇平, 魏志红, 刘若冰, 余光春, 王庆波. 2017a. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制. 石油实验地质, 39(2): 147~153.

    • 魏祥峰, 赵正宝, 王庆波, 刘珠江, 周敏, 张晖. 2017b. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价. 地质论评, 63 (1): 153~164.

    • 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.

    • 杨振恒, 翟常博, 邓模, 鲍云杰, 张培先, 张庆珍, 谢小敏. 2019. 彭水及邻区五峰—龙马溪组成烃生物特征及意义. 油气藏评价与开发, 9(5): 40~44+62.

    • 叶曦雯, 刘素美, 张经. 2003. 生物硅的测定及其生物地球化学意义. 地球科学进展, 18(3): 420~426.

    • 张春明, 张维生, 郭英海. 2012. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136~145.

    • 张凤奇, 王震亮, 钟红利, 杨超, 王江涛. 2013. 沉积盆地主要超压成因机制识别模式及贡献. 天然气地球科学, 24(6): 1151~1158.

    • 张兰兰, 陈木宏, 向荣, 张丽丽. 2006. 放射虫现在生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究. 地球科学进展, 21: 474~481.

    • 张义纲. 1982. 多种天然气资源的勘探. 石油实验地质, (2): 15~18+10.

    • 赵建华, 金之钧, 金振奎, 温馨, 耿一凯, 颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 376~386.

    • 赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 2018. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例. 天然气地球科学, 29(9): 121~132.

  • 参考文献

    • Angel D L. 1991. Carbon flow within the colonial radiolarian microcosm. Symbiosis, 10: 195~217.

    • Caron D A, Michaels A F, Swanberg N R, Howse F A. 1995. Primary productivity by symbiont-bearing planktonic sarcodines (acantharia, radiolaria, foraminifera) in surface waters near Bermuda. Journal of Plankton Research, (1): 1.

    • Chen Xu, Fan Juanxuan, Zhang Yuandong, et al. 2015. Subdivision and delineation of the Wufeng and Longmaxi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4): 351~358 (in Chinese with English abstract).

    • Chen Zhangming, Zhang Shulin, Wan Guilong. 1988. The formation of structural fissures in the mudstone in Qingshankou Group in the northern part of Gulong sag and a forecast of the distribution of oil and gas pools. Acta Petrolei Sinica, 9(4): 10~18 (in Chinese with English abstract).

    • Curtis M E, Cardott B J, Sondergeld C H. 2012. Development of organic porosity in the Woodford shale with increasing thermal maturity. International Journal of Coal Geology, 103: 26~31.

    • Day Rachel, Jones Brian. 2008. Variations inwater content in opal-A and opal-CT from geyser discharge aprons. Journal of Sedimentary Research, 78(4): 301~315.

    • Dennett M R, Caron D A, Michaels A F, Gallager S M, Davis C S. 2002. Video plankton recorder reveals high abundances of colonial radiolaria in surface waters of the central North Pacific. Journal of Plankton Research, (8): 797~805.

    • Feng Jianhui, Mou Zehui. 2017. Main factors controlling the enrichment of shale gas in Wufeng Formation-Longmaxi Formation in Jiaoshiba area, Fuling shale gas field. China Petroleum Exploration, 3(22): 32~39 (in Chinese with English abstract).

    • Gong Yi, Li Tianyu, Wu Kaikai, Bai Hanyong, Wang Jin, Jin Aimin, Lou Zhanghua, Li Mengyao. 2020. Evaluation of shale gas preservation condition of Wufeng Formation-Longmaxi Formation in Fuling shale gas field. Marine Origin Petroleum Geology, 25(3): 253~262 (in Chinese with English abstract).

    • Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 28~36 (in Chinese with English abstract).

    • Guo Tonglou, He Xipeng, Zeng Ping, Gao Yuqiao, Zhang Peixian, He Guisong. 2020a. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: a case study of Wufeng-Longmaxi Formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(12): 1490~1500 (in Chinese with English abstract).

    • Guo Tonglou, Jiang Shu, Zhang Peixian, Zeng Ping. 2020b. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan basin. Petroleum Exploration and Development, 42(5): 837~845 (in Chinese with English abstract).

    • Guo Wei, Feng Qinglai, Maliha Zareen Khan. 2021. Organic matter enrichment mechanism of black shale in Wufeng-Longmaxi Formations: a case study from Jiaoye 143-5 well at Chongqing. Earth Science, 46(2): 572~582 (in Chinese with English abstract).

    • Guo Xusheng. 2014. Rules of two-factor enrichiment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Liu Ruobing, Wang Qingbo. 2014. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan basin. Natural Gas Industry, 34(6): 9~16 (in Chinese with English abstract).

    • Guo Xusheng, Hu Dongfeng, Li Yuping, Wei Zhihong, Liu Zhujiang. 2017. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petroleum Exploration and Development, 44(4): 193~201 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Zhang Yuying. 2016. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan basin and its adjacent areas. Earth Science Frontiers, 23(2): 8~17 (in Chinese with English abstract).

    • He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction transformation evolution sequence. Natural Gas Geoscience, 5(28): 724~733 (in Chinese with English abstract).

    • Hu Dongfeng, Zhang Hanrong, Ni Kai, Yu Guangchun. 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan basin. Natural Gas Industry, 34(6): 17~23 (in Chinese with English abstract).

    • Hurd D C. 1983. Physical and chemical properties of siliceous skeletons. In: Aston S R, ed. Silicon Geochemistry and Biogeochemistry. London: Academic Press, 187~244.

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Jiang Yuqiang, Dong Dazhong, Qi Lin, Shen Yanfei, Jiang Chan, He Fuwei. 2010. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, (10): 7~12 (in Chinese with English abstract).

    • Jin Zhijun, Hu Zongquan, Gao Bo, Zhao Jianhua. 2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan basin. Earth Science Frontiers, 23(1): 1~10 (in Chinese with English abstract).

    • Kroger N, Sumper M. 2000. The biogeochemistry of silica formation in di atoms. In: Baeuerlein E, ed. Biomineralization. Weinheim, Germany: Wiley, 151~170.

    • Li Chuanliang, Zhang Jinglian, Du Zhimin. 2007. New viewpoints of the primary migration of oil and gas. Earth Science Frontiers, 14(4): 132~142 (in Chinese with English abstract).

    • Li Wenhou, Liu Yiqun, Yin Fengjuan, Lin Jinyan. 1993. Lower Paleozoic radiolarian siliconites from Liangshan, Nanzheng County, Shanxi Province. Journal of Northwest University, 23(1): 75~77 (in Chinese with English abstract).

    • Liu Wei, Xu Xiaosong, Feng Xintao, Sun Yuanyuan. 2010. Radiolarian siliceous rocks and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the middle-upper Yangtze area. Sedimentary Geology and Tethyan Geology, 30(3): 65~70 (in Chinese with English abstract).

    • Lohr S C, Baruch E T, Hall P A, Kennedy M J. 2015. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Organic Geochemistry, 87(3): 119~132.

    • Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of Nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(11-12): 848~861.

    • Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96 (6): 1071~1098.

    • Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2016. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi Formations in Fuling area, southeastern Sichuan basin. Petroleum Geology & Experiment, 38(4): 460~465+472 (in Chinese with English abstract).

    • Lu Longfei, Qin Jianzhong, Shen Baojian, Tenger, Liu Weixin, Zhang Qingzhen. 2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226~236 (in Chinese with English abstract).

    • Lu Longfei, Liu Weixin, Yu Lingjie, Zhang Wentao, Shen Baojian, Tenger. 2020. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale. Petroleum Geology & Experiment, 42(3): 363~370 (in Chinese with English abstract).

    • Ma Yongsheng, Li Maowen, Cai Xunyu, et al. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~683 (in Chinese with English abstract).

    • Ma Zhongliang, Shen Baojian, Pan Anyang, Borjing Tenger, Ning Chuanxiang, Zheng Lunju. 2020. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi Formations, Sichuan basin: implication from pyrolysis experiments. Petroleum Geology & Experiment, 42(3): 428~433 (in Chinese with English abstract).

    • Milliken K L, Mark R, David N A. 2013. Organic matter-hosted pore system, Marcellus Formation (Devonian) Pennsylyania. AAPG Bulletin, 97(2): 177~200.

    • Mou Chuanlong, Ge Xiangying, Xu Xiaosong, Zhou Kenken, Liang Wei, Wang Xiuping. 2014. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region. Journal of Palaeogeography, 16(4): 427~440 (in Chinese with English abstract).

    • Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012. A study of gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).

    • Qin Jianzhong, Tao Guoliang, Tenger, Bian Lizeng, Xie Xiaomin, Fu Xiaodong. 2010a. Hydrocarbon-forming organisms in excellent marine source rocks in South China. Petroleum Geology & Experiment, 32(3): 262~269 (in Chinese with English abstract).

    • Qin Jianzhong, Shen Baojian, Tao Guoliang, Tenger, Yang Yunfeng, Zheng Lunju, Fu Xiaodong. 2014. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petroleum Geology & Experiment, 36(4): 465~472 (in Chinese with English abstract).

    • Qin Jianzhong, Pan Anyang, Shen Baojian. 2020. Insoluble organic matter in source rocks derived from organic macromolecules in the skeleton, cell wall and shell of organisms. Petroleum Geology & Experiment, 42(6): 946~956 (in Chinese with English abstract).

    • Ran Qi, Chen Yong, Qi Qing, Dong Qingyuan, Fu Zhe. 2017. Preservation conditions of shale gas in Longmaxi Formation of Dingshan area. Petroleum Geology and Engineering, 31(4): 22~25 (in Chinese with English abstract).

    • Rodgers K A, Browne P R L, Buddle T F. 2004. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth-Science Reviews, 66(1-2): 1~61.

    • Shen B, Qin J, Tenger B, Pan A, Yang Y, Bian L. 2018. Identification of bacterial fossils in marine source rocks in South China. Acta Geochimica, 37(1): 68~79.

    • Shen Baojian, Yang Yunfeng, Tenger, Qin Jianzhong, Pan Anyang. 2016. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan basin: a case study of the Wufeng-Longmaxi Formations in well Jiaoye l. Petroleum Geology & Experiment, 38(4): 480~488+495 (in Chinese with English abstract).

    • Tada R. 1991. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Berlin, Germany: Springer, 480~491.

    • Tenger, Shen Baojian, Yu Lingjie, Yang Yunfeng, Zhang Wentao, Tao Cheng, Xi Binbin, Zhang Qingzhen, Bao Fang, Qin Jianzhong. 2017. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan basin, SW China. Petroleum Exploration and Development, 44(1): 69~78 (in Chinese with English abstract).

    • Tenger, Lu Longfei, Yu Lingjie, Zhang Wentao, Pan Anyang, Shen Baojian, Wang Ye, Yang Yunfeng, Gao Zhiwei. 2021. Formation, preservation and connectivity control of organic pores in shale. Petroleum Exploration and Development, 48(4): 787~699 (in Chinese with English abstract).

    • Wang Rui, Zhang Ningsheng, Liu Xiaojuan, Wu Xinmin, Yan Jian. 2013. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas. Journal of Northwest University (Natural Science Edition), 43(1): 75~80 (in Chinese with English abstract).

    • Wei Xiangfeng, Li Yuping, Wei Zhihong, Liu Ruobing, Yu Guangchun, Wang Qingbo. 2017a. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan basin and its periphery. Petroleum Exploration and Development, 39(2): 147~153 (in Chinese with English abstract).

    • Wei Xiangfeng, Zhao Zhengbao, Wang Qingbo, Liu Zhujiang, Zhou Min, Zhang Hui. 2017b. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, southeastern Sichuan. Geological Review, 63 (1): 153~164 (in Chinese with English abstract).

    • Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).

    • Wever D, Picchioni F, Broekhuis A A. 2011. Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Progress in Polymer Science, 36(11): 1558~1628.

    • Yang Zhenheng, Zhai Changbo, Deng Mo, Bao Yunjie, Zhang Peixian, Zhang Qingzhen, Xie Xiaomin. 2019. Characteristics and significance of hydrocarbon-forming organisms of Wufeng-Longmaxi Formation in Pengshui and its adjacent areas. Reservoir Evaluation and Development, 9(5): 40~44+62 (in Chinese with English abstract).

    • Ye Xiwen, Liu Sumei, Zhang Jing. 2003. The determination of biogenic silica and its biogeochemistry significance. Advances in Earth Science, 18(3): 420~426 (in Chinese with English abstract).

    • Zhang Chunming, Zhang Weisheng, Guo Yinghai. 2012. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou. Earth Science Frontiers, 19(1): 136~145 (in Chinese with English abstract).

    • Zhang Fengqi, Wang Zhenliang, Zhong Hongli, Yang Chao, Wang Jiangtao. 2013. Recognitionmodel and contribution evaluation of main overpressure formation mechanisms in sedimentary basin. Natural Gas Geoscience, 24(6): 1151~1158 (in Chinese with English abstract).

    • Zhang Lanlan, Chen Muhong, Xiang Rong, Zhang Lili. 2006. Progress and prospect in research on living radiolarian ecology: a basic study of paleoenviron mental and paleoceanographic reconstructions. Advances in Earth Science, 21: 474~481 (in Chinese with English abstract).

    • Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Wen Xin, Geng Yikai, Yan Caina. 2016. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan basin. Natural Gas Geoscience, 27(2): 376~386 (in Chinese with English abstract).

    • Zhao Wentao, Jing Tieya, Wu Bin, Zhou You, Xiong Xin. 2018. Controlling mechanism of faults on the preservation conditions of shale gas: a case study of Wufeng-Longmaxi Formations in Southeast Chongqing. Natural Gas Geoscience, 29(9): 121~132 (in Chinese with English abstract).

    • Zheng Shucan, Feng Qinglai, Tribovillard N, Servais T, Zhang Yan, Gao Bo. 2020. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: a study from the Qiongzhusi Formation in South China. Journal of Earth Science, 31(1): 181~194.

    • 陈旭, 樊隽轩, 张元动, 等. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351~358.

    • 陈章明, 张树林, 万龙贵. 1988. 古龙凹陷北部青山口组泥岩构造裂缝的形成及其油藏分布的预测. 石油学报, 9(4): 10~18.

    • 冯建辉, 牟泽辉. 2017. 涪陵焦石坝五峰组—龙马溪组页岩气富集主控因素分析. 中国石油勘探, 3(22): 32~39.

    • 弓义, 李天宇, 吴凯凯, 包汉勇, 王进, 金爱民, 楼章华, 李梦瑶. 2020. 涪陵页岩气田五峰组—龙马溪组页岩气保存条件评价. 海相油气地质, 25(3): 253~262.

    • 郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28~36.

    • 郭彤楼, 何希鹏, 曾萍, 高玉巧, 张培先, 何贵松. 2020a. 复杂构造区页岩气藏地质特征与效益开发建议——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(12): 1490~1500.

    • 郭彤楼, 蒋恕, 张培先, 曾萍. 2020b. 四川盆地外围常压页岩气勘探开发进展与攻关方向. 石油实验地质, 42(5): 837~845.

    • 郭伟, 冯庆来, Maliha Zareen Khan. 2021. 重庆焦页143-5井五峰组—龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572~582.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.

    • 郭旭升, 李宇平, 刘若冰, 王庆波. 2014. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素. 天然气工业, 34(6): 9~16.

    • 郭旭升, 胡东风, 李宇平, 魏志红, 魏祥峰, 刘珠江. 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 193~201.

    • 郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.

    • 何治亮, 聂海宽, 张钰莹. 2016. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析. 地学前缘, 23(2): 8~17.

    • 何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 5(28): 724~733.

    • 胡东风, 张汉荣, 倪楷, 余光春. 2014. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 34(6): 17~23.

    • 蒋裕强, 董大忠, 漆麟, 沈妍斐, 蒋婵, 何溥为. 2010. 页岩气储层的基本特征及其评价. 天然气工业, (10): 7~12.

    • 金之钧, 胡宗全, 高波, 赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1~10.

    • 李传亮, 张景廉, 杜志敏. 2007. 油气初次运移理论新探. 地学前缘, 14(4): 132~142.

    • 李文厚, 柳益群, 尹凤娟, 林晋炎. 1993. 南郑梁山地区下古生界放射虫硅质岩的发现. 西北大学学报, 23(1): 75~77.

    • 刘伟, 许效松, 冯心涛, 孙媛媛. 2010. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 30(3): 65~70.

    • 卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2016. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义. 石油实验地质, 38(4): 460~465+472.

    • 卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226~236.

    • 卢龙飞, 刘伟新, 俞凌杰, 张文涛, 申宝剑, 腾格尔. 2020. 生物蛋白石早期成岩演化特征及对硅质页岩孔隙发育与孔径分布的影响. 石油实验地质, 42(3): 363~370.

    • 马永生, 黎茂稳, 蔡勋育等. 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~683.

    • 马中良, 申宝剑, 潘安阳, 腾格尔, 宁传祥, 郑伦举. 2020. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识. 石油实验地质, 42(3): 428~433.

    • 牟传龙, 葛祥英, 徐效松, 周恳恳, 梁薇, 王秀平. 2014. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义. 古地理学报, 16(4): 427~440.

    • 聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.

    • 秦建中, 陶国亮, 腾格尔, 边立曾, 谢小敏, 付小东. 2010a. 南方海相优质页岩的成烃生物研究. 石油实验地质, 32(3): 262~269.

    • 秦建中, 申宝剑, 付小东, 陶国亮, 腾格尔. 2010b. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力. 石油与天然气地质, 31(6): 827~837.

    • 秦建中, 申宝剑, 陶国亮, 腾格尔, 仰云峰, 郑伦举, 付小东. 2014. 优质烃源岩成烃生物与生烃能力动态评价. 石油实验地质, 36(4): 465~472.

    • 秦建中, 潘安阳, 申宝剑. 2020. 烃源岩中不溶有机质: 源于生物体的骨壁壳有机大分子. 石油实验地质, 42(6): 946~956.

    • 冉琦, 陈勇, 齐晴, 董清源, 付柘. 2017. 丁山地区龙马溪组页岩气保存条件分析. 石油地质与工程, 31(4): 22~25.

    • 申宝剑, 仰云峰, 腾格尔, 秦建中, 潘安阳. 2016. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨——以焦页1井五峰—龙马溪组为例. 石油实验地质, 38(4): 480~488+495.

    • 腾格尔, 申宝剑, 俞凌杰, 仰云峰, 张文涛, 陶成, 席斌斌, 张庆珍, 鲍芳, 秦建中. 2017. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理. 石油勘探与开发, 44(1): 69~78.

    • 腾格尔, 卢龙飞, 俞凌杰, 张文涛, 潘安阳, 申宝剑, 王晔, 仰云峰, 高志伟. 2021. 页岩有机质孔隙形成、保持及其连通性的控制作用. 石油勘探与开发, 48(4): 787~699.

    • 王德新, 江裕彬. 1996. 在泥页岩中寻找裂缝油, 气藏的一些看法. 西部探矿工程, 8(2): 3.

    • 王瑞, 张宁生, 刘晓娟, 吴新民, 闫健. 2013. 页岩气扩散系数和视渗透率的计算与分析. 西北大学学报(自然科学版), 43(1): 75~80.

    • 魏祥峰, 李宇平, 魏志红, 刘若冰, 余光春, 王庆波. 2017a. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制. 石油实验地质, 39(2): 147~153.

    • 魏祥峰, 赵正宝, 王庆波, 刘珠江, 周敏, 张晖. 2017b. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价. 地质论评, 63 (1): 153~164.

    • 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.

    • 杨振恒, 翟常博, 邓模, 鲍云杰, 张培先, 张庆珍, 谢小敏. 2019. 彭水及邻区五峰—龙马溪组成烃生物特征及意义. 油气藏评价与开发, 9(5): 40~44+62.

    • 叶曦雯, 刘素美, 张经. 2003. 生物硅的测定及其生物地球化学意义. 地球科学进展, 18(3): 420~426.

    • 张春明, 张维生, 郭英海. 2012. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136~145.

    • 张凤奇, 王震亮, 钟红利, 杨超, 王江涛. 2013. 沉积盆地主要超压成因机制识别模式及贡献. 天然气地球科学, 24(6): 1151~1158.

    • 张兰兰, 陈木宏, 向荣, 张丽丽. 2006. 放射虫现在生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究. 地球科学进展, 21: 474~481.

    • 张义纲. 1982. 多种天然气资源的勘探. 石油实验地质, (2): 15~18+10.

    • 赵建华, 金之钧, 金振奎, 温馨, 耿一凯, 颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 376~386.

    • 赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 2018. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例. 天然气地球科学, 29(9): 121~132.