-
钨锡矿床与高分异花岗岩具有密切的成因联系(Lehmann,1990; Förster et al.,1999; Li et al.,2015; Lecumberri-Sanchez et al.,2017; Zoheir et al.,2020; Chen et al.,2021),在岩浆演化的晚期,与成矿有关的高分异花岗岩发生岩浆-流体相互作用(Cuney et al.,1992; Yin et al.,1995; 吴福元等,2017; Zoheir et al.,2020)。岩浆发生液态不混溶(或称液态分离)及钨锡多金属矿化(王联魁等,1987,2000,2002; 朱永峰等,1995; 卢焕章,1996; Thomas et al.,2000; Sowerby et al.,2002; Veksler,2004; 李建康等,2008,2014; 祝新友等,2013,2015; 王艳丽等,2013),花岗岩Nb/Ta比值小于5是高分异熔体与流体相互作用的地球化学标志(Ballouard et al.,2016),高分异花岗岩具有M型稀土元素展布型式,常伴有显著的负Eu异常和镧系元素四分组的效果,也被认为是高分异熔体与流体相互作用的地球化学标志(Zhao et al.,1993; Monecke et al.,2007)。花岗岩中造岩矿物含锂云母(如铁叶云母、锂白云母和锂云母)是高分异熔体与流体相互作用的矿物学标志(Yin et al.,2019; Chen et al.,2021)。考虑到岩浆演化的晚期高分异熔体与流体相互作用是一种普遍现象,必然在高分异花岗岩及有关的矿床中产有熔融包裹体和熔体-流体包裹体,我们认为高分异花岗岩及相关的钨锡多金属矿床是研究浆液过渡态熔体的最佳场所之一。
-
湘南地区瑶岗仙钨矿床的云英岩析离体整体呈现出浆液过渡态熔体作用的特征(祝新友等,2013),是富Li-F碱长花岗岩浆液态分异作用的产物; 杮竹园矽卡岩型锡钨多金属矿床的碱交代脉中广泛发育熔融包裹体和熔体-流体包裹体,显示其浆液过渡态熔体的成因性质(祝新友等,2015)。但是,湘南地区钨锡多金属矿床中有哪些类型的浆液过渡态熔体?不同类型的浆液过渡态熔体之间有无成因联系?成矿意义如何?本文试图对这些问题进行初步探讨。
-
1 区域地质概况
-
湘南地区地层出露齐全,除缺失奥陶系和志留系外,从震旦系到第四系均有发育(图1)。震旦系和上覆的寒武系具有连续沉积的特征,主要出露在湘南地区的东部和西南部,由一套中厚层状的石英砂岩和长石石英砂岩夹少量板岩组成。泥盆系与下伏震旦系和寒武系呈角度不整合接触,出露泥盆系中统一套以中厚层石英砂岩和砾岩为代表的滨海碎屑岩沉积岩和上统一套以灰岩和白云岩为代表的浅海碳酸盐岩。石炭系是湘南地区最重要的有色金属赋矿地层,其下统主要由浅海碳酸盐岩夹含煤砂页岩组成,上统主要由浅海碳酸盐岩组成。二叠系主要产于湘南地区的西部,岩石组成包括灰岩、白云岩和含煤砂页岩等,是区内最重要的含煤地层。中生界和新生界虽然在区内也有产出,但分布零星,出露不连续,岩性包括砂岩、砾岩、泥岩和少量的灰岩。
-
湘南地区断裂构造十分发育,分布最广和规模最大的是北北东向断裂,如耒阳-临武断裂、茶陵-临武断裂和资兴-长城岭断裂等(图1)。这一组断裂在区内延伸一般都在15 km以上,走向弯曲,倾向东或西,主要形成于印支期—燕山晚期,是区内重要的控矿构造(韩润生等,2020; 田旭峰等,2020; 谌鹏远等,2020)。
-
湘南地区中生代岩浆活动强烈,在印支期、燕山早期和燕山晚期都形成了花岗岩体及相关的钨锡多金属矿床(图1)。印支期岩浆活动的典型代表是王仙岭岩体和长城岭岩体,王仙岭岩体由电气石白云母花岗岩组成,在岩体边部的云英岩中发育水源山、茶场和野鸡窝等钨锡多金属矿床,成岩和成矿年龄均为224 Ma左右(Zhang et al.,2015)。燕山早期岩浆活动形成了骑田岭、千里山和香花岭等花岗岩体,岩石主要包括黑云母二长花岗岩、二云母二长花岗岩、角闪石黑云母二长花岗岩、黑云母花岗岩和白云母花岗岩,并在岩体周围形成了柿竹园、芙蓉、香花岭、红旗岭等一批重要的钨锡多金属矿床,成岩和成矿时代一致,均介于165~150 Ma之间(毛景文等,2007; 袁顺达等,2012; 马收先等,2021)。燕山晚期岩浆活动见于湘南地区东南部的界牌岭地区,发育有花岗斑岩及相关的锡多金属矿床,成岩和成矿时代均为90 Ma左右(卢有月等,2013; 王艳丽等,2014; Yuan et al.,2015)。
-
图1 湘南地区地质矿产见图(据Yuan et al.,2015修改)
-
Fig.1 Simplified geological map of the South Hunan area (modified after Yuan et al., 2015)
-
2 浆液过渡态熔体的类型
-
笔者研究发现湘南地区有富钾富挥发分浆液过渡态熔体和富钠富挥发分浆液过渡态熔体,前者以富K和富F等挥发分为特征,产物中富钠的矿物少见; 后者富Na,有时也含K,产物中富含钠长石或电气石等矿物。二者的矿物包裹体中均常见熔体-流体包裹体。
-
2.1 富钾富挥发分浆液过渡态熔体
-
在界牌岭矿床,云英岩化的花岗斑岩中常见暗色的锂白云母萤石囊或团块(图2a); 锂白云母萤石囊内部具有分带性,一般边部云母含量高而颜色深,内部萤石含量高而颜色浅(图2b)。在石人嶂矿床,云英岩囊的围岩花岗岩也发生云英岩化,呈晕圈分布于云英岩囊周围(图2c); 显微镜下,可见囊的边部矿物颗粒细小,类似“冷凝边”,囊内的萤石呈浑圆状,锂白云母分布于浑圆状萤石粒间,类似“海绵陨铁结构”(图2d)。
-
锂白云母萤石囊的萤石中,原生包裹体发育,包裹体类型复杂,有气液包裹体(图2e)、含子矿物的气液包裹体(图2f)、富气的气液包裹体(图2g)、含液相CO2的三相包裹体(图2h)、含子矿物和液相CO2的包裹体(图2i),还有大量熔体-流体包裹体(图2j~l),甚至可能有熔融包裹体(图2m)。
-
锂白云母萤石囊中锂白云母和萤石矿物的电子探针分析结果分别见表1和表2。可见锂白云母含K2O为9.56%~10.45%,Al2O3为29.63%~37.54%,SiO2为45.80%~52.92%,另外还含少量F、Na2O、MgO、FeO、MnO等。锂云母中Li的含量无法用探针分析,但根据Legros et al.(2016)方法可以计算,应为锂白云母(图3a)。萤石主要由Ca和F组成,F含量46.41%~48.29%,Ca含量49.97%~50.69%(表2)。
-
上述宏观、微观及包裹体证据表明,界牌岭矿床的高分异花岗质岩浆与富钾富挥发分的熔浆发生过液态不混溶,前者形成花岗斑岩,后者形成花岗斑岩中的锂白云母萤石囊或斑团。
-
富钾富挥发分浆液过渡态熔体前人研究成果丰硕。杜绍华等(1984)认为香花岭矿田以富钾为特点的香花岭岩的形成与富F等挥发分的岩浆液态不混溶有关。常海亮等(2007)测得江西西华山黑钨矿-石英脉内绿柱石中熔融包裹体的成分,主要是SiO2和Al2O3(分别平均为70.72%和13.94%)及少量K2O(2.0%),其他氧化物含量甚低,并且含有大量的挥发分(主要是H2O,达11.56%),液相中CO2、H2S等含量不高(分别为7.8%和4.3%),气相部分主要是一些还原性气体,认为该熔融包裹体代表HF-H2O-花岗岩体系结晶分异最后阶段残余熔融体的成分,证实脉状钨矿床的成矿流体不是单一的热水溶液,而是硅酸盐熔体与超临界流体共存的岩浆-热液过渡性流体,其成矿作用始于岩浆-热液过渡阶段。祝新友等(2013,2015,2016)发现湖南瑶岗仙钨矿床的云英岩析离体赋存于瑶岗仙岩体主体的灰色斑状碱长花岗岩Ⅰ中,云英岩析离体大部分有分带,外带为云英岩化碱长花岗岩,富含辉钼矿,最高达5%以上,碱长花岗岩中钠长石An平均为0.64; 内核部分为云英岩,主要矿物组合为白云母、石英、萤石、黄玉、黑钨矿等,整体呈现出浆液过渡态熔体作用的特征,认为是富Li-F碱长花岗岩浆液态分异作用的产物。祝新友等(2015)发现湖南杮竹园矽卡岩型锡钨多金属矿床中的网脉状碱交代脉主体由钾长石、萤石、少量石英、磁铁矿、黑钨矿、白钨矿构成,其中早阶段碱交代脉中央发育花岗岩,边部为钾长石-萤石-黑钨矿,脉体两侧发育石榴子石透辉石矽卡岩化,对应矽卡岩阶段; 晚阶段碱交代脉主要成分为钾长石、萤石,脉体及两侧出现大量阳起石、绿帘石、磁铁矿、白钨矿及辉钼矿、辉铋矿、自然铋等,对应退变质氧化物阶段; 空间上,碱交代脉分布于矽卡岩和矽卡岩化大理岩中,不进入岩体,自花岗岩体→岩脉→碱交代脉→矽卡岩,CaO、TiO2、成矿元素W、Bi、Mo、Cu、Pb、Zn以及Sr、Ba等元素含量增高,显示出成矿元素向热液中富集,且岩浆和矽卡岩受到碳酸盐岩围岩的影响; 认为碱交代脉的组构显示出其形成于富含成矿物质和挥发分流体的岩浆,其中广泛发育熔融包裹体和熔体-流体包裹体,显示其浆液过渡态熔体的成因性质。祝新友等(2017)研究了湖南白云仙钨矿田头天门钨矿床粗粒斑状黑云母花岗岩→细粒碱长花岗岩岩株→岩墙→云英岩化花岗岩→云英岩→石英脉的岩浆-热液演化-成矿全过程,认为成矿流体表现出“上液下浆”的分带特点。钾长石、绢(白)云母、黄玉、萤石等是钨锡多金属矿化蚀变的常见产物,表明南岭钨锡多金属成矿过程中,岩浆发生了富钾富挥发分的浆液过渡态熔体的液态不混溶。
-
图2 湘南地区界牌岭矿床富钾富挥发分熔浆存在的证据
-
Fig.2 Evidences for the existence of K-and volatile-rich melt of the Jiepailing deposit in the South Hunan area
-
(a)—云英岩化花岗斑岩中锂白云母萤石囊及团块;(b)—锂白云母萤石囊内部具有分带性,边部云母含量高而颜色深,内部萤石含量高而颜色浅;(c)—云英岩囊及其围岩花岗岩的蚀变晕圈(瑶岗仙,据祝新友等,2013);(d)—锂白云母萤石囊内萤石呈浑圆豆状,细粒锂白云母分布于浑圆状萤石粒间,类似“海绵陨铁”结构; 锂白云母萤石囊内萤石中包裹体;(e)—气液包裹体;(f)—含方解石子矿物气液包裹体和气液包裹体;(g)—富气相气液包裹体;(h)—含液相CO2三相包裹体;(i)—含子矿物和液相CO2多相包裹体;(j~l)—熔体-流体包裹体;(m)—可能的熔融包裹体;(d~m)为单偏光照片
-
(a) —lithian muscovite-fluorite pockets and blocks in the greisenized granite porphyry; (b) —the zoning feature of the muscovite-fluorite pocket, characterized by the mica-rich dark-color rim and mica-poor light-color core; (c) —the greisen pocket and its surrounding alteration halo in contact with granite (Yaogangxian deposit, from Zhu Xinyou et al., 2013) ; (d) —lithian muscovite-fluorite pocket composed of lenticular fluorite and interstitial fine-grained lithian muscovite, similar to a sideronitic texture; inclusion hosted in fluorite of the pocket; (e) —vapor-liquid fluid inclusions; (f) —vapor-liquid fluid inclusions and calcite-bearing vapor-liquid fluid inclusions; (g) —vapor-rich vapor-liquid fluid inclusions; (h) —CO2-bearing three-phase fluid inclusions; (i) —CO2-and daughter mineral-bearing fluid inclusions; (j~l) —melt-fluid inclusions; (m) —melt inclusions; (d~m) by plane-polarized light
-
2.2 富钠富挥发分浆液过渡态熔体
-
高度分异的花岗质岩浆发生液态不混溶形成富钠富挥发分浆液过渡态熔体的证据,可见于芙蓉矿田。芙蓉矿田的补给相高度分异的碱长花岗岩与锡矿具有密切的成因联系,可见电气石石英囊(图4a),肉眼呈黑色,多呈卵圆型,大小不一,一般直径数厘米,电气石石英囊与碱长花岗岩的界线清晰、截然,电气石石英囊边部的花岗岩有厘米级宽度的钾长石蚀变晕(图4a)。显微镜下,电气石石英囊中电气石呈长柱状,集合体呈花状、放射状,石英呈粒状分布于电气石矿物之间(图4b); 有时见电气石、石英与钠长石共生(图4c),形成钠长石石英电气石囊。
-
注:Al(iv)—四次配位Al; Al(vi)—六次配位Al; *表示根据11O和OH=2-(F+Cl)计算。
-
电气石石英囊中的石英中包裹体发育,类型复杂。原生包裹体有气液包裹体(图4d)、含子矿物气液包裹体(图4e,f)、富气相包裹体(图4g),还有大量熔体-流体包裹体(图4h~j)。由图4可以看出,熔体-流体包裹体中子矿物体积占包裹体腔体积的比例高达50%以上,鉴于水溶液中K2O、SiO2、Al2O3组分及Sn、Cu等成矿物质的溶解度不可能超过50%,因此包裹的盐水热液不可能沉淀出如此大量的子矿物,表明其是包裹的富含挥发分和水的熔浆结晶的产物。气液包裹体和熔体-流体包裹体中的子矿物特征类似。
-
图3 湘南地区芙蓉矿田电气石和云母分类图解
-
Fig.3 Classification diagrams of tourmaline and muscovite of the Furong ore field in the South Hunan area
-
(a)—云母Li-(Al3++Ti)-(Fe2++Mn+Mg)图解(据Rieder et al.,1996);(b)—电气石Ca-X□-(Na+K)三元图解(据Henry et al.,2011);(c)—电气石Fe/(Fe+Mg)vs. X□/(X□+Na+K)图解(据Henry et al.,1985)
-
(a) —the Li- (Al3++Ti) - (Fe2++Mn+Mg) diagram for muscovite (after Rieder et al., 1996) ; (b) —the Ca-X□- (Na+K) diagram for tourmaline (after Henry et al., 2011) ; (c) —the Fe/ (Fe+Mg) vs. X□/ (X□+Na+K) diagram for tourmaline (after Henry et al., 1985)
-
图4 湘南地区芙蓉矿田富钠富挥发分熔浆存在的证据
-
Fig.4 Evidences for the existence of Na-and volatile-rich melt of the Furong ore field in the South Hunan area
-
(a)—花岗岩中钠长石电气石石英囊及其蚀变边;(b)—钠长电气石石英囊镜下特征(单偏光);(c)—囊中钠长石和电气石共生(单偏光);(d)—囊中石英的原生气液包裹体;(e)—囊中石英的原生含透明子矿物气液包裹体;(f)—囊中石英的原生含不透明子矿物气液包裹体;(g)—囊中石英的原生富气相包裹体;(h~j)—囊中石英的原生熔体-流体包裹体
-
(a) —the albite-tourmaline-quartz pockets and its alteration rims in the granite; (b) —features of the albite-tourmaline-quartz pocket under microscope (plane-polarized light) ; (c) —coexsisting albite and tourmaline in the the albite-tourmaline-quartz pocket (plane-polarized light) ; (d) —a primary vapor-liquid inclusion hosted in quartz in the pocket; (e) —a primary calcite-bearing vapor-liquid inclusion hosted in quartz in the pocket; (f) —an unknown dark-color daughter mineral-bearing vapor-liquid inclusion hosted in quartz in the pocket; (g) —a primary vapor inclusion hosted in quartz in the pocket; (h~j) —primary melt-fluid inclusions hosted in quartz of the pocket
-
电气石石英囊中电气石矿物的电子探针分析结果见表3。除B、Li无法用电子探针测出外,电气石的SiO2为35.83%~36.20%,Al2O3为31.30%~32.12%,FeO为10.44%~13.60%,MgO为1.82%~4.06%,Na2O为1.65%~1.80%,另外还有少量CaO、K2O、MnO、TiO2、F、Cl等。电气石为碱基电气石(图3b),成分上属于黑电气石(图3c)。
-
注:表中X、Y、Z、T、V、W表示电气石分子式中不同位置上的占位情况; X□表示X位置空缺。
-
根据上述电气石石英囊宏观、微观及包裹体证据,本文认为芙蓉矿田的高分异花岗质岩浆与富钠富挥发分的熔浆发生过液态不混溶,前者形成碱长花岗岩,后者形成碱长花岗岩中的含钠长石电气石石英囊。
-
与钨锡多金属成矿有关的钠长石化蚀变还见于湘南香花岭矿床(王正军等,2018)、湖南上堡钨锡矿床(雷泽恒等,2009)、江西西华山钨矿床(赫英,1987)、广西栗木钨锡矿床(覃宗光等,2011; 邓贵安等,2012)等,它们可能与岩浆液态不混溶形成的富钠富挥发分浆液过渡态熔体有关。香花岭矿田南北两端的癞子岭和尖峰岭岩体均发育明显的垂向岩性分带(朱金初等,2011; 文春华等,2017),自下而上依次为:①碱长花岗岩带,岩株的主体相,厚度大于300 m,呈浅肉红色至灰白色,主要由钾长石(30%~40%)、钠长石(15%~25%)、石英(30%~40%)和云母(5%~10%,包括富铁黑云母、铁锂云母、白云母等)以及副矿物萤石、锆石、独居石、硫化物等组成; 从底部到顶部岩石结构显示由中粗粒至中细粒的垂向变化,并且黑云母含量逐渐减少,钠长石含量逐渐增多; ②钠长石花岗岩带,厚度约30~100 m,呈灰白色至浅灰白色、中-细粒不等粒花岗结构或似斑状结构,主要由钠长石(35%~45%)、钾长石(15%~25%)、石英(25%~35%)、云母(2%~10%,多为锂云母、白云母)以及副矿物黄玉、锆石、硫化物等组成; ③云英岩带,厚度约30~70 m,呈条带状或块状构造,主要由粒度不等的石英(30%~65%)、云母(15%~35%,主要为铁锂云母)和黄玉(15%~30%)组成; ④伟晶岩带,厚度5~15 m,位于岩体顶部,呈灰白色、条带状或块状构造、粗粒不等粒结构,主要由石英、钾长石、黄玉和少量铁锂云母组成; 此外局部可见伟晶岩细脉侵入到云英岩和钠长石花岗岩中。Nb-Ta矿床与钠长石花岗岩和香花岭岩关系密切,而锡多金属矿床与碱长花岗岩与花岗斑岩关系密切。
-
界牌岭成矿岩体具有岩浆和热液双重特征,花岗斑岩中有晶洞,自洞壁向内依次沉淀锂白云母、钾长石、萤石(图5a),花岗斑岩中发育浸染状、斑团状锂白云母和萤石(图5b)。香花岭矿田内黄玉石英斑岩也具有岩浆和热液双重特征,斑岩中发育晶洞,自洞壁向内依次沉淀石英、磁黄铁矿等硫化物(图5c、d)。
-
3 不同浆液过渡态熔体的成因联系
-
王联魁等(1987)使用南岭燕山期黑云母花岗岩加入10% NaF和10% LiF作为初始物,在0.1 GPa和840℃的实验条件下,产生了液态不混溶,均一的富氟锂花岗岩熔体分离成两种以上熔体:①高度贫氟液相:基质玻璃,贫氟硅酸盐,代表正常花岗岩或钠长花岗岩; ②含氟中等的液相:暗色球体,富氟铁硅酸盐,代表富挥发分的似伟晶岩或香花岭岩; ③高度富氟的液相:浅色球体,以氟盐类为主,代表矿化囊包体(矿体)。朱永峰等(1995)实验研究表明:1250℃(105 Pa)条件下呈均一状态的花岗岩-KBF4-Na2MoO4体系,在1000℃条件下发生液态不混溶形成三种熔体:相对偏酸性的液滴、相对偏基性的熔体和成矿熔体,成矿熔体中富含CaO、MgO和MoO2组分,结构中存在Ca-F、Ca-O-Mo、H-O-H以及X-OH(X-阳离子)基团,说明H2O和F富集在成矿熔体中,表明长英质岩浆中的液态不混溶可直接导致成矿熔体的形成。卢焕章(1996)在华南花岗岩,特别是含稀有元素的花岗岩中发现了代表从岩浆衍生出岩浆热液的不混溶过程的岩浆-流体包裹体,按其成分可分为硅酸盐熔融体+液体+气体、熔融体+子矿物+易溶盐+气体、2种成分不同的硅酸盐熔融体+气泡、硅酸盐熔融体+金属熔体+气泡4种,它比一般的岩浆包裹体更富含挥发分和易溶盐,其均一温度的最佳值为750℃。王联魁等(1997)从世界范围研究锂氟花岗质岩石发现有三端元组分,即富Na的翁岗岩、富K的香花岭岩和富Si的黄英岩三端元,认为三端元是不混溶为主的分离成因,与传统的分离结晶作用不同。Sowerby et al.(2002)认为当岩浆热液体系中含有较多的F、B、Na等易溶于熔体的组分时,临界曲线向更低的温压移动,可在低于1 GPa压力下形成超临界流体(浆液过渡态熔体)。李建康等(2008)赞同除了结晶分异模式外,富氟花岗岩浆液态不混溶作用也是伟晶岩成岩成矿的重要机制,并对甲基卡锂矿床的富氟花岗岩浆液态不混溶作用进行了初步研究。王联魁等(2000,2002)建立了Li-F花岗岩液态分离的微量元素和同位素地球化学标志。李建康(2014)利用热液金刚石压腔,开展了岩浆热液出溶过程和花岗岩浆液态不混溶的原位观测实验,结果表明岩浆热液的出溶作用发生在H2O饱和的条件下,是岩浆的“第二次”沸腾作用,对花岗岩型稀有金属矿床的形成具有重要意义; 花岗岩浆液态不混溶产生的富H2O熔体易于结晶出粗大晶体,暗示岩浆液态不混溶作用可能是一些花岗伟晶岩形成的主要机制; 两类成矿流体形成机制实验条件的差异表明,Li是花岗岩浆发生不混溶作用的重要因素。
-
图5 湘南地区界牌岭矿床和香花岭矿田成矿岩体岩浆和热液双重特征显微照片
-
Fig.5 Photomicrographs showing both magmatic and hydrothermal features of the Xianghualing ore field and Jiepailing deposit in the South Hunan area
-
(a)—花岗斑岩中晶洞,自洞壁向内依次沉淀锂白云母、钾长石、萤石(界牌岭样品,JPL-2);(b)—花岗斑岩中发育浸染状、斑团状锂白云母化和萤石化(界牌岭,132-6-181-6-2);(c)—黄玉石英斑岩,斑晶为石英,基质为石英和黄玉(塘官铺,XHL-6);(d)—石英斑岩中石英磁黄铁矿晶洞(塘官铺,XHL-6); 正交偏光
-
(a) —a geode in granite porphyry, with lithian muscovite, K-feldspar and fluorite precipitated in order from the wall to the core (Jiepailing deposit, JPL-2) ; (b) —disseminated and lenticular muscovite and fluorite blocks (Jiepailing deposit, 132-6-181-6-2) ; (c) —the topaz quartz porphyry, with the phenocryst of quartz and the matrix of quartz and topaz (Tangguanpu deposit, XHL-6) ; (d) —quartz-pyrrhotite geode developed in quartz porphyry (Tangguanpu deposit, XHL-6) ; cross-polarized light
-
富钾富挥发分浆液过渡态熔体和富钠富挥发分浆液过渡态熔体具有密切的时空联系。湖南香花岭矿田癞子岭云英岩之下有癞子岭钠长花岗岩(王正军等,2018),二者形成时代均为155 Ma左右。湖南上堡钨锡矿床既有钠长石化又有云英岩化(雷泽恒等,2009),二者形成时代为221.5~213.4 Ma(马丽艳等,2016)。江西西华山钨矿床存在两种不同性质的碱交代作用,一种以钠长石化和白云母化为主,封闭式地呈面型存在于花岗岩体中,一种以钾微斜长石化和云英岩化为主,开放式地呈线型存在于矿脉两旁(赫英,1987)。广西栗木矿田鱼菜花岗岩型锡钨矿床在含矿岩体钠长石化阶段形成锡矿化,云英岩化是锡、钨矿化的高峰阶段(覃宗光等,2011),成岩成矿年龄为218.3~214.0 Ma(康志强等,2012); 三个黄牛花岗岩型钨锡矿有关的交代作用有钠长石化和云英岩化(邓贵安等,2012)。这些矿床的钠化和钾化虽然可能分属不同阶段,但属同一岩浆活动期产物。
-
富钾富挥发分浆液过渡态熔体和富钠富挥发分浆液过渡态熔体具有密切的成因联系。表4为芙蓉矿田的骑田岭主相二长花岗岩、晚期相碱长花岗岩、钠化矿化花岗岩及钾化矿化花岗岩的化学分析结果,从该表可见骑田岭岩体主相二长花岗岩、晚期相碱长花岗岩的钾、钠含量稳定且接近,K2O分别为4.11%~5.44%、3.92%~5.29%,Na2O分别为2.92%~3.80%、3.01%~3.94%,主相二长花岗岩的钾和钠含量变化没有规律,而晚期相碱长花岗岩的钾和钠含量具有反消长规律(图6)。当花岗岩发生钠长石化后,Na2O含量上升,最高可达10.50%,但K2O含量降低,最低为0.01%,K2O与Na2O的含量变化呈反消长关系(图6)。钾化矿化花岗岩Na2O含量较低,最低可达0.09%; K2O含量为2.40%~4.75%,K2O与Na2O的含量变化也呈反消长关系(图6)。湖南香花岭矿田癞子岭云英岩与其下的癞子岭钠长花岗岩中的锆石成分有连续过渡的关系,体现了相近的演化程度,成分和结构均具有岩浆成因特征,可能是钠长花岗岩高度分异演化之后的特殊产物(王正军等,2018)。
-
上述特征表明,富钠富挥发分浆液过渡态熔体和富钾富挥发分浆液过渡态熔体是分异程度高的花岗质岩浆同时发生液态不混溶的端元,它们具有密切的时空和成因联系,它们后期演化的表现形式可能为钠长石化及钾长石化和/或云英岩化。据此,推测花岗质岩浆发生了液态不混溶:分异程度高的花岗质岩浆发生了液态不混溶,形成富钾富挥发分的岩浆、富钠富挥发分的岩浆、以及含水和挥发分相对少的花岗质岩浆; 花岗质岩浆含水含挥发分相对较少,先结晶形成花岗斑岩; 富挥发分的熔浆在较低温度下后结晶,富钾富挥发分熔浆结晶形成云英岩、云母萤石岩,富钠富挥发分熔浆结晶形成钠长石电气石石英岩,释放出的流体使得已经结晶的花岗斑岩发生云英岩化等蚀变,形成蚀变边(图7)。
-
4 成矿意义
-
钾化是湘南地区钨锡多金属矿的主要蚀变类型(李厚民等,2021)。芙蓉矿田蚀变岩体型锡矿K2O含量4.75%,Sn含量0.51%(表4中BT6-4); 岩体中绿泥石型矿石Sn含量1.08%,K2O含量2.4%(表4); 麻子坪矿床矿石中可见白云母与电气石、锡石、石英共生; 铁婆坑矿床矿石中可见白云母与锡石、方铅矿、石英密切共生,矿石中还可见钾长石脉穿插绿泥石; 清水江矿床矿石中可见钾长石与锡石、绿泥石共生; 屋场坪矿床矿石中可见白云母与闪锌矿、方铅矿、石英、绿泥石共生。新田岭矿床透辉石石榴子石矽卡岩中可见白云母与黄铁矿、闪锌矿、萤石共生。香花岭矿田新风矿床大理岩中可见白云母与尖晶石、萤石、磁黄铁矿、白钨矿共生,塘官铺矿床矿石中可见白云母与锡石、磁黄铁矿共生。东坡矿田双园冲矿床云英岩中可见白云母与白钨矿、黄铁矿共生,矿床黑云母千枚岩中可见石榴子石及由磁黄铁矿、角闪石、钾长石组成的条带; 野鸡尾矿床大理岩中可见白云母与毒砂、闪锌矿、磁黄铁矿共生。红旗岭矿床矿石中可见白云母与锡石、绿泥石、石英共生。上述以钾长石和白(绢)云母为代表的钾化蚀变可能与富钾富挥发分的浆液过渡态熔体有关。
-
富钾富挥发分浆液过渡态熔体和富钠富挥发分浆液过渡态熔体二者富含成矿物质,除自身冷凝结晶可形成矿体、矿化体(如形成云英岩型矿体、矿化体和香花岭矿田癞子岭岩体顶部形成了与钠长石花岗岩有关的花岗岩型Nb-Ta-(W-Sn)矿床)外,其冷凝结晶放出的成矿热液也可交代围岩(花岗岩和白云质灰岩等)成矿。从表4可见,芙蓉矿田QGL-7 钠长石化矿化花岗岩含Sn高达2%,QGL-18钠长石化矿化花岗岩含Sn为0.35%,均达工业品位; 选矿样蚀变岩体型锡矿含Na2O为4.98%,含Sn为0.44%。
-
图6 湘南地区芙蓉矿田主相二长花岗岩、晚期相碱长花岗岩、钠化矿化花岗岩与钾化矿化花岗岩的K2O-Na2O关系图
-
Fig.6 The K2O-Na2O diagram for the main-phase monzonite granite, late-stage alkali-feldspar granite, mineralized albite granite and mineralized K-feldspar granite of the Furong ore field in the South Hunan area
-
图7 花岗质岩浆发生液态不混溶、冷凝结晶及矿化蚀变示意图
-
Fig.7 A schematic diagram showing the processes of liquid immiscibility, cooling crystallization and mineralized alteration
-
5 结论
-
(1)湘南地区与钨锡多金属成矿有关的浆液过渡态熔体有两种类型,一种富钠富挥发分,以芙蓉矿田矿化蚀变碱长花岗岩中的钠长石电气石石英囊为代表; 另一种富钾富挥发分,以界牌岭矿床矿化蚀变花岗斑岩中的锂白云母萤石囊(团块)为代表。除花岗伟晶岩外,高分异花岗岩及相关的钨锡多金属矿床是研究浆液过渡态熔体的最佳场所之一。
-
(2)两种浆液过渡态熔体可形成于同一矿床,为同期岩浆活动产物,成分上K2O与Na2O负相关,表明它们具有密切的时空和成因联系,熔体-流体包裹体发育,为高度分异的花岗质岩浆液态不混溶产物。
-
(3)两种浆液过渡态熔体富含成矿物质,与成矿关系密切,湘南地区许多钨锡多金属矿床的云英岩型、构造蚀变带型、钾化花岗岩型钨锡多金属矿化可能与富钾富挥发分的浆液过渡态熔体有关,钠化花岗岩型铌钽矿化与富钠富挥发分的浆液过渡态熔体有关。
-
参考文献
-
Ballouard C, Marc Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44: 231~234.
-
Chang Hailiang, Wang Xiongwu, Wang Xiaodi, Liu Jiaqi, Huang Huilan. 2007. The composition of melt inclusions in beryl from wolframite-quartz veins in Xihuashan, Jiangxi Province. Acta Petrologica et Mineralogica, 26(5): 259~268 (in Chinese with English abstract).
-
Chen Pengyuan, Wu Peng, Han Runsheng, Zhou Mengxiang, Li Maoping, Zhao Dong, Jiang Longyan. 2020. Model of rock and ore controlling structures in the Baoshan Cu-Pb-Zn polymetallic deposit, southern Hunan Province, China. Journal of Geomechanics, 3: 405~418 (in Chinese with English abstract).
-
Chen S, Yu J, Bi M. 2021. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China: Implications for greisen-type tin mineralization. Lithos, 382-383: 105952.
-
Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87: 1766~1794.
-
Deng Guian, Wu Jiwei, Wang Shusheng, Lin Desong. 2012. Geological characteristics of Sangehuangniu granite-type tungsten-tin deposit in the Limu ore field. Mineral Resources and Geology, 26(1): 1~6 (in Chinese with English abstract).
-
Du Shaohua, Huang Yunhui. 1984. The study on Xianghualing rocks. Science in China (series B), 11: 1039~1047.
-
Förster H J, Tischendorf G, Trumbull R B, Gottesmann B. 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40: 1613~1645.
-
Han Runsheng, Zhao Dong, Wu Peng, Wang Lei, Qiu Wenlong, Long Yunqing, Liu Fengping, Deng Anping, Zong Zhihong. 2020. Mechanisms of rock-and ore-controlling structures and the implications for deep prospecting in the Huangshaping Cu-Sn polymetallic deposit, southern Hunan Province, China. Earth Science Frontiers, 4: 199~218 (in Chinese with English abstract).
-
He Ying. 1987. The relationship of alkaline metasomatism to tungsten metallization in Xihuashan, Jiangxi Province. Mineral Deposits, 6(2): 29~38 (in Chinese with English abstract).
-
Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70: 1~15.
-
Henry D J, Novák M, Hawthorne F C, Ertl A, Dutrow B L, Uher P, Pezzotta F. 2011. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96: 895~913.
-
Huang Gefei, Hou Maosong, Liu Yangsheng, Zi Baizhong. 2005. Discussion on the relationships between wallrock alterations and mineralizations in Bailashui tin mine in Qitianling, Hunan Province. Geology and Mineral Resources of South China, (3): 38~43 (in Chinese with English abstract).
-
Kang Weiqing, Yu Shaohua, Xu Yiming. 2005. An initial research on material components and mineralization epoch of the Bailashui tin deposit in the Furong orefield. Mineral Resources and Geology, 19(5): 475~481 (in Chinese with English abstract).
-
Kang Zhiqiang, Feng Zuomei, Yang Feng, Liao Jiafei, Pan Huibin. 2012. SHRIMP zircon U -Pb age of the Limu granite in eastern Guilin, Guangxi. Geological Bulletin of China, 31(8): 1306~1312 (in Chinese with English abstract).
-
Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Walle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45: 579~582.
-
Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang R C, Charles N, Lespinasse M Y. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos, 264: 108~124.
-
Lehmann B. 1990. Metallogeny of Tin. Lecture Notes in Earth Sciences. Berlin: Springer.
-
Lei Zeheng, Qiao Yusheng, Xu Yiming. 2009. W-Sn mineralization characteristics and exploration potential of the Shangbao mineral district, Hunan Province. Geology and Exploration, 45(2): 44~52 (in Chinese with English abstract).
-
Li Houmin, Li Lixing, Yu Jinjie, Ma Shouxian, Li Xiaosai, Shen Hongfei. 2021. Mineral assemblages, mineralized alteration and ore-forming fluid compostions of the W-Sn polymetallic deposits of South Hunan. Acta Geologica Sinica, 95(10): 3127~3145 (in Chinese with English abstract).
-
Li J, Huang X L, He P L, Li W X, Yu Y, Chen L L. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.
-
Li Jiankang, Zhang Dehui, Wang Denghong, Zhang Wenhuai. 2008. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny. Geological Review, 54(2): 175~183 (in Chinese with English abstract).
-
Li Jiankang. 2014. In situ observation of separation mechanism of ore-forming fluid from granitic magma in granite-related deposit. Journal of Jilin University: Earth Science Edition, 44(2): 518~526 (in Chinese with English abstract).
-
Li Xiaomin, Hu Ruizhong, Bi Xianwu, Peng Jiantang. 2010. Geochemistry and tin metallogenic potential for Qitianling granite mass in southern Hunan. Journal of Jilin University (Earth Science Edition), 40(1): 80~92+108 (in Chinese with English abstract).
-
Lu Huanzhang. 1996. Magmatic, fluid-magmatic and fluid-inclusions studies on granites in South China. Journal of Guilin Institute of Technology, 16(1): 1~13 (in Chinese with English abstract).
-
Lu Youyue, Fu Jianming, Cheng Shunbo, Ma Liyan, Zhang Kun. 2013. SHRIMP zircon U-Pb geochronology of the ore -bearing granite porphyry in the Jiepailing tin-polymetallic deposit, southern Hunan Province. Geology and Mineral Resources of South China, 29(3): 199~206 (in Chinese with English abstract).
-
Ma Liyan, Liu Shusheng, Fu Jianming, Cheng Shunbo, Lu Youyue, Mei Yuping. 2016. Petrogenesis of the Tashan-Yangmingshan granitic batholiths: Constraint from zircon U-Pb age, geochemistry and Sr-Nd isotopes. Acta Geologica Sinica, 90(2): 284~303 (in Chinese with English abstract).
-
Ma Shouxian, Li Houmin, Sun Yan, Chen Lei, Pang Xuyong, Zhang Yingli, Zhang Peng. 2021. Controls on crystallization of cassiterite from the southern Hunan: Evidence from cathodoluminescence, trace element and geochronology. Geological Bulletin of China, 40(10): 1737~1756 (in Chinese with English abstract).
-
Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, south China: Metallogenic ages and corresponding geodynamic process. Acta Petrologica Sinica, 23(10): 2329~2338 (in Chinese with English abstract).
-
Monecke T, Dulski P, Kempe U. 2007. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany. Geochimica et Cosmochimica Acta, 71: 335~353.
-
Qin Zongguang, Deng Guian, Dong Yecai, Wu Kaihua, Lin Desong. 2011. Yucai granite-type tin-tungsten deposit in Limu orefield. Mineral Resources and Geology, 25(1): 1~8 (in Chinese with English abstract).
-
Tian Xufeng, Zhu Enyi, Wen Yizhuo, Wang Lei, Han Runsheng, Zhao Dong, Jiang Zonghe, He Hao, Huang Yahu, Li Yanghai. 2020. Structural ore-controlling regulations of Changchengling Sb-Pb-Zn polymetallic deposit in southern Hunan Province. Mineral Exploration, 9: 1860~1872 (in Chinese with English abstract).
-
Rieder M, Hybler J, Smrčok L, Weiss Z. 1996. Refinement of the crystal structure of zinnwaldite 2 M1. European Journal of Mineralogy, 8: 1241~1248.
-
Sowerby J R, Keppler H. 2002. The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system. Contributions to Mineralogy and Petrology, 143: 32~37.
-
Thomas R, Webster J D, Heinrich W. 2000. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139(4): 394~401.
-
Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210: 7~31.
-
Wang Denghong, Chen Yuchuan, Li Huaqin, Chen Zhenghong, Yu Jinjie, Lu Yuanfa, Li Jiyu. 2003. Geological and geochemical features of the Furong tin deposit in Hunan and their significance for mineral prospecting. Geological Bulletin of China, 22(1): 50~56 (in Chinese with English abstract).
-
Wang Liankui, Lu Jialan, Zhang Shaoli, Yang Wenjin, Xu Lixin. 1987. Experimental study on liquid separation of Nanling granite. Science in China (Series B), (1): 79~86 (in Chinese with English abstract).
-
Wang Liankui, Wang Huifen, Huang Zhilong. 2000. Geochemical indicators of trace element in Li-F granite liquid segre-gation. Acta Petrologica Sinica, 16(2): 145~152 (in Chinese with English abstract).
-
Wang Liankui, Wang Huifen, Huang Zhilong. 1997. Discovery on the three end-members' components of Li-F granite rock and its liquid-state separation origin. Geology and Prospecting, 33(3): 11~20 (in Chinese with English abstract).
-
Wang Liankui, Wang Huifen, Huang Zhilong. 2002. Geochemical indicators of isotopes in Li-F granit liquid segraegation. Geology and Prospecting, 38(5): 38~43 (in Chinese with English abstract).
-
Wang Yanli, Peng Qiming, Zhu Xinyou, Cheng Xiyin, Fu Qibin, Yang Yi. 2013. Liquid immiscibility of granitic magma and its relationship with the mineralization in the Limu Sn-W-Nb-Ta ore deposit, Guangxi Province. Geology and Exploration, 49(6): 1046~1055 (in Chinese with English abstract).
-
Wang Yanli, Peng Qiming, Zhu Xinyou, Cheng Xiyin, Li Shunting. 2014. Geochemical and chronological characteristics of the granite porphyry in the Jiepailing tin-polymetallic deposit, Hunan Province and mineralization belt division. Geology and Exploration, 50(3): 475~485 (in Chinese with English abstract).
-
Wang Zhengjun, Xie Lei, Wang Rucheng, Zhu Jinchu, Che Xudong, Zhao Xu. 2018. The petrogenesis and mineralization of the Laiziling greisen, Xianghualing District, Hunan Province, South China. Geological Journal of China Universities, 24(4): 467~480 (in Chinese with English abstract).
-
Wen Chunhua, Shao Yongjun, Huang Gefei, Luo Xiaoya, Li Shengmiao. 2007. Geological features and mineralization of Jianfengling rare metal granite in Hunan Province. Mineral Deposits, 36(4): 879~892 (in Chinese with English abstract).
-
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60: 1201~1219.
-
Xu Yiming Hou Maosong, Liao Xingjue, Ao Zongwei. 2000. Deposit types and prospect for prospecting of Sn deposits in Furong ore field, Chenzhou. Hunan Geology, 19(2): 95~100 (in Chinese with English abstract).
-
Yin L, Pollard P J, Hu S X, Taylor R G. 1995. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Economic Geology, 90: 577~585.
-
Yin R, Han Li, Huang X L, Li J, Li W X, Chen L L. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104: 949~965.
-
Yuan S, Mao J, Cook N J, Wang X, Liu X, Yuan Y. 2015. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geology Reviews, 65: 283~293.
-
Yuan Shunda, Liu Xiaofei, Wang Xudong, Wu Shenghua, Yuan Yabin, Li Xuekai, Wang Tiezhu. 2012. Geological characteristics and 40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787~3797 (in Chinese with English abstract).
-
Zhang R Q, Lu J J, Wang R C, Yang P, Zhu J C, Yao Y, Gao J F, Li C, Lei Z H, Zhang W L, Guo W M. 2015. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China. Ore Geology Reviews, 65: 1021~1042.
-
Zhao Z H, Masuda A, Shabani M B. 1993. REE tetrad effects in rare-metal granites. Geochimica, 3: 206~219.
-
Zhu Jinchu, Wang Rucheng, Lu Jianjun, Zhang Hui, Zhang Wenlan, Xie Lei, Zhang Rongqing. 2011. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, southern Hunan Province. Geological Journal of China Universities. 3: 381~392 (in Chinese with English abstract).
-
Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Shunting. 2012. Characteristics of alkali feldspar granite in tungsten (tin) deposits of Nanling region. Geology in China, 39(2): 359~381 (in Chinese with English abstract).
-
Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Shunting. 2013. Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit. Mineral Deposits, 32(3): 533~544 (in Chinese with English abstract).
-
Zhu Xinyou, Wang Jingbin, Wang Yanli, Chen Xiyin. 2015. The role of magma-hydrothermal transition fluid in the skarn-type tungsten mineralization process: A case study of Shizhuyuan tungsten and tin polymetallic ore deposit. Acta Petrologica Sinica, 31(3): 891~905 (in Chinese with English abstract).
-
Zhu Xinyou, Wang Yanli, Cheng Xiyin, Tian Ye. 2016. Geological and geochemical characteristics of xenoliths in Yaogangxian granite, Hunan Province. Acta Petrologica et Mineralogica, 35(1): 16~32 (in Chinese with English abstract).
-
Zhu Xinyou, Fu Mi, Cheng Xiyin, Wang Yanli, Tian Ye. 2017. Metallogenic model of “outside the cupola style” quartz vein-type tungsten deposit: A case study of Toutianmen deposit, Baiyunxian orefield, Hunan Province. Mineral Deposits, 36(1): 107~125 (in Chinese with English abstract).
-
Zhu Yongfeng, Zeng Yishan, Ai Yongfu. 1995. The experimental study about the liquid immiscibility and ore-forming process in felsic magma. Acta Petrologica Sinica, 11(1): 1~8 (in Chinese with English abstract).
-
Zoheir B, Lehmann B, Emam A, Radwan A, Zhang R Q, Bain W M, Steele-MacInnis M, Nolte N. 2020. Extreme fractionation and magmatic-hydrothermal transition in the formation of the Abu Dabbab rare-metal granite, Eastern Desert, Egypt. Lithos, 352-353: 105329.
-
常海亮, 汪雄武, 王晓地, 刘家齐, 黄惠兰. 2007. 西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分. 岩石矿物学杂志, 26(5): 259~268.
-
谌鹏远, 吴鹏, 韩润生, 周孟祥, 李茂平, 赵冻, 姜龙燕. 2020. 湖南宝山铜铅锌多金属矿床构造控岩控矿模式. 地质力学学报, 3: 405~418.
-
邓贵安, 吴继炜, 汪恕生, 林德松. 2012. 栗木矿田三个黄牛花岗岩型钨锡矿床地质特征. 矿产与地质, 26(1): 1~6.
-
杜绍华, 黄蕴慧. 1984. 香花岭岩的研究. 中国科学(B辑), (11): 1039~1047.
-
韩润生, 赵冻, 吴鹏, 王雷, 邱文龙, 隆运清, 刘凤平, 邓安平, 宗志宏. 2020. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示. 地学前缘, 4: 199~218.
-
赫英. 1987. 碱交代作用及其与钨矿化的关系——主要以西华山钨矿为例. 矿床地质, 6(2): 29~38.
-
黄革非, 侯茂松, 刘阳生, 资柏忠. 2005. 湖南骑田岭白腊水锡矿围岩蚀变与矿化关系浅析. 华南地质与矿产, (3): 38~43.
-
康卫清, 余少华, 许以明. 2005. 骑田岭芙蓉矿田白腊水矿区锡矿物质组分及成矿期的初步研究. 矿产与地质, 19(5): 475~481.
-
康志强, 冯佐海, 杨锋, 廖家飞, 潘会彬. 2012. 广西桂林地区东部栗木花岗岩体SHRIMP锆石U-Pb年龄. 地质通报, 31(8): 1306~1312.
-
雷泽恒, 乔玉生, 许以明. 2009. 湖南上堡矿区钨锡矿成矿条件及找矿前景分析. 地质与勘探, 45(2): 44~52.
-
李厚民, 李立兴, 余金杰, 马收先, 李小赛, 沈宏飞. 2021. 湘南地区钨锡多金属矿床矿石矿物组合、矿化蚀变特征及成矿流体组成. 地质学报, 95(10): 3127~3145.
-
李建康, 张德会, 王登红, 张文淮. 2008. 富氟花岗岩浆液态不混溶作用及其成岩成矿效应. 地质论评, 54(2): 175~183.
-
李建康. 2014. 花岗岩类矿床成矿流体形成过程的原位观测实验. 吉林大学学报: 地球科学版, 44(2): 518~526.
-
李晓敏, 胡瑞忠, 毕献武, 彭建堂. 2010. 湘南骑田岭花岗岩岩体地球化学特征及锡成矿潜力. 吉林大学学报(地球科学版), 40(1): 80~92, 108.
-
卢焕章. 1996. 华南花岗岩的岩浆与岩浆-流体包裹体及其意义. 桂林工学院学报, 16(1): 1~13.
-
卢友月, 付建明, 程顺波. 2013. 湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP 锆石 U-Pb 年代学研究. 华南地质与矿产, 2013, 29(3): 199~206.
-
马丽艳, 刘树生, 付建明, 程顺波, 卢友月, 梅玉萍. 2016. 湖南塔山、阳明山花岗岩的岩石成因: 来自锆石U-Pb年龄、地球化学及Sr-Nd同位素证据. 地质学报, 90(2): 284~303.
-
马收先, 李厚民, 孙燕, 陈雷, 庞绪勇, 张英利, 张朋. 2021. 湘南地区锡石结晶控制因素——来自阴极发光图像、微量元素和年龄的证据. 地质通报, 40(10): 1737~1756.
-
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329~2338.
-
覃宗光, 邓贵安, 董业才, 吴开华, 林德松. 2011. 栗木矿田鱼菜花岗岩型锡钨矿床. 矿产与地质, 25(1): 1~8.
-
田旭峰, 朱恩异, 文一卓, 王雷, 韩润生, 赵冻, 蒋宗和, 何昊, 黄亚虎, 李洋海. 2020. 湘南长城岭锑铅锌多金属矿床构造控矿规律研究. 矿产勘查, 9: 1860~1872.
-
王登红, 陈毓川, 李华芹, 陈正宏, 余金杰, 路远发, 李寄嵎. 2003. 湖南芙蓉锡矿的地质地球化学特征及找矿意义. 地质通报, 22(1): 50~56.
-
王联魁, 卢家烂, 张绍立, 杨文金, 徐立新. 1987. 南岭花岗岩液态分离实验研究. 中国科学(B辑), (1): 79~86.
-
王联魁, 王慧芬, 黄智龙. 1997. 锂氟花岗质岩石三端元组分的发现及其液态分离成因. 地质与勘探, 33(3): 11~20.
-
王联魁, 王慧芬, 黄智龙. 2000. Li-F花岗岩液态分离的微量元素地球化学标志. 岩石学报, 16(2): 145~152.
-
王联魁, 王慧芬, 黄智龙. 2002. Li-F花岗岩液态分离的同位素地球化学标志. 地质与勘探, 38(5): 38~43.
-
王艳丽, 彭齐鸣, 祝新友, 程细音, 傅其斌, 杨毅. 2013. 广西栗木锡钨铌钽矿床岩浆液态不混溶作用及其与矿化的关系. 地质与勘探, 49(6): 1046~1055.
-
王艳丽, 彭齐鸣, 祝新友, 程细音, 李顺庭. 2014. 湖南界牌岭锡多金属矿地球化学、年代学特征及成矿区带归属. 地质与勘探, 50(3): 475~485.
-
王正军, 谢磊, 王汝成, 朱金初, 车旭东, 赵旭. 2018. 一种特殊类型的云英岩: 湘南香花岭地区癞子岭云英岩成岩成矿特征. 高校地质学报, 24(4): 467~480.
-
文春华, 邵拥军, 黄革非, 罗小亚, 李胜苗. 2017. 湖南尖峰岭稀有金属花岗岩地球化学特征及成矿作用. 矿床地质, 36(4), 879~892.
-
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47: 745~765.
-
许以明, 侯茂松, 廖兴钰, 敖宗伟. 2000. 郴州芙蓉矿田锡矿类型及找矿远景. 湖南地质, 19(2): 95~100.
-
袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787~3797.
-
朱金初, 王汝成, 陆建军, 张辉, 张文兰, 谢磊, 章荣清. 2011. 湘南癞子岭花岗岩体分异演化和成岩成矿. 高校地质学报, 3: 381~392.
-
朱永峰, 曾贻善, 艾永富. 1995. 长英质岩浆中液态不混溶与成矿作用关系的实验研究. 岩石学报, 11(1): 1~8.
-
祝新友, 傅迷, 程细音, 王艳丽, 田野. 2017. “带外脉式”钨矿床成矿模型——以湖南白云仙钨矿田头天门矿床为例. 矿床地质, 36(1): 107~125.
-
祝新友, 王京彬, 王艳丽, 陈细音. 2015. 浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例. 岩石学报, 31(3): 891~905.
-
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2012. 南岭锡钨多金属矿区碱长花岗岩的厘定及其意义. 中国地质, 39(2): 359~381.
-
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例. 矿床地质, 32(3): 533~544.
-
祝新友, 王艳丽, 程细音, 田野. 2016. 湖南瑶岗仙花岗岩体中包体的地质地球化学特征与岩浆演化. 岩石矿物学杂志, 35(1): 16~32.
-
摘要
岩浆液态不混溶形成的浆液过渡态熔体是与高度分异花岗岩有关的钨锡多金属成矿流体的重要形式。湘南地区与钨锡多金属成矿有关的浆液过渡态熔体有两种类型,一种富钠富挥发分,以芙蓉矿田矿化蚀变碱长花岗岩中的钠长石电气石石英囊为代表;另一种富钾富挥发分,以界牌岭矿床矿化蚀变花岗斑岩中的锂白云母萤石囊(团块)为代表。两种浆液过渡态熔体可形成于同一矿床,为同期岩浆活动产物,成分上K2O与Na2O负相关,表明它们具有密切的时空和成因联系,熔体-流体包裹体发育,为高度分异的花岗质岩浆液态不混溶产物。两种浆液过渡态熔体富含成矿物质,与成矿关系密切,湘南地区多数钨锡多金属矿床的云英岩型、构造蚀变带型、钾化花岗岩型钨锡多金属成矿可能与富钾富挥发分的浆液过渡态熔体有关,钠化花岗岩型铌钽矿化与富钠富挥发分的浆液过渡态熔体有关。
Abstract
The volatile-rich hydrosilicate melts generated by magma liquid immiscibility represent important forms of ore-forming liquids for W-Sn polymetallic deposits associated with the highly-fractionated granite. Two types of volatile-rich hydrosilicate melts have been identified in the W-Sn polymetallic deposits of South Hunan. The first type is Na-and volatile-rich and represented by the albite-tourmaline-quartz pockets hosted in altered alkali-feldspar granite. The second type is K-and volatile-rich and represented by the lithian muscovite-fluorite pockets or blocks hosted in altered and mineralized granite porphyry. These two types of melts can be found in the same ore deposit, show negative compositional relationship between K2O and Na2O, and develop melt-fluid inclusions. They have close spatiotemporal and genetic relationship and represent different products of magma liquid immiscibility. In South Hunan, the K-and volatile-rich melt is probably responsible for the greisen-type, the structure-altered zone-type and the K-feldpar-granite-type W-Sn polymetallic mineralization, while the Na-and volatile-rich melt is linked to the albite-granite-type Nb-Ta mineralization.