-
作为一种特殊的构造岩浆类型,基性岩墙是地幔物质部分熔融的产物,通常侵位到地壳浅部,是岩浆通道系统的重要组成部分。基性岩墙是伸展环境中重要的岩浆类型之一,常常与岩石圈减薄、软流圈上涌相关,将大量幔源岩浆转移到地壳中,为地壳深熔作用提供了额外热量,是研究大陆地壳演化和壳幔相互作用的重要指示剂(Liu Shen et al.,2008; Ernst et al.,2013a,2013b; Peng Peng,2015)。大规模同时代、同源且产状相近的基性岩墙构成基性岩墙群,它们展布纵深大,易保留,规模较大者常与中下地壳镁铁质岩床杂岩、侵入杂岩以及火山岩构成大火成岩省(Ernst et al.,2013a,2013b; Li Hongbo et al.,2019)。基性岩墙群按照形态可将其划分为环形岩墙群、平行式岩墙群及放射状岩墙群,通常代表大陆裂谷或初始裂解阶段,对比不同大陆间基性岩浆“条形码”是超大陆重建的重要指标(Bleeker and Ernst,2006; Hou Guiting et al.,2008; Ernst et al.,2013a,2013b; Peng Peng,2015; Chaves et al.,2019)。
-
罗迪尼亚(Rodinia)超大陆是地质历史上重要的超大陆之一,其形成于1.2~1.1 Ga格林维尔造山运动,并于~0.6 Ga最终裂解(Hoffman,1991; Li et al.,2008; Cawood et al.,2017)。罗迪尼亚超大陆的重建和恢复受到了地质学家的广泛关注,众多学者基于地质及古地磁证据提出了可能的重建模型(Li et al.,2008; Evans et al.,2016a; Cawood et al.,2017; Zhao Hanqing et al.,2020; Ding Jikai et al.,2021)。然而,学者们就罗迪尼亚超大陆内部地壳块体及其在超大陆中的相对位置存在不同看法,尤其是华北克拉通,其在罗迪尼亚超大陆中的可能位置及毗邻陆块仍存在争议。研究初期,多数学者将华北克拉通置于罗迪尼亚超大陆边缘(陆松年等,2012; Li et al.,2008)或直接排除在超大陆之外(Hoffman,1991); 近年来随着华北克拉通新元古代早期基性岩浆活动(Peng Peng et al.,2011a,2011b; Wang Qinghai et al.,2012; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021)及大量格林威尔期碎屑锆石的发现(高林志等,2010; 陆松年等,2012; Sun Fengbo et al.,2020),结合最新古地磁数据(Fu Xingmei et al.,2015; Zhao Hanqing et al.,2020; Ding Jikai et al.,2021),华北克拉通参与了罗迪尼亚超大陆演化的认识逐步得到学者们青睐。随着地质年代学数据的积累,华北克拉通越来越多的新元古代早期(~900 Ma)基性岩浆事件被揭示出来,为探讨华北克拉通在罗迪尼亚超大陆中的相对位置提供了线索。这些基性岩浆活动主要包括中部大石沟基性岩墙群(~925 Ma; Peng Peng et al.,2011a)、北缘固阳岩床(张琪琪等,2021)及东南缘广泛分布的基性岩床(945~890 Ma; Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021),已有研究表明这些新元古代早期基性岩浆活动可能来源于同一大火成岩省,其岩浆中心位于华北克拉通东南缘徐淮盆地(Peng Peng et al.,2011a)。因此,确定这些基性岩浆活动的先后关系、岩浆源区演化及构造体制转变对于理解华北克拉通新元古代早期基性岩浆大火成岩省至关重要,其对罗迪尼亚超大陆演化的响应也值得研究。前人对华北克拉通新元古代早期基性岩床(包括北缘固阳岩床及东南缘岩床)开展了大量的工作,并积累了丰富的数据(Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhu Renzhi et al.,2019; Su Xiangdong et al.,2021),而对大石沟基性岩墙群的研究则相对较少(Peng Peng et al.,2011a),特别是大石沟基性岩墙群目前仍然没有精确的锆石U-Pb定年及原位Hf同位素研究,很大程度上限制了对其岩浆源区的揭示,也制约了对华北克拉通新元古代早期大火成岩省岩浆演化的对比研究。另外,地球化学特征显示大石沟基性岩墙群相对富铁和钛(Peng Peng et al.,2011a),前人对该套岩浆铁的富集机制一直缺乏研究,而确定铁的富集机制对理解基性岩浆源区及演化有重要的意义(Zhang Zhaochong et al.,2012; Li Hengxu et al.,2020)。凉城地区基性岩墙是大石沟岩墙群的重要组成部分(Peng Peng et al.,2011a),本次工作在精细的野外填图基础上,确定了凉城地区基性岩墙的分布情况,并选择代表性基性岩墙(桃花沟岩墙)为研究对象,采用系统的地球化学、锆石U-Pb定年及原位Hf同位素研究手段,以揭示该套岩浆的源区性质以及岩浆铁的富集机制,并结合前人研究成果,约束了华北克拉通内广泛分布的~900 Ma基性岩浆活动的岩浆源区差异、构造体制演化及新元古代早期华北克拉通的毗邻陆块的关系。
-
1 区域地质背景
-
华北克拉通是中国最古老的克拉通,保存了~3.8 Ga地壳岩石并发现了4.0~3.9 Ga碎屑锆石(Zhai and Santosh,2011; Zhao Guochun and Zhai Mingguo,2013; 万渝生等,2021a,2021b)。其在形成统一基底后近1000 Ma期间(地球中年期)演化为一个相对稳定的陆块,伴随着多期裂谷事件、沉积盆地以及四期主要的非造山岩浆作用:① 约1800~1780 Ma基性岩浆作用(Peng Peng,2015; Zhai Mingguo et al.,2015); ② 约1720~1620 Ma非造山岩浆作用(Zhao Guochun et al.,2009; Li Yun et al.,2015; Peng Peng,2015); ③~1320 Ma基性岩浆作用(Zhang Shuanhong et al.,2012; Peng Peng,2015); ④~900 Ma基性岩浆作用(Peng Peng et al.,2011a,2011b; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021; 张琪琪等,2021)。其中~900 Ma基性岩浆作用分布较广,包括华北克拉通北缘固阳基性岩床,其侵位时代为~925 Ma(张琪琪等,2021); 中部大石沟基性岩墙群,主要分布在凉城、怀安、应县、左权等地,岩墙以NNW走向为主,侵位时代为~925 Ma(Peng Peng et al.,2011a); 山东莱芜—沂水地区也存在近同期基性岩墙,岩墙NNW和NNE走向,侯贵廷等(2005)在两颗原生岩浆锆石中获得了1139±25 Ma和1157±18 Ma谐和年龄,Peng Peng et al.(2011a)根据地质关系推断部分岩墙可能为新元古代早期产物,因此莱芜—沂水地区基性岩墙很可能是大石沟基性岩墙群的分支,整体上构成一个规模巨大的放射状岩墙群(图1b; Peng Peng et al.,2011a); 东南部基性岩床杂岩,主要分布在沙里院(朝鲜)、大连及徐淮地区,岩石类型以辉绿岩为主,侵位时代为945~890 Ma(Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021); 另外,华北克拉通南缘栾川地区也存在近同期基性岩浆活动,锆石年代学数据表明其侵位时代为870~830 Ma(Wang Xiaolei et al.,2011; 范晶晶,2017),可能为新元古代早期基性岩浆活动在华北克拉通南缘的响应。
-
大石沟基性岩墙群中的凉城基性岩墙位于华北克拉通北缘凉城县西北部(图1b)。区内地层以古元古界集宁岩群沙渠村岩组为主,主要分布于研究区中南部水泉子、刘麻沟、白杈背、羊报沟、九股泉等地(图1c),露头连续,出露规模较大,整体呈北东东向带状展布,为一套经历了麻粒岩相变质作用和深层次构造变形改造、具典型孔兹岩系岩石组合特征的变质表壳岩,统称为孔兹岩系,岩石类型主要为石榴浅粒岩与矽线石榴黑云二长片麻岩。近年来大量碎屑锆石定年结果显示孔兹岩系中碎屑锆石年龄主要集中在2.2~2.0 Ga之间(Wan Yusheng et al.,2009; Xia Xiaoping et al.,2006a,2006b; Dan Wei et al.,2012),并记录了1.95~1.83 Ga变质年龄(Dong Chunyan et al.,2007; Wan Yusheng et al.,2009),因此孔兹岩系沉积时代在2.0~1.95 Ga之间。研究区中元古界到古生界缺失,中生界仅在研究区东北部五黑明地区有少量下白垩统白女羊盘组出露,面积仅2 km2左右(图1c中未标出),岩性为一套酸性火山碎屑岩及少量熔岩,角度不整合于古元古代石榴花岗岩之上,地层时代属早白垩世(常泽光等,2018)。研究区岩浆岩比较发育,包括古元古代深熔成因石榴花岗岩、中基性麻粒岩(二辉斜长麻粒岩、紫苏石英闪长质片麻岩)及少量新元古代早期基性岩墙(图1c)。其中古元古代石榴花岗岩与孔兹岩系空间上密切伴生,是孔兹岩系富铝片麻岩重熔的产物,其变质-深熔时代为1.93~1.89 Ga(Peng Peng et al.,2010; Wang Luojuan et al.,2018)。古元古代中基性麻粒岩原岩为一套中基性深成侵入岩,其侵入到孔兹岩系中并被后者深熔而成的石榴花岗岩“吞噬”,原岩侵位时代约为1.94~1.93 Ga,变质时代为1.91~1.89 Ga(Peng Peng et al.,2010; Wang Luojuan et al.,2018)。新元古代早期基性岩墙多呈NNW向近平行展布,野外观察到其侵位到古元古代变质基底中,已有研究获得了斜锆石207Pb/206Pb年龄为925.8±1.7 Ma(Peng Peng et al.,2011a)。研究区孔兹岩系在古元古代遭受了两期构造变形作用的改造:早期变形表现为与深熔作用伴生的近水平顺层剪切,以十分发育的条带状构造和强塑性层间流动褶皱为特征,并形成一组NEE向缓倾的矿物拉伸线理; 晚期变形表现NNW-SSE向挤压作用使得孔兹岩系不同岩性层以及早期水平顺层剪切过程中形成的条带状、片麻状面理发生褶皱,形成区域及露头尺度上的NNE向褶皱及陡倾叶理带。区内中、新生代构造主要受NE和NW向断裂控制(图1c)。
-
2 产状与岩相学
-
凉城基性岩墙岩性主要为辉绿岩,主要分布在桃花沟、馒头沟、永兴沟、白衩背及蛮汉山等地。岩墙产状稳定,走向以NNW为主,少量呈NNE向分布,宽度一般几米到十几米不等,延伸一般数百米以上,其中桃花沟到蛮汉山一线辉绿岩墙断续延伸超过10 km(图1c)。野外观察到辉绿岩墙多陡立侵入到古元古代孔兹岩系及深熔石榴花岗岩中,其与围岩接触界面截然并常斜切围岩片麻理,岩墙与围岩接触处对围岩有轻微的烘烤,岩墙本身具有冷凝边。另外,辉绿岩墙内部节理发育,节理面表层风化破碎较为严重,常形成典型的球状风化岩貌特征(图2a)。辉绿岩新鲜面灰黑色,风化面黄褐色,块状构造,蚀变较弱,主要矿物组合为单斜辉石、斜长石和黑云母,含少量石英和钾长石(图2c),副矿物为锆石、磷灰石、磁铁矿和钛铁矿。斜长石呈自形—半自形板柱状、板粒状,颗粒晶面因强烈泥化、绢云母化而混浊不清,粒径大多数为0.2~2.0 mm,少数为2.0~3.0 mm,彼此镶嵌组成不规则格架,暗色矿物辉石充填其中,构成辉绿结构,含量约55%。辉石为单斜辉石,呈半自形短柱状、柱粒状,粒径为0.2~2.0 mm,沿解理具弱纤闪石化,以零散状、聚粒状分布,含量约30%。黑云母呈半自形片状,粒径为0.1~1.0 mm,以零散状、片状集合体且多与辉石聚集分布,含量约10%。少量石英与钾长石彼此交生,零散状分布在斜长石颗粒间,二者含量5%左右。
-
3 样品采集和分析方法
-
本次工作选取凉城县桃花沟到蛮汉山地区断续延伸的一条辉绿岩墙作为研究对象,Peng Peng et al.(2011a)称之为桃花沟岩墙,本文沿用这一名称。对桃花沟(样品b0002、b0045-1)、坝底(样品PM04b24-1)和蛮汉山(样品b0106-1)地区的辉绿岩样品开展了地球化学分析,采样位置见图1c。对桃花沟辉绿岩样品TW0002-1进行了锆石U-Pb定年研究,采样位置同样品b0002,并与Peng Peng et al.(2011a)斜锆石定年样品08LC20位置接近(图1c)。锆石分选在河北省廊坊市宇能岩石矿物分选技术服务有限公司完成。样品经过粉碎、淘洗和传统重磁方法挑选出锆石颗粒,然后在双目镜下进一步提纯。代表性的锆石颗粒安装在环氧树脂盘中并且充分剥蚀使锆石内部结构暴露出来。锆石制靶、透射光、反射光以及阴极发光(CL)照相均在北京锆年领航科技有限公司完成。在实验开始前,避开锆石裂隙、矿物包裹体以及杂质以选择合适的打点位置。辉绿岩样品锆石U-Pb定年在中国地质调查局天津地质调查中心利用激光剥蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICP-MS)完成。质谱仪由美国Thermo Fisher公司的Neptune plus MC-ICP-MS 设备和美国ESI公司生产的NEW WAVE 193 nm FX ArF准分子激光器组成,采用He气作为载气。激光剥蚀束斑直径为35 μm,剥蚀时间为30 s,剥蚀深度为~12 μm,能量密度为13~14 J/cm2,频率为8~10 Hz。标准物质GJ-1(Jackson et al.,2004)和NIST610用于校正元素和同位素比值。普通铅校正采用208Pb方法(Andersen,2002)。数据处理采用ICPMSData Cal(Liu Yongsheng et al.,2010)和ISOPLOT(Ludwig,2003)程序完成。样品测试中207Pb/206Pb比值相对稳定,因此数据处理过程中采用了207Pb/206Pb年龄。
-
图1 华北克拉通位置(a)和~900 Ma基性岩浆岩分布图(b)(据Peng Peng,2015; Su Xiangdong et al.,2021; 张琪琪等,2021)及研究区地质简图(c)
-
Fig.1 The location map of North China craton (a) and sketched map showing the distribution of~900 Ma mafic rocks in North China craton (b) (after Peng Peng, 2015; Su Xiangdong et al., 2021; Zhang Qiqi et al., 2021) , and simplified geological map of the study area (c)
-
图2 凉城桃花沟岩墙野外(a、b)及显微镜下(c~e)照片
-
Fig.2 Field photos (a, b) and photomicrographs (c~e) of Taohuagou dyke in Liangcheng
-
(a)—桃花沟岩墙野外产状;(b)—辉绿岩手标本;(c)—辉绿岩典型的辉绿结构(单偏光);(d)—辉绿岩矿物组成(正交偏光);(e)—辉绿岩典型的辉绿结构(正交偏光); Pl—斜长石; Cpx—单斜辉石; Bt—黑云母; Qtz—石英
-
(a) —field occurrence of Taohuagou dyke; (b) —dolerite hand specimen; (c) —typical ophitic texture of dolerite (plane-polarized light) ; (d) —mineral composition of dolerite (cross-polarized light) ; (e) —typical ophitic texture of dolerite (cross-polarized light) ; Pl—plagioclase; Cpx—clinopyroxene; Bt—biotite; Qtz—quartz
-
锆石原位微区Hf同位素测试是在锆石LA-MC-ICP-MS定年基础上,参照阴极发光图像(CL)选择在原年龄测点位置采用同型号质谱仪完成。激光剥蚀束斑直径为50 μm,剥蚀时间为30 s,能量密度10~11 J/cm2,频率为8 Hz。采用91500和GJ-1作为外标计算Hf同位素比值,具体分析方法参考耿建珍等(2011),Lu-Hf同位素计算公式及标准值参考吴福元等(2007)。在计算εHf(t)时,球粒陨石的176Hf/177Hf与176Lu/177Hf比值分别为0.282772和0.0332(Blichert-Toft et al.,1997)。计算单阶段Hf模式年龄(tDM1)时亏损地幔的176Hf/177Hf比值和176Lu/177Hf比值分别为0.28325和0.0384(Griffin et al.,2000); 二阶段Hf模式年龄(tDM2)的大陆地壳176Lu/177Hf比值为0.015(Griffin et al.,2002); 176Lu的衰变常量选用1.865×10-11a-1(Scherer et al.,2001)。相关计算中锆石的U-Pb年龄选择单点207Pb/206Pb年龄,Hf同位素数据处理采用ICPMSDataCal程序完成(Liu Yongsheng et al.,2010)。
-
全岩主微量元素在中国地质调查局天津地质调查中心采用X射线荧光光谱仪(XRF)完成。FeO采用氢氟酸和硫酸溶样,然后利用重铬酸钾滴定容量法进行测试,分析精度优于2%。稀土元素和微量元素采用美国Thermo Fisher公司生产的电感耦合等离子体质谱仪(TJA-PQ-Excell ICP-MS)完成,分析精度优于5%。首先称取40 mg样品用来溶样,加入氢氟酸和硝酸使其充分溶解,然后加入1%硝酸进行稀释。
-
4 结果
-
4.1 锆石U-Pb年龄和Lu-Hf同位素组成
-
凉城桃花沟岩墙样品(TW0002-1)LA-MC-ICP-MS锆石U-Pb定年结果见表1。依据锆石形态及CL影像特征,结合207Pb/206Pb 表面年龄可将其划分为两种类型:① 第一类锆石颗粒呈浑圆粒状,具有模糊的振荡分带(图3a中9号分析点),U含量及Th/U分别为1031×10-6和0.08。该锆石207Pb/206Pb 年龄为 1883±21 Ma,其表面年龄及锆石形态均与围岩孔兹岩系中变质深熔锆石一致,因此该锆石颗粒应代表了辉绿岩侵位过程捕获的围岩锆石。② 第二类锆石具有不规则柱状形态,长轴粒径为50~100 μm,CL图中发光较暗,锆石具有弱韵律分带或基性岩典型的板状分带(如图3a中7号分析点),Th/U比值在0.5~2.39之间,指示其岩浆成因。该类锆石数据点207Pb/206Pb表面年龄为933±26~873±25 Ma,在误差范围内一致,应代表同期岩浆活动的产物。所有位于谐和线上的数据点(除9号分析点)获得的207Pb/206Pb加权平均年龄为903±15 Ma(图3b),其中较老的一组数据点207Pb/206Pb加权平均年龄为933±7 Ma,其余数据点207Pb/206Pb加权平均年龄为875±24 Ma(图3b)。
-
在定年的基础上选取代表性锆石颗粒进行Lu-Hf同位素测试分析,分析结果见表2。测点176Yb/177Hf和176Lu/177Hf比值范围分别为0.02349~0.09532和0.000809~0.002775,176Hf/177Hf比值范围为0.282336~0.282619。锆石颗粒具有相对均一的正εHf(t)值(2.4~13.4),平均值为7.7。单阶段Hf模式年龄(tDM1)和二阶段Hf模式年龄(tDM2)范围分别为1357~892 Ma和1604~903 Ma。
-
4.2 全岩地球化学
-
选取凉城典型基性岩墙样品进行全岩主、微量元素测试分析,测试结果见表3,同时统计了全球近同期基性岩墙/岩床地球化学数据以作对比。样品SiO2含量为50.30%~51.41%,MgO含量为2.87%~3.83%,TiO2含量为2.59%~3.31%,TFeO含量为12.78%~16.30%,Na2O+K2O含量为4.60%~5.17%,Mg#值为29~38。在岩石系列判别图中样品主要位于亚碱性区域并且具有拉斑特征(图4a、b)。样品稀土元素总量为293×10-6~321×10-6,稀土元素配分曲线呈轻稀土元素富集、重稀土元素亏损的右倾型式,并显示较弱的Eu负异常(Eu/Eu*=0.74~0.83)(图4c、e); LREE/HREE=2.63~2.75,(La/Yb)N=6.23~7.09,表明稀土元素有一定的分馏;(La/Sm)N和(Gd/Yb)N分别为 2.33~2.52和1.90~2.08,显示轻稀土元素分馏相对明显,重稀土元素分馏相对较弱。原始地幔标准化微量元素蛛网图中样品富集Rb、Th、U、La、Ce、K等元素,不同程度亏损Ba、Sr、Nb、Ta、Ti等元素(图4d、f)。凉城基性岩墙具有与圣弗朗西斯科克拉通、刚果克拉通、西伯利亚克拉通及华北克拉通近同期基性岩浆岩相似的地球化学特征(图4)。
-
图3 凉城桃花沟岩墙锆石阴极发光图(a)及U-Pb年龄谐和图(b)
-
Fig.3 CL image (a) and U-Pb concordia diagram (b) of the zircons from Taohuagou dyke in Liangcheng
-
图中大圈和小圈分别代表锆石Hf同位素与锆石年龄分析点; 207Pb/206Pb表面年龄及εHf(t)值一并标注
-
The large circles and small circles in the figure represent the analytical spots of zircon Hf isotope and zircon age respectively; 207Pb/206Pb ages and εHf (t) values are marked together
-
5 讨论
-
5.1 华北克拉通~900 Ma基性岩浆事件
-
华北克拉通广泛分布新元古代早期基性岩浆活动,以中部大石沟基性岩墙群(~925 Ma; Peng Peng et al.,2011a)和东南部基性岩床为代表(950~890 Ma; Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021)。其中大石沟基性岩墙群主要分布在凉城、怀安、山西恒山—左泉、山东莱芜—沂水等地区,整体呈放射状几何形态(Peng Peng et al.,2011a)。凉城桃花沟、山西应县和怀安基性岩墙中获得的斜锆石207Pb/206Pb 年龄分别为925.8±1.7 Ma、924.0±3.7 Ma 和921.8±2.6 Ma(Peng Peng et al.,2011a)。本研究获得凉城桃花沟辉绿岩样品(TW0002-1)的锆石207Pb/206Pb 加权平均年龄为903±15 Ma(图3b),且年龄较老的一组具有明显的韵律环带(如7号和11号分析点; 图3a),其207Pb/206Pb加权平均年龄为933±7 Ma(图3b),与已有年龄(925.8±1.7 Ma,Peng Peng et al.,2011a)在误差范围内一致。因此,凉城桃花沟岩墙的形成时代可能更老(930~920 Ma)。山东莱芜—沂水地区辉绿岩墙中两颗原生锆石207Pb/206Pb谐和年龄为1139±25 Ma和1157±18 Ma(侯贵廷等,2005),Peng Peng et al.(2011a)根据地质关系推测部分岩墙侵位时代可能为新元古代早期,因此山东莱芜—沂水地区辉绿岩墙很可能是大石沟基性岩墙群的分支(Peng Peng et al.,2011a)。已有资料显示,华北克拉通北缘固阳地区同样存在~925 Ma的基性岩浆作用(张琪琪等,2021),其时代及地球化学特征与大石沟基性岩墙群类似(图4),应为大石沟基性岩墙群在华北克拉通北缘的响应。近年来华北克拉通东南部大连、徐淮及朝鲜沙里院地区均报道了~900 Ma基性岩浆作用,其中大连辉绿岩床年龄集中在950~890 Ma之间(Zhang Shuanhong et al.,2016; Zhao Hanqing et al.,2020); 徐淮地区辉绿岩床年龄为940~890 Ma(Wang Qinghai et al.,2012; Zhu Renzhi et al.,2019; Zhao Hanqing et al.,2020; Su Xiangdong et al.,2021); 沙里院辉绿岩床年龄为~900 Ma(Peng Peng et al.,2011b)。另外,华北克拉通南缘栾川地区变辉长岩获得的锆石U-Pb年龄为872~830 Ma(Wang Xiaolei et al.,2011; 范晶晶,2017),可能是新元古代早期基性岩浆活动在华北克拉通南缘的响应。因此,华北克拉通广泛存在~900 Ma基性岩浆活动事件。
-
注:带*号数据来源于Peng Peng et al.(2011a)。
-
图4 凉城桃花沟岩墙分类判别图(a、b),球粒陨石标准化稀土元素配分图(c、e)及原始地幔标准化微量元素蛛网图(d、f)
-
Fig.4 Discrimination diagrams (a, b) , chondrite-normalized REEs (c, e) and primitive mantle-normalized trace elements (d, f) distribution patterns of Taohuagou dyke in Liangcheng
-
OIB—洋岛玄武岩; N-MORB—正常洋中脊玄武岩; E-MORB—富集型洋中脊玄武岩; IAB—岛弧玄武岩; 球粒陨石和原始地幔数据引自Sun and McDonough(1989); 圣弗朗西斯科~920 Ma 基性岩墙引自Chaves et al.(2019),Caxito et al.(2020),Moreira et al.(2020); 西伯利亚克拉通~940 Ma 基性岩床引自 Savelev et al.(2020); 刚果~920 Ma玄武岩引自Tack et al.(2001); 华北克拉通950~890 Ma基性岩床引自 Peng Peng et al.(2011b),Wang Qinghai et al.(2012),Zhang Shuanhong et al.(2016),Zhu Renzhi et al.(2019),Su Xiangdong et al.(2021); 华北克拉通~925 Ma大石沟基性岩墙引自Peng Peng et al.(2011a); 固阳~925 Ma基性岩床引自张琪琪等(2021)
-
OIB—ocean island basalt; N-MORB—normal mid ocean ridge basalt; E-MORB—enriched mid ocean ridge basalt; IAB—island arc basalt; chondrite and primitive mantle values are after Sun and McDonough (1989) ; ~920 Ma dykes in São Francisco craton are after Chaves et al. (2019) , Caxito et al. (2020) , Moreira et al. (2020) ; ~940 Ma sills in Siberian craton are after Savelev et al. (2020) ; ~920 Ma basalts in Congo craton are after Tack et al. (2001) ; ~900 Ma sills in NCC are after Peng Peng et al. (2011b) , Wang Qinghai et al. (2012) , Zhang Shuanhong et al. (2016) , Zhu Renzhi et al. (2019) , Su Xiangdong et al. (2021) ; ~925 Ma Dashigou dykes in NCC are after Peng Peng et al. (2011a) ; ~925 Ma mafic sills in Guyang are after Zhang Qiqi et al. (2021)
-
5.2 岩石成因
-
5.2.1 分离结晶
-
凉城桃花沟岩墙具有低MgO(2.87%~3.83%)、Cr(32.7×10-6~42.0×10-6)、Co(28.4×10-6~33 ×10-6)、Ni(11.6×10-6~14.5 ×10-6)含量及低Mg#值(29~38)(表3),低于幔源原始玄武质岩浆(Frey et al.,1978),暗示岩石形成过程经历了明显的矿物分离结晶作用(Liu Shen et al.,2008; Qi Liang and Zhou Meifu,2008)。样品具有较高的TFeO(12.78%~16.30%)和TiO2(2.59%~3.31%)含量,SiO2含量也相对较高(>45%),与富铁贫硅的Fenner演化趋势明显不同(Zhang Zhaochong et al.,2012)。另外,样品Mg#值与TFeO、TiO2及CaO呈正相关,而SiO2含量则相对稳定(图5),这不同于Fenner分异趋势(Zhang Zhaochong et al.,2012),很可能是岩浆早期有橄榄石、单斜辉石及铁钛氧化物的晶出(Liu Shen et al.,2008; Zhang Zhaochong et al.,2012)。样品较低的Cr(33.8×10-6~42.0×10-6)、Co(28.4×10-6~33 ×10-6)、Ni(13.0×10-6~14.5 ×10-6)含量进一步表明岩浆演化经历了橄榄石和单斜辉石分离结晶作用(Xu Yigang et al.,2003; Liu Shen et al.,2008; Li Hengxu et al.,2020)。另外,岩石不同程度亏损Sr、Eu和P可能与斜长石和磷灰石分离结晶有关(Liu Shen et al.,2008; Peng Peng et al.,2011a; Zhang Zhaochong et al.,2012; 范晶晶,2017)。因此,凉城桃花沟岩墙岩浆演化过程主要经历了橄榄石、单斜辉石、斜长石、铁钛氧化物及磷灰石分离结晶作用,与Bowen分异趋势类似(Xu Yigang et al.,2003)。
-
图5 凉城桃花沟岩墙Mg#-TFeO(a)、Mg#-TiO2(b)、 Mg#-CaO(c)及Mg#-SiO2(d)图解
-
Fig.5 Mg# vs. TFeO (a) , Mg# vs. TiO2 (b) , Mg# vs. CaO (c) and Mg# vs. SiO2 (d) diagrams of Taohuagou dyke in Liangcheng
-
5.2.2 地壳混染
-
野外观察,凉城桃花沟岩墙侵位到围岩孔兹岩系和石榴花岗岩中,并具有围岩孔兹岩系的捕获锆石,表明岩石形成过程中可能遭受了陆壳物质的改造(Liu Shen et al.,2008; Peng Peng et al.,2011a)。样品富集轻稀土元素(LREE)、Rb、Th、U、Zr、Hf,特别是富集Pb,不同程度亏损Nb、Ta和Ti(图4),这与大陆地壳地球化学特征类似(Rudnick and Gao,2003),指示岩石侵位过程中可能遭受到了地壳混染作用的影响(Qi Liang and Zhou Meifu,2008; Zhang Zhaochong et al.,2012)。样品在Nb/La-Th/Nb图解中随着Th/Nb比值升高,Nb/La比值相应降低(图6a),这与地壳物质混染特征一致。此外,Th/La比值与SiO2的相关性也进一步支持地壳混染作用(图6b)。地壳混染还可以通过(Th/Yb)PM比值来衡量(Qi Liang and Zhou Meifu,2008),样品相应比值(9.5~10.9)介于下地壳(4.6)和上地壳(28)之间(Taylor and Mclennan,1985),暗示存在地壳物质混染。Ce/Pb、Nb/U比值是判别岩浆源区性质的有效指标,幔源熔体(MORB/OIB)Ce/Pb和Nb/U比值分别为25±5和47±10(Hofmann et al.,1986),而大陆地壳Ce/Pb和Nb/U平均值分别为3.9和6.2(Rudnick and Gao,2003)。样品Ce/Pb和Nb/U比值分别为6.4~10.8和11.6~13.5,明显低于幔源熔体相应比值而与大陆地壳平均值一致,说明岩石侵位过程中经历了陆壳物质混染作用。麻粒岩相下地壳混染作用通常会造成低Th、U含量,因为麻粒岩相对轻稀土元素通常亏损这些元素(Taylor and Mclennan,1985; Rudnick and Gao,2003),而样品相对轻稀土元素(特别是La)富集Th、U和Pb元素(图4),暗示岩石可能主要经历了中、上地壳混染作用(Rudnick and Gao,2003; Liu Shen et al.,2008)。考虑到存在围岩孔兹岩系中的捕获锆石,凉城桃花沟岩墙可能主要经历了中、上地壳的混染作用。综上所述,凉城桃花沟岩墙侵位过程中遭受了地壳混染作用的影响。
-
图6 凉城桃花沟岩墙Nb/La-Th/Nb(a)及Th/La-SiO2(b)图解
-
Fig.6 Nb/La vs. Th/Nb (a) and Th/La vs. SiO2 (b) plots of Taohuagou dyke in Liangcheng
-
5.2.3 源区性质
-
凉城桃花沟岩墙具有较高的稀土元素(REE)和大离子亲石元素(LILEs)含量,其稀土和微量元素配分曲线相对接近OIB(洋岛玄武岩)(图4),指示地幔柱相关的OIB型源区。此外,样品在La/Ba-La/Nb图解中落入OIB区域,进一步支持其OIB型源区特征(图7a)。岩石具有相对较低的La/Nb(1.46~1.72)和La/Ta(18.6~23.53,<30)比值,暗示其可能来源于软流圈地幔(Saunders et al.,1992)。凉城桃花沟岩墙锆石具有高的εHf(t)值(2.4~13.4),在εHf(t)-t图解中位于亏损地幔和球粒陨石之间(图7b),且Hf模式年龄与其形成年龄相近(表2),这表明岩石来源于亏损地幔(软流圈地幔)。全岩Sr-Nd同位素是探讨基性岩墙成因的重要手段(Liu Shen et al.,2008),Peng Peng et al.(2011a)对凉城桃花沟岩墙进行了系统的全岩Sr-Nd同位素研究,结果表明桃花沟岩墙具有正εNd(t)值(1.8~2.8),87Sr/86Srt值为0.7019(t=920 Ma),指示其来源于软流圈地幔(Peng Peng et al.,2011a)。与之不同,华北克拉通东南部基性岩床(920~890 Ma)则具有不均一的εHf(t)值(图7b,Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhu Renzhi et al.,2019),这表明从早期基性岩墙侵位到晚期基性岩床阶段,岩浆源区可能有更多古老岩石圈地幔物质的加入,与前人获得的Nd同位素结果一致(Zhu Renzhi et al.,2019; Su Xiangdong et al.,2021; 张琪琪等,2021)。凉城桃花沟岩墙具有较高的TFeO(12.78%~16.30%)和TiO2(2.59%~3.31%)含量,前人研究表明富铁岩浆主要有两种机制:一种是岩浆源区有富铁组分加入(如再循环洋壳),原始岩浆属于铁质玄武岩或铁质苦橄岩(Tuff et al.,2005; Hou Tong et al.,2013); 另一种是在低氧逸度的条件下,贫铁矿物发生分离结晶作用导致残留岩浆富铁,显示出Fenner演化趋势(Xu Yigang et al.,2003; Zhang Zhaochong et al.,2012)。凉城桃花沟岩墙岩浆演化过程中TFeO和TiO2含量逐渐降低(图5),指示岩浆经历了铁钛氧化物分离结晶过程(Li Hengxu et al.,2020)。另外,桃花沟岩墙遭受了地壳物质混染作用,研究表明地壳物质加入通常会提升体系氧逸度,从而造成铁钛氧化物的早期分离结晶(Xu Yigang et al.,2003),致使残留岩浆向贫铁富硅(SiO2>45%)趋势演化(图5)。上述分异趋势明显不同于Fenner演化趋势(Zhang Zhaochong et al.,2012),暗示凉城桃花沟岩墙不是低氧逸度条件下贫铁矿物分离结晶的产物,其富铁特征与岩浆源区有关。实验表明地幔橄榄岩部分熔融产生的岩浆不会富铁,需要源区有富铁物质的加入,如再循环的洋壳(榴辉岩或辉石岩)(Tuff et al.,2005; Hou Tong et al.,2013)。辉石岩和橄榄岩地幔源区可以通过PX#(PX# =13.81CaO0.274MgO)值加以区分(Heinonen et al.,2013),PX#>0指示辉石岩源区,而PX#<0指示橄榄岩源区。凉城桃花沟岩墙PX#>0(5.8~6.2),表明源区有辉石岩存在。另外,Hf/Hf*(=HfN/(SmN×NdN)0.5,N代表原始地幔标准化)和Ti/Ti*(=TiN/(Nd-0.055N×Sm0.333N×Gd0.722N),N代表原始地幔标准化)比值(Jackson et al.,2007)不受分离结晶作用影响,因此它们可以示踪地幔源区(Li Shuguang et al.,2017)。辉石岩熔体具有较高的Hf/Hf*(0.85~0.95)及Ti/Ti*(0.9~1.05)比值,橄榄岩熔体则具有相对较低的Hf/Hf*(0.3~0.5)及Ti/Ti*(0.2~0.4)比值(Li Shuguang et al.,2017)。凉城桃花沟岩墙的Hf/Hf*及Ti/Ti*比值分别为0.9~1.1和0.5~0.7,明显高于橄榄岩熔体而与辉石岩熔体接近,暗示源区有辉石岩组分参与。因此,橄榄岩与俯冲大洋板片相互作用形成的混合地幔源区的部分熔融可能是桃花沟岩墙富铁岩浆形成的重要过程(Tuff et al.,2005; Hou Tong et al.,2013)。研究区位于孔兹岩带东部,前人研究表明孔兹岩带在古元古代晚期(2.2~1.95 Ga)经历了俯冲—增生—碰撞过程(Zhai and Santosh,2011; Guo Jinghui et al.,2012; Peng Peng et al.,2012; Zhao Guochun and Zhai Mingguo,2013),并可能存在洋脊俯冲作用(Santosh and Kusky,2010; Guo Jinghui et al.,2012; Peng Peng et al.,2012)。相对较冷的大洋板块俯冲到地幔中,最终通过脱水和变质作用转变为榴辉岩相(Li Hengxu et al.,2020),这些再循环洋壳(榴辉岩/辉石岩)与地幔橄榄岩相互作用形成的混合地幔源区部分熔融很可能形成了凉城桃花沟岩墙的原始岩浆。我们对其幔源物质组成进行了模拟,结果表明凉城桃花沟岩墙是由混合地幔源(~60%石榴子石二辉橄榄岩和~40%辉石岩)经历了较低程度部分熔融(3%~10%)形成的(图7c)。Sm/Yb和Gd/Yb比值通常与熔融深度和大陆地壳厚度有关,而Nb/Zr和La/Sm比值则反映了部分熔融程度(De Castro et al.,2019)。华北克拉通大石沟基性岩墙群(~925 Ma; 包括凉城桃花沟岩墙)具有较高的Sm/Yb和Gd/Yb比值,其在Sm/Yb-La/Sm(图7c)和Gd/Yb-La/Sm(图7d)图解中显示出较深的熔融深度(靠近石榴子石二辉橄榄岩熔融曲线,对应深度为~80 km; Hardarson et al.,1991); 而华北克拉通稍晚期基性岩床(东南缘920~890 Ma岩床及~925 Ma固阳岩床)则显示出相对较浅的源区(靠近尖晶石二辉橄榄岩曲线,对应深度为~60 km; Hardarson et al.,1991)(图7c、d),指示华北克拉通新元古代早期基性岩浆演化过程中源区经历了由深到浅的演化趋势。综上所述,凉城桃花沟岩墙来源于相对较深(~80 km)的软流圈地幔,且源区有辉石岩(~40%)组分的参与。华北克拉通新元古代早期基性岩浆作用反映了由早期岩墙到稍晚期岩床侵位过程中岩浆源区由深至浅、岩石圈地幔贡献程度逐渐增强的变化过程。
-
图7 凉城桃花沟岩墙源区判别图解(资料来源同图4)
-
Fig.7 Discrimination diagrams of the source area from Taohuagou dyke in Liangcheng (the data source is the same as Fig.4)
-
(a)—La/Ba-La/Nb图解(据Saunders et al.,1992);(b)—εHf(t)-t图解(据Peng Peng et al.,2011b; Wang Xiaolei et al.,2011; Wang Qinghai et al.,2012; Zhu Renzhi et al.,2019);(c)—Sm/Yb-La/Sm图解(据Li Hengxu et al.,2020);(d)—Gd/Yb-La/Sm图解(据De Castro et al.,2019); NCC—华北克拉通; MORB—洋中脊玄武岩; OIB—洋岛玄武岩
-
(a) —La/Ba vs. La/Nb plot (after Saunders et al., 1992) ; (b) —εHf (t) vs. t plot (after Peng Peng et al., 2011b; Wang Xiaolei et al., 2011; Wang Qinghai et al., 2012; Zhu Renzhi et al., 2019) ; (c) —Sm/Yb vs. La/Sm plot (after Li Hengxu et al., 2020) ; (d) —Gd/Yb vs. La/Sm plot (after De Castro et al., 2019) ; NCC—North China craton; MORB—mid ocean ridge basalt; OIB—oceanic island basalt
-
5.3 构造背景
-
凉城桃花沟岩墙相对富铁和钛,已有研究表明富铁、钛岩浆往往出现在板内,而不是俯冲带,后者以贫钛贫铁为特征(Zhang Zhaochong et al.,2012; Li Hengxu et al.,2020),因此桃花沟岩墙可能形成于板内环境。桃花沟岩墙不同程度亏损Nb、Ta、Ti的弧型特征类似于IAB(岛弧玄武岩),然而样品大多数不相容元素含量与大陆玄武岩相当而明显高于IAB(图4),这指示桃花沟岩墙可能形成于陆内环境,而Nb、Ta、Ti亏损的弧型特征与大陆地壳物质混染有关(Xia Linqi,2014)。在构造环境判别图中,桃花沟岩墙样品基本都落在板内玄武岩区域(图8),进一步证明了其形成于陆内环境,其明显的野外侵入关系及捕获锆石的存在同样支持陆内环境。考虑到凉城桃花沟岩墙具有OIB(洋岛玄武岩)型地球化学特征,并且其与华北克拉通近同期(~925 Ma)基性岩墙构成规模巨大的放射状岩墙群(即大石沟岩墙群,Peng Peng et al.,2011a),因此桃花沟岩墙可能形成于地幔柱相关的陆内裂谷背景。华北克拉通950~920 Ma基性岩浆岩(包括中部~925 Ma大石沟基性岩墙群、东南部950~920 Ma基性岩床及北缘固阳~925 Ma基性岩床)地球化学特征与凉城辉绿岩相似且都接近OIB(图4),其在构造环境判别图中主要分布在板内区域,少部分落入火山弧区域,可能与大陆地壳物质混染有关(图8)。因此华北克拉通在新元古代早期(950~920 Ma)存在一期规模巨大的陆内裂谷事件,可能与地幔柱上涌有关。华北克拉通东南部的中国徐淮、大连及朝鲜沙里院地区920~890 Ma基性岩床(Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Su Xiangdong et al.,2021)地球化学特征介于OIB与MORB(洋中脊玄武岩)之间(图4),构造环境判别图解显示出板内玄武岩向洋中脊玄武岩(MORB)的过渡特征(图8)。因此华北克拉通东南部920~890 Ma基性岩床可能与裂谷晚期阶段相对应,表现出裂谷向大陆裂解(甚至初始洋盆形成)过渡的特征。华北克拉通新元古代早期基性岩可能来源于同一大火成岩省,早期(950~920 Ma)岩浆作用代表地幔柱上涌的初始陆内裂谷阶段,而稍晚期(920~890 Ma)基性岩浆作用则记录了由陆内裂谷向大陆裂解乃至初始洋盆形成阶段转换的过程(Su Xiangdong et al.,2021),新元古代早期华北克拉通初始裂解过程可能发生在其东南部。超大陆的裂解通常伴随着裂谷的发育和基性大火成岩省的形成(Hou Guiting et al.,2008; Li et al.,2008; Ernst et al.,2013a)。近年来地质及古地磁研究表明,华北克拉通参与了罗迪尼亚超大陆演化(陆松年等,2012; Fu Xingmei et al.,2015; Sun Fengbo et al.,2020; Zhao Hanqing et al.,2020; Ding Jikai et al.,2021),因此华北克拉通内广泛分布的~900 Ma裂谷相关的基性岩浆作用可能与罗迪尼亚超大陆的初始裂解相关。
-
图8 凉城桃花沟岩墙构造环境判别图解(数据来源同图4)
-
Fig.8 Discrimination diagrams of tectonic settings from Taohuagou dyke in Liangcheng (the data source is the same as Fig.4)
-
(a)—Nb×2-Zr-Y图解(据Meschede,1986);(b)—Hf/3-Th-Ta图解(据Wood,1980);(c)—Zr/Y-Zr图解(据Pearce and Cann,1973);(d)—N-MORB标准化Th-Nb图解(据Saccani,2015)
-
(a) —Nb×2-Zr-Y plot (after Meschede, 1986) ; (b) —Hf/3-Th-Ta plot (after Wood, 1980) ; (c) —Zr/Y-Zr plot (after Pearce and Cann, 1973) ; (d) —ThN-NbN plot (after Saccani, 2015)
-
5.4 古地理重建意义
-
与大火成岩省相关的基性岩浆作用(特别是规模巨大的岩墙群和同期基性岩床)是探讨超大陆重建的关键手段(Hou Guiting et al.,2008; Ernst et al.,2013a,2016; Peng Peng,2015; Evans et al.,2016a; Li Hongbo et al.,2019)。不同克拉通时代相同或相近、地球化学特征类似的基性岩浆作用可能来源于同一古陆,通过对比各个克拉通内基性岩浆“条形码”将为超大陆重建提供重要证据(Bleeker and Ernst,2006; Ernst et al.,2013b)。从全球范围来看,华北、西非、西伯利亚、波罗的及圣弗朗西斯科-刚果等克拉通均存在新元古代早期(~900 Ma)基性岩浆作用(图9)。其中波罗的克拉通内~940 Ma Blekinge-Dalarma岩墙被认为与弧后伸展或者造山后伸展垮塌有关(Söderlund et al.,2005; Gong Zheng et al.,2018),而其他克拉通内新元古代早期基性岩浆作用则形成于陆内裂谷或洋中脊相关的伸展背景(图8),因此确定这些基性岩浆作用的空间关系和相对位置将为重建罗迪尼亚超大陆提供重要线索。前人根据华北克拉通和圣弗朗西斯科-刚果克拉通高度匹配的~920 Ma基性岩浆作用及相似的地质事件,推测两个克拉通在新元古代早期可能相邻(Peng Peng et al.,2011a; Chaves et al.,2019)。另外,华北克拉通与圣弗朗西斯科-刚果克拉通均发育多期近同期基性岩浆活动(如~1780 Ma、~1700 Ma和~920 Ma基性岩浆活动),二者基性岩浆“条形码”高度相似(图9),这进一步表明华北克拉通与圣弗朗西斯科-刚果克拉通在新元古代早期可能相邻(Peng Peng et al.,2011a; Caxito et al.,2020)。然而,古地磁研究表明圣弗朗西斯科-刚果克拉通在新元古代早期(~920 Ma)位于中到高纬度(Evans et al.,2016a),华北克拉通与西伯利亚克拉通处于近赤道的低纬度位置(Fu Xingmei et al.,2015; Evans et al.,2016b; Zhao Hanqing et al.,2020; Ding Jikai et al.,2021),这意味着华北克拉通在新元古代早期可能与圣弗朗西斯科-刚果克拉通相距较远,而与劳伦古陆相毗邻(Fu Xingmei et al.,2015; Ernst et al.,2016; Evans et al.,2016b; Zhao Hanqing et al.,2020; Ding Jikai et al.,2021),这与地质事实吻合:西伯利亚克拉通东南部地层、华北克拉通东南缘徐淮盆地及东部新元古代地层中均具有格林威尔期(1400~1050 Ma)碎屑锆石(Khudoley et al.,2007; 陆松年等,2012; Sun Fengbo et al.,2020; Zhao Hanqing et al.,2020),这些物源不属于克拉通内部而更可能来源于劳伦古陆,这表明华北克拉通东南部及西伯利亚克拉通东南部在新元古代早期可能与劳伦古陆相邻。西伯利亚克拉通东南缘存在~940 Ma Sette-Daban基性岩床(Gladkochub et al.,2010),其被认为形成于陆内裂谷环境(Savelev et al.,2020),华北克拉通东南缘同样存在~900 Ma裂谷相关的基性岩浆活动(图8; Peng Peng et al.,2011b; Wang Qinghai et al.,2012; Zhang Shuanhong et al.,2016; Zhu Renzhi et al.,2019; Su Xiangdong et al.,2021)。因此,华北与西伯利亚克拉通~900 Ma陆内裂谷相关的基性岩浆活动可能标志着罗迪尼亚超大陆的初始裂解。最新古地磁数据显示西非、波罗的、亚马逊及圣弗朗西斯科-刚果克拉通在1200~800 Ma可能相邻(WABAMGO模型,Antonio et al.,2021),它们均处于相对较高的纬度位置,并记录了~900 Ma基性岩浆活动(图9; Antonio et al.,2021),这一模型同样需要更多地质及古地磁数据证实。综上所述,新元古代早期华北克拉通最可能与劳伦古陆相邻,其是否与圣弗朗西斯科-刚果克拉通相邻仍需更多古地磁证据来检验; 全球广泛分布的~900 Ma基性岩浆活动可能标志着罗迪尼亚超大陆的初始裂解。
-
图9 全球克拉通基性岩浆“条形码”
-
Fig.9 Mafic magmatic “barcodes” of the global cratons
-
年龄数据引自(Age data after):Söderlund et al.(2005); Ernst et al.(2013a,2013b); Peng Peng(2015); Ernst et al.(2016); Baratoux et al.(2019); Chaves et al.(2019); Choudhary et al.(2019); Teixeira et al.(2019); Caxito et al.(2020); Antonio et al.(2021)
-
6 结论
-
(1)凉城桃花沟岩墙锆石207Pb/206Pb加权平均年龄为903±15 Ma(MSWD为0.9),为新元古代早期基性岩浆活动的产物。
-
(2)岩石地球化学及锆石Hf同位素特征表明,凉城桃花沟岩墙来源于相对较深(~80 km)的软流圈地幔源区,且源区有辉石岩组分参与; 岩浆经历了橄榄石、单斜辉石、斜长石、铁钛氧化物及磷灰石分离结晶并遭受了地壳混染作用的影响。
-
(3)凉城桃花沟岩墙与华北克拉通中部大石沟基性岩墙群(~925 Ma)、东南缘基性岩床(950~920 Ma)及固阳基性岩床(~925 Ma)都形成于同一地幔柱作用下的早期陆内裂谷环境; 而华北克拉通东南缘稍晚期(920~890 Ma)基性岩床形成于裂谷晚期向洋中脊的转换构造体制,整体反映了同一地幔柱作用下由早期陆内裂谷向晚期大陆裂解阶段转换的过程。
-
(4)结合古地磁资料,新元古代早期华北克拉通最可能与劳伦古陆相邻,其是否与圣弗朗西斯科-刚果克拉通相邻需要更多古地磁证据来检验。
-
致谢:真诚感谢编辑及审稿专家提出的宝贵意见,使得文章结构和内容进一步完善。感谢李长海博士在论文撰写过程中提供的帮助。
-
参考文献
-
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology. 192 (1-2): 59~79.
-
Antonio P Y J, Baratoux L, Trindade R I F, Rousse S, Ayite A, Lana C, Macouin M, Adu E W K, Sanchez C, Silva M A L, Firmin A S, Martínez Dopico C I, Proietti A, Amponsah P O, Sakyi P A. 2021. West Africa in Rodinia: High quality paleomagnetic pole from the ~860 Ma Manso dyke swarm (Ghana). Gondwana Research, 94: 28~43.
-
Baratoux L, Söderlund U, Ernst R E, de Roever E, Jessell M W, Kamo S, Naba S, Perrouty S, Metelka V, Yatte D, Grenholm M, Diallo D P, Ndiaye P M, Dioh E, Cournède C, Benoit M, Baratoux D, Youbi N, Rousse S, Bendaoud A. 2019. New U-Pb baddeleyite ages of mafic dyke swarms of the West African and Amazonian cratons: Implication for their configuration in supercontinents through time. In: Srivastava R K, Ernst R E, Peng Peng, eds. Dyke Swarms of the World: A Modern Perspective. Springer Geology. Singapore: Springer Singapore, 263~314.
-
Bleeker W, Ernst R E. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2. 6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J, eds. Dyke Swarms-Time Markers of Crustal Evolution. London: Taylor and Francis/Balkema, 3~26.
-
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 144(1~2): 243~258.
-
Cawood P A, Pisarevsky S A. 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, 292: 386~397.
-
Caxito F A, Hagemann S, Dias T G, Barrote V, Dantas E L, Chaves A O, Campello M S, Campos F C. 2020. A magmatic barcode for the São Francisco craton: Contextual in-situ SHRIMP U-Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos, 374~375: 105708.
-
Chang Zeguang, Li Mingze, Zhou Rui, Liu Yanhai, Nie Xin. 2018. LA-ICP MS U-Pb ages of the zircons from the volcanic rocks in the Cretaceous Bainvyanpan Formation in Zhuozi area, eastern Yinshan Mountains, and their geological significance. Geological Review, 64(1): 203~212 (in Chinese with English abstract).
-
Chaves A O, Ernst R E, Söderlund U, Wang X, Naeraa T. 2019. The 920-900 Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with Dashigou-Chulan LIP of North China craton: New insights from U-Pb geochronology and geochemistry. Precambrian Research, 329: 124~137.
-
Choudhary B R, Ernst R E, Xu Yigang, Evans D A D, de Kock M O, Meert J G, Ruiz A S, Lima G A. 2019. Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambrian Research, 332: 105382.
-
Dan Wei, Li Xianhua, Guo Jinghui, Liu Yu, Wang Xuance. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China craton: Juvenile crustal materials deposited in active or passive continental margin? Precambrian Research, 222-223: 143~158.
-
De Castro M P, Queiroga G, Martins M, Alkmim F, Pedrosa-Soares A, Dussin I, Souza M E. 2019. An Early Tonian rifting event affecting the São Francisco-Congo paleocontinent recorded by the Lower Macaúbas Group, Araçuaí Orogen, SE Brazil. Precambrian Research, 331: 105351.
-
Ding Jikai, Zhang Shihong, Evans D A D, Yang Tianshui, Li Haiyan, Wu Huaichun, Chen Jianping. 2021. North China craton: The conjugate margin for northwestern Laurentia in Rodinia. Geology, 49(7): 773~778.
-
Dong Chunyan, Liu Dunyi, Li Junjian, Wan Yusheng, Zhou Hongying, Li Chengdong, Yang Yueheng, Xie Liewen. 2007. Palaeoproterozoic Khondalite belt in the western North China craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984~2994.
-
Ernst R E, Bleeker W, Söderlund U, Kerr A C. 2013a. Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1~14.
-
Ernst R E, Pereira E, Hamilton M A, Pisarevsky S A. 2013b. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 230: 203~218.
-
Ernst R E, Hamilton M A, Söderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, Lecheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9(6): 464~469.
-
Evans D A D, Trindade R I F, Catelani E L, D'Agrella-Filho M S, Heaman L M, Oliveira E P, Söderlund U, Ernst R E, Smirnov A V, Salminen J M. 2016a. Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 Ma. Geological Society of London Special Publications, 424(1): 167~190.
-
Evans D A D, Veselovsky R V, Petrov P Y, Shatsillo A V, Pavlov V E. 2016b. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. Precambrian Research, 281: 639~655.
-
Fan Jingjing. 2017. Neoproterozoic evolution of the southern passive continental margin of the North China block. Master dissertation of University of Chinese Academy of Sciences, 1~67 (in Chinese with English abstract).
-
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19: 463~513.
-
Fu Xingmei, Zhang Shihong, Li Haiyan, Ding Jikai, Li Huaikun, Yang Tianshui, Wu Huaichun, Yuan Haifan, Lv Jing. 2015. New paleomagnetic results from the Huaibei Group and Neoproterozoic mafic sills in the North China craton and their paleogeographic implications. Precambrian Research, 269: 90~106.
-
Gao Linzhi, Zhang Chuanheng, Chen Shouming, Liu Pengju, Ding Xiaozhong, Liu Yanxue, Dong Chunyan, Song Biao. 2010. Detrital zircon SHRIMP U-Pb age from the Diaoyutai Formation, Xihe Group in Liaodong Peninsula, China and its geological significance. Geological Bulletin of China, 29(8): 1113~1122 (in Chinese with English abstract).
-
Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou Hongying, Li Huimin. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508~1513 (in Chinese with English abstract).
-
Gladkochub D P, Pisarevsky S A, Donskaya T V, Ernst R E, Wingate M T D, Söderlund U, Mazukabzov A M, Sklyarov E V, Hamilton M A, Hanes J A. 2010. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research, 183: 660~668.
-
Gong Zheng, Evans D A D, Elming S -Å, Söderlund U, Salminen J M. 2018. Paleomagnetism, magnetic anisotropy and U-Pb baddeleyite geochronology of the early Neoproterozoic Blekinge-Dalarna dolerite dykes, Sweden. Precambrian Research, 317: 14~32.
-
Griffin W L, Pearson N J, Belousova E, Jackson S E, O'Reily S Y, van Achterberg E, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimistry Cosmochim Acta, 64: 133~147.
-
Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reily S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.
-
Guo Jinghui, Peng Peng, Chen Li, Jiao Shujuan, Windley B F. 2012. UHT sapphirine granulite metamorphism at 1. 93-1. 92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China craton. Precambrian Research, 222-223: 124~142.
-
Hardarson B S, Fitton J G. 1991. Increased mantle melting beneath Snaefellsjokull volcano during late Pleistocene glaciation. Nature, 353: 62~64.
-
Heinonen J S, Luttinen A V, Riley T R, Michallik M. 2013. Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos, 177: 366~380.
-
Hofmann A W, Jochum K P, Seufert M, White William M. 1986. Nb and Pb in oceanic basalts; new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33~45.
-
Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252: 1409~1412.
-
Hou Guiting, Liu Yulin, Li Jianghai, Jin Aiwen. 2005. The SHRIMP U-Pb chronology of mafic dyke swarms: A case study of Laiwu diabase dykes in western Shandong. Acta Petrologica et Mineralogica, 24(3): 179~185 (in Chinese with English abstract).
-
Hou Guiting, Santosh M, Qian Xianglin, Lister G S, Li Jianghai. 2008. Tectonic constraints on 1. 3~1. 2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm. Gondwana Research, 14(3): 561~566.
-
Hou Tong, Zhang Zhaochong, Encarnacion J, Santosh M, Sun Yali. 2013. The role recycled oceanic crust in magmatism and metallogenesis: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province. Contributions to Mineralogy and Petrology, 165: 805~822.
-
Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448: 648~687.
-
Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47~69.
-
Khudoley A K, Kropachev A P, Tkachenko V I, Rublev A G, Sergeev S A, Matukov D I, Lyahnitskaya O Y, Link P K, Lewis R S. 2007. Mesoproterozoic to Neoproterozoic evolution of the Siberian craton and adjacent microcontinents: An overview with constraints for a Laurentian connection. In: Proterozoic Geology of Western North America and Siberia. USA: SEPM Special Publication.
-
Li Hengxu, Zhang Zhaochong, Santosh M, Wang Zhenchao, Jin Shengkai, Zhang Qiang, Liu Linghan. 2020. Ferrodoleritic dykes in the Tarimcraton signal Neoproterozoic breakup of Rodinia supercontinent. Journal of Asian Earth Sciences, 200: 104476.
-
Li Hongbo, Zhang Zhaochong, Santosh M, Li Yongsheng, Han Liu, Jiang Zhu, Pan Ronghao. 2019. Geochronological, geochemical and Sr-Nd isotopic fingerprinting of Neoproterozoic mafic dykes in the western margin of the Yangtze Block, SW China: Implications for Rodinia supercontinent breakup. Precambrian Research, 331: 105371.
-
Li Shuguang, Yang Wei, Ke Shan, Meng Xunan, Tian Hengci, Xu Lijuan, He Yongsheng, Huang Jian, Wang Xuance, Xia Qunke, Sun Weidong, Yang Xiaoyong, Ren Zhongyuan, Wei Haiquan, Liu Yongsheng, Meng Fancong, Yan Jun. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111~120.
-
Li Yun, Peng Peng, Wang Xinping, Wang Haozheng. 2015. Nature of 1800-1600 Ma mafic dyke swarms in the North China craton: Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Research, 257: 114~123.
-
Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179~210.
-
Liu Shen, Hu Ruizhong, Gao Shan, Feng Caixia, Qi Liang, Zhong Hong, Xiao Tangfu, Qi Youqiang, Wang Tao, Coulson I M. 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance. Chemical Geology, 255(3): 329~345.
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537~571.
-
Lu Songnian, Xiang Zhenqun, Li Huaikun, Wang Huichu, Chu Hang. 2012. Response of the North China craton to Rodinia supercontinental events——GOSEN joining hypothesis. Acta Geologica Sinica, 86(9): 1396~1406 (in Chinese with English abstract).
-
Ludwig K R. 2003. User's manual for Isoplot 3. 00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication, 4: 1~70.
-
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56: 207~218.
-
Moreira H F, Danderfer A, Costa A F O, Bersan S M, Lana C C, Queiroga G N. 2020. Record of Early Tonian mafic magmatism in the central Espinhaço (Brazil): New insights for break-up of the Neoproterozoic landmass ancestor of São Francisco-Congo paleocontinent. Geoscience Frontiers, 11: 2323~2337.
-
Pearce T H, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19: 290~300.
-
Peng Peng. 2015. Precambrian mafic dyke swarms in the North China craton and their geological implications. Science China Earth Sciences, 58(5): 649~675.
-
Peng Peng, Guo Jinghui, Zhai Mingguo, Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635~659.
-
Peng Peng, Bleeker W, Ernst R E, Söderlund U, McNicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127: 210~221.
-
Peng Peng, Zhai Mingguo, Li Qiuli, Wu Fuyuan, Hou Quanlin, Li Zhong, Li Tiesheng, Zhang Yanbin. 2011b. Neoproterozoic (~900 Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China craton. Gondwana Research, 20: 234~254.
-
Peng Peng, Guo Jinghui, Windley B F, Liu fu, Chu Zhuyin, Zhai Mingguo. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China craton: Implications for ridge subduction. Precambrian Research, 222-223: 107~123.
-
Qi Liang, Zhou Meifu. 2008. Platinum group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83~103.
-
Rudnick R L, Gao Shan. 2003. Composition of the Continental Crust. Oxford: Treatise on Geochemistry, 1~64.
-
Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, (4): 481~502.
-
Santosh M, Kusky T M. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova, 22(1): 35~42.
-
Saunders A D, Storey M, Kent R W, Norry M J. 1992. Consequences of plume-lithosphere interactions. In: Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and the Causes of Continental Break-up. Geological Society of London Special Publication, 68: 41~60.
-
Savelev A D, Malyshev S V, Savatenkov V M, Ignatov D D, Kuzkina A D. 2020. Meso-Neoproterozoic mafic sills along the south-eastern margin of the siberian craton, SE Yakutia: Petrogenesis, tectonic and geochemical features. Minerals, 10(9): 1~20.
-
Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium-hafnium clock. Sciencs, 293: 683~687.
-
Söderlund U, Isachsen C E, Bylund G, Heaman L, Patchett P J, Vervoort J D, Andersson U B. 2005. U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1. 6 to 0. 9 Ga. Contributions to Mineralogy and Petrology, 150: 174~194.
-
Su Xiangdong, Peng Peng, Foley S, Teixeira W, Zhai Mingguo. 2021. Initiation of continental breakup documented in evolution of the magma plumbing system of the ca. 925 Ma Dashigou large igneous province, North China. Lithos, 384~385: 105984.
-
Sun Fengbo, Peng Peng, Zhou Xiqiang, Magalhaes A J C, Guadagnin F, Zhou Xiaotong, Zhang Zhiyue, Su Xiangdong. 2020. Provenance analysis of the late Mesoproterozoic to Neoproterozoic Xuhuai basin in the southeast North China craton: Implications for paleogeographic reconstruction. Precambrian Research, 337: 105554.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
-
Tack L, Wingate M T D, Liégeois J-P, Fernandez-Alonso M, Deblond A. 2001. Early Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Research, 110(1): 277~306.
-
Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific Publication, 46.
-
Teixeira W, Hamilton M A, Girardi V A V, Faleiros F M, Ernst R E. 2019. U-Pb baddeleyite ages of key dyke swarms in the Amazonian craton (Carajás/Rio Maria and Rio Apa areas): Tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma. Precambrian Research, 329: 138~155.
-
Tuff J, Takahashi E, Gibson S A. 2005. Experimental constraints on the role of garnet pyroxenites in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46: 2023~2058.
-
Wan Yusheng, Liu Dunyi, Dong Chunyan, Xu Zhongyuan, Wang Zhejiu, Wilde S A, Yang Yueheng, Liu Zhenghong, Zhou Hongying. 2009. The Precambrian khondalite belt in the Daqingshan area, North China craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. London: Geological Society Special Publication, 323: 73~97.
-
Wan Yusheng, Xie Hangqiang, Wang Huichu, Liu Shoujie, Chu Hang, Xiao Zhibin, Li Yuan, Hao Guangming, Li Pengchuan, Dong Chunyan, Liu Dunyi. 2021a. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China craton. Acta Geologica Sinica, 95(2): 277~291 (in Chinese with English abstract).
-
Wan Yusheng, Xie Hangqiang, Wang Huichu, Li Pengchuan, Chu Hang, Xiao Zhibin, Dong Chunyan, Liu Shoujie, Li Yuan, Hao Guangming, Liu Dunyi. 2021b. Discovery of ~3. 8 Ga TTG rocks in eastern Hebei, North China craton. Acta Geologica Sinica, 95(5): 1321~1333 (in Chinese with English abstract).
-
Wang Luojuan, Guo Jinghui, Yin Changqing, Peng Peng, Zhang Jian, Spencer C J, Qian Jiahui. 2018. High-temperature S-type granitoids (charnockites) in the Jining complex, North China craton: Restite entrainment and hybridization with mafic magma. Lithos, 320~321: 435~453.
-
Wang Qinghai, Yang Debin, Xu Wenliang. 2012. Neoproterozoic basic magmatism in the southeast margin of North China craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China Earth Sciences, 55: 1461~1479.
-
Wang Xiaolei, Jiang Shaoyong, Dai Baozhang, Griffin W L, Dai Mengning, Yang Yueheng. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China craton. Precambrian Research, 190(1): 35~47.
-
Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic povince. Earth and Planetary Science Letter, 50: 11~30.
-
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).
-
Xia Linqi. 2014. The geochemical criteria to distinguish continental basalts from arc related ones. Earth-Science Reviews, 139: 195~212.
-
Xia Xiaoping, Sun Min, Zhao Guochun, Luo Yan. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining complex, North China craton and its tectonic significance. Precambrian Research, 144(3): 199~212.
-
Xia Xiaoping, Sun Min, Zhao Guochun, Wu Fuyuan, Xu Ping, Zhang Jiheng, Luo Yan. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, western block of the North China craton. Earth and Planetary Science Letters, 241(3-4): 581~593.
-
Xu Yigang, Mei Houjun, Xu Jifeng, Huang Xiaolong, Wang Yuejun, Chuang Sunlin. 2003. Origin of two differentiation trends in the Emeishan flood basalts. Chinese Science Bulletin, 48: 390~394.
-
Zhai Mingguo, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20: 6~25.
-
Zhai Mingguo, Hu Bo, Zhao Taiping, Peng Peng, Meng Qingren. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China craton and their geological significance: A study advance and review. Tectonophysics, 662: 153~166.
-
Zhang Qiqi, Zhang Shuanhong, Zhao Yue, Hu Guohui, Gao Hailong. 2021. Identification of an early Neoproterozoic gabbro sill emplaced into the Zha'ertai Group in the Guyang area, Inner Mongolia and its geological significanc. Acta Geologica Sinica, 95(3): 667~685 (in Chinese with English abstract).
-
Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222~223: 339~367.
-
Zhang Shuanhong, Zhao Yue, Ye, Hao, Hu Guohui. 2016. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China craton. Precambrian Research, 272: 203~225.
-
Zhang Zhaochong, Kang Jianli, Kusky T, Santosh M, Huang He, Zhang Dongyang, Zhu Jiang. 2012. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 220-221: 158~176.
-
Zhao Guochun, He Yanhong, Sun Min. 2009. Xiong'er volcanic belt in the North China craton: Implications for the outward accretion of the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16: 170~181.
-
Zhao Guochun, Zhai Mingguo. 2013. Lithotectonic elements of Precambrian basement in the North China craton: Review and tectonic implications. Gondwana Research, 23: 1207~1240.
-
Zhao Hanqing, Zhang Shihong, Ding Jikai, Chang Linxi, Ren Qiang, Li Haiyan, Yang Tianshui, Wu Huaichun. 2020. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China craton, and implications for the reconstruction of Rodinia. Geological Society of America Bulletin, 132: 739~766.
-
Zhu Renzhi, Ni Pei, Wang Guoguang, Ding Junying, Fan Mingsen, Ma Yuguang. 2019. Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in the southeastern margin of the North China Craton and their geological implication. Gondwana Research. 67: 131~146.
-
常泽光, 李明泽, 周瑞, 刘燕海, 聂鑫. 2018. 阴山东部卓资地区白垩系白女羊盘组火山岩锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质论评, 64(1): 203~212.
-
范晶晶. 2017. 华北陆块南缘新元古代被动陆缘演化. 中国科学院大学硕士学位论文, 1~67.
-
高林志, 张传恒, 陈寿铭, 刘鹏举, 丁孝忠, 刘燕学, 董春燕, 宋彪. 2010. 辽东半岛细河群沉积岩碎屑锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113~1122.
-
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508~1513.
-
侯贵廷, 刘玉琳, 李江海, 金爱文. 2005. 关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨——以鲁西莱芜辉绿岩岩墙为例. 岩石矿物学杂志, 24(3): 179~185.
-
陆松年, 相振群, 李怀坤, 王惠初, 初航. 2012. 华北克拉通对罗迪尼亚超大陆事件的响应——GOSEN连接假设. 地质学报, 86(9): 1396~1406.
-
万渝生, 颉颃强, 王惠初, 刘守偈, 初航, 肖志斌, 李源, 郝光明, 李鹏川, 董春艳, 刘敦一. 2021a. 冀东地区始太古代早期—冥古宙锆石发现. 地质学报, 95(2): 277~291.
-
万渝生, 颉颃强, 王惠初, 李鹏川, 初航, 肖志斌, 董春艳, 刘守偈, 李源, 郝光明, 刘敦一. 2021b. 冀东地区~3. 8 Ga TTG岩石发现. 地质学报, 95(5): 1321~1333.
-
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
-
张琪琪, 张拴宏, 赵越, 胡国辉, 高海龙. 2021. 内蒙古固阳地区侵入渣尔泰群中新元古代早期辉长岩岩床的发现及其意义. 地质学报, 95(3): 667~685.
-
摘要
为揭示华北克拉通北缘凉城基性岩墙的形成时代、岩石成因、构造背景及对罗迪尼亚超大陆重建的意义,本研究借助激光烧蚀多接收器等离子质谱(LA-MC-ICP-MS)锆石U-Pb定年、Hf同位素及全岩地球化学研究手段,对凉城桃花沟岩墙开展了系统研究。研究结果显示,凉城桃花沟岩墙为新元古代早期(903±15 Ma)基性岩浆活动的产物,归属拉斑岩石系列,具有较高的TFeO(12.78%~16.30%)及TiO2(2.59%~3.31%)含量、较低的MgO(2.87%~3.83%)、Cr(32.7×10-6~42.0×10-6)、Ni(11.6×10-6~14.5 ×10-6)含量及Mg#值(29~38),富集轻稀土元素(LREE)、Rb、Pb、Zr及Hf元素,亏损Ba、Sr、Nb、Ta、Ti及Eu(Eu/Eu*=0.74~0.83)元素。锆石原位εHf(t)范围为2.4~13.4,单阶段Hf模式年龄(tDM1)范围为1357~892 Ma。综合研究显示,凉城桃花沟岩墙形成于陆内裂谷构造背景,母岩浆来源于较深(~80 km)的软流圈地幔,并且源区有辉石岩组分参与;岩浆经历了橄榄石、单斜辉石、斜长石、铁钛氧化物及磷灰石的分离结晶并遭受了地壳混染作用的影响。地球化学数据表明华北克拉通新元古代早期基性岩浆作用记录了从陆内裂谷向大陆裂解的转换过程。地质及古地磁资料支持新元古代早期华北克拉通与劳伦古陆相邻,其是否与圣弗朗西斯科-刚果克拉通相邻需要更多古地磁证据来检验。
Abstract
In this paper, we undertook laser ablation-multicollector-inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS) investigations on zircons for U-Pb geochronology, zircons in-situ Hf isotopic and whole-rock geochemical analysis on the Taohuagou dyke in Liangcheng, northern margin of the North China craton (NCC). Based on the newly obtained data, we identified the emplacement age, petrogenesis, and tectonic setting of the mafic dykes in Liangcheng and further discussed their implications for the reconstruction of the Rodinia supercontinent. The results show that the Taohuagou dyke was the product of mafic magmatism in the early Neoproterozoic (903±15 Ma), belonging to tholeiitic series, with high TFeO (12.78%~16.30%) and TiO2 (2.59%~3.31%) contents, and low MgO (2.87%~3.83%), Cr (32.7×10-6~42.0×10-6), Ni (11.6×10-6~14.5 ×10-6) contents, and low Mg# values (29~38). They are enriched in light rare earth elements (LREEs), Rb, Pb, Zr, and Hf elements, and depleted in Ba, Sr, Nb, Ta, Ti and Eu (Eu/Eu*=0.74~0.83) elements. The zircon in-situ εHf(t) of Taohuagou dyke ranges from 2.4 to 13.4, with single-stage Hf model (tDM1) ages ranging from 892 to 1357 Ma. The comprehensive study shows that the Taohuagou dyke in Liangcheng was formed in an intracontinental rift tectonic setting. The parent magma originated from the deep (~80 km) asthenospheric mantle, and pyroxenite components were involved in the source area. The magma experienced the fractional crystallization of olivine, clinopyroxene, plagioclase, Fe-Ti oxides and apatite, and was contaminated by the continental crust during emplacement. Geochemical data show that the early Neoproterozoic mafic magmatism in the NCC recorded the transition from intracontinental rifting to continental breakup. Geological and paleomagnetic data support that the NCC was adjacent to Laurentia in the early Neoproterozoic. However, further paleomagnetic research is needed to clarify whether it was adjacent to the São Francisco-Congo craton.