en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭佩,女,1990年生。博士,副教授,从事咸化湖盆沉积与油气地质研究。E-mail:guopei18@cdut.edu.cn。

参考文献
Boak J, Poole S. 2015. Mineralogy of the Green River Formation in the Piceance Creekbasin, Colorado. In: Smith M E, Carroll A R, eds. Stratigraphy and Paleolimnology of the Green River Formation, Western USA. Springer, 183~209.
参考文献
Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Abulimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).
参考文献
Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202: 103091.
参考文献
Deniz C, Krastel S, Schmincke H U, Sumita M, Tomonaga Y, Çağatay M N. 2014. Water level changes in Lake Van, Turkey, during the past ca. 600 ka: Climatic, volcanic and tectonic controls. Journal of Paleolimnology, 52(3): 201~214.
参考文献
Desborough G A. 1975. Authigenic albite and potassium feldspar in the Green River Formation, Colorado and Wyoming. American Mineralogist, 60(3-4): 235~239.
参考文献
Dong Chunmei, Ma Cunfei, Lin Chengyan, Sun Xue, Yuan Mengying. 2015. A method of classification of shale set. Journal of China University of Petroleum, 39(3): 1~7 (in Chinese with English abstract).
参考文献
Dong Tian, Harris N B. 2020. The effect of thermal maturity on porosity development in the Upper Devonian-Lower Mississippian Woodford Shale, Permian basin, US: Insights into the role of silica nanospheres and microcrystalline quartz on porosity preservation. International Journal of Coal Geology, 217: 103346.
参考文献
Emmings J F, Dowey P J, Taylor K G, Davies S J, Vane C H, Moss-Hayes V, Rushton J C. 2020. Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale formation, Craven basin, UK. Marine and Petroleum Geology, 120: 104567.
参考文献
Feng Youliang, Zhang Yijie, Wang Ruiju, Zhang Guangya, Wu Weian. 2011. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar basin. Petroleum Exploration and Development, 38(6): 685~692 (in Chinese with English abstract).
参考文献
Feng Youliang, Yang Zhi, Zhang Hong, Zhang Tianshu, Li Pan, Hou Mingqiu, Jiang Wenqi, Wang Xiaoni, Zhu Jichang, Li Jiarui. 2023. Fine-grained gravity flow sedimentary features and its petroleum significance within saline lacustrine basins—A case study of Fengcheng Formation in Mahu depression, Junggar basin, China. Acta Geologica Sinica, 97(3): 839~863 (in Chinese with English abstract).
参考文献
Fishman N S, Turner C E, Browndield I K. 1995. Authigenicalbite in a Jurassic alkaline, saline lake deposit, Colorado Plateau-Evidence for early diagenetic origin. U. S. Geological Survey Bulletin, 1808-P: 1~14.
参考文献
Gaucher E, Blanc P. 2006. Cement/clay interactions—A review: Experiments, natural analogues, and modelling. Waste Management, 26: 776~788.
参考文献
Goldsmith J R, Jenkin D M. 1985. The hydrothermal melting of low and high albite. American Mineralogist, 70: 924~933.
参考文献
Goldsmith J R, Peterson J W. 1990. Hydrothermal melting behavior of KAlSi3O8 as microcline and sanidine. American Mineralogist, 75: 1362~1369.
参考文献
Han Chao, Han Mei, Jiang Zaixing, Han Zuozhen, Li Hao, Song Zhigang, Zhong Wenjian, Liu Kaixuan, Wang Chunhao. 2019. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan basin and its periphery, China. Geological Journal, 54: 438~449.
参考文献
Hay R L. 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America Special Paper, 85: 130.
参考文献
Hay R L, Moiola R J. 1963. Authigenic silicate minerals in Searles Lake, California. Sedimentology, 2(4): 312~332.
参考文献
Hay R L, Guldman S G. 1987. Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35(6): 449~457.
参考文献
Hay R L, Guldman S G, Mattews J C, Lander R H, Duffin M E, Kyser T K. 1991. Clay mineral diagenesis in core KM-3 of Searles Lake, California. Clays and Clay Minerals, 39: 84~96.
参考文献
He Yanxin, Xian Benzhong, Niu Huapeng, Liu Jianping. 2018. Effects of palaeogeolophic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag, Junggar basin. Journal of Palaeogeiography (Chinese Edition), 20(2): 245~262 (in Chinese with English abstract).
参考文献
Hou Yuguang, Wang Furong, He Sheng, Dong Tian, Wu Shiqiang. 2017. Properties and shale oil potential of saline lacustrine shales in the Qianjiang depression, Jianghan basin, China. Marine and Petroleum Geology, 86: 1173~1190.
参考文献
Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2006. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.
参考文献
Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ou Yangmin, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 27(6): 20~30 (in Chinese with English abstract).
参考文献
Langella A, Cappelletti P, Gennaro R. 2001. Zeolites in closed hydrologic systems. In: Bish D L, Ming D W, eds. Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy and Geochemistry, 45: 235~260.
参考文献
Larsen D. 2008. Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls. Geosphere, 4(3): 612~639.
参考文献
Lei Dewen, Chen Gangqiang, Liu Hailei, Li Xiao, Abulimit, Tao Keyu, Cao Jian. 2017. Study on the forming conditions and exploration fields of the Mahu giant oil (gas) province, Junggar basin. Acta Geologica Sinica, 91(7): 1604~1619 (in Chinese with English abstract).
参考文献
Lei Haiyan, Guo Pei, Meng Ying, Qi Ji, Liu Jin, Zhang Juan, Liu Miao, Zheng Yu. 2022a. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu sag. Lithologic Reservoirs, 34(3): 142~153 (in Chinese with English abstract).
参考文献
Lei Haiyan, Qi Ji, Zhou Ni, Chen Jun, Meng Ying, Zhang Xixin, Chen Ruibing. 2022b. Genesis and petroleum significance of silica-rich shale in Fengcheng Formation of well Maye-1, Mahu sag. Xinjiang Petroleum Geology, 43(6): 724~732 (in Chinese with English abstract).
参考文献
Li Le. 2015. Study on sedimentary environment and origin of analcime-bearing dolomite of Shahejie Formation in Tanggu area. Doctoral thesis of China University of Geosciences (Wuhan), 69~72 (in Chinese with English abstract).
参考文献
Li Wei, Zhang Yuanyuan, Ni Minjie, Tang Wenbin. 2020. Genesis of alkaline lacustrine deposits in the Lower Permian Fengcheng Formation of the Mahu sag, northwestern Junggar basin: Insights from a comparison with the worldwide alkaline lacustrine deposits. Acta Geologica Sinica, 94(6): 1839~1852 (in Chinese with English abstract).
参考文献
Liu Bo, Shi Jiaxin, Fu Xiaofei, Lv Yanfang, Sun Xianda, Gong Lei, Bai Yunfeng. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first Member of Cretaceous Qingshankou Formation in Gulong sag, Songliao basin, NE China. Petroleum Exploration and Development, 45(5): 84~94 (in Chinese with English abstract).
参考文献
Liu Deguang, Zhou Lu, Li Shihong, Ma Wanyun, Guo Wenjian. 2020. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu depression. Acta Sedimentologica Sinica, 38(5): 946~955 (in Chinese with English abstract).
参考文献
Mackenzie W S. 1957. The crystalline modifications of NaAlSi3O8. American Journal of Science, 255: 481~516.
参考文献
Milliken K, Choh S J, Papazis P, Schieber J. 2007. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sedimentary Geology, 198: 221~232.
参考文献
Milliken K, Olson T. 2017. Silica diagenesis, porosity evolution, and mechanical behaviorin siliceous mudstones, Mowry shale (Cretaceous), Rocky Mountains, U. S. A. Journal of Sedimentary Research, 87: 366~387.
参考文献
Peng Junwen, Millken K L, Fu Qilong. 2020. Quartz types in the Upper Pennsylvanian organic-rich Cline Shale (Wolfcamp D), Midland basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties. Sedimentology, 67(4): 2040~2064.
参考文献
Renaut R W. 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoriabasin, Kenya Rift Valley. Sedimentology, 40(2): 271~301.
参考文献
Renaut R W, Tiercelin J J, Owen R B. 1986. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley. Geological Society, London, Special Publications, 25(1): 159~175.
参考文献
Savage D, Benbow S, Watson C, Takase H, Ono K, Oda C, Honda A. 2010. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Applied Clay Science, 47(1-2): 72~81.
参考文献
Skobe S, Goričan Š, Skaberne D, Verbič T, Mišič M, Zupančič N. 2013. K-feldspar rich shales from Jurassic bedded cherts in southeastern Slovenia. Swiss Journal of Geosciences, 106(3): 491~504.
参考文献
Smith G I, Stuiver M. 1979. Subsurface Stratigraphy and Geochemistry of Late Quaternary Evaporites, Searles Lake, California. Washington, United States Government Printing Office, 1~118.
参考文献
Stamatakis M G. 1989. Authigenic silicates and silica polymorphs in the Miocene saline-alkaline deposits of the Karlovassi basin, Samos, Greece. Economic Geology, 84: 788~798.
参考文献
Su Dongxu, Wang Zhongquan, Yuan Yunfeng, Han Bao. 2020. Weathered volcanic reservoir characteristics and their controlling factors on Permian Fengcheng Formation in southern Mahu depression, Junggar basin. Natural Gas Geoscience, 31(2): 209~219 (in Chinese with English abstract).
参考文献
Surdam R C, Parker R D. 1972. Authigenicaluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83: 2397~2418.
参考文献
Surdam R C, Eugster H P. 1976. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of America Bulletin, 87: 1739~1752.
参考文献
Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).
参考文献
Tank R W. 1972. Clayminerals of the Green River Formation (Eocene) of Wyoming. Clay Minerals, 9(3): 297~308.
参考文献
Turner C E, Fishman N S. 1991. Jurassic Lake Toodichi: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103: 538~558.
参考文献
Wang Guanmin, Liu Haicheng, Xiong Zhouhai, Wang Jingyin. 2016. Control condition of felsic on brittleness of lacustrine shales. Journal of China University of Petroleum, 43(3): 1~8 (in Chinese with English abstract).
参考文献
Wang Lan, Zeng Wenting, Xia Xiaomin, Zhou Haiyan, Bi He, Shang Fei, Zhou Xuexian. 2019. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong depression, Songliao basin. Natural Gas Geoscience, 30(8): 1125~1133 (in Chinese with English abstract).
参考文献
Wang Xiaojun, Wang Tingting, Cao Jian. 2018. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 9~15 (in Chinese with English abstract).
参考文献
Wei Yan, Guo Pei, Jin Jun, Jiang Yiqin, Wang Jian, Lei Haiyan, Wen Huaguo. 2021. Silexite genesis in volcanic-alkaline lacustrine sedimentary rocks: A case study of the Lower Permian Fengcheng Formation, Junggar basin. Mineralogy and Petrology, 41(21): 83~98 (in Chinese with English abstract).
参考文献
Xia Liuwen, Cao Jian, Hu Wenxuan, Zhi Dongming, Tang Yong, Li Erting. 2021. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: A lipid biomarker perspective. Earth-Science Reviews, 213: 103499.
参考文献
Xian Benzhong, Niu Huapeng, Dong Guodong, Zhu Shifa, An Siqi. 2013. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Geological Journal of China Universities, 19(1): 46~55 (in Chinese with English abstract).
参考文献
Yang Fan, Meng Xin, Wang Xianhu, Yu Peirong, Shao Guanghui, Chen Huohong. 2022. Micro-pore characteristics and influencing factors of Fengcheng Formation shale in well Maye-1. Xinjiang Petroleum Geology, 43(1): 1~10 (in Chinese with English abstract).
参考文献
Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei, Yang Yongqiang, Qu Changsheng, Li Yuwen, Wan Min, Su Yunguo. 2016. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Natural Gas Geoscience, 27(7): 1248~1263 (in Chinese with English abstract).
参考文献
Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei. 2019. Depositional environments in an arid, closed basin and their implications for oil and gas exploration: The lower Permian Fengcheng Formation in the Junggar basin, China. AAPG Bulletin, 103(9): 2073~2115.
参考文献
Yu Kuanhong, Zhang Zhijie, Cao Yingchang, Qiu Longwei, Zhou Chunmin, Cheng Dawei, Sun Peipei, Yang Yongqiang. 2021. Origin of biogenic-induced cherts from Permian alkaline saline lake deposits in the NW Junggar basin, NW China: Implications for hydrocarbon exploration. Journal of Asian Earth Sciences, 211: 104712.
参考文献
Zhang Junfeng, Xu Xingyou, Bai Jing, Liu Weibin, Chen Shan, Liu Chang, Li Yaohua. 2020. Enrichment and exploration of deep lacustrine shale oil in the first Member of Cretaceous Qingshankou Formation, southern Songliao basin, NE China. Petroleum Exploration and Development, 47(4): 638~652 (in Chinese with English abstract).
参考文献
Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).
参考文献
Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar basin, NW China. Petroleum Exploration and Development, 45(6): 54~66 (in Chinese with English abstract).
参考文献
Zhao Jianhua, Jin Zhenkui, Jin Zhijun, Wen Xin, Geng Yikai. 2017. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan basin, South China: Implications for pore evolution. Journal of Natural Gas Science and Engineering, 38: 21~38.
参考文献
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Shi Zhannan, Xiao Dunqing, Han Wenzhong, Jiang Wenya, Zhang Wei, Wang Hu. 2019. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: A case study of Member 2 of Kongdian Formation in Gangdong sag, Bohai Bay basin. Acta Petrolei Sinica, 40(9): 1013~1029 (in Chinese with English abstract).
参考文献
Zhi Dongming, Tang Yong, Zheng Menglin, Guo Wenjian, Wu Tao, Zou Zhiwen. 2018. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu sag. Xinjiang Petroleum Geology, 39(1): 1~8+22 (in Chinese with English abstract).
参考文献
Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019. Geological characteristics, resource potential and exploration Direction of shale oil in Middle-Lower Permian, Junggar basin. Petroleum Exploration and Development, 40(4): 389~401 (in Chinese with English abstract).
参考文献
Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zhen Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 1~14 (in Chinese with English abstract).
参考文献
Zhu Shifa, Zhu Xiaomin, Liu Jishan, Yao Yuan, Xian Benzhong, Niu Huapeng, Zhao Changyong. 2012. Genesis and hydrocarbon significance of vesicular ignimbrite: A case study from Fengcheng Formation, Wu-Xia area, Junggar basin, NW China. Petroleum Exploration and Development, 39(2): 162~171 (in Chinese with English abstract).
参考文献
Zhu Shifa, Zhu Xiaomin, Tao Wenfang, Liu Shiqi, Chen Hehe, Zhang Yueqian. 2013. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia area of the Junggar basin. Geological Journal of China Universities, 19(1): 38~45 (in Chinese with English abstract).
参考文献
Zhu Shifa, Zhu Xiaomin, Liu Xuechao, Li Chao, Wang Xingxing, Tan Mingxuan, Geng Mingyang, Li Yanping. 2014a. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs: Evidence from Lower Permian strata in Ke-Xia region, Junggar basin. Acta Petrolei Sinica, 35(2): 276~285 (in Chinese with English abstract).
参考文献
Zhu Shifa, Zhu Xiaomin, Wu Dong, Liu Yinghui, Li Panpan, Jiang Shuxian, Liu Xuechao. 2014b. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar basin. Oil & Gas Geology, 35(1): 77~85 (in Chinese with English abstract).
参考文献
Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).
参考文献
Zou Yang, Qi Yanping, Song Dong, Chen Wenshun, Wei Panyun. 2022. Geological characteristics and sweet spot evaluation of shale oil reservoir in Fengcheng Formation in well Maye-1. Xinjiang Petroleum Geology, 43(6): 714~723 (in Chinese with English abstract).
参考文献
曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.
参考文献
董春梅, 马存飞, 林承焰, 孙雪, 袁梦影. 2015. 一种泥页岩层系岩相划分方法. 中国石油大学学报(自然科学版), 39(3): 1~7.
参考文献
冯有良, 张义杰, 王瑞菊, 张光亚, 吴卫安. 2011. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素. 石油勘探与开发, 38(6): 685~692.
参考文献
冯有良, 杨智, 张洪, 张天舒, 李攀, 侯鸣秋, 蒋文琦, 王小妮, 朱吉昌, 李嘉蕊. 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义——以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839~863.
参考文献
何衍鑫, 鲜本忠, 牛花朋, 刘建平. 2018. 古地理环境对火山喷发样式的影响: 以准噶尔盆地玛湖凹陷东部下二叠统风城组为例. 古地理学报, 20(2): 245~262.
参考文献
匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.
参考文献
雷德文, 陈刚强, 刘海磊, 李啸, 阿布力米提, 陶柯宇, 曹剑. 2017. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究. 地质学报, 91(7): 1604~1619.
参考文献
雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 2022a. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价. 岩性油气藏, 34(3): 142~153.
参考文献
雷海艳, 齐婧, 周妮, 陈俊, 孟颖, 张锡新, 陈锐兵. 2022b. 玛湖凹陷玛页1井风城组富硅页岩成因及其油气意义. 新疆石油地质, 43(6): 724~732.
参考文献
李乐. 2015. 塘沽地区沙河街组含方沸石白云岩沉积环境及成因探讨. 中国地质大学(武汉)博士学位论文, 69~72.
参考文献
李威, 张元元, 倪敏婕, 唐文斌. 2020. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究: 来自全球碱湖沉积的启示. 地质学报, 94(6): 1839~1852.
参考文献
柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 82~838.
参考文献
刘得光, 周路, 李世宏, 马万云, 郭文建. 2020. 玛湖凹陷风城组烃源岩特征与生烃模式. 沉积学报, 38(5): 946~955.
参考文献
苏东旭, 王忠泉, 袁云峰, 韩宝. 2020. 准噶尔盆地玛湖凹陷南斜坡二叠系风城组风化壳型火山岩储层特征及控制因素. 天然气地球科学, 31(2): 209~219.
参考文献
唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.
参考文献
王冠民, 刘海城, 熊周海, 王京印. 2016. 试论长英质颗粒对湖相泥页岩脆性的控制条件. 中国石油大学学报(自然科学版), 40(3): 1~8.
参考文献
王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 2019. 松辽盆地齐家-古龙凹陷青山口组黑色页岩岩相类型与沉积环境. 天然气地球科学, 30(8): 1125~1133.
参考文献
王小军, 王婷婷, 曹剑. 2018. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃. 新疆石油地质, 39(1): 9~15.
参考文献
魏研, 郭佩, 靳军, 蒋宜勤, 王剑, 雷海燕, 文华国. 2021. 火山-碱湖沉积岩中的燧石成因: 以准噶尔盆地下二叠统风城组为例. 矿物岩石, 41(2): 83~98.
参考文献
鲜本忠, 牛花朋, 董国栋, 朱世发, 安思奇. 2013. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储层的关系. 高校地质学报, 19(1): 46~55.
参考文献
杨帆, 孟鑫, 王先虎, 余佩蓉, 邵广辉, 陈火红. 2022. 玛页1井风城组页岩微观孔隙特征及其影响因素. 新疆石油地质, 43(1): 1~10.
参考文献
余宽宏, 操应长, 邱隆伟, 孙沛沛, 杨勇强, 曲长胜, 李玉文, 万敏, 宿云国. 2016. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理. 天然气地球科学, 27(7): 1248~1263.
参考文献
张君峰, 徐兴友, 白静, 刘卫彬, 陈珊, 刘畅, 李耀华. 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637~652.
参考文献
张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.
参考文献
张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.
参考文献
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 时战楠, 肖敦清, 韩文中, 姜文亚, 张伟, 汪虎. 2019. 断陷湖盆湖相页岩油形成有利条件及富集特征——以渤海湾盆地沧东凹陷孔店组二段为例. 石油学报, 40(9): 1013~1029.
参考文献
支东明, 郑孟林, 郭文建, 吴涛, 邹志文. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践. 新疆石油地质, 39(1): 1~8+22.
参考文献
支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.
参考文献
支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 玛湖凹陷下二叠统风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 1~14.
参考文献
朱世发, 朱筱敏, 刘继山, 姚远, 鲜本忠, 牛花朋, 赵长永. 2012. 富孔熔结凝灰岩成因及油气意义——以准噶尔盆地乌—夏地区风城组为例. 石油勘探与开发, 39(2): 162~171.
参考文献
朱世发, 朱筱敏, 陶文芳, 刘诗奇, 陈贺贺, 张越迁. 2013. 准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究. 高校地质学报, 19(1): 38~45.
参考文献
朱世发, 朱筱敏, 刘学超, 李超, 王星星, 谈明轩, 耿名扬, 李艳平. 2014a. 油气储层火山物质蚀变产物及其对储集空间的影响——以准噶尔盆地克-夏地区下二叠统为例. 石油学报, 35(2): 276~285.
参考文献
朱世发, 朱筱敏, 吴冬, 刘英辉, 李盼盼, 姜淑贤, 刘学超. 2014b. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 35(1): 77~85.
参考文献
邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.
参考文献
邹阳, 戚艳平, 宋栋, 陈文顺, 韦盼云. 2022. 玛页1井风城组页岩油藏地质特征及甜点评价. 新疆石油地质, 43(6): 714~723.
目录contents

    摘要

    玛湖凹陷二叠系风城组是近几年准噶尔盆地页岩油接替的主攻领域,但其页岩成岩改造强烈,原始岩性归属尚不明确。X射线粉晶衍射测得风城组页岩黏土矿物含量普遍较低(<10%),长英质矿物含量较高(60%~80%)。薄片分析发现风城组长英质页岩存在三种类型:① 粉砂级(4~63 μm)长石和石英碎屑含量丰富,为典型的粉砂岩;② 燧石条带和团块发育,为富硅页岩;③ 长英质基质发育,呈非碎屑状,且火山尘及火山玻璃少见,其矿物组成和形态与典型的黏土岩、粉砂岩及沉凝灰岩明显不同。背散射图像和高精度扫描电镜测得该长英质基质由碎屑和自生石英、钾长石和钠长石共同组成,可见黏土矿物、碎屑钾长石和钠长石向自生石英转化,碎屑钾长石向自生钠长石转化。通过调研全球中新生代碱湖沉积中自生硅酸盐矿物组合特征和成岩演化规律,探讨了二叠系风城组“贫”黏土矿物和“富”自生长英质矿物的原因,并提出风城组发育一类“改造长英质页岩”,主要由原始黏土和长石碎屑矿物和火山物质经过多期成岩改造而成。早期高碱(pH>9)沉积和成岩环境增加了SiO2溶解度和元素铝的活性,导致黏土矿物、泥级—细粉砂级长英质碎屑、火山灰等在入湖后发生“溶解、转化”,形成次稳定的硅酸盐矿物,如沸石和含镁蒙皂石,在经历漫长埋藏成岩后进一步转化为更为稳定的石英、钾长石和钠长石。碱湖页岩的成岩改造过程消耗了黏土矿物和火山灰,极大增加了页岩脆性,同时伴生了大量基质溶孔和晶间孔,是一类优质的页岩储层。

    Abstract

    In recent years, the Upper Paleozoic Fengcheng Formation of the Mahu sag has been the new exploration target of shale oils in the Junggar basin, NW China. However, due to its highly alkaline depositional condition, the shales of the Fengcheng Formation have suffered intense diagenetic modification and the primary lithology of its shales remains uncertain. XRD results reveal that the shales of the Fengcheng Formation are characterized by low contents of clay minerals (<10%) and high contents of felsic minerals (60%~80%). Thin sections show that there are three types of felsic shales in the Fengcheng Formation. The first type is composed of detrital silt-sized (4~63 μm) quartz and feldspar grains, typically defined as siltstone. The second type of felsic shales contain abundant cherts, which are siliceous shales. The third type of felsic shales mainly consist of cryptocrystalline felsic matrix. The rare existence of vitric pyroclasts and clays make it difficult to classify the third type of felsic shales of Fengcheng Formation as either mudstone, siltstone or tuffite. Backscattered electron imaging and high-resolution scanning electron microscopy reveal that the matric felsic minerals are mainly composed of authigenic and detrital quartz, albite, and K-feldspar. Detrital K-feldspar and albite have been intensively replaced by authigenic quartz and albite. Authigenic euhedral K-feldspar, albite, and quartz crystals, range from 2 μm to more than 10 μm in size. These phenomena together suggest that parts of quartz and feldspar minerals in the shales of the Fengcheng Formation are authigenic, not detrital in origin, which is different from the felsic shales in other lacustrine basins in China. After reviewing the mineral compositions and diagenetic modifications of sediments in modern and Cenozoic alkaline lakes over the world, this study proposes that the felsic shales of the Fengcheng Formation resulted from multiple diagenetic alteration of original clayey shales. Detrital clays and silt-sized quartz, as well as occasionally ashes, reacted extensively with saline, alkaline solutions and contributed to the formation of SiO2-rich and Al-rich gels. This was the key process responsible for the disappearance of clay minerals and volcanic materials in the shales of the Fengcheng Formation. Metastable silicate and silica minerals precipitated from the gels and gradually transformed to more stable K-feldspar to albite. The modified felsic shales in the Fengcheng Formation, with abundant quartz and feldspars and little clay minerals, largely increased intercrystalline porosity and the brittleness of shales and contributed to the formation of high-quality shale reservoirs.

  • 准噶尔盆地玛湖凹陷上古生界二叠系风城组发育我国著名的湖相优质烃源岩(曹剑等,2015张元元等,2018Xia Liuwen et al.,2021),该套烃源岩是盆地西北环玛湖凹陷百里油区的物质基础(图1b)(雷德文等,2017支东明等,2018唐勇等,2019)。经过近十年来对风城组层内白云岩和页岩致密油和页岩油气的勘探,该层位有望成为继吉木萨尔凹陷芦草沟组后,准噶尔盆地内的又一潜在页岩油开发层位(匡立春等,2012支东明等,20192021)。然而,风城组因沉积时期活跃的火山背景和高碱、高盐的湖泊环境(朱世发等,20122014a2014b; 余宽宏等,2016张志杰等,2018李威等,2020),加之在埋藏过程中又经历了不同程度的钙化、云化和硅化改造,使得岩石组成异常复杂(王小军等,2018),导致对甜点“储集层”预测较为困难。

  • 陆相页岩根据主要矿物组成,可分为三个岩相端元,碳酸盐质页岩(灰岩或白云岩),黏土质页岩(黏土岩)和长英质页岩(粉砂岩)(董春梅等,2015柳波等,2018)。前期研究发现,风城组普遍认定的“泥岩”,含有极少量的黏土矿物(普遍<5%)(Cao Jian et al.,2020),明显不同于我国东部其他咸化含油气湖盆的黏土质页岩(黏土含量>30%)和长英质页岩(黏土含量>10%),并不是常规意义的页岩。此外,风城组沉积时期,火山活动频繁,在玛湖凹陷乌夏地区发现了大量风一段的熔结凝灰岩、安山岩、玄武岩(鲜本忠等,2013何衍鑫等,2018),同时在玛南地区发现风二段火山岩(苏东旭等,2020),由此推测风城组沉积物中,应含有大量的火山物质,形成凝灰岩和沉凝灰岩(朱世发等,2013; Yu Kuanhong et al.,2019)。然而,在风城组页岩中除了偶尔含有孤立的刚性岩屑外,几乎不含玻屑。因此,风城组部分页岩的原始岩性归属,无论划分为泥岩、粉砂岩还是沉凝灰岩,都存在证据不足、与典型碎屑岩和沉凝灰岩矿物组成不一致的问题。

  • 本文在精细岩矿分析的基础上,探讨现今风城组页岩的主要矿物组成和结构,并通过广泛调研现代和古代碱湖细粒沉积物的矿物组成特征和成岩演化规律,总结黏土矿物和火山尘在碱性—酸性成岩环境下的成岩转化规律和产物,揭示风城组页岩“贫黏土矿物”和“贫火山物质”的原因。结合世界上富硅、富长石的页岩勘探经验,探讨风城组页岩富集自生长英质矿物对页岩储集性能的影响。

  • 1 区域地质背景

  • 准噶尔盆地面积1.3×105 km2,是我国西北地区第二大含油气沉积盆地。该盆地位于哈萨克斯坦板块、西伯利亚板块和塔里木板块的三角结合带,东临克拉美丽山脉,北临阿勒泰山脉,西北临哈拉阿拉特山和扎伊尔山,南临依连哈比尔尕山和博格达山(图1b)。晚古生代,准噶尔盆地位于哈萨克斯坦山构造弧内部,潘吉亚超大陆的东北部(图1a)。玛湖凹陷位于盆地的西北部(图1b),西部以乌夏断裂带、克百断裂带和中拐凸起为界,东部以石英滩凸起、英西凹陷、三个泉凸起、夏盐凸起和达巴松凸起为界,总面积约为5200 km2。研究层位风城组上覆层位为夏子街组,下伏层位为佳木河组,三者均呈不整合接触。玛湖凹陷风城组厚度在150~1800 m之间,埋深在2600~6500 m(刘得光等,2020)。

  • 玛湖凹陷风城组具有陆源碎屑、火山碎屑以及碳酸盐岩-蒸发岩混合沉积-成岩的特点(冯有良等,2023),形成了多种类型的储集岩石,包括扇三角洲沉积体系的砂-砾岩,湖相体系的云质粉砂岩、云质泥岩、灰质岩和云质岩类,以及火山喷发的火山岩和火山碎屑岩。其中湖相云质粉砂岩、云质泥岩和泥质岩类有机质丰度高,其油浸、油斑级别岩芯的累积厚度较大,含油气性较好,属于油页岩范畴(支东明等,2021)。风城组页岩油主要分布在玛湖凹陷斜坡区较大范围内,具有典型的源储一体特征。根据单井统计的细粒沉积厚度与属性结果的趋势预测,玛湖凹陷内油页岩平面分布广,累计厚度大(100~1500 m),能够形成以碱湖烃源岩为源灶、储量规模可观的页岩油。研究区风城组以页岩(硅质+硅酸盐矿物>50%)和白云岩(白云石>50%)为主,含少量硅质岩、砂岩、灰岩和硅硼钠石岩,其中风城组白云岩前人关注较多,分别从白云石成因、藻云岩、致密油等角度进行了讨论(冯有良等,2011支东明等,2019)。

  • 研究井玛页1井位于玛湖凹陷东北斜坡区(图1b),该井风城组厚约450 m,埋深4500~4950 m(图2)。风一段中下部以火山岩和砂砾岩为主,属常规油气开发段;风一段上部、风二段和风三段主体以云质泥岩、硅质泥岩、页岩、云质岩为主,粗粒碎屑岩较少,为湖-沼相沉积,属页岩油开发段。

  • 2 样品与分析

  • 本次研究以玛页1井风城组页岩储层为重点研究对象,已收集到该井的测井曲线、有机地化和储层物性等相关数据(支东明等,2021雷海艳等,2022a)(图2),并从该井4570~4860 m共290 m厚页岩层段从下至上取样进行分析测试。同时结合其他井(风南1、风南2、风南14、艾克1井),制作约400块薄片进行基础岩矿分析,在此基础上选取其中28块样品进行X射线粉晶衍射(XRD)测试,用于分析页岩的主要矿物组成。选取50块典型页岩样品,制作未加盖玻片薄片,表面镀炭,进行背散射(BSE)-能谱测试,用于观测岩石中长英质矿物的赋存关系。选取20块页岩样品,制作约1 cm×1 cm×1 cm的岩石块样,在新鲜一面镀金,进行高精度扫描电镜二次电子成像-能谱测试,用于观测各类微观微米—纳米级孔隙和自生矿物的形态、大小和分布关系。为了解不同沉积区风城组页岩矿物组成及相互之间的关系,本次研究亦选取不同沉积区页岩样品进行XRD测试和背散射-能谱分析。

  • XRD测试在中石油新疆油田实验检测研究院和成都理工大学进行。XRD分析使用丹东浩元仪器有限公司生产的DX-2700型X射线衍射仪,管电压为40 kV,管电流为30 mA,Cu靶,Ni滤片,角测量精度≤0.001°。XRD定量分析方法和黏土矿物定性分析方法依据SY/T5163—2018《沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法》。BSE-SEM及能谱分析在成都理工大学油气藏地质及开发工程国家重点实验室进行,使用设备为SUPRA55型场发射扫描电子显微镜,加速电压为30 kV,分辨率为2 nm,放大倍数可达100万倍。测试过程依照SY/T5162—2014《岩石样品扫描电子显微镜分析方法》。

  • 图1 晚古生代准噶尔盆地的大地构造位置(a)、准噶尔盆地构造单元组成和油气田分布位置(b)及玛页1井的沉积古地理位置(c)

  • Fig.1 Tectonic position of the Junggar basin in the Late Paleozoic (a) , structural units and distribution of major oil fields in the Junggar basin (b) and paleogeographic location of the studied well MY1 in the Mahu sag (c)

  • 碎屑和自生长英质矿物的识别方法:在薄片和背散射图像(比例尺较小)中,碎屑长英质矿物粒径较大(4~63 μm),形状规则,与基质边界清晰。燧石条带和团块在岩芯、薄片下也很容易识别,该部分的石英为自生石英。其余自生长英质矿物粒径较小,一般<5 μm,部分自生钠长石晶体>10 μm,在薄片和背散射图像中难以识别,集合体往往呈非碎屑颗粒状,形态不规则,表现为矿物混杂交织在一起,在高精度扫描电镜二次电子图像中为自形晶,可通过晶形识别碎屑和自生长英质矿物。

  • 3 结果

  • 3.1 XRD分析

  • 玛湖凹陷风城组页岩最显著的特征是黏土矿物含量较少(图3),大部分样品的黏土矿物含量仅为1%~3%,主要矿物类型为伊利石和伊蒙混层。仅一个样品黏土矿物含量达到7%(表1),该样品的白云石含量达到45%。风城组页岩的黏土矿物含量远小于我国东部其他湖相页岩中的黏土矿物(20%~50%)(图3a)。其石英含量一般在20%~50%之间,局部可达64%,平均含量高于其他咸化湖盆的页岩。长石总含量在15%~55%之间,大部分在20%~40%之间。碳酸盐矿物在风城组页岩中普遍存在,含量在10%~30%之间,以白云石或铁白云石为主,方解石含量普遍小于10%。中国玛湖凹陷风城组页岩矿物组成特征与美国Piceance Creek盆地始新统绿河组Parachute Creek段的碱湖中心页岩矿物组成较为相似(图3b)。根据矿物组成,风城组页岩主要划分为长英质页岩,少部分为碳酸盐质页岩。

  • 图2 玛湖凹陷东北斜坡区玛页1井风城组综合柱状图

  • Fig.2 Generalized column of the Fengcheng Formation of well MY1 in the slope of the Mahu sag

  • 测井曲线:GR—自然伽马;SP—自然电位;CAL—井径;R1—电阻率;RT—地层真电阻率;RXOZ—冲洗带电阻率;AC—声波时差;DEN—密度;CNL—中子;TOC—总有机碳含量

  • Logging curves: GR—natural gamma ray; SP—spontaneous potential; CAL—caliper; R1—electrical resistivity; RT—true electrical resistivity; RXOZ—flushed zone resistivity; AC—acoustic interval transit time; DEN—density; CNL—neutron; TOC—total organic carbon content

  • 3.2 偏光显微镜分析

  • 风城组长英质页岩根据长英质矿物赋存形式可分为三种类型(图4):第一种粉砂级碎屑石英和长石颗粒含量较高,为典型的粉砂岩(图4a、b);第二种页岩中含有大量的燧石条带和团块(图4c、d),导致长英质矿物含量整体超过50%,亦可称为富硅页岩(雷海艳等,2022b);第三种在偏光显微镜下不见明显的粉砂颗粒和燧石团块(图4e、f),页岩整体以淡褐黄色或淡棕色基质为主(图4e),该类基质在正交偏光下呈一级灰—灰白干涉色,里面弥散有大量黄铁矿和微晶白云石(图4g~i)。值得注意的是,页岩基质中少见黏土矿物,一般情况下,若伊利石和绿泥石等黏土矿物富集,基质在正交偏光下会呈现一级黄至二级干涉色。第二类和第三类长英质页岩中易发育白色、浅灰色的钙质、云质或硅质的条带(图4c、d)、麻点(<1 mm)(图4e、f)、斑点(1~5 mm)、斑块(5~10 mm)、团块(>10 mm)等。高倍显微镜观察发现,玛页1井风城组页岩的浅棕色基质主要由形状不规则、混乱交织的长英质矿物组成,矿物边界较难界定,其中弥散有大量黄铁矿(图4g~i)。风城组页岩中并不含有火山灰或火山玻璃,早期转化产物沸石类矿物亦少见。由于第一类碎屑长英质页岩在湖相沉积中较为普遍,第二类富硅页岩以及其中的燧石条带和团块成因前人已有研究(魏研等,2021; Yu Kuanhong et al.,2021; 雷海艳等,2022b),本次研究重点对第三类长英质页岩展开精细的矿物学分析。

  • 图3 玛湖凹陷风城组页岩矿物组成与国内外页岩对比

  • Fig.3 Comparison of shale mineral compositions of the Fengcheng Formation in the Mahu sag with other lacustrine shales over the world

  • (a)—与国内典型湖相页岩矿物组成对比(据Hou Yuguang et al.,2017; 柳波等,2018王冠民等,2016);(b)—与美国Piceance Creek盆地始新统绿河组对比,绿河组下部Garden Gulch段沉积于淡水—微咸水期,上部Parachute Creek段沉积于碱性盐湖期(据Boak and Poole,2015

  • (a) —with other lacustrine shales in China (after Hou Yuguang et al., 2017; Liu Bo et al., 2018Wang Guanmin et al., 2016) ; (b) —with the Eocene alkaline lacustrine shales in the Piceance Creek basin, U.S.A. Garden Gulch Member was deposited in fresh-brackish lake and Parachute Creek Member was deposited in alkaline saline lake (after Boak and Poole, 2015)

  • 表1 玛湖凹陷玛页1井风城组页岩的主要矿物组成及物性

  • Table1 Mineral composition and physical property of the Fengcheng Formation shales in well MY1, Mahu sag

  • 注:长英质矿物类型:I—碎屑长石和石英(如图4a、b);II—燧石团块和条带(如图4c、d);III—长英质基质(如图4e~i)。

  • 3.3 背散射图像分析

  • 背散射图像中矿物颜色的深浅程度主要与平均原子序数有关,钾长石的平均原子序数(11.7)较钠长石(10.3)和石英(10.0)的高,颜色较浅,结合能谱分析,三类矿物易于区分。前述薄片下观察的长英质基质,背散射图像揭示主要包括石英、钾长石和钠长石(图5)。其中石英基质最为常见,含有较多分散状孔隙,白云石、碎屑颗粒或重矿物呈漂浮状分布于其中(图5a~c)。基质中钠长石和钾长石密切共生,常赋存于同一片区域里,锯齿接触,颗粒感较弱,钠长石常常占据钾长石中心部位(图5d、e)。部分样品可见钾长石和石英共存于基质中(图5f),部分样品钠长石含量较高,作为主要的基质矿物,白云石晶体分散于其中(图5g~i)。能谱分析结果显示钠长石的成分单一,而钾长石常含有一定量的钠。

  • 3.4 高精度场发射扫描电镜分析

  • 高精度场发射扫描电镜可观测到长英质页岩基质中发育自形石英、钠长石和钾长石晶体(图6)。风城组页岩中石英自形晶最为常见,残余黏土矿物中可见单个石英晶体(图6a、b)或石英集合体,燧石条带或团块中往往由泥晶石英(<1 μm)和微晶石英(>5 μm)组成(图6c)。部分页岩样品中可发现大量自形较好的钠长石晶体,往往集群分布,晶体2~20 μm不等(图6d、e)。与石英和钠长石不同,自生钾长石晶体往往单个分布,晶体较小(图6b、f)。自生长英质矿物发育部位黏土矿物含量较少,自形黄铁矿较为发育(图6f)。

  • 除了可观察到长英质矿物自形晶体外,高精度场发射扫描电镜亦可观测到碎屑钾长石和钠长石颗粒边缘发生溶蚀,并转化为隐晶自生石英(<1 μm),自生石英晶体发育大量晶间孔隙(图6g、h)。碎屑钾长石颗粒也可被自生钠长石交代(图6i),钠长石主要分布在钾长石中心,与背散射图像中钠长石占据钾长石中心(图5d、e)现象较为一致。上述交代关系可解释在薄片和背散射图像中石英、钠长石和钾长石“交织”的现象。

  • 图4 玛湖凹陷玛页1井风城组长英质页岩的典型矿物学特征

  • Fig.4 Typical features of the felsic shales in the Fengcheng Formation of the well MY1 in the Mahu sag

  • (a)、(b)—碎屑长英质页岩,长石和石英以碎屑成因为主,4823.07 m,(a)为单偏光,(b)为正交偏光;(c)、(d)—含白云石长英质页岩,以发育燧石条带和团块为特征,(c):4770.43 m,正交偏光;(d):4811.12 m,正交偏光;(e)、(f)—块状含白云石长英质页岩,以发育长英质基质为特征,4767.65 m,(e)为单偏光,(f)为正交偏光;(g)、(h)、(i)—页岩浅褐色尘状基质在高倍显微镜下的特征,以一级灰—灰白干涉色长英质矿物为主,呈交织状态,其中弥散大量黄铁矿,4777.28 m,(g)为单偏光,(h)为正交偏光,(i)为反射光

  • (a), (b)—detrital felsic shale, whose quartz and feldspars are mainly detrital grains, 4823.07 m, (a): under plane-polarized light, (b): under cross-polarized light; (c), (d)—dolomite-bearing felsic shale, containing abundant chert nodules and bands, (c) : 4770.43 m, under cross-polarized light; (d) : 4811.12 m, under cross-polarized light; (e), (f)—dolomite-bearing felsic shale, whose matrix is composed of quartz and feldspars, 4767.65 m, (e) : under plane-polarized light, (f) : under cross-polarized light; (g) , (h) , (i)—microphotograph of felsic matrix under high-resolution microscopic images, which was composed of mosaic quartz and feldspars and disseminated with pyrite, 4777.28 m, (g): under plane-polarized light, (h): under cross-polarized light, (i): under reflected light

  • 3.5 页岩长英质矿物区域对比

  • 玛页1井位于玛湖凹陷东北斜坡区(图1c),为探讨自生长英质矿物是否在其他沉积区域亦富集,分别对沉积中心、斜坡区和边缘区页岩的硅酸盐矿物特征进行对比(图7),并进行XRD分析(图8)。结果表明,不同沉积区风城组页岩中钠长石和钾长石结晶习性有所差异,而黏土矿物含量与自生长英质矿物含量呈反比。

  • 在沉积边缘区,如夏子街地区,风城组页岩中蜂窝状黏土质基质较为发育,碎屑颗粒斜长石分散于黏土基质中(图7a),钾长石少见。能谱分析显示蜂窝状黏土基质的主要元素为Ca、Mg、Al、Si、O(图7b),场发射扫描电镜测得黏土基质主要由绿泥石(图7c)和泥微晶石英组成。XRD结果显示长石主要包括钠长石和钙长石,其中钠长石为有序结构(ordered),黏土矿物主要有斜绿泥石和伊利石(图8a、b)。值得注意的是,边缘区风城组页岩中含有少量方沸石(图8a、b)。

  • 图5 玛湖凹陷玛页1井风城组页岩基质中长英质矿物的赋存状态

  • Fig.5 Occurrences of quartz and feldspar minerals in the shales of the Fengcheng Formation in the Mahu sag

  • (a)、(b)、(c)—页岩基质矿物以石英为主,其中分散有黄铁矿,(a): 4596.83 m,(b): 4596.83 m,(c): 4829.97 m;(d)、(e)—钠长石(深)和钾长石(浅)的镶嵌分布,(d): 4786.56 m,(e): 4800.68 m;(f)—石英(深)和钾长石(浅)的镶嵌分布,4596.83 m;(g)、(h)、(i)—页岩基质以钠长石为主,白云石分散于钠长石基质中,含有少量不规则钾长石,4710.72 m,背散射图像,矿物种类均已经过能谱确认

  • (a),(b),(c)—quartz matrix, disseminated with pyrite, (a): 4596.83 m, (b): 4596.83 m, (c): 4829.97 m; (d) , (e) —mosaic albite (dark) and K-feldspar (light) , (d): 4786.56 m, (e): 4800.68 m; (f) —mosaic quartz (dark) and K-feldspar (light) , 4596.83 m; (g) ,(h),(i)—albite matrix, dispersed with dolomite and K-feldspar, 4710.72 m, BSE images, whose mineral composition was confirmed by DES testing

  • 沉积斜坡区长英质页岩以镶嵌状长英质矿物为主,其间的蜂窝状黏土基质较少,可见部分钾长石的中心被钠长石交代(图7d)。在有机质较为富集的区域,矿物颗粒间的黏土基质几乎不发育,不规则的钾长石、钠长石以及白云石互相接触,被有机质相间隔(图7d)。场发射扫描电镜发现不规则隐晶长石(<1 μm)和自形长石(>10 μm)共存,如钠长石发育区域可见自形钠长石微晶发育于钠长石基质中(图7e),钾长石交代基质中的白云石晶体(图7f)。XRD指示斜坡区钾长石主要包括透长石(图8c、e)和微斜长石(图8d),其中微斜长石为有序结构,而几乎所有样品中的透长石为无序结构(图8c~e)。斜坡区风城组页岩中的钠长石亦主要为无序结构(图8c~e)。部分样品有序和无序结构的钠长石并存,二者的峰值分布不一致(图8c)。

  • 图6 玛湖凹陷风城组长英质页岩中的自生石英、钠长石和钾长石晶体特征及与碎屑长英质矿物的关系

  • Fig.6 Occurrences of authigenic quartz, albite, and K-feldspar crystals in the felsic shales of the Fengcheng Formation of the Mahu sag and their paragenetic relationship with detrital quartz and feldspar grains

  • (a)—页岩中自生石英晶体,玛页1井,4596.83 m;(b)—页岩基质中的自生石英和钾长石,风南14井,4109.47 m; (c)—泥微晶石英集合体,玛页1井,4783.57 m;(d)、(e)—页岩中的自生钠长石晶体,(d): 玛页1井 4612.31 m,(e): 风南14井,4109.47 m;(f)—页岩中的自生钾长石晶体,玛页1井,4665.91 m;(g)—页岩中碎屑钾长石被石英交代,风南1井,4361.36 m;(h)—页岩中碎屑钠长石被石英交代,风南2井,4038.35 m;(i)—页岩中碎屑钾长石被钠长石交代,风南14井,4109.47 m;场发射扫描电镜二次电子成像,矿物种类均已经过能谱确认

  • (a)—authigenic quartz, well MY1, 4596.83 m; (b)—authigenic quartz and K-feldspar,well FN14, 4109.47 m; (c)—cryptocrystalline and microscopic quartz aggregates, well MY1, 4783.57 m; (d) , (e)—authigenic albite, (d) : well MY1, 4612.31 m, (e) : well FN14, 4109.47 m; (f)—authigenic K-feldspar,well MY1,4665.91 m; (g)—replacement of detrital K-feldspar by quartz, well FN1, 4361.36 m; (h)—replacement of detrital albite by quartz,well FN2, 4038.35 m; (i)—replacement of detrital K-feldspar by albite,well FN14,4109.47 m; SEM secondary electron imaging, whose mineral composition was confirmed by DES testing

  • 图7 玛湖凹陷不同沉积区风城组页岩的典型长英质矿物组成

  • Fig.7 Mineral compositions and their paragenesis of the Fengcheng Formation shales in different sedimentary zones of the Mahu sag

  • (a)、(b)、(c)—沉积边缘区页岩以黏土矿物基质和碎屑长石为主,夏40井,4638.12 m;(d)、(e)、(f)—沉积斜坡区长英质页岩的泥岩基质减少,以不规则钠长石、钾长石、白云石组成,风南1井,4361.36 m;(g)、(h)、(i)—沉积中心含盐页岩以弥散状钾长石和氯碳钠镁石为主,分布锰闪石自形晶,艾克1井,5668.89 m;BSE—镀炭薄片的背散射图像;SEM—场发射扫描电镜二次电子成像;矿物种类均已经过能谱确认

  • (a),(b),(c)—lake marginal shales are mainly composed of clays and detrital feldspars,well X40,4638.12 m;(d),(e),(f)—lake transitional shales are mainly composed of mosaic albite, K-feldspar and dolomite, with minor clays, well FN1, 4361.36 m;(g),(h),(i)—lake central shales are composed of mosaic K-feldspar and northupite, dispersed with authigenic richterite,well AK1,5668.89 m; BSE—backscattered electron imaging of carbon-covered thin sections; SEM—scanning electron microscopy with secondary electron imaging; mineral composition was confirmed by DES testing

  • 沉积中心风城组主要为含盐页岩,在艾克1井中的纹层状泥质层主要以弥散状钾长石为主(图7g),氯碳钠镁石充填于钾长石基质孔中,形成晚于钾长石。钾长石中心被石英交代,自形性较好的锰闪石分散于基质中(图7g、h),形成晚于钾长石和氯碳钠镁石。场发射扫描电镜发现钾长石基质由不同大小两组钾长石自形晶组成,较大一组钾长石可达5 μm,较小一组钾长石<1 μm(图7i)。XRD测得钾长石主要为无序透长石(图8f)。

  • 图8 玛湖凹陷不同沉积区风城组页岩XRD分析结果,关注钾长石和钠长石的不同结晶习性

  • Fig.8 XRD results of the Fengcheng Formation shales in different sedimentary zones of the Mahu sag

  • (a)、(b)—沉积边缘区长英质页岩主要由石英、方沸石、钠(钙)长石(有序)、斜绿泥石和伊利石组成;(c)、(d)、(e)—沉积斜坡区长英质页岩主要由石英、钠长石(无序)和透长石(无序)组成,偶含微斜长石(有序);(f)—沉积中心含盐页岩中的长英质矿物由钠长石(无序)和透长石(无序)组成

  • (a) , (b) —lake marginal felsic shales are composed of quartz, analcime, ordered calcic albite, clinochlore and illite; (c) , (d) , (e) —felsic minerals of lake marginal shales are composed of quartz, disordered albite and sanidine, occasionally containing ordered microcline; (f) —felsic minerals of lake central shales are composed of disordered albite and sanidine

  • 3.6 长英质页岩储层的储集性能

  • 玛页1井风城组的物性特征与岩性密切相关。风一段下段的凝灰质砂砾岩和熔结凝灰岩段孔隙度最高,主要介于4%~10%之间,其余岩性的孔隙度整体较低,一般小于4%(图2)。风城组页岩层的渗透率整体较低,大部分岩性的渗透率小于0.1×10-3 μm2,凝灰岩的渗透率整体最高。当页岩中白云石和燧石比例增加时,孔隙度(>4%)和渗透率(>0.1 ×10-3μm2)相对较高(表1)。玛页1井风城组页岩微孔隙较为发育,主要包括基质溶孔和晶间孔。基质溶孔可达十几微米(图9a、b),为有效的页岩储集空间。大部分的基质溶孔壁上发育自生石英(图9c、d),可在一定程度上保护孔隙避免压实破坏。此外,风城组页岩自生长石和石英集合体较为发育,具有大量晶间孔(图9e、f),孔喉半径可达数微米。

  • 4 讨论

  • 4.1 风城组页岩长英质矿物成因类型

  • 长英质矿物是湖相页岩重要的组成端元,与黏土矿物端元和碳酸盐矿物端元相对应(董春梅等,2015)。长英质页岩主要指粉砂级矿物(碎屑长石+碎屑石英)含量在50%以上的一类页岩(董春梅等,2015),是我国渤海湾盆地(赵贤正等,2019)和松辽盆地(柳波等,2018王岚,2019张君峰等,2020)湖相页岩的重要类型之一。玛湖凹陷风城组页岩以长英质页岩为主(图3a),除了发育常规碎屑长英质页岩外(图4a、b),还发育富硅页岩和基质型长英质页岩,其长英质矿物具有明显的非碎屑特征。形态上,长英质基质在偏光显微镜(图4g、h)和低倍背散射镜下(图5)呈隐晶状,矿物分布不规则,颗粒边界不明显;在高倍场发射扫描电镜下可见自形较好的泥微晶石英、钾长石、钠长石矿物(图6),或呈集群发育,或充填空隙,为典型的自生矿物。矿物结晶习性上,风城组沉积中心—斜坡区的部分钾长石和钠长石为无序结构,而边缘区钠长石和钙长石均为有序结构。长石的有序度主要与温度、岩石年代以及剪切应力等因素有关,一般高温(岩浆系统)长石表现为无序结构,低温长石表现为有序结构,较老时代的长石较新时代的长石有序度高(Goldsmith et al.,19851990)。低温无序自生钠长石和钾长石亦可发育于沉积岩中,主要报道于碱湖沉积中,如美国绿河组(Mackenzie,1957Desborough,1975)。风城组湖泊边缘区的有序长石主要为碎屑成因(图7a),说明周缘物源区岩石(以火山岩为主)中的长石已转化为有序结构;而沉积中心—斜坡区的无序长石的形成可能与碱性水体有关。由于样品非纯物相,风城组自生长石的有序无序结构有待进一步论证。事实上,自生钾长石和钠长石在碱湖沉积物中普遍存在,在越古老的地层中含量越多(图10)(Hay and Moiola,1963; Larsen,2008)。

  • 由此可见,风城组发育两类“非碎屑长英质页岩”,明显区别于我国其他陆相湖盆划分的碎屑长英质页岩。通过对风城组页岩近400片薄片的精细观察,风城组“碎屑长英质页岩”和“非碎屑长英质页岩”比例相当,其中碎屑长英质页岩在风三段更为发育,非碎屑长英质页岩在风二段更为发育(表1)。世界上富自生长石的页岩较为少见,在斯洛文尼亚南部侏罗纪远洋沉积物中有发现(Skobe et al.,2013),钾长石主要在晚成岩阶段由富钾矿物如白云母转化而来。富自生石英的页岩屡见报道,称为硅质页岩(siliceous shales),主要发育于海相地层中,如美国Texas州Fort Worth盆地的密西西比系Barnett页岩(Jarvie et al.,2006Milliken et al.,2007)、落基山脉白垩系Mowry页岩(Milliken et al.,2017)、二叠盆地的泥盆系Woodford页岩(Dong Tian et al.,2020),英国Craven盆地密西西比系Bowland页岩(Emmings et al.,2020),以及我国四川盆地五峰组—龙马溪组含气页岩(Zhao Jianhua et al.,2017Han Chao et al.,2019)等。上述海相页岩中的自生石英主要是生物成因,硅质来源于海相硅质生物如放射虫、海绵虫等。风城组改造长英质页岩,一方面发育于陆相盆地中,另一方面同时富集自生长石和石英,在国内外实属罕见。

  • 图9 玛湖凹陷玛页1井风城组改造长英质页岩的主要孔隙类型

  • Fig.9 Main pore types of the modified felsic shales of the Fengcheng Formation in the Mahu sag

  • (a)、(b)—油膜与基质溶孔,4690.82 m、4612.31 m;(c)—钠长石附着在基质溶孔壁上,4612.31 m;(d)—石英附着在基质溶孔壁上,4612.31 m;(e)—碎屑钠长石颗粒溶解产生的溶蚀晶间孔,4783.15 m;(f)—自生石英集合体形成的晶间孔,4669.63 m

  • (a) , (b) —oil films and substrate pores, 4690.82 m, 4612.31 m; (c) —authigenic albite growing on the walls of substrate pores, 4612.31 m; (d) —authigenic quartz growing on the walls of substrate pores, 4612.31 m; (e)—intercrystalline pores formed by the dissolution of detrital albite, 4783.15 m; (f)—intercrystalline pores of quartz, 4669.63 m

  • 图10 碱湖沉积物自生硅酸盐矿物组合及空间分布特征,主要受原始沉积环境和埋藏深度(地层时代)控制

  • Fig.10 Mineral association and distribution of authigenic silicates in ancient alkaline lacustrine deposits, mainly controlled by depositional environments and burial depth (depositional age)

  • 灰色填充框代表凝灰岩层,其他代表常规泥岩段;TDS代表溶解固体总量;数据来源:(1)Renaut,1993; (2)Surdam and Euster,1976;(3)Larsen,2008;(4)Hay et al.,1991;(5)Stamatakis,1989;(6)Surdam and Parker,1972;(7)Desborough,1975;(8)Turner and Fishman,1991;(9)本文

  • Grey filled boxes represent tuff beds and empty boxes represent normal mudstones; TDS represent total dissolved solids; data sources: (1) Renaut, 1993; (2) Surdam and Euster, 1976; (3) Larsen, 2008; (4) Hay et al., 1991; (5) Stamatakis, 1989; (6) Surdam and Parker, 1972; (7) Desborough, 1975; (8) Turner and Fishman, 1991; (9) this study

  • 4.2 自生长英质矿物的原始物质来源

  • 4.2.1 可能来源一:碎屑黏土和长石矿物

  • 不同沉积区风城组页岩硅酸盐矿物组成差异较大(图7、8),湖泊边缘区受地表径流影响较大,盐度和碱度相对湖盆中心低,其页岩中硅酸盐矿物以碎屑斜长石(ordered)、方沸石、斜绿泥石和伊利石为主,而盐碱度较高的中心—斜坡区页岩以无序结构的透长石和钠长石为主,不发育方沸石,且较多样品几乎不发育黏土矿物。风城组自生长英质矿物含量与黏土矿物含量呈反比关系,说明自生长英质矿物的形成可能与黏土矿物的“消失”有关(图10)。

  • 事实上,在碱性条件下(pH>9),由于二氧化硅的溶解度和铝的活性同时增加,泥级(<0.0156 mm)和粉砂级(<0.0625 mm)碎屑物质,如石英和黏土矿物等,会变得不稳定,在湖水-孔隙水中发生溶解,形成富硅和富铝的胶体溶液(gel)(Hay,1966; Tank,1972)。据统计,第四纪碱湖沉积物中的主要碎屑黏土矿物为蒙脱石(Renaut et al.,1986),在碱性水体中碎屑蒙脱石变得不稳定,在埋藏过程中容易溶解(Hay and Moiola,1963),产生新的硅酸盐矿物(Gaucher et al.,2006Savage et al.,2010)(图10)。如在美国西南部的Searles谷中发育的干碱湖Searles,湖底近700 m的沉积物可划分为三个成岩带:上部(0~291.1 m)以盐度多变的碱性孔隙水为主(pH 9~10),发育自生铝硅酸盐矿物(包括Fe-伊利石,Mg-蒙脱石,钾长石和方沸石),占总黏土矿物的60%~70%,碎屑蒙脱石被大量消耗;中部(291~541.6 m)以碱性中盐度的孔隙水为主(pH> 9),自生硅酸盐矿物仅占20%~30%;底部(541.6~693.4 m)以中等盐度和碱度的孔隙水为主(pH 7.5~8),仅含有极少量斜发沸石,碎屑黏土矿物几乎没有改变。说明碎屑蒙脱石在上部高碱、高盐环境下易发生转变,形成自生Fe-伊利石、Mg-蒙皂石、钾长石和方沸石。Renaut(1993)在碱性盐湖Bogoria北部河湖相沉积物中发现大量方沸石,平均含量在40%以上,且方沸石含量与黏土矿物含量近似呈正比,该方沸石被解释为碎屑硅酸盐矿物(主要是蒙脱石)与富Na2CO3水体反应的产物,自生伊利石是反应的副产物。在美国绿河组油页岩中同样发育自生钾长石和钠长石,被解释为碎屑黏土矿物在与碱性水体接触过程中发生溶解、后期在埋藏成岩过程中形成(Desborough,1975)。

  • 4.2.2 可能来源二:凝灰物质

  • 风城组沉积时期,玛湖凹陷及其周缘火山活动频繁(李威等,2020),火山灰和火山玻璃来源丰富,是风城组自生长英质矿物的另一种可能来源。火山灰和火山玻璃是一种亚稳定物质,落入水体中易发生溶解或转化,形成其他类型的硅酸盐矿物。常见的火山灰转化产物有三八面体蒙脱石、钙十字沸石、斜发沸石、菱沸石、方沸石、水硅硼钠石、钾长石、伊利石、钠长石、蛋白石(opal C-T)等。转化产物类型与水体性质(盐度、pH等)密切相关(Surdam et al.,1972),受所处沉积环境的控制(图10),在边缘淡水影响区火山玻璃可以较好地保存,在中盐中碱的过渡区火山玻璃可转化为各类沸石,在碱湖沉积中心的高盐度和富HCO-3水体环境中,火山玻璃很快发生水解作用,在后期埋藏过程中形成钾长石和水硅硼钠石(Hay,1966; Hay and Guldman,1987; Larsen,2008; 朱世发等,2014b)。火山灰和火山玻璃的转化产物除了受原始沉积环境的控制外,还与埋藏深度和温度有关,赋存于不同时代碱湖沉积岩中的凝灰岩层,自生硅酸盐矿物的组成不同。时代越古老的地层,埋藏深度一般越大,早期不稳定矿物如沸石等,会转化为更稳定的钾长石和钠长石。在古老碱湖中,受沉积环境(盐度和碱度)的影响,自生硅酸盐矿物的空间分布具有分带性(Fishman et al.,1995Larsen,2008),如Colorado Plateau上侏罗统Morrison组的Brushy Basin Member,从盆地边缘到中心,依次分别为蒙脱石—斜发沸石—方沸石±钾长石—钠长石带(Tank,1972)。沸石常被认为不存在于老于中生代的碱湖地层中(Hay,1966Langella et al.,2001)(图10)。

  • 4.2.3 风城组自生长英质矿物原始物质来源

  • 由上述讨论可知,现今风城组富集的自生长英质矿物既可能来源于陆源碎屑矿物,亦可能来源于火山物质,若主要来源于碎屑黏土和长石矿物则风城组页岩可划分为“碎屑岩”,然而若主要来源于“凝灰物质”则可划分为“沉凝灰岩”。明确其原始岩性,有利于了解页岩的形成环境以及有机质富集规律。由于风城组页岩相对于其他碱湖沉积岩,时代更为古老,绝大多数中间次稳定产物早已不复存在,仅从最终转化产物较难判断其原始岩性。

  • 本文更倾向于陆源碎屑矿物(包括黏土矿物和泥级—细粉砂级石英-长石等)是风城组自生长英质矿物的主要物质来源。原因有以下五个方面:① 在碱湖斜坡区页岩中可见黏土矿物向石英(图6a)、碎屑钾长石和钠长石向自生石英和长石转化的大量矿物学证据(图6g~i)。② 世界上其他新生代碱湖沉积,虽被广泛报道含有火山物质,但凝灰岩和沉凝灰岩仅仅是正常湖相沉积物中的夹层。现今地球上最大的碱湖,土耳其Van湖,位于两个大的火山口附近,其沉积物中的凝灰岩和沉凝灰岩层亦只是正常湖相泥岩的夹层(Deniz et al.,2014),碱湖沉积物较少有以凝灰岩和沉凝灰岩为主的例子。玛湖凹陷东北斜坡区风城组近500 m的地层中,除白云岩、硅质岩和砂岩层外,含有较高比例的改造长英质页岩(表1),若长英质矿物主要来源于火山物质,则意味着火山活动在不间断地发生,而事实上火山活动具有周期性,不可能如此频繁。③ 新生代火山-碱湖沉积物,如Searles湖(Smith and Stuiver,1979)、Bogoria湖(Renaut,1993)等,普遍含有20%~30%的黏土矿物,这还不包括在湖水中已溶解转化的矿物,说明碎屑黏土矿物是原始火山-碱湖沉积物的主要组成部分,而风城组贫黏土矿物的原因很可能是黏土矿物早已发生转化。美国Piceance Creek盆地始新统绿河组Parachute Creek段沉积于碱性盐湖期(Boak and Poole,2015),沉积中心油页岩中黏土矿物较少,自生长石丰富,而沉积边缘区黏土矿物较多,自生长石不发育(图3b),由此说明中心高盐碱环境下碎屑黏土矿物发生了转化。风城组漫长的成岩演化使得早期不稳定的蒙脱石和沸石等均转化为稳定的钾长石。④ 镶嵌状的长英质矿物,常常围绕重矿物分布,如磷灰石、金红石、锆石等,这些重矿物是陆源碎屑物,间接说明长英质矿物的原始物质主要为陆源碎屑。⑤ 方解石和白云石的分布与黏土矿物的分布具有一定联系:风城组的黏土矿物普遍含镁(能谱分析指示),在黏土矿物含量较高的边缘地区,碳酸盐矿物以方解石为主,而在黏土矿物缺失或含量极少的中心—边缘地区,碳酸盐矿物以白云石为主,说明白云石和含镁黏土矿物之间存在镁争夺效应。虽然白云石的镁也有可能来源于火山物质,但在边缘区火山物质同样转化的情况下,白云石也不发育。当然,不排除火山物质在风城组某些层段是长英质矿物的主要物质来源。

  • 4.3 风城组自生长英质矿物富集模式

  • 针对风城组自生长英质矿物的形成,本文提出胶体物质转化模式。胶体物质转化模式主要针对碱湖自生硅酸盐矿物提出,在肯尼亚Magadi碱湖地区更新统—全新统未固结沉积物检测出胶体物质,并与方沸石含量呈负相关关系(Surdam and Eugster,1976),该模式也被应用到我国塘沽地区沙河街组方沸石成因中(李乐,2015)。风城组页岩贫“黏土矿物”和贫“凝灰物质”,均与其碱性沉积环境有关,pH的升高可造成硅质溶解度升高、铝的活性增强。在风城组沉积及准同生时期,整个碱性湖泊及其继承的孔隙水,犹如一个溶解容器,泥级—粉砂级碎屑硅质(石英)、碎屑硅酸盐矿物(黏土矿物)及凝灰物质在其中均变得不稳定,溶解形成钠铝硅酸盐胶体(sodium-aluminum silicate gel)。

  • 钠铝硅酸盐胶体在近地表和浅埋藏过程中,由于微生物活动、有机质降解产生CO2,孔隙水碱度下降,富硅和富铝的胶体溶液中会逐步析出大量自生硅酸盐矿物,斜坡—中心区以沸石类矿物为主,碱湖中心以钾长石为主。随着埋深的加大,地层温度不断增加,早期不稳定的自生硅酸盐(沸石)转化为更为稳定的钾长石(图11)。在中成岩A期,随着油气大量生产,成岩环境转变为酸性,碎屑钠长石和钾长石溶蚀,并转化为石英。相较于钠长石,自生钾长石在碱湖沉积物中成岩路径较多,钾长石既可是火山玻璃在碱湖沉积中心的主要转化生成物(转变反应式1、2、3)(Surdam and Parker,1972),亦可是碎屑黏土矿物在碱水中的主要转化产物(转变反应式4)(Hay et al.,1991)。

  • NaAlSi2O6H2O (方沸石 +K++SiO2 (aq) KAlSi3O8 (钾长石 +Na++H2O
    (1)
  • Na2K2CaAl6Si30O7224H2O( )+4K+6KAlSi3O8 () +2Na++Ca2++24H2O+12SiO2
    (2)
  • Na2K2Al4Si12O3211H2O 钙十字沸石) +2K+4KAlSi3O8 () +2Na++11H2O
    (3)
  • 2.5X0.5+Al1.20Fe0.303+Mg0.50Si4O10(OH)2 蒙皂石) +3K++0.85H2O+1.25HCO3-3KA1Si3O8 () +1.00H4SiO4+1.5MgCO3+0.75Fe(OH)3+0.45H+
    (4)
  • 风城组自生钠长石与钾长石密切共生。关于碱湖沉积物中自生钠长石的成因,主要有以下两种观点:① 形成于早成岩阶段(25~65℃),由方沸石或其他富钠沸石转化而成(转变反应式5、6),与富硅流体的接触有关(Fishman et al.,1995; Larsen,2008),主要特点是分布于始新世及更古老的碱湖沉积中心的凝灰岩层中,受原始湖泊水化学性质和埋藏温度的控制(Surdam and Eugster,1976)。② 形成于中晚成岩阶段,与原始沉积环境关系较小,受温度控制,由早期碎屑钾长石转化而成(转变反应式7)。值得注意的是,美国始新统绿河组富有机质页岩中自生钠长石含量异常丰富(Hay and Moiola,1963;Hay and Guldman,1987),其形成与有机质成熟产生的有机酸和热量有关,使得钾长石进一步转化为钠长石,这说明自生钠长石的富集主要与有机质相关。该现象亦存在于玛湖凹陷风城组,在有机质较为丰富的样品中,钾长石普遍向钠长石转化。

  • 图11 玛湖凹陷风城组改造长英质页岩形成模式

  • Fig.11 A model for the formation of authigenic felsic shales in the Mahu sag

  • Na-沸石 + 蛋白石 钠长石 + 石英 +H2O
    (5)
  • NaAlSi2O6H2O (方沸石) +H4SiO4NaAlSi3O8 (钠长石) +3H2O
    (6)
  • KAlSi3O8 (钾长石) +Na+NaAlSi3O8( 钠长石 )+K+
    (7)
  • 风城组自生石英可形成于多个阶段:① 准同生阶段,由早期含水硅质矿物脱水而成。风城组页岩中广泛发育燧石条带和团块,部分保存有丰富的生物化石,部分发育暴露构造(魏研等,2021),说明原始湖水含有丰富的溶解硅,在蒸发浓缩作用或生物诱导作用下发生沉淀。② 早成岩阶段:黏土矿物和火山物质在碱性水体中溶解,产生钠铝硅酸盐胶体溶液,在微生物活动、有机质降解过程中可析出蛋白石。③ 中晚成岩阶段:硅酸盐矿物在转化过程中可产生副产物SiO2

  • 4.4 自生长英质矿物对储集性能的影响

  • 4.4.1 增加页岩脆性

  • 页岩中的脆性矿物,如石英、长石、方解石、白云石等,是控制页岩裂缝发育程度的主要内在因素。具备商业开发条件的页岩,脆性矿物含量一般高于40%,黏土矿物含量一般小于30%(邹才能等,2010)。页岩富自生长英质矿物,一方面可以增加泥岩粒间孔隙和岩石比表面积(Milliken et al.,2017),另一方面可使页岩胶结更加紧密(Peng Junwen et al.,2020),是增加页岩脆性的重要因素之一。富自生石英是世界上多个地区页岩压裂成功的主要原因之一,如美国Fort Worth盆地Barnett页岩(Jarvie et al.,2006Milliken et al.,2007),落基山脉白垩系Mowry页岩(Milliken et al.,2017)和德克萨斯州Midland盆地晚宾夕法尼亚世的Cline页岩(Peng Junwen et al.,2020)。王冠民等(2016)认为长英质含量做为页岩脆性指标是有条件的,必须在成岩作用达到一定程度后,颗粒与黏土矿物紧密黏结在一起方才可以在压裂过程中起作用。玛湖凹陷风城组黏土矿物较少,自生长英质矿物历经多期成岩作用早已紧密结合在一起,因此,风城组长英质矿物的富集无疑有利于增加页岩的脆性(邹阳等,2022)。

  • 此外,自生长英质矿物的形成也有助于页岩中分散状白云石的形成。分散状微晶白云石是风城组页岩的重要组成部分,也是增加页岩脆性的重要矿物之一。玛湖凹陷斜坡区风城组页岩中普遍含有25%~50%的白云石(表1),其晶体大小与碎屑钾长石、钠长石和石英相当,共同组成了页岩的主要矿物部分。而风城组边缘区页岩中自生钾长石、自生钠长石和微晶白云石均较少,而含镁黏土基质含量较多,说明斜坡区黏土矿物的转化不仅有利于自生长石的形成,亦有利于白云石的形成。能谱分析表明风城组页岩黏土矿物普遍含镁,在溶解—转化过程中释放镁离子,有助于白云石的形成。朱世发等(2014a2014b)同样认为凝灰物质在转化过程中释放镁离子,造成方解石普遍白云石化。风城组页岩基质中碳酸盐矿物以微晶白云石为主,几乎不含有分散状泥晶或微晶方解石,从侧面证实了可能与相邻黏土矿物转化有关。

  • 4.4.2 增加晶间孔

  • 在长英质矿物富集过程中,伴随着原始黏土基质的溶解、转化和自生硅酸盐矿物的形成,产生了大量的基质溶孔(图9a、b)和晶间孔(图9c~f)。玛页1井风城组油页岩储层综合研究表明,长英质页岩的孔隙度高于碳酸盐质页岩,中孔占比高,孔隙连通性相对较好,是相对优势岩相(杨帆等,2022)。Emmings et al.(2020)通过研究英国Craven盆地Bowland页岩组发现,放射虫硅质的早期成岩作用可以有效阻止原始孔隙的坍塌,保留了孔隙空间。Dong Tian et al.(2020)在研究美国二叠盆地的Woodford页岩时发现,湿气阶段页岩中的孔隙度和渗透率高于早期生油阶段,这源于自生石英保护的次生有机质孔隙,湿气阶段硅质纳米微球在孔隙保存方面起到决定性作用。因此,风城组页岩的成岩作用,既可以增加岩石脆性,又可以增加孔隙度。

  • 5 结论

  • (1)准噶尔盆地玛湖凹陷风城组发育三种类型长英质页岩(石英+长石含量>50%),第一种富含粉砂级碎屑长石和石英,为碎屑长英质页岩;第二种富含燧石条带和团块,为富硅页岩;第三种基质中富含自生石英、钾长石和钠长石,为改造长英质页岩。

  • (2)风城组自生石英和长石主要由原始黏土矿物、碎屑钾长石、钠长石及凝灰物质在酸碱成岩环境转化过程中形成,其分布和含量受原始沉积环境的盐度、碱度以及有机质含量的控制。盐度和碱度越高,自生长石含量越丰富。

  • (3)玛湖凹陷风城组页岩中自生长英质矿物的富集,不仅极大增加了页岩的脆性,而且还增加了储层的孔隙度,使得风城组长英质页岩成为一类优质的页岩储层。

  • 致谢:感谢审稿人提出的宝贵意见。

  • 参考文献

    • Boak J, Poole S. 2015. Mineralogy of the Green River Formation in the Piceance Creekbasin, Colorado. In: Smith M E, Carroll A R, eds. Stratigraphy and Paleolimnology of the Green River Formation, Western USA. Springer, 183~209.

    • Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Abulimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).

    • Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202: 103091.

    • Deniz C, Krastel S, Schmincke H U, Sumita M, Tomonaga Y, Çağatay M N. 2014. Water level changes in Lake Van, Turkey, during the past ca. 600 ka: Climatic, volcanic and tectonic controls. Journal of Paleolimnology, 52(3): 201~214.

    • Desborough G A. 1975. Authigenic albite and potassium feldspar in the Green River Formation, Colorado and Wyoming. American Mineralogist, 60(3-4): 235~239.

    • Dong Chunmei, Ma Cunfei, Lin Chengyan, Sun Xue, Yuan Mengying. 2015. A method of classification of shale set. Journal of China University of Petroleum, 39(3): 1~7 (in Chinese with English abstract).

    • Dong Tian, Harris N B. 2020. The effect of thermal maturity on porosity development in the Upper Devonian-Lower Mississippian Woodford Shale, Permian basin, US: Insights into the role of silica nanospheres and microcrystalline quartz on porosity preservation. International Journal of Coal Geology, 217: 103346.

    • Emmings J F, Dowey P J, Taylor K G, Davies S J, Vane C H, Moss-Hayes V, Rushton J C. 2020. Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale formation, Craven basin, UK. Marine and Petroleum Geology, 120: 104567.

    • Feng Youliang, Zhang Yijie, Wang Ruiju, Zhang Guangya, Wu Weian. 2011. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar basin. Petroleum Exploration and Development, 38(6): 685~692 (in Chinese with English abstract).

    • Feng Youliang, Yang Zhi, Zhang Hong, Zhang Tianshu, Li Pan, Hou Mingqiu, Jiang Wenqi, Wang Xiaoni, Zhu Jichang, Li Jiarui. 2023. Fine-grained gravity flow sedimentary features and its petroleum significance within saline lacustrine basins—A case study of Fengcheng Formation in Mahu depression, Junggar basin, China. Acta Geologica Sinica, 97(3): 839~863 (in Chinese with English abstract).

    • Fishman N S, Turner C E, Browndield I K. 1995. Authigenicalbite in a Jurassic alkaline, saline lake deposit, Colorado Plateau-Evidence for early diagenetic origin. U. S. Geological Survey Bulletin, 1808-P: 1~14.

    • Gaucher E, Blanc P. 2006. Cement/clay interactions—A review: Experiments, natural analogues, and modelling. Waste Management, 26: 776~788.

    • Goldsmith J R, Jenkin D M. 1985. The hydrothermal melting of low and high albite. American Mineralogist, 70: 924~933.

    • Goldsmith J R, Peterson J W. 1990. Hydrothermal melting behavior of KAlSi3O8 as microcline and sanidine. American Mineralogist, 75: 1362~1369.

    • Han Chao, Han Mei, Jiang Zaixing, Han Zuozhen, Li Hao, Song Zhigang, Zhong Wenjian, Liu Kaixuan, Wang Chunhao. 2019. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan basin and its periphery, China. Geological Journal, 54: 438~449.

    • Hay R L. 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America Special Paper, 85: 130.

    • Hay R L, Moiola R J. 1963. Authigenic silicate minerals in Searles Lake, California. Sedimentology, 2(4): 312~332.

    • Hay R L, Guldman S G. 1987. Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35(6): 449~457.

    • Hay R L, Guldman S G, Mattews J C, Lander R H, Duffin M E, Kyser T K. 1991. Clay mineral diagenesis in core KM-3 of Searles Lake, California. Clays and Clay Minerals, 39: 84~96.

    • He Yanxin, Xian Benzhong, Niu Huapeng, Liu Jianping. 2018. Effects of palaeogeolophic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag, Junggar basin. Journal of Palaeogeiography (Chinese Edition), 20(2): 245~262 (in Chinese with English abstract).

    • Hou Yuguang, Wang Furong, He Sheng, Dong Tian, Wu Shiqiang. 2017. Properties and shale oil potential of saline lacustrine shales in the Qianjiang depression, Jianghan basin, China. Marine and Petroleum Geology, 86: 1173~1190.

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2006. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ou Yangmin, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 27(6): 20~30 (in Chinese with English abstract).

    • Langella A, Cappelletti P, Gennaro R. 2001. Zeolites in closed hydrologic systems. In: Bish D L, Ming D W, eds. Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy and Geochemistry, 45: 235~260.

    • Larsen D. 2008. Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls. Geosphere, 4(3): 612~639.

    • Lei Dewen, Chen Gangqiang, Liu Hailei, Li Xiao, Abulimit, Tao Keyu, Cao Jian. 2017. Study on the forming conditions and exploration fields of the Mahu giant oil (gas) province, Junggar basin. Acta Geologica Sinica, 91(7): 1604~1619 (in Chinese with English abstract).

    • Lei Haiyan, Guo Pei, Meng Ying, Qi Ji, Liu Jin, Zhang Juan, Liu Miao, Zheng Yu. 2022a. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu sag. Lithologic Reservoirs, 34(3): 142~153 (in Chinese with English abstract).

    • Lei Haiyan, Qi Ji, Zhou Ni, Chen Jun, Meng Ying, Zhang Xixin, Chen Ruibing. 2022b. Genesis and petroleum significance of silica-rich shale in Fengcheng Formation of well Maye-1, Mahu sag. Xinjiang Petroleum Geology, 43(6): 724~732 (in Chinese with English abstract).

    • Li Le. 2015. Study on sedimentary environment and origin of analcime-bearing dolomite of Shahejie Formation in Tanggu area. Doctoral thesis of China University of Geosciences (Wuhan), 69~72 (in Chinese with English abstract).

    • Li Wei, Zhang Yuanyuan, Ni Minjie, Tang Wenbin. 2020. Genesis of alkaline lacustrine deposits in the Lower Permian Fengcheng Formation of the Mahu sag, northwestern Junggar basin: Insights from a comparison with the worldwide alkaline lacustrine deposits. Acta Geologica Sinica, 94(6): 1839~1852 (in Chinese with English abstract).

    • Liu Bo, Shi Jiaxin, Fu Xiaofei, Lv Yanfang, Sun Xianda, Gong Lei, Bai Yunfeng. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first Member of Cretaceous Qingshankou Formation in Gulong sag, Songliao basin, NE China. Petroleum Exploration and Development, 45(5): 84~94 (in Chinese with English abstract).

    • Liu Deguang, Zhou Lu, Li Shihong, Ma Wanyun, Guo Wenjian. 2020. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu depression. Acta Sedimentologica Sinica, 38(5): 946~955 (in Chinese with English abstract).

    • Mackenzie W S. 1957. The crystalline modifications of NaAlSi3O8. American Journal of Science, 255: 481~516.

    • Milliken K, Choh S J, Papazis P, Schieber J. 2007. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sedimentary Geology, 198: 221~232.

    • Milliken K, Olson T. 2017. Silica diagenesis, porosity evolution, and mechanical behaviorin siliceous mudstones, Mowry shale (Cretaceous), Rocky Mountains, U. S. A. Journal of Sedimentary Research, 87: 366~387.

    • Peng Junwen, Millken K L, Fu Qilong. 2020. Quartz types in the Upper Pennsylvanian organic-rich Cline Shale (Wolfcamp D), Midland basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties. Sedimentology, 67(4): 2040~2064.

    • Renaut R W. 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoriabasin, Kenya Rift Valley. Sedimentology, 40(2): 271~301.

    • Renaut R W, Tiercelin J J, Owen R B. 1986. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley. Geological Society, London, Special Publications, 25(1): 159~175.

    • Savage D, Benbow S, Watson C, Takase H, Ono K, Oda C, Honda A. 2010. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Applied Clay Science, 47(1-2): 72~81.

    • Skobe S, Goričan Š, Skaberne D, Verbič T, Mišič M, Zupančič N. 2013. K-feldspar rich shales from Jurassic bedded cherts in southeastern Slovenia. Swiss Journal of Geosciences, 106(3): 491~504.

    • Smith G I, Stuiver M. 1979. Subsurface Stratigraphy and Geochemistry of Late Quaternary Evaporites, Searles Lake, California. Washington, United States Government Printing Office, 1~118.

    • Stamatakis M G. 1989. Authigenic silicates and silica polymorphs in the Miocene saline-alkaline deposits of the Karlovassi basin, Samos, Greece. Economic Geology, 84: 788~798.

    • Su Dongxu, Wang Zhongquan, Yuan Yunfeng, Han Bao. 2020. Weathered volcanic reservoir characteristics and their controlling factors on Permian Fengcheng Formation in southern Mahu depression, Junggar basin. Natural Gas Geoscience, 31(2): 209~219 (in Chinese with English abstract).

    • Surdam R C, Parker R D. 1972. Authigenicaluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83: 2397~2418.

    • Surdam R C, Eugster H P. 1976. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of America Bulletin, 87: 1739~1752.

    • Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).

    • Tank R W. 1972. Clayminerals of the Green River Formation (Eocene) of Wyoming. Clay Minerals, 9(3): 297~308.

    • Turner C E, Fishman N S. 1991. Jurassic Lake Toodichi: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103: 538~558.

    • Wang Guanmin, Liu Haicheng, Xiong Zhouhai, Wang Jingyin. 2016. Control condition of felsic on brittleness of lacustrine shales. Journal of China University of Petroleum, 43(3): 1~8 (in Chinese with English abstract).

    • Wang Lan, Zeng Wenting, Xia Xiaomin, Zhou Haiyan, Bi He, Shang Fei, Zhou Xuexian. 2019. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong depression, Songliao basin. Natural Gas Geoscience, 30(8): 1125~1133 (in Chinese with English abstract).

    • Wang Xiaojun, Wang Tingting, Cao Jian. 2018. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 9~15 (in Chinese with English abstract).

    • Wei Yan, Guo Pei, Jin Jun, Jiang Yiqin, Wang Jian, Lei Haiyan, Wen Huaguo. 2021. Silexite genesis in volcanic-alkaline lacustrine sedimentary rocks: A case study of the Lower Permian Fengcheng Formation, Junggar basin. Mineralogy and Petrology, 41(21): 83~98 (in Chinese with English abstract).

    • Xia Liuwen, Cao Jian, Hu Wenxuan, Zhi Dongming, Tang Yong, Li Erting. 2021. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: A lipid biomarker perspective. Earth-Science Reviews, 213: 103499.

    • Xian Benzhong, Niu Huapeng, Dong Guodong, Zhu Shifa, An Siqi. 2013. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Geological Journal of China Universities, 19(1): 46~55 (in Chinese with English abstract).

    • Yang Fan, Meng Xin, Wang Xianhu, Yu Peirong, Shao Guanghui, Chen Huohong. 2022. Micro-pore characteristics and influencing factors of Fengcheng Formation shale in well Maye-1. Xinjiang Petroleum Geology, 43(1): 1~10 (in Chinese with English abstract).

    • Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei, Yang Yongqiang, Qu Changsheng, Li Yuwen, Wan Min, Su Yunguo. 2016. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Natural Gas Geoscience, 27(7): 1248~1263 (in Chinese with English abstract).

    • Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei. 2019. Depositional environments in an arid, closed basin and their implications for oil and gas exploration: The lower Permian Fengcheng Formation in the Junggar basin, China. AAPG Bulletin, 103(9): 2073~2115.

    • Yu Kuanhong, Zhang Zhijie, Cao Yingchang, Qiu Longwei, Zhou Chunmin, Cheng Dawei, Sun Peipei, Yang Yongqiang. 2021. Origin of biogenic-induced cherts from Permian alkaline saline lake deposits in the NW Junggar basin, NW China: Implications for hydrocarbon exploration. Journal of Asian Earth Sciences, 211: 104712.

    • Zhang Junfeng, Xu Xingyou, Bai Jing, Liu Weibin, Chen Shan, Liu Chang, Li Yaohua. 2020. Enrichment and exploration of deep lacustrine shale oil in the first Member of Cretaceous Qingshankou Formation, southern Songliao basin, NE China. Petroleum Exploration and Development, 47(4): 638~652 (in Chinese with English abstract).

    • Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).

    • Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar basin, NW China. Petroleum Exploration and Development, 45(6): 54~66 (in Chinese with English abstract).

    • Zhao Jianhua, Jin Zhenkui, Jin Zhijun, Wen Xin, Geng Yikai. 2017. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan basin, South China: Implications for pore evolution. Journal of Natural Gas Science and Engineering, 38: 21~38.

    • Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Shi Zhannan, Xiao Dunqing, Han Wenzhong, Jiang Wenya, Zhang Wei, Wang Hu. 2019. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: A case study of Member 2 of Kongdian Formation in Gangdong sag, Bohai Bay basin. Acta Petrolei Sinica, 40(9): 1013~1029 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, Zheng Menglin, Guo Wenjian, Wu Tao, Zou Zhiwen. 2018. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu sag. Xinjiang Petroleum Geology, 39(1): 1~8+22 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019. Geological characteristics, resource potential and exploration Direction of shale oil in Middle-Lower Permian, Junggar basin. Petroleum Exploration and Development, 40(4): 389~401 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zhen Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 1~14 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Liu Jishan, Yao Yuan, Xian Benzhong, Niu Huapeng, Zhao Changyong. 2012. Genesis and hydrocarbon significance of vesicular ignimbrite: A case study from Fengcheng Formation, Wu-Xia area, Junggar basin, NW China. Petroleum Exploration and Development, 39(2): 162~171 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Tao Wenfang, Liu Shiqi, Chen Hehe, Zhang Yueqian. 2013. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia area of the Junggar basin. Geological Journal of China Universities, 19(1): 38~45 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Liu Xuechao, Li Chao, Wang Xingxing, Tan Mingxuan, Geng Mingyang, Li Yanping. 2014a. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs: Evidence from Lower Permian strata in Ke-Xia region, Junggar basin. Acta Petrolei Sinica, 35(2): 276~285 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Wu Dong, Liu Yinghui, Li Panpan, Jiang Shuxian, Liu Xuechao. 2014b. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar basin. Oil & Gas Geology, 35(1): 77~85 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).

    • Zou Yang, Qi Yanping, Song Dong, Chen Wenshun, Wei Panyun. 2022. Geological characteristics and sweet spot evaluation of shale oil reservoir in Fengcheng Formation in well Maye-1. Xinjiang Petroleum Geology, 43(6): 714~723 (in Chinese with English abstract).

    • 曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.

    • 董春梅, 马存飞, 林承焰, 孙雪, 袁梦影. 2015. 一种泥页岩层系岩相划分方法. 中国石油大学学报(自然科学版), 39(3): 1~7.

    • 冯有良, 张义杰, 王瑞菊, 张光亚, 吴卫安. 2011. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素. 石油勘探与开发, 38(6): 685~692.

    • 冯有良, 杨智, 张洪, 张天舒, 李攀, 侯鸣秋, 蒋文琦, 王小妮, 朱吉昌, 李嘉蕊. 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义——以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839~863.

    • 何衍鑫, 鲜本忠, 牛花朋, 刘建平. 2018. 古地理环境对火山喷发样式的影响: 以准噶尔盆地玛湖凹陷东部下二叠统风城组为例. 古地理学报, 20(2): 245~262.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 雷德文, 陈刚强, 刘海磊, 李啸, 阿布力米提, 陶柯宇, 曹剑. 2017. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究. 地质学报, 91(7): 1604~1619.

    • 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 2022a. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价. 岩性油气藏, 34(3): 142~153.

    • 雷海艳, 齐婧, 周妮, 陈俊, 孟颖, 张锡新, 陈锐兵. 2022b. 玛湖凹陷玛页1井风城组富硅页岩成因及其油气意义. 新疆石油地质, 43(6): 724~732.

    • 李乐. 2015. 塘沽地区沙河街组含方沸石白云岩沉积环境及成因探讨. 中国地质大学(武汉)博士学位论文, 69~72.

    • 李威, 张元元, 倪敏婕, 唐文斌. 2020. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究: 来自全球碱湖沉积的启示. 地质学报, 94(6): 1839~1852.

    • 柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 82~838.

    • 刘得光, 周路, 李世宏, 马万云, 郭文建. 2020. 玛湖凹陷风城组烃源岩特征与生烃模式. 沉积学报, 38(5): 946~955.

    • 苏东旭, 王忠泉, 袁云峰, 韩宝. 2020. 准噶尔盆地玛湖凹陷南斜坡二叠系风城组风化壳型火山岩储层特征及控制因素. 天然气地球科学, 31(2): 209~219.

    • 唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.

    • 王冠民, 刘海城, 熊周海, 王京印. 2016. 试论长英质颗粒对湖相泥页岩脆性的控制条件. 中国石油大学学报(自然科学版), 40(3): 1~8.

    • 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 2019. 松辽盆地齐家-古龙凹陷青山口组黑色页岩岩相类型与沉积环境. 天然气地球科学, 30(8): 1125~1133.

    • 王小军, 王婷婷, 曹剑. 2018. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃. 新疆石油地质, 39(1): 9~15.

    • 魏研, 郭佩, 靳军, 蒋宜勤, 王剑, 雷海燕, 文华国. 2021. 火山-碱湖沉积岩中的燧石成因: 以准噶尔盆地下二叠统风城组为例. 矿物岩石, 41(2): 83~98.

    • 鲜本忠, 牛花朋, 董国栋, 朱世发, 安思奇. 2013. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储层的关系. 高校地质学报, 19(1): 46~55.

    • 杨帆, 孟鑫, 王先虎, 余佩蓉, 邵广辉, 陈火红. 2022. 玛页1井风城组页岩微观孔隙特征及其影响因素. 新疆石油地质, 43(1): 1~10.

    • 余宽宏, 操应长, 邱隆伟, 孙沛沛, 杨勇强, 曲长胜, 李玉文, 万敏, 宿云国. 2016. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理. 天然气地球科学, 27(7): 1248~1263.

    • 张君峰, 徐兴友, 白静, 刘卫彬, 陈珊, 刘畅, 李耀华. 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637~652.

    • 张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.

    • 张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.

    • 赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 时战楠, 肖敦清, 韩文中, 姜文亚, 张伟, 汪虎. 2019. 断陷湖盆湖相页岩油形成有利条件及富集特征——以渤海湾盆地沧东凹陷孔店组二段为例. 石油学报, 40(9): 1013~1029.

    • 支东明, 郑孟林, 郭文建, 吴涛, 邹志文. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践. 新疆石油地质, 39(1): 1~8+22.

    • 支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.

    • 支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 玛湖凹陷下二叠统风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 1~14.

    • 朱世发, 朱筱敏, 刘继山, 姚远, 鲜本忠, 牛花朋, 赵长永. 2012. 富孔熔结凝灰岩成因及油气意义——以准噶尔盆地乌—夏地区风城组为例. 石油勘探与开发, 39(2): 162~171.

    • 朱世发, 朱筱敏, 陶文芳, 刘诗奇, 陈贺贺, 张越迁. 2013. 准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究. 高校地质学报, 19(1): 38~45.

    • 朱世发, 朱筱敏, 刘学超, 李超, 王星星, 谈明轩, 耿名扬, 李艳平. 2014a. 油气储层火山物质蚀变产物及其对储集空间的影响——以准噶尔盆地克-夏地区下二叠统为例. 石油学报, 35(2): 276~285.

    • 朱世发, 朱筱敏, 吴冬, 刘英辉, 李盼盼, 姜淑贤, 刘学超. 2014b. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 35(1): 77~85.

    • 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.

    • 邹阳, 戚艳平, 宋栋, 陈文顺, 韦盼云. 2022. 玛页1井风城组页岩油藏地质特征及甜点评价. 新疆石油地质, 43(6): 714~723.

  • 参考文献

    • Boak J, Poole S. 2015. Mineralogy of the Green River Formation in the Piceance Creekbasin, Colorado. In: Smith M E, Carroll A R, eds. Stratigraphy and Paleolimnology of the Green River Formation, Western USA. Springer, 183~209.

    • Cao Jian, Lei Dewen, Li Yuwen, Tang Yong, Abulimit, Chang Qiusheng, Wang Tingting. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar basin. Acta Petrolei Sinica, 36(7): 781~790 (in Chinese with English abstract).

    • Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202: 103091.

    • Deniz C, Krastel S, Schmincke H U, Sumita M, Tomonaga Y, Çağatay M N. 2014. Water level changes in Lake Van, Turkey, during the past ca. 600 ka: Climatic, volcanic and tectonic controls. Journal of Paleolimnology, 52(3): 201~214.

    • Desborough G A. 1975. Authigenic albite and potassium feldspar in the Green River Formation, Colorado and Wyoming. American Mineralogist, 60(3-4): 235~239.

    • Dong Chunmei, Ma Cunfei, Lin Chengyan, Sun Xue, Yuan Mengying. 2015. A method of classification of shale set. Journal of China University of Petroleum, 39(3): 1~7 (in Chinese with English abstract).

    • Dong Tian, Harris N B. 2020. The effect of thermal maturity on porosity development in the Upper Devonian-Lower Mississippian Woodford Shale, Permian basin, US: Insights into the role of silica nanospheres and microcrystalline quartz on porosity preservation. International Journal of Coal Geology, 217: 103346.

    • Emmings J F, Dowey P J, Taylor K G, Davies S J, Vane C H, Moss-Hayes V, Rushton J C. 2020. Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale formation, Craven basin, UK. Marine and Petroleum Geology, 120: 104567.

    • Feng Youliang, Zhang Yijie, Wang Ruiju, Zhang Guangya, Wu Weian. 2011. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar basin. Petroleum Exploration and Development, 38(6): 685~692 (in Chinese with English abstract).

    • Feng Youliang, Yang Zhi, Zhang Hong, Zhang Tianshu, Li Pan, Hou Mingqiu, Jiang Wenqi, Wang Xiaoni, Zhu Jichang, Li Jiarui. 2023. Fine-grained gravity flow sedimentary features and its petroleum significance within saline lacustrine basins—A case study of Fengcheng Formation in Mahu depression, Junggar basin, China. Acta Geologica Sinica, 97(3): 839~863 (in Chinese with English abstract).

    • Fishman N S, Turner C E, Browndield I K. 1995. Authigenicalbite in a Jurassic alkaline, saline lake deposit, Colorado Plateau-Evidence for early diagenetic origin. U. S. Geological Survey Bulletin, 1808-P: 1~14.

    • Gaucher E, Blanc P. 2006. Cement/clay interactions—A review: Experiments, natural analogues, and modelling. Waste Management, 26: 776~788.

    • Goldsmith J R, Jenkin D M. 1985. The hydrothermal melting of low and high albite. American Mineralogist, 70: 924~933.

    • Goldsmith J R, Peterson J W. 1990. Hydrothermal melting behavior of KAlSi3O8 as microcline and sanidine. American Mineralogist, 75: 1362~1369.

    • Han Chao, Han Mei, Jiang Zaixing, Han Zuozhen, Li Hao, Song Zhigang, Zhong Wenjian, Liu Kaixuan, Wang Chunhao. 2019. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan basin and its periphery, China. Geological Journal, 54: 438~449.

    • Hay R L. 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America Special Paper, 85: 130.

    • Hay R L, Moiola R J. 1963. Authigenic silicate minerals in Searles Lake, California. Sedimentology, 2(4): 312~332.

    • Hay R L, Guldman S G. 1987. Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35(6): 449~457.

    • Hay R L, Guldman S G, Mattews J C, Lander R H, Duffin M E, Kyser T K. 1991. Clay mineral diagenesis in core KM-3 of Searles Lake, California. Clays and Clay Minerals, 39: 84~96.

    • He Yanxin, Xian Benzhong, Niu Huapeng, Liu Jianping. 2018. Effects of palaeogeolophic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag, Junggar basin. Journal of Palaeogeiography (Chinese Edition), 20(2): 245~262 (in Chinese with English abstract).

    • Hou Yuguang, Wang Furong, He Sheng, Dong Tian, Wu Shiqiang. 2017. Properties and shale oil potential of saline lacustrine shales in the Qianjiang depression, Jianghan basin, China. Marine and Petroleum Geology, 86: 1173~1190.

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2006. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ou Yangmin, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 27(6): 20~30 (in Chinese with English abstract).

    • Langella A, Cappelletti P, Gennaro R. 2001. Zeolites in closed hydrologic systems. In: Bish D L, Ming D W, eds. Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy and Geochemistry, 45: 235~260.

    • Larsen D. 2008. Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls. Geosphere, 4(3): 612~639.

    • Lei Dewen, Chen Gangqiang, Liu Hailei, Li Xiao, Abulimit, Tao Keyu, Cao Jian. 2017. Study on the forming conditions and exploration fields of the Mahu giant oil (gas) province, Junggar basin. Acta Geologica Sinica, 91(7): 1604~1619 (in Chinese with English abstract).

    • Lei Haiyan, Guo Pei, Meng Ying, Qi Ji, Liu Jin, Zhang Juan, Liu Miao, Zheng Yu. 2022a. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu sag. Lithologic Reservoirs, 34(3): 142~153 (in Chinese with English abstract).

    • Lei Haiyan, Qi Ji, Zhou Ni, Chen Jun, Meng Ying, Zhang Xixin, Chen Ruibing. 2022b. Genesis and petroleum significance of silica-rich shale in Fengcheng Formation of well Maye-1, Mahu sag. Xinjiang Petroleum Geology, 43(6): 724~732 (in Chinese with English abstract).

    • Li Le. 2015. Study on sedimentary environment and origin of analcime-bearing dolomite of Shahejie Formation in Tanggu area. Doctoral thesis of China University of Geosciences (Wuhan), 69~72 (in Chinese with English abstract).

    • Li Wei, Zhang Yuanyuan, Ni Minjie, Tang Wenbin. 2020. Genesis of alkaline lacustrine deposits in the Lower Permian Fengcheng Formation of the Mahu sag, northwestern Junggar basin: Insights from a comparison with the worldwide alkaline lacustrine deposits. Acta Geologica Sinica, 94(6): 1839~1852 (in Chinese with English abstract).

    • Liu Bo, Shi Jiaxin, Fu Xiaofei, Lv Yanfang, Sun Xianda, Gong Lei, Bai Yunfeng. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first Member of Cretaceous Qingshankou Formation in Gulong sag, Songliao basin, NE China. Petroleum Exploration and Development, 45(5): 84~94 (in Chinese with English abstract).

    • Liu Deguang, Zhou Lu, Li Shihong, Ma Wanyun, Guo Wenjian. 2020. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu depression. Acta Sedimentologica Sinica, 38(5): 946~955 (in Chinese with English abstract).

    • Mackenzie W S. 1957. The crystalline modifications of NaAlSi3O8. American Journal of Science, 255: 481~516.

    • Milliken K, Choh S J, Papazis P, Schieber J. 2007. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sedimentary Geology, 198: 221~232.

    • Milliken K, Olson T. 2017. Silica diagenesis, porosity evolution, and mechanical behaviorin siliceous mudstones, Mowry shale (Cretaceous), Rocky Mountains, U. S. A. Journal of Sedimentary Research, 87: 366~387.

    • Peng Junwen, Millken K L, Fu Qilong. 2020. Quartz types in the Upper Pennsylvanian organic-rich Cline Shale (Wolfcamp D), Midland basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties. Sedimentology, 67(4): 2040~2064.

    • Renaut R W. 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoriabasin, Kenya Rift Valley. Sedimentology, 40(2): 271~301.

    • Renaut R W, Tiercelin J J, Owen R B. 1986. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley. Geological Society, London, Special Publications, 25(1): 159~175.

    • Savage D, Benbow S, Watson C, Takase H, Ono K, Oda C, Honda A. 2010. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Applied Clay Science, 47(1-2): 72~81.

    • Skobe S, Goričan Š, Skaberne D, Verbič T, Mišič M, Zupančič N. 2013. K-feldspar rich shales from Jurassic bedded cherts in southeastern Slovenia. Swiss Journal of Geosciences, 106(3): 491~504.

    • Smith G I, Stuiver M. 1979. Subsurface Stratigraphy and Geochemistry of Late Quaternary Evaporites, Searles Lake, California. Washington, United States Government Printing Office, 1~118.

    • Stamatakis M G. 1989. Authigenic silicates and silica polymorphs in the Miocene saline-alkaline deposits of the Karlovassi basin, Samos, Greece. Economic Geology, 84: 788~798.

    • Su Dongxu, Wang Zhongquan, Yuan Yunfeng, Han Bao. 2020. Weathered volcanic reservoir characteristics and their controlling factors on Permian Fengcheng Formation in southern Mahu depression, Junggar basin. Natural Gas Geoscience, 31(2): 209~219 (in Chinese with English abstract).

    • Surdam R C, Parker R D. 1972. Authigenicaluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83: 2397~2418.

    • Surdam R C, Eugster H P. 1976. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of America Bulletin, 87: 1739~1752.

    • Tang Yong, Guo Wenjian, Wang Xiatian, Bao Haijuan, Wu Haisheng. 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu sag and its implications. Xinjiang Petroleum Geology, 40(2): 127~137 (in Chinese with English abstract).

    • Tank R W. 1972. Clayminerals of the Green River Formation (Eocene) of Wyoming. Clay Minerals, 9(3): 297~308.

    • Turner C E, Fishman N S. 1991. Jurassic Lake Toodichi: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103: 538~558.

    • Wang Guanmin, Liu Haicheng, Xiong Zhouhai, Wang Jingyin. 2016. Control condition of felsic on brittleness of lacustrine shales. Journal of China University of Petroleum, 43(3): 1~8 (in Chinese with English abstract).

    • Wang Lan, Zeng Wenting, Xia Xiaomin, Zhou Haiyan, Bi He, Shang Fei, Zhou Xuexian. 2019. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong depression, Songliao basin. Natural Gas Geoscience, 30(8): 1125~1133 (in Chinese with English abstract).

    • Wang Xiaojun, Wang Tingting, Cao Jian. 2018. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 9~15 (in Chinese with English abstract).

    • Wei Yan, Guo Pei, Jin Jun, Jiang Yiqin, Wang Jian, Lei Haiyan, Wen Huaguo. 2021. Silexite genesis in volcanic-alkaline lacustrine sedimentary rocks: A case study of the Lower Permian Fengcheng Formation, Junggar basin. Mineralogy and Petrology, 41(21): 83~98 (in Chinese with English abstract).

    • Xia Liuwen, Cao Jian, Hu Wenxuan, Zhi Dongming, Tang Yong, Li Erting. 2021. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: A lipid biomarker perspective. Earth-Science Reviews, 213: 103499.

    • Xian Benzhong, Niu Huapeng, Dong Guodong, Zhu Shifa, An Siqi. 2013. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Geological Journal of China Universities, 19(1): 46~55 (in Chinese with English abstract).

    • Yang Fan, Meng Xin, Wang Xianhu, Yu Peirong, Shao Guanghui, Chen Huohong. 2022. Micro-pore characteristics and influencing factors of Fengcheng Formation shale in well Maye-1. Xinjiang Petroleum Geology, 43(1): 1~10 (in Chinese with English abstract).

    • Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei, Yang Yongqiang, Qu Changsheng, Li Yuwen, Wan Min, Su Yunguo. 2016. Early Permian volcanic lithology, lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Natural Gas Geoscience, 27(7): 1248~1263 (in Chinese with English abstract).

    • Yu Kuanhong, Cao Yingchang, Qiu Longwei, Sun Peipei. 2019. Depositional environments in an arid, closed basin and their implications for oil and gas exploration: The lower Permian Fengcheng Formation in the Junggar basin, China. AAPG Bulletin, 103(9): 2073~2115.

    • Yu Kuanhong, Zhang Zhijie, Cao Yingchang, Qiu Longwei, Zhou Chunmin, Cheng Dawei, Sun Peipei, Yang Yongqiang. 2021. Origin of biogenic-induced cherts from Permian alkaline saline lake deposits in the NW Junggar basin, NW China: Implications for hydrocarbon exploration. Journal of Asian Earth Sciences, 211: 104712.

    • Zhang Junfeng, Xu Xingyou, Bai Jing, Liu Weibin, Chen Shan, Liu Chang, Li Yaohua. 2020. Enrichment and exploration of deep lacustrine shale oil in the first Member of Cretaceous Qingshankou Formation, southern Songliao basin, NE China. Petroleum Exploration and Development, 47(4): 638~652 (in Chinese with English abstract).

    • Zhang Yuanyuan, Li Wei, Tang Wenbin. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu sag. Xinjiang Petroleum Geology, 39(1): 48~54 (in Chinese with English abstract).

    • Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, Zhou Chuanmin, Tang Yong, Chen Xingyu, Lin Minjie, Cheng Dawei. 2018. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar basin, NW China. Petroleum Exploration and Development, 45(6): 54~66 (in Chinese with English abstract).

    • Zhao Jianhua, Jin Zhenkui, Jin Zhijun, Wen Xin, Geng Yikai. 2017. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan basin, South China: Implications for pore evolution. Journal of Natural Gas Science and Engineering, 38: 21~38.

    • Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Shi Zhannan, Xiao Dunqing, Han Wenzhong, Jiang Wenya, Zhang Wei, Wang Hu. 2019. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: A case study of Member 2 of Kongdian Formation in Gangdong sag, Bohai Bay basin. Acta Petrolei Sinica, 40(9): 1013~1029 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, Zheng Menglin, Guo Wenjian, Wu Tao, Zou Zhiwen. 2018. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu sag. Xinjiang Petroleum Geology, 39(1): 1~8+22 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019. Geological characteristics, resource potential and exploration Direction of shale oil in Middle-Lower Permian, Junggar basin. Petroleum Exploration and Development, 40(4): 389~401 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zhen Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 1~14 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Liu Jishan, Yao Yuan, Xian Benzhong, Niu Huapeng, Zhao Changyong. 2012. Genesis and hydrocarbon significance of vesicular ignimbrite: A case study from Fengcheng Formation, Wu-Xia area, Junggar basin, NW China. Petroleum Exploration and Development, 39(2): 162~171 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Tao Wenfang, Liu Shiqi, Chen Hehe, Zhang Yueqian. 2013. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia area of the Junggar basin. Geological Journal of China Universities, 19(1): 38~45 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Liu Xuechao, Li Chao, Wang Xingxing, Tan Mingxuan, Geng Mingyang, Li Yanping. 2014a. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs: Evidence from Lower Permian strata in Ke-Xia region, Junggar basin. Acta Petrolei Sinica, 35(2): 276~285 (in Chinese with English abstract).

    • Zhu Shifa, Zhu Xiaomin, Wu Dong, Liu Yinghui, Li Panpan, Jiang Shuxian, Liu Xuechao. 2014b. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar basin. Oil & Gas Geology, 35(1): 77~85 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).

    • Zou Yang, Qi Yanping, Song Dong, Chen Wenshun, Wei Panyun. 2022. Geological characteristics and sweet spot evaluation of shale oil reservoir in Fengcheng Formation in well Maye-1. Xinjiang Petroleum Geology, 43(6): 714~723 (in Chinese with English abstract).

    • 曹剑, 雷德文, 李玉文, 唐勇, 阿布力米提, 常秋生, 王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781~790.

    • 董春梅, 马存飞, 林承焰, 孙雪, 袁梦影. 2015. 一种泥页岩层系岩相划分方法. 中国石油大学学报(自然科学版), 39(3): 1~7.

    • 冯有良, 张义杰, 王瑞菊, 张光亚, 吴卫安. 2011. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素. 石油勘探与开发, 38(6): 685~692.

    • 冯有良, 杨智, 张洪, 张天舒, 李攀, 侯鸣秋, 蒋文琦, 王小妮, 朱吉昌, 李嘉蕊. 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义——以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839~863.

    • 何衍鑫, 鲜本忠, 牛花朋, 刘建平. 2018. 古地理环境对火山喷发样式的影响: 以准噶尔盆地玛湖凹陷东部下二叠统风城组为例. 古地理学报, 20(2): 245~262.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 雷德文, 陈刚强, 刘海磊, 李啸, 阿布力米提, 陶柯宇, 曹剑. 2017. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究. 地质学报, 91(7): 1604~1619.

    • 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 2022a. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价. 岩性油气藏, 34(3): 142~153.

    • 雷海艳, 齐婧, 周妮, 陈俊, 孟颖, 张锡新, 陈锐兵. 2022b. 玛湖凹陷玛页1井风城组富硅页岩成因及其油气意义. 新疆石油地质, 43(6): 724~732.

    • 李乐. 2015. 塘沽地区沙河街组含方沸石白云岩沉积环境及成因探讨. 中国地质大学(武汉)博士学位论文, 69~72.

    • 李威, 张元元, 倪敏婕, 唐文斌. 2020. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究: 来自全球碱湖沉积的启示. 地质学报, 94(6): 1839~1852.

    • 柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 82~838.

    • 刘得光, 周路, 李世宏, 马万云, 郭文建. 2020. 玛湖凹陷风城组烃源岩特征与生烃模式. 沉积学报, 38(5): 946~955.

    • 苏东旭, 王忠泉, 袁云峰, 韩宝. 2020. 准噶尔盆地玛湖凹陷南斜坡二叠系风城组风化壳型火山岩储层特征及控制因素. 天然气地球科学, 31(2): 209~219.

    • 唐勇, 郭文建, 王霞田, 鲍海娟, 吴海生. 2019. 玛湖凹陷砾岩大油区勘探新突破及启示. 新疆石油地质, 40(2): 127~137.

    • 王冠民, 刘海城, 熊周海, 王京印. 2016. 试论长英质颗粒对湖相泥页岩脆性的控制条件. 中国石油大学学报(自然科学版), 40(3): 1~8.

    • 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 2019. 松辽盆地齐家-古龙凹陷青山口组黑色页岩岩相类型与沉积环境. 天然气地球科学, 30(8): 1125~1133.

    • 王小军, 王婷婷, 曹剑. 2018. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃. 新疆石油地质, 39(1): 9~15.

    • 魏研, 郭佩, 靳军, 蒋宜勤, 王剑, 雷海燕, 文华国. 2021. 火山-碱湖沉积岩中的燧石成因: 以准噶尔盆地下二叠统风城组为例. 矿物岩石, 41(2): 83~98.

    • 鲜本忠, 牛花朋, 董国栋, 朱世发, 安思奇. 2013. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储层的关系. 高校地质学报, 19(1): 46~55.

    • 杨帆, 孟鑫, 王先虎, 余佩蓉, 邵广辉, 陈火红. 2022. 玛页1井风城组页岩微观孔隙特征及其影响因素. 新疆石油地质, 43(1): 1~10.

    • 余宽宏, 操应长, 邱隆伟, 孙沛沛, 杨勇强, 曲长胜, 李玉文, 万敏, 宿云国. 2016. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理. 天然气地球科学, 27(7): 1248~1263.

    • 张君峰, 徐兴友, 白静, 刘卫彬, 陈珊, 刘畅, 李耀华. 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637~652.

    • 张元元, 李威, 唐文斌. 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48~54.

    • 张志杰, 袁选俊, 汪梦诗, 周川闽, 唐勇, 陈星渝, 林敏捷, 成大伟. 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972~984.

    • 赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 时战楠, 肖敦清, 韩文中, 姜文亚, 张伟, 汪虎. 2019. 断陷湖盆湖相页岩油形成有利条件及富集特征——以渤海湾盆地沧东凹陷孔店组二段为例. 石油学报, 40(9): 1013~1029.

    • 支东明, 郑孟林, 郭文建, 吴涛, 邹志文. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践. 新疆石油地质, 39(1): 1~8+22.

    • 支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.

    • 支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 玛湖凹陷下二叠统风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 1~14.

    • 朱世发, 朱筱敏, 刘继山, 姚远, 鲜本忠, 牛花朋, 赵长永. 2012. 富孔熔结凝灰岩成因及油气意义——以准噶尔盆地乌—夏地区风城组为例. 石油勘探与开发, 39(2): 162~171.

    • 朱世发, 朱筱敏, 陶文芳, 刘诗奇, 陈贺贺, 张越迁. 2013. 准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究. 高校地质学报, 19(1): 38~45.

    • 朱世发, 朱筱敏, 刘学超, 李超, 王星星, 谈明轩, 耿名扬, 李艳平. 2014a. 油气储层火山物质蚀变产物及其对储集空间的影响——以准噶尔盆地克-夏地区下二叠统为例. 石油学报, 35(2): 276~285.

    • 朱世发, 朱筱敏, 吴冬, 刘英辉, 李盼盼, 姜淑贤, 刘学超. 2014b. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 35(1): 77~85.

    • 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.

    • 邹阳, 戚艳平, 宋栋, 陈文顺, 韦盼云. 2022. 玛页1井风城组页岩油藏地质特征及甜点评价. 新疆石油地质, 43(6): 714~723.